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Competitive Original equipment manufacturers (OEMs) do not only sell equipment, but also service contracts

that ensure proper functioning and uptime of equipment after the sale. It then becomes the concern of

OEMs to minimize equipment downtime by providing after-sales services such as repairs and spare parts over

the lifetime of equipment. OEMs will therefore aim to minimize the total Life Cycle Costs (LCC) of their

equipment by deciding for each component (1) whether to use a common component (one-for-all-systems)

or a dedicated component (one-for-each-system), (2) the reliability and (3) the spare parts stock levels. We

present life cycle cost functions in case of both dedicated and common components. These original life cycle

cost functions can only be analyzed numerically. Therefore, we prove that there is a simpler expression that

is asymptotically equivalent to the LCC in the regime where downtime of equipment is expensive. These

asymptotics allow us to show that commonality can reduce the LCC even when the production costs under

commonality are substantially higher than under dedicated components and characterize situations where

this happens. Furthermore, we show that making commonality, reliability and spare parts stocking decisions

sequentially can lead to arbitrarily large gaps compared to the optimal integrated decision. Finally we derive

conditions for when a common component should be more (less) reliable than dedicated components for two

practical cases.

Key words : After-sales Services; Asymptotics; Commonality; Life Cycle Costs; Reliability; Spare Parts

1. Introduction

Production and service companies both use capital intensive systems to manufacture their products

or render their services. For example, lithography systems are critical for operations in the semi-

conductor industry, aviation engines and avionics are vital in the aviation industry, MRI scanners

are critical in healthcare, and material handling systems are essential for distribution operations.

The users of such capital intensive systems require high system availability, as unavailability results
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in production or service losses of millions of dollars (Kranenburg and Van Houtum 2009). However,

realizing such high system availability at low costs is a major challenge without the help of the

Original Equipment Manufacturers (OEMs). Therefore, the users of capital goods close full service

contracts (Cohen et al. 2006) with the OEMs of these systems (e.g. ASML, Philips, GE, Pratt &

Whitney, Vanderlande, and Bombardier). Under such a contract, the system users pay the OEM

a periodic fee, and the OEM becomes responsible for the system availability during the usage

period. As a consequence, modern OEMs are responsible for the entire life cycle of systems, and

are therefore primarily interested in minimizing the total costs accrued throughout the systems’

life cycle.

The Life Cycle Costs (LCC) have increased over the last years due to fact that OEMs offer a

higher variety of systems. In an attempt to alleviate this burden, OEMs typically use common

components in multiple different systems of their product portfolio. For example, identical rotor

blades are used in multiple different aerospace engines or the same positioning sensors are used in

various lithography systems. The main motivation for commonality usually comes from a marketing

and production perspective: offering more different systems with a relatively small increase in the

production costs. However, we show that even when the production costs increase substantially,

component commonality still reduces the total LCC. Thus, the benefits of component commonality

reach further than the ones considered from a marketing and production perspective.

Now, we explain how we model commonality in our setting. Any system consists of components,

and we say that components – from different systems – belong to the same component family when

they fulfill the same functionality, but are not necessarily identical (Meyer and Lehnerd 1997).

Therefore, the OEM can decide per component family whether to use a single common component

for all systems, or to use a dedicated component per system, as illustrated in Figure 1. Note that a

component family may correspond to rotor blades in the case of aerospace engines, to positioning

sensors in lithography systems, or to electric motors in MRI scanners.

Next to the decision to make a component common or not, there are two important decisions that

impact the LCC. These decisions are the reliability of the component (how often will a component

fail) and the amount of spare parts stock that is kept for after-sales services.
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Figure 1 A schematic representation of our concepts.

The OEM’s objective is to optimize this decision triad such that the LCC is minimized. In

particular, this means that the OEM has to determine for each component family: (1) whether to

use a common component or dedicated components, (2) the reliability for the components of each

alternative, and (3) the spare parts stock levels for the components of each alternative.

The problem is typically tackled in a sequential fashion, because each decision is taken at a

different time epoch, possibly by a different department. First, the OEM decides whether to use

a common component for all systems, or a dedicated component for each. Secondly, the design

department determines the reliability for the component(s) of the chosen alternative, and sub-

sequently fixes the design. Finally, the spare parts stock levels are determined by the after-sales

services department. Clearly, such a sequential approach is sub-optimal for minimizing the total

LCC. After-sale services are typically not taken into account explicitly during the early design

phase, at which time the OEM has the ability to determine 70-85% of the LCC (Asiedu and Gu

1998). Yet, after-sales services may constitute up to 70-80% of the LCC (Öner et al. 2007), and

thus are pivotal in an effort to lower the LCC.

Therefore, we propose an alternative approach that takes after-sales services, component relia-

bility, and the commonality decision into account simultaneously. We will refer to this approach

as the integrated LCC approach. Our objective is to answer the following three main research

questions for a single component family: (RQ1) Under the integrated LCC approach, when does
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commonality yield lower LCC than dedicated components, and by what factors is this affected?

(RQ2) In which settings is it particularly important to consider an integrated LCC approach over

the sequential approach? (RQ3) Under, the integrated LCC approach, is a common component

more or less reliable than all dedicated components, at optimality? And what factors determine

this?

We develop two LCC models to answer our questions; one for the common component, and one

for the dedicated components. Our goal is to select the alternative – common or dedicated – with

corresponding optimal reliabilities and spare parts stock levels, such that we minimize the total

LCC of the component family. Based on these two models, we make four main contributions. First

(1), we show how our original problem formulations, which appear to be intractable, can still be

studied when considering asymptotically equivalent problem formulations as the cost of spare part

unavailability approaches infinity. For these tractable problems (common and dedicated), we show

that (2) the benefits of component commonality reach beyond the ones derived from a marketing

and production perspective. That is, commonality reduces the LCC in many cases, even when the

its production costs are higher than those of the dedicated components. Thirdly, (3) we illustrate

that using the sequential approach underestimates the attractiveness of commonality, and it can

yield arbitrary large LCC increases. Hence, we strongly recommend the use of the integrated LCC

approach in the decision making process. Finally, (4) we prove – for two practical cases – that a

common component is more (less) reliable, only if the initial production costs of all sold components

can (cannot) be earned back throughout the time horizon that the components are used.

1.1. Outline

The remainder of this paper is organized as follows. We discuss related literature in Section 2.

In Section 3, we present two optimization models: the commonality model and the dedicated

components model.

In Section 4, we study the cost expressions of the common component model and the dedicated

components model in more detail. First, we derive an expression for the optimal spare parts stock
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level of each component (common or dedicated). However, we conclude that the cost expressions

are not amenable for further analysis upon inserting the optimal stock level expressions. At this

point, we make the key observation that the costs of spare part unavailability is typically very high

in capital good environments. Hence, we propose to study the asymptotic behavior of both models,

and present tractable and asymptotically equivalent cost expressions for the common component

and dedicated components model, as the cost of spare part unavailability approaches infinity. These

tractable cost expressions allow for straightforward optimization of the problems.

In the following Section 5, we use the asymptotically equivalent models to answer our research

questions. First, we define the attractiveness of commonality in terms of the maximum cost of a

common component such that commonality yields lower LCC than the alternative of dedicated

components. We use this measure to study which factors affect the attractiveness of commonality

in Section 5.1. Secondly, we investigate how the sequential approach compares to the integrated

LCC approach in Section 5.2. We study the differences in the commonality decision made, the cost

differences resulting from this, and also settings in which the sequential approach may perform

reasonable. Our final research question is addressed in Section 5.3, where we study two practical

cases and explore conditions under which a common component is more reliable than all dedicated

components, and when it is not. We conclude our paper in Section 6.

2. Literature

Our work focuses on the interaction between three literature streams: reliability optimization,

after-sales services, and commonality. The literature on reliability optimization is typically studied

from an engineering perspective. Design variables are chosen such that a specified cost function is

minimized and reliability constraints are satisfied, or the reliability is maximized under specified

cost constraints (Royset et al. 2001, Zou and Mahadevan 2006). Reliability optimization is also

studied in the broader context of the warranty literature, e.g. Huang et al. (2007) and references

therein. Work in this stream typically aim to optimize the reliability of a component such that

the all costs that are accrued throughout the warranty period are minimized. The second related
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literature stream focuses on after-sales services, particularly on spare parts planning problems in

complex (but also simple) supply chain structures; see e.g Sherbrooke (2004), Muckstadt (2005)

and van Houtum and Kranenburg (2015). The third related literature area considers component

commonality. This topic is studied from numerous different perspectives, e.g. marketing (Desai

et al. 2001), new product development (Muffatto and Roveda 2000) and engineering (Fellini et al.

2004). We restrict our commonality review to an operations management perspective that focuses

on cost minimization, and categorize this research stream into two classes. For a more elaborate

review on commonality from an operations management perspective, see Labro (2004). The first

class considers stylized Assemble-To-Order (ATO) models and focuses on the inventory implications

of commonality, see e.g. Baker et al. (1986), Hillier (2000), and Song and Zhao (2009). The second

class takes a combinatorial approach by studying large mathematical programming models, see

e.g. Gupta and Krishnan (1999) and Thonemann and Brandeau (2000), and focuses on deriving

efficient solution procedures.

Our paper is closely related to research that focuses on the interaction between two of these

three literature streams (commonality and after-sales services). Stylized inventory models with

component commonality have mainly been studied for ATO systems. In an ATO setting, a product

demand is satisfied if all components are on stock (coupled demand). This differs from an after-

sales logistics setting, in which demand typically occurs for each of the individual components.

Kranenburg and van Houtum (2007) take such an after-sales logistics perspective and focus on the

spare parts inventory implications of component commonality. They only model the costs incurred

after production of the component, i.e., reliability and commonality decisions are neglected, but

downtimes and repairs are included. Thonemann and Brandeau (2000) explicitly model the com-

monality decision and consider the spare parts element of after-sales logistics, but no downtimes

and repairs. Their problem is combinatorial and the authors determine which features one or more

common components should have based on component requirements. Both papers, Thonemann

and Brandeau (2000) and Kranenburg and van Houtum (2007), do not consider any reliability
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design decision, and focus on developing efficient solution techniques without presenting analytical

insights regarding their solutions.

