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Summary

Finsler geometry and diffusion MRI

Diffusion-weighted magnetic resonance imaging (MRI) enables one to record local-
ized measurements of ensemble-averaged molecular displacements in vivo, which
provide valuable information on e.g. structural anisotropy in brain tissue. Even the
most basic diffusion-weighted acquisition produces a vast trove of data, offering a
glimpse of the full (diffusion) time- and position-dependent ensemble average prop-
agator (EAP) that is probed with this modality. This thesis covers aspects of the
various roles geometry plays in the organization and understanding of this data,
which is apparent first and foremost in modeling. The EAP is de facto insensitive
to any position-dependence within the localization window (the voxel), and it thus
makes sense to assume amodel for the underlying structure that has the same spatial
scale as the acquired data. If we then reconstruct the diffusion taking place within a
model voxel, we need only consider a spatially homogeneous process. This idea leads
logically to tangent spaces as a basis for the description of the data. The voxel location
is associated to a point in a manifold, and the local EAP resides in the tangent space
at that point.

From there on the introduction of a geometrical framework proceeds as follows.
We constrain the geometry of the manifold, find a relation between the geometry
and themeasured diffusion, and perform further analyses on the geometric structure
of the manifold instead of on the unwieldy probability density functions. This has
advantages both at a local and at a global level; the important local characteristics
of a geometric structure are typically well-understood, while global characteristics
such as (long range) geodesics can capture relationships in the data across space. The
first part of this thesis addresses technicalities involved in the development of such
frameworks for Riemannian and Finslerian geometry.

In the first chapter of Part I we reproduce and refine known relations between the
Riemannian framework and the widely used diffusion tensor imagingmodel. Specif-
ically, we extend the existing framework to include a position-dependent scaling of
the Riemannianmetric, which has advantages in practical applications. In the second
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chapter we derive a fundamental relationship between the geometrical structure of a
Finsler manifold and large displacements in a Brownian motion-like process on this
manifold. This in effect establishes a Finslerian framework as a generalization of the
Riemannian one, and preliminary results illustrate the added power that comes at the
cost of a concomitant complexity increase. We find that the Finslerian framework is a
natural fit for diffusion-weighted data acquired at high gradient strengths, meaning
that the scanner is more sensitive to large displacements, whereas the Riemannian
framework is mainly applicable to low gradient strength data.

Part II covers our development on the post-modeling processing steps in the
standard diffusion MRI pipeline. In the first chapter we look at a basic sharpening
strategy intended to address Gaussian blurring of the propagator caused by acquisi-
tion constraints. This very general idea is shown to lead to very simple algorithms for
many classes of diffusion MRI models, some of which have been proposed as ad hoc
enhancement methods in other works and different contexts. Basic diffusion tensor
imaging experiments illustrate the potential of the strategy both for visualization
purposes and for more advanced analysis techniques such as tractography. In the
second chapter of Part II we discuss the role of Finsler geometry in interpolation.
We describe the existing methods applicable to the Riemannian framework, show
how these methods can be applied in the Finslerian framework, and explain how
they could be formally generalized. Finally, we also explain how ideas from Finsler
geometry could help improve analysis of low gradient strength data that is more
suitable for analysis in the Riemannian framework.

In Part III of the thesis we study geometry-inspired analysis techniques. The three
chapters in this part concern local tissue descriptors, reconstruction of long range
connections in the manifold, and an analysis of large-scale higher-dimensional struc-
tures in the data. The local measures and connection applications are predominantly
based on the proposed Finslerian framework, and use results from e.g. convex geom-
etry to relate the geometrical structure to the structure of the underlying tissue. In
the final chapter of Part III we investigate the sheet structure hypothesis, which poses
that long-range connections in the brain, so-called fiber pathways, can be grouped
together in a natural way to form two-dimensional surfaces. The main contribution
in this chapter is the proposition and validation of an algorithm that can detect this
structure, based on the Lie bracket of vector fields derived from diffusion-weighted
data. Using this technique we show that the sheet structure hypothesis does not hold
everywhere in the brain, and that its validity is at the very least restricted to specific
scales.

Considerations on the implementation of the Finslerian framework have led to a
number of practical advancements, such as a reformulationof the essential constraints
in (generalized) diffusion tensor imaging using semi-definite programming. Most of
the code used for the results in this thesis is bundled in the open sourceMathematica
package Diffusica` that is currently in development.
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List of Figures

1.1 A schematic representation of the standard pulsed gradient spin echo se-
quence,with time on the horizontal axis. In this idealized scenario, the relevant
acquisition parameters are the pulse width δ, the pulse separation width ∆,
and the echo time TE. The first row shows the electromagnetic pulses that are
applied, as well as the echo that is measured. The second row shows the dif-
fusion encoding gradients. The last two rows show the effect of the diffusion
encoding gradients on a representative selection of spins in the transversal
plane at four different times, and the corresponding net magnetization vector.
For the purpose of this illustration we do not include T2 relaxation and other
non-diffusion related effects, and we only show the phase of the spins relative
to a reference that rotates with the Larmor frequency determined by B. (a)
After the initial 90◦ pulse, excited spins are perfectly aligned in the transversal
plane, where they precess at the Larmor frequency. They immediately start to
incur phase shifts due to small static fluctuations in the magnetic field (T∗2 ef-
fects, not illustrated). (b) During the application of the first gradient pulse, the
precession frequency of spins is temporarily shifted by an amount depending
on their position, which results in a position-dependent phase shift. (c) A 180◦
degree pulse effectively reverses the acquired dephasing; spins that lagged
behind before the refocusing pulse, now run ahead of the expected preces-
sion. (d) A second, identical gradient pulse causes stationary spins (green and
blue) to return to their original state. For spins that have moved during or
between the gradient pulses—in this illustration the red spin moved along the
black dashed line—this refocusing is imperfect. (e) At this point in time the
spins rephase—the static non-uniformities in the magnetic field have caused
the spins to realign, resulting in a spin echo at the echo time TE. The echo is
smaller in magnitude compared to that of the standard spin echo sequence
(without diffusion encoding gradients), because the gradients introduced an
additional displacement-dependent phase shift. The non-diffusion-weighted
attenuation can be factored out, so that a normalized signal remains that only
reflects spin displacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.2 An illustration of the idea behind geometrical modeling. The black box in (a)
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2.6 The geometrical measures proposed by Westin et al. [372, 373], that are used
to characterize the shape of the DTI ellipsoids that represent the full local dif-
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the largest displacements alongdifferent orientations in a locallyMinkowskian
manifold. (b) The inverse sine transform of the boundary in (a) produces the
linear barrier ODF Ψl, cf. Eq. (6.2). The gray lines in the background are a
rendering of linear barriers distributed according to Ψl. In two dimensions
C{ f } (r̂(θ)) � S{ f } (r̂ (

θ +
π
2
) )
, with θ the polar coordinate, so the planar

barrier ODF corresponding to the boundary in (a) would simply be a rotated
version of the shown linear barrier ODF. . . . . . . . . . . . . . . . . . . . . 110

6.4 Level sets of Fκ and the corresponding bODFsΨl for different types of diffusion
tensor data (A, B, and C, see Sections 3.3.4 and 6.2.4). In theDTI case, the bODF
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6.5 bODFs for different values of κ, based on the artificial higher order data
(HT, top row) and multi-tensor data (MT, bottom row, ϑ � π/4 in A(ϑ))
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shown in Fig. 3.8. The dominant barrier directions becomemore apparentwith
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6.6 The effect of multi-compartment effects on the dominant orientations in the
bODF. The horizontal axis shows the angle between the main eigenvectors
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in A(ϑ) (Eq. (3.49)). The orange and blue dots/lines show the angle between
the measured orientations and the ground truth orientations (vertical axis, in
degrees), and the dashed green line shows the total angular differences. For
the considered example, with κ̄ � 100, the separation angle has to be greater
than 25◦ for there to be two distinguishable dominant orientations. . . . . . . 120

6.7 The effect of multi-compartment effects on the dominant orientations in the
bODF. The orange and blue dots/lines show the angle between the measured
orientations and the ground truth orientations (vertical axis), for increasing
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6.8 The effect of multi-compartment effects on the dominant orientations in the
bODF. The orange and blue dots/lines show the angle between the measured
orientations and the ground truth orientations (vertical axis), for increasing
separation angles (horizontal axis, defined by the angle ϑ in Ã(ϑ), Eq. (6.23)).
The dashed green line shows the total angular differences. For the considered
example, with κ̄ � 100, the separation angle has to be greater than 45◦ for there
to be two distinguishable dominant orientations. The difference w.r.t. Fig. 6.6
is due to the more isotropic tensors Ã used to generate the multi-tensor data. . 121

6.9 The effect of multi-compartment effects on the dominant orientations in the
bODF. The orange and blue dots/lines show the angle between the measured
orientations and the ground truth orientations (vertical axis), for increasing
separation angles (horizontal axis, defined by the angle ϑ in Ã(ϑ), Eq. (6.23)).
The dashed green line shows the total angular differences. For the considered
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6.10 A comparison between the barrier ODF (top row, κ̄ � 1 and slice average bmax
is 44 s/mm2, and middle row, κ̄ � 100 and average bmax is 3356 s/mm2) and
the fiber ODF produced by CSD (bottom row) of a coronal slice of the HCP
data set. The bODF figures illustrate how κ can be used to tune the angular
resolution of the ODFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.11 Part of a coronal slice of a HCP data set to be compared with Fig. 6.10 (middle
row), showing barrier ODFs and the corresponding peaks obtained without
regularization. All experiments in the main text are regularized, which reme-
dies occurrences of the indicated artifacts in the barrier ODF caused by regions
of mild non-convexity in the Finsler function, introduced in the spherical har-
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6.12 The barrier ODF corresponding to the level set of Hκ shown in Fig. 3.11. The
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6.13 The top row shows the estimated smallest maximum displacement Λmin (a),
the estimated largestmaximumdisplacementΛmax (b), their relativedifference
Λrel (c), and the average estimated maximum displacement Λavg (d), with
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eigenvector λmin (λmaxf), (e) and (f), fractional anisotropy FA (g), and mean
diffusivity MD (h). The colors are scaled between the image minimum value
(black) and image maximum value (white). . . . . . . . . . . . . . . . . . . . 125

6.14 The non-Gaussianity NG computed for a single coronal slice of a HCP data
set, cf. Eq. (6.13). Black indicates NG � 0, white indicates NG ≥ 0.1. The high
intensity observed in e.g. the corpus callosum can also be seen in radial and
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6.15 DTI ellipsoids derived from low b-value data (a), and ellipsoids derived from
the estimated Finsler function Fκ using Eq. (6.14) (b). . . . . . . . . . . . . . 126
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6.16 The non-Finslerianity measure (a) (κ̄ � 100), defined in Eq. (6.16) as the ratio
between the log-Euclidean distance d(D ,Dκ) (Fig. 6.15) and the Frobenius
norm of D. Black indicates that this ratio is zero, white indicates a ratio of one
or greater. (b) is identical, but with a highlighted segmentation of the white
matter to illustrate that high non-Finslerianity values aremainly found outside
of white matter. Note that non-Finslerianity is also low in the ventricles, where
diffusion is essentially Gaussian, and we thus expect no significant differences
between low and high b-value data. . . . . . . . . . . . . . . . . . . . . . . . 126

6.17 An example of Riemannian measure glyphs, computed for Fκ based on the
second order data set defined by A with κ̄ � 1. (a) and (b) show the level set of
Fκ and the corresponding bODF, (c), (d), and (e) show the ellipsoids derived
from the fundamental tensor for the indicated orientations, and (f) and (g)
show the mean diffusivity (MD) and fractional anisotropy (FA) measure glyphs. 127

6.18 An example of Riemannian measure glyphs, computed for Fκ based on the
secondorderdata set definedbyAwith κ̄ � 100. (a) and (b) show the level set of
Fκ and the corresponding bODF, (c), (d), and (e) show the ellipsoids derived
from the fundamental tensor for the indicated orientations, and (f) and (g)
show the mean diffusivity (MD) and fractional anisotropy (FA) measure glyphs. 128

6.19 The level set of the estimated Finsler function (κ̄ � 100) and the barrier ODF
for a single voxel in the corpus callosum of the HCP data set, together with
the mean diffusivity (MD) and fractional anisotropy (FA) measure glyphs. For
purely Gaussian diffusion, the measure glyphs are perfectly ellipsoidal. . . . . 129

6.20 The level set of the estimated Finsler function (κ̄ � 100) and the barrier ODF
for a single voxel in the centrum semiovale of the HCP data set, together with
the mean diffusivity (MD) and fractional anisotropy (FA) measure glyphs. . . 129

6.21 The orientation-dependent FA in a coronal slice of a HCP data set (Fig 2.2).
The figures show the difference between the standard FA computed from DTI
tensors, and the FA of the fundamental tensor associated with the orientations
indicated at the top right in each image. Dark voxels correspond to a relative
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6.22 The barrier-weighted fractional anisotropy (FA) and mean diffusivity (MD).
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6.23 The tubes represent local orientations colored according to theunderlyingfiber
pathways these orientations represent. The gray crossing in the center repre-
sents both the green and the red pathways, and the figures show a bending
configuration (a) and a crossing configuration (b). A large segment of current
tractography algorithms are based on the local peaks of ODFs, which do not
provide sufficient information to resolve situations such as the one depicted
here. Deterministic algorithms will at most resolve one of these configurations
accurately, while probabilistic algorithms can at best produce both configura-
tions as options. Orientation-dependent measures may help in identifying the
correct paths, by providing additional information for each orientation that
can be used to group orientations that likely represent the same pathways, in-
spired by various microstructure informed tractography approaches that have
recently been proposed [22, 78, 79, 151]. . . . . . . . . . . . . . . . . . . . . 134

7.1 The principle of optimality states that segments of the minimal geodesic be-
tween two points are themselves geodesic. The black curve represents the
optimal curve C (minimal geodesic) connecting the point x to the seed region
B, i.e., the curve C that minimizes the Finslerian length functional LF . The
distance L∗F(x) from x to B is defined as the length of the optimal curve C that
connects the two. If L∗F (C(T)) is known for C(T) near x, the principle of opti-
mality allows us to compute L∗F(x) by solving the Hamilton–Jacobi–Bellman
equation (Eq. (7.6)). AsL∗F(x) � 0 for all x ∈ B, repeated application of Eq. (7.6)
allows us to compute L∗F for all x ∈ M. . . . . . . . . . . . . . . . . . . . . . 141

7.2 A comparison of Cmax path measure maps, using the Fnew- and Fold-based
metrics on data from one of the TDC subjects. These maps are seeded in the
left caudal middle frontal gyrus region, as defined by FreeSurfer. The seed
voxels that intersect this particular coronal slice are shown inwhite. Bright red
voxels are strongly connected to the seed region according to the used path
measures, while dark voxels are weakly connected. . . . . . . . . . . . . . . . 151

7.3 Results on synthetic data, for metrics given by the inverse diffusion tensor
(black) and the adjugate diffusion tensor (magenta) with sharpening powers
s � 1 (a), s � 2 (b), and s � 4 (c). The ellipsoids are color-coded based on the
direction of the diffusion tensor main eigenvector. Geodesics obtained with
the standard inverse diffusion tensor metric fail to describe fibers except for
s � 4, while the scaledmetric based on the adjugate tensor produces geodesics
that follow the fibers well, with sharpening further improving results. . . . . 153

7.4 Results on synthetic data with a Rician noise level of σ � 0.15 (standard
deviation of the underlying normal distribution), for metrics given by the
inverse diffusion tensor (black) and the adjugate diffusion tensor (magenta)
with sharpening powers s � 1 (a), s � 2 (b), and s � 4 (c). Color-coding as in
Fig. 7.3. Again, geodesics obtained with the standard metric fail to describe
the fibers except for s � 4, although the longer fiber s � 2 tracking does
improvew.r.t. the noiseless case.Adjugate-basedgeodesics follow the expected
trajectories well, and sharpening improves results further. . . . . . . . . . . . 153
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7.5 Results on synthetic datawithRiciannoise of σ � 0.3 (standarddeviation of the
underlying Gaussian distribution), for metrics given by the inverse diffusion
tensor (black) and the adjugate diffusion tensor (magenta) with sharpening
powers s � 1 (a), s � 2 (b), and s � 4 (c). Color-coding as in Fig. 7.3. Inverse-
based geodesics fail to describe fibers except for s � 4, while adjugate-based
geodesics follow the fiberswell. For both s � 4 sharpenedmetrics tractography
worsens noticeably compared to Fig. 7.4. . . . . . . . . . . . . . . . . . . . . 154

7.6 Candidate fibers for the corticobulbar and corticospinal tracts (brown and
blue, respectively), and the cingulum (red), in an anterior view. A tumor
is located next to the ventricles on the left-hand side. Candidate fibers are
obtained through geodesic tractography as explained in Section 7.2.2.1, using
the inverse diffusion tensor as a metric (a) and using the adjugate diffusion
tensor (b). Candidate fibers going through the ventricles or the tumor are
indicated with yellow and white arrows respectively. Bundles obtained with
the scaled metric proposed in Chapter 2, shown in (b), avoid both the CSF in
the ventricles and the tumor. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.7 As in Fig. 7.6, but now showing results for metric given by (a) inverse sharp-
eneddiffusion tensor (det D)1/3D−2 and (b) inverse sharpeneddiffusion tensor
(det D)D−4. Note that results from sharpened tensors improve compared to
those without sharpening in Fig. 7.6(a) (i.e., less tracts cross isotropic diffusion
regions), but the problem is not completely overcome as in our approach. . . . 156

7.8 As in Fig. 7.7, but now showing results for metric given by (a) adjugate sharp-
ened diffusion tensor (det D)4/3D−2 and (b) adjugate sharpened diffusion ten-
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7.9 CSD-based tractography results for the corticospinal tract (yellow), together
with those obtained by geodesic tractography from the adjugate diffusion
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7.10 Axial (top row) and sagittal (bottom row) slices of distance mapsL∗F , Eq. (7.4),
for F � Fnew (left column, Eq. (7.10)) and F � Fold (right column, Eq. (7.9))
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7.11 Axial (top row) and sagittal (bottom row) slices of maps based on the Cavg
path measure (Eq. (7.14)), derived from the data shown in Fig. 7.10. The left
column shows the results for the newly proposed F � Fnew metric (Eq. (7.10)),
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7.12 Axial (top row) and sagittal (bottom row) slices of maps based on the Cmax
path measure (Eq. (7.15)), derived from the data shown in Fig. 7.10. The left
column shows the results for the newly proposed metric F � Fnew (Eq. (7.10)),
and the right column shows results for the F � Fold metric (Eq. (7.9)). Note
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7.16 Axial (top row) and coronal (bottom row) slices ofCmax-basedmaps (Eq. (7.15))
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7.17 Axial (top row) and sagittal (bottom row) slices ofCmax-basedmaps (Eq. (7.15))
for F � Fnew (left column, Eq. (7.10)) and F � Fold (right column, Eq. (7.9))
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7.18 Graphical sketch of the quadratic forms corresponding to a typical diffusion
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8.1 (a) An example set of fiber ODFs (semi-transparent) along with their peak
directions (arrows), which form the vector fields v (red) and w (blue). By
integrating these vector fields, one can reconstruct at each position p the
integral curves Φv

t (p) (red curve) and Φw
t (p) (blue curve). (b) The tangent

plane of an integral surface S at any point p ∈ S is parallel to the plane
spanned by vp and wp (indicated by the dashed squares annotated on S). . . 176
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8.2 (a) A loop composed of integral curves of v (red arrows) and w (blue arrows)
with p as the starting position. αp is the curve formed by the end points of all
loops (by varying the scaling parameter β) starting at the point p. [v ,w]p is the
Lie bracket at point p, and is related to the difference vector Rp(β) B αp(β)−p
according to Eq. (8.14). In this scenario, the vector fields v and w cannot be
integrated to form a sheet structure. (b) The Lie bracket depicted in (a) does not
lie in the plane spanned by vp and wp (gray). Hence the normal component
of the Lie bracket [v ,w]⊥p defined in Eq. (8.15) is non-zero (green arrow), and
the vector fields cannot be integrated to form a sheet structure. (c) A loop in a
scenario where the vector fields v (red arrows) and w (blue arrows) do form
a sheet structure. In this case αp is (locally) a curve on the sheet structure. (d)
The Lie bracket [v ,w]p depicted in (c) lies in the plane spanned by the vectors
at p, so that the normal component is zero and the vector fields v and w can
be integrated to form a two-dimensional sheet. . . . . . . . . . . . . . . . . . 179

8.3 Example of the clustering of frames. We have an ordered set of vectors
[y1 , y2 , y3] at a position q, and 3 vectors {z1 , z2 , z3} in some point p near
q. We assume that they are assigned to the vector fields u, v, and w as fol-
lows: uq � y1, vq � y2, and wq � y3. Frame clustering yields the ordered set
[z3 , z2 , z1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
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8.5 (a) Sheet tensors with a normal direction pointing towards the reader, for
different angles between up and vp and different sheet probabilities. Here,
v is always oriented in left-right direction. (b) Sheet tensors with different
orientations are colored according to their third eigenvector. AP is the anterior-
posterior direction, IS is inferior-superior, and LR is left-right. . . . . . . . . . 186

8.6 (a) Vector fields u (red), v (blue), and w (green), where u and v form a sheet
and u and w do not. The left column shows a subset of integral curves, and
vectors sampled on the upper hemisphere are shown on the right. This pattern
of vector fields is repeated in the vertical direction. (b) Plot of [u ,w]⊥p as a
function of ρ and x1, with x2 � −x1. . . . . . . . . . . . . . . . . . . . . . . 187

8.7 [̂·, ·]⊥p for different voxel sizes δ � {0.5, 1, 2}mm ((a), (b), (c)) and different
settings for hmax � {1, 3, 5} voxels (the corresponding hmax in mm is noted
above each plot). Each plot shows the mean and range of the estimates in
the case of sheet (green, [u , v]⊥p � 0 indicated by the dashed line) and non-
sheet (red, [u ,w]⊥p � 0.031) for different SNR levels (i.e., the concentration
parameter k, higher k means a smaller perturbation of the vectors). We used
50 noise iterations, κ � 1/ρ � 1/26mm−1, and p � (10,−10, 0). . . . . . . . . . 189

xxi



8.8 (a) Mean and range of [̂·, ·]⊥p for different points p � (x1 ,−x1 , 0) to vary the Lie
bracket normal componentmagnitude [u ,w]⊥p (κ � 1/26mm−1). (b)Mean and

range of [̂·, ·]⊥p for different curvatures κ � 1/{8, 13, 18, 23, 28, 33}. Different
curvatures were achieved by changing ρ in Eq. (8.20), and [u ,w]⊥p was kept
constant using Eq. (8.23) by adapting the point of evaluation x2 � −x1. In
both experiments, [u , v]⊥p (dashed lines) is evaluated at the same points for
reference and k � 350, δ � 1mm, and hmax � 5voxels. . . . . . . . . . . . . . 190

8.9 Mean and range of [̂·, ·]⊥p for different settings of hmax (rows) and different
SNR. We set the curvature κ � 1/ρ � 1/26mm−1, voxel size δ � 1mm (giv-
ing hmax � {3, 5} voxels � {3, 5}mm), and evaluate [̂·, ·]⊥p at p � (10,−10, 0).
Dashed lines indicate the true Lie bracket normal component. (a) Peaks ex-
tracted from single shell data using CSD. (b) Peaks extracted from Cartesian
sampled data using DSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.10 Mean and range of ([̂·, ·]⊥p for different settings of hmax (rows) and different
SNR. We set the curvature κ � 1/ρ � 1/26mm−1, voxel size δ � 1mm,
and evaluate [̂·, ·]⊥p at p � (10,−10, 0). Here we used trilinear interpolation
of the fODF spherical harmonic coefficients and extracted the peaks during
tractography. This is in contrast to Fig. 8.9, where peaks were pre-extracted
and nearest neighbor interpolation was used. Dashed lines indicate the true
Lie bracket normal component. . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.11 Mean and range of [̂·, ·]⊥p and the SPI Pλ for different points p � (x1 ,−x1 , 0)
to vary the Lie bracket normal component magnitude [u ,w]⊥p . [u , v]⊥p is eval-
uated at the same points for reference. We set the SNR to 20, δ � 1mm,
hmax � 5voxels, and κ � 1/26mm−1. . . . . . . . . . . . . . . . . . . . . . . 193

8.12 (a) A single bootstrap of the Lie bracket normal component (two largest fODF
peaks) in a single slice, together with histograms of the normal component
at the indicated locations in (high- (green arrow), medium- (grey arrow), and
low-sheet probability (blue arrow) area). (b) Adirection color-encoded FAmap
of the slice shown in (a) provided for reference. (c) The corresponding SPImap
(maximum per voxel) with λ � 0.008. The green voxels only contain one peak
and thus noLie bracket can be computed. (d) Thehigh- (red,Pλ > 0.5) and low-
sheet probability areas (blue, Pλ < 0.1) shown as an overlay on an anatomical
scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.13 (a) Sheet tensors (λ � 0.008) on different coronal (top), sagittal (middle), and
axial (bottom) slices. Ellipsoids with Pλ < 0.2 are not shown for clarity, and
the sheet tensors are colored according to Fig. 8.5(b). (b) High-SPI area with
streamlines (paths
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8.14 Sheet tensors (satisfyingPλ > 0.2, λ � 0.008) on different coronal (top), sagittal
(middle), and axial (bottom) slices, computed with hmax � 3voxels. . . . . . . 197

8.15 SPI plotted against angle. High SPI can be encountered for angles ranging
from 40◦ − 90◦, which is in the range of the angular resolution of the used
reconstruction technique. There are only slightly more voxels with high SPI
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8.16 Scatter plots of the SPI and three DTI measures, cf. Section 2.3.1. (a) Linear
coefficient cl. (b) Planar coefficient cp. (c) Spherical coefficient cs. . . . . . . . 198

8.17 Visual comparison of sheet structures between subjects and spatial scales (ten-
sors with Pλ < 0.2 are not shown for clarity, colors according to Fig. 8.5(b), and
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Introduction | Neurogeometry and Diffusion MRI

One of the major challenges faced by scientists today is understanding the human
brain.Questions about consciousness, dreams, andmemoryhave been slowlymoving
from the realm of philosophy to the multidisciplinary field of neuroscience, which
investigates the anatomy and function of the brain at all scales. Fueled by major
developments in a.o. imaging and genetics [240], interest in this field has increased
tremendously. As a result, there are now large initiatives underway [77, 186, 351,
358] to acquire and combine results from a large number of subjects using different
modalities [351], and “to integrate this data in a unified picture of the brain as a single
multi-level system” [358].

In this thesis we look at the brain with one such modality; diffusion-weighted
magnetic resonance imaging, or diffusion MRI—a non-invasive, in vivo imaging
technique that is uniquely suitable for investigations of neuronal fiber pathway
anatomy [158]. Diffusion MRI is sensitive to structure at the micrometer scale of
neurons, averaged over a millimeter scale window called the voxel. Properties of
incoherent structures—structures that are sufficiently random at a sub-voxel level—
are mostly lost in this voxel-averaging, and mainly characteristics of large coherent
structures such as fiber pathways remain. The recovery of tissue characteristics that
are perceivable through diffusion MRI poses a non-trivial inverse problem, and the
work presented in this manuscript focuses on the various roles that geometry plays
in this and related problems.

This introductory chapter first covers the relevant background of diffusion MRI
in Section 1.1, and we then briefly discuss the structure of the thesis in Section 1.2.
The remaining sections are used to declare some of the notations, conventions, and
resources used throughout the work.

1.1 The basics of diffusionmagnetic resonance imaging

1.1.1 Nuclear magnetic resonance

In the presence of a strong, static, uniform magnetic field B [T], the intrinsic mag-
netic moments of spin-carrying particles (or ‘spins’) in a specimen align to produce
a net magnetization vector parallel to the direction of the static field. These aligned
spins can be perturbed in a controlled manner through the application of an elec-
tromagnetic pulse with a specific resonance frequency called the Larmor frequency,
determined by the product of the nucleus’ gyromagnetic ratio γ

[ rad
s T

]
and the local

strength of the magnetic field. A perturbation pulse results in an excess of excited
spins—spins that have a component perpendicular (or ‘transversal’) to the static field
B—which return to thermal equilibrium under the remittance of another set of elec-
tromagnetic waves. This phenomenon, called nuclear magnetic resonance, lies at the
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basis of magnetic resonance imaging, which uses this interaction between electro-
magnetic fields and spin-carrying particles tomeasure various characteristics of these
particles and their surroundings [37, 157, 314]. Because the resonance frequency of
spins depends on the strength of the local magnetic field, we can add magnetic field
gradients that make the effective field strength encountered by spins dependent on
position, allowing us to e.g. submit localized pulses of electromagnetic radiation.

There are a number of basic parameters that describe the dynamics of perturbed
spins in a standard MRI experiment. Firstly, the relaxation time T1 describes the
recovery of the netmagnetization component along the static field, caused by thermal
interactions between spins and their surroundings. Secondly, excited spins precess
around B at the Larmor frequency. Small dynamic fluctuations in the local magnetic
field due to interactions between spins cause small variations in their respective
precession frequencies, and the resulting decoherence—spins acquire accumulative
phasedifferences relative to the expectedprecession—results in adecayof the rotating
transversal component of the net magnetization. This decay is characterized by the
T2 relaxation time. Finally there are small but constant non-uniformities in the static
field that speed up transversal decay, which are combined with the T2 effects in the
T∗2 characteristic time. Additional details can be found in the references [49, 157, 314].

1.1.2 The pulsed gradient spin echo sequence

Because the additional decoherence due to T∗2 effects is caused by constant non-
uniformities, it is to a degree reversible: an inversion pulse can be used to reverse
the acquired dephasing, causing a temporary refocusing in the transversal plane that
produces a measurable echo [53, 159]. In diffusion MRI this idea of spin echoes is
combined with gradients to induce a resonance signal that is encoded with spin
motion. These specific motion-sensitive sequences of gradients and electromagnetic
pulses are called diffusion encoding pulse sequences. The sequences of interest in
this thesis are variations on the classical Stejskal–Tanner sequence [323], or pulsed
gradient spin echo sequence (PGSE). A PGSE sequence starts with a 90 degree pulse
that moves the net magnetization vector into the transversal plane perpendicular to
B. As stated, the magnetization vector then precesses around the orientation of the
static field, and a set of canceling gradients are applied to produce an additional
displacement-dependent dephasing in the spins that make up the net magnetization
vector. This causes an additional suppression in the produced echo, as illustrated in
Fig. 1.1.

1.1.3 The diffusion-weighted signal

Consider now the compact, embedded, three-dimensional differentiable submanifold
M ⊂ �3 that represents the position space of (ensembles of) nuclear spins in the
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Figure 1.1: A schematic representation of the standard pulsed gradient spin echo sequence, with time on
the horizontal axis. In this idealized scenario, the relevant acquisition parameters are the pulse width δ,
the pulse separation width ∆, and the echo time TE. The first row shows the electromagnetic pulses that
are applied, as well as the echo that is measured. The second row shows the diffusion encoding gradients.
The last two rows show the effect of the diffusion encoding gradients on a representative selection of
spins in the transversal plane at four different times, and the corresponding net magnetization vector. For
the purpose of this illustration we do not include T2 relaxation and other non-diffusion related effects,
and we only show the phase of the spins relative to a reference that rotates with the Larmor frequency
determined by B. (a) After the initial 90◦ pulse, excited spins are perfectly aligned in the transversal plane,
where they precess at the Larmor frequency. They immediately start to incur phase shifts due to small
static fluctuations in the magnetic field (T∗2 effects, not illustrated). (b) During the application of the first
gradient pulse, the precession frequency of spins is temporarily shifted by an amount depending on their
position, which results in a position-dependent phase shift. (c) A 180◦ degree pulse effectively reverses the
acquired dephasing; spins that lagged behind before the refocusing pulse, now run ahead of the expected
precession. (d) A second, identical gradient pulse causes stationary spins (green and blue) to return to
their original state. For spins that have moved during or between the gradient pulses—in this illustration
the red spin moved along the black dashed line—this refocusing is imperfect. (e) At this point in time the
spins rephase—the static non-uniformities in the magnetic field have caused the spins to realign, resulting
in a spin echo at the echo time TE. The echo is smaller in magnitude compared to that of the standard spin
echo sequence (without diffusion encoding gradients), because the gradients introduced an additional
displacement-dependent phase shift. The non-diffusion-weighted attenuation can be factored out, so that
a normalized signal remains that only reflects spin displacement.
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scanner. Elements of the tangent space Tx M at x ∈ M typically represent (ensemble)
velocity or displacement vectors of spin-carrying particles at x, and the union of
tangent spaces for all x ∈ M forms the tangent bundle TM. An asterisk denotes the
algebraic dual of a space, e.g. T∗M denotes the set of linear functionals (covectors)
acting on elements of TM. The Kronecker tensor 〈., .〉 : V∗ × V → � is the bilinear
mapping acting on a covector f ∈ V∗ and a vector v ∈ V such that 〈 f , v〉 � f (v), for
some vector space V (typically Tx M for some x ∈ M) over a field� (typically �).

A typical diffusion-weighted magnetic resonance experiment now consists of a
series of (voxel-wise) measurements such as shown in Fig. 1.1 parameterized by a
diffusion time ∆ > 0, a pulse width δ > 0, and an applied gradient G ∈ (

�3)∗ with
magnitude G. We will write P(r) B P∆,δ(p , r) for the probability that spins initially
at p undergo a displacement r ∈ Tp M during the diffusion time ∆, and we write the
transversal component of the net magnetization vector in complex exponential form.
Both ∆ and δ are assumed constant, and for simplicity we will only consider δ � ∆.1
With the definition of the wave vector2

q B γδGp ∈ T∗p M, (1.1)

where γ is the gyromagnetic ratio and Gp is the (induced3) gradient at p, it follows
that a spin that undergoes a translation r between the two gradient pulses has its
magneticmomentphase-shiftedby exp(i〈q , r〉) [49, 50]. Thenormalized signalS(q) B
S∆,δ(p , q), which represents the total contribution from all spins to themeasured echo
(at TE) relative to the magnitude of the non-diffusion-weighted spin echo, is thus
related to P through an inverse Fourier transform [48–50, 251]:

S(q) �
∫

Tp M
ei〈q ,r〉P(r)dr . (1.2)

We will assume that the probability density function P is bounded, Lebesgue inte-
grable, and that it has a well-defined moment generating function, which implies
that the domain of S can be extended to complex-valued arguments [165]. For finite
diffusion times ∆, P is compactly supported on the set Ω B Ωp(∆, δ) ⊂ Tp M. Detailed
balance arguments can be invoked to argue that P(r) � P(−r), so that the normalized

1The case when δ � ∆ is referred to as the narrow pulse regime, which does not apply in typical diffusion
MRI experiments. The concepts introduced in this section still apply if the narrow pulse approximation
does not hold, though with P instead viewed as a center-of-mass propagator [49, 200, 234, 283]. Model-
dependent strategies to address this issue [222, 312, 379], like the correction ∆ → ∆ − δ

3 used for purely
Gaussian diffusion, will generally be disregarded in the theoretical developments presented in this thesis.
Additional corrective terms that account for e.g. finite slew rates are similarly excluded.

2We opt for the convention q � γδGp over q′ � (2π)−1γδGp , as this simplifies many of the computations
in later chapters.

3M inherits the Euclidean structure from�3, which allows us to trivially identify
(
�3)∗ with T∗p M for any

p ∈ M.
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signal in Eq. (1.2) would be real-valued1 [153, 177, 222, 258, 352], where we assume
that (active) flow is negligible in our considered experiments [244].

Remark 1. The gradient strength G and time parameters δ and ∆ are typically combined
into a single parameter called the b-value:

b � γ2δ2G2∆. (1.3)

We assume γ, δ, and ∆ to be constant for a single experiment.

Remark 2. The fact that P has compact support Ω is a physical reality [194], but many
useful models (like diffusion tensor imaging [24, 25]) do not account for this explicitly. In the
current manuscript compactness of Ω forms an essential part of our theoretical analysis of P.

In practice we cannot measure the motion of spins at a single point p. We are
limited to measuring the ensemble dynamics of spins in a small neighborhood of p:
the voxel Vp . We thus measure the voxel-averaged displacement probability, called
the ensemble average propagator (EAP), and the corresponding normalized average
signal. We retain the form and interpretation of Eq. (1.2) with the introduction of the
following assumption:

Assumption 1. At the voxel level we invariably assume that structures that impact spin
dynamics are distributed approximately uniformly over Vp , in the sense that spin dynamics
over the diffusion time ∆ can be taken to be similar at different points x ∈ Vp . Furthermore,
we assume that the spatial variation of non-diffusion related parameters such as relaxation
times can be considered negligible within Vp .

The validity of this assumption is dependent on the spatial resolution (voxel size)
and on the diffusion time. In practice a voxelmay fail to be homogeneous, and instead
consist of two or more distinct partitions that separately satisfy Assumption 1. In this
case we speak of partial volume effects, which we will discuss at several points in the
thesis. Assumption 1 also justifies our treatment of non-diffusion-related effects such
as T2 relaxation, see e.g. the work by Novikov et al. [250, 251].

1.2 Thesis overview

In the following chapters we will focus on three different domains of diffusion MRI
research: modeling diffusion in complex environments, practical processing of the

1In reality there are distortions that can introduce an additional phase in the signal, and usually one
considers the magnitude of the signal to account for this. This has a significant practical impact on the
statistical properties of the signal [156], and there have recently been proposed alternatives that aim to
improve on this [116, 277]. It also destroys any sign information present in the complex-valued signal,
though the signal is typically considered to be positive at practically attainable b-values [367].
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data, and the inference of (structural) information. These three domains are each cov-
ered in a separate part, and the general ideas behind each part are briefly introduced
here.

1.2.1 Metrics as models

MRI scans can be made sensitive to molecular displacements, be they the results
of diffusion, convection, or otherwise. Even the simplest such experiments, e.g. the
original diffusion-weighted acquisitions of fluid volumes, are difficult to interpret
without the use ofmodels. In the case of a simple liquid, one for example assumes that
the relevant bulk behavior of the fluid can be described by the diffusion equation [117,
120], in which case the EAP is simply the Green’s function

P(r) � 1√
(4πα∆)3

e−
‖r ‖2
4α∆ (1.4)

with α the diffusion coefficient of the fluid and ‖ · ‖ : Tx M → [0,∞) the Euclidean
norm1. The diffusion-weighted data can then be used to measure the diffusion coef-
ficient intrinsic to different fluids [349] using

S(q) � e−α∆‖q‖2 , (1.5)

which follows by substituting Eq. (1.4) in Eq. (1.2).
In the practical and clinical settings where diffusionMRI is mostly applied nowa-

days [6, 154, 166, 183], models play an even bigger role. Instead of acquiring data for
a pure liquid, one generally observes the interaction between the liquid and some
surrounding structure, and it is often information about the liquid’s surroundings
that one is after in an experiment. Not surprisingly, the importance and complex-
ity of appropriate models grows with the complexity of the sample in the scanner,
and without accurate models it is practically impossible to learn anything from an
acquisition.

In modern diffusion MRI, measurements are thus sensitized to structure at the
typical diffusion length scale of microns, and the obvious challenge is to find the
relation between parameters that describe the diffusion, and quantities that can de-
scribe some aspects of the local structure. The archetypical example—that is also the
main testing ground in this thesis—is the human brain, wherein diffusion MRI is
used to answer questions about the neuronal composition of tissue. Common con-
siderations are the densities, diameters, and local orientations of neurons in a voxel,
and how these factors influence the effective diffusion process.

1The dual norm associated with ‖ · ‖ is simply the standard Euclidean norm on T∗x M, and we denote this
dual norm by ‖ · ‖ as well.
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(a) Schematic of the structure in a voxel (b) Geometrical model corresponding to (a)

Figure 1.2:An illustrationof the ideabehindgeometricalmodeling. Theblackbox in (a) represents the space
in which diffusing spins (blue, originating from the center) are measured, i.e., the voxel. Tissue/structural
complexity is represented in (a) by the green lines that interact in different ways with the spins, and
this structure is replaced in (b) by a deformation of the space (deformed black box). The ultimate goal
of geometrical modeling is to come up with the simplest geometry (or deformation) that reproduces the
same effective diffusion of spins as in the original space, in which case all measurable information about
the structural complexity in the imaged sample is encoded in the geometry of the deformed space.

With the wide array of potential applications of diffusion imaging, an enor-
mous variety in models has been proposed in the literature, see the references for
overviews [16, 119, 250, 265]. In Part I of this thesis we introduce the class of ge-
ometrical models, which attempt to model arbitrary spatial stochastic processes in
Euclidean space as simple Brownian, isotropic diffusion processes in a more com-
plicated space. The principal idea behind this is that we translate information in the
stochastic process (which represents the observed diffusion) to a space, in such a way
that the local geometry of the space describes some or all structural properties that
are of import to the acquisition. This transition is illustrated in Fig. 1.2.

More specifically, we will assume in Part I that the observed diffusion can be
viewed as if taking place in a (geometric) manifold, obtained through controlled
deformations of Euclidean space. If one allows arbitrary deformations, then such
a manifold can reproduce any diffusion process, and so geometrical models can in
principlemodel every possible observation. But the degree (and type) of deformation
that is allowed must be limited in reality, because one needs to be able to derive the
structure of themanifold from the acquiredmeasurements. DiffusionMRImodelling
is thus reduced to finding descriptive geometries that can be related one-to-one
with the measured stochastic process, where more complex geometries lead to more
general descriptors of the diffusion and ambient structure.

The two chapters in Part I cover the first non-trivial geometricalmodels, using Rie-
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mannian (Chapter 2) and Finsler (Chapter 3) manifolds. Themetrics that describe the
local structure of these manifolds are shown to be inferrable from diffusion-weighted
measurements under the assumptions discussed in this chapter, and in general these
metrics capture complementary information about the underlying structure. The
theories of Riemannian and Finslerian geometry are well-established [21, 54, 187,
293], and particularly relevant for diffusion MRI is that spatial (inter-voxel) rela-
tions/interactions can be handled naturally (see also Section 1.2.3).

The resulting Riemannian framework was introduced over a decade ago by
O’Donnell et al [254], and corresponds directly to one of the foundational diffu-
sion MRI models, diffusion tensor imaging [24, 25, 218]. Our recent contributions to
this framework can be found in the references [86, 138, 140–142]. Finsler geometrywas
first applied in diffusion MRI by Pichon et al. [271] and Melonakos et al. [227, 228],
and a Finslerian framework was developed over several years in the works leading
up to this thesis [86–90]. The Finslerian framework applies for example to generalized
diffusion tensor imaging [222] and diffusional kurtosis imaging [178] (DKI). Meth-
ods based on the Finslerian framework are presented in Chapters 6 and 7, where
we show for example that the local Finsler geometry can in principle capture details
about the orientations of crossing elongated structures, which is impossible in the
Riemannian framework. The application of Finsler geometry in diffusion MRI led to
the development of a constrained reconstruction algorithm that is also useful outside
of geometrical modeling applications.

1.2.2 Data processing

Once we have a local description of the data in terms of physically relevant model
parameters, we can further analyze and present the data attuned to a specific appli-
cation. This typically involves some data processing—registration [147, 155, 176, 201,
216, 253, 284, 326, 381] and resampling [35, 74, 115, 133, 198, 209, 270] to facilitate com-
parisons between different data sets, enhancements so that features of interest stand
out [31, 93, 103, 112, 195, 211], normalization [3, 232] to handle different acquisition
protocols, differences between scanners, or different gradient coil configurations, and
so forth. Some of these processing steps translate well from standard image process-
ing, but specialized algorithms arise e.g. from cursory knowledge about what kind
of local structures one may expect, or by exploiting potential correlations between
voxels [31, 93, 112–114]. Some insights on this part of the diffusion MRI pipeline are
discussed in the two chapters of Part II.

