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Abstract

In this paper we study similarity measures for moving curves which can, for
example, model changing coastlines or retreating glacier termini. Points on a
moving curve have two parameters, namely the position along the curve as well
as time. We therefore focus on similarity measures for surfaces, specifically
the Fréchet distance between surfaces. While the Fréchet distance between sur-
faces is generally NP-hard, we show for variants arising in the context of moving
curves that they are polynomial-time solvable or NP-complete depending on the
restrictions imposed on how the moving curves are matched. We achieve the
polynomial-time solutions by a novel approach for computing a surface in the
so-called free-space diagram based on a relation between obstacles.

1. Introduction

Over the past years the availability of devices that can be used to track
moving objects has increased dramatically, leading to an explosive growth in
movement data. Naturally the goal is not only to track objects but also to
extract information from the resulting data. Consequently recent years have
seen a significant increase in the development of methods extracting knowledge
from moving object data.

Tracking an object gives rise to data describing its movement. Often the
scale at which the tracking takes place is such that the tracked objects can be
viewed as point objects. Cars driving on a highway, birds foraging for food, or
humans walking in a pedestrian zone: for many analysis tasks it is sufficient to
consider objects as moving points. Hence the most common data sets used in
movement data processing are so-called trajectories: sequences of time-stamped
points.

However, not all moving objects can be reasonably represented as points.
A hurricane can be represented by the position of its eye, but a more accurate
description is as a 2-dimensional region which represents the hurricanes extent.
When studying shifting coastlines, reducing the coastline to a point is obviously
unwanted: one is actually interested in how the whole coast line moves and
changes shape over time. The same holds true when studying the terminus of
a glacier. In such cases, the moving object is best represented as a polyline
rather than by a single point. In this paper we hence go beyond the basic
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setting of moving point objects and study moving complex, non-point objects.
Specifically, we focus on similarity measures for moving curves, based on the
Fréchet distance.

Definitions and Notation. The Fréchet distance is a well-studied distance
measure for shapes, and is commonly used to determine the similarity between
two curves A and B : [0, 1] → Rn. A natural generalization to more com-
plex shapes uses the definition of Equation 1 where the shapes A and B have
type X → Rn.

Dfd(A,B) = inf
µ:X→X

sup
x∈X
‖A(x)−B(µ(x))‖ (1)

A

t

p

B ◦ µ
t

p

µ

Figure 1: A matching µ between sur-
faces A and B drawn as a homeomor-
phism between their parameter spaces.

Here, ‖ · ‖ : Rn → R is a norm
such as the Euclidean norm (L2) or the
Manhattan norm (L1). The matching µ
ranges over orientation-preserving homeo-
morphisms (possibly with additional con-
straints) between the parameter spaces of
the shapes compared; as such, it defines a
correspondence between the points of the
compared shapes. A matching between
surfaces with parameters p and t is illus-
trated in Figure 1. Given one such match-
ing we obtain a distance between A and
B by taking the largest distance between any two corresponding points of A
and B. The Fréchet distance is the infimum of these distances taken over all
possible matchings. For moving points or static curves, we have as parameter
space X = [0, 1] and for moving curves or static surfaces, we have X = [0, 1]2.
We can define various similarity measures between shapes by imposing further
restrictions on µ.

In practice a curve is generally represented by a sequence of P + 1 points.
Assuming a linear interpolation between consecutive points, this results in a
polyline with P segments. Analogously, a moving curve is a sequence of T + 1
polylines, each of P segments. We also interpolate the polylines linearly, yielding
a bilinear interpolation, or a quadrilateral mesh of P × T quadrilaterals.

Related Work. The Fréchet distance or related measures are frequently used
to evaluate the similarity between point trajectories [8, 7, 14]. The Fréchet
distance is also used to match point trajectories to a street network [2, 5].The
Fréchet distance between polygonal curves can be computed in near-quadratic
time [3, 6, 9, 19], and approximation algorithms [4, 17] have been studied.

The natural generalization to moving (parameterized) curves is to interpret
the curves as surfaces parameterized over time and over the curve parameter.
Computing the Fréchet distance between surfaces is NP-hard [18], even for ter-
rains [10]. For general surfaces the Fréchet distance was only known to be
semi-computable [1, 13]. Very recently twofold progress was made: the first
computability results were found for surfaces of genus 0 [22] and the problem
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of computing the Fréchet distance between spheres in R1 was shown to be in
NP [12]. Polynomial-time algorithms have been given for the so called weak
Fréchet distance [1] and for the Fréchet distance between simple polygons [11]
and so called folded polygons [16].

When interpreting moving curves as surfaces it is important to take the
different roles of the two parameters into account: the first is inherently linked
to time and the other to space. This naturally leads to restricted versions of
the Fréchet distance of surfaces. For curves, restricted versions of the Fréchet
distance were considered [7, 20]. For surfaces we are not aware of similar results.

1.1. Results

We refine the Fréchet distance between surfaces to meaningfully compare
moving curves. To do so, we restrict matchings to be one of several suitable
classes. Representative matchings for the considered classes together with the
running times of our results are illustrated in Figure 2.

t

p

Identity Synchronous Constant Synchronous Dynamic
O(PT ) O(P 2T log(PT )) O(P 3T logP log(PT ))

Asynchronous Constant Asynchronous Dynamic Orientation-Preserving
NP-complete NP-hard NP-hard

Figure 2: The time complexities of the considered classes of matchings.

The simplest class of matchings consists of a single predefined identity match-
ing µ(p, t) = (p, t). Hence, to compute the identity Fréchet distance, we need
only determine a pair of matched points that are furthest apart. It turns out
that one of the points of a furthest pair is a vertex of a moving curve (i.e.
quadrilateral mesh), allowing computation in O(PT ) time, see Section 2.