Another closely related literature stream studies reliability explicitly in combination with after-

sales logistics. Research in this stream has not yet considered commonality. Huang et al. (2007)

propose a profit maximization model that optimizes the reliability and considers sales revenues,

production costs, and repair costs. They take a life cycle approach, but do not consider costs

related to spare part logistics. Kim et al. (2017)1 present an LCC minimization model that jointly

optimizes reliability and spare part basestock levels. The LCC are comprised of design, production,

spare parts storage, and backorder costs. Downtime and repair costs are not included. Kim et al.

(2017) prove convexity of their LCC function, so that straightforward optimization techniques can

be used to find the optimal solution to their problem. Subsequently, the authors derive analytical

insights for different service contract types through the use of a game theoretical analysis. By

contrast, Öner et al. (2010) do not take a game theoretic perspective, but focus on the after-sales

logistics aspect of the LCC minimization problem. The authors extend the cost function from Kim

et al. (2017) by also incorporating repairs and system downtimes, and assume that demand during

a stockout is satisfied via an emergency procedure. Öner et al. (2010) develop an efficient algorithm

to find an optimal solution, but do not provide further analytical insights regarding their solutions.

Our work uses similar modeling as Kim et al. (2017) and Öner et al. (2010), but we also

include the commonality dimension combined with the explicit inclusion of three after-sales logis-

tics aspects: spare parts, repairs and downtimes. To our best knowledge, we are the first to combine

after-sales logistics, with commonality and reliability optimization into a single model. Secondly,

we provide managerial insights via analytical analysis of our model instead of only developing

an efficient solution procedure. We provide a comparison between our work and the most related

research in the literature in Table 1.

1 The work by Kim et al. (2017) has been first published as a working paper, see Kim et al. (2007).
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Table 1 Comparison of most related papers.
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Kranenburg and van Houtum (2007) X X X X
Thonemann and Brandeau (2000) X X
Huang et al. (2007) X X X X
Kim et al. (2017) X X X X

Öner et al. (2010) X X X X X
This paper X X X X X X X

3. Model

We consider an OEM who offers her customers various systems i ∈ J , where J is to the set of

different systems. The OEM expects to sell Ni > 0 units of each system i ∈ J at time t= 0 with

a supplementary Full Service Contract (FSC). The FSC states that the OEM will service the Ni

units of each system i ∈ J for a finite lifetime T . We assume that this time T is equal for all

systems, and it is typically 10-30 years. Given the component structure for her systems (see Figure

1 and Section 1), the OEM has to determine for each component family whether to opt for a

common component or dedicated components. Hence, we restrict ourselves to a single component

family, which is critical for system functioning and repairable upon a failure. The latter implies

that each failed item of a component is repaired and subsequently replenishes the spare parts stock

after its repair, i.e., we have a closed loop supply chain with a constant turnaround stock level.

Furthermore, we assume that exactly one component of the family occurs in system i ∈ J , e.g.

one rotor blade assembly occurs in an aerospace engine or only one positioning sensor occurs in

a lithography system. As a consequence, the sales quantity Ni of system i is equal to the number

of units of a dedicated component – for system i – that is installed in the field at time t = 0.

Furthermore, a system’s identifier i ∈ J is equivalent to a dedicated component’s identifier i ∈ J ,

and thus the set J is equivalent to the set of the dedicated components. Note that each component

will be serviced for a finite lifetime T . We refer to the units of component i that are installed in the

field, Ni, as the installed base of component i. In the remainder, we will use the terminology on
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the component level for the set J (the set of dedicated components) and for each element i∈ J (a

dedicated component). Next to the notation for the dedicated components, we denote the common

component by q, with Nq =
∑

i∈J Ni, and introduce the set I = J ∪{q}.

Next, we discuss the dynamics of a given component i∈ I. At time t= 0, the OEM decides on the

reliability level τi > 0 in terms of the Mean Time Between Failures (MTBF) and the turnaround

stock level si. We use the term reliability in the remainder instead of MTBF. At t = 0, Ni + si

units of component i are produced, at unit cost βic(τi). The function c : R+ → R+
2 is identical

for all components i ∈ I, and is a twice differentiable convex and strictly increasing function with

0≤ limτ↓0 c(τ)<∞ and 0≤ limτ↓0
dc(τ)

dτ
<∞. The parameter βi enables us to differentiate the unit

costs between the various components under identical reliability levels.

After the Ni units of component i have been installed in the field at t= 0, they operate inde-

pendently with the same reliability τi. During operation, the units fail. We denote the failures

during [0, t] by Di(t,Ni, τi) for any t≥ 0, and we assume that this failure process has independent

and stationary increments. We also assume that Di(t,Ni, τi) is normally distributed with mean

E[Di(t,Ni, τi)] = Nit
τi

and standard deviation σ[Di(t,Ni, τi)] =
√
αNit

τi
, where the constant α > 0

is the variance to mean ratio. Furthermore, we assume that the number of operating units Ni

remains constant, even when a unit of the installed base fails. We make this assumption, because

failed systems are down for a negligible amount of time in practical settings, and it is a common

assumption in the literature, see e.g. Muckstadt (2005) and van Houtum and Kranenburg (2015).

Our proposed failure process can approximate a Poisson process when E[Di(t,Ni, τi)] is sufficiently

large and α = 1. Kim et al. (2017) make the same assumption regarding the failure process to

facilitate analysis. Nevertheless, we compare normally distributed spare parts demand to the more

conventional Poisson distributed spare parts demand in Appendix J, and observe that deviations

are small based on our testbed.

A failure of an installed unit of component i∈ I causes failure of the system in which it is built.

After removal of the failed unit of component i ∈ I, the failed unit is sent to a repair shop. It

2 R+ denotes the set of positive real numbers, i.e., R+ = {x∈R |x> 0}.
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Figure 2 Illustration of the failure and repair process of component i∈ I.

takes L> 0 time units to repair the failed unit, after which the unit returns to a spare parts stock

point; see Figure 2. Note that this system corresponds to a system operating under a policy with a

basestock level si and a leadtime L. We assume that the OEM pays the customer a cost d≥ 0 per

failure of the system, and d is independent of the system. The cost d may include the penalty costs,

as stated in the FSC, but also the cost of sending a maintenance engineer to the failed system’s

location etc. We will refer to a failure of the system as a downtime incident. The expected downtime

costs during (0, T ] are derived from the failure process and are given by dE[Di(T,Ni, τi)] = dNiT
τi

.

Immediately after the failure of an installed unit, a spare part is taken from stock if possible. In

case such a spare part is not available, the replacement of the failed unit in the field cannot occur.

Consequently, the system in which the failed unit was installed cannot operate until a new spare

part is available again. The OEM pays a penalty b to the customer per unit time that the system

cannot operate due to spare part unavailability. The parameter b represents the disruption costs

per time unit due to a stockout situation, e.g. the downtime costs of a system per time unit. Note

that the demand is thus backordered. Furthermore, we assume that the spare parts demand process

is stationary during (0, T ]. Then, the total expected backorder costs over (0, T ] are then given by

bTE[(Di(L,Ni, τi)− si)+], where E[(Di(L,Ni, τi)− si)+] is the expected number of backorders at

any given time instant.

Next, we assume that the costs per repair are a fraction r ∈ (0,1) of its unit costs, i.e., rβic(τi).

The parameter r includes all costs incurred for one repair such as material and labor costs. The
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average number of repairs can be derived from our failure process. Thus, we have the following

expression for the total expected repair costs: rβic(τi)E[Di(T,Ni, τi)] = rβic(τi)
NiT
τi

.

The OEM owns all si turnaround units during (0, T ]. Therefore, the OEM pays storage costs for

all units, either in repair or in stock. The per time unit storage cost for one turnaround unit is a

fraction h∈ (0,1) of its unit cost, i.e., hβic(τi). The parameter h includes all per time unit costs for

a single turnaround unit, such as warehousing and insurance costs. The total spare parts storage

costs over (0, T ] are given by hsiTβic(τi).

We have explained the dynamics of a given component i ∈ I in the foregoing. These dynamics

are identical for all dedicated components i∈ J , and also for the common component q. Therefore,

we formulate a general LCC function for component i∈ I:

π̃(τi, si,Ni, βi) = βic(τi)(Ni + si) +hsiTβic(τi) + rβic(τi)
NiT

τi
+ d

NiT

τi
+ bTE[(Di(L,Ni, τi)− si)+].

(1)

We do not consider an index i for the LCC function π̃(τi, si,Ni, βi), because each component i∈ I

is fully characterized by its reliability level τi, turnaround stock level si, installed base size Ni, and

its relative unit cost factor βi. Hence, we propose a general parametrized LCC function, which we

can later analyze for arbitrary component types more easily. Furthermore, note that our model

allows βq ≥ βi for all i∈ J (as argued by e.g. van Mieghem 2004), but can also capture βq <βi for

one or more i∈ J (as discussed by e.g. Krishnan and Gupta 2001). Furthermore, we can set βi = 1

for one particular component i∈ I without loss of generality.

3.1. Optimization problems

We use the LCC function from Eq. (1) to construct the optimization problems for the common

and dedicated components. The first problem considers the common component, and is given by

(CP ) min
τq∈R+,sq∈R

{π̃(τq, sq,Nq, βq)} . (2)
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For the dedicated components problem, we consider the LCC – under reliability τi and

turnaround stock level si – for each component i ∈ J , and sum these to obtain the total LCC.

Hence, the dedicated component problem becomes

(DP ) min
τ∈R|J|+ ,s∈R|J|

{∑
i∈J

π̃(τi, si,Ni, βi)

}
, (3)

with τ and s denoting the vector of τi and si, i ∈ J , respectively. Note that (DP ) is separable in

the dedicated components i.

4. Asymptotics

In this section, we study the cost functions of our optimization problems from Section 3.1, i.e.,

π̃(τq, sq,Nq, βq) and
∑

i∈J π̃(τi, si,Ni, βi). First, we analyze the cost functions with respect to the

turnaround stock levels. We find an expression for the optimal turnaround stock level for each com-

ponent i∈ I, and we insert these into the cost functions of the Problems (2) and (3). However, the

total LCC expressions – π̃(τq, sq,Nq, βq) and
∑

i∈J π̃(τi, si,Ni, βi) – under the optimal turnaround

stock level turn out to be intractable for further analysis. But, we observe that the backorder cost

rate b is typically very high in environments where capital intensive systems are used. Therefore,

we explore asymptotic behavior of our total LCC expressions, and formulate alternative total LCC

functions that are asymptotically equivalent as b approaches infinity. Before we start our analysis,

we first state a mild assumption that we use throughout this entire work. Furthermore, we would

like to remark that omitted proofs can be found in the appendix.