In Chapter 4 we consider an enhancement algorithm involving controlled deblur-
ring of the EAP [94]. The motivation for this approach is rooted in the notion that
extraneous interactions between spins and most unsought structures have no long-
range spatial correlations. This implies that the effect of these interactions on the EAP
can be modeled approximately as a Gaussian convolution, which we combine with
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a position-dependent heuristic to define a locally adaptive enhancement algorithm.
Preliminary results show that this method can be used e.g. to drastically improve
contrast in visualizations of commonly used scalar measures.

Next we discuss interpolation in Chapter 5. Interpolation concerns the inference
of model parameters at positions where we do not have any direct measurements. A
dependable interpolation scheme is crucial in many practical applications—it allows
a data set to be upsampled as a simple way to improve the accuracy of many algo-
rithms, downsampled to speed up an analysis, or resampled to define a point-wise
correspondence with a different data set. The simplest way to do interpolation in dif-
fusion MRI is by applying standard (e.g. polynomial or spline) interpolation on the
raw measurements before reconstructing the model parameters, but this approach
does not incorporate non-trivial spatial correlations that are often inherent to the
data. Starting from the geometrical frameworks of Part I, we briefly review some of
the existing interpolation schemes in the Riemannian setting, and discuss how they
might fit in the Finslerian framework. We also propose a way to apply Finsler-based
interpolation schemes to Riemannian data, by embedding the Riemannian structure
in a Finsler manifold [133].

1.2.3 Information from geometry

In the final part of this thesis we treat various geometry-inspired means by which
information can be extracted from diffusion-weighted MRI data, and how these can
be used in neuroimaging applications. We consider not only features that follow
naturally from the frameworks proposed in Part I, but also take a closer look at the
large-scale geometrical organization of the human brain. Part III is divided in three
chapters: ‘Point’, ‘Curve’, and ‘Surface’.

Chapter 6 – ‘Point’, covers a broad range of local features—properties of the ge-
ometry or the measured diffusion that are defined at the level of the voxel. The key
contribution in this chapter is the proposal of the barrier orientation distribution
function (barrier ODF or bODF) [84, 89, 90], which describes the orientations of cor-
relations in structures encountered by diffusing spins. This distribution is inspired by
related concepts in convex and stochastic geometry [298, 324], and it can be computed
from the local structure of either a Riemannian or Finsler manifold. By assuming that
the majority of these correlations in neuroimaging are the result of axonal fiber path-
ways [30], the barrier ODF is hypothesized to capture the orientation distribution of
axons in a voxel, placing it in the same realm as e.g. the widely used fiber ODF [96,
97, 342].

We further look at inter-voxel characteristics of a sample captured by our geo-
metrical models. As a rule, these are described by the differential structure of the
manifold, i.e., in terms of derivatives of the local geometrical structure. The most
important of these characteristics is likely the geodesic—the analog to a straight line

13
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in curved space. Geodesics can be used to compute curves of minimal length rel-
ative to the geometry of the manifold, and as such describe the evolution of the
diffusion propagation front [29, 254]. This leads to promising applications in e.g.
the simulation of tumor growth in fibrous tissues [243]. Geodesics have also been
used for tractography—the pursuit to create a map of the structural connections in
the human brain [26, 33, 99, 242, 287]—and more abstractly as a tool to describe the
degree of structural connectivity between two regions [29, 130, 218, 269]. These last
two applications are the focus of Chapter 7 – ‘Curve’ [90, 91].

In ‘Surface’, Chapter 8, we study the geometrical structure of the brain at the
level of fiber pathways. A remarkable hypothesis about the organization of these
pathways was formulated and argued for in a widely publicized study by Wedeen
et al. [365]. This hypothesis concerns the observation that “pathways formed parallel
sheets of interwoven paths [throughout the brain]” [365], and has since become
known as the ‘sheet structure hypothesis’. The presented evidence in favor of a basal
sheet structure was mainly qualitative, but its validity would impose significant and
verifiable integrability constraints on the planes formed by vectors tangent to fiber
pathways.

The sheet structure hypothesis proved a catalyst for debate in the diffusion MRI
and neuroscience communities [57, 95, 327, 331, 363–365], and so far there has been no
decisive answer regarding the hypothesis’ validity. Our contributions to this ongoing
discussion are presented in the last chapter of this thesis, where we formalize the
integrability conditions imposed by the presence of sheet structure, and introduce
a quantitative measure of the local integrability called the sheet probability index
(SPI) [328–335].

1.3 Notational conventions

Effort has been made to adhere to the following notational conventions. Vectors,
tensors, and elements of M are denoted by boldface italics. Scalar variables, including
tensorial components, are written as light italics. Covectors are generally viewed
as tensors and follow the same notational conventions. Unless specified otherwise,
summation indices will run from 1 through the number of dimensions, which is
typically 3. A coordinate chart (x1 , x2 , . . . ) on a neighborhood of x ∈ M induces a
basis

{
∂

∂x1 ,
∂

∂x2 , . . .
}
on Tx M, so that we can express y ∈ Tx M locally as y �

∑
i y i ∂

∂x i .
Hence, a tangent vector yx at x ∈ M can be identified with the directional derivative
of any suitably differentiable function f : M → �, and we may write yx f to denote
the derivative of f at point x along y.

A few symbols are doubly defined, usually in cases where their meaning is so
ingrained in a certain context, that changing them would only be more confusing.

14
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1.4 Algorithms and data
Most of the code used to generate the results in this thesis is included in a Wolfram
Language package called Diffusica`, which is built on top of the Classes` package.
Classes` is already publicly available (github.com/tomdelahaije), and an alpha re-
lease of Diffusica` is currently in preparation. Both packages will be released under
the Apache 2.0 open source license, and some details on the implementation can be
found in Appendix A. Other software used to generate results is referenced explicitly
throughout the text.

The experiments presented in this thesis are performed on synthetic and real data
sets, which are described in the relevant sections. Data were provided in part by the
Human Connectome Project (HCP), WU-Minn Consortium (Principal Investigators:
David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Insti-
tutes and Centers that support the NIH Blueprint for Neuroscience Research; and
by the McDonnell Center for Systems Neuroscience at Washington University. Data
collection and sharing for this project was provided in part by the MGH-USC Hu-
man Connectome Project (Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur
W. Toga, Ph.D., Van J. Wedeen, M.D.). HCP funding was provided by the National
Institute of Dental and Craniofacial Research (NIDCR), theNational Institute ofMen-
tal Health (NIMH), and the National Institute of Neurological Disorders and Stroke
(NINDS). HCP data are disseminated by the Laboratory of Neuro Imaging at the
University of California, Los Angeles.
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In a diffusion magnetic resonance imaging (MRI) experiment the scanner is sensi-
tized to the micro-scale Brownian movement of water molecules, and the resulting
measurements reflect the voxel-aggregatedmolecular displacements along a number
of predetermined directions, recall Section 1.1. In diffusion tensor imaging (DTI) [24,
25] specifically it is assumed that this averaged behavior can be described by an
anisotropic diffusion equation. The Riemannian framework for diffusion MRI pio-
neered by O’Donnell et al. [254], provides an intuitive geometrical interpretation
of this model. Instead of assuming anisotropic diffusion, one considers the water
molecules to be subject to a simple isotropic diffusion process in a Riemannian space;
it has been known since the work of Lenglet et al. [218] that the resulting model is
equivalent to DTI. Hence the measured sample is effectively modeled as a Rieman-
nian manifold, on which the ensemble movement of water molecules is governed by
a simple Brownian stochastic process [208], Section 1.2.1. The geometrical viewpoint
in DTI has led to elegant solutions to problems such as interpolation, tractography,
and so forth [13, 128, 198, 237, 238, 254, 270, 305].

The goal of this chapter is not only the introduction of the Riemannian framework
as a first example of geometrical frameworks, but also its preceding practical counter-
part, diffusion tensor imaging. DTI initiated the explosive growth in diffusion MRI
research of the last decade, and much of the basic information available in diffusion
MRI data is based on DTI. DTI results are often used as a reference in this thesis, and
this chapter summarizes the relevant implementation and analysis details that we
take for common knowledge in the remaining chapters.

In Section 1.2.1 we have outlined the overarching idea of geometrical frameworks
for diffusion MRI, and for reasons that will become clear in this part, Riemannian
geometry plays an integral part in these frameworks.We first summarize the relevant
aspects of Riemannian geometry in Section 2.1. In Section 2.2we next derive the diffu-
sion tensor imagingmodel from the ansatz that the underlying tissue can bemodeled
as aRiemannianmanifold, bywhichwe establish a simple, invertible relation between
themanifoldmetric structure and the second ordermoments of the ensemble average
propagator (EAP). The presented derivation is based on a stochastic particle process
called the isotropic (scattering) transport process, which reproduces the DTI model
in the central limit. With this relation we can then define the Riemannian framework,
slightly extending the original works by a.o. O’Donnell et al. [254]. In this section we
also cover how we can define a rescaled Riemannian manifold, which is convenient
for the geodesic computations that we look at in Chapter 7. In Section 2.3 we then
discuss some aspects regarding the implementation of the Riemannian framework,
and in Section 2.4 we present a basic illustrative example of reconstructed DTI data.
The chapter is concluded with a brief discussion on the Riemannian framework, and
its (potential) value in the analysis of diffusion MRI data. Parts of this chapter have
been presented at the CDMRI and BASP workshops [138, 140, 142].
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2.1 Background

2.1.1 Manifolds and norms

Riemannian geometry is a generalization of (standard) Euclidean geometry, and in
many regards it can be understood in terms of the same familiar concepts—lengths of
curves andangles between lines are for examplewell-definednotions in aRiemannian
manifold as well. A Riemannian manifold can be viewed as a curved space, and we
will refer to the local deformation as the (locally specified) geometry (recall Fig. 1.2).
The local geometry of the manifold is described in full by the Riemannian metric
tensor: “Riemannian geometry: [the] metric as foundation of all” [233, Chapter 13].
For a general introduction to the theory of Riemannian geometry, see e.g. the work
of Jost [187].

Let M be a three-dimensional Riemannian manifold, equipped with a (non-
degenerate) metric tensor g [187, 233]. Angles and distances are defined in terms
of an inner product induced by the metric tensor, and the most important notion in
this work is the corresponding norm on Tx M defined as

G(x , y) B
√∑

i , j

gi j(x)y i y j , (2.1)

for all y ∈ Tx M. This norm varies smoothly on M, and has all the usual properties
(e.g. the metric tensor is symmetric; gi j � g ji , and positive-definite; G(x , y) ≥ 0 for
all (x , y) ∈ TM). If the metric tensor is independent of the position x ∈ M, where M
contains some fiducial point p, we may identify all tangent spaces in TM with Tp M
and thus make the identification

G(x , y) ≡ G(p , y) C G(y) (2.2)

for all x ∈ M. We did something similar (implicitly) in Eq. (1.2), where the Euclidean
vector space structure justifies integration over Tp M, with M ⊂ �3 the set of points
in the scanner.

2.1.2 The indicatrix

The indicatrix is the Riemannian analog of a unit sphere in Tx M defined as

Ix M � {y ∈ Tx M | G(x , y) � 1}, (2.3)
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which carries a natural volume measure1 ηx induced by the restricted metric. The
associated probability measure µ is defined as

µx B
ηx

ηx(Ix M) . (2.4)

The Riemannian indicatrix is always ellipsoidal, as it is a level set of a positive
semi-definite quadratic polynomial, and its semi-principal axes are defined by the
eigensystem of g . The eigensystem can be computed in the usual way from a ma-
trix representation of the tensor [204]. Note that the Riemannian indicatrix and the
Riemannian metric tensor represent the same exact information.

2.1.3 Geodesics

Geodesics extend the concept of a ‘straight line’ to more general geometries. A Rie-
mannian geodesic between two points x1 , x2 ∈ M is a curve C : [0, T] → M that
(locally) minimizes the length integral

LG(C) B
∫ T

0
G

(
C(t), dC

dt
(t)

)
dt , (2.5)

where C(0) � x1 and C(T) � x2. Uniqueness and existence criteria can be found in the
references [187], and we will provide some additional details in the next chapters.

2.1.4 Duality

The set of all linear functionals acting on Tx M forms the dual vector space T∗x M,
which is equipped with the natural norm

G∗(x ,w) B sup
y∈Ix M

〈w , y〉 �
∑
i , j

g i j(x)wi w j , (2.6)

where w ∈ T∗x M and g i j(x) are the components of the inverse metric tensor g−1(x).
The unit level set of the dual norm is referred to as the figuratrix.

2.2 Theory

The purpose of this chapter is to introduce the Riemannian framework for diffusion
MRI, where Riemannian manifolds are used to model characteristics of the underly-
ing (tissue) structure that have an influence on local diffusion properties. Reversing
the chronological development of this framework, we start in Section 2.2.1 from the

1The exact form of ηx is not relevant for the discussion in this chapter.
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assumption that the acquired measurements are actually obtained from a Brownian
motion in a Riemannianmanifold. In the next section, Section 2.2.2, we showhow this
leads to a model of the diffusion MRI signal from which we can reconstruct the local
metric structure of the presupposed Riemannian manifold. This relation slightly ex-
tends the typical Riemannian framework as introduced in the references [218, 254]. In
Section 2.2.3 finally we introduce an auxiliary conformal factor that narrows the gap
between large-scale anisotropic diffusion in Euclidean space, and isotropic diffusion
in Riemannian space [141].

2.2.1 Diffusion in a Riemannian manifold

There are many ways in which one can derive the bulk behavior of particles subject
to a Brownian motion, which can be understood intuitively as oft-colliding particles
that move along straight lines in-between collisions [43, 117]. The derivation of the
Brownian motion equations that is most relevant in this work remains true to this
intuitive notion of colliding particles, formalized as a Markov process (Xt ,Yt) called
the isotropic (scattering) transport process. It is instructive to consider this process
first in Euclidean space, defined as follows in theworks ofMonin [239] andWatanabe
et al. [361, 362], where Brownian motion is generated by the scaled Laplacian ∆E B

α
∑

i
∂2

∂x i∂x i through the diffusion equation

∂

∂t
� ∆E , (2.7)

with α the diffusion coefficient as in Chapter 1.
Consider a particle initially at a position x0 ∈ �3 moving in a straight line,

with unit speed along the direction y0 ∈ S2, and denote its path by ξ(x0 , y0)(t) with
0 ≤ t ≤ τ1 and τ1 the timeatwhich theparticlefirst collides.Next assume that the time
between collisions ei � τi − τi−1 (where we set τ0 � 0) satisfies P{ei > t} � exp(−t)
with t ≥ 0 [220]. After the first collision the particle continues from the point of
collision x1 � ξ(x0 , y0)(τ1) along a new direction y1 chosen according to the uniform
probability measure on the sphere S2. A continuation of this construction produces
the transport process (Xt ,Yt):

Xt � ξ(xi−1 , yi−1)(t)
Yt �

dXt
dt

����
τi−1≤t≤τi

(2.8)

for all positive integers i. This process is illustrated in Fig. 2.1.
In order to show (weak) convergence of Xt to a Brownian motion we introduce a

parameter β > 0 such that the mean distance the particle traverses between collisions
scales linearly with β, while its speed scales with β−1. This results in a fixed (β-
independent) mean squared displacement for a fixed diffusion time, and we set the
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Figure 2.1:An illustration of the isotropic transport process. A particle (represented by a red circle) moves
along a straight line along yi from the point xi , until at a time t � τi+1 a (virtual) collision causes the
particle to change direction. The collision times satisfy P{τi − τi−1 > t} � exp(−t), where τ0 � 0. The
transport process is defined by these paths Xt (black lines), and the direction of movement Yt at each
point, cf. Eq. (2.8).

ratio between the collision rate and the velocity squared to 2
3α, α as in Eq. (2.7). In

the limit β ↓ 0, we then recover ∆E as the generator of this process (of which we
will forego the technicalities discussed in the references [361, 362]) such that the
density evolution of isotropic transport particles is dictated by the expected standard
diffusion equation, Eq. (2.7).

Following the works by Watanabe et al. [361, 362], Pinsky [275] showed that an
analogous stochastic process can be defined on the tangent bundle of a Riemannian
manifold. His adaption requires a number of significant changes (see Pinsky [275]
and the references therein for more details):

1. The trajectories that particles follow are now Riemannian geodesics, cf. Sec-
tion 2.1.3, rather than straight lines (Euclidean geodesics).

2. The new direction of a particle after collision is now based on the rotationally
invariant probabilitymeasure µx on the locally definedRiemannian unit sphere
Ix M, cf. Eqs. (2.3) and (2.4), rather than a probability measure on the globally
defined Euclidean unit sphere.

The remainder of the derivation is similar to the Euclidean case, and again a limit
theorem on a parameter β is invoked to surmise a diffusion generator of the form

∆R B α
1√

det g(x)
∑
i , j

∂

∂x i

( √
det g(x)g i j(x) ∂

∂x j

)
, (2.9)
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where det g is the determinant of the (matrix representation of the) metric tensor g .
The generator ∆R is the unique generalization of the scaled Laplacian ∆E to Rieman-
nianmanifolds, and coincides for α � 1 with the usual expression for the generator of
Brownian motion in Riemannian manifolds, the Laplace–Beltrami operator [187]. As
mentioned at the beginning of this section, this generator can be derived by various
means, e.g. both ∆E and ∆R can be defined through the divergence of the gradient,
concepts that are well-defined in both Riemannian manifolds and Euclidean space.

In the end, we thus consider the bulk behavior of diffusing spins in a sample as
given by the diffusion equation

∂

∂t
� ∆R . (2.10)

Note that we tacitly assume that α is constant throughout M—though this means
we ignore temperature differences, spatial dependencies in the chemical composi-
tion of the diffusing substance, and other effects that may impact the free diffusion
coefficient. For now, we instead group these factors with the tissue components that
determine the geometricalmake-up of themanifold.When relevant, wewill similarly
assume that the collision rate and average velocity of particles in a voxel are constant.

2.2.2 The Riemannian framework for diffusion MRI

With the assumed voxel-wise homogeneity (Assumption 1), we can take g(x) ≡
g(p) C g for x ∈ Vp , recall Section 1.1, so that Eq. (2.10) simplifies to

∂

∂t
� α

∑
i , j

g i j(p) ∂2

∂x i∂x j . (2.11)

We obtain the ensemble average propagator P for the voxel at the implicit point p as
the Green’s function of this equation at time t � ∆,

P(r) �
√

det g
(4πα∆)3 e

−∑
i , j

gi j ri r j

4α∆ , (2.12)

and the relation between g and the normalized signal S follows via Eq. (1.2):

S(q) � e−α∆
∑

i , j g i j qi q j . (2.13)

By taking the logarithm on both sides we obtain an equation that is linear in the
components of the metric tensor g , from which we can reconstruct g up to the factor
α if we have measurements of S for at least six non-collinear q. We can thus conclude
that it is possible to reconstruct the local structure of a Riemannian manifold from
observations of particles in Brownian motion using diffusion MRI: Eq. (2.13) defines
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a Riemannian (geometrical) framework.
The link between Riemannian geometry and diffusion tensor imaging follows

straightforwardly. The diffusion tensor imaging model assumes that the signal can
be written as

S(q) � e−∆
∑

i , j D i j qi q j , (2.14)

with D i j the so-called diffusion tensor, which leads (by comparing with Eq. (2.13)) to
the duality relation

D−1
�

1
α

g . (2.15)

The diffusion coefficient of the spin-carrying medium, α, was not explicitly in-
cluded in earlier works on the Riemannian framework. We include it here because it
serves important practical, theoretical, but also pedagogical purposes. As explained
in a.o. Section 1.2.1, our goalwith the introduction of these geometrical frameworks is
to extract information about the structure surrounding the diffusing substance. This
structure is independent of the diffusion process used to probe it1, and this is made
explicit by separating the diffusion coefficient α, with typical units mm2/s, and the
intrinsically dimensionless metric tensor g . At the same time this separation allows
us to compare measurements obtained using different liquid media, and to correct
for external factors like temperature and pressure. If there is a spatial dependency
in α, this can be included through a minor modification of Eq. (2.9) that we do not
consider here [141].

2.2.3 A scaled Riemannian manifold

So far we have assumed that the metric tensor g extracted from D after factorization
of α is equivalent to the geometry of interest. However, we can consider alternative
manifold definitions by adapting Eq. (2.15), where we could add additional prop-
erties of the sample (known by other means) to the geometry, or remove unwanted
properties from the structure. Perhaps the simplest example of such an adaptation
is a position-dependent scaling of D, corresponding to a conformal scaling of the
metric. Such a conformal factor was proposed by e.g. Hao et al. [162] to improve
geodesic tractography, which we will discuss in Chapter 7.

The use of a voxel-dependent conformal factor that we propose in this chapter
is related to the following discussion. In the previous sections we derived the Rie-
mannian framework for DTI by considering a Brownian motion on a Riemannian
manifold, culminating in Eq. (2.15). This relation followed the requisite assumption
that within a voxel the Riemannian structure was constant, allowing us to ‘zoom in’

1With the one exception that different media (or different diffusion times) can be used to probe a structure
at different scales, which will generally result in different effective geometries. This scale-dependence was
briefly mentioned in Chapter 1, but here and in the remainder of the thesis we consider this scale to be
fixed.
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on the local geometry. Classically, derivations of DTI were not based on ∆R, but on
the anisotropic diffusion equation

∂

∂t
�

∑
i , j

∂

∂x i

(
D i j(x) ∂

∂x j

)
, (2.16)

where D i j is the diffusion tensor as before. Under Assumption 1, this equation obvi-
ously simplifies to the form of Eq. (2.11), so the local, observable behavior of the
isotropic Riemannian and anisotropic Euclidean processes are indistinguishable.
However, when looking at large-scale (inter-voxel) diffusion these equations gen-
erally prescribe qualitatively different behaviors [29, 254]. This is not a fundamental
problem, as the anisotropic diffusion in Euclidean space still induces the Rieman-
nian structure g ∝ D−1 (see e.g. de Lara [208]), but it does suggest the following
D-dependent conformal factor [141].

Recall the identity in Eq. (2.15), and apply the substitution g → α f (x)D−1 in
Eq. (2.9) with f ∈ C∞(M, (0,∞)). We then find

∆R �

√
det D(x)

f (x)3
∑
i , j

∂

∂x i
©«
√

f (x)
det D(x)D

i j(x) ∂

∂x j
ª®¬

�

√
det D(x)

f (x)3
∑
i , j

©« ∂

∂x i

√
f (x)

det D(x)
ª®¬ D i j(x) ∂

∂x j +
1

f (x)
∑
i , j

(
∂

∂x i D i j(x) ∂

∂x j

)
,

(2.17)

giving

∑
i , j

(
∂

∂x i D i j(x) ∂

∂x j

)
� f (x)∆R −

√
det D(x)

f (x)
∑
i , j

©« ∂

∂x i

√
f (x)

det D(x)
ª®¬ D i j(x) ∂

∂x j . (2.18)

It follows that by taking f ∝ det D, the anisotropic diffusion process scaled by a factor
f (x)−1 is equivalent to a Brownian motion in a Riemannian manifold defined by the
metric (α det D) D−1 [141, 142]. When there are reasons (e.g. of a phenomenological
nature) to assume that Eq. (2.16) is valid at the voxel scale in the measured sample,
then it can be argued that it can be advantageous to include the corrective factor
det D in the definition of themetric tensor, as the resulting geometrywillmore closely
reproduce the actual spin dynamics. Note that this advantage is null in regionswhere
the determinant is constant, which can alternatively be concluded by comparing
Eq. (2.10) and Eq. (2.16).
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2.3 Methods

The Riemannian framework [218, 254], defined in Eq. (2.13), provides an interpreta-
tion of diffusion tensor imaging data in terms of Riemannianmanifolds [187] through
the remarkable observation that Brownianmotion in aRiemannianmanifold captures
the complete geometric structure. In this section we describe the implementation
used to perform the basic DTI experiments in this chapter and the comparative
experiments in the remainder of the thesis. We also discuss basic means to gather
information from reconstructed DTI data, and introduce some visualization concepts
that are used throughout this work. Reconstruction of the DTI model, and all subse-
quent computations and visualizations shown in this chapter were performed with
Diffusica`, see Appendix A.2.

2.3.1 Scalar measures

Reconstruction ofD produces a tensor field—apositive-definitematrix at each p ∈ M.
These tensors describe the directionality and general amount of diffusion, which are
typically visualized using different scalar maps derived from D. Of course we could
create maps of the components of D, but these are typically not very informative, as
they lack invariance under a change of coordinate basis. Practically useful diffusion
descriptors do satisfy this basic invariance [25], and can thus be expressed in terms
of tensor invariants, in this case e.g. the eigenvalues of the diffusion tensor or the
invariants defined in the original work by Basser et al. [25]. By positive-definiteness
of D all its eigenvalues are positive, and sorted from small to large they are denoted
λmin, λmed, and λmax. The largest eigenvalue λmax is also called the axial diffusivity
(AD), while the average of the other two eigenvalues λmed+λmin

2 is called the radial
diffusivity (RD).

The first important scalar measures that are commonly used in practice convey
information about the overall amount of diffusion in a voxel. Of these, the most
relevant are the mean diffusivity (MD), defined as

MD(D) B 1
3 trD �

λmin + λmed + λmax
3 , (2.19)

and the determinant
det D � λminλmedλmax. (2.20)

A higher MD or determinant implies a greater amount of diffusion, and especially
the mean diffusivity is also used extensively in clinical applications [41, 42, 60, 71,
303, 311].

The second set of scalarmeasures that are often used are the geometricalmeasures
(or shapemeasures) of the diffusion tensor [372, 373]. These do not tell anything about
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the amount of diffusion, but instead provide a quantification or classification of the
orientation dependence. The most important shape measures we use here are the
fractional anisotropy (FA) [27]

FA(D) B
√

1
2

√
(λmax − λmed)2 + (λmax − λmin)2 + (λmed − λmin)2√

λ2
min + λ

2
med + λ2

max

(2.21)

and the linearity, planarity, and sphericity coefficients defined respectively as

cl(D) B λmax − λmed
λmin + λmed + λmax

, (2.22)

cp(D) B 2 (λmed − λmin)
λmin + λmed + λmax

, (2.23)

cs(D) B 3λmin
λmin + λmed + λmax

. (2.24)

All of these measures lie in the range [0, 1], and the latter three are normalized such
that they sum to 1 for a given tensor. The FA is high if there is a large variation
between the diffusivities along different orientations, and the linearity, planarity, and
sphericity coefficients are high if the diffusion is close to linear, planar, or spherical
respectively. LikeMD,FAhasbeen considered in a largenumber of clinical studies [42,
71, 107, 109, 230, 290, 311].

2.3.2 Glyph visualizations

If we want to show the full information contained in the tensor field, the scalar
measures discussed in the previous section are not sufficient. Instead,we occasionally
rely on glyph visualizations. A glyph in this context is a local surface rendering of a
spherical function derived from the data at a given position, created by deforming a
sphere such that its radius for a given direction is proportional to the corresponding
function value. To visualize a DTI tensor, we typically define glyphs as (scaled) level
sets of

∑
i , j Di j(x)y i y j [274] (Section 2.1.2), with Di j the components of D−1, though

there are alternatives [197, 356]. The DTI tensor is thus visualized as an ellipsoid,
with radii that are representative of the root mean squared displacement of the
spin ensemble along an orientation. The semi-principal axes of the ellipsoid have
lengths that are proportional to the square roots of the eigenvalues, and the axes
are aligned with the eigenvectors of D. The geometrical measures introduced in the
previous section describe the shape of the DTI ellipsoids. In terms of the Riemannian
framework, the DTI ellipsoids are conformal to the indicatrices in the Riemannian
manifold.
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Unless otherwise specified, we encode the approximate orientation of the diffu-
sion tensor in the color of the DTI ellipsoid, where the primary colors red, green, and
blue are associated with the ellipsoid’s alignment along three orthogonal axes [264].
In neuroimaging experiments, these are the standard subject space axes: red is as-
sociated to the left-right (LR) axis, green to the anterior-posterior axis (AP), and
blue to the inferior-superior axis (IS). We determine the weights of each color either
by normalizing the λmax eigenvector (expressed in subject space coordinates), or by
looking at the relative values on the diagonal of the diffusion tensor (again expressed
in subject space coordinates). The latter of these is in some cases preferred, as the
resulting color map is guaranteed to be smooth if the tensor field is smooth.

We will rely on glyph visualizations for other types of data in later chapters as
well.

2.3.3 Data

By their abstract nature, most methods presented in this thesis are quite generally
applicable, though they are developed with neuroimaging applications in mind. The
original Riemannian framework was proposed in this context, and there are high
quality public data sets available that are helpful in method prototyping and testing,
recall Section 1.4. Many of the figures in this thesis intended as proof-of-principle or
as illustrations, including those in this chapter, are generated from such data.

The preliminary real data experiments presented in the next section are based
on brain images and parcellations of a subject of the WU-Minn Human Connec-
tome Project (HCP) [351]. The diffusion-weighted data has an isotropic voxel size of
1.25mm, and consists of three shellswith 90 approximately uniformlydistributed ori-
entations each, b � {1000, 2000, 3000} s/mm2 (Eq. (1.3)), and 18 b � 0 s/mm2 baseline
images.

The Riemannian framework imposes the same data requirements as the DTI
model—at least six non-collinear diffusion-weighted images, and a baseline image to
compute the normalized signal. The optimal implementation of DTI has been exten-
sively investigated [24, 203, 294, 354], and based on these works we use a weighted
linear least squares approach using the iterative reweighting strategy proposed by
Salvador et al. [294], using the baseline images and the b � 1000 s/mm2 shell [184,
375]. The local Riemannian metric tensors are computed through a matrix inversion
of the reconstructed diffusion tensors based on Eq. (2.15), where we arbitrarily fix
α � 1mm2/s. The scaled metric is computed by multiplying the metric tensors with
det D, cf. Section 2.2.3. It was not necessary to impose a positive-definite constraint on
the diffusion tensors [202, 360], and we do not use any outlier correction [62]. None
of the experimental data sets require additional pre-processing—we used the pre-
processed HCP data which is already corrected for distortions due to eddy currents
and motion [217, 289].

31



Chapter 2

(a)

(b)

Figure 2.2: (a) An anatomical (T1-weighted) image of a coronal slice of the HCP data set used in this
work. The indicated region marks a segment of the slice used in a number of experiments. (b) Part of the
coronal slice shown in (a) with a schematic drawing that highlights the structure of some large bundles
that are expected to be present in this segment based on anatomical references [59]. The red lines indicate
fibers originating from the corpus callosum, which consists of strongly aligned fiber tracts that connect the
left and right hemispheres. They cross and merge in the centrum semiovale with the corticospinal tracts
indicated in blue. The darker voxels below the corpus callosum show a small part of a ventricle. The green
region indicates tracts in the cingulum, which lie perpendicular to the visualized coronal slice.

The experiments in this chapter are focussed on a representative coronal slice in
the HCP data. In Fig. 2.2 we plot this slice in an anatomical (T1-weighted) image,
where we can recognize most of the qualitatively different structures that we ex-
pect to find in the data. The slice contains white matter regions, consisting of strongly
aligned, long-rangemyelinated axons in single and crossing fiber regions (light gray);
gray matter regions containing unmyelinated neurons and cell bodies (dark gray);
and cerebrospinal fluid (CSF) in the ventricles and around the brain (black). A seg-
mentation of these different regions is shown in Fig. 2.3. In Fig. 2.2(b) we sketched
the expected fiber pathways near the centrum semiovale (indicated by the red box in
Fig. 2.2(a)), which is an often used test bed in diffusion MRI because of the complex
configuration of crossing fibers that can be found there.
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(a)

(b)

Figure 2.3: The coronal slice shown in Fig. 2.2 with an overlay identifying the white matter (red), gray
matter (green), and other voxels including those containing significant volumes of cerebrospinal fluid
(blue).

2.4 Results

In this section we present some examples of the scalar measures and glyph visu-
alization presented in the previous section, as well as explain how the proposed
scaled metric compares to the normal metric. An evaluation of the scaled metric in a
practical setting is done in Chapter 7. The goal of this section, as of the chapter in gen-
eral, is to acquaint one with the diffusion tensor imaging model and its geometrical
interpretation.

In Figs. 2.4, 2.5, and 2.6 we plot the scalar measures introduced in Section 2.3.1 for
the coronal slice of the HCP data shown in Fig. 2.2(a), and in Fig. 2.7(a) we show the
corresponding ellipsoidal level sets in the small region of interest near the centrum
semiovale.

The different tissues observable in the HCP data (Fig. 2.3) have very distinct
diffusion characteristics. In white matter, axons act as barriers to diffusing particles,
resulting in smaller values for the mean diffusivity and the determinant, see Fig. 2.4.
Because these axons are strongly aligned and relatively densely packed, spins can
movemore freely along the fiber pathways than perpendicular to them, resulting in a
relatively high linearity coefficient and fractional anisotropy, Figs. 2.5 and 2.6(a). The
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(a) Mean diffusivity (b) Determinant

Figure 2.4: The mean diffusivity (a) and determinant (a) of the local diffusion tensors reconstructed for
data in a coronal slice of the HCP data set described in Section 2.3.3. The mean diffusivity represents the
average rate of diffusion in a voxel, and the determinant can be interpreted as the (Euclidean) volume of
the DTI ellipsoid. These measures are comparable in white and gray matter (cf. Fig. 2.3)—where diffusing
spins typically encounter a large number of barriers—and much higher in e.g. the cerebrospinal fluid,
where spins move relatively unobstructed.

corresponding level sets—the glyph visualization in Fig. 2.7(a)—are less spherical,
and the sphericity coefficient is relatively low, Fig. 2.6(c). In white matter regions
containing e.g. crossings of fiber pathways, anisotropy is a bit reduced comparatively,
and the glyphs aremore flat than elongated (Fig. 2.7(a)), which is reflected in a higher
planarity coefficient (Fig. 2.6(b)) and a lower linearity coefficient (Fig. 2.6(a)). Without
the presence of large-scale structural coherence, both gray matter and CSF regions
are fairly isotropic, i.e., they have a high sphericity coefficient and a low anisotropy
measure (Figs. 2.6(c) and 2.5). The mean diffusivity is comparable between white
matter and gray matter, but much higher in CSF, cf. Fig. 2.4(a).

Through Eq. (2.15) we link the diffusion tensor to a metric tensor, providing an
alternative interpretation of the diffusion-weighted measurements. While the diffu-
sion tensor describes the mean squared displacements of spins at a given position
and along a given orientation, the metric tensor describes the local, orientation-
dependent deformation of the space. Consequently, diffusion scalar measures have
an analogous interpretation in terms of this deformation. A small mean diffusivity
or determinant implies space is compressed relative to the standard Euclidean space,
whichmeans a unit displacement relative to theRiemannian geometry is smaller than
a unit displacement relative to the Euclidean geometry. A high fractional anisotropy
means that the deformation of the space is strongly dependent on direction, and the
geometric measures further characterize this anisotropy.

With this in mind, we can also interpret the scaled Riemannian manifold pro-
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Figure 2.5: A map of the fractional anisotropy (Eq. (2.21)) shown in the same slice as shown in Figs. 2.2
and 2.4. FA is zero when diffusion is isotropic, i.e., when λmin � λmed � λmax, which is the case in the
ventricles (dark regions in the center of the brain). If there is more diffusion along one direction than
others, FA increases, as can be seen in e.g. the corpus callosum (recognizable as the bright, slightly curved
set of voxels above the ventricles that connect the left and right hemispheres).

(a) Linearity (b) Planarity (c) Sphericity

Figure 2.6: The geometrical measures proposed by Westin et al. [372, 373], that are used to characterize
the shape of the DTI ellipsoids that represent the full local diffusion information. These measures are
insensitive to variations in the overall size of the ellipsoids, and instead give a measure of elongation (a),
planarity (b), and sphericity (c). A high sphericity implies low fractional anisotropy (i.e. a high degree of
isotropy), and a high linearity implies high fractional anisotropy, cf. Fig. 2.5.
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(a) (b)

Figure 2.7: (a) DTI ellipsoids in a coronal slice of a Human Connectome Project data set, specifically in
the region indicated by the red box in Fig. 2.2(a). The radii of a glyph represent the root mean squared
displacement of spins along that orientation, and the peaks of these glyphs—given by the eigenvector cor-
responding to the largest eigenvalue—are approximately aligned with the main orientation of neuronal
tracts in the underlying tissue [30, 247]. The glyphs are colored according to themain eigenvector of the dif-
fusion tensor, with red indicating alignment with the left-right axis (LR), green with the anterior-posterior
(AP), and blue with the inferior-superior (IS). From the viewpoint provided by the geometrical framework
of Eq. (2.15), the displayed ellipsoids are proportional to the indicatrices of the metric tensors, which
represent the compression/dilation of the model space relative to Euclidean space. We could alternatively
plot the figuratrices associated to the metric tensors—which would illustrate how displacements along an
orientation which has a large associated diffusivity, are assigned a short Riemannian distance [254]—but
these are less intuitive and provide no additional information. (b) The same data as shown in (a), but locally
rescaled in an attempt to unify the large-scale behavior described by the Riemannian Laplace–Beltrami
(Eq. (2.9)) and the anisotropic diffusion equation (Eq. (2.16)) [254]. Scaling consists of a division of D by
its determinant (Fig. 2.4(b)), which greatly suppresses the magnitude of diffusion tensors in voxels with
CSF, while the data in gray and white matter is affected approximately uniformly.

posed in Section 2.2.3, and shown in Fig. 2.7(b). As could be seen in Fig. 2.4(b), the
determinant used in the definition of the scaled metric tensor is similar in gray and
white matter regions, and the effect of scaling is small in most regions outside the
corpus callosum, where glyphs—and thus space—are somewhat dilated. Apart from
this, the largest effect can be observed in voxels with significant CSF, where the scaled
metric represents a significant compression in themodel space relative towhite/gray
matter.

2.5 Discussion

2.5.1 The Riemannian framework

In this chapterwe introduced thefirst geometrical framework fordiffusionMRI, based
on the idea that the diffusion characteristics of a complex specimen can be reproduced
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by a deformed ‘model space’ in which we observe a simple Brownian motion, recall
Section 1.2.1. We specifically considered the case of a Riemannian geometry, which
restricts the deformations of the model space to smoothly varying scalings, along
three smoothly varying orthogonal axes. If the model space is compressed along
a given orientation, the distance that particles can travel relative to the Euclidean
geometry in a given time is decreased accordingly. As explained in Section 2.4,
this framework allows us to interpret diffusion measurements as a measurement of
the degree of deformation of the model space relative to Euclidean space, and by
virtue of Eq. (2.13) a small set of diffusion-weighted measurements is sufficient to
recover the complete local geometry if the medium’s diffusion coefficient is known.
If we were to actually be observing a Brownian motion in a Riemannian manifold,
this relationship would be one-to-one: the observable behavior of Brownian motion
particles is (naturally) completely governed by the metric tensor, viz. Eq. (2.10),
while the metric tensor is in turn fully determined by the observable behavior of
the Brownian motion particles. We will see in the remainder of the thesis that this is
quite a remarkable property—one that is generally lost if we for example allow more
general deformations of the model space.

At first glance, the restriction to Riemannian geometry may be regarded as quite
arbitrary. What makes Riemannian geometry in particular so interesting? The an-
swer to this question lies with the aforementioned one-to-one relationship between
Brownian motion and the Riemannian metric tensor. By definition, Brownian mo-
tion follows as in Section 2.2.1 through a central limit theorem, which in our setting
of guaranteed finite displacement variances implies that the resulting propagator
will tend to a Gaussian distribution. The implication is that the Gaussian propagator
found in Eq. (2.12) can describe anyBrownianmotion in a subsetVp ⊂ M that satisfies
Assumption 1, while every Gaussian propagator can be linked in a unique way to
a Riemannian metric tensor. As a result, the Riemannian framework is very broadly
applicable, contingent only on the conditions for the central limit theorem: a single
diffusion compartmentwherein the large velocity – large collision rate approximation
described in Section 2.2.1 is appropriate.1 In the case of multiple relevant diffusion
compartments, the framework can be applied to each compartment individually.

Simpler geometries whose structure can be deduced from observations of Brow-
nian motion—think for example of a geometry where local scaling is constrained
to be isotropic—will necessarily lack the generality of Riemannian geometry, while
more complicated geometries cannot possibly be derived from basic observations of
particles that satisfy the conditions of the central limit theorem. This leaves only the
question of whether there could be non-Riemannian geometries that can be similarly

1One caveat that we must mention is that the Brownian motion could be degenerate—particles may in
theory be restricted to what is essentially a one or two-dimensional motion, which would result in one or
twoeigenvalues ofD becomingzero. In this case the central limit theoremapplies to the lower-dimensional
stochastic process, and Eq. (2.12) has to be modified accordingly.
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related to Brownian motion in a unique manner. While we are unaware of examples,
this seems entirely plausible; the local, observable behavior would be indistinguish-
able from a Riemannian manifold, but behavior at the voxel scale could be different.
Identifying such geometries could potentially lead to interesting methodological ad-
vances. In light of this we intend to investigate e.g. sub-Riemannian geometry, which
has already found applications in diffusion MRI [93, 112, 113, 121, 282].

2.5.2 Relation to Gaussian diffusion

The Riemannian framework leads to a Gaussian model for the diffusion MRI signal,
recall Eq. (2.13). Aside from the explicit separation of medium- and structure-specific
characteristics achieved by the inclusion of the diffusion coefficient α, this model is
functionally the same as the standard Gaussian diffusion model—diffusion tensor
imaging, or DTI [24, 25]. Given a DTI data set and a known (or assumed) value
for α, the metric tensor g follows straightforwardly through a matrix inversion, viz.
Eq. (2.15). Because of the simplicity of this relation, and because DTI is so widely
used, we can view the Riemannian framework as an additional means specifically to
interpret and analyze DTI data.

There are also historical reasons to view the Riemannian framework in tandem
with DTI. In the foundational works of O’Donnell et al. [254] and Lenglet et al. [218],
Riemannian geometry was not invoked to model the diffusion MRI signal, but as a
tool to compute neuronal fiber pathways from diffusion tensor data. In this context,
O’Donnell et al. [254] simply postulated a duality relation between g and D, based on
the expectation that a valid metric should associate short distances to displacements
along orientations with a high diffusivity. The work of Lenglet et al. [218] is closer to
ours, but still somewhat different; the authors start with a field of diffusion tensors,
and then argue that a Riemannian manifold that produces those tensors must satisfy
a duality relation between the metric and diffusion tensors. Note that at inception of
both approaches we have DTI—there is no Riemannian interpretation of diffusion
MRI data without DTI. The presented ‘stand-alone’ derivation of the Riemannian
framework—where the assumption of a Riemannian manifold leads to Gaussian dif-
fusion, instead of the other way around—is perhaps the most valuable paradigmatic
contribution of this chapter.