We discuss the synchronous constant Fréchet distance in Section 3. Here we
assume that the matching of timestamps is known in advance, and the match-
ing of positions is the same for each timestamp, so it remains constant. Our
algorithm computes the positional matching minimizing the Fréchet distance.

The synchronous dynamic Fréchet distance considered in Section 4 also as-
sumes a predefined matching of timestamps, but does not have the constraint of
the synchronous constant class that the matching of positions remains constant
over time. Instead, the positional matching may change continuously over time.
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Finally, in Section 5, we consider several cases where neither positional nor
temporal matchings are predefined. The three considered cases are the asyn-
chronous constant, asynchronous dynamic, and orientation-preserving Fréchet
distance. The asynchronous constant class of matchings consists of a constant
(but not predefined) matching of positions, as well as timestamps whereas in
the asynchronous dynamic class of matchings, the positional matching may
change continuously. In the orientation-preserving class, matchings range over
orientation preserving homeomorphisms between parameter spaces, given that
the corners of the parameter spaces are aligned.

The last three classes are quite complex, and we give constructions proving
that approximating the Fréchet distance within a factor 1.5 is NP-hard even
under these very restricted classes of matchings. For the asynchronous constant
and asynchronous dynamic classes of matchings, this result holds even for mov-
ing curves embedded in R1 whereas the result for the orientation-preserving case
holds for embeddings in R2.

Although we do not discuss classes where positional matchings are known in
advance, these symmetric variants can be obtained by interchanging the time
and position parameters for the discussed classes. In fact, we refer to time
and position parameters solely to distinguish the two dimensions; in practice,
they can represent any two parameters that constitute a surface. Deciding
which variant is appropriate for comparing two moving curves depends largely
on how the data is obtained, as well as the use case for the comparison. For
instance, the synchronous constant variant may be used on a sequence of satellite
images which have associated timestamps or data sampled at a fixed rate. The
synchronous dynamic Fréchet distance is better suited for sensors with different
sampling frequencies, placed on curve-like moving objects.

2. Identity Matchings

Suppose we are given a single predefined matching µ between
the moving curves A and B : [0, P ] × [0, T ] → Rn. We can
compute the Fréchet distance under this matching if we can find
the corresponding points of A and B that are furthest apart, see
Equation 2.

Dµ(A,B) = sup
x∈[0,P ]×[0,T ]

‖A(x)−B(µ(x))‖ (2)

For quadrilateral meshesA andB of size P×T , the identity matching µ(p, t) =
(p, t) allows us to simplify A(x)−B(µ(x)) into C(x) = A(x)−B(x) where C is
again a quadrilateral mesh of size P × T . The Fréchet distance for the identity
matching depends only on the point on C that is furthest from the origin. To see
this, consider a single quadrilateral; the point furthest from the origin must be
one of its four corners since all points on the quadrilateral lie within the convex
hull of its four corner points. Hence, it suffices to check only the distance to the
origin for the O(PT ) vertices of C, see Equation 3. The Fréchet distance under
the identity matching can then be computed in O(PT ) time.
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Did(A,B) = sup
x∈[0,P ]×[0,T ]

‖A(x)−B(x)︸ ︷︷ ︸
C(x)

‖ = sup
x∈{0,...,P}×{0,...,T}

‖C(x)‖ (3)

Meshes of different size can be compared after introducing O(PT ) dummy
vertices, such that the meshes have equal dimensions and each vertex has an
aligned vertex on the other mesh. For this, it is important to note that any
quadrilateral can be subdivided into an equivalent mesh of four quadrilaterals
with any point on the original quadrilateral as their shared corner.

To extend this further, consider the case where the matching µ(p, t) =
(π(p), τ(t)) is defined by two piecewise-linear functions π and τ of |π| and |τ |
vertices. This allows comparing moving curves under predefined realigments
of timestamps as well as positions. For such a matching, the surface C(x) =
A(x)−B(µ(x)) is a quadrilateral mesh of O((P + |π|)(T + |τ |)) vertices. We il-
lustrate this in Figure 3 for t = 4 and |τ | = 3 with vertices (τ(0), τ(1.5), τ(4)) =
(0, 2.5, 4). In such case O(T + |τ |) timestamps of A are matched with O(T + |τ |)
timestamps of B.

The same can be done given a piecewise-linear reparameterization of po-
sitions. As a result, the Fréchet distance under a predefined piecewise-linear
reparameterization of timestamps and positions can be computed in O((P +
|π|)(T + |τ |)) time.

A
t =0 1 1.5 2 3 4

B
t =0 1 2 2.5 3 4

A
t =0 1 1.5 2 3 4

B
t =0 1 2 2.5 3 4

Figure 3: A piecewise linear matching of timestamps. Left, the matching drawn with the
original time axes. Right, the matching drawn after warping the time axes.

3. Synchronous Constant Matchings

In this section, we consider the class of synchronous constant
matchings where the matching µ(p, t) = (π(p), t) assumes no
realignments of time and a constant reparameterization π of po-
sitions. Thus, the goal is to find a continuous nondecreasing
surjection π on [0, P ], such that the Fréchet distance is mini-
mized.

Before we present the algorithm to find synchronous constant matchings, we
refer to an existing algorithm [3] that computes the Fréchet distance between
static curves. This classic algorithm makes use of a data structure called the
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ε-freespace diagram, which is the set of parameter pairs for which the repre-
sented points are at most ε apart. A freespace diagram for two static curves is
illustrated in Figure 4.

The matching π(x) = y between the parameter spaces of static curves A
and B can be embedded as a bimonotone path {(x, y) | π(x) = y} in the
freespace. Therefore, the Fréchet distance is at most ε if and only if there
exists a bimonotone path from the bottom-left to the top-right corner of the
ε-freespace. Using freespace diagrams, the decision problem for static curves
can be solved in O(P 2) time.