Assumption 1. For each component i∈ I, we have τi ∈ (0, τ i] and bT > 2βic(τ i)(1 +hT ).

Assumption 1 states the reliability of component i ∈ I is bounded from above by τ i such that

holding a backorder throughout (0, T ] is more than twice as expensive as producing a new unit and

keeping this unit on stock throughout (0, T ]. Such an assumption is typically satisfied in practice,

particularly in a capital goods setting. Under this assumption, we are able to derive an expression

for the optimal turnaround stock level of component i ∈ I. For the sake of notational brevity, we

will omit the arguments Ni, βi in the remainder of this section, unless indicated otherwise. Hence,

we study π̃(τi, si) = π̃(τi, si,Ni, βi) for any component i∈ I.
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Lemma 1. For each component i ∈ I and τi ∈ (0, τ i], π̃(τi, si) is twice differentiable and strictly

convex in si. π̃(τi, si) is minimized by a positive, unique, finite s∗i (τi) that solves the first order

condition, and is given by:

s∗i (τi) =E[Di(L,Ni, τi)] +σ[Di(L,Ni, τi)]Φ
−1

(
bT −βic(τi)(1 +hT )

bT

)
, (4)

where Φ−1(·) denotes the inverse of the standard normal distribution.

Our next step is to insert the expression for the optimal turnaround stock levels from Eq. (4)

into Problems (2) and (3). However, this results in cost expressions that are not amenable for

further analysis. To see this, let us consider π̃(τi, s
∗
i (τi)) for an arbitrary component i ∈ I and

note that it corresponds to an expression in which we have the highly complex inclusion of c(τi)

in the standard normal inverse function Φ−1(·). Therefore, we cannot find the optimal reliability

levels easily, as convexity with respect to τi cannot be established. But at this point, we make

the important observation that the cost of spare part unavailability is often high for the users

of capital goods. This cost is typically in the order of thousands of US dollars per hour. As a

consequence, the backorder cost rate b is typically very high. Therefore, we propose to study the

asymptotic behavior of
∑

i∈J π̃(τi, s
∗
i (τi)) and π̃(τq, s

∗
q(τq)) as b approaches infinity. Specifically, this

means that we propose an alternative LCC function that can be analyzed and easily optimized,

and furthermore is asymptotically equivalent to the original formulation as b tends to infinity.

We prove the asymptotic equivalence for the total LCC of the dedicated components∑
i∈J π̃(τi, s

∗
i (τi)), but the same method also applies to the common component model (results will

simplify because we have no summation). Our techniques are similar to Huh et al. (2009) and Bij-

vank et al. (2014), and we use some of their results to show the asymptotic equivalence. Moreover,

we add b as an argument to our cost functions, since we study the limit behavior with respect to

b, i.e. we use
∑

i∈J π̃(τi, s
∗
i (τi, b) | b) because s∗i (τi) also depends on b. Let the alternative total LCC

function be defined by
∑

i∈J π̃(τi, s
∗
i (τi, bβic(τi)) | bβic(τi)).

Lemma 2. For each component i ∈ I, it holds that limb→∞
bE[(Di(L,Ni,τi)−s∗i (τi,b))

+]

s∗i (τi,b)
= 0 and

limb→∞
bβic(τi)E[(Di(L,Ni,τi)−s∗i (τi,bβic(τi)))

+]

s∗i (τi,bβic(τi))
= 0.
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We use Lemma 2 to prove the equivalence between the two LCC functions, see Theorem 1.

Theorem 1. For given τi ∈ (0,∞), it holds that

lim
b→∞

∑
i∈J π̃(τi, s

∗
i (τi, bβc(τi)) | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b) | b)
= 1.

Proof. Fix all τi ∈ (0,∞) and let b∈ (0,∞) be sufficiently large, such that we satisfy Assumption

1. By definition of s∗i (τi, b), we find the following bounds by inserting suboptimal turnaround stock

levels:∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)) | bβc(τi))∑

i∈J π̃(τi, s∗i (τi, bβic(τi)) | b)
≤
∑

i∈J π̃(τi, s
∗
i (τi, bβic(τi)) | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b) | b)
≤
∑

i∈J π̃(τi, s
∗
i (τi, b) | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b) | b)
.

We define k= arg maxi∈J{s∗i (τi, bβic(τi))}, and we rewrite the lower bound to∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)) | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, bβic(τi)) | b)
=

∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)) | bβic(τi))/s∗k(τk, bβkc(τk))∑

i∈J π̃(τi, s∗i (τi, bβic(τi)) | b)/s∗k(τk, bβkc(τk))
. (5)

Taking the limit as b→∞ implies that s∗k(τk, bβkc(τk))→∞, and that any τi ∈ (0,∞) satisfies

Assumption 1. Consequently, we are not further concerned with satisfying Assumption 1. Each

cost term associated with component i∈ J in the numerator and denominator has a finite limit. To

see this, we use Lemma 2 and conclude that limb→∞
bβic(τi)E[(D(L,Ni,τi)−s∗i (τi,bβic(τi)))

+]

s∗
k

(τk,bβkc(τk))
= 0, because

s∗k(τk, bβkc(τk))≥ s∗i (τi, bβic(τi)) for all components i∈ J . Hence, we obtain

lim
b→∞

∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)) | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, bβic(τi)) | b)
= 1.

Now, we define k= arg maxi∈J{s∗i (τi, b)} with a slight abuse of notation, and we rewrite the upper

bound to ∑
i∈J π̃(τi, s

∗
i (τi, b) | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b) | b)
=

∑
i∈J π̃(τi, s

∗
i (τi, b) | bβic(τi))/s∗k(τk, b)∑

i∈J π̃(τi, s∗i (τi, b) | b)/s∗k(τk, b)
.

Again, taking the limit as b→∞ and applying Lemma 2, we obtain

lim
b→∞

∑
i∈J π̃(τi, s

∗
i (τi, b) | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b) | b)
= 1.

By the sandwich theorem, it follows that limb→∞

∑
i∈J π̃(τi,s

∗
i (τi,bβic(τi)) | bβic(τi))∑

i∈J π̃(τi,s
∗
i (τi,b) | b)

= 1. �
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Theorem 1 shows that our original total LCC function
∑

i∈J π̃(τi, s
∗
i (τi, b) | b) is equivalent to∑

i∈J π̃(τi, s
∗
i (τi, bβic(τi)) | bβic(τi)), as the backorder cost rate b tends to infinity. However, we also

explore how well the alternative total LCC function represents the actual total LCC function for

other values of the backorder cost rate b, see Figure 3 based on Example 1.

Example 1. Let |J |= 1, N1 = 200 units, h= 3 % per item per month, r= 20 % per item, L= 3

months, T = 360 months, β1 = 1, α= 1 and d= $1 · 103 per downtime incident. Moreover, we use

c(τ) = 5,000+1,000exp
(

τ
600−τ

)
in $ per unit, where τ ∈ (0,600). For further details, see Appendix

J.
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(a) b= $1 · 104 per month per backorder
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(b) b= $1 · 1010 per month per backorder

Figure 3 Comparison between π̃(τ, s∗(τ, b) | b) (dotted) and π̃(τ, s∗(τ, bβc(τ)) | bβc(τ)) (solid) for different b.

In light of Theorem 1 and Figure 3, we propose to study
∑

i∈J π̃(τi, s
∗
i (τi, bβic(τi)) | bβic(τi)),

which can be optimized easily and the satisfaction of Assumption 1 no longer depends on the

reliability levels. But before we discuss the details of optimizing each reliability level τi, we

first rewrite each π̃(τi, s
∗
i (τi, bβic(τi)) | bβic(τi)), with φ(·) and Φ−1 denoting the standard nor-

mal pdf and the inverse of the standard normal cdf. Furthermore, we let π(τi,Ni, βi) = π(τi) =

π̃(τi, s
∗
i (τi, bβic(τi)) | bβic(τi)).
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Lemma 3. Inserting s∗i (τi, bβic(τi)) into Eq. (1) yields

π(τi,Ni, βi) = βic(τi)

(
1 +

rT +L(1 +hT )

τi

)
Ni+d

NiT

τi
+bβic(τi)T

√
αNiL

τi
φ

(
Φ−1

(
bT − 1−hT

bT

))
.

(6)

We use the expression in Lemma 3 to derive the following asymptotically equivalent (as b→∞)

cost minimization problems for the common component and for the dedicated components:

(CP ′) min
τq∈R
{π(τq,Nq, βq)} , (7)

(DP ′) min
τ∈R|J|

{∑
i∈J

π(τi,Ni, βi)

}
(8)

We are interested in the reliability level that minimizes the costs for each of the components

i∈ I. Moreover, we are able to analyze the cost function for an arbitrary component i∈ I because

the dedicated components problem (DP ′) is separable in the components i∈ J . We will show that

the cost function for an arbitrary component π(τ) is strictly convex, if c(τ) satisfies Assumption 2.

As a consequence, we can determine the optimal reliability levels τ ∗i for all components i∈ I very

easily by simple optimization techniques.

Assumption 2. c(τ) satisfies the following: c(τ)

τ
is convex and c(τ)√

τ
is convex.

We observe that there exists a large class of functions that satisfy Assumption 2: polynomial

functions with one constant term and all others terms being at least second order, and exponential

forms, e.g. Mettas (2000). If c(τ) satisfies Assumption 2, we can determine the optimal reliability

levels τ ∗i by standard optimization techniques.

Lemma 4. For each component i ∈ I, π(τi) is twice differentiable and strictly convex, and is

minimized by a positive, unique, finite τ ∗i . This τ ∗i solves the first order condition.