The DTI model can be considered the de facto standard in most applications—
the assumption of Gaussian diffusion has become so ubiquitous that more gen-
eral models are typically grouped under the umbrella term ‘non-Gaussian diffu-
sion’. These models either include several non-exchanging compartments—leading
to multi-exponential and multi-compartment models [4, 14, 15, 32, 119, 212, 246, 265,
325]—or they assume that the remaining conditions of the central limit theorem do
not apply, e.g. that there is anomalous diffusion [40, 160, 161, 202, 257] or that we
need to take additional moments of the EAP into account [49, 178, 222, 259, 366].
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Anomalous diffusion describes scenarios where e.g. the velocity tends to infinity
independent from the collision rate, and where the microscopic definition of the
diffusion constant α is thus not well-defined in terms of the average velocity and
average collision rate. Anomalous diffusion has not been proven to occur in neuronal
tissue [45, 250], and we do not consider it in this manuscript. Multi-compartment
models describe diffusion in different compartments with no or minimal exchange,
which in a geometrical framework should bemodeled separately as a rule. Additional
moments of the EAP become relevant when neither the collision rate nor the velocity
can be considered sufficiently large, andmodels that assume a more general form for
the EAP have been found to be relevant in neuroimaging applications [178, 222, 223,
250].Wewill find that a consideration of this last deviation fromGaussian behavior is
actually essential for the second, more complex geometrical framework we propose
in the next chapter.

2.5.3 Information in the Riemannian structure

The incorporation of geometry into diffusion MRI is first and foremost intended to
help analyze the data obtained fromdiffusionMRI scans. The basic idea behind this is
geometrization: if available, it is generally easier to obtain relevant information using
existing, generic tools from geometry—which have been developed and applied over
more than a century—than it is to develop a new set of tools specifically tailored to
a particular problem. The Riemannian framework serves, in a sense, as a means to
translate problems in the language of diffusion MRI to the more general language of
Riemanniangeometry. In this sectionwe look at applications ofRiemanniangeometry
at the local level of a single voxel, as well as at the inter-voxel level.

2.5.3.1 Local information

The defining equations of the Riemannian framework, Eqs. (2.12) and (2.15), relate
the diffusion tensor (the covariance matrix of a Gaussian diffusion) to a Riemannian
metric tensor. Because this relation is (essentially) one-to-one, the information that
can be extracted from the metric tensor is fundamentally the same as that in the
diffusion tensor. The Riemannian framework does allow us to interpret common DTI
descriptors differently, viz. in terms of the metric structure of an associated Rieman-
nian manifold. We discussed some examples in Section 2.4; the mean diffusivity and
DTI tensor determinant, fractional anisotropy, and the geometric shape measures,
cf. Figs. 2.4, 2.6, and 2.7. A large number of scalar measures has been proposed for
specific applications [5, 27, 273, 350, 372] in addition to the measures discussed in
this chapter, and they likewise have geometrical interpretations.

Scalar measures in the Riemannian framework can be expressed in terms of ten-
sor invariants like eigenvalues, which together with the eigenvectors characterize the
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metric tensor completely. While scalar invariants capture local scalar information,
eigenvectors capture information about orientation. In biological experiments for
example, most notably neuroimaging and the imaging of skeletal and cardiac mus-
cles, the main eigenvector orientation coincides (approximately) with the dominant
orientation of fibrous structures in the tissue [30, 247]—provided this orientation is
well-defined. The precise relation between local pathway orientations and diffusion
is unknown, and as of this writing there seem to be several adequate solutions to this
problem [50, 96, 97, 102, 167, 252, 259, 261, 342, 367]. In Chapter 6 we approach this
question from a geometrical perspective based on the generalized framework that we
propose in the next chapter.

Note that local descriptors in particular are strongly dependent on the diffusion
time. A longer diffusion time means particles can move greater distances and probe
larger structures, while they become less sensitive to properties of smaller struc-
tures [250, 251].

2.5.3.2 Global information

In samples where diffusion probes large, coherent structures that span multiple vox-
els, there is a question of integration. Is it possible to glean information about larger
objects from local diffusion measurements? In neuroimaging these large structures
of interest are typically fiber pathways—bundles of neuronal tracts that connect dif-
ferent parts of the nervous system. In this setting, the primary question is whether
and how two regions are connected. Anatomical questions like this are addressed
with tractography, which is the field of study concerned with the reconstruction of
these fiber pathways.

Themost common tractography algorithmswork by computing integral curves in
vector fields derived from the diffusion data [26, 69, 99, 242]. For DTI for example one
can consider the vector field formed by themain eigenvectors of the diffusion tensors,
which should be approximately tangent to thedominant orientation of the underlying
fiber pathways. The existence of integral curves (or streamlines) is guaranteed if a
vector field is Lipschitz continuous, so given an initial point in M one can trace the
likely physical connections for as long as successive vectors are sufficiently similar.
This approach works fairly well in regions where tissue orientation is well-defined,
but is likely to fail if the pathways are organized in crossings or other complex
configurations [134, 135, 348]. Modern methods solve this by going to more complex
models that are capable of resolving these complex configurations (we will focus
more on this in the next chapter), and/or by considering more involved tracking
algorithms, e.g. global [68, 287] or probabilistic tractography methods [33, 99, 180,
299, 310]. These more complicated tracking algorithms have as a common trait that
they tend to use all the information in the reconstructed model or the raw diffusion
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data (instead of reducing the data to a set of vectors) and this trait is shared by the
geometry-based geodesic tractography.

The general assumption in geodesic tractography is that there is a relation between
physical connections and geodesics in M. This has some significant advantages, e.g.
geodesic tractography will also work in regions where the dominant orientation of
the tissue is not clearly or uniquely defined. The other side of the coin is that because
not every set of points is connected by a physical fiber pathway, the relation be-
tween geodesics and fiber pathways is surely not one-to-one—we assumed that M is
compact (Section 1.1.3), which implies geodesic completeness: there exist geodesics
between any two points in M. This means that one needs to have reliable bound-
ary conditions—knowledge about which regions are connected—or an additional
criterion that can be used to determine retroactively whether a geodesic is likely to
represent a valid connection.More problematic, is that there are also simple examples
where (current) geodesic tractography is not able to reproduce known connections.
Whether this issue can be resolved is an ongoing question that was the subject of a
number of recent works [139–142, 163], including the works by Fuster et al. where
the scaled manifold discussed in Section 2.2.3 was first proposed. We will look at
geodesic tractography and connectivity in Chapter 7.

Where local tensor invariants are the building blocks of all useful descriptors of
sub-voxel characteristics, larger-than-voxel-scale properties in the Riemannian frame-
work are expressed in terms of the invariant differential structure of the manifold. Ge-
odesics for example can be computed by solving the Euler–Lagrange equations [187,
Lemma 1.4.4]

d2C i

dt2 (t) +
∑
j,k

Γi
jk(C(t))

dC j

dt
(t)dCk

dt
(t) � 0, (2.25)

where C i is the i-th component of the geodesic C in local coordinates, and Γi
jk are the

Christoffel symbols given by

Γi
jk(x) �

1
2

∑
l

g il(x)
(
∂gkl

∂x j (x) +
∂g jl

∂xk
(x) − ∂g jk

∂x l
(x)

)
. (2.26)

Another example is the curvature of the Riemannian space, which can be character-
ized by e.g. the Ricci curvature tensor

Ri j(x) �
∑
k ,l

[
∂Γk

ji

∂xk
(x) − ∂Γk

ki

∂x j (x) + Γk
kl(x)Γl

ji(x) − Γk
jl(x)Γl

ki(x)
]
, (2.27)

based on which a number of scalar measures have been proposed [19, 137]. This
tensor also tells us something about how contiguous geodesics behave; the geodesic

41



Chapter 2

deviation at (x , y) ∈ TM, defined as

dev(x , y) �
∑
i , j

Ri j(x)y i y j , (2.28)

is positive only when geodesics tangent to y locally diverge. Geodesic deviation thus
characterizes infinitesimal dilations of space along ageodesic, andhas been suggested
as an additional force in a modified geodesic tractography algorithm proposed by
Sepasian et al. [306].

2.5.4 The scaled manifold

The first contribution of this chapter is the abstracted derivation of the Riemannian
framework, where we explicitly separate the diffusivity of the probing medium (the
diffusion coefficient α) from the surrounding structure (represented by the met-
ric tensor g). In this framework diffusion is modeled using Gaussian distributions,
resulting in a model that is functionally similar to DTI. However, DTI can alterna-
tively be derived—as in many early works—from the anisotropic diffusion equation,
Eq. (2.16), which prescribes different behavior for spins at the (unobserved) millime-
ter scale [29]. This motivated the introduction of an optional conformal factor in a
modified definition of the Riemannian manifold, in which Brownian motion more
closely resembles an anisotropic diffusion of particles in Euclidean space. The scaled
Riemannian manifold is obtained in practice by dividing the diffusion tensor by its
determinant before computing the metric in the normal way using Eq. (2.15).

We plotted the determinant in a representative slice of a Human Connectome
Project data set (Section 2.3.3) in Fig. 2.4(b). The determinant is relatively large in
regions with cerebrospinal fluid, like the ventricles and near the cortex, and much
smaller in regions of gray and white matter. Between different regions of gray and
white matter there is little variation, and from its definition it is obvious that the
modified metric will not be qualitatively different from the usual definition in those
regions. Practically speaking, we thus expect the largest differences introduced by
this scaling to be visible near the boundaries between CSF and gray/white matter,
and we will indeed see this in the geodesic tractography experiments presented in
Chapter 7. In that chapter we will also discuss a geometrical interpretation of the
scaled manifold in terms of how geodesics are computed.
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The data necessary to reconstruct the structurally informative diffusion tensor imag-
ing (DTI) model can be acquired in a matter of minutes, and in part because of this it
is a popular technique. Unfortunately its applicability as a tissue model is limited to
voxels with predominantly co-aligned fibers [30, 348], recall Section 2.5.3.2. With the
advent of more complex models, propelled by the abundant research showing the
limitations of DTI in many regions with complex fiber architectures [181], focus has
likewise shifted away from the Riemannian framework. In its wake a number of au-
thors have investigated the possible application of Finsler geometry [21, 55, 125, 288],
a generalization of the theory of Riemannian geometry on which the DTI framework
of the previous chapter was founded. A number of promising results based on the
application of Finsler geometry in diffusion MRI have already been published [17,
130, 133, 227, 228, 307], showcasing significant improvement in known problem areas
over similar DTI-based experiments.

What lacks in the existing works on Finsler geometry is a concrete relation to the
physics of diffusion [129], a relation that proved so valuable in the Riemannian case:
it is this relation that tells us how to describe the manifold’s metric structure in terms
of theMRI signal, and it is this relation that reveals the meaning of geometry-derived
structures like the geodesic tracts that we discuss in Chapter 7. Ultimately it is the
absence of this fundamental relation that explains why none of the recent papers
reference a canonical definition for the Finslerian metric structure, and why results
based on Finsler geometry are often so difficult to interpret.

The primary purpose of this chapter is to show how a natural Finsler metric
structure can be derived, both in theory and in practice, from high gradient strength
diffusion MRI measurements. With this relation, we effectively establish a Finsler-
ian geometrical framework similar to the Riemannian framework of the previous
chapter, each applicable to a specific gradient strength regime. Insights from this
new interpretation of high gradient strength data quickly lead to various interesting
quantifiers of local tissue properties, which we review in Chapter 6.

Most of the major theoretical results of this chapter are described in Section 3.2,
where we first show that a straightforward application of the diffusion equation
corresponding to Brownian motion in a Finsler manifold [10, App. A] does not result
in a signal model from which one can derive the Finsler metric [86]. This result is
based on the isotropic transport process that was already featured prominently in
the previous chapter. Next we show that a Finslerian structure can in principle be
extracted fromdiffusionmeasurements by considering an adapted isotropic transport
process with finite velocity/collision rate. Though the resulting model is obviously
inspired by Finslerian Brownian motions, it can be used to analyze any process with
well-defined cumulants.

Practical issues pertaining to the reconstruction of the model are covered in Sec-
tion 3.3. The first illustrative results can be found in Section 3.4, and the chapter

45



Chapter 3

is concluded with a discussion in Section 3.5 on the strengths and weaknesses of
the framework, along with a glance ahead to possible future work. The chapter is
preluded by a brief introduction to some of the relevant concepts and objects in
Finsler geometry, Section 3.1. Preliminary results of this work have been presented
at Dagstuhl and the ISMRM [86–89]

3.1 Background

3.1.1 Manifolds and norms

Finsler geometry is a generalization of Riemannian geometry, where the squared
norm is no longer restricted to a quadratic form [65]. As a result, the local geometry
in a Finsler manifold can describe more elastic deformations applied along arbitrary
orientations—not only along orthogonal ones (Section 2.5.1). For a general introduc-
tion to the theory of Finsler geometry, see e.g. the work of Bao et al. [21].

LetM B (M, F)be a three-dimensional (reversible) Finslermanifold,meaning that
M is endowed with an additional geometric structure captured by the (continuous)
Finsler function F : TM → [0,∞) that satisfies the following conditions.

• Regularity F is C∞ on the slit tangent bundle
◦
TM � {(x , y) ∈ TM | F(x , y) , 0}.

• Homogeneity For all β > 0 and all (x , y) ∈ TM, it holds that

F(x , βy) � βF(x , y). (3.1)

• Subadditivity For all (x , y), (x , z) ∈ TM, F satisfies the triangle inequality

F(x , y + z) ≤ F(x , y) + F(x , z). (3.2)

• Reversibility For all (x , y) ∈ TM,

F(x ,−y) � F(x , y). (3.3)

The Finsler function induces a norm F C ‖.‖F : Tx M → [0,∞) on the tangent space
at each (implicit) point x ∈ M. It follows that

F(x , y) � ‖y‖F �

√∑
i , j

gi j(x , y)y i y j , (3.4)
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where gi j is the coordinate representation of the fundamental tensor1 g �
{

gi j
}

defined as

gi j(x , y) B 1
2
∂2F2(x , y)
∂y i∂y j (3.5)

relative to the local coordinates (y1 , y2 , y3) on Tx M. This norm provides the machin-
ery to compute speeds and distances relative to the Finsler geometry, much like the
standard Euclidean norm ‖.‖ : Tx M → [0,∞) does for Euclidean geometry.

A Finsler manifold is Riemannian when the fundamental tensor is independent
of the vector y, in which case g(x) B g(x , y) corresponds to the Riemannian metric
tensor for all y, recall Eq. (2.1). Informally, a Finsler manifold is locally Minkowskian
if the Finsler function is instead independent of the position x ∈ M. For locally
Minkowskian manifolds M (containing some fiducial point p) we may identify all
tangent spaces in TM with Tp M, and thus make the identification

F(x , y) ≡ F(p , y) C F(y) (3.6)

for all x ∈ M.

3.1.2 The indicatrix

The indicatrix2 is the Finslerian analog of a unit sphere in Tx M defined as

Ix M � {y ∈ Tx M | F(x , y) � 1}, (3.7)

and can itself be viewed as a (two-dimensional) Riemannianmanifold by restricting F
to Ix M. As a Riemannianmanifold the indicatrix carries a natural volumemeasure ηx

induced by the restricted metric, and the associated probability measure µ is defined
as

µx B
ηx

ηx(Ix M) . (3.8)

Explicit expressions for µx will be given when used.
The indicatrix is of particular interest in this chapter, because homogeneity

(Eq. (3.1)) ensures that the indicatrix and the Finsler function represent essentially the
same information. By the properties listed in Section 3.1.1 the indicatrix is a centrally
symmetric convex set, i.e., it has antipodal symmetry.

1The fundamental tensor can be considered the Finslerian analogue of the metric tensor in Riemannian
geometry, and we use the same symbol g for both. Where necessary they can be distinguished by their
arguments.

2Like with the fundamental tensor, we use the same symbol for the Riemannian and the Finslerian
indicatrix.

47



Chapter 3

3.1.3 Geodesics

A geodesic between two points x1 , x2 ∈ M is a curve C : [0, T] → M that locally
minimizes the length integral

LF(C) B
∫ T

0
F
(
C(t), dC

dt
(t)

)
dt , (3.9)

where C(0) � x1 and C(T) � x2. Uniqueness and existence criteria can be found in
the references [21]. For a geodesic C(t), t > 0, with initial conditions C(0) � x and
d
dt C(0) � y ∈ Tx M, the exponential map is defined as

exp(x , t y) B
{

C(t) if y , 0
x if y � 0

. (3.10)

The exponential map is C∞ in the parameter t, and for any suitably differentiable
function t 7→ u(exp(x , t y)) it satisfies the partial differential equation

∂u
∂t

� Zu , (3.11)

where the geodesic spray Z is given (for constant speed geodesics) by [21, Section 3.8]

Z B Z(x , y) B
∑

i

y i ∂

∂x i −
∑
i , j,k

γi
jk(x , y)y j yk ∂

∂y i . (3.12)

Here γi
jk are the formal Christoffel symbols of the second kind on

◦
TM, given by

γi
jk(x , y) � 1

2

∑
l

g il(x , y)
(
∂gkl

∂x j (x , y) + ∂g jl

∂xk
(x , y) − ∂g jk

∂x l
(x , y)

)
, (3.13)

with g i j the components of the inverse metric tensor as in Chapter 2. Note that on
a locally Minkowskian manifold γi

jk(x , y) � 0, so geodesics are simply straight lines
defined by the initial conditions (x , y), giving an isomorphism Tp M → M for any
p ∈ M.

3.1.4 Duality

The set of all linear functionals acting on Tx M forms the dual vector space T∗x M,
which is equipped with the natural norm

F∗(x ,w) B sup
y∈Ix M

〈w , y〉 C H(x ,w), (3.14)
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where w ∈ T∗x M. The duality relation between F and H is invertible, with H∗ � F∗∗ �
F, and—like in the Riemannian setting—the unit level set of this norm is typically
referred to as the figuratrix. If the fiducial point x is clear from context, we may omit
it when writing H (or quantities derived from H).

The dual norm H has the same properties as F listed in Section 3.1.1, and in
particular has an associated dual fundamental tensor

h i j(x ,w) B 1
2
∂2H2(x ,w)
∂wi∂w j

. (3.15)

This tensor induces natural coordinates ω B ω(x ,w) on Tx M [21, Eq. 14.8.1] with

ωi(x ,w) B
∑

j

h i j(x ,w)w j , (3.16)

which have the property that

H(x ,w) � H∗(ω(x ,w)) � F(ω(x ,w)). (3.17)

3.2 Theory

In this section we introduce the Finslerian framework for diffusion MRI through the
same progressive steps as taken in the previous chapter. In Section 3.2.1 we first dis-
cuss the isotropic scattering transport process in a Finsler manifold, i.e., a stochastic
process of colliding particles that reduces to a Brownian motion under certain condi-
tions.We illustrate this process using simulations in a locallyMinkowskianmanifold,
and discuss its central limit and large displacement behaviors in separate subsections.
In Section 3.2.2 we then explain how the large displacement behavior of isotropic dif-
fusion processes in a Finsler manifold can be related to the geometric structure of
the manifold in a unique way. In principle, this allows us to reconstruct a Finsler
geometry from high gradient strength diffusion measurements, thus establishing a
geometrical framework for diffusion MRI based on Finsler geometry.

3.2.1 Diffusion in a Finsler manifold

As explained in the previous chapter, it is possible to derive a geometrical framework
for diffusion tensor imaging by modeling the spin position space as a Riemannian
manifold. In a first attempt to generalize this idea to more complex diffusion models,
we investigated isotropic diffusion in a Finsler manifold as a model for the ensemble
dynamics of the measured spins [86]. Sections 3.2.1.1 and 3.2.1.2 cover the Finslerian
isotropic transport process and its central limit behavior. In Section 3.2.1.3 we briefly
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discuss the large displacement behavior of the isotropic transport process, which
becomes relevant when the central limit approximation does not hold.

3.2.1.1 Isotropic transport

Mimicking approaches employed in Riemannianmanifolds [275], recall Section 2.2.1,
one can obtain the Finslerian isotropic diffusion equation as a limiting case of the
isotropic transport process, a stochastic process defined globally on any (compact)
reversible Finsler manifold. The Finslerian isotropic transport process describes par-
ticles that travel with constant Finslerian speed F(y) � v along geodesics until a
collision event, after which movement continues in a new direction at the same
speed. This scattering is uniform relative to the measure µx , Eq. (3.8), and the time
between successive collision events again follows an exponential distribution with a
rate parameter λ.

We illustrate the bulk behavior of spins subject to this process through a simple
simulation. Let the characteristic speed of an isotropic transport process be v, let
v2/λ � 1 be the constant that defines the collision rate λ, and denote by ∆ the
total diffusion time in the simulation. We will assume the number of dimensions
n � 2. For a particular evolution with initial position x0 and initial velocity y0 we
draw k collision times τi from an exponential distribution, where k is the smallest
integer that gives

∑k
i�1 τi ≥ ∆. Given this collection of {τi} we define τ0 B 0 and

truncate τk so as to obtain a sequence of times τ0 , . . . , τk that totals to ∆. Both the
Finsler function F and the direction of the initial velocity vector are free, and we
assume that the Finsler function is independent of position, recall Section 3.1.1 and
Assumption 1. The random evolution C(t) of a single test particle is then piecewise
geodesic, meaning for these simple simulations that for each interval τi ≤ t < τi+1,
i � 0, . . . , k − 1 the curve C(t) forms a straight line. Finally at each τi , i � 1, . . . , k − 1,
a new unit velocity vector yi is selected subject to

P {yi ∈ d yi−1} � µxi−1(d yi−1) �
√

det g(y) (y1
i−1dy2

i−1 − y2
i−1dy1

i−1
)
, (3.18)

such that limt↓τi (dC(t)/dt) � yi . Practical sampling is done numerically [106, Sec-
tion II.2].

As a basic example, Fig. 3.1 shows convergence of the isotropic transport process
to an isotropic diffusion by plotting approximate density functions obtained through
a simulation with F(y) � ‖y‖ � √(y1)2 + (y2)2 and for increasing velocities v. The
support of the propagator growswith velocity. As onemight expect, simulationswith
more general F as shown in Fig. 3.2 appear to converge to an anisotropic (Gaussian)
diffusion.
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(a) v � 0.75 (b) v � 1.00

(c) v � 1.25 (d) v � 1.50

Figure 3.1:Approximate histograms (gray bars) corresponding to the isotropic transport process simulated
with various values of v and with α � 1 (recall Chapter 2). Simulations consist of 107 collisions, with a
diffusion time t � 7. The vertical axis ranges from 0 to 0.04, while the planar axes range from −15 to 15.
Simulation takes place in a Euclidean space, i.e., a locally Minkowskian manifold whose Finsler function
is given by F(y) �

√
(y1)2 + (y2)2. The corresponding asymptotic distribution function is computed by

evaluating Eq. (3.19), and plotted in blue.

51



Chapter 3

(a) F(y) � 3
((y1)2 + (y2)2) 1

2 (b) F(y) � ((y1)2 + 3(y2)2) 1
2 (c) F(y) � ((y1)6 + 3(y2)6) 1

6

Figure 3.2:Approximate histograms (gray bars) corresponding to the isotropic transport process simulated
with various Finsler functions F, and with v � α � 1. Simulations consist of 107 collisions, and take place
on a locally Minkowskian manifold. The theoretical boundaries, indicating the farthest distance particles
can travel, are plotted in black.

3.2.1.2 Central limit behavior

As suggested by the simulations in Fig. 3.2, and as was the case in Riemannian
manifolds, the Finslerian isotropic transport process leads to a simple anisotropic
diffusion equation in the Brownian motion limit. From the work of Antonelli and
Zastawniak [10, App. A] it follows that in this limit, where both v and λ go to infinity
subject to 0 < 3

2
v2

λ C α constant, we obtain a general Laplace–Beltrami operator ∆F

given by an indicatrix average of Z2 � Z ◦ Z at some anchor point x ∈ M:

∆F B 3 α
∫

Ix M
Z2 µx(dy). (3.19)

This operator generates a diffusion on M according to the diffusion equation

∂

∂t
� ∆F . (3.20)

We can solve this equation to obtain a displacement probability density function
for the asymptotic (central limit) behavior of the particles [117], and note that this
asymptotic probability distribution corresponds for Riemannian Finsler functions
corresponds to the expression obtained in Chapter 2.

Remark 3. For diffusions in Euclidean and Riemannian geometries, α is the diffusion
coefficient, recall Sections 1.2.1 and 2.2.1. In principle α could thus be determined from
measurements of free diffusion, and in contrast with the oft-used apparent diffusion coefficient
it is an intrinsic property of the ambient medium independent of the manifold or tissue. As in
Chapter 2, we assume throughout that α is independent of position.

If wewish to apply the isotropic transport process to diffusionMRImodeling as in
Section 2.2.1, we have to make use of the spatial homogeneity assumption postulated
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in Section 1.1. This assumption states that the structure captured by F is independent
of positionwithin thefiducial voxelVp ,whichmeans thatVp canbeviewedas a locally
Minkowskian manifold. The partial differential equation describing the diffusion in
the voxel (Eq. (3.20)) reduces to

∂

∂t
� 3α

∑
i , j

∫
Ip M

y i y j µp(dy) ∂2

∂x i∂x j C
∑
i , j

D i j(p) ∂2

∂x i∂x j , (3.21)

and we obtain what is essentially the premise of DTI, with a simple expression
for the diffusion tensor of Eq. (2.14) in terms of F. As such we may conclude that
Brownian motion in a Finsler manifold leads to a viable, but not exceptionally novel,
model for diffusionMRI. Thismodel coincides in formwith diffusion tensor imaging,
and in spirit with the Riemannian interpretation of DTI. Of course, the fact that
the DTI model describes diffusion with the relatively simple symmetric 2-tensor D,
immediately implies that in general most of the information about the underlying
Finsler geometry is lost. While D can be described in terms of the Finsler structure,
the relation is many-to-one and it is thus not feasible to e.g. obtain the metric by
simply measuring D.

3.2.1.3 Large displacements

Let us now look closer at the isotropic transport process on Vp . As explained in
the previous section, it is generally impossible to recover the Finsler function from
diffusion that can be accurately modeled through a central limit approximation, as
this approximation is necessarily Gaussian (see e.g. [66]). But at what stage in the
limiting process v , λ → ∞ does this loss of information occur? It is clear that the
displacement of particles at x ∈ Vp subject to the isotropic transport process traveling
at a constant finite Finslerian speed v for a time ∆, is bounded by a scaled indicatrix

Sp M B {r ∈ Tx M | F(r) � ∆ v} ⊂ Tp M, (3.22)

as a direct consequence of the triangle inequality [21, Section 1.2B], recall Eq. (3.6).
This implies that the displacement probability density function P of the finite speed
process is strictly nonzero inside this boundary and zero outside, i.e., that the bound-
ary ∂Ω of the domain Ω of P is identical to the scaled indicatrix:

∂Ω � Sp M. (3.23)

Because of the relation between the indicatrix and the Finsler function (Section 3.1.2),
it thus follows that we can in principle still recover F from the probability density
function P whenever v < ∞. In other words, though we are (expectedly) unable to
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infer the complete Finslerian geometry from observations of Gaussian diffusion, we
may be able to recover it from observations of non-Gaussian diffusion.

3.2.2 The Finslerian framework for diffusion MRI

Independent of the assumptions specific to the isotropic transport process, asymp-
totic distributions obtained through central limit theorems are accurate for physically
realistic systems only near the origin. This is a simple consequence of the particles’
actual finite speed ofmovement. For high velocity particles near the origin, which are
practically guaranteed to have incurred a large number of collisions, the asymptotic
density function will be a reasonable approximation to the true density function. But
particles that have travelled far from the origin tend to have suffered only a small
number of collisions, with the most extreme case being particles that have travelled
along a direct collision-free path from the origin. For these particles the Brownian
motion limit is not appropriate, and ensemble behavior can deviate significantly from
that predicted by the asymptotic distribution. This can already be seen in Fig. 3.2,
where although the bulk behavior is well represented by a Gaussian distribution,
the support of the displacement probability density functions is not necessarily el-
lipsoidal.

The fringe behavior of such large-displacement particles can typically be consid-
ered irrelevant, because the probabilities associated with these paths are small when
the velocity and the collision rate are large. This is also observed in practice, where the
diffusion tensor imaging model (which corresponds to the Brownian motion limit,
recall Chapter 2) generally represents the data very well. A useful exception is the
specific case of high gradient strength diffusionMRI, where spins that undergo large
displacements have a relatively strong impact on the signal, viz. [374, I-4; Example
2].

In order to obtain an estimate of the scaled indicatrix Sp M and the Finsler function
F,we investigate theboundary ∂Ω of the supportΩ. It turns out that this boundary can
be obtained from a large gradient strength asymptotic formula [374] for the cumulant
generating function q 7→ log S(−iq) as follows. Assume thatΩ is a compact set, define
m(q) B supr∈Ω exp(〈q , r〉), and let Ωε(q) B {r ∈ Ω | exp(〈q , r〉) ≥ m(q) − ε} for
0 < ε < m(q). Then

lim
β→∞

log S
(−iβq

)
β

(1.2)
� lim

β→∞
1
β

log
∫

Ω
eβ〈q ,r〉P(r)dr

≥ lim
β→∞

log

[(∫
Ωε(q)
(m(q) − ε)βP(r)dr

) 1
β

]
� log [m(q) − ε] . (3.24)
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Additionally we have that, independently of β,

log S
(−iβq

)
β

≤ log

[(∫
Ω

m(q)βP(r)dr
) 1
β

]
� log m(q), (3.25)

and so for any ε we get

log [m(q) − ε] ≤ lim
β→∞

log S
(−iβq

)
β

≤ log m(q) � sup
r∈Ω
〈q , r〉. (3.26)

We thus find the asymptotic relation

log S(−iq) ∼ sup
r∈∂Ω
〈q , r〉 � sup

r∈Sp M
〈q , r〉 � v ∆ sup

r∈Ip M
〈q , r〉 (‖q‖ → ∞) , (3.27)

wherein we recognize the definition of the dual Finsler function in the locally Min-
kowskian manifold Vp for which ∂Ω � Sp M ∝ Ip M:

1
v ∆

log S(−iq) ∼ sup
r∈Ip M

〈q , r〉 � sup
F(r)�1

〈q , r〉 � F∗(q) (‖q‖ → ∞) . (3.28)

F∗ � H is the algebraic dual introduced in Section 3.1.4, and by invertibility of the
duality relation (Section 3.1.4) the Finsler function F is obtained up to a constant v
(recall Section 2.2.1) from the large gradient strength signal using

F(r) ∼
[

1
v ∆

log S(−i ·)
] ∗
(r) (‖q‖ → ∞) . (3.29)

Note that the (finite speed) isotropic transport process inVp produces an ensemble
average propagator (EAP) with convex support. Sufficient conditions for arbitrary
processes are similar to the conditions imposed by the central limit theorem of the
previous chapter: the displacement probability distribution of a finite sequence of
independent and identically (compactly) distributed random variables has convex
support. To see this, let the Minkowski sum of two sets S1 , S2 ⊂ �3 be defined as

S1 + S2 B {x1 + x2 | x1 ∈ S1 , x2 ∈ S2}, (3.30)

and let scalar multiplication for a set S be defined as β S � {β x | x ∈ S} for any
β ∈ �. Minkowski addition commutes with the taking of the convex hull, meaning
conv S1 + conv S2 � conv(S1 + S2), where the convex hull conv S of a set S is defined
as

conv S B
{
βx1 + (1 − β)x2 | x1 , x2 ∈ S, 0 ≤ β ≤ 1

}
. (3.31)
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r

S

conv S

Figure 3.3:An illustration of the inner radius of a set S (displayed in dark gray). The inner radius r(S) is the
smallest number r for which circles with radius r centered anywhere within conv S (light gray), contain a
subset of S.

The inner radius r(S) of a set S is defined as the smallest radius r for which circles
with radius r centered within conv S contain a subset of S, see Fig. 3.3. We then have
the following theorem [322].

Theorem 1 (Shapley–Folkman–Starr Theorem). Let S1 , . . . , Sm be compact sets in �n ,
and let x ∈ conv(S1 + · · · + Sm). Then there are points xi ∈ Si , i � 1, . . . ,m, such that
‖x −∑m

i�1 xi ‖ ≤ R, where R is the sum of the min {m , n} largest r(Si).

Assume now that the propagator of a diffusion process, for any given constant
diffusion time smaller than or equal to some arbitrary but fixed ∆, is the same in-
dependent of position. Then consider a temporal partitioning {s1 , . . . , sn}, such that
si > 0 and s1 + · · · + sn � ∆, and let Si denote the (not necessarily convex) support of
the diffusion propagator associated with the diffusion time si . Note that each of the
points within Si can be reached in the time si , and so by the homogeneity of the pro-
cess all points in Si +S j can be reached in time si + s j . It then follows from Theorem 1
that for increasing n, the set

∑n
i�1 Si converges to conv S, showing that the support

of the propagator with arbitrary diffusion time ∆ is convex. Theorem 1 can similarly
be employed to quantify the deviation from convexity if the diffusion propagator
is known completely, and one of the few simple cases where this deviation can be
significant is a spatially averaged propagator whose constituent diffusion processes
cannot interact, e.g. as is the case in multi-compartment models [4].

Remark 4. In voxels that contain more than one diffusion compartment, the support of
the EAP may not be convex. In that case the Finsler function that can be computed using
Eq. (3.29) will be representative of the convex hull of the actual support, and the apparent
boundary and the Finsler function should be interpreted in terms of this upper bound on the
largest displacements. A more extreme example in which convexity may not be guaranteed is
anomalous diffusion [164], which is not considered here.
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3.3 Methods

In the previous sectionwederived a relation betweenhigh gradient strength diffusion
MRI data and the metric structure of an associated Finsler manifold, Eq. (3.29). By
virtue of this relation any high gradient strength data set can in principle be modeled
using Finsler geometry, and in this section we will discuss some practical aspects of
this approach. We address in particular the issue of infinite gradient strengths, and
discuss how the techniques we develop based on the infinite gradient strength case
are directly applicable in the case of finite gradient strengths.

In Sections 3.3.1 and 3.3.2 we look at a practical reconstruction of the dual Finsler
function H based on Eq. (3.28), and on the reconstruction of F from H based on
Eq. (3.17). Details about the implementation of the resulting reconstruction algo-
rithms are given in Section 3.3.3. The proof-of-principle experiments presented in
this chapter are based on the same Human Connectome Project (HCP) data used in
Chapter 2, and we additionally consider the artificial data described in Section 3.3.4.

It now becomes convenient to introduce a global Cartesian coordinate system on
�3, which induces local coordinates (q1 , q2 , q3) on T∗p M. We will additionally make
use of spherical coordinates (r, θ, φ) on T∗p M defined by



r(q) B
√
(q1)2 + (q2)2 + (q3)2 ∈ [0,∞)

θ(q) B cos−1 q3√(q1)2 + (q2)2 + (q3)2
∈ [0, π]

φ(q) B tan−1 q2

q1
∈ [0, 2π)

. (3.32)

3.3.1 Reconstruction of the dual Finsler function

The first step in reconstructing the Finsler function F is the analytic continuation of
the signal S(q) to the cumulant generating function S(−iq). According to the Paley–
Wiener theorem [81], S(−iq) follows once we have an analytical expression for S(q),
so we can consider for example the cumulant expansion of the EAP [131, 178, 222,
251] where

1
∆

log S(q) �
∞∑

k�1

(−1)k
(2k)!

∑
i1 ,...,i2k

D i1 ···i2k qi1 · · · qi2k (3.33)

and
1
∆

log S(−iq) �
∞∑

k�1

1
(2k)!

∑
i1 ,...,i2k

D i1 ···i2k qi1 · · · qi2k , (3.34)

with D i1 ···i2k the coefficients of fully symmetric positive-definite 2k-tensors. Many
other approaches allow such a continuation as well.
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Next we have to reconstruct the dual F∗ � H, which follows from Eq. (3.28)
in the large gradient strength limit G → ∞. In practice the maximum attainable
gradient strength G is of course limited by hardware constraints, so instead of directly
reconstructing H we determine an approximation Hκ based on a level set Rκ of
log S(−iq), defined in spherical coordinates by the equality

log S(−iRκ(θ, φ), θ, φ) � v∆κ C κ̄ (3.35)

for some κ > 0. As H is homogeneous of degree one, it makes sense to then define

Hκ(r, θ, φ) B r
v ∆

R−1
κ (θ, φ) log S

(−iRκ(θ, φ), θ, φ
)
� rκR−1

κ (θ, φ), (3.36)

which can easily be shown to have all the properties associated with a (dual) Finsler
function (Sections 3.1.1 and 3.1.4), and has the additional property that

lim
κ→∞Hκ � H. (3.37)

The subscript κ will henceforth be used to denote estimates of objects.

Remark 5. The parameter κ, or its dimensionless counterpart κ̄, provides a natural means
to handle hardware gradient limitations. In practice one would choose κ to correspond to the
highest gradient strength for which there is data of acceptable quality. κ̄ is computed in our
experiments by (arbitrarily) fixing v �

1 mm
∆ , as we fixed α in Chapter 2.

Proceeding with the example of the cumulant expansion, Rκ can be obtained by
solving for q in

∞∑
k�1

1
(2k)!

∑
i1 ,...,i2k

D i1 ···i2k qi1 · · · qi2k � vκ, (3.38)

which uniquely solves to a convex body because the left-hand side of this equation
is by definition convex in q. Hκ then follows from Eq. (3.36). The derivation for other
models and expansions will be quite similar, and to keep the discussion general we
will assume in the following that we have an expression for Hκ of the form

Hκ(r, θ, φ) � r
∞∑

l�0

l∑
m�−l

cm
l (κ)Ym

l (θ, φ), (3.39)

with Ym
l the spherical harmonics in the physics convention [12, Section 12.6] and cm

l
the expansion coefficients.
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3.3.2 Reconstruction of the Finsler function

For Eq. (3.39) we can compute analytical expressions for the (estimated) fundamental
dual tensor, defined in analogy with Eq. (3.15) as

h i j
κ (q) B 1

2
∂2H2

κ(q)
∂qi∂q j

, (3.40)

see Appendix B. The estimated dual fundamental tensor induces coordinates ξ B
ξ(q) on TM as in Eq. (3.16) with

ξ i(q) B
∑

j

h i j
κ (q) q j , (3.41)

which have the property that

Hκ(q) � H∗κ(ξ(q)) C Fκ(ξ(q)) . (3.42)

Based on this relation we can evaluate the Finsler function estimate Fκ for a number
of ξ(q), which we use to estimate the coefficients dm

l in the general expression

Fκ(r, θ, φ) � r
∞∑

l�0

l∑
m�−l

dm
l (κ)Ym

l (θ, φ) (3.43)

where (r, θ, φ) are now the induced spherical coordinates on TM. As F∗ � H, we
naturally have that

lim
κ→∞ Fκ � F. (3.44)

3.3.3 Implementation

The cumulant expansion, introduced as an example in Section 3.3.1, can be used to
estimate the spherical harmonic coefficients dm

l of the Finsler function (Eq. (3.43)) in
a practical setting. Note that because we have a finite number of measurements, the
summation in the cumulant expansion (Eq. (3.33)) has to be truncated. Generally we
justify this with the assumption that the higher order coefficients, or their analogues
in other models, are negligible in the neighborhood of Rκ. Similarly we assume that
a finite number of coefficients are sufficient to describe Hκ and Fκ.

Reconstruction of the cumulant expansion coefficients D i1 ···i2k (together with the
baseline signal) is done using (weighted) linear least-squares, subject to the constraint
that the left-hand side of Eq. (3.38) is convex. This convexity constraint is enforced
by optimizing over the set of polynomials whose Hessian is sum-of-squares [67].
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Specifically, given the model

f (q) B
K∑

k�0

(−1)k
(2k)!

∑
i1 ,...,i2k

D i1 ···i2k qi1 · · · qi2k (3.45)

for a positive integer K, a sufficiently large set {q i}Ni�1, and the corresponding (lin-
earized) measurements y i � 1

∆ log S(q i), we solve the following optimization prob-
lem:

min
D i1 ···i2k

√√√ N∑
i�1
(w i)2 (

f (q i) − y i
)2

s.t. G( f ) � 0

, (3.46)

with w i the weights. Here G( f ) ≥ 0 denotes positive semi-definiteness of any Gram
representation matrix [67] of the polynomial1∑

i , j

∂2 f
∂qi∂q j

(−iq)si s j (3.47)

with s ∈ T∗M an additional (dummy) variable.
Eq. (3.46) can be cast as a semi-definite programming problem [85, 224], which

is solved using SDPA2 [377]. Eq. (3.38) is then solved numerically for a set of 247
orientations3 and a given value of κ, after which spherical harmonics are fitted
with order 4K (real data) or 6K (artificial data). The weights are set to w i � 1 in
reconstructions using artificial data, and to w i � y i in the case of real data [203]. This
leaves us with an expression for Hκ as in Eq. (3.39). We take K � 2 for all results
in this thesis, unless otherwise specified. At the moment we do not use iterative
reweighting strategies [294, 354] or outlier rejection [337], though these are relatively
straightforwardly incorporated.

When computing the dual of a Finsler function, we have to generate a dense
sampling of dual orientations ξ. Because a uniform sampling of q can produce a
highly non-uniform distribution of ξ, cf. Fig. 3.4, these ξ are generated dynamically.
Starting from a uniform but sparse set of q, samples are added in the center of each
polygon that is larger than a specified threshold in the dual space, Fig. 3.5. Once

1This constraint actually follows as a necessary condition from the positivity of P.
2SDPA is runwith the adapted parameter settings ε∗ � 1×10−6, ε̄ � 1×10−10, λ∗ � 1×102, ω∗ � 2, β∗ � 0.1,
β̄ � 0.2, and γ∗ � 0.8. Some ad hoc preconditioning is applied to account for the large differences between
the order of magnitudes of the different order D components. The algorithm typically converges to the
optimal solution in few dozen iterations.

3The orientations are obtained by repeated tessellation of an icosahedron, and are roughly uniformly
distributed on the hemisphere.
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(a) q samples (b) ξ samples

Figure 3.4: A uniformly distributed set of q, and the corresponding highly non-uniformly distributed ξ.
This example is based on a single voxel in the corpus callosumof theHCPdata set described in Section 2.3.3.

we obtain a sampling density similar to the icosahedron tessellation, we reconstruct
the coefficients dm

l (Eq. (3.43)) for Fκ from Eq. (3.42) (after division by ‖ξ‖). These
spherical harmonic reconstructions are Laplacian regularized [101] with λ � 0.01 to
suppress ringing artifacts (see the results in Section 3.4.3). Relevant identities and
explicit expressions can be found in Appendix B.

3.3.4 Data

In addition to the HCP data described in Section 2.3.3, both one- and three-
dimensional artificial data are used to validate the implementation of the Finslerian
framework and to illustrate the effect of changes in the maximum b-value and κ. The
one-dimensional EAP is a family of distributions with bounded support defined by

P(r) ≡ P(r) �
{

N exp
[

c4+2c2ρ2−3ρ4

2ρ2(r2−c2)
]

if − c < r < c

0 otherwise
, (3.48)

where r is the Cartesian coordinate, N is a (numerically computed) normalization
factor, c > 0 is the boundary of the support of P, and 0 < ρ ≤ c is a measure of the
width of the distribution. This EAP is very similar to a Gaussian near the origin, but
quickly tapers of to 0, so that the EAP is compactly supported. The EAP is intended
to resemble a finite speed stochastic process such as discussed in Section 3.2.1.