ε

Figure 4: Left: Curves A (red) and B (blue) with Fréchet distance ε. Right: In white, their
freespace diagram Fε = {(x, y) ∈ [0, 6]× [0, 5] | ‖A(x)−B(y)‖ ≤ ε}. If we draw the freespace
diagram for any smaller value of ε, no bimonotone path through the freespace connects the
bottom-left corner to the top-right corner.

Fε = {(x, y, t) ∈ [0, P ]× [0, P ]× [0, T ] | ‖A(x, t)−B(y, t)‖ ≤ ε} (4)

We extend this approach to compute matchings between moving curves.
For this, consider the 3D freespace defined by Equation 4. Since any syn-
chronous constant matching µ(p, t) = (π(p), t) is defined by a bimonotone
path π : [0, P ] → [0, P ], the matching µ is embedded in the freespace dia-
gram as the surface µ = {(x, y) | π(x) = y} × [0, T ]. Such a matching yields
a Fréchet distance of at most ε if and only if µ ⊆ Fε. The 3D freespace consists
of O(P 2T ) cells Cx,y,t = Fε ∩ ([x, x+ 1]× [y, y+ 1]× [t, t+ 1]) for (x, y, t) ∈ N3.
We can simplify the three-dimensional freespace (Fε) into a two-dimensional
one (F2D

ε ) with

F2D
ε = {(x, y) ∈ [0, P ]× [0, P ] | for all t ∈ [0, T ], ‖A(x, t)−B(y, t)‖ ≤ ε} (5)

and find the path π defining µ in it. To simplify Equation 5 we prove the
following lemma.

Lemma 1. A cell Cx,y,t of the freespace has a convex intersection with any line
parallel to the xy-plane or the t-axis.
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Proof. Each cell in the freespace is the freespace induced by a pair of quadri-
laterals, so consider two quadrilaterals A(x, t) and B(y, t). These quadrilaterals
are bilinear interpolations between four corner points. Hence, A(x, t)− B(y, t)
is an affine map for each fixed t. Likewise, A(x, t)−B(y, t) is an affine map for
each fixed pair (x, y). Because the preimage of a convex norm ball under an
affine map is convex, the intersection of a freespace cell with lines parallel to
the t-axis or the xy-plane forms a convex set.

Lemma 2. F2D
ε = {(x, y) ∈ [0, P ] × [0, P ] | for all t ∈ {0, . . . , T} ‖A(x, t) −

B(y, t)‖ ≤ ε}.

Proof. By Lemma 1, the intersection of a cell of Fε with a line parallel to the t-
axis is convex. Hence, if a point (x, y, t) /∈ Fε, then either (x, y, btc) /∈ Fε
or (x, y, dte) /∈ Fε. Therefore the internal structure of freespace cells can safely
be ignored.

We denote the O(P 2) cells of the 2D freespace by Cx,y = ([x, x+ 1]× [y, y+
1]) ∩ F2D

ε where (x, y) ∈ N2.

Lemma 3. Every cell Cx,y in the 2D freespace F2D
ε is convex.

Proof. By Lemma 1, Cx,y is an intersection of convex sets, so Cx,y is convex.

Figure 5: In white, F2D
ε for two moving curves.

Darker shaded areas are in fewer layers of Fε.

Figure 5 illustrates (in white)
what the 2D freespace F2D

ε might look
like for two moving curves. As be-
fore, any smaller value of ε would
disconnect the bottom-left from the
top-right corner. For a given ε, for
each of the O(P 2) cells, the bound-
ary intervals can be computed inO(T )
time. Therefore, finding an xy-
monotone path takes O(P 2T ) time,
solving the decision problem for the
Fréchet distance under synchronous
constant matchings in O(P 2T ) time.

3.1. Parametric Search

We use the decision problem in a parametric search for the minimum ε
admitting a matching. When increasing ε starting from ε = 0, there are three
types of critical values of ε for which a passage might open in the freespace.
Due to Lemma 1, these critical values correspond exactly to those of the known
algorithm [3] for computing the Fréchet distance between two curves:

a) The minimal ε with (0, 0) ∈ F2D
ε and (P, P ) ∈ F2D

ε .

b) One of the four boundaries of a cell Cx,y becomes nonempty.

c) The lower (or left) endpoint on the boundary of cell Cx,y aligns with the
upper (or right) endpoint on the boundary of Cx+i,y (or Cx,y+j).
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Note that all critical values occur when two endpoints align (or an endpoint
aligns with a gridpoint). For each of the O(T ) layers defining F2D

ε , we use a
function of ε to represent the x- or y-position of such an endpoint (or gridpoint).
This amounts to a total of O(P 2T ) functions, and each critical value occurs when
two of them intersect. Since the intersections between any pair of these functions
can be computed in constant time, we can apply a parametric search [21].

We use Cole’s variant [15] of the parametric search to find the desired critical
value in O((k+timedec) log k) time. Here k = O(P 2T ) is the number of functions
to which the parametric search is applied and timedec = O(P 2T ) is the running
time for the decision problem. We obtain the running time of Theorem 4.

Theorem 4. The synchronous constant Fréchet distance between quadrilateral
meshes can be computed in O(P 2T log(PT )) time.

Remark 1. To compare quadrilateral meshes under a piecewise linear realign-
ment of timestamps, we can subdivide the quadrilateral meshes as explained
in Section 2. Although for simplicity we have assumed that the meshes are
of equal size, when computing the Fréchet distance between meshes of differ-
ent sizes, P × T and Q × T , the 2D freespace has only O(PQ) cells. Thus
the decision problem is solved in O(PQT ) time and the exact computation
takes O(PQT log(PQT )) time.