5. Analytical comparison

We will use the asymptotically equivalent models from Section 4 to answer our research questions

(RQ1), (RQ2), and (RQ3) in Subsections 5.1, 5.2, and 5.3, respectively.
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5.1. Attractiveness of commonality

We are interested in studying when commonality is more attractive than using dedicated compo-

nents under the integrated LCC approach. In particular, we are concerned with the question under

which conditions commonality results in lower LCC than dedicated components. To answer this

question, we propose to study a measure that indicates how expensive a common component can

be such that commonality still yields lower LCC than the alternative of dedicated components.

We can numerically determine and study this measure, and provide an analytical underpinning

that explains some phenomena observed. Lemma 5 characterizes the maximum costs of a common

component in terms of the cost factor βq, such that commonality yields lower LCC than dedicated

components.

Lemma 5. π(τ ∗q ,Nq, βq) is monotone increasing in βq, where τ ∗q is the optimal reliability level

under Nq and βq. Furthermore, there exists a positive, finite, and unique value for βq that satisfies

π(τ ∗q ,Nq, βq)−
∑

i∈J π(τ ∗i ,Ni, βi) = 0, which we denote by Θ(N ,β), where N and β correspond to

the vectors of all Ni and βi with i∈ J .

We illustrate Θ(N ,β) by using instances with the same parameter settings as Example 1, set b= $1 ·

107 per month per backorder, and keep
∑

i∈J Ni = 400. Our numerical exploration is presented only

for the cases in which we consider two (|J |= 2) or three (|J |= 3) dedicated components, because

this allows for a visual representation, see Figures 4 and 5, where the latter depicts the contour

lines. In our discussion, we will concentrate on two dedicated components, but all observations also

hold for the case of three.

Upon studying Figure 4, we see that there exist a large number of settings (combinations of

N and β) that make commonality attractive. We see that – in many settings – the common

component can be (substantially) more expensive than each of the dedicated components and still

result in lower LCC than the alternative of dedicated components; i.e., Θ(N ,β) is larger than all

βi for many combinations (N ,β). Therefore, we have that the benefits of component commonality

are larger than previously known up to date. Component commonality does not only have the
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(c) d= $1 · 105 and β1 = β2 = 1
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(d) d= $1 · 105 and β1 = 1, β2 = 1.1

Figure 4 Numerical illustration of Θ(N ,β) and Θ̃(N ,β), for two dedicated components.

ability to offer a higher system variety without adversely affecting production costs, but even in

case the production costs are affected adversely, component commonality still has the ability to

yield lower LCC in many settings. The cost of after-sales services decreases when commonality is

used, and this significantly impacts the LCC. The after-sales services allow for a cost reduction,

because we are able to pool spare parts and still realize the same service levels, and as a result

the total LCC decrease substantially. In particular, component commonality is (more) attractive

for industries in which the after-sales services constitute a large portion of the LCC (e.g. aviation
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(b) d= $1 · 102 and β1 = 1, β2 = 1.05, β = 1.1
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(c) d= $1 · 105 and β1 = β2 = β3 = 1
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Figure 5 Numerical illustration of Θ(N ,β) and Θ̃(N ,β), for three dedicated components.

industry, semiconductor industry, healthcare industry (MRI), and material handling & operations),

as the backorder cost rate is larger in these industries and consequently the effect of spare parts

pooling increases, thereby increasing the attractiveness of commonality.

Next, we study the attractiveness of component commonality in somewhat more detail, and

explore the settings in which component commonality is more (or even most) attractive, i.e., the

maximum value of Θ(N ,β). When there is one product with a large installed base and several

products with a smaller installed base, one may expect that commonality is beneficial because the
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smaller products can use the economy of scale associated with the large product. However, the

results in Figure 4 indicate that commonality is most attractive when there does not exist one very

large installed base, but rather when the different installed bases have similar sizes. We explain this

phenomenon by considering the spare parts safety stock of a common component. In case there

exist multiple large installed bases, commonality allows for a larger reduction in the spare part

safety stock levels, due to spare parts pooling. To illustrate this, let us consider Example 2 that

uses the same values as Example 1 unless indicated otherwise.

Example 2. Let Nq = 400 units, τ1 = τ2 = τq = 200 months, b = $1 · 107, β1 = β2 = βq = 1. If

we have two different installed bases N1 = 399 and N2 = 1. Then, added value for safety stock

pooling is small, i.e., s∗q(τq) − (s∗1(τ1) + s∗2(τ2)) = −0.49 spares are saved. However, when N1 =

N2 = 200 the safety stock pooling effect becomes larger for commonality, i.e., in this case we have

s∗q(τq)− (s∗1(τ1) + s∗2(τ2)) =−4.15 spare parts saved.

Example 2 illustrates our observation that commonality is more attractive when there exist

multiple installed bases of similar size. More specifically, we observe that (a) commonality is most

attractive for equally sized installed base in case the dedicated components are equally expensive,

see Figures 4a and 4c. In case the cost of the dedicated components differ – cf. Figures 4b and 4d

– we observe (b) that commonality is most attractive when we have a larger installed base of the

more expensive component. We use the labels (a) and (b) in our subsequent proof that explains

these labeled phenomena.

To provide support for the observations (a) and (b), our objective is to analytically study the

maximum costs of a common component in terms of Θ(N ,β) under various settings (N ,β). How-

ever, this is highly cumbersome. To see this, let us rewrite the expression for Θ(N ,β). We know

(by Lemma 5) that this threshold satisfies π(τΘ
q ,Nq,Θ(N ,β)) =

∑
i∈J π(τ ∗i ,Ni, βi), where τΘ

q is the

optimal reliability level under βq = Θ(N ,β) and Nq. Let us rewrite π(τΘ
q ,Nq,Θ(N ,β)) by Eq. (6):

π(τΘ
q ,Nq,Θ(N ,β)) = Θ(N ,β)

[
π(τΘ

q ,Nq,1)− dT
∑

i∈J Ni

τΘ
q

]
+ dT

∑
i∈J Ni

τΘ
q

.
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Next, we want to determine Θ(N ,β) such that π(τΘ
q ,Nq,Θ(N ,β)) =

∑
i∈J π(τ ∗i ,Ni, βi), which

yields:

Θ(N ,β) =

∑
i∈J π(τ ∗i ,Ni, βi)− dT

∑
i∈J Ni
τΘ
q

π(τΘ
q ,Nq,1)− dT

∑
i∈J Ni
τΘ
q

(9)

However, deriving insights for Θ(N ,β) is intractable, as τΘ
q is derived for a given Θ(N ,β), and

perturbations in Ni or βi induce complex changes in the optimal reliability levels τ ∗i for all com-

ponents i ∈ J . Hence, we propose to study an approximation for Θ(N ,β), with equal τ ∗i for all

components i∈ I. We denote this approximation of Θ(N ,β) by

Θ̃(N ,β) =

∑
i∈J π(τ 1

q ,Ni, βi)− dT
∑
i∈J Ni
τ1
q

π(τ 1
q ,Nq,1)− dT

∑
i∈J Ni
τ1
q

,

where τ 1
q corresponds to the LCC minimizer of the common component under βq = 1. Recall that

the minimum of βi = 1 without loss of generality. Note that Θ̃(N ,β) is an upper bound to Θ(N ,β)

when d= 0. Before we study Θ̃(N ,β), we test how well it approximates Θ(N ,β), and in particular

how the maximums compare. We depict this numerical comparison for two and three dedicated

components in Figures 4 and 5. Figures 4 and 5 illustrate that Θ̃(N ,β) approximates Θ(N ,β)

very well, and in particular at the maximums. Therefore, we propose to study Θ̃(N ,β) further to

provide us with analytical insights that support observations (a) and (b).

Theorem 2.

(a) If βi = βj for all components i, j ∈ J , Θ̃(N ,β) increases when the difference in installed base

sizes decreases. That is, when βi = βj, i, j ∈ J and
∑

i∈J Ni =N for some N ∈N, if there exist

j, k ∈ J such that Nj−Nk > 1 then Θ̃(N−ej +ek,β)≥ Θ̃(N ,β), where ej denotes the indicator

vector of component j ∈ J .

(b) For any βi and relaxed integrality of Ni for all components i ∈ J , Θ̃(N ,β) increases when

the installed base sizes are ordered the same way as the relative unit cost factors. That is,

if l = |J | and β1 ≤ β2 ≤ . . . ≤ βl, then the vector N∗ ∈ Rl that maximizes Θ̃(N ,β) such that∑
i∈J N

∗
i =N for some N ∈N satisfies N∗1 ≤N∗2 ≤ . . .≤N∗l .

Proof. The denominator of Θ̃(N ,β) is constant, since
∑

i∈J Ni =N is constant for any N ∈N.
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(a) Let us recall the numerator of Θ̃(N ,β):

∑
i∈J

βic(τ
1
q )

(
1 +

rT +L(1 +hT )

τ 1
q

)
Ni +

∑
i∈J

βic(τ
1
q )bT

√
αNiL

τ 1
q

φ

(
Φ−1

(
bT − 1−hT

bT

))
.

From the above, we see that the first summation of the numerator is constant, as βi = βj, i, j ∈

J . Hence, we focus on the numerator’s second summation. Suppose that N is such that there

exists j, k ∈ J such that Nj −Nk > 1, then a swap from one unit of j to k increases the second

term of the numerator, and therefore we find that Θ̃(N − ej + ek,β)≥ Θ̃(N ,β). Indeed, note

that

√
Nj − 1 +

√
Nk + 1 +

∑
i∈J\{j,k}

√
Ni−

∑
i∈J

√
Ni +

∑
i∈J

√
Ni

=
√
Nj − 1 +

√
Nk + 1−

√
Nj −

√
Nk +

∑
i∈J

√
Ni

>
√
Nk +

√
Nk + 1−

√
Nk + 1−

√
Nk +

∑
i∈J

√
Ni =

∑
i∈J

√
Ni,

where the inequality follows from the assumption that Nj −Nk > 1.