We define three-dimensional EAPs based on the cumulant expansion given in
Eq. (3.33), truncated to either order two or order four. For order two we define the
tensor A B 10−3 diag(3, 1, 1) (in Cartesian coordinates), and in the fourth order case
we take {D i j} � 10−3 diag(2, 2, 1), while the non-zero elements of the fourth order
tensor are given (up to permutation) by D1111 � D2222 � 10−12 and D1122 � − 1

2 ×10−12.
Both of these correspond to convex H.
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Iteration 0 Iteration 2 Iteration 4 Iteration 6
q

ξ

Figure 3.5: Dynamic generation of a uniform set of ξ, suitable for subsequent spherical harmonic recon-
struction. The algorithm converged after 6 iterations.

Finallywe take a three-dimensional EAPgivenby amulti-tensormodel [4] defined
by the average of twoDTImodels, A and A(ϑ), where A(ϑ) is simply a rotated version
of A defined as

A(ϑ) B 10−3
©«

2 + cos 2ϑ − sin 2ϑ 0
− sin 2ϑ 2 − cos 2ϑ 0

0 0 1

ª®®¬ . (3.49)

The multi-tensor model assumes the presence of two separate compartments within
a voxel, whichmeans that the standard interpretation of the Finsler function does not
apply. However, situations similar to this one can reasonably be expected to occur in
real data, so it is important to check the behavior of our algorithms in this case as
well.

The real data experiments are based on the b � 1000 s/mm2 and b � 2000 s/mm2

shells of the data set described in Section 2.3.3. We reconstruct the Finsler function
and its dual from the second and fourth order cumulants of the EAP, using the steps
described in Section 3.3.3.

3.4 Results

3.4.1 Finite gradient strengths

If we consider the physically realistic (one-dimensional) EAP, Eq. (3.48), and realistic
gradient strengths, we expectedly find that Hκ(q) underestimates H(q) in the range
of clinical MRI gradient strengths, cf. Fig. 3.6. This simple experiment suggests that
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Figure 3.6:Asimple one-dimensional diffusionmodel (Eq. (3.48)with c � 10 µmand varying ρ). The EAPs
are plotted in the top figures, and the bottom figures shows the estimated range cκ B Hκ(1) � supr∈Ω r
measured with gradient strengths that correspond to given b-values (Eq. (1.3)). The black dashed lines
represent (from outside inward) the true boundary, the boundary within which 99 percent of the particles
remain, and theboundarywithinwhich 95percent of particles remain. The red lines represent the estimates
obtained with a gradient setting that is feasible with modern clinical scanners (b � 5000 s/mm2), and the
orange and green lines represent estimates with b � 25000 s/mm2 and b � 50000 s/mm2 respectively.

in order to get reliable estimates of H (and thus of the range of P), peak gradient
strengths common in preclinical scanners are probably necessary. These results also
show that estimates obtainedwith the low gradient strength data aremore accurately
interpreted as characteristic widths of the EAP.

3.4.2 Model reconstruction

3.4.2.1 Artificial data

Fig. 3.7 shows a very basic example of the (dual) Finsler function. In this figure we
show a level set of F and H (κ̄ � 1) computed from the artificial DTI A data set,
recall Section 3.3.4. The glyphs are colored in the standard red-green-blue (RGB)
scheme, with the relative importance of each color given by the absolute values of
the Cartesian orientation coordinates (cf. Section 2.3.2). As we are in the Riemannian
setting, the shape of the level sets is ellipsoidal, independent of the choice for κ; the
level set of F in this case is exactly the ellipsoid typically used in the visualization
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(a) Hκ (b) Fκ

Figure 3.7: Level sets of Hκ (a) and Fκ (b) for κ̄ � 1, based on the artificial DTI data A described in
Section 3.3.4. The level set of F corresponds to the ellipsoid typically used in DTI visualization.

of DTI (Section 2.3.2). The higher order tensor data is more interesting, cf. Fig. 3.8
(top row). We show once more a level set of F, but in this case the choice for κ has a
small but noticeable influence on the shape. The level sets are no longer ellipsoidal,
but they remain convex. The maximum b-values required to compute the level sets
are listed in the figure, as estimated from the dual Finsler function through

bmax(κ) B max
r(q)�1 s/mm2

∆
(

κ

Hκ(q)
)2

, (3.50)

which follows from solving Eq. (3.36) for Rκ and applying Eq. (1.3). If the maximum
b-value is much larger than the largest b-value in an acquisition then the constrained
reconstruction loses accuracy, whichmight make further analysis impossible. Similar
level sets for the artificial multi-tensor data are plotted in Fig. 3.8 (bottom row), where
convexity of the level sets is ensured by the constrained reconstruction (Section 3.3.3).

3.4.2.2 Real data

In Fig. 3.9 we show level sets of the estimated dual Finsler function Hκ and the
estimated Finsler function Fκ, computed in part of the coronal slice of a HCP data set
(Fig. 2.2(b)) with κ̄ � 100. By its relation to the Riemannian framework, the level sets
of the Finsler function can be interpreted in roughly the same way is the standard
ellipsoid visualization commonly used in DTI, while the level sets of H correspond
approximately to an ellipsoid visualization of the inverseDTI tensor. For the relatively
low κ that we could set for this data set, the level sets are, at least to the naked eye,
still close to ellipsoidal. Taking even smaller κ brings us back to the Riemannian
framework of Chapter 2, in which case we the level sets of Fκ and the DTI ellipsoids
correspond exactly.
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κ̄ � 1 κ̄ � 50 κ̄ � 100 κ̄ � 150

H
T

19 s/mm2 935 s/mm2 1865 s/mm2 2790 s/mm2

M
T

18 s/mm2 917 s/mm2 1822 s/mm2 2715 s/mm2

Figure 3.8: Level sets of Fκ for different values of κ, based on the artificial higher order data (HT, top
row) and multi-tensor data (MT, bottom row, ϑ � π/4 in A(ϑ)) described in Section 3.3.4. The estimated
maximum b-values that were necessary for the reconstruction are listed in the captions. The dominant
diffusion directions becomemore apparent with increasing κ. Though the differences are visually minute,
they have a considerable impact on e.g. the shape of the barrier orientation distribution function that will
be introduced in Chapter 6.

(a) Hκ , κ̄ � 100. (b) Fκ , κ̄ � 100.

Figure 3.9: Part of a coronal slice of a HCP data set, showing scaled level sets of Hκ and Fκ . The colors are
determined from the diagonal entries in the matrix representation of the second order diffusion tensor.
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Figure 3.10: Part of a coronal slice of a HCP data set, showing level sets of Fκ obtained with uncon-
strained optimization corresponding to Fig. 3.9(b). Level sets with guaranteed convexity can be identified
using semi-definite programming, producing the highlighted voxels that pinpoint positions that require
constrained optimization.

3.4.3 Constrained and regularized reconstruction

Fig. 3.10 shows a level set of Fκ for κ̄ � 100 in a small region of the HCP data
set, computed using unconstrained reconstruction. Though numerical problems can
result in minor artifacts in the constrained reconstruction shown in the previous
section, the artifacts in the unconstrained reconstruction are of a completely different
order. Level sets with guaranteed convexity can be identified by solving a small semi-
definite program, resulting in the overlay that highlights corruptedvoxels.Overall the
residuals do not change more than a few percentage points between the constrained
and the unconstrained reconstructions.

Regularization suppresses oscillatory artifacts that are occasionally present in the
spherical harmonic expansion of a Finsler function, see Fig. 3.11. We address the
benefits of regularization in more detail Chapter 6, where we look at different ways
to extract information from the Finsler function.

3.5 Discussion

3.5.1 The Finslerian vs. the Riemannian framework

In the context of diffusionmagnetic resonance imaging, the global structure of a com-
plex specimen like the brain can bemodeled as a Riemannianmanifold [218]; themet-
ric structure of the manifold can be extracted directly from diffusion measurements,
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Figure 3.11: A level set of Hκ for a hand-picked voxel in the corpus callosum in the HCP data set. The
oscillations indicated in the level set of the dual Finsler function produce high frequency noise in the
barrier orientation distribution function that we will discuss in Chapter 6.

using the inverse relationship between the diffusion tensor and the Riemannian met-
ric tensor given in Eq. (2.15). In this chapter we have shown how Finsler manifolds
can function as a more complex model of global structure; the domain of definition
of the ensemble average propagator (EAP), estimable from level sets of the corre-
sponding cumulant generating function, uniquely relates diffusion measurements to
a Finslerian metric per Eq. (3.29).

The Riemannian and Finslerian framework are primarily distinguished by the
range of gradient strengths to which they are applicable. The Riemannian framework
is generally constrained to low gradient strengths, and the Finslerian framework
to high gradient strengths. In a practical setting the gradient strength is of course
limited, but this is naturally solved by the introduction of the κ parameter, Eq. (3.35),
that determines the specific level set of the cumulant generating function used in
the reconstruction algorithm. A proper Finsler function can be computed for every
value of κ > 0, where κ → ∞ allows for an exact reconstruction. In the limit κ → 0
the Finslerian framework reduces to the Riemannian framework, resulting in an
equivalence between the Finsler function and the Riemannian norm. The maximum
κ is limited by the accuracywithwhich level sets of the cumulant generating function
can be determined, which is in turn limited by the availability and quality of data
acquired at high gradient strengths. Note that the acquisition of high quality (high
signal-to-noise ratio) data becomesmore andmore challenging at increasing gradient
strengths, both because of technical (hardware) constraints, and because the signal
itself tends to zero away from the origin.
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In the experiments presented in Fig. 3.6 we applied the Finslerian framework to
estimate the support of artificial one-dimensional displacement EAPs, which were
non-zero only within the range (−10 µm, 10 µm) and had varying widths. For every
b-value (with ∆ � 20ms), we computed the maximum κ so that bmax(κ) � b. While
estimates improve with the width of the distribution, in clinical data with b-values
generally below 5000 s/mm2 the estimatedmaximum displacements can be expected
to be significant underestimations of the true maxima. Even with the large gradient
strengths common in preclinical and molecular research we can only expect to mea-
sure a (very) high percentile that may still be far from the true boundary, as there
are simply too few particles outside this region to induce a measurable signal. With
0 < κ < ∞, the estimated shape of the boundary lies between the true shape (κ→∞)
and the ellipsoidal approximation (κ → 0, as in diffusion tensor imaging (DTI)), so
choosing a smaller κ in a Finsler manifold can be seen as having a blurring effect on
the boundary estimation (see e.g. Fig. 3.8). The estimated maximum displacements
should thus be explicitly referred to as estimated or apparent maximum displace-
ments, whose value should be understood to depend on the acquisition. In future
work we will consider more dynamical choices for κ that e.g. produce level sets that
correspond to a globally fixed average b-value, to ensure that there is no risk of a
significant position-dependence in the blurring effect.

In principle the Finslerian and Riemannian approach capture different, but com-
plementary information about the diffusion process. If however the assumption holds
that the diffusion in a sample is truly Finslerian in nature, then the Finsler function
is a complete representation of the process, similar to how a Riemannian metric fully
characterizes a Gaussian process. In this case the Finslerian framework will encom-
pass the Riemannian one, and the Riemannian metric tensor can then be recovered
from the Finsler function through Eq. (3.21). A Riemannian metric tensor can also
be computed when the diffusion process is not necessarily Finslerian, in which case
its difference with a measured Riemannian metric tensor (from low b-value data,
κ → 0) gives an indication of the non-Finslerian character of the diffusion process.
Significant non-Finslerianity can be due to severe inhomogeneities within the voxel
(cf. Section 3.2.1.3 and Assumption 1), or because the displacement probabilities in
the stochastic process depend on higher order derivatives of the particle paths. We
formalize and compute this non-Finslerianity measure in Chapter 6.

If the measured stochastic process can indeed be described by a (finite speed)
Finslerian isotropic transport process, then the Finsler function determines the full
displacement probability density function. Because the Finsler function is in turn
determined by a single one of its level sets, we should in principle be able to derive
a single shell (fixed gradient strength) Finsler geometry model for diffusion MRI.
In Chapter 6 we will present results that suggest that the Finslerian framework is
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sufficient in large parts of the brain, which would make this an interesting avenue for
future research.

The Finslerian approach we propose here is distinct from the work of Florack and
Fuster [129],where thediffusion tensorD is postulated todependon theorientationof
the gradientwavevector q in thediffusion tensor imagingmodel Eq. (2.14).D can then
be equated to the inverse of the fundamental tensor, which associates an alternative
Finsler geometry to the diffusionMRImeasurements. The downside of this approach
is that the defining properties of the Finsler function, in particular homogeneity
Eq. (3.1) and subadditivity Eq. (3.2), impose somewhat unnatural constraints on the
modeled signal. These properties are naturally present in the Finslerian framework
introduced in the current work.

3.5.2 Implementation of the Finslerian framework

The Finslerian framework can be applied to any compactly supported propagator
with a well-defined cumulant generating function. It functions as an interpreta-
tion layer for higher order models like generalized diffusion tensor imaging [222],
diffusional kurtosis imaging [178] (DKI), and functional basis expansions like 3D
SHORE [259], just like the Riemannian framework does for diffusion tensor imag-
ing [25]. Spherical deconvolution approaches [182, 302, 342, 344] and many other
multi-compartment methods [4, 14, 15, 32] are notably excluded from this list as they
specificallymodel voxels as spatially inhomogeneous, which complicates the relation
between metric and large displacements, cf. Section 3.2.1.3. A comparison between
the different models to which the Finslerian framework applies lies beyond the scope
of this thesis.

If amodel provides an analytical expression for the displacement probability den-
sity function, we can (in theory) obtain the cumulant generating function through
analytical continuation [81]. For example, the preliminary experiments presented in
thismanuscript are based on a cumulant expansion of the propagator, which straight-
forwardly gives a polynomial expression for the cumulant generating function, see
Eq. (3.38). Unfortunately the reconstruction of polynomial models like the cumulant
expansion has to be constrained,whichmeans that they generally require the solution
of a computationally expensive semi-definite program for every voxel [85, 224]. Aside
from optimizing the implementation, either by using different solvers [11, 39, 377] or
different sets of parameters, we can save a significant amount of time by running the
constrained reconstruction only on voxels where unconstrained reconstruction fails.
To check whether an unconstrained reconstruction satisfies a convexity constraint
(Fig. 3.10) also requires the solution of a semi-definite program, but because this
semi-definite program is much smaller, and because we find that the percentage of
voxels that requires constrained reconstruction is fairly low (< 10% in the considered
Human Connectome Project (HCP) data with the described model), this extra effort
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can pay off. In data sets or models where this percentage is much higher alternative
models should be considered.

The local geometry in a Finsler manifold is captured by the Finsler function,
whose dual is approximated from level sets of the cumulant generating function
using Eq. (3.36). These level sets are expressed in terms of spherical harmonics,
Eq. (3.39), which greatly simplifies visualization of glyphs, as well as a number of
further analysis steps that will be discussed in Chapter 6. We are however unaware
of a way to compute this expansion directly from the polynomial coefficients of the
cumulant generating function, whichmeans that we have to compute a large number
of polynomial roots that can be used to fit the spherical harmonics. The roots of
the low degree polynomials we used in the presented experiments have closed-form
solutions, so the dual Finsler function can still be computed efficiently.

The Finsler function itself can be computed from the duality relation given in
Eq. (3.42), which once more requires a fit to spherical harmonics. Preliminary results
of the Finsler function computation are presented in Figs. 3.7, 3.8, and 3.9. Com-
puting H and F from reconstructed cumulants can be done in a matter of minutes
for an entire data set, whereas constrained reconstruction of the cumulants takes
hours in comparison. Nevertheless, we expect that after optimizing the constrained
reconstruction, also the dual computation could and should be improved. Room for
improvement lies particularly in the adaptive sample generation discussed in Sec-
tion 3.3.3, which is now by far themost time-consuming step in the dual computation
algorithm.

Although the spherical harmonics-based computation of the Finsler function and
its dual is accurate and relatively efficient, we lose the guaranteed convexity of the
Finsler function that we had for the constrained polynomial expression. This can
result in the minor artifacts that are (barely) noticeable in Fig. 3.9, but are more
clearly shown in Fig. 3.11. Here we suppress these artifacts by using adaptive sample
generation and regularized spherical harmonic reconstructions, though in future
work this may be addressed by replacing the spherical harmonic expansion with a
polyhedral approximation [145] or with splines [189]. Dual computations for these
types of expressions are potentially simpler and more accurate, and might obviate
the need for both regularization and adaptive sampling.

3.5.3 Prospects and limitations

On the practical side there are still a number of steps that can be improved. A faster
and more stable reconstruction of the (dual) Finsler function, is at the top of that list.
In particular with the computation of the dual there may also be some theoretical
advances that canhelp to improve the implementation.Resultsmayalso improvewith
alternative acquisitions; at the moment most diffusion-weighted data is acquired on
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densely populated shells, while a more uniform sampling of the measurement space
is likely to be preferable for models like Eq. (3.45).

Forgetting for a moment the improvements that can still be made to the proposed
framework, one is left with the question whether more general frameworks can
be meaningfully defined. The Finslerian framework is suitable for the analysis of
large gradient strength data, but it is fundamentally restricted to purely orientation-
dependent properties. In terms of brain fiber configurations, this means that there
is no way within this geometry to distinguish between identical fiber bundles in
varying configurations, e.g. crossing, fanning, and kissing fibers [340]. In order to do
this, we would have to be able to measure the bending of fibers, meaning aggregate
particle dynamics would not only have to depend on position and orientation, but
also on curvature. We will briefly return to this in Chapter 9.

A second limitation of the Finslerian framework is thepostulate of a fixeddiffusion
time ∆. A lot of work has been done recently to harness the additional information
that comeswith varying ∆ (e.g. [122, 251]), and it would be interesting to seewhat role
geometry could play in this. The other fixed parameters α (or v) and κ also provide
some flexibility. We assumed α constant, but this constraint could be relaxed e.g. by
making α dependent on the local tissue type. Different values of α for white matter,
gray matter, and cerebrospinal fluid could help in handling partial volume effects.
Freedom in κ could be used to improve the angular resolution locally.

Finally, the general framework we introduced in this chapter does not trivially
translate to a clinical setting. We have established a link between diffusion-weighted
images and Finsler geometry, and the next step in the application of this framework
is the evaluation of different tissue and diffusion properties that are captured by the
local and global geometric structure of the manifold. Analogous to the Riemannian
case, local properties can be defined using invariants of the local structure, e.g. of
the fundamental tensor, while global properties can be expressed in terms of the
differential structure of the manifold. In the last part of this thesis we will present
a preliminary discussion on the potential of different such properties, though their
evaluation in a more clinical context is yet to be done.
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Much of Chapters 2 and 3 focused on the relation between geometry and diffusion,
which is but one ofmany approaches to handle the inference of structural information
from diffusion-weighted MRI data [4, 14, 15, 27, 32, 100, 148, 182, 214, 259, 263, 302,
325, 342, 344, 382]. It stands to reason that this inference is generally imperfect in all
but the simplest experiments. Taking once more the brain as an example, particles
interact not only with axons—our structures of interest—but also with essentially
randomly placed proteins, glial cells, and other small, confounding obstacles.

A simpleway topotentially improve subsequent analysis steps is bynoting that the
mesoscopic effect of these microscopic random barriers is naturally isotropic, which
implies that it can be modeled to a first approximation as a Gaussian blurring. We
can thus attempt to remove such confounding effects through propagator deblurring,
suggesting a general enhancement strategy that can be grouped with a number of
existing approaches that have been proposed for specific models and inmore specific
practical settings.1

For example,many advanced tractography techniques allow tracts to deviate from
theprincipal directionof diffusion. This canbe advantageous in termsof robustness to
noise, but if the diffusion profile is not sufficiently sharp the tracts can deviate signifi-
cantly from the expected orientations. Issues like this inspired various pre-processing
techniques, such as the log-Euclidean framework to handle noisy data [13], spherical
deconvolution of the diffusion tensor to enhance the anisotropy [103, 130], sharp-
ening by raising the diffusion tensors to a certain power [211], and morphological
enhancements of orientation distribution functions [93, 111, 113].

The purpose of this chapter is the introduction of an enhancement method based
on deblurring the ensemble average propagator. The theoretical basis of the method
is described in Section 4.1, and explicit expressions for specific models are presented
in Section 4.1.2. In Section 4.2 we describe some basic experiments on diffusion tensor
imaging (DTI) data to illustrate the potential of the method, of which the results are
presented in Section 4.3.

4.1 Theory

4.1.1 The enhanced diffusion signal

The ensemble average propagator (EAP) P(r) represents the likelihood of a displace-
ment r occurring in a voxel within an implicit diffusion time ∆, which is assumed to
satisfy P(−r) � P(r). Under the narrow-pulse approximation, i.e., when the duration
δ of the applied2 diffusion encoding gradients G is much smaller than ∆, P is related

1This in contrast to various blurring methods that have been proposed e.g. in the context of denoising,
which are typically applied before model reconstruction [31, 46, 75, 111, 114, 121, 174, 276].

2We assume a standard pulsed gradient spin echo sequence.
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to the normalized signal S through the Fourier transform F [49]:

S(q) � F −1 {P} (q), (4.1)

recall Section 1.1 and Eq. (1.2). Here q � γδG is thewave vector encoding information
regarding the applied gradients, with γ the gyromagnetic ratio, cf. Eq. (1.1). In the
typical situation where δ ≈ ∆, a relation analogous to Eq. (4.1) holds [234, 251], recall
the discussion in Section 1.1.3. One generally acquires a number of samples of S for
various q in each voxel, though we will not state this voxel dependence explicitly
until Section 4.3.

Interesting features of the propagator, like differences between angular diffusivi-
ties, can be difficult to detect. This difficulty is aggravated by e.g. sparse sampling of
the Fourier space and interactions between spins and small, extraneous, and random
obstacles, which have a blurring effect on P. To this end we consider what happens

when the propagator P is blurred with a Gaussian Gσ(r) B 1
(√2πσ)3 e

− ‖r ‖2
2σ2 , σ ≥ 0, and

define Q as the deconvolution of P, i.e., P � Gσ ∗Q. Consequently,

S � F −1 {Gσ ∗Q} � F −1 {Gσ} F −1 {Q} . (4.2)

Using F −1 {Gσ} (q) � e− 1
2 σ

2‖q‖2 we obtain

ρσ (S) (q) B F −1 {Q} (q) � e
1
2 σ

2‖q‖2 S(q), (4.3)

where ρσ is the effective deblurring operator acting on the signal.

We note that σ is constrained by the fact that the signal S—and thus also the
sharpened signal ρσ (S)—is required to be strictly less than 1 everywhere except in
the origin.1 This means that σ should be chosen such that

∀q,0 e
1
2 σ

2‖q‖2 S(q) < 1. (4.4)

Eq. (4.3) can be used to process rawdiffusionMRI data, but this should be avoided
due to ill-posedness. Note for example that for large values of ‖q‖, the presence
of noise means Eq. (4.4) will impose σ2 � 0. In fact, it is desirable to apply the
enhancement after S is expressed in terms of a specific model, the specific structure
of which can be exploited to simplify Eq. (4.3). In the following section we present
details for three commonly used models, including the DTI model used in Chapter 2
and the generalized DTI model (cumulant expansion) used in Chapter 3.

1This follows from Eq. (4.1) under some regularity conditions.
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4.1.2 Simplified deconvolution for specific models

4.1.2.1 Diffusion tensor imaging

In diffusion tensor imaging [24, 25], already introduced in Eq. (2.14), the ensemble
average propagator is assumed to be a multivariate normal distribution. The signal
model can be written in matrix notation as

S(q) � e−τ qT D q , (4.5)

with a constant τ defined as ∆ − δ
3 and with D the positive-definite second order

diffusion tensor. It follows that the signal corresponding to the sharpened propagator
is given by

ρσ (S) (q) � e−τ qT D q+ 1
2 σ

2 qT I q
� e−τ qT

(
D− σ2

2τ I
)
q (4.6)

with I the 3 × 3 identity matrix. In this case the enhancement consists therefore
simply of subtracting a constant value (depending on the chosen σ) from the diagonal
elements of the diffusion tensor D.

Note that the diffusion tensor is required to be positive-definite, which imposes a
cap on the allowed values for σ:

σ2

2τ < λmin. (4.7)

Here λmin is the smallest eigenvalue, recall Section 2.3.1. This constraint corresponds
exactly to Eq. (4.4).

4.1.2.2 Apparent diffusion coefficient models

For higher order models based on the apparent diffusion coefficient, the signal is
described by [100, 129, 260]

S(q) � e−τADC(q) , (4.8)

in which the apparent diffusion coefficient ADC is assumed to satisfy

ADC(β q) � β2ADC(q) (4.9)

for β ∈ �, i.e., the ADC is homogeneous of degree two. Applying Eq. (4.3) to this
model gives

ρσ (S) (q) � e−τADC(q)+ 1
2 σ

2‖q‖2 , (4.10)

a common ‘ad hoc’ enhancement principle already adopted in practice [262]. The
ADC is typically expressed in terms of a fully symmetric higher even order (Carte-
sian) tensor or in terms of real-valued spherical harmonic functions, both of which
transform in a straightforward manner under the proposed enhancement.
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In the case of a tensor expansion the ADC is parameterized by fully symmetric
coefficients T i1 ···i2L of the tensor T . L is called the order of the expansion. By defining
q̂ B q/‖q‖ ∈ S2 as the direction of thewave vector, we canwrite the tensor expansion
of the ADC as

ADC(q) � ‖q‖2
3∑

i1 ,...,i2L�1
T i1 ···i2L q̂i1 · · · q̂i2L , (4.11)

where q̂i denotes the i-th component of q̂ inCartesian coordinates. PluggingEq. (4.11)
into Eq. (4.10) gives

ρσ (S) (q) � e−τ ‖q‖
2
[∑3

i1 ,...,i2L�1

(
T i1 ···i2L− σ2

2τ I i1 ···i2L
)
q̂i1 ···q̂i2L

]
, (4.12)

in which the tensor with components I i1 ···i2L has the property that it produces one
when contracted with any unit vector q̂, viz.

I i1 ···i2L � δ(i1 i2 · · · δi2L−1 i2L). (4.13)

Here δi j is 1 for i � j and 0 otherwise, and parentheses denote index symmetriza-
tion [233, p. 126]. For L � 2 for example, the only non-zero components (excluding
symmetries) are given by [263]

I1111
� I2222

� I3333
� 3I1122

� 3I1133
� 3I2233

� 1. (4.14)

The real-valued and symmetrical spherical harmonics Ỹm
l are defined [100] for

l � 0, 2, . . . and −l ≤ m ≤ l as in Appendix B. The ADC is then parameterized by the
spherical harmonic coefficients cm

l giving

ADC(q) � ‖q‖2
L∑

l�0

2l∑
m�−2l

cm
2l Ỹ

m
2l (q̂), (4.15)

with 2L again the maximum order of the expansion. Since Ỹ0
0 (q̂) � (2

√
π)−1 is the

only constant basis function, enhancement in the spherical harmonic basis has the
simple form

ρσ (S) (q) � e−τ ‖q‖
2
[(

c0
0−
√
πσ2
τ

)
Ỹ0

0 (q̂)+
∑L

l�1
∑2l

m�−2l cm
2l Ỹ

m
2l (q̂)

]
, (4.16)

and so enhancement boils down to subtracting the constant
√
πσ2

τ from the coefficient
c0

0.
There are no known conditions on the coefficients (independent of the chosen

basis) that impose the constraint in Eq. (4.4) exactly, so one would have to resort
to numerical techniques when explicit constraints are needed. The constraint does
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simplify significantly though:

σ2 < min
{q | ‖q‖�1}

[2τADC(q)] . (4.17)

Alternatively one could check if the coefficients satisfy a sufficient (but not necessary)
condition for positive-definiteness [149].

4.1.2.3 Generalized diffusion tensor imaging

The last model we consider is another generalization of DTI proposed by Liu et
al. [222], which is equivalent to the fixed-time cumulant expansion introduced in
Eq. (3.33). In this case the signal is modeled as

S(q) � e−
∑L

i�2 τi
∑3

j1 ,..., ji�1 D j1 ··· ji q j1 ···q ji , (4.18)

with τi B ∆ − i−1
i+1 δ and D j1 ··· ji the components of the generalized diffusion tensor,

and now L the maximum order considered (in this case not forced to be even). In
this case the analogy with DTI is immediately apparent, and we observe that the
sharpening is achieved by subtracting the value σ2

2τ from the coefficients D11, D22,
and D33. The same holds for specific models of this general form, like diffusional
kurtosis imaging [178] (DKI).

Again there are no known conditions on the coefficients D j1 ··· ji that enforce
Eq. (4.4) generally, and unlike in the previous section Eq. (4.4) does not simplify.
There do exist similar sufficient conditions that can be useful in this context [83, 150],
cf. Section 3.3.3.

4.1.3 Adaptive enhancement

To apply the proposed enhancement the user would have to select a reasonable value
for σ. We know from Eq. (4.4) that if we allow the parameter σ to surpass the given
limit, then enhancementwill produce incorrect results. In the case ofDTI for example,
a single globally optimal value for σ will—provided it exists—be based on a fraction
of the globally smallest eigenvalue.

Let us define the theoretical bound on σ as

ε B min
p∈M

max
σ∈�

{
σ
��∀q,0 ρσ(S)(p , q) < 1

}
, (4.19)

where p ∈ M ⊂ �3 specifies a voxel in the region M, which will typically comprise
all voxels in the brain, and where we include the p-dependence of the signal S. The
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enhancement operator is then defined as

ρ
global
f (S)(p , q) B ρ f ·ε(S)(p , q), (4.20)

where f ∈ [0, 1) is a user-selected fraction of ε that determines the enhancement
strength.

Though a single parameter value for an entire data set makes sense from a theo-
retical perspective, in practice it can be rather limiting. Therefore we propose to select
a global fraction f of the local bound ε(p). This local adaptive enhancement can be
defined as

ρlocalf (S)(p , q) B ρ f ·ε(p)(S)(p , q). (4.21)

In this case f is still a global parameter, but the bound ε is now a function of position:

ε(p) B max
σ∈�

{
σ
��∀q,0 ρσ(S)(p , q) < 1

}
. (4.22)

4.2 Methods
The first experiment we present in the next section illustrates the effect of the method
on DTI scalar maps, where it provides a simple means to improve contrast. As a
preliminary investigation into its use as a data pre-processing step, we additionally
present results on DTI tractography. For this second experiment we select two de-
terministic tractography algorithms; a streamline method that traces the vector field
defined by the main eigenvector of the diffusion tensor, and a multivalued geodesic
tractography method.

Since the enhancement presented here does not change the main directions of
diffusivity, its use in streamline tractography is limited to a modification of the
boundary conditions (such as the stopping criterion). In geodesic tractography fiber
pathways are reconstructed as local minimizers of the length functional in a given
metric space, where the main assumption is that pathways resemble the path of the
most efficient diffusion propagation [162], recall Section 2.5.3.2. Specifically, we use
a recently introduced geodesic tractography technique that obtains these pathways
as solutions of Euler-Lagrange equations in Riemannian or Finsler manifolds [305].
This approach can capture (multivalued) geodesics connecting two given points or
regions by considering the geodesics as functions of position and orientation. Since
in this case tractography relies on the entire diffusion profile instead of just the main
directions of diffusion, enhancement has a more pronounced effect. Though there
are alternatives [140, 141, 163, 299], we use the inverse of the diffusion tensor as the
metric (cf. Chapter 2) as it is the most well-known definition.

Apart from the proposed enhancement we use a simple power transform as an
alternative diffusion tensor imaging pre-processing step for a comparison [103, 211,
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343]. The power sharpening depends on a positive parameter s, and is given by the
matrix power of the diffusion tensor:

(D , s) 7→ Ds . (4.23)

We use two data sets to perform the experiments. The first data set (referred
to as the Siemens data set) is acquired with a 3T Siemens scanner at a resolution of
1×1×1mm3 and a b-value of 1000 s/mm2 (66 gradient directions). The seconddata set
is provided (pre-processed) by the Human Connectome Project (HCP), and we work
with aweighted linear least squares DTI reconstruction based on the b � 1000 s/mm2

shell.

The regions of interest are selected within the corpus callosum and derived from
the expert-annotated Mori tract atlas [241]. Experiments were performed with Diffu-
sica` and vIST/e (bmia.bmt.tue.nl/software/viste). In the geodesic tractography
experiments we place two seed points in each voxel, and assign four random orien-
tations within an elliptic cone around the main eigenvector to each seed point [305].
In all tracking experiments the algorithms terminate once the fractional anisotropy
(FA, Eq. (2.21)) becomes less than 0.1.

Since there is no ground truth available to quantify the tractography, we look at
the true positive percentile defined as the percentage of fibers which connect a seed
region with given regions of interest selected using available white matter bundle
atlases [59, 241].

4.3 Results

4.3.1 Adaptive enhancement of scalar maps

The effect of adaptive enhancement for a small region in the human brain is shown
in Fig. 4.1, and in Fig. 4.2 we consider the effect of enhancement on the fractional
anisotropy and mean diffusivity (MD, Eq. (2.19)) indices for diffusion tensor imag-
ing [27], defined in Section 2.3.1. In both cases contrast improves markedly, but con-
comitant changes such as a strong decrease of the MD in areas of large and isotropic
diffusivity may, depending on the application, be undesirable. Based on the results
in Figs. 4.1 and 2.3.1, we can make the following observations about the effects of the
local adaptive operator:
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(a) (b) (c)

Figure 4.1: Illustration of adaptive enhancement for DTI in the cortex (Human Connectome Project data
set, see Section 4.2). (a) T1 weighted data with the red box indicating the investigated region. (b) The
tensors in the region indicated in (a). (c) The enhanced tensors of (b) after applying Eq. (4.21) with f � 0.5.

1. Voxels with large and relatively isotropic diffusion (e.g. in the ventricles) are
affected the strongest; the amount of diffusion is decreasedwhile the anisotropy
is increased slightly.

2. In areas where the diffusion is anisotropic (white matter), the amount of diffu-
sion decreases a little bit, while anisotropy increases far more significantly.

3. With small isotropic diffusion, both the (absolute) amount of diffusion and the
anisotropy remain relatively untouched.

4.3.2 The effect of adaptive enhancement on DTI tractography

In Fig. 4.3 the seed region is placed in the postcentral gyri areas of the corpus
callosum, Siemens data set (Section 4.2), and tractography is done using streamlining.
The resulting tracts are known to correspond reasonably well to the anatomy, even
in the case of DTI-based tractography. As such we would like the enhancement not
to change the tracts too much, which we indeed see in the top row. Note also that
the tracts are recovered consistently while varying f . Additionally we find that tracts
continue a little bit farther into the gray matter compared to the original data due
to the increased anisotropy. The second row shows that sharpening with a power
transform produces a number of incoherent tracts even for low powers.

More interesting are the results of geodesic tractography, seen in Fig. 4.4, for
the same data set and seed region. In this case we see that after enhancement, we
obtain much denser, more coherent, and generally more cogent tracts. The number
of spurious fibers increases as expected with increasing f , and the best results are
seemingly obtained with f ≈ 0.25. Of particular interest are the areas indicated with
the orange arrows, where we recover tracts in the enhanced data (top row) that are
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Figure 4.2: DTI-based FA and MD scalar maps of the Human Connectome Project data after adaptive
enhancement, for increasing values of f , cf. Eq. (4.21).

missing in the tractography based on the original data. These fibers are expected
to be present from known anatomy and from symmetry arguments. For reference
we include the results obtained when applying a power transform (Eq. (4.23)) to the
tensors, which introduces far more spurious fibers and does not produce any tracts
in the indicated region. As a very simple quantification we show the true positive
percentiles in Fig. 4.5, as explained in Section 4.2.

4.4 Discussion

In this chapter we proposed an adaptive enhancement technique for diffusion-
weighted data, intended to address blurring effects caused by e.g. interactions be-
tweendiffusing spins and randomlyorientedobstacles that are of nopractical interest.
Because these effects can be modeled to a first approximation as a Gaussian blurring
of the ensemble average propagator (EAP), we can try to suppress these effects by
deblurring the propagator. As we have shown in Section 4.1.2, this leads to simple
expressions of the deblurred signal for a variety of diffusion MRI models. We expect
that for many models not considered here the resulting expressions will be equally
uninvolved, e.g. formulti-compartmentmodels inwhich the compartments aremod-
eled by tensors. In other models (such as fiber orientation distribution models [344])
application of the enhancement might become too difficult to be useful in practice.
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Figure 4.3: The results of streamline tractography seeded from the postcentral gyri areas of the corpus
callosum (Siemens data), using no additional pre-processing (left), the presented deconvolution enhance-
ment with f � 0.25, 0.50, 0.75 (top row, Eq. (4.21)), and sharpened diffusion tensors with powers 2, 3, and
4 (bottom row, Eq. (4.23)).

Figure 4.4: The results of geodesic tractography seeded from the postcentral gyri areas of the corpus callo-
sum (Siemens data), using no additional pre-processing (left), the presented deconvolution enhancement
with f � 0.25, 0.50, 0.75 (top row, Eq. (4.21)), and sharpened diffusion tensors with powers 2, 3, and 4
(bottom row, Eq. (4.23)). The orange arrows point to regions where symmetry of the tracts, lacking in the
original and the power sharpened data, is partly recovered after enhancement.
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(a) Streamline tractography (b) Geodesic tractography

Figure 4.5: The true positive percentile of fibers connecting the given regions in postcentral gyri part of the
corpus callosum in the Siemens data. The horizontal solid black lines indicate the true positive percentiles
obtained when using the original data.

The enhancement method discussed here is similar to, but distinctly different
from techniques like spherical deconvolution [103, 130]. A precise description of
their relation is subject of future work. The proposed method also has obvious ties
to the work of Canales-Rodríguez et al. [52], who looked at deconvolving a fully
reconstructed propagator (based on diffusion spectrum imaging [50, 367]) with a
sinc function.

Preliminary experiments illustrate that the method has some positive effects on
the visualization of scalar measures and on tractography in the simple diffusion ten-
sor imaging (DTI) case. Though the presented experiments are quite straightforward,
combinedwith the fact that themethod is fairly easy to apply even formore advanced
models they do demonstrate potential. Generally speaking though, the method re-
mains to be validated for each model in which it is to be applied, including DTI. In
addition to this there are still a number of model-dependent open questions—like
the proper range of the enhancement strength f—that would have to be considered.

We have also yet to investigate the optimal way to adaptively set the local en-
hancement strength. For nowwe take a fixed fraction of the maximum allowed value
locally, but depending on the application there may be better choices for this. We
should also note that the assumption of purely Gaussian diffusion for the isotropic
contribution of random obstacles may be false if we move to higher b-values. As we
discussed in Chapter 3, higher order moments of the EAP become relevant at high
gradient strengths, which holds even for unrestricted/unhindered diffusion.

One final point we have not discussed in depth concerns the computation of the
bound ε(p), Eq. (4.22). In the experiments presented here simple analytical formulae
provided an unambiguous choice for this value, but for other models this value may
have to be approximated numerically. This will complicate the implementation, and
in some cases may even be a limiting factor.
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Interpolation is an important technique in signal and image processing, concerned
with predicting data at positions where no measurements are available. The idea
behind interpolation is that nearby measurements can be assumed to provide infor-
mation about data at nearby points, motivated by the assumption that the data is
continuous and its variations bounded.

In diffusion-weightedMRI, the complex interactions between spins and structure
that underly the measurements have a non-trivial impact on the expected varia-
tions between data points, and the standard assumptions of interpolation have to be
adapted accordingly. For example, we typically assume in diffusionMRI that smooth
variations in the data are the result of smooth variations in the underlying structure,
and this structure should thus be taken into account when developing interpolation
methods. Not doing so can result in physically unrealistic interpolations, such as an
artificially increased mean diffusivity or determinant—the so-called swelling effect
described by e.g. Pennec et al. [270].

In this chapter we discuss interpolation as it applies to the Riemannian and
Finslerian frameworks of Part I. By virtue of the relations exposed in Chapter 2,
interpolation of Riemannian metric tensors is entirely equivalent to interpolation
of diffusion tensor imaging (DTI) data, and we summarize some of the existing
approaches in Section 5.1.1. In Section 5.1.2 we then use the fact that Riemannian ge-
ometry can be considered a constrained Finslerian geometry [65], recall Section 3.1.1,
which allows us to embed the Riemannian structure in a Finsler manifold. Interpola-
tion can then proceed using Finsler-specific schemes, and the resulting interpolants
can be projected back onto the space of Riemannian metric tensors. There is an extra
orientational degree of freedom in this projection, and interpolation schemes based
on this embedding are hence dubbed direction-controlled schemes. In Sections 5.1.3
and 5.1.4 we next discuss howwe could formally extend concepts from interpolation
in the Riemannian case to the Finslerian one. The direction-controlled interpolation
of ellipsoids is expanded on in Sections 5.2 and 5.3, where we discuss the imple-
mentation of this technique and present some preliminary results. The chapter is
concluded in Section 5.4 with a brief discussion of the presented results.

Remark 6. Because measurements are acquired in Euclidean space, we rely on the Euclidean
vector space structurewhen discussing distances orwhen comparing data at different positions
and along different orientations. The postulated geometry represented by the data is thus viewed
as embedded in Euclidean space.
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5.1 Theory

5.1.1 Interpolation of ellipsoids

As stated in Chapter 1.2.2, interpolation can be implemented in amodel-independent
manner by using standard techniques on raw diffusion-weighted data [115]. This ap-
proach can be slow however, and does not make use of the structural information
that is represented by the signal, which has led to the development of new interpo-
lation methods that can be applied after model reconstruction. In the Riemannian
framework this comes down to interpolation of metric tensor fields, which has been
extensively investigated in diffusion tensor imaging literature. Note that a naive ap-
plication of componentwise interpolation is not very suitable in this scenario, as
those often result in physically unrealistic interpolated tensors [270]. The majority of
proposed alternatives can be assigned to one of the following two categories.

The first category is that of (codomain) geodesic interpolators. Geodesic interpo-
lators1 are motivated by the observation that a proper interpolation scheme requires
a distance on the codomain of the considered field—a (trivial) distance on� for scalar
images, and a distance on the cone of positive semi-definite matrices in the case of
a metric tensor field. One then considers geodesics relative to this distance, which
provide smooth transitions between the objects defined at two (nearby) points. The
Euclidean distances between the point of interpolation and the known data points
are used to relate points in the domain to the interpolated objects in the codomain.
The distance on the codomain is generally not uniquely defined, and a number of
different distances have been proposed in the context of DTI [13, 23, 28, 128, 270].

The second category of solutions decomposes the tensor into a set of scalar invari-
ants, recall Section 2.3.1, and a vector or set of vectors. The data is thus represented
by a number of scalar images, which can be interpolated with traditional techniques,
and one or more vector fields that have to be interpolated using more specialized
techniques. The interpolated scalar images and vector fields are then recombined into
an interpolated tensor field. Examples of this approach are the ‘geodesic-loxodrome’
method [198], ‘dyadic-tensor based interpolation’ [143], ‘feature-based interpola-
tion’ [378], and the ‘linear invariant tensor interpolation’ scheme [144]. Note that
these techniques are dependent on e.g. the set of invariants used, meaning they are
typically designated for specific applications.

Remark 7. We omit a few other useful and interesting approaches that do not fit well in
either of these categories, such as the PDE-based tensor field interpolation of Weickert and
Welk [369].

1The term ‘geodesic’ in the name geodesic interpolator does not refer to the spatial geodesics discussed
earlier in this thesis, but to geodesics in the codomain that are relevant to the interpolation.
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Figure 5.1: An example of destructive interference resulting from DTI interpolation in a ‘crossing’ region.
The black ellipses represent the measured diffusion, and are assumed to accurately represent the underly-
ing structure. The circular ellipse in red is obtained using log-Euclidean interpolation, and illustrates the
resulting loss of orientation information in the center. Note that the specifics of the interpolation scheme
are irrelevant; any proper (non-parameterized) scheme will have to respect the intrinsic symmetry in the
depicted structure, and will therefore produce an isotropic interpolant.