Remark 2. If the inputs of the algorithm are two sequences of O(T ) curves
without predefined interpolations to obtain quadrilateral meshes, we can still
measure their Fréchet distance for the optimal (but unknown) linear interpola-
tion. Due to the convexity of freespace cells, the Fréchet distance is the mini-
mum Fréchet distance between two curves At and Bt, which can be computed
in O(TP 2 logP ) time by running the original algorithm O(T ) times.

4. Synchronous Dynamic Matchings

Synchronous dynamic matchings align timestamps under the
identity matching, but the matching of positions may change
continuously over time. Specifically, the matching is defined
as µ(p, t) = (πt(p), t). Here, µ(p, t) : [0, P ]×[0, T ]→ [0, P ]×[0, T ]
is continuous, and for any t the matching πt : [0, P ]→ [0, P ] be-
tween the two curves at that time is a nondecreasing surjection.

4.1. Freespace Partitions in 2D

Recall that the freespace diagram Fε is the set pairs of points that are within
distance ε of each other.

(x, y) ∈ Fε ⇔ ‖A(x)−B(y)‖ ≤ ε
If A and B are curves with parameter space [0, P ], then their freespace diagram
is two-dimensional, and the Fréchet distance is the minimum value of ε for
which an xy-monotone path (representing µ) from (0, 0) to (P, P ) through the
freespace exists.
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Figure 6: A matching (green) in the
2D freespace (white).

We use a relation between obstacles to
determine whether a matching through the
freespace exists. Before we present the 3D vari-
ant for moving curves with synchronized times-
tamps, we illustrate the idea in the fictional 2D
freespace of Figure 6. Here, any matching—
such as the green path—must be an x- and y-
monotone path from the bottom left to the top
right corner and this matching must avoid all
obstacles (i.e. all points not in Fe). There-
fore each such matching divides the obstacles
in two sets: those above, and those below the
matching.

Suppose we now draw a directed edge from
an obstacle a to an obstacle b if and only if any matching that goes over a must
necessarily go over b. The key observation is that a matching exists unless such
edges can form a path from the lower-right boundary to the upper-left boundary
of the freespace, as proven in a generalized setting in Lemma 6. The figure shows
a few such edges in black. If all obstacles were slightly larger, an edge could
connect the lower-right (blue) boundary blue obstacle to the upper-left (red)
boundary obstacle, forming the path connecting the boundaries highlighted in
gray.

4.2. Freespace Partitions in 3D

In contrast to the 2D freespace where the matching is a path, matchings of
the form µ(p, t) = (πt(p), t) form surfaces in the 3D freespace Fε (see Equa-
tion 6).

(x, y, t) ∈ Fε if and only if ‖A(x, t)−B(y, t)‖ ≤ ε (6)

u

µ

dx
y

t

Figure 7: µ separates u and d.

Such a surface again divides the obstacles in the
freespace into two sets and can be punctured by
a path connecting two boundaries. We formal-
ize this concept for the 3D freespace and give an
algorithm for deciding the existence of a match-
ing.

For x, y, t ∈ N, the cell Cx,y,t of the 3D
freespace is the set Fε ∩ ([x, x+ 1]× [y, y+ 1]×
[t, t+1]). The property of Lemma 1 holds for all
such cells. We divide the set of points not in Fε
into a set Γ of so-called obstacles, such that
each individual obstacle is a connected point
set. Let u be the open set of points representing
the left and top boundary of Fε. Symmetrically,
let d represent the bottom and right boundary, see Figure 7. Denote by Γ′ ⊂ Γ
the obstacles between the boundaries.
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Γ = {u, d} ∪ Γ′ with
⋃

Γ′ = ([0, P ]2 × [0, T ]) \ Fε;

u = {(x, y, t) | (x < 0 and y > 0) or (x < P and y > P )};

d = {(x, y, t) | (x > 0 and y < 0) or (x > P and y < P )}.

For a given matching µ, let Dµ ⊆ Γ be the set of obstacles below it, then u /∈
Dµ and d ∈ Dµ. Here, we use axes (x, y, t) and say that a point is below some
other point if it has a smaller y-coordinate. Because each obstacle is a connected
set and µ cannot intersect obstacles, a single obstacle cannot lie on both sides of
the same matching. Because all matchings have u /∈ Dµ and d ∈ Dµ, a matching
exists if and only if ¬(d ∈ Dµ ⇒ u ∈ Dµ).

We compute a relation . of elementary dependencies between obstacles, such
that its transitive closure e. has d e. u if and only if d ∈ Dµ ⇒ u ∈ Dµ.
Let a . b if and only if a ∪ b is connected (a touches b) or there exists some
point (xa, ya, ta) ∈ a and (xb, yb, tb) ∈ b with xa ≤ xb, ya ≥ yb and ta = tb. We
prove in Lemmas 5 and 6 that this choice of . satisfies the required properties
and in Theorem 7 that we can use the transitive closure e. of . to solve the
decision problem of the Fréchet distance.

Lemma 5. If a e. b, then a ∈ Dµ ⇒ b ∈ Dµ for every matching µ.

Proof. Assume that a . b, then either a touches b and no matching can separate
them, or there exists some (xa, ya, t) ∈ a and (xb, yb, t) ∈ b with xa ≤ xb, ya ≥ yb.
If there were some matching µ with a ∈ Dµ, then (xa, yµ, t) ∈ µ for some yµ >
ya. Similarly, if b /∈ Dµ, then (xb, y

′
µ, t) ∈ µ for some y′µ < yb. We can further

deduce from xa ≤ xb and monotonicity of µ that we can pick y′µ such that ya <
yµ ≤ y′µ < yb. However, this contradicts ya ≥ yb, so such a matching does not
exist. Hence, a ∈ Dµ ⇒ b ∈ Dµ whenever a.b and therefore whenever a e. b.
Lemma 6. If d ∈ Dµ ⇒ u ∈ Dµ for all µ, then d e. u.