(b) To prove the assertion, we relax the integrality of Ni. Furthermore, let us define A =

c(τ 1
q )
(

1 + rT+L(1+hT )

τ1
q

)
, B = c(τ 1

q )bT
√

αL
τ1
q
φ
(
Φ−1

(
bT−1−hT

bT

))
, and N =

∑
i∈J Ni. As the denom-

inator of Θ̃(N ,β) is constant, we are interested in maximizing the numerator:

N∗ = arg max
N

{
A
∑
i∈J

Niβi +B
∑
i∈J

√
Niβi :

∑
i∈J

Ni =N,Ni ≥ 0

}
,

which is equivalent to

(N∗,v) = arg max
N ,v

{
A
∑
i∈J

Niβi +B
∑
i∈J

√
Niβi :

∑
i∈J

Ni =N,Ni− v2
i = 0

}
,

where N and v are the vectors of all Ni and vi, i∈ J . We square vi to enforce non-negativity

for any value of vi ∈R. Consequently, the Lagrangian of the above problem is

L(N ,v, λ,µ) =A
∑
i∈J

Niβi +B
∑
i∈J

√
Niβi−

∑
i∈J

λ(Ni−N)−
∑
i∈J

µi(Ni− v2
i ),
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with v, and µ denoting the vectors of all vi, i ∈ J and µi, i ∈ J , respectively. The Lagrange

multipliers are λ and µ. The first order conditions, required to maximize the Lagrangian, are

given by:

∂L
∂Ni

=Aβi +
βiB

2
√
Ni

−λ−µi = 0, ∀i∈ J (10)

∂L
∂µi

=Ni− v2
i = 0, ∀i∈ J (11)

∂L
∂vi

= 2µivi = 0, ∀i∈ J (12)

∂L
∂λ

=
∑
i∈J

Ni−N = 0. (13)

vi = 0 cannot occur, as Eq. (11) implies Ni = 0, which violates feasibility in Eq. (10). Thus, we

have that vi > 0 or vi < 0. From Eq. (12) we have that µi = 0, and from Eq. (11) we know that

Ni = v2
i . We use Eq. (10) to determine the optimal size of the installed base:

√
N∗i =

√
v∗i

2 =
B

2

βi
λ−Aβi

.

Since we square v∗i , we have that
√
v∗i

2 > 0 for vi > 0 and for vi < 0, implying that λ > Aβi,

because A,B,βi ≥ 0. The three cases for vi show that µi = 0 and λ > Aβi, for all i ∈ J must

hold in order to have a feasible solution. Thus, we have for the optimal installed base size:

N∗i =
B2

2

[
βi

λ−Aβi

]2

.

Since λ>Aβi, for all i∈ J , we have that N∗i increases with increasing βi. Therefore, if βi ≤ βj

then N∗i ≤N∗j for all j ∈ J . �

5.2. Benefits of the integrated LCC approach

Let us first describe the sequential approach in more detail. Typically, the engineering department

of an OEM only makes reliability and commonality decisions based on production costs subject

to some minimum reliability level τ . In particular, this corresponds to solving the optimization

problems minτq {βqc(τq)Nq : τq ≥ τ} and minτ
{∑

i∈J βic(τi)Ni : τi ≥ τ
}

for the common component

and dedicated components, respectively. The minimum costs under the sequential approach are
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denoted by πS(τ ∗q ,Nq, βq) and
∑

i∈J πS(τ ∗i ,Ni, βi) for the common and dedicated components model,

respectively. Subsequently, the OEM selects the alternative with minimum costs. Note that the

optimal reliability levels will satisfy τ ∗i = τ for all components i ∈ I, since c(τ) is convex and

increasing in τ .

In case of the sequential approach, we find that commonality is only chosen if the cost of the

common component is less than the weighted average of the costs of the dedicated components,

see Proposition 1. All these instances correspond to the gray areas in Figures 4.

Proposition 1. The sequential approach chooses commonality if and only if βq is smaller than

or equal to the weighted average of all βi. That is, πS(τ ∗q ,Nq, βq)≤
∑

i∈J πS(τ ∗i ,Ni, βi) if and only

if βq ≤
∑

i∈J
Niβi
Nq

.

Under the integrated LCC approach, we use the decision rule based on Θ(N ,β), and consequently

decide strictly more for commonality than the decision rule under the sequential approach, see

Theorem 3. We also see this in Figure 4, because the area that favors commonality (under the

curve) is strictly larger than the gray area, which corresponds to the decision rule of the sequential

approach. Therefore, if we consider the sequential approach instead of the integrated LCC approach,

we underestimate the attractiveness of commonality and take decisions that do not optimize the

LCC in many instances.

Theorem 3. If βq is smaller or equal to the weighted average of all βi, then commonality yields

lower minimum LCC than dedicated components. That is, if βq ≤
∑

i∈J
Niβi
Nq

, then π(τ ∗q ,Nq, βq)<∑
i∈J π(τ ∗i ,Ni, βi) and thus Θ(N ,β)>

∑
i∈J

Niβi
Nq

.

The combined results from Proposition 1 and Theorem 3 explain why commonality is always

more attractive than the alternative of dedicated components, if the dedicated components are

equally expensive, cf. Figures 4a and 4d. In this case, commonality always lowers the LCC because

it pools the spare parts of all dedicated components and thus reduces costs. As a result, the common

component can be more expensive than all the dedicated components, and still yield lower LCC.
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Although the integrated LCC approach strictly decides more for commonality compared to the

sequential approach, we do not yet have an indication of the relative cost difference between both

approaches. We define the relative difference between the sequential and integrated LCC approach

by

∆π(N ,β, βq) =

(
γπ(τ ,Nq, βq) + (1− γ)

∑
i∈J π(τ ,Ni, β)

min{π(τ ∗q ,Nq, βq),
∑

i∈J π(τ ∗i ,Ni, βi)}
− 1

)
× (100%),

with γ = 1 if πS(τ ,Nq, βq) ≤
∑

i∈J πS(τ ,Ni, βi), and γ = 0 otherwise. We have that ∆π(N ,β, βq)

is always non-negative, see Proposition 2. Furthermore, the relative cost difference between the

sequential and the integrated LCC approach can be arbitrarily large, dependent on the minimum

reliability level τ . To see this, recall that each optimal reliability level equals the minimum reliability

level under the sequential approach (τ ∗i = τ). Thus, we can increase the minimum LCC under the

sequential approach to arbitrary values resulting in arbitrary large cost differences ∆π(N ,β, βq).

Next, we illustrate the cost difference ∆π(N ,β, βq) by considering the same numerical setting as

Example 1, unless indicated otherwise. We set b= $1 ·107 per backorder per month and d= $1 ·103

per downtime incident. Furthermore, our instances are characterized by the tuple (N1, βq) such that

N1 +N2 = 400 and βq ∈ [1,1.2]. For a given minimum reliability level τ , we explore the maximum

and minimum cost difference over all possible (N1, βq). We have illustrated these in Figure 6 for

two settings of (β1, β2). We observe that a substantial cost differences may exist (8%), even in the

best case of the minimum reliability level.

Proposition 2. The relative cost difference ∆π(N ,β, βq) is non-negative for all N , β and βq.

Next, we study the cost differences in more detail implying that we explicitly consider the

installed base size under a given reliability level constraint, see Figure 7. We have used the same

parameter values as in Example 1 with b= $1 ·107 per month backorder, d= $1 ·103 per downtime

incident, N1 + N2 = 400, and we set the minimum reliability level to τ = T months. Our first

observation is that ∆π(N ,β, βq) is smaller when we have one relatively large installed base, see

Figure 7 at the extremes of the N1 axis. Therefore, if there exists one large installed base, we may
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Figure 6 Relative cost difference for different minimum reliability levels.

be able to make reasonable decisions under the sequential approach. However, this also depends

on the value of the minimum reliability level.
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Figure 7 Numerical illustration of ∆π(N ,β, βq), for two dedicated components.

Hence, the sequential approach may only perform reasonable in case we have one relatively large

installed base size and the minimum reliability level is set to the right value, which is extremely

challenging to determine a priori. Therefore, we conclude that the sequential approach typically
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results in substantially higher LCC compared to the integrated LCC approach, and it underesti-

mates the attractiveness of commonality largely. The OEM should implement the integrated LCC

approach instead of the sequential approach, as the former better estimates the attractiveness of

commonality and yields lower LCC, at the expense of very little implementation complexity.

5.3. Optimal reliability analysis

Finally, we study whether a common component is more or less reliable than the dedicated com-

ponents at optimality, and we shed some light on this question by considering two practical cases.

The first occurs when the replacement of a unit of component i∈ I does not induce an additional

system down, e.g. for components subject to frequent inspections and preventive maintenance, or

components that have redundancy to increase reliability. This corresponds to a situation in which

we have a negligible cost per downtime incident, i.e., d= 0. The second case occurs when all com-

ponents i ∈ I are very similar to each other, e.g. the components only differ because they have a

different serial number, but their functionality and designs are identical or similar. This is captured

when βi = βj for all components i, j ∈ I. Another example where βi = βj may hold, can come from

a sourcing environment where very similar components are sourced from different suppliers, e.g.

aviation rotor blades with certain specifications from supplier X and rotor blades with the same

specifications from supplier Y.

Before we start our analysis on the optimal reliability level of a common component compared

to the optimal reliability levels of the dedicated components, we explore our cost function and

derive a certain threshold τ̃ . This threshold corresponds to the optimal reliability level when we

only consider the spare parts safety stock. In other words, when the reliability level is lower than

the threshold, it is beneficial from a spare parts safety stock perspective to increase the reliability;

and, if the reliability level is higher than the threshold, then spare parts are too expensive and one

can better lower the reliability.

Theorem 4. There exists a positive, unique, and finite τ̃ which is the solution to c′(τ)− c(τ)

2τ
= 0.

Suppose 0<N1 ≤N2 ≤ . . .≤N|J| <∞,
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(i) When d = 0 and τ̃ ≥ rT + L(1 + hT ), then a larger installed base implies a lower optimal

reliability level, i.e., ∞> τ̃ ≥ τ ∗1 ≥ τ ∗2 ≥ . . .≥ τ ∗q > 0.

(ii) When d = 0 and τ̃ < rT + L(1 + hT ), then a larger installed base implies a lower optimal

reliability level, i.e., 0< τ̃ < τ ∗1 < τ
∗
2 < . . . < τ

∗
q <∞.

(iii) When all βi are identical for all i ∈ J and c(τ̃)[τ̃ − rT − L(1 + hT )] ≥ 2dT , then a larger

installed base implies a lower optimal reliability level, i.e., ∞> τ̃ ≥ τ ∗1 ≥ τ ∗2 ≥ . . .≥ τ ∗q > 0.