5.1.2 Direction-controlled Riemannian interpolation

In Chapter 3we discussed recent efforts to generalize DTI and the Riemannian frame-
work, which have been primarily motivated by limitations of the diffusion/metric
tensor in neuroimaging applications [181]. At a very basic level, these limitations arise
due to restrictions of the quadratic form gi j(x)y i y j used to describe the local geome-
try, recall Section 2.1.1. The metric tensor g(x) simply does not have enough degrees
of freedom to accurately describe e.g. the structure of tissue containing crossing fiber
pathways. In this section we argue that this is not only a problem at the modeling
stage—where this problem can only be addressed by moving towards more complex
models—but can also be problematic in interpolation. Even if the ellipsoids faithfully
portray the underlying structure, interpolation schemes such as those described in
the previous section can in some situations result in a quantifiable loss of information,
as illustrated in Fig. 5.1.

The paradox of DTI interpolation without the destructive interference illustrated
in Fig. 5.1 may be resolved if we (1) relax the quadratic assumption (and thus the
restriction to six degrees of freedom) outside grid points, and (2) specify a projection
back onto quadratic forms a posteriori given a context-dependent bias in the form of
a preferred direction. We can then apply more general interpolation schemes that
have the potential to preserve information that is otherwise lost, and make use of
the specified preferred direction to reconstruct biased diffusion tensor fields that
can be used for further processing. Geometrically speaking this solution entails an
embedding of the data into a Finsler manifold (where we do not need to sacrifice
any contextual orientation information), and an orientation-parameterized projection
back to the space of Riemannian metric tensors.
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Figure 5.2: A schematic illustration of the relation between the Finsler function F(x , y) and the funda-
mental tensor g(x , y), cf. Eq. (3.5). The thick blue convex body is the indicatrix of the Finsler function

F(x , y) �
( (

y1 + 0.3y2)4
+

(
y1 − 0.6y2)4

) 1
4 , and the thin ellipses are level sets of the corresponding g(x , y)

for different y (indicated by the dashed lines). The ellipses describe the shape of the indicatrix at the
intersections with the corresponding dashed lines.

Figure 5.3: Direction-controlled interpolation of the data shown in Fig. 5.1. The newly proposed scheme
produces the indicatrix shown in red, using equal weights in the computation of the geometric mean. The
interpolated Finsler function can be projected onto the cone of positive semi-definite matrices, resulting in
the dashed purple ellipses. The black arrows indicate the preferred orientation used in the fundamental
tensor-based projection. The projected fundamental tensor by design produces ellipses that are biased
towards ellipses aligned with the specified preferred orientation. The strongly anisotropic, vertically
oriented ellipse obtained with the horizontal bias emphasizes that the preferred orientation lacks an
expected vertical component.

As an example we consider the weighted geometric mean of quadratic forms,
which is subadditive and homogeneous of degree two, making it a natural candidate
for the interpolation of quadratic forms in a Finsler manifold. To obtain a physically
meaningful quadratic form from the interpolated Finsler function we adopt the fun-
damental tensor defined in Eq. (3.5). The fundamental tensor represents the shape of
the interpolated function’s indicatrix near a specifiedorientation, see Fig. 5.2. Thepro-
jected geometricmean thus balances the contribution of surrounding ellipsoids based
on their Euclidean distance to the point of interpolation and on their radius along
the specified orientation, which allows us to avoid potential ambiguities as shown
in Fig. 5.3. We will show a few additional examples of this ‘direction-controlled’
interpolation of in Section 5.3.

94



Interpolation | Geometry-inspired Interpolation Techniques

5.1.3 Direction-controlled Finslerian interpolation

In the previous section we embedded the Riemannian metric tensor field in a Finsler
manifold, which allowed us to use a basic Finslerian interpolation scheme that post-
pones the problematic restriction to quadratic forms. In this section we discuss the
opposite—using the fundamental tensor to reduce datamodeled by a Finsler function
near a given position to a Riemannian structure, and then applying one of the Rie-
mannian interpolation techniques described in Section 5.1.1. We can in principle do
this for every orientation to effectively compute an interpolated fundamental tensor,
from which we can compute an interpolated Finsler function using Eq. (3.4).

This ad hoc interpolation of projected structures necessarily disregards any cor-
relations in the information associated with different orientations in the Finslerian
structure, and thus makes very limited use of the advantages Finsler geometry has
overRiemanniangeometry.One implication is that the resulting interpolation scheme
is simply equivalent to the selectedRiemannian scheme forpurelyRiemannianFinsler
functions, meaning for example that it cannot be used for direction-controlled inter-
polation in Riemannian manifolds as described in Section 5.1.2.

5.1.4 Interpolation of convex bodies

The weighted geometric mean interpolation suggested in Section 5.1.2 was used as a
simple way to generate an interpolated Finsler function from a set of quadratic forms.
The alternative approach in Section 5.1.3 is applicable to arbitrary Finsler functions,
and perhaps more intuitive, but as noted there does not generally make use of the
full scope of information present in the Finslerian structure. Ideally, we would like to
formally extend the work done in the Riemannian framework to the Finslerian case.
Because the Finsler function in principle has an infinite number of scalar invariants
it is difficult to extend the decomposition approach—but it is theoretically possible
to generalize the idea of geodesic interpolation to the Finslerian framework.

Geodesic interpolation of Finsler functions would involve the definition of a dis-
tance on the set of convex bodies, or alternatively, on the set of normed spaces. The
most common example of such a distance is the Banach–Mazur distance, and the
space of Finsler functions equipped with this metric defines a Banach–Mazur com-
pactum [339]. If we define GL(V1 ,V2) to be the set of all linear isomorphisms between
an F1-normed space V1 and an F2-normed space V2, with F1 and F2 Finsler functions,
and write ‖T‖op (T ∈ GL(V1 ,V2)) for the corresponding operator norm

‖T‖op � inf
β≥0

{
β
��∀v∈V1 ‖T(v)‖F2 ≤ β‖v‖F2

}
, (5.1)

95



Chapter 5

then we can define the Banach–Mazur distance d by

d(F1 , F2) � log
[

inf
T∈GL(V1 ,V2)

‖T‖op‖T−1‖op
]
. (5.2)

Practical implementations of algorithms based on this distance are not available to
our knowledge [35, 339], and—although theoretically feasible—we do not further
investigate geodesic interpolation of Finsler functions in this thesis.

5.2 Methods
In the remainder we will only look at direction-controlled interpolation in the Rie-
mannian case—the development and evaluation of interpolation techniques for
Finsler functions is a topic of ongoing work. The implementation of direction-
controlled interpolation proceeds as follows. For k � 1, 2, . . . , K, let F2

k (y) B
gi j(xk)y i y j be a set of K spatially distributed quadratic forms, with g a metric ten-
sor field derived from diffusion-weighted data acquired at nearby points xk ∈ M
(e.g. as in Chapter 2). Given a set of weights w1(x), w2(x), . . . ,wK(x) > 0 that satisfy∑K

k�1 wk(x) � 1, we define an interpolated Finsler function F(x , y) as the weighted
geometric mean given by

F(x , y) � ΠK
k�1 [Fk(y)]wk (x) . (5.3)

Explicit expressions for the corresponding fundamental tensor follow using Eq. (3.5),
e.g. for K � 2 we find

gi j(x , y) � F2(x , y) [w1(x)(g2)i j + w2(x)(g1)i j − 2w1(x)w2(x)ξiξ j
]
, (5.4)

in which (gk)i j B
gi j (xk )

F2
k

and ξi(y) B ∑
j
[(g1)i j y j − (g2)i j y j

]
. The relation be-

tween the weight wk(x) and the point of interpolation x can be defined using
any suitable scheme, see e.g. Fig. 5.4 for the weighting scheme used in the pre-
sented (two-dimensional) experiments. For one-dimensional interpolation we take
w1(x) � ‖x2−x‖

‖x2−x1‖ and w2(x) � 1 − w1(x).

5.3 Results
Fig. 5.5 shows the results of one-dimensional interpolations between two (two-
dimensional) quadratic forms according to Eqs. (5.3) and (5.4), both for the unam-
biguous indicatrix (a) and for some of its projections (b). Looking at the vertical spoke
in Fig. 5.5(a) we note that the interpolated indicatrix seems ellipsoidal if the interpo-
lated tensors are proportional, and we can indeed conclude from Eq. (5.3) that in this
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Figure 5.4: First order linear interpolation on a regular grid in two dimensions. The weight wk (x) for an
interpolation point x is proportional to the indicated surface areas opposite of the associated data point
xk . The interpolated Finsler function F(x , y) is defined as the weighted geometric meanΠ4

k�1 [Fk (y)]wk (x),
in which F2

k (y) � F2(xk , y) are quadratic forms in y given by the DTI data at the grid points xk . The
corresponding expression for the interpolated fundamental tensor g(x , y) follows analogously to the
derivation of Eq. (5.4).

case interpolation boils down to isotropic scaling. Generically, however, the interpo-
lated indicatrix is non-ellipsoidal, which is most pronounced on the horizontal spoke
where the main eigenvectors of the tensors at the ends are perpendicular. The cor-
responding projections on the other hand, see e.g. Fig. 5.5(b), are always ellipsoidal
by construction. Given a pair of tensors and a fixed weight there are infinitely many
such projections, and a unique one is only singled out after providing a preferred ori-
entation. If this orientation happens to be aligned with either of the tensors, then this
alignment biases the interpolation to the extent that the corresponding orientation
tends to be emphasized.

To better appreciate this phenomenon, consider Fig. 5.6, which shows the inter-
polation along the horizontal spoke of Fig. 5.5 in more detail. Figs. 5.6(b) and (c)
show ellipses obtained through projection based on horizontal, respectively vertical
orientations. It is apparent that a horizontal (vertical) bias enhances the influence of
the horizontally (vertically) oriented tensor, thus breaking the naively expected sym-
metry in this example where the tensors are 90◦-rotated copies. Observe for example
the occurrence of an isotropic transition strictly before the midpoint between the two
outer ellipses in Fig. 5.6(b)—the horizontal orientation used in the projection results
in a bias that emphasizes the horizontally oriented ellipse on the right. In the verti-
cal projection shown in Fig. 5.6(c), which coincides with the orientation of the main
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(a) (b)

Figure 5.5: (a) Indicatrices of Finsler functions obtained with Eqs. (5.3) and (5.4). The acquired tensor data
is represented by the black ellipses at either end of a spoke. The radial distance along a spoke reflects the
relative weights given to the ellipses at the ends, recall Section 5.2. (b) Ellipses obtained after projection
onto the cone of positive semi-definite matrices. Projections are computed using the orientation of the
spoke as the preferred orientation.

axis of the ellipse on the left, the isotropic transition occurs after the midpoint. This
bias may be exploited in a spatial interpolation scheme to express one’s expectation
about the orientation of the structure of interest, if available. In particular, crossing
fiber pathways that are common in neuroimaging ‘see’ different ellipsoidal interpo-
lations at the same crossing point depending on their tangents, as could already be
seen in Fig. 5.3. In any reasonable non-parametric interpolation scheme the isotropic
transition necessarily occurs exactly in the middle, cf. Fig 5.6(d).

Fig. 5.7 illustrates grid interpolation according to the bilinear interpolation scheme
sketched inFig. 5.4. The experiment shown in (a) showsadiscrete tensorfield sampled
from a smooth ‘single fiber orientation’ region of interest, simulating amildly curved
underlying fiber bundle (black ellipses), together with its interpolation to a refined
grid. Fig. 5.7(b) illustrates the case of a sampled, randomly oriented tensor field.

It can be observed in Fig. 5.7(a) that the interpolating gauge figures are almost
elliptical, and thus have a fairly well-defined, though not entirely crisp, preferred
orientation. Although orientation is (by construction) likewise unambiguous in each
sample point in Fig. 5.7(b), it is much more fuzzy and less anisotropic at typical
interpolation points, and the non-elliptical shape of the (convex) gauge figures is also
more apparent. In both cases one needs a field of preferred orientations to single out
an unambiguous member from the osculating family of ellipses so as to re-obtain a
symmetric positive-definite second order tensor at each point. Such a field may be
relatively straightforward and inspired by the data in the former case, but less trivial
in the latter.
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(a) Indicatrices of the direction-controlled interpolation

(b) Horizontal projection

(c) Vertical projection

(d) Log-Euclidean interpolation

Figure 5.6: Comparison of linear interpolation schemes on two-dimensional tensors. The acquired data is
represented by the black ellipses at the ends, and the interpolations are shown in red. (a) Indicatrices of the
interpolated Finsler functions based on the scheme proposed in Eqs. (5.3) and (5.4). (b) Ellipses obtained
from (a) by evaluating the fundamental tensor biased to the horizontal axis. (c) The vertical projection
of (a). (d) Log-Euclidean interpolation [13]. In this case the interpolation is symmetric, and the ellipse in
the middle is isotropic. In (b) and (c) the a posteriori imposed bias allows this symmetry to be broken in a
controlled manner.

(a) (b)

Figure 5.7: Two-dimensional grid refinement through interpolation according to the scheme of Fig. 5.4.
The black ellipses are grid samples, the red ellipses are interpolations. (a) Interpolation of a smoothly
varying discrete tensor field. (b) Interpolation of a randomly varying discrete tensor field.
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Figure 5.8: Three-dimensional direction-controlled interpolation of DTI-based ellipsoids. The figures on
either end are genuine ellipsoids, the interpolated objects in-between are convex indicatrices. A preferred
direction is needed in order to project each interpolated shape back to an ellipsoid. Top: Interpolation
between an oblate and a prolate spheroid. In this configuration, the minor axis of the former is aligned
with the major axis of the latter. Bottom: Interpolation between two oblate spheroids with a 90◦ relative
turn around one of the major axes.

Extension to three dimensions is straightforward. There are manymore scenarios
for the relative configurations of two ellipsoids and many more possible preferred
directions to be specified in order to single out an osculating indicatrix/figuratrix.
Figure 5.8 shows two examples.

5.4 Discussion

In Section 5.1wediscussed interpolation in the context of theRiemannian andFinsler-
ian frameworks, i.e., interpolation of quadratic forms (represented by ellipsoids), and
interpolation of normed spaces (represented by convex bodies; indicatrices). Because
of the relationships elucidated in Chapter 2, interpolation schemes proposed in the
context of diffusion tensor imaging (DTI) can be applied straightforwardly to the
Riemannian framework. Interpolation of DTI data has been extensively investigated,
and we briefly discussed how the ideas behind geodesic interpolation in particular
may be extended to Finsler manifolds. A more detailed treatment of interpolation of
data in the Finslerian framework is future work.

To bridge the gap between the relatively well-understood Riemannian case, and
the still uncharted Finslerian case, we propose a set of direction-controlled interpo-
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lation schemes based on the Finslerian fundamental tensor, cf. Eq. (3.5). The fun-
damental tensor provides a mapping from Finsler functions to quadratic forms, by
approximating the Finslerian norm around a given ‘preferred’ orientation. This en-
ables the use of Riemannian interpolation techniques in the Finsler setting, and allows
Finslerian interpolation techniques to be used in the Riemannian setting. The former
of these has some significant disadvantages, with the most important being that this
style of interpolation disregards important information in the Finsler function. The
latter, on the other hand, can be potentially useful in applications where a preferred
orientation is readily available, such as streamline tractography [26, 242].

Direction-controlled interpolation of Riemannian data entails an embedding of
the data in a Finslermanifold.We can then applymore general interpolation schemes,
and the interpolated Finsler functions can be projected back to the space of quadratic
forms using the preferred orientation. In Section 5.3 we present some preliminary
results, based on the multiplicative (geometric mean) interpolation of Finsler func-
tions explained in Section 5.2. These results illustrate how the additional degrees of
freedom provided by this embedding, embody a ‘memory’ for recollection of the
orientation information available in the original tensor data, which would inevitably
be destroyed in a parameter-free interpolation scheme.

The preferred orientation can be used to guide the interpolation, e.g. by including
priors such as anatomical (atlas) data. Additionally, the direction-controlled scheme
provides a way to incorporate a contextual bias—it assigns a relevance to a given
ellipsoid not only on the basis of its spatial distance to a point, but also includes its
approximate orientation. By going to higher order interpolation schemes, we also
change the scale at which context is taken into account. Another way to look at this,
is that direction-controlled interpolation allows for a trade-off between spatial and
angular resolution. Taking into account a larger neighborhood—i.e., lowering the
spatial resolution—allows an increased angular resolution. In future work we hope
to frame this technique w.r.t. more rigorous solutions to include context, such as
the higher order tensor inpainting method of Schultz [300] and the works on sub-
Riemannian geometry and diffusion MRI by various authors [93, 111–114, 279, 280].
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This first chapter of the Analysis part of the thesis introduces a number of new local
information descriptors, based on the geometrical viewpoint of Part I. These local de-
scriptors provide voxel-wise characterizations of the observed diffusion process, and
thus of the postulated geometry. Because the model in the Riemannian framework
is conformal to the diffusion tensor imaging (DTI) model, for which there already
exists a vast set of measures in the literature [5, 27, 273, 350, 372], we will focus here
on the more general Finslerian framework proposed in Chapter 3.

The proposed descriptors are evaluated in the context of neuroimaging, wherewe
are interested in the relation between the local geometry and the tissue structure. We
will focus in particular on the local distribution of axon orientations, which has likely
been the most sought-after tissue feature [179, 344, 346] in the short history of the
diffusion MRI field. One expects this distribution to be inferable from the diffusion
data, because it has been observed in so-called single fiber populations that diffusion
is mainly diminished perpendicular to the dominant axon orientation [30].

The chapter is structured as follows. In Section 6.1 we discuss various scalar
and orientation-dependent measures based on the Finslerian framework. We start in
Section 6.1.1 with an orientation distribution function (ODF) that characterizes the
orientation-dependent resistance encountered by diffusing spins, which we propose
as a measure of the axonal orientation distribution. The first examples of scalar
measures in Section 6.1.2.1 are generalizations of Riemannian measures, and the
remaining scalar measures discussed in Sections 6.1.2.2 and 6.1.2.3 are intended to
quantify the differences between the Riemannian and Finslerian viewpoints. Finally
in Section 6.1.3we brieflydescribe how featuresmay be derived from the (orientation-
dependent) fundamental tensor. Implementation details are provided in Section 6.2,
and we present proof-of-concept experiments in Section 6.3. Section 6.4 concludes
the chapter with a discussion on the potential applications of the proposed local
descriptors. Preliminary results of the work presented in this chapter have been
presented at the ISMRM [84, 87–89]

6.1 Theory

6.1.1 The barrier orientation distribution function

In the Riemannian and Finslerian frameworks introduced in Part I, the local geometry
is typically visualized by means of the figuratrix, recall for example Fig. 3.9. In both
geometries the figuratrix represents the local deformation of the space, i.e., the radius
in a given direction shows the degree to which space is stretched in that direction.
In this section we attempt to characterize the source of this anisotropy—the spatial
correlations in interactions undergone by diffusing particles [248, 249].
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(a)Model of linear barriers (b) Model of planar barriers

Figure 6.1: The structural models used in the derivation of the barrier orientation distribution functions.
Particle dynamics within voxels (the black boxes in the figure) are assumed to be governed entirely by
structures that function as barriers to diffusion (colored lines and surfaces), and whose local orientations
can be modeled as if randomly drawn from a single distribution on the sphere. In the visualized examples
this distribution is uniform.

6.1.1.1 Linear barriers

The primary vehicle we deploy for our correlation analysis is the barrier, which is a
localized structure defined to have a linearly impeding effect on motion; a particle
encountering twice the number of barriers will move half as far. In this section
we assume that all barriers are fundamentally one-dimensional, and that the only
relevant parameter at the diffusion length scale is the orientation of (the tangent
to) the barrier (see e.g. Jensen et al. [179]). Considering the spatial homogeneity
assumption (Assumption 1), we then submit that there exists a distribution Ψl on
the sphere, such that Ψl(r̂) represents the probability density that a one-dimensional
barrier is (locally) oriented along r̂ ∈ S2 in any given point in the voxel. See Fig. 6.1(a)
for an illustration. A more formal definition of this probability distribution can be
found in convex geometry literature, see e.g. the book by Stoyan [324]. We refer to Ψl
as the linear barrier orientation distribution function (linear bODF), and its relation
to the Finsler function F can be understood as follows.

The expected number of barriers with an orientation r̂′ encountered along a unit
displacement vector r̂ ∈ S2 is given by

√
1 − | r̂ · r̂′ |2 Ψl(r̂), Fig. 6.2, where

√
1 − | r̂ · r̂′ |2

is the sine of the angle between r̂ and r̂′ and · denotes the Euclidean dot product. The
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Figure 6.2: A schematic drawing illustrating the relation between the density of barriers with a given
orientation r̂′, and the largest distances particles can traverse along an orientation r̂ in a barrier setting.
The maximum distance particles can travel is inversely related to the average number of barriers per unit
of (path) length, which in turn is inversely related to the average distance between barriers relative to
r̂ . This distance is determined by Ψl(r̂′) and the angle ϑ(r̂ , r̂′) between r̂ and r̂′. A formal derivation of
this relationship is more nuanced (particularly in three or more dimensions) and is not presented in this
manuscript.

fraction of the barriers that cross r̂ is thus given by the sine transform

S {Ψl} (r̂) �
∫
S2

√
1 − | r̂ · r̂′ |2 Ψl(r̂′)dσ(r̂′), (6.1)

with dσ the Lebesgue measure on the Euclidean unit sphere S2. In light of the
definition of a barrier, we can then state thatS {Ψl} (r̂)/F(r̂) should be approximately
constant, and it follows that Ψl is related to F as

Ψl(r̂) ∝ S−1 {F} (r̂), (6.2)

where S−1 is the inverse sine transform. Ψl is then determined after normalization
using ∫

S2
Ψl(r̂′)dσ(r̂′) � 1. (6.3)

The linear barrier ODF of an example Finsler function is shown in Fig. 6.3.

6.1.1.2 Planar barriers

We could alternatively consider the orientation distribution of planar barriers Ψp,
such thatΨp(r̂) represents the probability that a two-dimensional barrier has a normal
vector oriented (locally) along r̂ , see Fig. 6.1(b). An analogous derivation then gives
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(a) ∂Ω (b) Ψl

Figure 6.3: (a) An example boundary ∂Ω of a finite speed isotropic transport process, determined by the
Finsler function F as described in Section 3.2.1.3. ∂Ω represents the largest displacements along different
orientations in a locally Minkowskian manifold. (b) The inverse sine transform of the boundary in (a)
produces the linear barrier ODF Ψl, cf. Eq. (6.2). The gray lines in the background are a rendering of linear
barriers distributed according to Ψl. In two dimensions C{ f } (r̂(θ)) � S{ f } (r̂ (

θ +
π
2
) )
, with θ the polar

coordinate, so the planar barrier ODF corresponding to the boundary in (a) would simply be a rotated
version of the shown linear barrier ODF.

the relation between F and the planar barrier ODF

Ψp(r̂) ∝ C−1 {F} (r̂), (6.4)

where C−1 is the inverse of the cosine transform C defined as

C {
Ψp

} (r̂) � ∫
S2
| r̂ · r̂′ | Ψp(r̂′)dσ(r̂′). (6.5)

It can be shown that the planar barrier ODF is not fundamentally different from
the corresponding linear bODF, in the sense that a set of linear barriers distributed
uniformly along a great circle of the sphere is indistinguishable from an aligned
planar barrier. In fact, the sine and cosine transforms of Eqs. (6.1) and (6.5) are related
according to

R ◦ S−1 ∝ C−1 , (6.6)

where ◦ denotes function composition and R denotes the Funk–Radon transform

R {
f
} (r̂) � ∫

S2
δ (| r̂ · r̂′ |) f (r̂′)dσ(r̂′), (6.7)

with f a continuous function on the sphere and with δ(x) � 1 if x � 0 and 0
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otherwise. Eq. (6.6) follows when considering C ◦R ?∝ S. This simple relation means
that it suffices to consider just the linear bODFΨl C Ψb if we are interested in the local
configuration of (either linear or planar) barriers.Wewill thus omit the linear/planar
prefix from hereon.

Remark 8. We conclude this discussion on linear and planar barriers by noting that there
is a complementary model to describe anisotropy in a Finsler manifold. In this alternative
case Ψl does not represent a distribution of barriers, but instead represents a distribution of
‘oriented facilitators’ whose density is linearly related to the largest displacements along the
corresponding orientation. A similar derivation then leads to Ψl being related to F through the
cosine transform that now links F with Ψp, and thus provides an alternative interpretation
for Ψp. Analogously Ψl could alternatively be viewed as a distribution of planar ‘facilitators’.
In simple terms, the linear barrier ODF coincides with the planar facilitator ODF, and the
planar barrier ODF coincides with the linear facilitator ODF. The facilitator ODF is known
in microscopy as the ‘Rose of Directions’ [196].

6.1.1.3 Axons as barriers

It is generally accepted that the diffusion anisotropy observed in the brain is to a large
extent due to a dense packing of fibrous axonal membranes present in the tissue [30].
These axons have diameters of around 1 µm [1], while the diffusion length scale in
neuroimaging experiments is in the order of tens of microns. We additionally expect
that the largest displacements in a voxel occur in the extra-axonal compartment,
which would thus be represented by the Finsler function. Based on these points, we
hypothesize that the axonal orientation density function can be well-approximated
by the barrier orientation distribution function.

The barrier ODF is fundamentally different from commonly used existing ap-
proaches to compute axon orientations [2, 101, 148, 167, 195, 259, 261, 344, 347].
The closest alternative is probably the fiber ODF Ψf that can be obtained by means
of spherical deconvolution [96, 146, 182, 302, 344], although the basic premise of
spherical deconvolution-based approaches is almost polar opposite to ours—axons
of different orientations are assumed to contribute to the signal independently. It is
then assumed that the contribution of axons with a given orientation can be repre-
sented by a single building block—the single fiber response function U—so that the
signal (for a unit wave vector q̂ with a fixed b-value) can be written as a convolution:

S(q̂) �
∫
S2

U(q̂ , r̂′)Ψf(r̂′)dσ(r̂′). (6.8)

The response function U is typically estimated from the average signal in regions
considered representative of uni-oriented fiber pathways [336, 344], and the fiber
ODF can then be recovered from Eq. (6.8) using deconvolution [97, 342].
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Due to the log transform in the relation between the signal and the Finsler function
(Eq. (3.29)), fiber ODFs are generally incompatible with barrier ODFs. There does not
exist a single fiber response function such that Ψl and Ψf always coincide.1 Whether
Ψl or Ψf is more accurate depends essentially onwhether or not crossing axons can be
modeled at the diffusion length scale as distinct compartments—whether the axons
are interwoven or distinct.

6.1.2 Finslerian scalar measures

In this section we cover a number of scalar measures that can be derived from the
Finsler functiondiscussed inChapter 3. These scalarmeasures aredesigned to capture
basic information about the local geometry of the Finsler manifold.

6.1.2.1 Range measures

The reconstructed Finsler function F : Tp M → [0,∞) follows from an estimate of the
boundary ∂Ω, which is an interesting quantity in itself. Basic questions addressed
in DTI by looking at the tensor eigenvalues, such as where is the diffusion strongly
direction-dependent (cf. Section 2.3.1), can be answered using ∂Ω as well. We con-
sider the voxel-wise smallest and largest (estimated) maximum displacements Λmin
and Λmax, their difference Λrel, and the spherical mean Λavg. We define these scalar
measures in terms of F (at an implicit point p) by Eqs. (3.22) and (3.42) as

Λmin(p) B min
F(r)�v ∆

‖r ‖ , (6.9)

Λmax(p) B max
F(r)�v ∆

‖r ‖ , (6.10)

Λavg(p) B v ∆
∫
S2

1
F(r̂′) dσ(r̂

′), (6.11)

Λrel(p) B Λmax(p) −Λmin(p)
Λmax(p) , (6.12)

where r̂ is a normalized (dimensionless) vector in Tp M.
Just as in theRiemannian framework,Chapter 2, thesemeasures canbe interpreted

independent of the diffusion as geometrical descriptors. This is made explicit after a
division by v ∆ (turning the Λ measures into dimensionless quantities) after which
the norm F can be understood to simply represent the relative amount of scaling
along a given direction. The Λmax measure for example is proportional to the largest
relative stretching of space at p, while Λavg gives the average amount of scaling.

1The barrier ODF is closer to a morphological deconvolution of the signal [47].
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Remark 9. Note that the Λ measures are quantitative; we get estimates of the maximum
displacements in e.g. mm. The fixed unknown v in the expressions cancels with the fixed
value set in the computation of F in Eq. (3.29).

6.1.2.2 Non-Gaussianity

The Λ-measures have direct analogues in DTI by construction; the smallest and
largest eigenvalue, the mean diffusivity (MD), and the fractional anisotropy (FA)
convey similar information as the listed measures. The most obvious quantity that
cannot be obtained with DTI is non-Gaussianity, which represents the portion of
the signal not accurately described by the DTI tensor. As purely Gaussian diffusion
implies that dm

l � 0 for l > 2 in Eq. (3.43), i.e., that the indicatrix is ellipsoidal, we can
define a non-Gaussianity measure similar to Özarslan et al. [259] as the dissimilarity

NG B sin ϑ(u , v) �
√

1 − cos2 ϑ(u , v), (6.13)

where cos ϑ B cos ϑ(u , v) is the cosine similarity between the vectorizations
u � (d0

0 , d
−2
2 , . . . , d2

2) and v � (d0
0 , d
−2
2 , . . . ) of the (truncated) spherical harmonic

coefficients dm
l . A non-Gaussianity NG � 0 indicates Gaussian diffusion—a perfectly

ellipsoidal indicatrix.

Remark 10. Non-Gaussian behavior originates from a non-trivial interplay between local
structural complexity, and the inevitable emergence of relevant higher order moments at large
gradient strengths. It is thus a measure of ‘signal complexity’, not of ‘structural complexity’.

6.1.2.3 Non-Finslerianity

The non-Gaussianity measure of the previous section quantifies to what extent a
Riemannian manifold is a suitable model for the measured signal, roughly by com-
paring high gradient strength measurements to their predicted values based on the
Riemannian metric. We can similarly compare predictions based on the Finslerian
structure derived from high gradient strength data, to observed behavior at low
gradient strengths. This leads to a measure of non-Finslerianity as follows.

In Section 3.2.1.2 we explained how the Finsler function F provides a prediction
for the central limit behavior that governs the low gradient strength segment of
the signal through Eq. (3.19), under the condition that the measured diffusion is
reasonably close to an isotropic transport process. Given an estimate Fκ of F, we can
use Eq. (3.21) to define an estimated low gradient strength diffusion tensor

D i j
κ B 3 α

∫
Ix M

y i y j µx(dy), (6.14)

where µx is themeasure defined by Fκ and α is the diffusion coefficient (cf. Chapter 1).
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If Fκ tends to F and Assumption 1 holds, then Dκ converges to the usual diffusion
tensor D (Eq. (2.14)) that can be recovered from low gradient strength diffusion-
weighted images (κ→ 0).

Remark 11. Note that Eq. (6.14) (implicitly) depends on v and α, which are both unknown.
Practically, this means that we can only estimate Dκ up to a constant. In the preliminary
experiments presented in this chapter, we will define a global scaling between the diffusion
tensors and their Finslerian estimates, such that the medianmean diffusivities (over all voxels)
of the two tensor fields are the same.

The quantity of interest is now the difference between the tensor D, and the
estimate Dκ recovered from the complete set of measurements. Herewewill quantify
this difference by means of the log-Euclidean distance [13]:

d(D ,Dκ) B
√
tr

({
log D − log Dκ

}2
)
, (6.15)

where log denotes the matrix logarithm and {·}2 the matrix square. Based on the
log-Euclidean distance between D and Dκ we define a non-Finslerianity measure as

d(D ,Dκ)√
tr

({
log D

}2
) . (6.16)

In Section 3.5.1 we already identified two factors that can cause a high non-
Finslerianity value—either the measured spin stochastics cannot be accurately mod-
eled as a Finslerian isotropic transport process, or there are multiple partitions that
contribute to the signal independently, i.e., Assumption 1 does not hold. Remark 11
adds a third one: if v or α is not constant over M, then the globally fixed scaling may
introduce a position-dependent bias in the non-Finslerianity.

6.1.3 Riemannian measure glyphs

The last class of features we introduce in this chapter are the orientation-dependent
DTImeasures, based on the fundamental (dual) tensor thatwas alreadyused inChap-
ter 5, see Fig. 5.2. The fundamental tensor associates a two-tensor to each orientation,
from which we can compute scalar-valued descriptors like the mean diffusivity and
the fractional anisotropy, cf. Section 2.3.1. Recall that the fundamental tensordescribes
the shape of the indicatrix/figuratrix near a given point, meaning that it describes
the behavior of diffusing particles that move approximately in a given orientation.

Orientation-dependent DTI measures can be represented as glyphs by defining
the radius of the glyph for a given orientation to be proportional to themeasure of the
associated tensor. Alternatively, we can compute the average value of a Riemannian
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measure glyph f weighted by the bODF, defining a barrier-weighted DTI measure
through the integral ∫

S2
f (r̂′)Ψl(r̂′)dσ(r̂′), (6.17)

which represents the expected value of the DTI measure along fiber pathways. We
will generally look at measures based on the fundamental dual tensors, as these are
natively closest to the diffusion tensors in DTI.

6.2 Methods

In this section we provide implementation details for the discussed local descriptors.
In all instances it is assumed that we have expressions for Hκ and Fκ in terms of
the spherical harmonic coefficients cm

l (κ) and dm
l (κ) respectively, as explained in

Section 3.3. Spherical descriptors f : M × S2 → � will be represented by glyphs
{ f (x , r̂) r̂ | r̂ ∈ S2} as explained in Section 2.3.2.

6.2.1 The barrier orientation distribution function

The barrier ODF requires the computation of inverse sine transform. For convex
bodies expressed in terms of spherical harmonics, this transform can be computed
through an application of the Funk–Hecke theorem [298, Appendix]. Using this
theorem it follows that given Fκ in terms of dm

l (κ) as in Eq. (3.43), the coefficients
vm

l (κ) in the spherical harmonic expansion of the barrier ODF are given by

vm
l (κ) � −

2
π

Γ
(

l
2 + 1

)
Γ

(
l
2 + 2

)
Γ

(
l
2 − 1

2

)
Γ

(
l
2 +

1
2

) dm
l (κ), (6.18)

with Γ the gamma function. Thoughwe do not consider this here, a unique boundary
∂Ω can be derived from a barrier (or any other type of) ODF by using the spherical
harmonic factors to compute a sine transform.

Remark 12. The coefficients wm
l (κ) of the planar barrier ODF are given by

wm
l (κ) � π−

3
2 Γ

(
3
2 −

l
2

)
Γ

(
l
2 + 2

)
dm

l (κ), (6.19)

and the Funk–Radon transform can be similarly expressed as

um
l (κ) �

2π 3
2

Γ
(

1
2 − l

2

)
Γ

(
l
2 + 1

) dm
l (κ). (6.20)
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Together with Eq. (6.18), these allow us to easily verify the relation in Eq. (6.6).

In the experiments involving the barrier ODFwe are particularly interested in the
local maxima (or ‘peaks’) of the ODF—the orientations that we expect to correspond
to dominant axon orientations. We identify local maxima using a simple gradient
ascent method, initialized from several hundred randomly generated orientations
for each voxel.

6.2.2 Finslerian scalar measures

The optimizations in the definitions of Λmax and Λmin (Eqs. (6.10) and (6.9)) are
approximated by evaluating ‖ξ(q)‖ for a large number of q, using the same sampling
scheme as in Section 3.3.3. ‖ξ(q)‖ is computed using the expressions in Appendix B.
Λavg follows straightforwardly by orthonormality of the spherical harmonics, giving

Λavg � 2
√
π

v ∆
d0

0(κ)
� 2
√
π v ∆ c0

0(κ). (6.21)

The non-Gaussianity measure NG can also be expressed in terms of the spherical
harmonic coefficients:

cos ϑ �

√√√√√√√∑2
l�0

∑l
m�−l

(
dm

l (κ)
)2

∑∞
l�0

∑l
m�−l

(
dm

l (κ)
)2 . (6.22)

The integration in Eq. (6.14) required for the non-Finslerianity measure, is computed
numerically using the analytical expression for the determinant det g given in Ap-
pendix B.

6.2.3 Riemannian measure glyphs

The fundamental tensor is computed using the analytical expressions provided in
Appendix B, again for the same icosahedral sampling used in Section 3.3.3. We
then compute for each of these tensors the fractional anisotropy and mean diffusiv-
ity [372], and approximate the corresponding Riemannian measure glyphs by fitting
spherical harmonics to the resulting values. The barrier-weighted scalar measures
are computed directly from the spherical harmonic coefficients of the barrier ODF
and the Riemannianmeasure glyphs, using orthogonality of the spherical harmonics,
Eq. (B.2).
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6.2.4 Data

Experiments are based on the Human Connectome Project (HCP) data described in
Section 2.3.3, and on the artificial data described in Section 3.3.4. We also define two
additional artificial ensemble average propagators (EAPs) based on the second order
tensors B B 10−3 diag(3, 2, 1) and C B 10−3 diag(3, 3, 1), and define a less anisotropic
version of A(ϑ) (recall Eq. (3.49)) as

Ã(ϑ) B 1
2 × 10−3

©«
3 + cos 2ϑ − sin 2ϑ 0
− sin 2ϑ 3 − cos 2ϑ 0

0 0 2

ª®®¬ . (6.23)

The spherical harmonic coefficients cm
l and dm

l of the (dual) Finsler functions
are reconstructed as described in Section 3.3.3. The DTI results are computed as
explained in Section 2.3. We also compare the bODFs to fiber ODFs, computed using
constrained spherical deconvolution (CSD) [342] based on the b � 3000 s/mm2 shell.
CSD results are computed with MRtrix 3 (mrtrix.org), using default settings.

6.3 Results

6.3.1 The barrier orientation distribution function

6.3.1.1 Artificial data

We show the bODF obtained from the different DTI data sets A, B, and C in Fig. 6.4.
The fractional anisotropy decreases from left to right, reflected by the decreased
probability associated with the main orientation in the bODF. The rightmost col-
umn shows a circularly symmetric DTI ellipsoid, which translates as expected to a
circularly symmetric bODF.

In Fig. 6.5, the bODFs corresponding to the profiles in Fig. 3.8 again show the
expected behavior. The first row shows a profile of ‘crossing barriers’, based on
the artificial diffusion tensors up to fourth order, where the angular resolution (the
sharpness of the profile around the main orientation) increases significantly with κ.
The importance of high quality, high b-value data, is apparent from these results, as
this allows for larger κ and thus more accurate estimates Fκ of F. A similar trend
can be observed for the multi-tensor data (Fig. 6.5, bottom row). Here the bODF is
computed for the average of two identical tensors rotated to have a crossing angle of
45 degrees. For low κ only a single main orientation can be discerned from the bODF,
while for higher κ the distinction becomes clearer. Note however, that because multi-
tensor data cannot in general be interpreted in terms of largest displacements (recall
Section 3.2.2), the main orientations in the profile do not necessarily correspond with
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A B C
F κ

Ψ
l

Figure 6.4: Level sets of Fκ and the corresponding bODFs Ψl for different types of diffusion tensor data
(A, B, and C, see Sections 3.3.4 and 6.2.4). In the DTI case, the bODF is oriented along the direction of the
main eigenvector of the diffusion tensor.

the orientations of interest given by the main eigenvectors of the constituent tensors.
We will refer to the resulting deviations from the expected main orientations as
‘multi-compartment effects’.

To quantify this deviation, we compare the main orientations of the bODF with
the angle between the orientations of the main eigenvectors of different multi-tensor
data sets. For κ̄ � 100, the results of these comparisons are plotted in Fig. 6.6. We
find that for angles smaller than approximately 25◦ the bODF has only a single main
orientation, but when the bODF has two discernable peaks the total deviation from
the expected orientations is less than 5◦. This difference increases if κ is taken too
large, although the smaller separation angles can then be resolved better (Fig. 6.7).
In Figs. 6.6 and 6.7, where the underlying tensors are identical, the difference is
distributed equally between the two main orientations. If the underlying tensors
differ the total error remains comparable, but the orientation of the dominant tensor
can be obtained with far greater accuracy (Figs. 6.8 and 6.9).

6.3.1.2 Real data

In Fig. 6.10(a) and (c)we show the barrierODFs in themarked region of theHCPdata,
cf. Fig. 2.2(a). Fig. 6.10(e) contains state-of-the-art fiber orientation density functions
(fODF) generated with CSD [342] for comparison purposes. Figs. 6.10(b), (d), and (f)
show peaks derived from these ODFs.
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κ̄ � 1 κ̄ � 50 κ̄ � 100 κ̄ � 150
H
T

M
T

Figure 6.5: bODFs for different values of κ, based on the artificial higher order data (HT, top row) and
multi-tensor data (MT, bottom row, ϑ � π/4 in A(ϑ)) described in Section 3.3.4. The displayed bODFs
correspond to the level sets shown in Fig. 3.8. The dominant barrier directions become more apparent
with increasing κ.

The barrier ODF seems to represent known anatomy quite well; we can clearly
recognize the coherent parallel bundles in the corpus callosum, transitioning into the
centrum semiovale where the callosal pathways intersect with the corticospinal tract,
cf. Fig. 2.2(b). There is also a qualitative correspondence with the results obtained
with CSD, which is generally considered to work well in this specific region. We find
again that the parameter κ can be used to control the angular resolution of the bODF.

The barrier ODF can also be used to visualize the effect of the constrained re-
construction of cumulants discussed in Section 3.3.3. We can already observe—by
comparing the level sets and barrier ODFs in Figs. 3.8 and 6.5—that the barrier ODF
is a very sensitive measure; differences in the indicatrices which at first seem almost
negligible (Fig. 3.8), have a highly significant effect on the corresponding barrier ODF
profiles (Fig. 6.5). Based on this one can already imagine that non-convexity artifacts
may result in a noticeable deterioration of the barrier ODF, and this is indeed clearly
visible if we look at bODFs computed from unconstrained Finsler functions in the
HCP data, see Fig. 6.11.

As explained in Chapter 3, we can have minor non-convexity artifacts even after
using a constrained model reconstruction. This is due to the unconstrained spherical
harmonic reconstruction that is used in the (dual) Finsler function representation.
Oscillatory artifacts in level sets of the Finsler function, as highlighted in Fig. 3.11,
produce low magnitude high frequency noise in the barrier ODF, see Fig. 6.12.
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Figure 6.6: The effect ofmulti-compartment effects on the dominant orientations in the bODF. The horizon-
tal axis shows the angle between the main eigenvectors of the compartmental diffusion tensors in degrees,
defined by the angle ϑ in A(ϑ) (Eq. (3.49)). The orange and blue dots/lines show the angle between the
measured orientations and the ground truth orientations (vertical axis, in degrees), and the dashed green
line shows the total angular differences. For the considered example, with κ̄ � 100, the separation angle
has to be greater than 25◦ for there to be two distinguishable dominant orientations.