Proof. Suppose d ∈ Dµ ⇒ u ∈ Dµ but not d e. u. Then no matchings exist that
separate u from d, and no path from d to u exists in the directed graph G =
(Γ, .). Pick as D the set of obstacles reachable from d in G, then D does not
contain u. Let µ be the boundary of the hull of D, where the hull is the set
of points below and to the right of points of D; that is, so µ is the boundary
of {(x′, y′, t) | (x, y, t) ∈ d ∈ D,x′ ≥ x, y′ ≤ y}. Then Dµ ⊇ D, and we
show that µ is a matching that separates u from d (and does not intersect any
obstacles). Let µ restricted to any timestamp t is an x- and y-monotone path
from (0, 0, t) to (P, P, t), so u /∈ Dµ. We show that µ does not properly intersect
any obstacles of Γ by showing it does not intersect any obstacle o ∈ Γ\D. Indeed,
otherwise some point (xo, yo, t) ∈ o lies below µ, and because D satisfies . it
follows from the definition of . that o′ . o for some o′ ∈ D. Hence, such an
obstacle o cannot exist. So µ does not intersect any obstacles, contradicting d ∈
Dµ ⇒ u ∈ Dµ.

Theorem 7. The Fréchet distance is greater than ε if and only if for this value
of ε, we have d e. u.
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Proof. We have for every matching µ that u /∈ Dµ and d ∈ Dµ. Therefore it
follows from Lemma 5 that no matching exists if d e. u for ε. In that case, the
Fréchet distance is greater than ε. Conversely, if ¬(d e. u) there is a set Dµ

satisfying e. with u /∈ Dµ and d ∈ Dµ. In that case, a matching exists by
Lemma 6, and the Fréchet distance is at most ε.

Denote by Fε the complement ([0, P ]2 × [0, T ]) \ Fε of the freespace. We
choose the set of obstacles Γ′ such that

⋃
Γ′ = Fε and the relation . is easily

computable. Note that due to Lemma 1, each connected component of Fε
contains a corner of a cell, so any cell in the freespace contains constantly many
(up to eight) components of

⋃
Γ′. We use grid points (x, y, t) ∈ N3 to index the

obstacles ox,y,t of Γ′ =
⋃

(x,y,t){ox,y,t}. If (x, y, t) ∈ Fε, define obstacle ox,y,t to

be the connected component of ([x− 1, x+ 1]× [y− 1, y+ 1]× [t− 1, t+ 1])∩Fε
containing (x, y, t); that is, of the restriction of Fε to the (up to eight) cells
adjacent to (x, y, t). If (x, y, t) /∈ Fε, we define ox,y,t to be an empty (dummy)
obstacle. Note that

⋃
Γ′ = Fε and that obstacles need not be disjoint.

Each of the O(P 2T ) obstacles is now defined by a constant number of ver-
tices. We therefore assume that for each pair of obstacles (a, b) ∈ Γ × Γ, we
can decide in constant time whether a . b, even though this decision proce-
dure depends on the chosen distance metric. For each obstacle a = ox,y,t, there
are O(P 2) obstacles b = ox′,y′,t′ for which a.b, namely because t−2 ≤ t′ ≤ t+2
if a . b. Furthermore, u and d contribute to O(P 2T ) elements of the relation.
Therefore we can compute the relation . in O(P 4T ) time.

Testing whether d e. u is equivalent to testing whether a path from d to u
exists in the directed graph (Γ, .), which can be decided using a depth first
search. So we can solve the decision problem for the Fréchet distance in O(P 2T+
| . |) = O(P 4T ) time. However, the relation . may yield many unnecessary
edges. In Section 4.4 we show that a smaller set E of size O(P 3T ) with the
same transitive closure e. is computable in O(P 3T logP ) time, so the decision
algorithm takes only O(P 3T logP ) time.

4.3. Parametric Search

x

y

t

Figure 8: [0, 2]3 \ Fε

To give an idea of what the 3D freespace looks
like, we have drawn the obstacles of the eight cells
of the freespace between two quadrilateral meshes
of size P × T = 2× 2 in Figure 8. Cells of the 3D
freespace lie within cubes, having six faces and
twelve edges. We call such edges x-, y- or t-edges,
depending on the axis to which they are parallel.

We are looking for the minimum value of ε
for which a matching exists. When increasing the
value of ε, the relation . becomes sparser since
obstacles shrink. Critical values of ε occur when .
changes. By Theorem 7, all critical values involve
at most two obstacles. By Lemma 1, all critical
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values involve an edge or an xt-face or yt-face of a cell, but never the internal
volume, so the following critical values cover all cases.

a) The minimal ε such that (0, 0, t) ∈ Fε and (P, P, t) ∈ Fε for all t.

b) An edge of Cx,y,t becomes nonempty.

c) Endpoints of y-edges of Cx,y,t and Cx+i,y,t align in y-coordinate, or end-
points of x-edges of Cx,y,t and Cx,y−j,t align in x-coordinate.

d) Endpoints of a t-edge of Cx,y,t and a t-edge of Cx+i,y−j,t align in t-
coordinate.

e) An obstacle in Cx,y,t stops overlapping with an obstacle in Cx+i,y,t or Cx,y−j,t
when projected orthogonally onto the yt- or xt-plane.