(iv) When all βi are identical for all i ∈ J and c(τ̃)[τ̃ − rT − L(1 + hT )] < 2dT , then a larger

installed base implies a higher optimal reliability level, i.e., 0< τ̃ < τ ∗1 < τ
∗
2 < . . . < τ

∗
q <∞.

For the cases considered, we have a simple condition that specifies whether a common compo-

nent is more or less reliable than the dedicated components. The conditions denote whether the

derivative of the LCC with respect to the reliability level is positive or negative, and consequently

determines the behavior of the optimal reliability levels for increasing installed base sizes. Each

condition’s interpretation can be seen after rewriting the conditions such that we obtain the LCC

derivative at τ̃ , cf. the proof of Theorem 4. In case the production costs dominate the after-sales

services costs in determining the optimal reliability level, larger installed bases have a lower opti-

mal reliability level. In other words, if the derivative of the production costs dominates the cost

derivative of the after-sales services, larger installed base sizes will have less reliable components at

optimality. In this case, it is too expensive to further invest in reliability as the investment cannot

be earned back throughout the component’s life cycle. Similarly, components with a larger installed

base are more reliable if extra reliability investments at production can be earned back throughout

the component’s life cycle.

Although we have been able to characterize cases in which we can easily determine whether the

common component is more (less) reliable than all dedicated components, we cannot say that such

a simple condition exists for arbitrary instances. Therefore, managerial care is needed in answering

the reliability question when one encounters an instance other than the ones considered in Theorem

4.
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6. Conclusion

We have considered an the choice of an OEM to make components common and studied how the

LCC are affected by this decision. We have further studied how optimal reliability levels of compo-

nents are affected by the commonality decision. In particular, we have formulated two stylized LCC

models: one commonality model, and one model for the alternative of dedicated components. We

proposed asymptotically equivalent LCC models that facilitate analytical comparison of decisions.

We found that commonality is even more attractive when taking the LCC perspective, than

it is when only considering production costs. Unfortunately, the LCC is often not used in prac-

tice because the related decision of commonality, reliability, and spare parts stocking are made

sequentially by different departments within an OEM. such a sequential decision making approach

underestimates the the attractiveness of commonality and can lead to arbitrarily higher LCC

compared to the optimal approach. OEMs that sell full service contracts together with their equip-

ment, can make much better decisions by explicitly incorporating the after-service costs in their

optimizations.

Finally, we found that – for two practical cases – a common component is more (less) reliable

than all dedicated components, only if the unit costs for initial production can (cannot) be earned

back during the time the unit of a component is used.
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Appendix A: Proof of Lemma 1

Let us first write:

π̃(τi, si) = βic(τi)(Ni + si) +hsiTβic(τi) + (rβic(τi) + d)
NiT

τi
+ bT

∫ ∞
si

(x− si)fi(x)dx (14)

= βic(τi)(Ni + si) +hsiTβic(τi) + (rβic(τi) + d)
NiT

τi
+ bTE[Di(L,Ni, τi)]− bTsi + bT

∫ si

0

(si−x)fi(x)dx,

with fi(x) the pdf of Di(L,Ni, τi). From Leibniz’ rule, we obtain the first order derivative: ∂π̃(τi,si)

∂si
= βic(τi)+

βic(τi)hT − bT + bT
∫ si

0
fi(x)dx = βic(τi) + βic(τi)hT − bT + bTF (si), with F (si) the cdf of Di(L,Ni, τi).

Applying Leibniz’ rule again, we get the second order derivative ∂2π̃(τi,si)

∂si2
= bTfi(si) > 0, as b,T > 0, and

fi(si)> 0 by definition. Hence, π̃(τi, si) is twice differentiable and strictly convex in si. Next, we prove the

existence of a positive, unique, finite s∗i (τi) that solves the first order condition.

(i) First, we prove that π̃(τi, si) strictly decreasing at si = 0. Consider the derivative ∂π̃(τi,si)

∂si
as si = 0:

∂π̃(τi, si)

∂si

∣∣∣∣
si=0

= βic(τi) +βic(τi)hT − bT + bTFi(si) = βic(τi) +βic(τi)hT − bT + bTΦ

(
−E[Di(L,Ni, τi)]

σ[Di(L,Ni, τi)]

)
≤ βic(τi) +βc(τi)hT −

bT

2
< 0,

where the second equality follows because we consider normally distributed demand during L, and the first

inequality follows because Φ
(
−E[Di(L,Ni,τi)]

σ[Di(L,Ni,τi)]

)
≤ 1/2, with Φ(·) denoting the standard normal cdf. The final

inequality follows from Assumption 1. Hence, we conclude that π̃(τi, si) is strictly decreasing at si = 0.

(ii) Let us now prove that π̃(τi, si) is strictly increasing as si tends to infinity. Consider the derivative ∂π̃(τi,si)

∂si

as si→∞, i.e., limsi→∞
∂π̃(τi,si)

∂si
= limsi→∞ {βic(τi) +βic(τi)hT − bT + bTFi(si)}= βic(τi)(1+hT )> 0, where

the second equality follows from the definition of Fi(si), i.e., limsi→∞Fi(si) = 1. The inequality follows from

c(τi)> 0 for all τi ∈ (0,∞), and βi, h,T > 0. Thus, π̃(τi, si) is strictly increasing as si tends to infinity.

By combining (i), (ii) and the strict convexity of π(τi, si), we know that there exists a positive, unique, finite

optimum s∗i (τi) that solves the first order condition. Exploiting the properties of the normal distribution,

and standardization yields

s∗i (τi) = E[Di(L,Ni, τi)] +σ[Di(L,Ni, τi)]Φ
−1

(
bT −βic(τi)(1 +hT )

bT

)
.

�

Appendix B: Proof of Lemma 2

For given τi ∈ (0,∞), we let b be such that we satisfy Assumption 1. For each i∈ I we have

0≤ bE[(Di(L,Ni, τi)− s∗i (τi, b))+]

s∗i (τi, b)
=
bP [Di(L,Ni, τi)> s

∗
i (τi, b)]E [Di(L,Ni, τi)− s∗i (τi, b) |Di(L,Ni, τi)> s

∗
i (τi, b)]

s∗i (τi, b)

=
βc(τi)(1 +hT )

T
× E [Di(L,Ni, τi)− s∗i (τi, b) |Di(L,Ni, τi)> s

∗
i (τi, b)]

s∗i (τi, b)
,
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where the first inequality follows from Eq. (14) in the proof of Lemma 1. The second inequality follows from

the definition of the optimal turnaround stock level. That is, we know that s∗i (τi, b) satisfies ∂π̃(τi,si)

∂si
= 0,

which implies P[Di(L,Ni, τi) > s∗i (τi, b)] = βc(τi)(1+hT )

bT
by the right continuity of the distribution function

(Huh et al. 2009, p. 409). Then, for the limit of b→∞, Assumption 1 is satisfied for any finite τi ∈ (0,∞)

and thus

0≤ lim
b→∞

bE[(Di(L,Ni, τi)− s∗i (τi, b))+]

s∗i (τi, b)

≤ lim
b→∞

βc(τi)(1 +hT )

T
× E [Di(L,Ni, τi)− s∗i (τi, b) |Di(L,N, τi)> s

∗
i (τi, b)]

s∗i (τi, b)
= 0.

The equality follows from the fact that s∗i (τi, b)→∞ as b→∞ and
E[Di(L,Ni,τi)−s∗i (τi,b) |Di(L,Ni,τi)>s∗i (τi,b)]

s∗
i
(τi,b)

→ 0

as b→∞ due to the increasing failure rate of a normal distribution, see Huh et al. (2009, p. 409). �

Appendix C: Proof of Lemma 3

Let us write π(τi) in terms of the normalized loss function of the normal distribution, with ŝi = s∗i (τi, bβc(τi)).

π(τi) = βic(τi)(Ni + ŝi) +hŝiTβic(τi) + (rβic(τi) + d)
NiT

τ
+ bβic(τi)Tσ[Di(L,Ni, τi)]

×
{
φ

(
ŝi−E[Di(L,Ni, τi)]

σ[Di(L,Ni, τi)]

)
− ŝi−E[Di(L,Ni, τi)]

σ[Di(L,Ni, τi)]

(
1−Φ

(
ŝi−E[Di(L,Ni, τi)]

σ[Di(L,Ni, τi)]

))}
,

where φ(·) and Φ(·) denote the standard normal pdf and cdf, respectively. Simplification yields the desired

result. �

Appendix D: Proof of Lemma 4

All terms are twice differentiable by assumption, and thus π(τi) is twice differentiable. We have

d2π(τi)

dτ2
i

= c′′(τi)Niβi +βi(rT +L(1 +hT ))Ni

(
c′′(τi)

τi
− 2

c′(τi)

τ2
i

+ 2
c(τi)

τ3
i

)
+ 2d

NiT

τ2
i

+

(
c′′(τi)τ

−1/2
i − c′(τi)τ−3/2

i +
3

4
c(τi)τ

−5/2
i

)
βibTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αNiL

= c′′(τi)Niβi +βi(rT +L(1 +hT ))
Ni

τ3
i

(
τ2
i c
′′(τi)− 2τic

′(τi) + 2c(τi)
)

+ 2d
NiT

τ2
i

+ τ−5/2
i

(
τ2
i c
′′(τi)− τic′(τi) +

3

4
c(τi)

)
βibTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αNiL> 0,

since c′′(τi) > 0 (by assumption) and c(τi) satisfying Assumption 2. The latter can be seen by the second

order derivative test applied to the conditions in Assumption 2. Hence, π(τi) is twice differentiable and

strictly convex in τi. The next step is to show that there exists a positive, unique, finite τ∗i that minimizes

π(τi), and that this τ∗i solves the first order condition.
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(i) First, let us prove that π(τi) is strictly decreasing for τi ↓ 0. The derivative of π(τi) is given by

dπ(τi)

dτi
= c′(τi)Niβi + (rT +L(1 +hT ))Niβi

(
c′(τi)

τi
− c(τi)

τ2
i

)
− dNiT

τi

+

(
c′(τi)τ

−1/2
i − 1

2
c(τi)τ

−3/2
i

)
βibTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αNiL.