Figure 6.7: The effect of multi-compartment effects on the dominant orientations in the bODF. The orange
and blue dots/lines show the angle between the measured orientations and the ground truth orientations
(vertical axis), for increasing separation angles (horizontal axis, defined by the angle ϑ in A(ϑ), Eq. (3.49)).
The dashed green line shows the total angular differences. For the considered example, with κ̄ � 150, the
separation angle has to be greater than 20◦ for there to be two distinguishable dominant orientations.
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Figure 6.8: The effect of multi-compartment effects on the dominant orientations in the bODF. The orange
and blue dots/lines show the angle between the measured orientations and the ground truth orientations
(vertical axis), for increasing separation angles (horizontal axis, defined by the angle ϑ in Ã(ϑ), Eq. (6.23)).
The dashed green line shows the total angular differences. For the considered example, with κ̄ � 100, the
separation angle has to be greater than 45◦ for there to be two distinguishable dominant orientations. The
difference w.r.t. Fig. 6.6 is due to the more isotropic tensors Ã used to generate the multi-tensor data.

Figure 6.9: The effect of multi-compartment effects on the dominant orientations in the bODF. The orange
and blue dots/lines show the angle between the measured orientations and the ground truth orientations
(vertical axis), for increasing separation angles (horizontal axis, defined by the angle ϑ in Ã(ϑ), Eq. (6.23)).
The dashed green line shows the total angular differences. For the considered example, with κ̄ � 150, the
separation angle has to be greater than 37◦ for there to be two distinguishable dominant orientations.
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(a) bODF with κ̄ � 1 (b) Peaks corresponding to (a)

(c) bODF with κ̄ � 100 (d) Peaks corresponding to (c)

(e) fODF obtained with CSD (f) Peaks corresponding to (e)

Figure 6.10: A comparison between the barrier ODF (top row, κ̄ � 1 and slice average bmax is 44 s/mm2,
and middle row, κ̄ � 100 and average bmax is 3356 s/mm2) and the fiber ODF produced by CSD (bottom
row) of a coronal slice of the HCP data set. The bODF figures illustrate how κ can be used to tune the
angular resolution of the ODFs.
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(a) bODF with κ̄ � 100 (b) Peaks corresponding to (a)

Figure 6.11: Part of a coronal slice of a HCP data set to be compared with Fig. 6.10 (middle row), showing
barrier ODFs and the corresponding peaks obtained without regularization. All experiments in the main
text are regularized, which remedies occurrences of the indicated artifacts in the barrier ODF caused by
regions of mild non-convexity in the Finsler function, introduced in the spherical harmonic expansion
(Eq. (3.43)).

Figure 6.12: The barrier ODF corresponding to the level set of Hκ shown in Fig. 3.11. The oscillations
indicated in the level set of the dual Finsler function produce the indicated high frequency noise in the
barrier ODF.
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6.3.2 Finslerian scalar measures

In Fig. 6.13 we show the Λ-measures for the Fκ (top row, κ̄ � 100) reconstructed
from the coronal slice of a HCP data set (Fig. 2.2), together with the analogous
measures from the DTI reconstruction based on the b � 1000 s/mm2 shell (bottom
row). The contrast of the Finslerian measures is arguably better, but the intensity
patterns between the corresponding measures are similar.

The non-Gaussianity NG introduced in Section 6.1.2.2 is shown in Fig. 6.14. This
map shows high intensity in e.g. the corpus callosum, which can also be observed
in radial and mean kurtosis maps [9, 178]. Note that non-Gaussianity does not say
anything about the validity of DTI as a tissue model—it only provides information
about DTI as a model of the signal. Non-Gaussianity is for example much lower in
the centrum semiovale, which contains crossing fibers, than around the uni-oriented
fibers of the corpus callosum.

As explained in Section 6.1.2.3, we can compute an estimate of the DTI tensor
given a Finsler function F using Eq. (6.14). The comparison between the DTI tensor D
derived from low b-value data, and the estimated diffusion tensor Dκ derived from
high b-value data, is made in Fig. 6.15. Differences between the two are concentrated
in gray matter, as can be seen in Fig. 6.16.

6.3.3 Riemannian measure glyphs

6.3.3.1 Artificial data

In Figs. 6.17 and 6.18 we show examples of the orientation-dependent fundamental
tensor in relation to the barrierODF for the artificial data used in Figs. 6.4 (left column)
and 6.5 (top row). For the single-fiber (purely Riemannian) Finsler function shown
in Fig. 6.17 the fundamental tensor is independent of orientation, and we obtain
the same ellipsoidal level set visualization for each of the evaluated orientations.
Naturally the resulting measure glyphs are spherical. For the crossing shown in
Fig. 6.18, based on the artificial fourth order cumulants (Section 3.3.4), we findmildly
prolate ellipsoids along the main orientations of the bODF, while perpendicular to
these the ellipsoid is more oblate. The corresponding MD and FA glyphs are mildly
anisotropic, and there appears to be a negative correlation between the bODF and
the FA, and a positive correlation between the bODF and the MD.

6.3.3.2 Real data

In Fig. 6.19 and 6.20 we show the MD and FAmeasure glyphs for representative vox-
els in the corpus callosum and the centrum semiovale. These show quite conclusively
that the previously purported relation between theMD and bODF is not as simple as
suggested. The negative correlation with FA does seem to hold true, as confirmed by
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(a) Λmin (b) Λmax (c) Λrel (d) Λavg

(e) λmin (f) λmax (g) FA (h) MD

Figure 6.13: The top row shows the estimated smallest maximum displacement Λmin (a), the estimated
largest maximum displacement Λmax (b), their relative difference Λrel (c), and the average estimated
maximum displacement Λavg (d), with κ̄ � 100. These measures are the Finslerian analogues of the
smallest (largest) eigenvector λmin (λmaxf), (e) and (f), fractional anisotropy FA (g), and mean diffusivity
MD (h). The colors are scaled between the image minimum value (black) and image maximum value
(white).

Figure 6.14: The non-Gaussianity NG computed for a single coronal slice of a HCP data set, cf. Eq. (6.13).
Black indicates NG � 0, white indicates NG ≥ 0.1. The high intensity observed in e.g. the corpus callosum
can also be seen in radial and mean kurtosis maps [9, 178].
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(a) D (b) Dκ

Figure 6.15: DTI ellipsoids derived from low b-value data (a), and ellipsoids derived from the estimated
Finsler function Fκ using Eq. (6.14) (b).

(a) Non-Finslerianity (b) (a), with highlighted white matter

Figure 6.16: The non-Finslerianity measure (a) (κ̄ � 100), defined in Eq. (6.16) as the ratio between the
log-Euclidean distance d(D ,Dκ) (Fig. 6.15) and the Frobenius norm of D. Black indicates that this ratio
is zero, white indicates a ratio of one or greater. (b) is identical, but with a highlighted segmentation of
the white matter to illustrate that high non-Finslerianity values are mainly found outside of white matter.
Note that non-Finslerianity is also low in the ventricles, where diffusion is essentially Gaussian, and we
thus expect no significant differences between low and high b-value data.
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(a) Level set Fκ (b) bODF

(c) (d) (e)

(f)MD glyph (g) FA glyph

Figure 6.17:An example of Riemannian measure glyphs, computed for Fκ based on the second order data
set defined by A with κ̄ � 1. (a) and (b) show the level set of Fκ and the corresponding bODF, (c), (d), and
(e) show the ellipsoids derived from the fundamental tensor for the indicated orientations, and (f) and (g)
show the mean diffusivity (MD) and fractional anisotropy (FA) measure glyphs.
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(a) Level set Fκ (b) bODF

(c) (d) (e)

(f)MD glyph (g) FA glyph

Figure 6.18:An example of Riemannian measure glyphs, computed for Fκ based on the second order data
set defined by A with κ̄ � 100. (a) and (b) show the level set of Fκ and the corresponding bODF, (c), (d),
and (e) show the ellipsoids derived from the fundamental tensor for the indicated orientations, and (f)
and (g) show the mean diffusivity (MD) and fractional anisotropy (FA) measure glyphs.

128



Point | The Local Geometry

(a) Level set Fκ (b) bODF (c)MD glyph (d) FA glyph

Figure 6.19:The level set of the estimated Finsler function (κ̄ � 100) and the barrierODF for a single voxel in
the corpus callosumof theHCPdata set, togetherwith themean diffusivity (MD) and fractional anisotropy
(FA) measure glyphs. For purely Gaussian diffusion, the measure glyphs are perfectly ellipsoidal.

(a) Level set Fκ (b) bODF (c)MD glyph (d) FA glyph

Figure 6.20: The level set of the estimated Finsler function (κ̄ � 100) and the barrier ODF for a single voxel
in the centrum semiovale of the HCP data set, together with the mean diffusivity (MD) and fractional
anisotropy (FA) measure glyphs.

preliminary experiments in real data. We recognize a clear drop in the FA of funda-
mental tensors evaluated at orientations perpendicular to expected fiber pathways
orientations, see Fig. 6.21. Still, these differences are very subtle, and the barrier-
weighted Riemannian measures do not differ significantly from the DTI-derived FA
and MD (Fig. 6.22).

6.4 Discussion
As tissue structure is only indirectly inferrable from the observed diffusion, we have
to be particularly careful when relating the two. For example, it is not always clear
whether particular tissue properties can be reliably deduced from the data. But
within the set of properties that actually have a measurable and resolvable effect on
the diffusion-weighted signal, we are further limited by our models. A model gener-
ated from a very restrictive set of assumptions may be biased by effects that are not
explicitly taken into account in the assumptions [175]. Because the geometries consid-
ered in this thesis are limited to position- and orientation-dependent features—more
complex features will require more complex geometries—our results may be skewed
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(a) (b)

(c) (d)

Figure 6.21: The orientation-dependent FA in a coronal slice of a HCP data set (Fig 2.2). The figures show
the difference between the standard FA computed fromDTI tensors, and the FA of the fundamental tensor
associated with the orientations indicated at the top right in each image. Dark voxels correspond to a
relative drop in FA, and bright voxels imply a relative increase. By looking at e.g. the cingulum bundles
(pointing out of the slice) and the large u-fibers connecting the top of the left and right hemispheres
through the corpus callosum, we may discern a negative correlation between the orientation-dependent
FA and the axonal ODF.
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(a) Barrier-weighted FA (b) Barrier-weighted MD

Figure 6.22: The barrier-weighted fractional anisotropy (FA) and mean diffusivity (MD). For the relatively
small κ used in this experiment, these are strongly correlated with the standard DTI-based measures.

if for example there is a significant curvature-component discernable in the average
spin’s motion, e.g. a tendency to diffuse along trajectories with a specific curvature.
Keeping this in mind, we briefly review some of the prospects and limitations of the
proposed descriptors.

6.4.1 The barrier orientation distribution function

The barrier orientation distribution function (barrier ODF or bODF) introduced in
Section 6.1.1 is a clear example of a new approach to an old problem, inspired by
the introduction of the geometrical framework. Finding the distribution of fibrous
structures in biological tissue seems like a highly specialized problem, but when
framed as a geometrical problem we quickly recognize an overlap with problems in
stochastic and convex geometry [145, 190, 196, 298, 320, 324]. The same problem has
been considered in the context of microscopy in e.g. metallurgy [196], revealing the
synergetic potential of the geometrical description.

The barrier ODF represents the correlation of impedances in the underlying trans-
port process along a given orientation. We have considered both one- and two-
dimensional barriers, and have shown that these do not produce fundamentally
different orientation distribution functions. Though their dimensionality does not
manifest in the bODF, it should be noted that the correlation dimension is (theoreti-
cally) observable in diffusion-weighted MRI. As described in the work of Novikov et
al. [248], this property becomes apparent in the long diffusion time limit of D (whose
time dependence we do not consider in this thesis). Like all descriptors proposed
in this chapter, the barrier ODF Ψl can be interpreted in terms of the local Finsler
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geometry. The relevant relation in this instance is Eq. (6.2), from which it follows
that space is compressed proportional to the barrier density encountered by a typical
particle moving along a given orientation.

The barrier ODF is defined as the inverse sine transform of the Finsler function,
which can be implemented similarly to existing transforms in diffusion MRI such
as those in Q-ball and fiber ball imaging [179, 347]. Alternative implementations
are possible [196], but are not considered in this work. The sine transform can be
viewed as a mapping from (sufficiently smooth centrally symmetric) convex bodies
to point-wise non-negative functions on the sphere, and as such it plays a major
role in e.g. convex and stochastic geometry [298, 324]. In diffusion MRI this relation
allows us tomap arbitrary ODFs to convex sets, in principle enabling the definition of
a Finsler manifold from any model that provides a field of ODFs. We can then apply
any geometrical approach—like the PDE-based processing of Pennec et al. [270] or
geodesic interpolation [28, 128, 270]—to these ODF fields.

Initial experiments comparing the barrier ODF to the widely accepted fiber ori-
entation density function (fODF) obtained with constrained spherical deconvolution
(CSD) [342], Fig. 6.6, suggest that for crossings of 45◦ or more (the approximate res-
olution limit of CSD) the two ODFs conform with an error of less than 5◦. For fiber
pathways that cross at more acute angles the differences are more pronounced. Note
that these differences cannot be interpreted as errors of either the barrier or fiber
ODF—depending onwhich set of assumptions is more appropriate for a given appli-
cation, either CSD results or bODF results will be more accurate. The reconstruction
of fiber pathways based on the barrier ODF can be done using the same techniques
as for the fiber ODF [33, 99, 287].

In Fig. 6.10 we show the bODF and fODF side-by-side in real data, where similar
global trends can be recognized. This figure also illustrates again the effect of κ on the
angular resolution. For small κ the barrier ODF is essentially limited to a single peak,
while higher values allow the resolution of more complex pathway configurations
(see also Fig. 6.6 and Figs. 6.7, 6.8, and 6.9). An extensive evaluation of the barrier
ODF is a subject of future work.

6.4.2 Finslerian scalar measures

The scalar measures we described in Section 6.1.2 are intended to give a quick un-
derstanding of what the diffusion in a voxel looks like, and to what extent it can be
modeled as either a Riemannian or a Finsler manifold. First, we defined a number of
scalarmeasures in analogy to existingDTI and non-Gaussianitymeasures. These per-
form as expected, as seen in Figs. 6.13 and 6.14, but have to be interpreted somewhat
differently. The merit of these maps compared to (or in conjunction with) existing
ones, e.g. as biomarkers, remains to be investigated. Note that there exist alternative
(geometrical) non-Gaussianity measures that we have not considered here. In earlier
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work, Florack et al. [132] proposed for example a non-Gaussianity measure based on
the Cartan one form Ci :

Ci �
∑
j,k

1
4 g jk ∂3F2

∂y i∂y j∂yk
. (6.24)

A Cartan scalar field can be then defined for example as∑
i , j

∫
Ix M

g i j(x , y)Ci(x , y)C j(x , y) µx(dy), (6.25)

which is identically zero if and only if F describes a Riemannian manifold.
Wehave further defined a new scalarmeasure called non-Finslerianity, also briefly

discussed in Section 3.5.1. Barring partial volume effects and spatial variability in the
medium characteristics, this measure is designed to show the extent to which a
measured stochastic process is Finslerian in nature. Where this measure is low, we
can be reasonably confident that the Finslerian framework adequately represents
the information in the signal. If the measure is high, and partial volume effects are
negligible, this likewise implies that the Finslerian framework does not capture the
full information, meaning that a more complex framework would be necessary. We
discussed such extensions of the Finslerian case in Section 3.5.3. Our initial results,
Fig. 6.16, suggest that both partial volume effects (as defined in Assumption 1) and
non-Finslerian characteristics are small in large parts of the white matter.

So far we have neglected partial volume effects, but if we assume instead that the
measured processes are truly Finslerian, then the non-Finslerianity can actually be
interpreted as a (lower bound)measure of these partial volume effects. In that casewe
could for instance add extra compartments to the model, with weights depending on
the non-Finslerianitymeasure, or, preferably,move towards higher resolution data. In
reality the true situation is likely somewhere in themiddle,with the non-Finslerianity
measure clouded by both effects to some extent.

6.4.3 Riemannian measure glyphs

The last of the descriptors proposed in this chapter is the Riemannianmeasure glyph,
which is defined by one of various scalar measures computed for the orientation-
dependent fundamental dual tensor associated with the Finsler function. This ten-
sor describes differential structure of the figuratrix around a given orientation, see
Fig. 5.2, and thus describes the behavior of particles that approximately move along
that orientation.

Figs. 6.19, 6.20, and 6.21 show an apparent decrease in the orientation-dependent
fractional anisotropy (FA) perpendicular to the expected fiber orientation—-similar
to the relation between the barrier ODF and the indicatrix. The important conclusion
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(a) (b)

Figure 6.23:The tubes represent local orientations colored according to theunderlyingfiber pathways these
orientations represent. The gray crossing in the center represents both the green and the red pathways,
and the figures show a bending configuration (a) and a crossing configuration (b). A large segment of
current tractography algorithms are based on the local peaks of ODFs, which do not provide sufficient
information to resolve situations such as the one depicted here. Deterministic algorithms will at most
resolve one of these configurations accurately, while probabilistic algorithms can at best produce both
configurations as options. Orientation-dependent measures may help in identifying the correct paths, by
providing additional information for each orientation that can be used to group orientations that likely
represent the same pathways, inspired by various microstructure informed tractography approaches that
have recently been proposed [22, 78, 79, 151].

that we can draw from this, is that the local shape of the diffusion profile appears to
provide information about the underlying fiber pathways. Though observable effects
at clinical b-values are subtle, this suggests thatwemay be able to extract fiber-specific
(tractometric [34, 76, 82, 172, 173]) features from the data, that could for example be
used to help correctly resolve ambiguous pathway configurations, cf. Fig. 6.23. This
is particularly relevant in light of recent work [104, 225] that reports an alarmingly
high percentage of false positive tracts in all existing tractography algorithms, which
may be largely due to this kind of ambiguities.

We have not focused in this chapter on which tensor features specifically could be
relevant in different contexts. The introduction of these measures should probably
be application-driven, e.g. radial diffusivity (cf. Section 2.3.1) may capture some dis-
persion index, that could be useful as a biomarker in neurodegenerative diseases [72,
382]. We also note that the main eigenvector of the fundamental tensor is in gen-
eral not aligned with the orientation supplied to the fundamental tensor, and could
provide further information about the local structure. The main eigenvector has for
example been used by Astola et al. [17] in a streamline-based tractography algorithm.

Keeping in mind the notion that the Riemannian measure glyphs are expected
to be characteristic of particular fiber pathways, we could expect that the barrier-
weighted measures might for example diminish ‘artificial’ drops in FA around com-
plex fiber configurations. At the current κ however, this effect is minor—a close
comparison between the barrier-weighted and the DTI-based measures only reveals
a slightly improved contrast in the former, visible e.g. near the cortical gray matter.
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In this chapter we discuss howRiemannian and Finsler geometry, and specifically the
relatedgeodesic tractography, canbe levied to analyze structural connections between
different brain regions. We thus move from the purely local information discussed in
the previous chapter, to information found by combining data acquired at different
points in the brain. Though our focus is entirely on neuroimaging applications, we
note that geodesics are of fundamental importance in geometrical frameworks.

In geodesic tractography white matter is represented by a manifold, as covered
extensively in Part I, with the added conjecture that neural fibers coincidewith certain
geodesic curves. In this way the problem of tractography[26, 33, 68, 69, 99, 180, 242,
287, 299, 310], the general term for reconstructing fiber pathways from diffusionMRI
data, becomesoneoffindinggeodesics. This is attractive fromapractical point of view,
as it obviates theneed for adhoc stoppingandbending criteria necessary in traditional
fiber tracking algorithms. It also tends to be more robust to noise compared to other
methods, and finally, it has the conceptual advantage that Riemannian and Finsler
geometry provide well-understood and powerful theoretical machinery facilitating
algorithmics.

On the other hand, the relationship between geodesics and neural tracts is not as
clear as it is in alternative approaches. Geodesics can be computed between any two
points in a (compact) manifold, while we know for a fact that not all regions in the
brain are interconnected. This means that we will need to know in advance which
points are connected, and/or determine some additional criteria that can be used
to select only those geodesics that represent fiber pathways. Furthermore, there are
arguments against the assumption that neural fibers should in general coincide with
geodesics, such as the observation that standard Riemannian geodesics tend to move
away from the centerline in bending fiber bundles. Recent work by Hao et al. [163]
shows that this issue can be addressed by locally scaling the standard Riemannian
metric, and along the same lines we review in this chapter the impact of using a
scaled geometry (Chapter 2) for Riemannian tractography.

Finsler geometry was invoked in tractography works by Pichon et al. [271] and
Melonakos et al. [227, 228], to take advantage of the additional information present
in high gradient strength diffusion-weighted data that is not taken into account in
Riemannian geometry. The authors computed shortest geodesic tracts based on dif-
ferent ad hoc relations with the diffusion MRI signal, which have since been used
in other works [38]. A different definition of the Finsler function was employed by
Astola et al. [17], who illustrate somemore technical applications of Finsler geometry,
while thework of Sepasian et al. [307] extends shortest geodesic tractography to allow
multiple geodesic connections between points. Finally, the first geodesic connectiv-
ity analyses were performed by de Boer et al. [38], which also marks the first time
Finsler geometry was used for a group analysis of diffusion MRI data. In geodesic
connectivity, shape and diffusivity properties of geodesics are combined to get an
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idea of the connection strength between regions. These results can be interesting, but
a significant downside is the lack of publicly available tools that can perform these
types of analyses. For this reason, along with the technical content of even introduc-
tory works on Finsler geometry, Finsler-based methods have been inaccessible to the
majority of diffusion MRI researchers. In this chapter we aim to provide an infor-
mal introduction to the core concepts involved with geodesic tractography and con-
nectivity computations, based on Antonio Tristán-Vega’s Riemannian tractography
module (RTM, nitrc.org/projects/riemantract) and the recently released Finsler
tractography module (FTM, available at github.com/tomdelahaije/fcm, adapted
from nitrc.org/projects/finslertract).

In Section 7.1 we describe the ideas behind geodesic tractography, before describ-
ing the used tractography and connectivity algorithms in Section 7.2. We look at
Riemannian geodesics in a tumorous brain using different metrics, and as a practical
illustration of Finsler-based analyses we compute the connectivity for a number of
well-known major fiber bundles in a high resolution public data set. We also dis-
cuss how the connectivity algorithm might be used in group studies. As a proof of
concept, we use our method to study group differences in autism spectrum disorder
data with network-based analysis techniques. The results of these experiments are
presented in Section 7.3. Finally we discuss some strengths and shortcomings of the
approach in Section 7.4. Parts of the results in this chapter were presented at the
CDMRI workshop [140, 142].

We rely on different implementations for practical computations in Riemannian
and Finsler geometry, as the Riemannian-constrained versions of algorithms are
typically more efficient than their Finslerian counterparts. The principles behind
these algorithms are however the same, and so we will explain the ideas behind
geodesic tractography and connectivity analyses only for the Finsler case.

7.1 Theory

7.1.1 The Finsler function as a cost function

Finsler geometry provides a means to measure distances on Finsler manifolds, recall
Section 3.1. The distance between two points in a Finsler manifold is defined similar
to the standard Euclidean distance, namely in terms of the length of the shortest curve
connecting the two points. The length LF(C) of a curve C : [0, L] → M is still a sum
over infinitesimal line elements dC, but the associated length of each line element
is now weighted with the Finsler function F depending on both its position and its
orientation

LF(C) B
∫ L

0
F

(
C(t),

ÛC(t) ÛC(t)
)  ÛC(t) dt , (7.1)
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where ÛC(t) � dC
dt (t). As the Finsler function F is (positively) homogeneous of degree

one in its second argument (recall Section 3.1.1), it follows that Eq. (7.1) reduces for
the isotropic Finsler function F

(
C(t), ÛC(t)) �

 ÛC(t) to the Euclidean length of the
curve,

LE(C) B
∫ L

0

 ÛC(t) dt . (7.2)

Homogeneity further implies that Eq. (7.1) is equivalent to Eq. (3.9), and gives

F
(
C(t), dC

dt
(t)

)
dt � F(C(t), dC(t)) , (7.3)

which clarifies the interpretation of F as a function acting locally on an infinitesimal
dC. At the same timewenote that the homogeneity of F (Section 3.1.1) guarantees that
the length F(C(t), dC(t)) associated to dC is determined solely by its orientation—not
by its magnitude—and that LF(C) is independent of the (proper) parametrization of
C. As a technical aside we observe that homogeneity also implies that F is strictly
speaking defined onlywhen

 ÛC(t) , 0 for all t, and for this reasonwe have to assume
a parametrization of C that avoids this issue. To simplify the following discussion
we assume without loss of generality that

 ÛC(t) � 1, i.e., we assume that ÛC(t) is an
element of the sphere S2 ⊂ TC(t)M.

As discussed in Chapter 3, the Finslerian framework for diffusion MRI models
the brain as a Finsler manifold, by deriving a Finsler norm from diffusion-weighted
data. Different choices for the Finsler function have been proposed in the context of
geodesic tractography based on thewell-known correlation between the local amount
of diffusion in a certain direction, and the large-scale structural orientation of white
matter [30, 242]. By deriving (or, in this chapter, assuming) a correspondence between
the Finslerian length of a curve and the amount of diffusion along a curve, we can
leverage a rich set of Finsler geometrical tools for the analysis of diffusion data.

Bearing this inmind, the Finsler norm is generally defined such that somemeasure
of diffusivity (e.g. a diffusion orientation distribution function [347], or dODF) at a
given point and in a certain direction, is inversely related to the associated length. In
other words, we have that a large diffusivity at a point x ∈ M along a vector y ∈ Tx M,
corresponds to a small norm F(x , y). This leads to the useful alternative viewpoint of
the Finsler norm as a kind of cost function. If we consider a displacement in direction
y as a parameter that can be controlled, then F can be interpreted as associating a
high cost tomovement in a directionwith low diffusivity, and a low cost tomovement
in directions of high diffusivity.
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7.1.2 Geodesics

A prime example of analysis tools made available by the geometrical framework are
the geodesics introduced in Sections 2.1.3 and 3.1.3. In diffusion MRI, geodesics are
typically regarded as curves along which one encounters, in some sense, optimal
diffusivity. More specifically, geodesics connecting two given points are those curves
for which the lengthLF is (locally) minimal, and can thus be viewed as the Finslerian
analogue of ‘straight lines’. The existence of a geodesic between any two points in
the Finsler manifold is guaranteed [21, Chapter 6.6], which means that we can find
optimal connections between any two points or regions of interest. For now we will
assume that the shortest geodesic between two points, called the minimal geodesic,
is uniquely defined.

In practicewedetermineminimal geodesics using a fast-sweeping algorithm [228]
based on the principle of optimality, which states that given a unique minimal ge-
odesic C : [0, L] → M, the geodesic segment between the points C(a) and C(b),
a , b ∈ [0, L], is necessarily identical to the geodesic between these two points. If we
write L∗F(x) for the shortest (geodesic) distance from a point x ∈ M to a seed region
B ⊂ M relative to F, then

L∗F(x) B inf
C
{LF(C) | C(0) � x , C(L) ∈ B}

� inf
C

{
L∗F (C(T)) +

∫ T

0
F
(
C(t), ÛC(t)) dt

��� C(0) � x
}

(7.4)

for all T ∈ (0, L), cf. 7.1. From the Taylor expansion

L∗F (C(T)) � L∗F(x) + yx
(L∗F ) T + O (

T2) , (7.5)

where yx denotes the directional derivative along y ∈ S2 at x ∈ M (recall Section 1.3)
and where we use the shorthand notation x � C(0) ∈ M and y � ÛC(0) ∈ S2, we find
the Hamilton–Jacobi–Belmann equation in the limit T → 0:

inf
y∈S2

yx
(L∗F ) + F(x , y) � 0. (7.6)

Together with the initial condition

L∗F(x) � 0 for x ∈ B, (7.7)

repeated application of Eq. (7.6) allows us to compute the complete L∗F map for
all x ∈ M. Riemannian geodesics are computed in the exact same way, by simply
defining an appropriate Riemannian Finsler function (see Section 3.1.1). Additional
details on the algorithm follow in Section 7.2.1.4.
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Figure 7.1: The principle of optimality states that segments of the minimal geodesic between two points
are themselves geodesic. The black curve represents the optimal curve C (minimal geodesic) connecting
the point x to the seed region B, i.e., the curve C that minimizes the Finslerian length functional LF .
The distance L∗F(x) from x to B is defined as the length of the optimal curve C that connects the two. If
L∗F (C(T)) is known for C(T) near x, the principle of optimality allows us to compute L∗F(x) by solving the
Hamilton–Jacobi–Bellman equation (Eq. (7.6)). As L∗F(x) � 0 for all x ∈ B, repeated application of Eq. (7.6)
allows us to compute L∗F for all x ∈ M.

This method is relatively fast, but as explained before it is limited in that it only
finds the shortest geodesic out of the possibly many geodesics connecting two given
points [305]. We will assume for now that the relevant information is captured by
the minimal geodesic. More information on fast-sweeping algorithms can be found
in the references [191, 192, 386].

Returning to the context of diffusionMRI, the optimal diffusivity along geodesics
is made more precise by the inverse relation discussed in Section 7.1.1. With the
cost function interpretation of F, we note that geodesics correspond to curves along
which the accrued cost is minimal. Because of the inverse relation between the cost
and the local diffusivity, geodesics thus minimize movement in directions of low
diffusivity.Additionally,we see that the Finslerian lengthLF of a curve approximately
corresponds to the average reciprocal diffusivity along the curve.

7.2 Methods

Geodesics have been used as a tool in tractography, based on the hypothesis that
(some small subset of) geodesics between two points coincide with the physical con-
nections between them. This approach has certain practically advantageous features;
it relies on the full diffusion information available (unlike deterministic streamline
tractography for instance), and has essentially no parameters that have to be tuned.
The riemanntract and finslertract packages available on nitrc.org can be used
to perform geodesic tractography with the different metrics.

Geodesic connectivity analysis is based on the hypothesis that curves of optimal
diffusivity between two points contain information on the likelihood of a structural
connection. This does not necessarily imply that such curves trace existing physical
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connections. In this section we discuss the options for the Riemannian metrics com-
pared in Section 7.3, and the options for the Finsler function in the FTM as well as
two available geodesic-based path and connectivity measures that have been studied
in a number of recent works.

7.2.1 Implementation

7.2.1.1 The Riemannian metric

The standard choice g � D−1 for the Riemannian metric [86, 141, 218, 254, 270],
Eq. (2.15), directly relates the metric to the diffusivity along a given orientation. Geo-
desics obtained through this metric thus represent the most likely paths along which
a spin undergoing Brownian motion moves between two points in the manifold. As
an alternative we consider the scaled metric discussed in some detail in Chapter 2,

g̃ B det(D) D−1. (7.8)

We will refer to the scaled metric as the adjugate, since det(D) D−1 � adjD, and refer
to the standard metric as the inverse. The adjugate metric was originally proposed
in works by Fuster et al. [141, 142], and has since been considered in a number of
works [299, 306].

7.2.1.2 The Finsler function

The choice for the Finsler function F in terms of the diffusion signal is the primary
degree of freedom in the Finslerian framework, and determines to a large extent how
geometrical features such as geodesics can be interpreted. The most common choice
for F found in the literature was proposed by Melonakos et al. [227] and is given by

Fold(x , y) B
(

S(x , y)
Ψd(x , y)

)3

, (7.9)

with y ∈ S2 and S the diffusion MRI signal acquired on a fixed b-value shell,
and where Ψd is the diffusion ODF defined in terms of the Funk–Radon transform
(e.g., [347], recall also Eq. (6.7)). The power 3 is used as a type of sharpening. The
choice F � Fold has been shown to produce reasonable tractography results e.g.
near the cingulum bundle [228], and it has been used in the literature by de Boer
et al. [38]. However, it lacks a clear relation with existing metrics in the Riemannian
framework—we expect the Finsler function in case of Gaussian diffusion to reduce to
a Riemannian norm compatible with the structures derived in Chapter 2.
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As an alternative we postulate a new choice for F:

Fnew(x , y) B MD(x)
Ψsa(x , y) , (7.10)

whereMD is a generalization of themean diffusivity used in diffusion tensor imaging
(DTI, Chapter 2) [27] defined as the S2-average apparent diffusion coefficient [263],
and Ψsa is the solid angle dODF [2]. For purely Gaussian diffusion, Fnew corresponds
to (the cost function of) a sharpened version of the Riemannian metric given by the
adjugate diffusion tensor [141, 142], cf. Chapter 2 and Section 7.2.1.1.

The relation between Fnew and the adjugate g̃ , Eq. (7.8), can be recognized in the
exact expression for the normalized ODF [210]

Ψd(x , y) � MD(x)√
yT · det D(x) D−1(x) · y

, (7.11)

where MD is the mean diffusivity, det D is the determinant of the diffusion tensor,
y ∈ S2 is a direction unit vector, and D−1 is the inverse of the diffusion tensor, recall
Chapter 2. Nextwe note that the denominator in this equation is the normof direction
vector y in the Riemannian space equipped with the metric g̃ :

‖y‖ g̃ �

√
yT · det(D) D−1 · y �

√∑
i , j

g̃i j y i y j . (7.12)

Combining Eqs. (7.11) and (7.12) we find

‖y‖ g̃ �
MD(x)

Ψd(x , y) , (7.13)

and replacing the Ψd with the sharper Ψsa produces the proposed Fnew metric
(Eq. (7.10)).

Remark 13. The work presented in this chapter precedes the results from Chapter 3 where
we derived a fundamental relation between diffusion MRI data and Finsler geometry. In the
remainder of this chapter wewill focus on the definitions employed in the literature as described
in this section. Note that the ad hoc Finsler functions of this chapter do not necessarily satisfy
the defining properties of a Finsler function as given in Section 3.1.1, and an additional
justification of their validity as input to any geodesic tractography algorithm is required, c.f.
Melonakos et al. [227, App. A].
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7.2.1.3 Path measures

Geodesic-based connectivity analysis combines a variety of curve shape measures
with measures derived from the diffusion signal along the curve into a single path
measure. This shape measure could be as simple as the Euclidean length, while
more advanced shape measures such as local curvature and torsion are possible
but used less frequently. The diffusion signal is encoded in the Finslerian length,
representative of the total diffusivity, or the Finslerian speed, representative of the
local diffusivity, or in a set of statistical measures such as the quantiles, mean, and
standard deviation of the Finsler function evaluated along the geodesic. The heuristic
definition of connectivity in terms of path measures is discussed in Section 7.2.2.3.

The basic path measure used in the Finsler tractography module is defined as

Cavg(C) B LF(C)
LE(C) , (7.14)

which is the Finslerian generalization of the most commonly used measure in Rie-
mannian geodesic connectivity analysis [18, 219]. This measure can be interpreted as
the average cost incurred along the geodesic, which is expected to be low for curves
between two well-connected regions.

The second available path measure is defined as the largest local cost along a
geodesic, given by

Cmax(C) B max
t

F

(
C(t),

ÛC(t) ÛC(t)
)
. (7.15)

The Cmax path measure was originally proposed in the Riemannian setting by
Pechaud et al. [269]. Although this measure might be expected to be very sensitive to
noise, it should be noted that it is based on the same (intrinsically smooth) geodesics
as the Cavg measure, and is thus as stable as Cavg. The Cmax measure highlights geo-
desics that have continuously strong diffusivity along their paths, in contrast to the
Cavg measure for which a locally weak diffusivity might be offset by very strong dif-
fusivities further along the geodesic. Again, a low value of the path measure implies
a high connectivity.

7.2.1.4 Slicer modules

In the pseudo-code below (Alg. 1) we present a modification of Melonakos’ fast-
sweeping algorithm [227], with the additional steps needed to compute the proposed
path measures (Eqs. (7.14) and (7.15)). In analogy with the notation for the distance
mapL∗F , which gives the shortest distance between each point and the seed region B,
we define C∗avg and C∗max as the path measure maps that give for each point the path
measure associated to the geodesic from that point to the considered seed region.
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Similarly, we define L∗E as the shortest Euclidean distance between each point and
the seed region, and y∗ as the tangent to the geodesic at each point. The algorithm
is based on the observation that for a solution of Eq. (7.6), the Finslerian distance
between x and the nearby point1 exp(x , y) for ‖y‖ small is simply given by F(x , y).
In the FTM interpolation is done linearly [227], but alternative methods are possible.

Algorithm 1: The fast-sweeping algorithm used to compute the maps L∗F , C∗avg,C∗max, and y∗, adapted from Melonakos et al. [227]. The implementation was
based on the finslertract project of Antonio Tristán-Vega.

Data: A seed region B and a Finsler function F;
Result: The distance map L∗F , tangent map y∗, and path measure maps C∗avg and C∗max;
Initialize L∗F(x < B) ← ∞, L∗F(x ∈ B) ← 0, L∗E(x) ← 0;
repeat

foreach position x do
(y∗)′(x) ← argminy∈S2 L∗F(x + y) + F(x , y);
(L∗F)′(x) ← L∗F (x + (y∗)′(x)) + F(x , (y∗)′(x));
if (L∗F)′(x) < L∗F(x) then

y∗(x) ← (y∗)′(x);
L∗F(x) ← (L∗F)′(x);L∗E(x) ← L∗E (x + y∗(x)) + 1;
C∗avg(x) ← L∗F(x)/L∗E(x);
if F(x , y∗(x)) > C∗max (x + y∗(x)) then
C∗max(x) ← F(x , y∗(x));

else
C∗max(x) ← C∗max (x + y∗(x));

end
end

end
until convergence of L∗F ;

The FTM typically returns two scalar maps—a distance map L∗F and the cor-
responding path measure map—based on an input diffusion-weighted data set that
provides F, an optionalmask image, and a labelmap containing labeled seed regions.
The choice between Fold and Fnew can be supplied as well, along with a choice of the
path measures Cavg and Cmax and further resolution and convergence parameters
(e.g. the maximum order used in the spherical harmonic representation of F). The
distance map provides at each position the shortest Finslerian distance to the seed
region in accordance with Eq. (7.4), and the path measure map gives the path mea-
sure associated with the shortest geodesic connecting each point to the seed region.
Geodesics can be computed if the internally generated tangent vectormap is returned
as well. The FTM is available at github.com/tomdelahaije/fcm, and can be used as
a command-line tool.

The Riemannian tractography module (nitrc.org/projects/riemantract, by
Antonio Tristán-Vega) computes Riemannian geodesics based on the adjugate met-
ric, using an implementation similar to the one discussed for the FTM. Geodesic

1Recall that the exponential map exp(x , y) represents displacements in a Finsler manifold along the
geodesic that is tangent to y in the point x, cf. Eq. (3.10).
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tracking based on the normal metric was done with in-house software. Wavefront
propagation methods like fast-sweeping have been used for tractography in various
related works [17, 29, 51, 103, 169, 171, 266, 281, 305, 343]. Research into the optimal
implementation of Finsler geodesic tracking is ongoing [231].

7.2.2 Experimental design

We only look at Riemannian geodesic tractography, as the advantages of geodesic
tractographyweigh heaviest in the low b-value regime of the Riemannian framework,
and focus in particular on the difference between the standard choice for the metric,
g � D−1, and the scaled metric tensor g̃ � det(D) D−1 proposed in Chapter 2.
This choice is compared on synthetic data and on a patient data set. We further
demonstrate the performance of the proposed Finsler-based connectivity analysis
in two different settings: (1) a qualitative validation based on data from the WU-
Minn Human Connectome Project (HCP), and (2) a quantitative network analysis of
connectivity in autism spectrum disorder.

7.2.2.1 Geodesic tractography

Synthetic data The synthetic data set is generated by placing tensors 1
2 A(ϑ) (Sec-

tion 3.3.4) along curves to form fiber pathways, where ϑ is chosen such that the
principal eigenvector is parallel to the nearest part of the centerline. Each voxel from
which the distance to the centerline is smaller than 1.5voxels is considered to be part
of the fiber. The centerline is constructed by joining a half circle of radius 5voxels, a
horizontal straight line of length 5, a quarter circle of radius 8 and finally a straight
vertical line of length 5. Any voxels outside a range of 1.5voxels from the centerline
are replaced by isotropic tensors with a mean diffusivity of 4.5 × 10−3 mm2/s. The
ratio between the mean diffusivity of the isotropic tensors and the largest eigenval-
ues of the pathway tensors (the axial diffusivity) is based on average values at the
interface between the corticospinal tract (CST) and the cerebrospinal fluid (CSF) as
found in the literature, see Table 7.1. The data set and the geodesics are visualized
together using vIST/e (bmia.bmt.tue.nl/software/viste).

Real data In addition to the synthetic data we will evaluate the Riemannian tracto-
graphyperformance on apatient data set. Thedata set has 64gradient directions anda
b-value of 3000 s/mm2, with 128×128×60voxels and a voxel size of 1.75×1.75×2mm3,
and was acquired from a patient with a tumor located next to the ventricles. We have
segmented the cerebrospinal fluid inside the ventricles together with the tumor for
our visualizations. Seeds are placed in the cerebral peduncles, with a number of
target regions in the motor cortex and near the cingulum. Tracts are visualized with
3D Slicer [272].
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Table 7.1: Mean and axial diffusivity values in cerebrospinal fluid (CSF) and white matter (WM) in the
corticospinal tract (CST), expressed in units of 10−3 mm2/s. Literature references are indicated in the table.
WM-CSTdiffusivity value in [229] corresponds to the posterior limb of the internal capsule,which contains
a.o. corticospinal fibers.

Regions MD AD
CSF 3.2 [7, 213] −
WM-CST − 1.0 [229]

1.1 [36]
1.2 [188]

Table 7.2: Parameter values used for deterministic and probabilistic CSD-based fiber tracking as imple-
mented in the MRtrix package.

Parameters Deterministic CSD Probabilistic CSD
Step size 0.5mm 0.2mm
Minimum radius of curvature 0.5mm 2.0mm
fODF amplitude cutoff 0.1 0.15
fODF amplitude cutoff for initiation 0 0

For comparison we also include constrained spherical deconvolution-based [342]
deterministic and probabilistic fiber tracking using MRtrix [341] (CSD, mrtrix.org).
See Section 6.1.1.3 for a brief explanation on CSD. The deterministic tractography
algorithm follows the peaks of the fiber orientation distribution (fODF), and in the
probabilistic case tractography is based on orientations sampled from the fODF at
each step. The algorithm parameters are optimized for this particular data set by
visual inspection, and can be found in Table 7.2. The cerebral peduncles are again
used as seed regions, and only fibers reaching the target regions in the motor cortex
are selected.

7.2.2.2 Qualitative validation of geodesic-based connectivity

The qualitative Finsler connectivity validation experiments presented in Section 7.3.2
are based on the pre-processed data of a single healthy subject in the WU-Minn
Human Connectome Project [351], released as part of the HCP 500 Subject Re-
lease. The data was acquired on a modified 3T Siemens scanner, with 1.25mm
isotropic voxels. The diffusion-weighted images are acquired on three shells (b �

{1000, 2000, 3000} s/mm2) with 90 uniformly distributed gradient directions each,
together with 18 baseline images. We express Fold and Fnew in terms of spherical
harmonics (maximum order 6), based on the b � 3000 s/mm2 shell. T1 data with an
isotropic voxel size of 0.7mm was also available. Further details on the acquisition
protocol can be found on the HCP web site and in the references [8, 152, 351].

All maps based on theHCP data are seeded frommanually selected voxels within
the white matter, one voxel per bundle, based on the DTI white matter atlas by Catani
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and Thiebaut de Schotten [59]. Seeds are placed in four well-known major white
matter bundles: the cingulum, the arcuate fasciculus, the corticospinal tract, and the
splenium of the corpus callosum.