The endpoints involved in the critical values of type a), b), c) and d) can be
captured in O(P 2T ) functions. We apply a parametric search for the minimum
critical value εabcd of type a), b), c) or d) for which a matching exists. This
takes O((P 2T + timedec) log(PT )) time.

b

c

a

x

y

t

Figure 9: a . b and a . c

We illustrate the need for critical values of type e)
in Figure 9, here obstacle a overlaps with both ob-
stacles b and c while the overlap in edges does not
contribute to .. It is unclear how critical values of
type e) can be incorporated in the parametric search
directly. Instead, we enumerate and sort the O(P 3T )
critical values of type e) in O(P 3T log(PT )) time. Us-
ing O(log(PT )) calls to the decision algorithm, we
apply a binary search to find the minimum criti-
cal value εe of type e) for which a matching exists.
Finding the critical value εe then takes O((P 3T +
timedec) log(PT )) time. The synchronous dynamic Fréchet distance is then the
minimum of εabcd and εe. This results in the following running time.

Theorem 8. The synchronous dynamic Fréchet distance can be computed in
O((P 3T + timedec) log(PT )) time.

Before stating the final running time, we present a faster algorithm for the
decision algorithm.

4.4. A Faster Decision Algorithm

To speed up the decision procedure we distinguish the cases for which two
obstacles may be related by ., these cases correspond to the five types of critical
values of Section 4.3. Critical values of type a) and b) depend on obstacles in
single cells, so there are at most O(P 2T ) elements of . arising from type a)
and b). Critical values of type c) and e) arise from pairs of obstacles in cells
in the same row or column, so there are at most O(P 3T ) of them. In fact, we
can enumerate the edges of type a), b), c), and e) of . in O(P 3T ) time. On the
other hand, edges of type d) arise between two cells with the same value of t,
so there can be O(P 4T ) of them.

12



We compute a smaller directed graph (V,E) with |E| = O(P 3T ) that has a
path from d to u if and only if d e. u. Let V = Γ = {u, d}∪Γ′ be the vertices as
before (we will include dummy obstacles for grid points that lie in the freespace)
and transfer the edges in . except those of type d) to the smaller set of edges E.
We must still induce edges of type d) in E, but instead of adding O(P 4T ) edges,
we use only O(P 3T ) edges. The edges of type d) can actually be captured in
the transitive closure of E using only O(P ) edges per obstacle in E.

Using an edge from ox,y,t to ox+1,y,t and to ox,y−1,t, we construct a path
from ox,y,t to any obstacle ox+i,y−j,t. The sole purpose of the dummy obstacles
is to construct these paths effectively. For obstacles whose gridpoints have
the same t-coordinates, it then takes a total of O(P 2T ) edges to include the
obstacles overlapping in t-coordinate related by type d), this is valid because
(x, y, t) ∈ ox,y,t for non-dummy obstacles.

Denote by Ed
k the edges of type d) of the form (a, b) = (ox,y,ta , ox+i,y−j,tb)

where tb = ta+k; then the set Ed
0 ofO(P 2T ) edges is the one we just constructed.

Now it remains to induce paths with ta 6= tb, that still overlap in t-coordinates,
i.e. the sets Ed

−2, Ed
−1, Ed

1 and Ed
2 . Denote by t−(a) and t+(a) the minimum

and maximum t-coordinate over points in an obstacle a. For each obstacle, both
the t−(a) and the t+(a) coordinates are an endpoint of a t-edge in a cell defining
the obstacle due to Lemma 1, and therefore computable in constant time.

Our savings arise from the fact that Ed
0 induces a path from ox+i,y−j,t+k

to ox+i′,y−j′,t+k if ox,y,t . ox+i,y−j,t+k and ox,y,t . ox+i′,y−j′,t+k with i ≤ i′

and j ≤ j′, so we do not need an additional edge to induce a path to the latter
obstacle. To avoid degenerate cases, we start by exhaustively enumerating edges
of Ed

k (k ∈ {−2,−1, 1, 2}) for which i ≤ 1 or j ≤ 1 in O(P 3T ) time so we need
only consider edges with i ≥ 2 ∧ j ≥ 2.

3 1 2 4 3

2 3 3 1 3

4 4 4 3 4

2 4 2 3 2

3 3 3 1 4

2

x

y

Figure 10: Two edges (green) cover
(red) all four obstacles b (green) within
the query rectangle (blue) with val-
ues t−(b) ≤ t+(a) = 2.

For these remaining cases, we have a . b
if and only if t+(a) ≥ t−(b) ∧ tb = ta + k,
and t−(a) ≤ t+(b) ∧ tb = ta − k for posi-
tive k. From this we can derive the edges
of Ed

k . Although for each a, there may
beO(P 2) obstacles b such that a.b with tb =
ta + k, the Pareto frontier (see the defi-
nition below) of those obstacles b contains
only O(P ) obstacles, see the grid of fictional
values t−(b) in Figure 10. Theorem 11 of
Section 4.5 shows how to find these Pareto
frontiers in O(P logP ) time per obstacle a,
using only O(P 2T ) preprocessing time for
the complete freespace.

Definition (Pareto frontier). Given a
partially ordered set (S,�), the Pareto fron-
tier of a subset S ⊆ S is the unique minimal
subset S′ ⊆ S such that for all s ∈ S, there
is some s′ ∈ S′ for which s′ � s.
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As a result, we can compute all O(P 3T ) edges of Ed
k in O(P 3T logP ) time.

By Theorem 9, the decision problem for the synchronous dynamic Fréchet dis-
tance is solvable in O(P 3T logP ) time.

Theorem 9. The decision problem for the synchronous dynamic Fréchet dis-
tance is solvable in O(P 3T logP ) time.