Rewriting c′(τi)
τi
− c(τi)

τ2
i

and c′(τi)τ
−1/2
i − 1

2
c(τi)τ

−3/2
i , and subsequently taking the limit τi ↓ 0 of dπ(τi)

dτi
, yields

lim
τi↓0

dπ(τi)

dτi
= lim
τi↓0
{c′(τi)Niβi}+ (rT +L(1 +hT ))Niβi lim

τi↓0

{
τic
′(τi)− c(τi)

τ2
i

}
− dNiT lim

τi↓0

{
1

τi

}
+βibTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αNiL lim

τi↓0

{
τic
′(τi)− 1

2
c(τi)

τi
√
τi

}
.

Since 0 ≤ limτi↓0 c(τi) < ∞ and 0 ≤ limτi↓0 c
′(τi) < ∞, we have limτi↓0

{
τic
′(τi)−c(τi)
τ2
i

}
= −∞ and

limτi↓0

{
τic
′(τi)− 1

2
c(τi)

τi
√
τi

}
=−∞. Hence, limτi↓0

dπ(τi)

dτi
=−∞, and π(τi) is strictly decreases as τi ↓ 0.

(ii) Let us now prove that π(τi) is strictly increasing as τi tends to infinity. Consider the derivative dπ(τi)

dτi
as

τi→∞:

lim
τi→∞

dπ(τi)

dτi
= lim
τi→∞

{c′(τi)Niβi}+ (rT +L(1 +hT ))Niβi lim
τi→∞

{
τic
′(τi)− c(τi)

τ2
i

}
− dNiT lim

τi→∞

{
1

τi

}
+βibTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αNiL lim

τi→∞

{
τic
′(τi)− 1

2
c(τi)

τi
√
τi

}
We know that limτi→∞ {c′(τi)Niβi}= +∞. Furthermore,

lim
τi→∞

{
τic
′(τi)− c(τi)

τ2
i

}
= lim
τi→∞

{
1

τi

(
c′(τi)−

c(τi)

τi

)}
> lim
τi→∞

{
1

τi

(
c(τi)

τi
− limτ̂i↓0 [c(τ̂i)]

τi
− c(τi)

τi

)}
= lim
τi→∞

{
− 1

τ2
i

lim
τ̂i↓0

[c(τ̂i)]

}
= 0.

where the inequality follows from the strict convexity of c(τi), which implies c′(τi)>
c(τi)−limτ̂i↓0[c(τ̂i)]

τi
. More-

over, it holds by assumption that limτ̂i↓0 c(τ̂i)<∞. Similarly, we obtain

lim
τi→∞

{
τic
′(τi)− 1

2
c(τi)

τi
√
τi

}
> lim
τi→∞

{ 1
2
c(τi)− limτ̂i↓0 [c(τ̂i)]

τi
√
τi

}
> lim
τi→∞

{
− 1

τi
√
τi

lim
τ̂i↓0

[c(τ̂i)]

}
= 0,

where the first inequality follows from the strict convexity of c(τi), i.e., c′(τi) >
c(τi)−limτ̂i↓0[c(τ̂i)]

τi
, and the

second inequality follows from c(τi) > 0 for all τi ∈ (0,∞). Hence, we have limτi→∞
dπ(τi)

dτi
= +∞ and π(τi)

is strictly increasing as τi→∞. By combining (i) and (ii) with the strict convexity of π(τi), we obtain the

desired result. �

Appendix E: Proof of Lemma 5

Take any βq > 0 and β̃q > βq. Let us denote τ∗q and τ̃∗q as the optimal reliability levels under βq and β̃q,

respectively. Then, we have π(τ∗q ,Nq, βq) ≤ π(τ̃∗q ,Nq, βq) < π(τ̃∗q ,Nq, β̃q), where the first inequality follows

from optimality, and the last inequality follows from the linear dependency of π(τ∗q ,Nq, βq) on βq, combined
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with β̃q > βq. Thus π(τ∗q ,Nq, βq) is monotone increasing in βq. Next, we show that there exists a positive,

finite and unique βq that satisfies π(τ∗q ,Nq, βq)−
∑

i∈J π(τ∗i ,Ni, βi) = 0. Let us first consider βq approaching

0, i.e., limβq↓0 π(τ∗q ,Nq, βq) = limβq↓0 dT
Nq

τ∗q
= 0, where the final equality follows from the fact that τ∗q →∞

when βq ↓ 0. Secondly, we consider βq approaching infinity, i.e., limβq→∞ π(τ∗q ,Nq, βq) =∞, where the final

equality holds because τ∗q is a finite solution (Lemma 4) for any βq. Hence, there exists a positive, finite and

unique βq such that π(τ∗q ,Nq, βq)−
∑

i∈J π(τ∗i ,Ni, βi) = 0. �

Appendix F: Proof of Proposition 1

(⇒) Let βq ≤
∑

i∈J
Niβi
Nq

. Then, we have for the costs of the common component:

πS(τ∗q ,Nq, βq)≤
∑
i∈J

Niβi
Nq

Nqc(τ
∗
q ) =

∑
i∈J

βic(τ)Ni =
∑
i∈J

πS(τ∗i ,Ni, βi),

where the inequality follows from inserting βq ≤
∑

i∈J
Niβi
Nq

, and the first equality follows from τ∗i = τ .

(⇐) Let πS(τ∗q ,Nq, βq)≤
∑

i∈J πm(τ∗i ,Ni, βi). We have,

πS(τ∗q ,Nq, βq) = c(τ)βqNq ≤
∑
i∈J

Niβic(τ
∗
i ) =

∑
i∈J

Niβic(τ),

where the first and final equality follow from τ∗i = τ . The inequality follows by assumption. Rewriting the

above yields βq ≤
∑

i∈J
Niβi
Nq

. �

Appendix G: Proof of Theorem 3

We will consider βq =
∑

i∈J
Niβi
Nq

, because π(τ∗q ,Nq, βq) is increasing in βq, see Lemma 5. We rewrite the cost

function to obtain

π(τ∗q ,Nq, βq)

=
∑
i∈J

Ni

Nq

βic(τ
∗
q )

(
1 +

rT +L(1 +hT )

τ∗q

)
Nq +

∑
i∈J

Ni

Nq

d
NqT

τ∗q
+
∑
i∈J

Ni

Nq

bβic(τ
∗
q )T

√
αNqL

τ∗q
φ

(
Φ−1

(
bT − 1−hT

bT

))

≤
∑
i∈J

Ni

Nq

βic(τ
∗
i )

(
1 +

rT +L(1 +hT )

τ∗i

)
Nq +

∑
i∈J

Ni

Nq

d
NqT

τ∗i
+
∑
i∈J

Ni

Nq

bβic(τ
∗
i )T

√
αNqL

τ∗i
φ

(
Φ−1

(
bT − 1−hT

bT

))

=
∑
i∈J

βic(τ
∗
i )

(
1 +

rT +L(1 +hT )

τ∗i

)
Ni +

∑
i∈J

d
NiT

τ∗i
+
∑
i∈J

Ni

Nq

bβic(τ
∗
i )T

√
αNqL

τ∗i
φ

(
Φ−1

(
bT − 1−hT

bT

))

<
∑
i∈J

βic(τ
∗
i )

(
1 +

rT +L(1 +hT )

τ∗i

)
Ni +

∑
i∈J

d
NiT

τ∗i
+
∑
i∈J

bβic(τ
∗
i )T

√
αNiL

τ∗i
φ

(
Φ−1

(
bT − 1−hT

bT

))
=
∑
i∈J

π(τ∗i ,Ni, βi),

where the first inequality follows from inserting sub-optimal values τ∗i instead of the optimal τ∗q . The last

inequality follows from the fact that Ni
Nq

√
Nq =

√
Ni

√
Ni
Nq

<
√
Ni for all i ∈ J . Hence, we conclude that

Θ(N ,β)>
∑

i∈J
Niβi
Nq

by definition of Θ(N ,β). �
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Appendix H: Proof of Proposition 2

Let β be the vector of all relative unit cost factors βi for all i ∈ J . For any N and βq, we can have three

cases for optimal solutions: (i) both approaches’ optimal solution is commonality; (ii) the optimal solution

for both is dedicated; and (iii) the optimal decision of the LCC approach is commonality, while the sequential

approach prefers dedicated. In the first two cases, we have that LCC approach yields lower costs. To see

this, let τ∗q = τ (τ∗i = τ) for the first (second) case. Hence, we have that the LCC approach yields lower LCC

costs by sub-optimality of τ , and consequently ∆π(N ,β, βq)≥ 0 in these cases. The third case is proven by

considering the sub-optimal decision of the LCC approach to choose dedicated. In this case, we obtain case

(ii) for which we have proven the assertion. �

Appendix I: Proof of Theorem 4

We start our proof by showing that there exists a positive, unique, and finite τ̃ which is the solution to

c′(τ)− c(τ)

2τ
= 0. Subsequently, we will prove the existence of the two cases.

We first show that c′(τ)− c(τ)

2τ
is monotonically increasing in τ . Since c(τ) is twice differentiable in τ , we

obtain the derivative of c′(τ)− c(τ)

2τ
:

c′′(τ) +
c(τ)

2τ2
− c′(τ)

2τ
=

1

4τ2

(
τ2c′′(τ)− 2τc′(τ) + 2c(τ) + 3τ2c′′(τ)

)
≥ 0,

where the inequality follows from Assumption 2 (via the second order derivative test) combined with the

convexity of c(τ) that implies 3τ2c′′(τ) ≥ 0. Hence, the derivative of c′(τ) − c(τ)

2τ
is non-negative, imply-

ing that c′(τ) − c(τ)

2τ
is a monotone increasing function. Next, we show that limτ↓0 c

′(τ) − c(τ)

2τ
= −∞,

and that limτ→∞ c
′(τ)− c(τ)

2τ
> 0. First, consider the behavior when τ ↓ 0. That is, limτ↓0

{
c′(τ)− c(τ)

2τ

}
=

limτ↓0 c
′(τ)− limτ↓0

c(τ)

2τ
=−∞, where the last equality follows from the assumption that 0≤ limτ↓0 c

′(τ)<∞,

and 0 ≤ limτ↓0 c(τ) <∞. Secondly, we get the following as τ tends to infinity: limτ→∞

{
c′(τ)− c(τ)

2τ

}
>

limτ→∞

{
c(τ)

τ
− limτ̂↓0[c(τ̂)]

τ
− c(τ)

2τ

}
= limτ→∞

{
c(τ)

2τ

}
− limτ→∞

{
limτ̂↓0[c(τ̂)]

τ

}
= limτ→∞

{
c(τ)

2τ

}
≥ 0, where the

first inequality follows from the convexity of c(τ), and the second equality follows from the assumption

0≤ limτ↓0 c(τ)<∞. Hence, we conclude that there exists a unique, positive and finite τ̃ which is the solution

to c′(τ)− c(τ)

2τ
= 0.