7.2.2.3 Network analysis in autism spectrum disorder

In recent years, the view that the functional and structural systems of the brain
can be modeled as complex networks has motivated a large amount of research on
the application of graph theoretical concepts to brain network analysis [44, 291].
The standard graph network model of the brain consists of a set of nodes, which
represent a partitioning of the cortex and other gray matter structures. These nodes
are connected via a set of edges, or links, that represent structural and/or functional
connections between gray matter partition units. Such a graph model of the brain’s
network organization can be constructed from a variety of imaging modalities such
as structural MRI, diffusion MRI, functional MRI, or EEG/MEG. In this setting, a
characterization of the organization of the different computational nodes and the
functional interaction between them is achieved via graph theoretical analysis [44,
291].

In order to provide an illustration of how the Finsler connectivity framework
could be applied to population studies in a clinical setting, we present here a proof
of concept network-based analysis of our Finsler connectivity approach, applied to
autism spectrum disorder (ASD) data. To do so, we use a paradigm that is commonly
used in network-based studies of brain connectivity. Specifically, we build a graph
model of the brain, where graph nodes represent gray matter regions as defined
through a FreeSurfer parcellation based on the Desikan–Killiany atlas [105]. The edge
weights in this model represent the Finsler connectivity between pairs of FreeSurfer-
defined graymatter regions. Once this networkmodel is constructed for each subject,
we compute its local efficiencymeasure. The local efficiencymeasure [291] is oneof the
many standard graph-theoretical measures that are commonly computed in network
analysis studies, in order to quantitatively summarize the network structure. It is
possible to compute other measures as well, but since this experiment is meant only
as an illustration, we focus on a single measure that has been previously implicated
in ASD [221, 292].

Subjects and data acquisition Diffusion and structural MRI data were acquired
from 69 typically developing male controls (TDC, age range: 8.0–14.4years, mean:
10.7, standard deviation: 1.8) and 46 age-matched male autism spectrum disorder
patients (ASD, age range: 8.1–14.1years, mean: 10.7, standard deviation: 2.0). A t-test
for difference in age between the two groups resulted in a p-value of 0.98.

All imaging was performed using a Siemens 3T Verio scanner with a 32 chan-
nel head coil. Structural images were acquired on all subjects using an MP-RAGE
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imaging sequence (TR � 19 s, TE � 2.54ms, TI � 0.9 s, 0.8mm in-plane resolu-
tion, 0.9mm slice thickness). In addition, a single shell high b-value acquisition was
performed using a monopolar Stejskal–Tanner diffusion-weighted spin echo, echo-
planar imaging sequence with the following parameters: TR � 14.8 s, TE � 110ms,
b � 3000 s/mm2, 2mm isotropic resolution, with 64 gradient directions and with two
baseline images. The diffusion-weighted images of each subject were filtered using a
joint linear minimum mean squared error filter to suppress Rician noise [345]. Eddy
current correction was performed using registration of each volume to one of the
baseline images. The same data has been used for example in a study by Caruyer and
Verma [56].

FreeSurfer parcellation FreeSurfer is a freely available software toolbox that recon-
structsmesh-basedmodels of the cortical surface [80, 127], andprovides aparcellation
of the cortex into neuro-anatomical areas using both the geometrical model of the
cortical surface and neuro-anatomical convention [126].

For the present set of experiments, we computed a FreeSurfer parcellation for
each subject based on the Desikan–Killiany atlas [105], which resulted in a total of
86 cortical and sub-cortical gray matter regions. FreeSurfer parcellations are initially
defined in each subject’s T1 standard space. In order to allow for these gray matter
regions of interest to be used as seed regions for Finsler connectivity analysis, we
registered the FreeSurfer parcellation to the diffusion MRI space using non-linear
registration.

Connectivity matrix construction The path measures discussed in Section 7.2.1.3
are length-based, i.e., low values indicate a short connection distance, which is equiv-
alent to a high connection strength. From these path measures we can heuristically
derive a new measure that signifies a general notion of connectivity, the values of
which are bounded to lie between 0 and 1 such that small values indicate low con-
nection strength.

For each subject in our study, we constructed an 86 × 86 connectivity matrix C,
whose i j-th entry Ci j represents the connectivity between the i-th and j-th FreeSurfer
regions. Each entry Ci j is computed as follows. First, seeding in the i-th region, we
run our Finsler connectivity algorithm to produce a path measure map for the entire
brain. Then, the values for the path measure in the spatial extent of the j-th region
are averaged for each j , i, which results in the average path measure values mi→ j .
This process is repeated for all seed regions i. Finally, we construct the connectivity
matrix C:

Ci j �

{
exp

(
−ν mi→ j+m j→i

2

)
if i , j

1 if i � j
. (7.16)
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Note that C is a symmetric matrix by construction, so each pair of regions has a
uniquely defined connectivity value. The scaling parameter ν is set to 0.1 for the
presented experiments, producing a reasonable spread of connectivity values over
the range [0, 1].

As an example, Fig. 7.2 shows a coronal slice through a path measure map com-
puted on one of the TDC subjects. This map was seeded in the left caudal middle
frontal gyrus region, as defined by a FreeSurfer segmentation using the Desikan–
Killiany atlas as described above. The seed voxels that intersect this particular coronal
slice are shown in white color outlined with a black boundary. The path measure
map itself is shown in a modified temperature color map, such that bright red colors
indicate a lowpathmeasure (high connectivity) and a dark blue color indicates a high
path measure value. Thus, in order to compute mi→ j , where i indicates the caudal
middle frontal region, and j indicates any of the other FreeSurfer-defined regions, we
average the values of this pathmeasure map over the voxels that comprise FreeSurfer
region j. Intuitively, regions that are well-connected to region i will result in low
values for mi→ j , which in turn will lead to higher connectivity values Ci j according
to Eq. (7.16).

In addition to illustrating the concept of a pathmeasure map and the correspond-
ing computation of mi→ j , Fig. 7.2 also provides a comparison between the Fnew- and
the Fold-based metrics. With the caudal middle frontal gyrus as a seed region, the
newly proposed Fnew-based metric results in the recovery of the known transcallosal
connectivity to the opposite hemisphere (Fig. 7.2, left). In contrast, the Fold-based
metric produces a map (Fig. 7.2, right) that has drawbacks similar to known artifacts
observed with tractography on single-tensor DTI data. In particular, the connectivity
does not reach the contralateral cortical regions, as it appears to stop in the well-
known region of three-way crossings between the corpus callosum, the corticospinal
tract and the superior longitudinal fasciculus. On the other hand, connectivity ap-
pears to ‘leak’ into the corticospinal tract of both hemispheres, as well as into other
white matter tracts that do not have direct anatomical connectivity with the seed
region. Furthermore, the Fnew-basedmetric correctly identifies CSF areas, such as the
ventricles, and assigns a high path measure (low connectivity). In contrast, the Fold-
based metric does not detect CSF and as a result propagates connectivity through
CSF regions, which is clearly anatomically incorrect. The differences between the two
metrics is addressed in more detail in Section 7.3.2.

Computation of local efficiency and statistical analysis Once the connectivity
matrix C is computed for each subject, we compute its local efficiency measures
using the Brain Connectivity Toolbox [291]. The local efficiency of a network is a
quantity computed at each node of the network, such that it quantifies the network’s
resistance to failure at the local scale. In other words, it quantifies the importance of
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Fnew Fold

Figure 7.2:A comparison of Cmax pathmeasuremaps, using the Fnew- and Fold-basedmetrics on data from
one of the TDC subjects. These maps are seeded in the left caudal middle frontal gyrus region, as defined
by FreeSurfer. The seed voxels that intersect this particular coronal slice are shown in white. Bright red
voxels are strongly connected to the seed region according to the used path measures, while dark voxels
are weakly connected.

a graph node by measuring how well information is exchanged by the immediate
neighbors of the node when it is removed. Thus, in the present experiment, this
computation results in a 1 × 86 vector, such that its i-th element corresponds to the
local efficiency measure of the i-th FreeSurfer region.

In the present experiment, we are interested in performing a statistical test for a
group difference between the TDC and ASD groups of subjects based on their local
efficiency vectors. To reduce the number of multiple comparisons, we do not test
each region individually but perform a one-way multivariate analysis of variance
(MANOVA) to compare the mean vectors for the two groups. This is a statistical test
for the null hypothesis that the mean local efficiency vectors of the TDC and ASD
groups are the same. If we can reject this null hypothesis, we conclude the two groups
differ in terms of their local efficiency measure, although the test does not identify
specific regions that may be responsible for this difference.

7.3 Results

7.3.1 Geodesics in the scaled manifold

7.3.1.1 Results on synthetic data

Figs. 7.3, 7.4, and 7.5 show geodesic tractography results for the synthetic data cor-
rupted with increasing amounts of Rician noise, parameterized by the standard
deviation σ of the underlying normal distribution. Each of the figures compares the
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scaled metric proposed in Chapter 2 with the standard metric g � D−1, and with
sharpened versions of both using power sharping similar to Eq. (4.23):

(D , s) 7→ (det D) 1−s
3 Ds , (7.17)

where s is the sharpening power. Seeds and targets are placed at the inflection point
and at the boundaries of the fiber pathways.

For this particular data set, we find that for both the short and for the long
fibers, geodesics obtained with the inverse diffusion tensor take a shortcut through
the isotropic background, failing to describe the fibers in all situations (Figs. 7.3(a),
7.4(a) and 7.5(a)). With a sharpening factor s � 2 this remains the case, except for
the longer fiber in the specific case of σ � 0.15, Fig. 7.4(b). It is not until we use a
sharpening factor of s � 4 that geodesics computed for the inverse sharpened tensor
nicely follow the expected trajectories, although a slight degradation is observed for
σ � 0.3 (Fig. 7.5(c)). This effect for sharpened metrics had been shown in the work of
Sepasian et al. [305] for a sharpening power s � 2, and by Hao et al. [163] for s � 3
(but with the background masked).

On the other hand, geodesics fromadjugate tensors,with andwithout sharpening,
follow the synthetic fibers rather well in all scenarios and without taking shortcuts
through the isotropic background. Without sharpening the geodesics do still tend to
move away from the center line a bit, but the effect is much less severe than in the
inverse tensor case. A slight degradation is observed for the s � 4 adjugate sharpened
tensor when there is significant noise (σ � 0.3, Fig. 7.5(c)), which also happened
for the standard (sharpened) metric. Comparing geodesics from the unsharpened
adjugate tensor (Figs. 7.3(a), 7.4(a), and 7.5(a)) and the s � 4 inverse or adjugate
sharpened tensor (Figs. 7.3(c), 7.4(c), and 7.5(c)) we observe that the sharpened ones
follow the fibers more closely in the noiseless case. However, in the noisy case these
degrade by taking a shortcut of about one voxel while the adjugate unsharpened ones
remain almost unchanged. This is explained by an increased sensitivity to noise after
sharpening, a shortcoming that was also pointed out in the work by Hao et al. [163].

7.3.1.2 Results on real data

In Figs. 7.6, 7.7 and 7.8 we show candidate fibers reaching the trunk and foot motor
area of the cortex (upward bundle) and the lip area (bundle bending to the left), which
ought to correspond to the corticospinal and corticobulbar tracts. Results above the
ventricles are seeded consistent with the left and right cingulum. In Fig. 7.6 we show
tractography results for metrics given by the inverse and adjugate diffusion tensor,
and the outcome for inverse sharpened diffusion tensors is given in Fig. 7.7. Results
obtained with our approach, Fig. 7.6(b), seem to better resemble the anatomy of the
stipulated white matter bundles. Additionally, the curvature of the candidate fibers
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(a) s � 1 (b) s � 2 (c) s � 4

Figure 7.3: Results on synthetic data, for metrics given by the inverse diffusion tensor (black) and the
adjugate diffusion tensor (magenta) with sharpening powers s � 1 (a), s � 2 (b), and s � 4 (c). The
ellipsoids are color-coded based on the direction of the diffusion tensor main eigenvector. Geodesics
obtained with the standard inverse diffusion tensor metric fail to describe fibers except for s � 4, while the
scaledmetric based on the adjugate tensor produces geodesics that follow the fibers well, with sharpening
further improving results.

(a) s � 1 (b) s � 2 (c) s � 4

Figure 7.4: Results on synthetic data with a Rician noise level of σ � 0.15 (standard deviation of the
underlying normal distribution), for metrics given by the inverse diffusion tensor (black) and the adjugate
diffusion tensor (magenta) with sharpening powers s � 1 (a), s � 2 (b), and s � 4 (c). Color-coding as in
Fig. 7.3. Again, geodesics obtained with the standard metric fail to describe the fibers except for s � 4,
although the longer fiber s � 2 tracking does improve w.r.t. the noiseless case. Adjugate-based geodesics
follow the expected trajectories well, and sharpening improves results further.
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(a) s � 1 (b) s � 2 (c) s � 4

Figure 7.5: Results on synthetic data with Rician noise of σ � 0.3 (standard deviation of the underlying
Gaussian distribution), for metrics given by the inverse diffusion tensor (black) and the adjugate diffusion
tensor (magenta) with sharpening powers s � 1 (a), s � 2 (b), and s � 4 (c). Color-coding as in Fig. 7.3.
Inverse-based geodesics fail to describe fibers except for s � 4, while adjugate-based geodesics follow the
fibers well. For both s � 4 sharpened metrics tractography worsens noticeably compared to Fig. 7.4.

is smoother and the bundles are more coherent. A particularly interesting result is
the fact that our candidate fibers circumvent the ventricles, known to be void of
fibers, while the majority of geodesics obtained with the (sharpened) inverse tensor
go through them. Note that for sharpened inverse tensors, Fig. 7.7, fewer bundles
cross the CSF than in the original inverse diffusion tensor case, Fig. 7.6(a), though the
problem is not completely overcome. The results obtained with sharpening power
s � 2, Fig. 7.7(a), are consistent with our synthetic data experiments, but for s � 4
results are worse than expected, Fig. 7.7(b), likely due to more significant noise in the
real data.

In Fig. 7.6 we also see that tracts obtained with the newly proposed adjugate do
not go through the tumor. This is consistent with our findings concerning the CSF, as
the observed diffusion inside the tumor is quite comparable. Our results may reflect
real fibers being pushed aside by a tumor, or white matter inside the tumor being
severely degraded. However we have no means to establish if one of these scenarios
is true, or whether we have simply missed some tracts that were actually present in
the tumor, and therefore we cannot draw any decisive conclusions about the validity
of our results in this case.

In Fig. 7.8 we show results for a metric given by the sharpened adjugate diffusion
tensor. Tractography improves again drastically compared to the sharpened inverse
results shown in Fig. 7.7, with none of the tracts cross isotropic diffusion regions,
but there is little gained over the (s � 1) adjugate diffusion tensor results shown in
Fig. 7.6(b).

In Fig. 7.9we showCSD-baseddeterministic andprobabilistic tractography results
for the corticospinal tract, together with those obtained from geodesic tractography
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(a) (b)

Figure 7.6: Candidate fibers for the corticobulbar and corticospinal tracts (brown and blue, respectively),
and the cingulum (red), in an anterior view. A tumor is located next to the ventricles on the left-hand side.
Candidate fibers are obtained through geodesic tractography as explained in Section 7.2.2.1, using the
inverse diffusion tensor as a metric (a) and using the adjugate diffusion tensor (b). Candidate fibers going
through the ventricles or the tumor are indicated with yellow and white arrows respectively. Bundles
obtained with the scaled metric proposed in Chapter 2, shown in (b), avoid both the CSF in the ventricles
and the tumor.

based on the adjugate diffusion tensor. In all cases fibers circumvent the ventricles,
but the CSD fiber pathways barely reach the anterior part of the (right) motor cortex.
This could be improved by tuning the parameters (e.g. by taking step size 0.5mm,
minimum radius of curvature ≥ 5mm, fODF amplitude cutoff ≤ 0.01mm), but this
results in unrealistically straight fibers that tend to move through the ventricles and
jump from one hemisphere to the other.

7.3.2 Qualitative validation of geodesic-based connectivity

All connectivity and path measure maps are shown in radiological convention. Path
measuremaps are shown using a temperature colormap, where dark blue indicates a
low connectivity/high pathmeasure, and bright red indicates high connectivity/low
path measure. Note that the results for the different path measures Cmax and Cavg
cannot be compared directly, and that the connectivity highlights regions that are
connected to a seed point, which should be a superset of the bundle in which the
seed is placed. The color maps are shown on the right of each figure.

7.3.2.1 Cingulum

The first major bundle we consider is the cingulum, which consists of a set of fibers
that project from the cingulate gyrus to the entorhinal cortex. In the work of Mel-
onakos et al. [228] geodesic tractography was successfully used to trace this bundle,
so we can expect our geodesic-based connectivity analysis to produce reasonable
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(a) (b)

Figure 7.7:As in Fig. 7.6, but now showing results formetric given by (a) inverse sharpeneddiffusion tensor
(det D)1/3D−2 and (b) inverse sharpened diffusion tensor (det D)D−4. Note that results from sharpened
tensors improve compared to thosewithout sharpening inFig. 7.6(a) (i.e., less tracts cross isotropic diffusion
regions), but the problem is not completely overcome as in our approach.

(a) (b)

Figure 7.8: As in Fig. 7.7, but now showing results for metric given by (a) adjugate sharpened diffusion
tensor (det D)4/3D−2 and (b) adjugate sharpened diffusion tensor (det D)2D−4. Note that results from
adjugate sharpened tensors improve drastically compared to those from inverse sharpening in Fig. 7.7
(i.e., none of the tracts cross isotropic diffusion regions). The outcome is very similar to that from the
adjugate diffusion tensor, Fig. 7.6(b).
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(a) (b)

Figure 7.9:CSD-based tractography results for the corticospinal tract (yellow), togetherwith those obtained
by geodesic tractography from the adjugate diffusion tensor (blue). (a) deterministic CSD (b) probabilistic
CSD. In all cases fibers circumvent the ventricles. CSD fibers do not reach the anterior part of the (right)
motor cortex.

results for seeds placed in this bundle. The distance map from which geodesics can
be computed is shown in Fig. 7.10 for both F � Fold and the newly proposed Fnew-
based metric. The Finslerian distance increases as expected from the seed outward,
and the boundaries between white matter, gray matter, and cerebral spinal fluid can
be identified very roughly. It is however difficult to judge the relative merit of the
differentmetrics from thesemaps alone. Because all the connectivitymeasures under
investigation in this section are derived from the sameL∗F distancemaps, and because
the distance maps themselves provide little information, we omit the distance maps
henceforth.

The connectivity maps shown in Figs. 7.11 and 7.12 provide more information.
First, a high-level comparison between Figs. 7.11 and 7.12 reveals that the Cmax con-
nectivity measure (Eq. (7.15)) provides much more anatomical detail than the Cavg
connectivity measure (Eq. (7.14)). In Fig. 7.11 we see furthermore that the standard
Cavg path measure map seeded in the cingulum bundle leaks into the corpus callo-
sum, and to large sections of the posterior part of the brain. This effect is much less in
the Cmax map shown in Fig. 7.12, which also correctly assigns low connectivity values
to CSF voxels. Overall, the Cmax map is much more specific to the known anatomy of
the cingulum bundle. This allows us to perform amore detailed comparison between
the F � Fold metric and our newly proposed F � Fnew metric. We see that the former
does result in leakage from the cingulum into the posterior parts of the corpus cal-
losum (the splenium), and from there into large sections of posterior white matter.
The choice F � Fnew results in a path measure map that closely follows the known
anatomy of the cingulum bundle, without leaking into the corpus callosum.
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Fnew Fold

Figure 7.10: Axial (top row) and sagittal (bottom row) slices of distance maps L∗F , Eq. (7.4), for F � Fnew
(left column, Eq. (7.10)) and F � Fold (right column, Eq. (7.9)) seeded at a single voxel in the cingulum
(annotated point) of the HCP data set.

Finally we note that all maps suffer to a certain extent from errors in the mask,
which can cause erroneous and problematic high path measure values near the
boundaries of themask. These false positives are clearly visible at the edges in Fig. 7.11
(left) and near the brainstem in Fig. 7.12 (bottom). With the Cavg measure these errors
can propagate throughout the brain, which is particularly grievous in combination
with the new Fnew-based metric. With the Cmax path measure this propagation is
however completely suppressed, which means the errors remain localized.

7.3.2.2 Arcuate fasciculus

Maps of the two pathmeasures, Cavg and Cmax, are shown for the arcuate fasciculus in
Figs. 7.13 and 7.14. The arcuate fasciculus is a functionally important bundle, involved
in aspects of language processing. It connects frontal cortical areas with the superior
temporal gyrus. It also includes connections to the inferior parietal lobe. Themaps for
this bundle very clearly highlight a major issue with the widely used Cavg measure:
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Fnew Fold

Figure 7.11: Axial (top row) and sagittal (bottom row) slices of maps based on the Cavg path mea-
sure (Eq. (7.14)), derived from the data shown in Fig. 7.10. The left column shows the results for the
newly proposed F � Fnew metric (Eq. (7.10)), and the right column shows results for the F � Fold met-
ric (Eq. (7.9)). The choice F � Fnew suffers from artificially high values at the edges, due to errors in the
mask.

despite the seed being placed in the right hemisphere, the left hemisphere shows
an overall stronger connection to the seed than the voxels in the right hemisphere.
This problem is to a large extent resolved with the introduction of the Cmax measure.
For the remaining bundles we show only results with the Cmax measure, though it
should be noted that the Cavg measure can produce good results locally as shown in
the top-left map in Fig. 7.13.

Again, a comparison between the Cmax-based maps with F � Fold and F � Fnew
reveals a superior performance of the new Fnew-based metric (barring the artifacts
due to masking errors). With the Fold-based metric, there is again leakage into the
corpus callosum and then into the opposite hemisphere, which is not observed with
the Fnew-based metric. As it is difficult to judge the reconstruction of the arcuate
fasciculus’ connectivity neighborhood from 2D slices, we show a 3D reconstruction
of a thresholded path measure map obtained with F � Fnew in Fig. 7.15, which shows
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Fnew Fold

Figure 7.12: Axial (top row) and sagittal (bottom row) slices of maps based on the Cmax path mea-
sure (Eq. (7.15)), derived from the data shown in Fig. 7.10. The left column shows the results for the newly
proposedmetric F � Fnew (Eq. (7.10)), and the right column shows results for the F � Fold metric (Eq. (7.9)).
Note that the Fold metric leads to muchmore significant ‘leakage’ into the corpus callosum. The Cmax path
measure shown in this figure is largely unaffected by masking errors, cf. Fig. 7.11.

a fairly complete reconstruction of the arcuate fasciculus and its connected regions,
with minimal leakage into other bundles. This reconstruction was impossible with
F � Fold.

7.3.2.3 Cortico-spinal tract

The next tract we examine is the corticospinal tract (CST), which is a major fiber tract
that conducts sensorimotor signals between the cortex and the spinal cord. Cmax path
measure maps obtained with a single voxel seed in the CST are provided in Fig. 7.16.
These maps show some of the advantages and disadvantages of the different metrics.
The traditionally used Fold metric appears to be better equipped to avoid leakage into
the opposite hemisphere, at the level of the brain stem, and specifically at the pons,
where pontine crossing fibers may cause the connectivity to cross the midline into
the other hemisphere [357]. To see this, compare the images in the bottom row of
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Fnew Fold

Figure 7.13: Axial (top row) and coronal (bottom row) slices of Cavg-based maps (Eq. (7.14)) for F � Fnew
(left column, Eq. (7.10)) and F � Fold (right column, Eq. (7.9)) seeded in the arcuate fasciculus (annotated
point) of the HCP data set. Connections over the corpus callosum typically have large average diffusivities,
which results in the undesired high values in the unseeded hemisphere.

Fig. 7.16. This result is anatomically incorrect and is a well-known issue with many
tractographyalgorithms [357].While the Fnewmetric ismore sensitive to this issue, the
regions of high connectivity extend much further in the superior direction towards
the cortex, better reproducing the known fiber fanning in this region. Furthermore,
Fnew based connectivity of the CST shows only aminor leak into the corpus callosum,
while the Fold metric produces a much more extensive leak into the posterior part of
the corpus callosum and into the opposite hemisphere.

7.3.2.4 Corpus callosum

The last bundle we consider is the corpus callosum, a massive white matter highway
that connects the two hemispheres. The Cmax-based path measure maps for the Fold
and Fnew metricswere seeded in the splenium (posterior part) of the corpus callosum,
as shown in Fig. 7.17. With the Fnew metric, we observe that the path measure map
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Fnew Fold

Figure 7.14: Cmax-basedmaps (Eq. (7.15)) for F � Fnew (left column, Eq. (7.10)) and F � Fold (right column,
Eq. (7.9)) corresponding to Fig. 7.13. The Cmax path measure does not have a bias for cross-hemispheric
connections.

(a) (b)

Figure 7.15: Two views of a rendering of the regions connected to the arcuate fasciculus obtained by
thresholding the Cmax-based map (Eq. (7.15)) (with F � Fnew) shown in Fig. 7.14.
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Fnew Fold

Figure 7.16: Axial (top row) and coronal (bottom row) slices of Cmax-based maps (Eq. (7.15)) for F � Fnew
(left column, Eq. (7.10)) and F � Fold (right column, Eq. (7.9)) seeded in the corticospinal tract (annotated
point) of the HCP data set.

remains concentrated in the posterior parts of the corpus callosum, while with the
Fold metric it progresses much further in the anterior direction, which should not be
happening with a seed located posteriorly.

7.3.3 Network analysis in autism spectrum disorder

We performed the network analysis study with the newly proposed Fnew-based
Finsler metric, using three different maximum orders for the spherical harmonic
representation of the ODF. For comparison we also repeated the experiment, for the
same three different spherical harmonic orders, using the Fold-basedmetric proposed
by Melonakos et al. [227], Eq. (7.9). The resulting p-values are presented in Table 7.3.
All experiments used the Cmax-based connectivity measure.
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Fnew Fold

Figure 7.17: Axial (top row) and sagittal (bottom row) slices of Cmax-based maps (Eq. (7.15)) for F � Fnew
(left column, Eq. (7.10)) and F � Fold (right column, Eq. (7.9)) seeded in the splenium of the corpus
callosum (annotated point) of the HCP data set. The Fnew-basedmetric follows anatomymore closely than
the Fold-based one, exemplified here by the high values of the latter observed in the frontal part of the
corpus callosum.

Order Fnew Fold
2 0.0035 0.0061
4 1.7 × 10−4 0.0087
6 0.035 0.030

Table 7.3: p-values for the MANOVA comparison between the local efficiency vectors of the TDC and
ASD groups. Column heading Fnew indicates connectivity computed using F � Fnew metric, whereas Fold
denotes the metric proposed by Melonakos et al. [227]. Connectivity matrices were computed using a
spherical harmonic representation of the diffusion ODF with three different orders: 2, 4 and 6. All connec-
tivity measures were computed with the Cmax path measure. Since a total of six tests were performed, the
Bonferroni-corrected threshold for significancewas 0.05/6 ≈ 0.0083. p-values below this threshold (shown
in bold) indicate rejection of the null hypothesis that there is no difference between the two groups.
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7.4 Discussion

In this chapter we have looked at geodesic tractography based on Riemannian geom-
etry, where we have illustrated potential benefits that come with moving to a scaled
manifold as explained in Chapter 2. We have also described a new, publicly available
3D Slicer module that can be used to perform Finsler geodesic tractography and
connectivity mapping, using a newly proposed (ad hoc) Finsler function inspired
by the scaled Riemannian metric. The current release is unfortunately not directly
compatible with the Finslerian framework that we discussed in Chapter 3, which is
one of the main topics of interest for future work. Finally we looked at the different
path measures Cavg and Cmax that have been proposed to compute geodesic connec-
tivity maps, showing that there are clear advantages, both theoretical and practical,
to using the latter one. In this last section we will discuss these results in some detail.

7.4.1 Geodesic tractography

We computed geodesics on both synthetic and patient data, wherewith we com-
pare the adjugate-based metric g̃ (Eq. (7.8)) and the standard inverse-based metric
(Eq. (2.15)). We also compare the results in patient data with probabilistic and deter-
ministic streamline tractography, using the industry-standard constrained spherical
deconvolution (CSD [342]) model. Note that we do not mask regions of isotropic
diffusivity in our processing pipeline.

Results on the synthetic data, Figs. 7.3, 7.4, and 7.5, show that geodesics computed
with the standard inverse diffusion tensor fail to describe the fibers even for noise-
free data without significant sharpening (s � 4, Eq. (7.17)). Geodesics obtained with
the adjugate-based metric, either with or without sharpening, follow the expected
trajectories rather well in all considered noise scenarios and without taking shortcuts
through the isotropic background. Both metrics become increasingly sensitive to
noise when a high sharpening power is used, which has been noted in other works as
well [163], while for low noise levels sharpening improves tractography substantially.
In our experiments, the adjugate-based metric appears less sensitive to noise than
the standard metric, in particular when the applied sharpening is limited.

In real brain data, Figs. 7.6, 7.7, and 7.8, geodesic tracts obtained with the adju-
gate avoid isotropic diffusion regions such as ventricles, while the standard metric
produces tracts that almost always move through these isotropic regions. This re-
mains the case even with significant sharpening, which provides little benefit for the
selected seed regions. As the ventricles are entirely devoid of fibers, we find that
the adjugate-based metric leads to better results than the standard metric in this
scenario, consistent with the conclusions from the synthetic data experiments. The
positive performance of the adjugate on real diffusion data was also noted in the
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Figure 7.18: Graphical sketch of the quadratic forms corresponding to a typical diffusion tensor D in an
isotropic region (left) and in a vertically oriented fiber bundle (right); the vertical axis corresponds to
λ � λ1.

recently published comparison by Schober et al. [299]. Finally, we obtain compara-
ble results for the corticospinal tract from scaled Riemannian geodesics and CSD
tractography, cf. Fig. 7.9. There are minor differences between the two, the most no-
table being that CSD tracts barely reach the more anterior part of the motor cortex,
but without ground truth data we cannot draw any decisive conclusions from this.
A comparison to tractography results using the Finslerian framework proposed in
Chapter 3 is future work.

7.4.2 The scaled Riemannian manifold

The rather different behaviour of the two considered Riemannian metrics can be
intuitively explained by the following argument, where we omit the effect of sharp-
ening for simplicity. Consider two neighbouring voxelswith a typical diffusion tensor
D � diag(λ, λ, λ) in an isotropic region and D � diag(λ1 , λ2 , λ3), with λ1 > λ2 � λ3,
in a vertically oriented fiber bundle (see Fig. 7.18). Consider first the case λ � λ1.With
the standard metric, the Riemannian cost (Eq. (2.15)) of travelling along an infinites-
imal, vertically oriented line element, is proportional to 1/λ1. As such, the standard
metric obviously assigns the same cost in both the isotropic and anisotropic voxels.
Using the scaled metric however, the cost of moving along those same line elements
is proportional to the area of the orthogonal cross-section (indicated by the shaded
equatorial planes) i.e., to the product of λ2 and λ3. This leads to a relatively smaller
cost in the anisotropic voxel, and we find that the metric favors tracking through
anisotropic regions over isotropic regions.

This argument holds as well when the isotropic regions have greater diffusivities
than those present in nearby anisotropic voxels (λ > λ1), such as in the presented
synthetic experiments and (commonly) in real diffusion data. In fact, the classical
metric is only able to avoid isotropic regions when λ < λ1, while the scaled metric
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favors anisotropic regions up to the limit λ ≤ λ2 , λ3. In this scenario the area of the
orthogonal cross section in the isotropic case becomes equal to or smaller than the
anisotropic one, and so does theRiemannian cost.However, such scenarios seemingly
take place in real data only in regions with complex fiber configurations, which we
of course do not want to avoid.

In termsof practicality, adjugate-based tractographyhas essentially no freeparam-
eters (such as sharpening powers or those related to the fiber orientation distribution
in CSD) and hence works out-of-the-box. Though such free parameters do offer some
flexibility when extracting specific bundles, they typically have to be chosen in an
ad hoc and application-dependent way, and a globally satisfactory setting might not
exist. Additionally, the scaled metric obviates to a large extent the need to mask
cerebrospinal fluid, as geodesics tend to avoid such region by construction. Note
that these advantages have no bearing on the respective validity of these metrics as
models for large-scale diffusion, as discussed Section 2.2.3.

After its proposal [141], the adjugate metric was evaluated in the context of geo-
desic tractography of subcortical u-fibers in the related work by Sepasian et al. [306],
showing an improved reconstruction of fiber pathways that are challenging for tra-
ditional diffusion tensor tractography methods [58]. In future work it would be
interesting to see how the adjugate metric fares against deconvolution sharpened
metrics [103] and to the different scaling approach suggested by Hao et al. [163].

7.4.3 Geodesic connectivity analysis

We have also described the basic ideas for geodesic connectivity analyses, and intro-
duced the open-source Finsler tractography module (FTM) for Finsler geodesic trac-
tography and connectivity studies. The FTM is based on the finslertract project
of Antonio Tristán-Vega, and includes changes that reflect recent advances in Rie-
mannian geodesic tractography [141, 269]. The connectivity analysis capacities of
the module were evaluated on Human Connectome Project (HCP) data, with results
depending heavily on the choice of Finsler function and path/connectivity measure.

7.4.3.1 Influence of the Finsler function

We considered two different Finsler metrics, one based on a newly proposed Finsler
function Fnew derived from the work in Chapter 2 [141] in the Riemannian setting,
and the Fold-based metric originally proposed by Melonakos et al. [227], which is
the one typically used in literature. While a visual assessment of the distance maps
obtained with each approach is not informative (see e.g. Fig. 7.10), the corresponding
path measure maps highlight some interesting differences. In particular, the maps
obtained using the Finsler function F � Fnew are more faithful to the known anatomy
of tracts, as illustrated by the examples in Section 7.3.2. Although both the Fnew-
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and Fold-based maps suffer some ‘leakage’ problems, i.e., high connectivity values
spreading to nearby but unrelated tracts, the Fnew-based metric is much more robust
to this issue compared to the Fold-basedmetric. This is especially clear near the corpus
callosum, as can be seen in the cingulum results shown in Fig. 7.12. Thus, in addition
to its more rigorous theoretical foundation, the Fnew Finsler function typically results
in connectivity maps which are anatomically more reliable.

In contrast to the Fold-based Finsler metric, the new metric is designed to corre-
spond to a theoretically well-founded Riemannian metric [141], cf. Section 7.2.1.2.
However, the fact that the generalized Finslerian metrics used here are defined in
an ad hoc manner remains a significant issue with the interpretation of Finsler ge-
ometrical analyses. Given the improved results obtained with the relatively simple
Fnew Finsler function, it will be worthwhile to investigate the application of the fun-
damental work presented in Chapter 3 to the current analysis pipeline in future
work.

7.4.3.2 Influence of the path measure

In Section 7.2.1.3 we explained how the Cmax measure used in the Riemannian setting
by e.g. Pechaud et al. [269] can be applied in the Finslerian setting. This measure is
based on the ‘weakest link’ of the geodesic. That is, geodesics between strongly
connected points should have a continuously low cost along the entire tract, while
even small regions of high cost along the geodesic are taken to significantly decrease
the likelihood of the points being structurally connected. Compared to the more
common Cavg measure, which considers the average of some diffusivity measure
along a geodesic, the Cmax pathmeasure has a number of important advantages, both
theoretical and practical.

Primarily, the Cmax measure associates a relatively low connectivity to geodesics
taking shortcuts, a notorious problem of geodesic tractography [163, 305]. In the same
vein, provideda sufficientlyfine spatial resolution, lowconnectivity is associatedwith
geodesics that jump from one fiber bundle to another across a small region with high
cost. Because of this, in practice, regions of high connectivity tend to concentrate
much more on the seeded fiber bundles, which again significantly reduces leakage
artifacts. One can appreciate this especially in the difference between the Cavg and
Cmax path measure maps seeded in the arcuate fasciculus (Figs. 7.13 and 7.14), where
the consistently low cost in the corpus callosum results in an above averageCavg-based
connectivity for all geodesics that cross the corpus callosum to the other hemisphere.
This in fact highlights another theoretical advantage; the Cmax measure has the very
natural property of being monotonic, i.e., it cannot increase in connectivity with
distance along a path. Combined, these properties result in Cmax-based connectivity
maps that are generally much closer to anatomy than maps produced using the Cavg
measure.
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However, the Cavg measure can lead to greater contrast than Cmax at a local level, as
can be seen in the left columns (Fnew-based metric) of the arcuate fasciculus results,
Figs. 7.13 and 7.14. Cmax-based maps typically have low homogeneous connectivity
throughout the white matter, which essentially results in a default situation in which
everything is (at least weakly) connected to everything else, while Cavg-based maps
can efficiently extract the local, more direct structural connections.

The large differences between the two path measures highlight an issue with the
currently employed definitions. The different types of information captured by these
measures make it clear that other path measures, or more likely combinations of
various measures, can and should be developed to obtain a more complete char-
acterization of the structural connectivity captured by the geodesics. Because the
validation of connectivity measures is very challenging, a possible next step could be
a structured inclusion of a complete set of descriptive measures, e.g. shape measures
of increasing complexity, subject to natural constraints like scale and orientation in-
variance. The introduction of anatomical priors, which has become more common in
recentworks [315], could also be used to further improve geodesic-based connectivity
analysis.

7.4.4 Group differences in autism spectrum disorder

Finally, we have studied group differences in a graph-theoretical analysis of brain
networks in autism spectrum disorder (ASD), where we found significant differences
in the local network efficiency between the ASD group and the normal developing
controls. Results seemed slightlymore robustwith the newmetric,while bothmetrics
suffered from overfitting when the spherical harmonics order was taken greater than
four, Table 7.3. Differences in local network efficiency have been widely reported in
previous works, and our results corroborate previous findings of abnormalities [221,
292]. Note that this analysis was not intended to be exhaustive, but rather to illustrate
the application of our new connectivity framework in a standard brain network
analysis setting. In future work, we will conduct a more thorough analysis of brain
networks based on Finsler connectivity.

7.4.5 Concluding remarks

We have discussed several modifications to the standard geodesic tractography and
connectivity pipelines for diffusion MRI, motivated by theoretical arguments pre-
sented in Part I. First, we showed that using a scaled Riemannian metric has practical
benefits in geodesic tractography for fiber pathways that lie near regions of high dif-
fusivity. Next, we concluded that replacing the standard choices in the connectivity
pipelinewith theweakest link pathmeasure Cmax (Eq. (7.15)) and the newly proposed
Finsler function Fnew (Eq. (7.10)), resolves a number of clearly identifiable issues.
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These changes guarantee monotonicity of the connectivity along a path, effectively
eliminate artificially high connectivity along paths that cross the corpus callosum,
and significantly reduce leakage of high connectivity to nearby pathways. Further
improvement, in both tractography and connectivity experiments, is likely to result
from the canonical definition of the Finsler metric which we established in Chapter 3
but did not use here. The modified algorithms are publicly available as 3D Slicer
modules (github.com/tomdelahaije/fcm, nitrc.org/projects/riemantract).

The main problem addressed only superficially in this work is the validation of
geodesic tractography and the associated connectivity analyses. As with available al-
ternatives, the absence of ground truth datamakes it very challenging to validate and
compare results. Recent developments have focused on the generation of simulated
data with a known ground truth [245], and a lot of promising work is being done to
improve histological validation [304].
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A three-dimensional Manhattan street grid or the intricate streets of Victorian Lon-
don, which configuration reflects our brain’s organization best? This debate added
three Science publications to the list of diffusion MRI literature [57, 364, 365], and
motivated the work we present in this final chapter. Wedeen et al. [365] analyzed
adjacency and crossings between cerebral fiber pathways using diffusion MRI and
found that the pathways form a three-dimensional grid structure. More specifically,
the authors used diffusion spectrum imaging (DSI) [50, 367], which infers informa-
tion on the ensemble average propagator (EAP) by extensively sampling q-space in
a Cartesian fashion, to reconstruct a so-called path neighborhood with tractogra-
phy. This path neighborhood can be computed by tracking pathways from a small
seed region, and subsequently computing the paths incident on these paths. It was
found that the pathways in such a neighborhood cross nearly orthogonally in two-
dimensional grid- or sheet-like structures (similar to the “warp and weft of a fabric”)
that are layered in space “like pages of a book” [364, 365]. This sheet structure was
consistently recognized across species and scales, and throughout the white matter.

Catani et al. [57] suggested that the observed grid pattern ismost likely an artifact,
attributed to the limitations of DSI used in Wedeen et al. [365]. The authors showed
that diffusion orientation distribution functions (dODFs) as derived from the DSI
EAPs have inherently low angular resolution, and therefore have a limited ability
to resolve crossing fibers with small angles. They concluded that this bias towards
orthogonal angles negatively impacts the tractography results in the work ofWedeen
et al. [365] and inadvertently makes “the grid structure of interwoven sheets a very
likely configuration” [57]. By using another diffusion MRI technique called spherical
deconvolution [96, 97, 342], which has a higher angular resolution through the direct
reconstruction of the fiber ODF (fODF), they were able to show that non-orthogonal
crossings represent a large percentage of the total crossings in white matter (> 88%
in a group study of 10 subjects). Additionally, Catani et al. noted that the presented
results [365] are mainly qualitative, and that diffusion MRI-based pathways cannot
be equated to true axons.

Wedeen et al. [364] rebutted the technical concerns regarding DSI and claimed to
find further support for the sheet-structure theory in classic degeneration studies. In
addition, they agreed that non-orthogonal angle crossings do exist, and stated that
Catani et al. did not address the main finding of their study: the existence of sheet
structure. This structure “does not depend on fiber orthogonality or the absence
thereof” and the authors stated that “there are no mechanisms known whereby
technical limitations will create it as an artifact” [364].

This debate has gained a lot of attention from the diffusionMRI and neuroscience
communities. While still considered controversial by many, the existence of sheet
structure could have significant impact on models of structural and functional brain
connectivity, embryogenesis, and development. It could for example play an impor-
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tant role in axonal path-finding during embryogenesis by guiding growing fibers,
thereby greatly reducing the complexity of such processes [365]. The prevalence and
geometry of sheet structures in the brain can potentially also be a novel feature to
characterize brain structure, complementing the wide range of existing microstruc-
tural and geometrical measures [15, 17, 98, 124, 216, 285, 295, 338, 382].

To date, however, there is no general consensus on the degree towhich sheet struc-
ture is present in the brain. The lack of a clear exposition of the relevantmathematical
concepts may have contributed to this ongoing debate. In particular, there still exist
ambiguities regarding the exact definition of a sheet structure, the conditions for it to
exist, and its relation to orthogonal angles. In addition, the evidence for the existence
of sheet structure was mainly qualitative, and no extensive quantitative analysis was
performed so far. In this chapter, we first formalize the terminology to clarify the
definition of sheet structure as proposed byWedeen et al. [365] and the condition for
its existence; this is done in Section 8.1. Subsequently, we propose a robust method
to compute a sheet probability index (SPI), which indicates to what extent the data
supports a sheet structure, in Sections 8.2.1 and 8.2.2. An intuitiveway to visualize the
SPI throughout the brain is described in Section 8.2.3. We evaluate this method with
simulations and real diffusion MRI data sets as described in Sections 8.2.4 and 8.3.
Finally, we use the proposed method to investigate and discuss some of the claims
made in Wedeen et al. [364, 365] and Catani et al. [57] in Sections 8.3 and 8.4. Note
that even though we use diffusion MRI data here to investigate the existence of sheet
structure, our approach can be extended to compute the SPI in other types of direc-
tional data such as polarized-light imaging data [20]. Preliminary results of this work
have been presented at the BASP workshop and at the ISMRM [328–331].