Proof. The edges E of types other than d) are enumerated in O(P 3T ) time, and
using constantly many Pareto frontier queries for each obstacle, O(P 3T ) edges
of type d) in E are computed in O(P 3T logP ) time. Given the set E of edges,
deciding whether a path between two vertices exists takes O(|E|) = O(P 3T )
time. The transitive closure of E equals e., so a path from d to u exists in E if
and only if there was such a path in .. Since we compute E in O(P 3T logP )
time, the decision problem is solved in O(P 3T logP ) time.

The following immediately follows from Theorems 8 and 9.

Corollary 10. The synchronous dynamic Fréchet distance can be computed in
O(P 3T logP log(PT )) time.

4.5. Pareto Frontier Queries

Suppose we are given a matrix M with m columns and n rows, and we
want to efficiently query submatrices for the Pareto frontier of numbers that
are at most a given threshold value, t. A query specifies the threshold t,
and two coordinates (xmin, ymin) and (xmax, ymax) of the query rectangle R =
{xmin, . . . , xmax} × {ymin, . . . , ymax}. Let Ct(R) = {(x, y) ∈ R | M [x, y] ≤ t}
denote the coordinates of the query rectangle that must be dominated by the
Pareto frontier Ft(R) ⊆ Ct(R). That is, if (x, y) ∈ Ct(R), then some (x′, y′) ∈
Ft(R) with x′ ≤ x ∧ y′ ≤ y exists.

We preprocess each of the O(n) rows of M in O(m) time by storing their
cells as the leaves of an augmented binary tree, whose internal nodes store the
minimum value over its subtrees. Then queries for the index of the leftmost
element with value at most t in a range {xmin, . . . , xmax} of that row can be
answered in O(logm) time. We can compute Ft by including for each row, the
element with minimum x-coordinate and value at most t in the query range. So
using O(n) queries, we compute a set Ft(R) of size O(n) in O(n logm) time,
using O(nm) preprocessing time for the matrix M .

In this case, Ft(R) is not actually the Pareto frontier since some of its ele-
ments might be dominated by other elements. With a slight modification, we
can make Ft(R) the actual Pareto frontier (of minimum size). If the query with
range {xmin, . . . , xmax} returns x∗ with xmin ≤ x∗ ≤ xmax for some row, then
the query range for subsequent rows can be restricted to {xmin, . . . , x

∗ − 1}, so
no unnecessary values are generated.

Theorem 11. For an n×m matrix, using O(nm) preprocessing time, the Pareto
frontier of values at least t of any submatrix can be computed in O(n logm) time.
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5. Hardness

We extend the synchronous constant and syn-
chronous dynamic classes of matchings (of Sec-
tions 3 and 4) to asynchronous ones. For this,
we allow realignments of timestamps, giving rise
to the asynchronous constant and asynchronous
dynamic classes of matchings. The asynchronous

constant class ranges over matchings of the form µ(p, t) = (π(p), τ(t)) where
the π and τ are matchings of positions and timestamps. The asynchronous
dynamic class of matchings has the form µ(p, t) = (πt(p), τ(t)) for which the
positional matching πt changes over time. We first prove that the asynchronous
constant Fréchet distance is in NP.

Theorem 12. Computing the Fréchet distance is in NP for the asynchronous
constant class of matchings.

Proof. Given any matching µ(p, t) = (π(p), τ(t)) with a Fréchet distance of ε,
we can derive—due to Lemma 1—a piecewise-linear matching τ∗ in O(PT )
time, such that a matching µ∗(p, t) = (π∗(p), τ∗(t)) with Fréchet distance at
most ε exists. We can realign the quadrilateral meshes A and B under τ∗ to
obtain meshes A∗ and B∗ of polynomial size. Now the polynomial-time decision
algorithm for synchronous constant matchings is applicable to A∗ and B∗.

Due to critical values of type e), it is unclear whether each asynchronous
dynamic matching admits a piecewise-linear matching τ∗ of polynomial size,
which would mean that the asynchronous dynamic Fréchet distance is also in NP.

We show that computing the Fréchet distance is NP-hard for both classes by
a reduction from 3-SAT. The idea behind the construction is illustrated in the
two height maps of Figure 11. These represent quadrilateral meshes embedded
in R1 and correspond to a single clause of a 3-CNF formula of four variables.
Both moving curves are zig-zags whose peaks change height slightly over time.

0

T/2

p

t
X1 X2 X3 X4A

0

T/4

p

t
F1 T1 F2 T2 F3 T3 F4 T4B

2

Figure 11: Two quadrilateral meshes A and B embedded in R1 (indicated by color and
isolines). Their Fréchet distance is 2 isolines if the clause (X2 ∨ ¬X3 ∨ ¬X4) is satisfiable
and 3 isolines otherwise.
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Figure 12: The freespace Fε=2 of (A,B) at times (0, 0) (left) and (T/2, T/4) (right).

We distinguish dark valleys (height 0), peaks (white on A (height 6), yellow
on B (height 4)) and ridges (denoted Xi, Fi and Ti) with height 5 on A and
height 3 on B. In addition, B has shallow valleys of height 2 separating each
pair of ridges Fi and Ti. An important observation is that in order to obtain
a low Fréchet distance of ε < 3, the n-th valley of A must be matched with
the n-th valley of B. Moreover, each ridge Xi must be matched with Fi or Ti
and each peak of A must be matched to a peak of B. Note that even for
asynchronous dynamic matchings, if Xi is matched to Fi, it cannot be matched
to Ti with ε < 3 and vice-versa because the (red) valley separating Fi and Ti
has distance 3 from Xi.