Next, we prove all cases of Theorem 4 by induction. The proof of each case starts by deriving the induction

hypothesis from the condition as stated in Theorem 4.
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(i) Let τ̃ ≥ rT +L(1+hT ). Rewriting this condition yields the equivalent formulation: 1− rT+L(1+hT )

τ̃
≥ 0.

This implies for component 1 that N1β1

{
c(τ̃)

2τ̃

(
1− rT+L(1+hT )

τ̃

)}
≥ 0 since c(τ̃), τ̃ ,N1, β1 > 0. Then,

N1β1

{
c(τ̃)

2τ̃

(
1− rT +L(1 +hT )

τ̃

)}
=N1β1

{
c′(τ̃)− rT +L(1 +hT )

τ̃

c(τ̃)

2τ̃

}
=N1β1

{
c′(τ̃) +

rT +L(1 +hT )

τ̃

(
c(τ̃)

2τ̃
− c(τ̃)

τ̃

)}
=N1β1

{
c′(τ̃) +

rT +L(1 +hT )

τ̃

(
c′(τ̃)− c(τ̃)

τ̃

)}
=N1β1

{
c′(τ̃) +

rT +L(1 +hT )

τ̃

(
c′(τ̃)− c(τ̃)

τ̃

)
+

(
c′(τ̃)− c(τ̃)

2τ̃

)
bTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αL

N1τ̃

}

=
∂π(τ1,N1, β1)

∂τ1

∣∣∣∣
τ1=τ̃

,

where the first, third, and fourth equality hold by the existence of τ̃ . Hence, we have ∂π(τ1,N1,β1)

∂τ1

∣∣∣
τ1=τ̃

=

N1β1

{
c(τ̃)

2τ̃

(
1− rT+L(1+hT )

τ̃

)}
≥ 0. Furthermore, we know that ∂π(τ1,N1,β1)

∂τ1

∣∣∣
τ1=τ∗1

= 0 by optimality of

τ∗1 , implying that ∂π(τ1,N1,β1)

∂τ1

∣∣∣
τ1=τ̃

≥ ∂π(τ1,N1,β1)

∂τ1

∣∣∣
τ1=τ∗1

= 0. Since the derivative of the cost function in

τ1 = τ̃ , under N1 and β1, is larger than 0, we know by the convexity of π(τ1,N1, β1) (Lemma 4) that

τ∗1 ≤ τ̃ .

In the next part of the proof, we will show the monotonicity of τ∗i via induction. That is, we show that

τ∗i ≤ τ∗i−1, for all i∈ I. Let τ∗0 := τ̃ . We know that τ∗1 ≤ τ̃ = τ∗0 . Let 0<Ni−1 ≤Ni <∞, for all i∈ I. For

the induction hypothesis, suppose that τ∗i ≤ τ∗i−1. We know that

∂π(τi,Ni, βi)

∂τi

∣∣∣∣
τi=τ

∗
i

=Niβi

{
c′(τ∗i ) +

rT +L(1 +hT )

τ∗i

(
c′(τ∗i )− c(τ∗i )

τ∗i

)

+

(
c′(τ∗i )− c(τ∗i )

2τ∗i

)
bTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αL

Niτ∗i

}
= 0, (15)

which implies that

c′(τ∗i )+
rT +L(1 +hT )

τ∗i

(
c′(τ∗i )− c(τ∗i )

τ∗i

)
+

(
c′(τ∗i )− c(τ∗i )

2τ∗i

)
bTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αL

Niτ∗i
= 0,

since βi,Ni > 0. We know that c′(τ∗i )− c(τ∗i )

2τ∗
i
≤ 0, by the monotonicity of c′(τ)− c(τ)

2τ
(by the existence

of τ̃) and by τ∗i ≤ τ̃ . The latter expressions is implied by the induction hypothesis. Hence, we find

c′(τ∗i )+
rT +L(1 +hT )

τ∗i

(
c′(τ∗i )− c(τ∗i )

τ∗i

)
+

(
c′(τ∗i )− c(τ∗i )

2τ∗i

)
bTφ

(
Φ−1

(
bT − 1−hT )

bT

))√
αL

Ni+1τ∗i
≥ 0,

as 0<Ni ≤Ni+1 <∞. This implies that
∂π(τi,Ni+1,βi)

∂τi

∣∣∣
τi=τ

∗
i

≥ 0, and observe that ∂π(τi,Ni,βi)

∂τi

∣∣∣
τi=τ

∗
i

= 0

(Lemma 4). Hence,
∂π(τi,Ni+1,βi+1)

∂τi

∣∣∣
τi=τ

∗
i

≥ ∂π(τi,Ni,βi)

∂τi

∣∣∣
τi=τ

∗
i

= 0. Since 0 < Ni ≤ Ni+1 <∞ and the

derivative, under Ni+1, is larger or equal than 0 in τ∗i , we know that τ∗i+1 ≤ τ∗i by the convexity of

π(τ,Ni+1, βi) (Lemma 4). Hence, we conclude that when τ̃ ≥ rT +L(1 + hT ) and 0<N1 ≤N2 ≤ . . .≤

N|J| <∞, then ∞> τ̃ ≥ τ∗1 ≥ τ∗2 ≥ . . .≥ τ∗|J| > τ∗q > 0.
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(ii) The proof is similar to (i), but with opposite signs.

(iii) The proof is similar to (i), but with a different reliability threshold and a slightly different derivative.

Furthermore, we exploit the fact that we can set βi = 1 for any component i∈ J , and consequently we

have βi = βj = 1 for all components i, j ∈ I.

(iv) The proof is similar to (iii), but with opposite signs. �

Appendix J: Poisson Distributed Demand

We explore the impact of studying an asymptotically equivalent LCC function that assumes normally dis-

tributed demand during L, in comparison with the original LCC function under Poisson distributed demand

during L. Let us denote the LCC of component i ∈ I, under Poisson distributed demand during L by

π(τpi , s
p
i ,Ni, βi) = πp(τp, sp), where τpi and spi correspond to the reliability and the turnaround stock level

under Poisson demand, respectively. We define the threshold for βq under Poisson demand as

Θp(N ,β) = max

{
βq : πp(τpq

∗, spq
∗,Nq, βq)≤

∑
i∈J

πp(τpi
∗, spi

∗,Ni, βi)

}
,

and compare it to Θ(N ,β) by considering δ(N ,β) = Θ(N,β)−Θp(N,β)

Θp(N,β)
× (100%), where δ(N ,β) is the relative

difference between both thresholds. We generate a large testbed consisting of 6,656 instances. We vary various

parameters on two levels, see Table 2.

Table 2 Parameter values.

h r d b T L
Low 0.015 0.2 10,000 1,000,000 180 3
High 0.03 0.3 100,000 10,000,000 360 4

Next to the parameters in Table 2, we also vary the relative unit cost factors and the installed base

sizes of the dedicated components i ∈ J . We consider three dedicated components with β1 = 1, (β2, β3) ∈

{(1,1), (1.05,1.15), (1.1,1.15), (1.2,1.3), (1.25,1.3)}. For Ni, we let
∑

i∈J Ni = N1 + N2 + N3 = 500 for all

instances, and vary two installed base sizes on two levels: for each i, j ∈ J and i 6= j, have that Ni,Nj ∈

{100,200}, and l 6= i, j, l ∈ J we have Nl = 500−Ni−Nj . This yields 22× 3× 22 + 4 = 52 possible instances

(due to duplicates when β1 = β2 = β3).

Finally, we also consider a unit cost function for c(τ) with parameter values such that we satisfy Assumption

2. We use a modified version of a well-established unit cost function, see Mettas (2000) and Öner et al. (2010)

c(τ) = p1 + p2 exp

(
k

τ

τ − τ

)
, p1, p2, k > 0, τ < τ
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We set p1 = 5,000, p2 = 1,000, τ = 600. For for Sections 4 and 5 we set k = 1.0. For the comparison in

this section, we consider k = 1.0 and k = 2.0. Care is needed when defining c(τ) on a finite support (0, τ).

We need to ensure that πp(τp, sp) and π(τ) are increasing when τ or τp approach τ . We can verify, under

our definition of c(τ), that limτ→τ π(τ) = +∞ and for any sp ∈N0 limτp→τ π
p(τp, sp) = +∞. Hence, for any

sp ∈N0, the minimizer of πp(τp, sp) lies in the interval (0, τ), and the minimizer of π(τ) lies in (0, τ).

Let us define the optimal reliability level and optimal turnaround stock level, that minimizes

πp(τpi , s
p
i ,Ni, βi) by (τpi

∗, spi
∗). To determine τpi

∗ and spi
∗, we observe that the first and second order derivative

of the expected backorders are negative and positive, respectively. Hence, E [(Di(L,Ni, τi)− si)+] is convex

and decreasing in τi for a given si. We use this property to find (τpi
∗, spi

∗). We enumerate spi = 1,2, . . . ,100

and find τpi
∗|spi by standard optimization techniques. Subsequently, we determine τpi

∗ and spi
∗. We follow the

procedure from our paper to determine τ∗i for all i∈ I.

We find that the differences δ(N ,β) are small, see the histogram of in Figure 8. On average, the normally

distributed demand during L underestimates the threshold by −0.89%, with a standard deviation of 0.66%.

Furthermore, we have that 95% of the instances have an absolute error of less than 2.19%, and 99% of the

instances an absolute error less than 2.47%.

Figure 8 Histogram of δ(N ,β) of our testbed (6,656 instances).
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