The aforementioned properties are reflected more clearly in the 2D freespace
between the curves at aligned timestamps t and τ(t). In Figure 12, we give
two 2D slices (with (tA, tB) = (0, 0) and (T/2, T/4), respectively) of the 4D-
freespace diagram with ε = 2 for the shown quadrilateral meshes. In this di-
agram with ε = 2, only 23 monotone paths exist (up to directed homotopy)
whereas for ε = 3 there would be 24 monotone paths (one for each assignment
of variables). For ε = 2, the peak of X2 cannot be matched to F2 at t = T/4
of B, corresponding to an assignment of X2 = true.

Consider a 3-CNF formula with n variables and m clauses, then A and B con-
sist of m clauses along the t-axis and n variables (X1 . . . Xn and F1, T1 . . . Fn, Tn)
along the p-axis. The k-th clause of A is matched to the k-th clause of B due
to the elevation pattern on the far left (p = 0). This means that the peaks of A
are matched with peaks of the same clause on B and all these peaks have the
same timestamp because τ(t) is constant (independent of p).

For each clause, there are three rows (timestamps) of B with peaks on the
ridges. On each such timestamp, exactly one ridge (depending on the disjuncts
of the clause) does not have a peak. Specifically, if a clause has Xi or ¬Xi as
its k-th disjunct, then the k-th row of that clause has no peak on ridge Fi or Ti,
respectively. We use these properties in Theorem 15 where we prove that it is
NP-hard to approximate the Fréchet distance within a factor 1.5.

Lemma 13. The Fréchet distance between two such moving curves is at least 3
if the corresponding 3-CNF formula is unsatisfiable.

Proof. Consider a matching yielding a Fréchet distance less than 3 given an
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unsatisfiable formula, then the peaks of A (of the k-th clause) are matched
with peaks of B (of a single row of the k-th clause). Assign the value true to
variable Xi if ridge Xi is matched with Ti and false if it is matched with Fi.
Then for every clause (Vi ∨ Vj ∨ Vk) with Vi ∈ {Xi,¬Xi}, there is a peak
at π(Xi), π(Xj) or π(Xk) for that clause. Such a matching cannot exist because
then the 3-CNF formula would be satisfiable, so the Fréchet distance is at least 3.

Lemma 14. The Fréchet distance between two such moving curves is at most 2
if the corresponding 3-CNF formula is satisfiable.

Proof. Consider a satisfying assignment to the 3-CNF formula. Match Xi with
the center of Fi or Ti, if Xi is false or true, respectively. For every clause, the
timestamp with peaks of A can be matched with a row of peaks on B. As
was already hinted at by Figure 11, the remaining parts of the curves can be
matched with ε = 2. Therefore this yields a Fréchet distance of at most 2.

Theorem 15. It is NP-hard to approximate the asynchronous constant or asyn-
chronous dynamic Fréchet distance for moving curves in R1 within a factor 1.5.

Proof. By Lemmas 13 and 14, the asynchronous constant or asynchronous dy-
namic Fréchet distance between two quadrilateral meshes embedded in R1 is at
least 3 or at most 2, depending on whether a 3-CNF formula is satisfiable.

5.1. Orientation-Preserving Homeomorphisms

Previous results [1, 10] have shown that computing the Fréchet
distance between surfaces under orientation-preserving homeo-
morphisms is NP-hard for surfaces embedded in R2. We will
refer to this variant as the orientation-preserving Fréchet dis-
tance. The prior results hold for triangular meshes, which are
a degenerate case of quadrilateral meshes. We consider the case

where the corners of the meshes are matched with each other.
The prior NP-hardness constructions for the orientation-preserving Fréchet

distance seem unnecessarily complex. Therefore we extend our results for the
asynchronous dynamic Fréchet distance of Section 5 to obtain a new hardness
construction for the orientation-preserving Fréchet distance for surfaces em-
bedded in R2. Note that we cannot directly apply the previous construction
because there was only a single matching of timestamps for asynchronous dy-
namic matchings. Thus, we do not preserve the property that for a clause, the
timestamp with peaks of A maps to a single timestamp of B.

We prevent this by means of a second dimension in which we enforce that
a row of peaks of A maps to a single row of peaks of B. In addition to the
embedding in R1 of Figure 11, which defines one coordinate for every point on
a clause of a quadrilateral mesh, we define a second coordinate using Figure 13,
yielding an embedding in R2.
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Figure 13: The second coordinate of a clause gadget of A (top) and B (bottom) embedded
in R2, the first coordinate is given in Figure 11.

Now, under the maximum norm (L∞), a row of peaks of A can only be
matched to a single row of peaks on B for ε < 3. Conversely, we can still
match the meshes of two satisfiable formulas with ε = 2. Hence, Theorem 16
follows. This result extends to triangular meshes since all quadrilaterals lie in
the plane, and can thus be represented by a pair of triangles. For norms other
than the maximum norm, the problem is still NP-hard, but our bound on the
approximation factor is smaller than 1.5.

Theorem 16. Unless P=NP, no polynomial time algorithm can approximate
the orientation-preserving Fréchet distance between two quadrilateral meshes
embedded in R2 under the maximum norm within a factor 1.5.

Remark 3. We recently were able to improve upon the results presented in
this paper by showing that the Fréchet distance between surfaces is NP-hard to
approximate within a factor 2 even for surfaces in R1 [12].

6. Conclusion

Based on the Fréchet distance, we presented several similarity measures be-
tween moving curves, together with efficient algorithms for computing some
measures, while proving NP-hardness for computing others.

Although many algorithmic solutions to variants of the Fréchet distance be-
tween static curves also apply to the synchronous constant Fréchet distance,
extending the synchronous dynamic class is more complex. For example, com-
puting the synchronous dynamic Fréchet distance between moving closed curves
(with a cylinder instead of square as parameter space) remains an open problem.

Finally, the performance of the algorithm for the synchronous dynamic Fré-
chet distance seems undesirably slow and we have not been able to prove tight
lower bounds on this running time yet.
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