Remark 14. We move away from the geometrical frameworks and their applications, which
stood central in the majority of previous chapters. The presented work on the sheet structure
hypothesis only requires a reliable way to reconstruct fiber pathways, and we focus here on a
number of well-established techniques that have played a role in the debate thus far.

8.1 Theory

Several definitions and interpretations of sheets in the brain exist in the literature [199,
301, 355, 380, 385]. Somemajorwhitematter tracts resemble a thin sheet-like structure
by themselves: well-known examples are the corona radiata and the corpus callosum.
Such single-fiber-direction sheets have typically been represented by a sheet-like
skeleton [316] or a surface [380]. In contrast, sheets formed by crossing or intertwining
fibers as proposed byWedeen et al. [365] (hereafter shortened to sheets) are composed
of two families of tracts that cross each other on the same surface in certain regions
along their trajectories. As a result, large bundles of tracts can in theory still form
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sheets at locations where they intersect with other structures. Here, we focus on the
latter definition of sheets and on how these can be detected in directional data where
two structures cross.

We first present the theoretical background required to understand some of the
key mathematical concepts in relation to the investigation of the brain’s sheet struc-
ture. In Section 8.1.1 we present a definition of sheet structure in terms of integral
curves of vector fields, and in Section 8.1.2 we discuss the relevant measure used to
assess the presence of sheet structure, namely the Lie bracket. Section 8.1.3 covers
the relation between the Lie bracket of two vector fields and flows along them, which
we use later on in this chapter to compute the Lie bracket from diffusion MRI data.
Finally we discuss in Section 8.1.4 the necessary condition on the Lie bracket for sheet
structure to exist.

8.1.1 Definition of sheet structure

Consider a set of unit vectors at each position of the brain M ⊂ �3, which can for
example be obtained from the dODF, fODF, or barrier ODF (Section 6.1.1) using
any diffusion MRI reconstruction technique. In streamline tractography, discussed
briefly in earlier chapters, one integrates a three-dimensional (Lipschitz continuous)
unit vector field v defined on a subset Nv ⊂ M, generating streamlines (or integral
curves) Φv

t (p)1 passing at time t � 0 through the initial position p � Φv
0 (p), such

that the local tangents to Φv
t are given by the vector field v. In other words, for every

p ∈ Nv , and every t such that Φv
t (p) ∈ Nv , the following equality holds (Fig. 8.1(a)):

d
dt

Φv
t (p) � vΦv

t (p). (8.1)

Here, vp ∈ �3 denotes the vector at position p (recall Section 1.3), and Φv
βt � Φβv

t for
β > 0. The set of integral curves for a given vector field v and all p ∈ Nv defines a
one-dimensional foliation of Nv . Cf. Spivak [319] for further details.

Sheets are defined by extending this idea of integrability to two vector fields v and
w: an integral surface S ⊂ Nv∩Nw called the sheet structure is defined as the surface
whose tangent plane at p is parallel to the plane spanned by vp and wp for all p ∈ S,
see Fig. 8.1(b). If v and w form sheets throughout a set NS ⊂ Nv ∩ Nw , the integral
surfaces form the leafs of a two-dimensional foliation of NS. Three vector fields u,
v, and w can similarly form a grid structure, i.e., a three-dimensional foliation of a
common set. Grid structure exists when each pair of vector fields forms a sheet.

Points on a single sheet structure formed by v and w can be reached from any
other point on the sheet through a flow along v, followed by a flow along w. Grid
structure similarly ensures that any two points on the grid are connected through

1Here we adopt the flow operator notation Φv to represent the streamlines.
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(a)
(b)

Figure 8.1: (a) An example set of fiber ODFs (semi-transparent) along with their peak directions (arrows),
which form the vector fields v (red) and w (blue). By integrating these vector fields, one can reconstruct
at each position p the integral curves Φv

t (p) (red curve) and Φw
t (p) (blue curve). (b) The tangent plane of

an integral surface S at any point p ∈ S is parallel to the plane spanned by vp and wp (indicated by the
dashed squares annotated on S).

at most three flows along the vector fields. Grid structure on the whole of M would
thus imply that any two points in the brain can be connected bymeans of such simple
flows: the integral curves along u, v, and w are coordinate lines on M.

Integration to a sheet or grid structure clearly requires intricate long-range cor-
relations in the vector fields, and continuity of the vector fields is not sufficient for
sheets to exist. The exact requirement for the existence of sheet structure is formalized
in the Frobenius theorem, which imposes a condition involving the Lie bracket [v ,w]
of the vector fields v and w.

8.1.2 The Lie bracket

The Lie bracket of two (non-zero) vector fields v and w on M is defined by its action
on smooth functions f :

[v ,w]p( f ) � vp w( f ) − wp v( f ). (8.2)

The Lie bracket is a linear operator that satisfies Leibniz’ product rule, and so [v ,w]p
can be regarded as a directional derivative, i.e., [v ,w]p is an element of the tangent
space Tp M. If one is interested specifically in the Lie bracket [v ,w] in terms of the
vector fields v and w, Eq. (8.2) trivially gives

[v ,w]p � vp w − wp v , (8.3)

which is commonly known as the commutator of the vector fields.
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8.1.3 Flows and the Lie bracket

Intuitively, the Lie bracket at a given location p can be understood as the deviation
from p when trying to move around in a small loop along the integral curves of v
and w. To see this, let v and w be non-collinear vector fields M → TM, and define
an effective time-dependent Lipschitz continuous vector field x given by

x(t) � a(t)v + b(t)w , (8.4)

with a and b the loop characteristics; almost everywhere differentiable scalar func-
tions that are nowhere identically zero simultaneously, and with antiderivatives A
and B that satisfy for some T > 0

A(T) � B(T) � 0, (8.5)

Next we define the integral curve αp of x as the solution to{
∂αp

∂t (β, t) �
√
β x(t) αp(β, t)

αp(β, 0) � p
. (8.6)

where β ≥ 0 is a parameter used to scale the path loops. A smaller β effectively de-
creases the norm of x(t), resulting in shorter paths with the same loop characteristics
specified by the functions a and b. αp can be expanded [205] to obtain

αp(β, t) � p +
√
β

∫ t

0
xp(t′)dt′ + β

∫ t

0
xp(t′)

∫ T

t′
x(t′′)dt′′ dt′ + O

(
β3/2

)
, (8.7)

which after substitution of Eqs. (8.4) and (8.5) reduces at t � T to

αp(β) B αp(β, T) � p− β
(∫ T

0
a(t′)B(t′)dt′ vp w +

∫ T

0
A(t′)b(t′)dt′wp v

)
+O

(
β3/2

)
.

(8.8)
Integration by parts finally gives

lim
β→0

αp(β) − p
β

�
dαp

dβ (0) � ca ,b(T) [v ,w]p , (8.9)

where the proportionality constant ca ,b is given by

ca ,b(T) B
∫ T

0
A(t′)b(t′)dt′. (8.10)

Consider for example a loop consisting of four ‘legs’ (i.e., a quadrilateral), that
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starts at point p by following the integral curve Φv
t (p) along v for some distance

√
β.

From the end point Φv√
β
(p) of the first leg, continue along the vector field w for the

same distance
√
β. From the resulting end point of this second leg Φw√

β
◦ Φv√

β
(p),

where ◦ indicates concatenation, move ‘backwards’ along the integral curves of −v
and −w in order, again with the same time t �

√
β. The final end point is then(

Φ−w√
β
◦ Φ−v√

β
◦ Φw√

β
◦ Φv√

β

)
(p), see Fig. 8.2(a). This loop is the integral curve of the

β-scaled effective vector field x with

a(t) �


1 for 0 ≤ t < 1
0 for 1 ≤ t < 2
−1 for 2 ≤ t < 3
0 for 3 ≤ t ≤ 4

(8.11)

and

b(t) �


0 for 0 ≤ t < 1
1 for 1 ≤ t < 2
0 for 2 ≤ t < 3
−1 for 3 ≤ t ≤ 4

. (8.12)

We then find that the curve αp formed by appropriate scaling through β is related to
the Lie bracket as

∂αp

∂β
(0) � [v ,w]p . (8.13)

The asymptotic behavior for small β defines the closure

Rp(β) B αp(β) − p ∼ β[v ,w]p
(
β→ 0

)
, (8.14)

that we rely on in our implementation of the Lie bracket on discrete data.

8.1.4 The Frobenius theorem

The requirements for sheet structure to exist are given by the Frobenius theorem,
which can be understood intuitively by following the line of thinking in the previous
section. The Lie bracket was introduced as the local deviation from p after small
flows over v and w, and if these vector fields are tangent to a sheet in a neighborhood
of p then the end points αp of these flows must lie on the sheet structure as well
(Fig. 8.2(c)). In the limit of smaller and smaller loop sizes this leads to the Frobenius
theorem [207, 319], which states that two vector fields v and w form a sheet structure
in a neighborhood of point p if and only if the Lie bracket [v ,w]p lies in the plane
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(a) (b)

(c) (d)

Figure 8.2: (a) A loop composed of integral curves of v (red arrows) and w (blue arrows) with p as the
starting position. αp is the curve formed by the end points of all loops (by varying the scaling parameter
β) starting at the point p. [v ,w]p is the Lie bracket at point p, and is related to the difference vector
Rp(β) B αp(β) − p according to Eq. (8.14). In this scenario, the vector fields v and w cannot be integrated
to form a sheet structure. (b) The Lie bracket depicted in (a) does not lie in the plane spanned by vp and
wp (gray). Hence the normal component of the Lie bracket [v ,w]⊥p defined in Eq. (8.15) is non-zero (green
arrow), and the vector fields cannot be integrated to form a sheet structure. (c) A loop in a scenario where
the vector fields v (red arrows) and w (blue arrows) do form a sheet structure. In this case αp is (locally)
a curve on the sheet structure. (d) The Lie bracket [v ,w]p depicted in (c) lies in the plane spanned by the
vectors at p, so that the normal component is zero and the vector fields v and w can be integrated to form
a two-dimensional sheet.
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spanned by vp and wp , cf. Fig. 8.2(d). As a comparison, Fig. 8.2(b) shows the case
(corresponding to Fig. 8.2(a)) in which the vector fields v and w do not form a sheet
structure.

In practice we can check this condition by examining the component of [v ,w]p
normal to vp and wp , the normal component of the Lie bracket [365]. We do this
by computing the projection of the vector [v ,w]p onto the outer product vp × wp

(normalized):
[v ,w]⊥p B [v ,w]p ·

vp × wpvp × wp
 . (8.15)

The sheet structure S is then given by the set of all points p ∈ Nv ∩ Nw where
[v ,w]⊥p � 0. Note that this condition does not involve the presence of orthogonal
angles between v and w.

8.2 Methods

We can examine the existence of sheet structure by (1) estimating the integral curves
and loops in Eq. (8.9), (2) estimating the Lie bracket based on Eq. (8.14), and (3) ex-
tracting the normal component of the estimated Lie bracket (Eq. (8.15)) as an indicator
of sheet structure. Note that we can perform these computations for every pair of
vector fields in a neighborhood. However, the definitions in Section 8.1 assume sep-
arate, continuous, and smooth unit vector fields, while our input data is a (possibly
incomplete) set of unsorted vectors per discrete position, perturbed by noise and
generally without consistent sign attributes (e.g. when derived from an ODF). These
issues complicate the actual computation of a Lie bracket.

In Section 8.2.1 we describe the approach to compute the discrete Lie bracket, in-
spired by the qualitative reconstruction of path neighborhoods inWedeen et al. [365].
Our method can deal with noisy vector fields and addresses the problem of sorting
vectors in a neighborhood of a point p. In Section 8.2.2 we further address the issue
of noise by deriving a sheet probability index (SPI) from multiple computations of
the discrete Lie bracket of a pair of vector fields per point. In Section 8.2.3 we define
the sheet tensor, which allows us to visualize the Lie bracket for every pair of vector
fields. Finally, in Section 8.2.4 we describe the simulated and acquiredMRI data used
for the experiments.

8.2.1 The discrete Lie bracket

We propose here to calculate a discrete Lie bracket by approximating the integral
curves in Eq. (8.9) with tractography [328, 329, 368], and by computing a large num-
ber of loops with configurations as in Fig. 8.1(a). The tractography process and the
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inclusion ofmultiple loop configurations handle noise in the Lie bracket computation
implicitly (but partially).

Similar to conventional tractography, we have to make the assertion that each
vector is an element of a smooth vector field. Whereas conventional tractography
looks for the vector that aligns most with the incoming direction to propagate a tract,
here we have to keep track of the whole frame of vectors (defined as all vectors at a
point) during tracking to be able to switch between different vector fields in a loop. In
Section 8.2.1.1 we describe the clustering of frames (the process of assigning vectors
to specific vector fields), which takes care of both the sorting and of possible sign
inconsistencies in the vector data. In Section 8.2.1.2 we outline the frame tractography
that performs clustering during tract propagation. Finally, the estimation of the Lie
bracket is discussed in Section 8.2.1.3.

8.2.1.1 Clustering of frames

Consider an ordered set of n vectors [y1 , . . . , yn] at a position q, and m vectors
{z1 , . . . , zm} in some point p near q 1. The ordered set [y1 , . . . , yn] serves as a ref-
erence frame, i.e., we assume that n vector fields u , v , . . . are present in the local
neighborhood of q that satisfy uq � y1 , vq � y2 , . . . . The aim of the clustering al-
gorithm is to find a permutation of the frame (an ordered set [zP1 , . . . , zPn , 0, . . . ]
that corresponds to the reference frame, so that we can take up � zP1 , vp � zP2 , . . .

for some permutation P of [1, . . . , n] (see Fig. 8.3 for a schematic example). Here, Pi

denotes the index given by the i-th element of P, and zPi � 0 implies that nomatching
vector was found.

Clustering is done by maximizing (over all permutations P) a similarity measure
that represents the total element-wise similarity between the frames [y1 , . . . , yn] and
[zP1 , . . . , zPn ]. In the algorithm below we will use the ‘total cosine similarity’, which
is defined as the sum of the cosines of the angles between corresponding vectors. The
global steps in the clustering algorithm can be found in Alg. 2

8.2.1.2 Frame tractography

Given a step size ∆h and a distance h, we can approximate the flow along a unit vector
field x ∈ {u , v , . . . } with streamline tractography [242]. The algorithm explained in
Alg. 3 is similar to other deterministic tractography algorithms, but keeps track of
the vector fields defined in the neighborhood. Note that we use nearest neighbor
interpolation unless stated otherwise. From here on, approximations are marked
by a circumflex, i.e., Φ̂x

h denotes the approximate flow along x for a distance h,
corresponding to the true flow Φx

h .

1If m < n, we append n − m zero vectors to the list {z1 , . . . , zm}, so in the following we can take m ≥ n.
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Figure 8.3: Example of the clustering of frames. We have an ordered set of vectors [y1 , y2 , y3] at a position
q, and 3 vectors {z1 , z2 , z3} in some point p near q. We assume that they are assigned to the vector fields
u, v, and w as follows: uq � y1, vq � y2, and wq � y3. Frame clustering yields the ordered set [z3 , z2 , z1].

Algorithm 2: Frame clustering algorithm
Data: An ordered frame [y1 , . . . , yn ] and a set of vectors {z1 , . . . , zm };
Parameters: Angle threshold t (default cos 35◦);
Result: The ordered frame [z̃1 , . . . , z̃n ];
/* Find the n-permutation Π ∈ Aut({1, . . . ,m}) (e.g. for n � 2 and m � 3 these are the
permutations [1, 2], [2, 1], [1, 3], [3, 1], [2, 3], and [3, 2]) for which the total similarity is
maximized, and recall that yi and z j are unit or zero vectors */

Π← argmaxP∈Aut({1,...,m})
∑n

i�1
��yi · zPi

��;
z̃ ← [zΠ1 , . . . , zΠn ] foreach i ∈ {1, . . . , n} do

/* Apply an angle threshold t */
if |yi · z̃i | > t then

z̃i ← 0;
/* Align the directions of the vectors in the frames */
else if yi · z̃i < 0 then

z̃i ← −z̃i ;
end

end
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Algorithm 3: Frame tracking algorithm
Data: Vector fields {z1 , z2 , . . . } defined in a neighborhood of an initial point q0;
Parameters: The step size ∆h and the distance h, which give L← bh/∆hc;
Result: The end point qL of the approximate flow Φ̂x

h (q0);
/* Initialize counter */
l ← 0;
/* Assume the frame at q0 is ordered */
[uq0 , vq0 , . . . ] ← [z1 , z2 , . . . ]q0 ;
/* Until the maximum number of steps is reached */
while l ≤ L do

/* Take a step of size ∆h in the direction of xql */

ql+1 ← ql + ∆h xql ;
/* Cluster the frame at ql+1 using the frame at ql */

[uql+1 , vql+1 , . . . ] ← cluster
(
[uql , vql , . . . ], {z1 , z2 , . . . }ql+1

)
(Alg. 2);

/* Return an error if clustering is unsuccessful */
if vql+1 � 0 then

Error;
end
/* Increment counter */
l ← l + 1;

end

8.2.1.3 The closure and the Lie bracket

To calculate the discrete Lie bracket we reconstruct approximate flow loops through
repeated application of Alg. 3, which can be used to obtain estimates R̂p of the differ-
ence vectors Rp . In practice, we will compute difference vectors for a large number of
loops with several configurations, i.e., variations on Eq. (8.9). More concretely, given
a point p wewill consider the set of difference vector estimates {R̂1 , R̂2 , R̂3} resulting
from the following loop configurations (Fig. 8.4):

R̂1 B
(
Φ̂−w

h2
◦ Φ̂−v

h1
◦ Φ̂w

h2
◦ Φ̂v

h1

)
(p) − p , (8.16)

R̂2 B p −
(
Φ̂−v

h1
◦ Φ̂−w

h2
◦ Φ̂v

h1
◦ Φ̂w

h2

)
(p), (8.17)

R̂3 B
(
Φ̂w

h2
◦ Φ̂v

h1

)
(p) −

(
Φ̂v

h1
◦ Φ̂w

h2

)
(p). (8.18)

Here, h1 and h2 are the flow distances along the integral curves of v and w, respec-
tively. We choose h1 , h2 ∈ {−hmax ,−hmax + ∆h ,−hmax + 2∆h , . . . ,−∆h , ∆h , . . . , hmax},
where hmax is the maximum distance (a parameter in the algorithm). Note that we
thus sample all four ‘quadrants’ surrounding point p.

When all difference vectors are estimated, we can compute an estimate of the
Lie bracket �[v ,w]p with a simple linear least squares fit corresponding to Eq. (8.14),
and the normal component of the estimated Lie bracket follows from Eq. (8.15). In
practice, we only compute �[v ,w]p when the number of successfully estimated loops
and corresponding difference vectors exceeds a minimum threshold.
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(a) (b) (c)

Figure 8.4: Loops that lead to R̂1 B
(
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)
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(
Φ̂w

h2
◦ Φ̂v

h1

)
(p) −

(
Φ̂v

h1
◦ Φ̂w

h2

)
(p).

8.2.2 Sheet probability index

The algorithm described in Section 8.2.1 allows us to compute estimates of the Lie
bracket normal component [̂·, ·]⊥ for every combination of vectors at every position
in the brain, and according to the Frobenius theorem (Section 8.1.4) a combination
of vector fields supports the sheet conjecture if [·, ·]⊥ � 0. Due to the occurrence of
noise, however, the sheet-constraint is rarely exactly fulfilled, and a single estimate
does not provide information on its variability. This makes it difficult to quantify to
what degree the local structure effectively resembles a sheet.

Ideally, repeated MRI acquisitions could be used to approximate the variance of
the estimated Lie bracket normal component. By assuming a normal distribution (in
practice verified using a Shapiro–Wilks test) with data-derived mean µ and standard
deviation σ, we can calculate the integral probability Pλ inside the region [−λ, λ]
(where we can tune the parameter λ to achieve the desired contrast) for the estimated
distribution N (

µ, σ2) . Pλ produces a value that lies between 0 and 1 which we coin
the sheet probability index (SPI) of the local sheet structure. Choosing a higher value
for λ means the SPI is less sensitive to small deviations from zero. In practice it
is often difficult to acquire a large number of repeated diffusion MRI sets, so we
consider residual bootstraps as an alternative (see Section 8.2.4.2).

The introduction of the SPI does not only address the issue of noise, but it also
makes the interpretation of the Lie bracket normal component much more intuitive.
A high value for the SPI corresponds to a high likelihood of sheet structure ([·, ·]⊥p is
likely close to 0), while a low value indicates that there are significant deviations from
sheet structure ([·, ·]⊥p likely differs significantly from 0 relative to the noise level).
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8.2.3 Sheet tensors

Investigation of consistent sheet structures in a spatial neighborhood asks for an
appropriate way to visualize the SPI throughout the brain. The SPI can be computed
for every pair of vector fields, i.e., n vector fields generate

(n
2
)
SPIs. In this work we

propose to visualize the local sheet structure throughout the brain by means of a
sheet tensor. Given a pair of vector fields v and w, the sheet tensor at location p is
defined as

Sp �
Pλ
λmax

(
vp ⊗ vp + wp ⊗ wp

)
. (8.19)

Here λmax denotes the largest eigenvalue of the tensor
(
vp ⊗ vp + wp ⊗ wp

)
and ⊗

denotes the tensor product. The sheet tensor can then be represented by an ellipsoid
whose third eigenvector is normal to the span of v and w, andwhich defines the color
of the ellipsoid in the well-known RGB scheme (normal in left-right (LR) direction
gives a red tensor, normal in inferior-superior (IS) direction gives a blue tensor, and
normal in anterior-posterior (AP)directiongives a green tensor, cf. Section 2.3.2) [383].
Furthermore, the size of the ellipsoid is determined by the SPI, where a larger SPI
gives larger ellipsoids, and the division by λmax fixes the largest semi-axis of the
ellipsoid for a given SPI. The shape represents the angle between v and w. Fig. 8.5
shows sheet tensors for different angles and different SPI. The sheet tensor allows us
to visualize the SPI for every pair of vector fields at a given location, and can thus
also reveal crossing sheets.

8.2.4 Data

We will evaluate our framework with different types of data: analytical vector fields,
diffusionMRI simulations, and real diffusionMRIdata. These test data sets increase in
degree of complexity, allowing us to investigate different aspects of the implemented
methodology.

8.2.4.1 Analytical vector field simulations

We define three vector fields that are tangent to a sphere with radius ρ (u and v
are tangent to the upper hemisphere, w is tangent to the lower hemisphere, see
Fig. 8.6(a)):

u �
(− sinφ1 , cosφ1 cos θ2 , cosφ1 sin θ2

)
, (8.20)

v �
(
cosφ2 cos θ1 ,− sinφ2 , cosφ2 sin θ1

)
, (8.21)

w �
(
cosφ2 cos θ2 ,− sinφ2 ,− cosφ2 sin θ2

)
. (8.22)
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(a) (b)

Figure 8.5: (a) Sheet tensors with a normal direction pointing towards the reader, for different angles
between up and vp and different sheet probabilities. Here, v is always oriented in left-right direction.
(b) Sheet tensors with different orientations are colored according to their third eigenvector. AP is the
anterior-posterior direction, IS is inferior-superior, and LR is left-right.

Here θi � arctan x i√
ρ2−(x1)2−(x2)2 and φi � arccos x i

ρ (with i � 1, 2), and x � (x1 , x2 , x3)
denotes Cartesian coordinates. The integral curves of these vector fields have constant
curvature κ � 1/ρ.

Vector fields u and v form a sheet, so that the Lie bracket normal compo-
nent [u , v]⊥p � 0 for all p ∈ {

x ∈ �3
�� (x1)2 + (x2)2 < ρ2 , x3 � z

}
. u and w gener-

ally do not form a sheet, and the normal component of the Lie bracket [u ,w]p at
p ∈ {

x ∈ �3
�� (x1)2 + (x2)2 < ρ2 , x1 , 0, x2 , 0

}
is given by

[u ,w]⊥p �
6x1x2 (−ρ2 + (x1)2 + (x2)2)√(

ρ2 − (x1)2) (
ρ2 − (x2)2) (

ρ6 − 8ρ2(x1)2(x2)2 + 4(x1)2(x2)2 ((x1)2 + (x2)2)) .
(8.23)

A plot of [u ,w]⊥p as a function of x1 and ρ is shown in Fig. 8.6(b), where we take
x2 � −x1 so that [u ,w]⊥p is generally greater than zero. By evaluating Lie bracket
estimates along these lines x2 � −x1 for fixed curvature κ, we can evaluate the
performance of the algorithm as a function of the magnitude of the Lie bracket
normal component. By varying ρ we can similarly evaluate our Lie bracket estimates
as a function of the curvature of the integral curves. Note that these combinations of
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(a) (b)

Figure 8.6: (a) Vector fields u (red), v (blue), and w (green), where u and v form a sheet and u and w do
not. The left column shows a subset of integral curves, and vectors sampled on the upper hemisphere are
shown on the right. This pattern of vector fields is repeated in the vertical direction. (b) Plot of [u ,w]⊥p as
a function of ρ and x1, with x2 � −x1.

vector fields generally cross in non-orthogonal angles.
The vector fields are discretized by sampling them on a Cartesian grid with

period δ (corresponding to the voxel size). We add noise to the discrete vector fields
(nn noise iterations) by drawing random samples of a Watson distribution [63, 226]
with probability density function

fW
(
±ṽq ; v |q , k

)
� M

(
1
2 ,

3
2 , k

)−1

ek(ṽq ·vq)2 . (8.24)

Here, M
( 1

2 ,
3
2 , ·

)−1 is the Kummer function [226], ṽq denotes the perturbed vector at
location q, and k > 0 is a concentration parameter (here referred to as the ‘SNR level’,
higher k results in smaller perturbations).

8.2.4.2 Diffusion MRI data

Simulations Diffusion MRI signals were simulated using a Zeppelin-Stick-Dot
model [119] with the fiber direction defined by the noise free vector fields described
in the previous section. nn noise iterations were generated using the Rician distribu-
tion. We simulate two types of data sets: single shell data sets with 90 directions and
b � 3000 s/mm2 suitable for spherical deconvolution, and Cartesian sampled data
sets with 514 directions (maximum b-value of 10000 s/mm2) and one b � 0 s/mm2

point suitable for DSI (protocol corresponds to the MGH HCP DSI data, see Sec-
tion 8.2.4.2).
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Real data We use different diffusion MRI data sets with varying spatial and an-
gular resolutions, diffusion weightings, and sampling schemes to investigate our
framework: (1) the b � 3000 s/mm2 shell with 90 diffusion directions of three sub-
jects of the WU-Minn Human Connectome Project (HCP) with an isotropic voxel
size of 1.25mm [152, 318, 351]; (2) the b � 3000 s/mm2 shell with 500 diffusion
directions of the MASSIVE database with an isotropic voxel size of 2.5mm [136];
(3) the separate shells (b � {1000, 3000, 5000, 10000} s/mm2 with {64, 64, 128,
256} directions) of one subject of the MGH HCP with an isotropic voxel size of
1.5mm [308]; and (4) a Cartesian sampled data set (514 directions) with b-values
up to 10000 s/mm2 of the MGH-USC HCP with an isotropic voxel size of 2mm
(humanconnectomeproject.org/data/inventory).

Processing Data sampled on a single shell was processed using constrained spheri-
cal deconvolution (CSD, spherical harmonics up to order 8, see Section 6.1.1.3) [342] in
ExploreDTI [215]. The response function for the simulated data was generated from
the Zeppelin-Stick-Dot model, and the response function for real data was computed
using recursive calibration [336]. Peaks were extracted using a Newton optimization
algorithm [180] with an fODF peak threshold of 0.1, and a maximum number of 3
peaks. To compute the SPI, we used the nn noise iterations for simulated data, and
generated nb residual bootstrap realizations for simulated and real diffusionMRIdata
from a single set of noisy measurements [181]. The peaks extracted from the different
bootstrap realizations were clustered using the method described in Section 8.2.1.1,
taking the peaks extracted from the original data as reference frames.

Cartesian sampled data was analyzed using the DSI model [367], which was
reconstructed with Diffusion ToolKit using default settings [359]. The algorithm
readily provides a set of peaks at each position, obtained from the local maxima of a
roughly uniform sampling (181 points) of a hemisphere, from which we take at most
3 vectors per position based on the dODF magnitude. No bootstrapping could be
performed, so in this case only one Lie bracket was computed for every pair of vector
fields.

8.3 Results
The results for analytical vector field simulations are presented in Section 8.3.1,
for diffusion MRI simulations in Section 8.3.2, and for real diffusion MRI data in
Section 8.3.3.

8.3.1 Analytical vector field simulations

With the analytical vector fields wewill systematically investigate different aspects of
the Lie bracket implementation: the influence of discretization (the finite voxel size
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(a) Voxel size δ � 0.5mm (b) Voxel size δ � 1mm (c) Voxel size δ � 2mm

Figure 8.7: [̂·, ·]⊥p for different voxel sizes δ � {0.5, 1, 2}mm ((a), (b), (c)) and different settings for hmax �

{1, 3, 5} voxels (the corresponding hmax in mm is noted above each plot). Each plot shows the mean and
range of the estimates in the case of sheet (green, [u , v]⊥p � 0 indicated by the dashed line) and non-sheet
(red, [u ,w]⊥p � 0.031) for different SNR levels (i.e., the concentration parameter k, higher k means a smaller
perturbation of the vectors). We used 50 noise iterations, κ � 1/ρ � 1/26mm−1, and p � (10,−10, 0).

δ), the noise (different settings of the concentration parameter k), the curvature κ (by
varying ρ), and the Lie bracket magnitude. We use nearest-neighbor interpolation of
the vector fields and nn � 50 noise iterations here.

8.3.1.1 The influence of spatial resolution and noise

Fig. 8.7 shows results fordifferent voxel sizes δ � {0.5, 1, 2}mm(a-c), different settings
for hmax (rows) and different SNR levels k (the concentration parameter in Eq. (8.24),
higher k indicates a smaller perturbation). Here we consider a relatively simple case:
since we know which vector belongs to which vector field, we skip the clustering
step and show results that are not affected by clustering errors. We set the curvature
κ � 1/ρ � 1/26mm−1 and estimate the normal component of the Lie bracket at
p � (10,−10, 0) to have a Lie bracket magnitude significantly deviating from zero for
the given radius ρ.

Each plot shows the mean and range of the estimates ([̂·, ·]⊥p in the case of sheet
(green, [u , v]⊥p � 0mm−1) and non-sheet (red, [u ,w]⊥p � 0.031mm−1). The range
becomes smaller with higher k (the noiseless case k � ∞ is also plotted) in all cases.
The precision of the estimates increases with increasing hmax (smaller error bars), and
the accuracy increases for hmax � 3voxels compared to hmax � 1voxel, but remains
similar when further increasing to hmax � 5voxels. We can see that hmax � 1voxel is
generally too low to obtain a reasonable accuracy and precision, and to distinguish
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(a) (b)

Figure 8.8: (a) Mean and range of [̂·, ·]⊥p for different points p � (x1 ,−x1 , 0) to vary the Lie bracket normal

component magnitude [u ,w]⊥p (κ � 1/26mm−1). (b) Mean and range of [̂·, ·]⊥p for different curvatures
κ � 1/{8, 13, 18, 23, 28, 33}. Different curvatureswere achievedby changing ρ in Eq. (8.20), and [u ,w]⊥p was
kept constant using Eq. (8.23) by adapting the point of evaluation x2 � −x1. In both experiments, [u , v]⊥p
(dashed lines) is evaluated at the same points for reference and k � 350, δ � 1mm, and hmax � 5voxels.

sheet from non-sheet. The precision is similar for approximately the same hmax in
mm (see for example the approximately equal error bars in the cases hmax � 3voxels,
δ � 1mm and hmax � 5voxels, δ � 0.5mm).

8.3.1.2 The influence of the Lie bracket normal component

Fig. 8.8(a) shows the mean and range of the estimates ([̂·, ·]⊥p for different points
p � (x1 ,−x1 , 0), where the Lie bracket normal component magnitude [u ,w]⊥p (non-
sheet) varies while the curvature remains constant at κ � 1/26mm−1. [u , v]⊥p (sheet)
is evaluated at the same points for reference. We set k � 350, δ � 1mm, and hmax �

5voxels. Here and in further analyses, we apply clustering of the vector fields as
described in Section 8.2.1.1 (using the known vector fields as prior information gave
similar results, not shown here).

The estimates [̂·, ·]⊥p correspond very well to the true [·, ·]⊥p for all p in both the
sheet and non-sheet case. The range of the estimates remains relatively constant for
all cases. The sheet-case can be distinguished from the non-sheet-case for [u ,w]⊥p &
0.015mm−1.

8.3.1.3 The influence of curvature

Fig. 8.8(b) shows the mean and range of the estimates [̂·, ·]⊥p for different curvatures
κ−1 � {8, 13, 18, 23, 28, 33}, where we keep the Lie bracket normal component mag-
nitude [u ,w]⊥p (non-sheet) constant by evaluating at different points p � (x1 ,−x1 , 0)
(obtained by solving Eq. (8.23)). [u , v]⊥p (sheet) is evaluated at the same points for
reference. We set k � 350, δ � 1mm, and hmax � 5voxels.

The accuracy and precision of the estimates do not seem to depend heavily on
the curvature at the considered SNR level and scale, since both the mean and range
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of the estimates remain relatively constant. We evaluated radii as small as 8mm,
which starts to approximate cortical folding radii. We note here that to detect even
smaller radii, a smaller voxel size is required in order to have enough neighborhood
information to probe the structure.

8.3.2 Diffusion MRI simulations

With the diffusion MRI simulations we will investigate more realistic noise scenarios
(i.e., we can simulate realistic noise on the actual diffusion MRI images instead of
perturbing vectors), the influence of the interpolation technique (nearest neighbor
vs. fODF interpolation), and the influence of diffusion MRI reconstruction technique
(CSDvs.DSI). In addition,wewill explore the effect of using bootstraps instead of real
noise iterations for the calculation of the sheet probability index.We use nn � nb � 50
noise iterations/bootstrap realizations here.

8.3.2.1 The influence of noise and interpolation

Here,we extract fODFs andpeakdirections usingCSD from the single shell simulated
data. Fig. 8.9(a) shows the mean and range of the normal component of the Lie
bracket for different settings of hmax (rows) and different SNR. We set the curvature
κ � 1/ρ � 1/26mm−1, voxel size δ � 1mm, and evaluate [̂·, ·]⊥p at p � (10,−10, 0).
We use nearest-neighbor interpolation throughout the chapter, but include Fig. 8.10
for comparison which shows the same results with linear interpolation on the fODF
spherical harmonic coefficients.

Similar to thevectorfield simulations inFig. 8.7, the rangeof the estimates becomes
smallerwith higher SNR (the noiseless case is also plotted) and theprecision increases
with increasing hmax. Nearest neighbor interpolation and fODF interpolation give
similar results in terms of both the accuracy and precision of the estimates for higher
SNR (≥ 20). We hypothesize that a large number of loops reduces the influence of
error propagation along a tract, and ‘smooth out’ some interpolation errors. For an
SNR of 10, however, we found that 1 or 2 outliers cause the large range in Fig. 8.9(a)
at hmax � 3voxels. This does not occur when using fODF interpolation (Fig. 8.10), but
the mean of the estimates still corresponds very well to the true value in both cases.
For the sake of computational time and cost we use nearest neighbor interpolation in
the following.

8.3.2.2 The influence of diffusion MRI technique: CSD vs. DSI

In Fig. 8.9(b), we extracted diffusion ODFs and peak directions using DSI from the
Cartesian sampled simulated data. It shows the mean and range of [̂·, ·]⊥p for different
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(a) CSD (b) DSI

Figure 8.9: Mean and range of [̂·, ·]⊥p for different settings of hmax (rows) and different SNR. We set the
curvature κ � 1/ρ � 1/26mm−1, voxel size δ � 1mm (giving hmax � {3, 5} voxels � {3, 5}mm), and
evaluate [̂·, ·]⊥p at p � (10,−10, 0). Dashed lines indicate the true Lie bracket normal component. (a) Peaks
extracted from single shell data using CSD. (b) Peaks extracted from Cartesian sampled data using DSI.

Figure 8.10: Mean and range of ([̂·, ·]⊥p for different settings of hmax (rows) and different SNR. We set the

curvature κ � 1/ρ � 1/26mm−1, voxel size δ � 1mm, and evaluate [̂·, ·]⊥p at p � (10,−10, 0). Here we used
trilinear interpolation of the fODF spherical harmonic coefficients and extracted the peaks during tracto-
graphy. This is in contrast to Fig. 8.9, where peaks were pre-extracted and nearest neighbor interpolation
was used. Dashed lines indicate the true Lie bracket normal component.
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(a) Noise iterations (b) Bootstraps

Figure 8.11: Mean and range of [̂·, ·]⊥p and the SPI Pλ for different points p � (x1 ,−x1 , 0) to vary the Lie
bracket normal component magnitude [u ,w]⊥p . [u , v]⊥p is evaluated at the same points for reference. We
set the SNR to 20, δ � 1mm, hmax � 5voxels, and κ � 1/26mm−1.

settings of hmax (rows) and different SNR.We set the curvature κ � 1/ρ � 1/26mm−1,
voxel size δ � 1mm, and evaluate [̂·, ·]⊥p at p � (10,−10, 0).

Themean of the estimates with DSI is in good agreement with the true values. For
SNR greater than 10, the Lie bracket estimates from CSD are more precise than the
estimates resulting from DSI (smaller error bars, most obvious at hmax � 3voxels),
even though the simulated CSD data sets have over five times fewer measurements
(90 vs. 514) and a lower diffusion weighting (maximum b � 3000 s/mm2 compared
to b � 10000 s/mm2).

8.3.2.3 Sheet probability index

Here, we used the peak directions resulting from CSD on the single shell simulated
data. Fig. 8.11 shows the mean and range of the estimates [̂·, ·]⊥p and the SPI Pλ for
different points p � (x1 ,−x1 , 0) to vary the Lie bracket normal componentmagnitude
[u ,w]⊥p . [u , v]⊥p is evaluated at the same points for reference. We set the SNR to 20,
δ � 1mm, κ � 1/26mm−1 and hmax � 5voxels.

The estimates [̂·, ·]⊥p reflect the true [·, ·]⊥p well for all x1 in both the sheet- and
the non-sheet case for the noise iterations. At x1 � 11 the paths start to come in the
vicinity of the vector field edge where the vector fields of the non-sheet pair make
anglesmuch smaller than the resolving power of CSD, this has a stronger effect on the
bootstraps than on the noise iterations (hence the deviation). Overall the bootstraps
prove good alternatives to real noise iterations. Pλ decreases in the non-sheet case
when the true [·, ·]⊥p deviates more from zero.
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8.3.3 Diffusion MRI real data

In this section we present SPI and sheet tensor maps for real diffusion MRI data (we
use nb � 20 bootstrap realizations if not mentioned otherwise). In Section 8.3.3.1 we
explain the interpretation of thesemaps and their relation to the Lie bracket bymeans
of an example data set, and in Section 8.3.3.2 we investigate inter-subject variability.
In the remaining Sections 8.3.3.3, 8.3.3.4, and 8.3.3.5, we consider the influence spatial
resolution, diffusion weighting, and diffusion MRI technique, respectively.

8.3.3.1 Sheet probability index

Fig. 8.12(a) (left) shows Lie bracket normal component estimates of the two largest
fODF peaks in a single slice of a WU-Minn HCP data set. A fractional anisotropy
(FA) color map of the same slice is shown for reference in Fig. 8.12(b). Dark blue
areas indicate [̂·, ·]⊥p � 0, red areas [̂·, ·]⊥p � 0, and light blue/green/yellow areas

[̂·, ·]⊥p ≈ 0. The order of magnitude of [̂·, ·]⊥p is in agreement with our simulations.
Three areas are highlighted with arrows. The areas indicated by the red and green
arrow look spatially continuous, whereas the area indicated by the blue arrow looks
noisy. The two largest fODFpeaks (used to create this image) in neighboring voxels do
not necessarily belong to the same vector fields, we therefore have to consider the Lie
bracket normal component for every pair of vector fields in each voxel. This further
clarifies our motivation to use sheet tensors for visualization in the following since
multiple sheet tensors can be visualized in each voxel. Histograms of the normal
component for the bootstraps at these locations are shown in Fig. 8.12(a) on the
right: high SPI (red arrow, [̂·, ·]⊥p concentrated around zero), ‘medium’ SPI (blue

arrow, [̂·, ·]⊥p spread), and low SPI (green arrow, [̂·, ·]⊥p concentrated away from zero).
The histograms illustrate that the normality assumption used to calculate the SPI is
reasonable. Figs. 8.12(c) and 8.12(d) show SPI maps for the largest fODF peaks.

Fig. 8.13(a) shows for one HCP subject sheet tensors on different coronal (top),
sagittal (middle), and axial (bottom) slices. Here, hmax � 5voxels is used, and sheet
tensors with Pλ < 0.2 are not shown. When navigating through the brain slice-by-
slice, these high-sheet probability areas seem to form continuous structures through-
out the brain (see []). Fig. 8.14 shows similar results for hmax � 3voxels, where we
can recognize the same sheet areas (sometimes slightly less pronounced). Two high-
SPI areas (green rectangle on coronal slice and red rectangle on sagittal slice) are
detailed in Figs. 8.13(b) and 8.13(c). The streamlines shown are a subset of the paths
reconstructed to compute the Lie bracket in a voxel in the center of the high-SPI
area (the paths

(
Φ̂w

h2
◦ Φ̂v

h1

)
(p) and

(
Φ̂v

h1
◦ Φ̂w

h2

)
(p), to be specific). Fig. 8.13(b) shows

a sheet formed by the corpus callosum (CC) and the corticospinal tract (CST) in the
left hemisphere (see also []). In addition, the white arrow highlights an area in which
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(a) (b)

(c) (d)

Figure 8.12: (a) A single bootstrap of the Lie bracket normal component (two largest fODF peaks) in a
single slice, together with histograms of the normal component at the indicated locations in (high- (green
arrow), medium- (grey arrow), and low-sheet probability (blue arrow) area). (b) A direction color-encoded
FA map of the slice shown in (a) provided for reference. (c) The corresponding SPI map (maximum per
voxel) with λ � 0.008. The green voxels only contain one peak and thus no Lie bracket can be computed.
(d) The high- (red, Pλ > 0.5) and low-sheet probability areas (blue, Pλ < 0.1) shown as an overlay on an
anatomical scan.

crossing sheets are found. Fig. 8.13(c) shows a more medial and sagittally oriented
sheet structure, formed by parts of the CC/CST and anterior-posterior oriented asso-
ciation fibers. Details of a low SPI area (cyan rectangle on axial slice in Fig. 8.13(a)) are
shown in Fig. 8.13(d). This case highlights an important potential pitfall when using
only visual and qualitative analysis to investigate sheet structures: Even though this
structuremuch looks like a sheet from a superior point of view, it is clearly not a sheet
from a lateral and posterior point of view (the fibers ‘diverge’ from each other and
are not located on a surface, as can be seen in the views (1) and (2)). Our quantitative
method indeed finds a low SPI in this area. Several high SPI areas in the brainstem
could also be recognized, e.g. on the fourth coronal slice from the left in Fig. 8.13(a).

Fig. 8.15 shows a quick comparison between crossing angles and the correspond-
ing SPI in one of the HCP data sets analyzed using CSD. In the resolution range
of CSD (angles 45◦ − 90◦) there is no obvious bias towards 90◦ crossings. Finally,
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(a)

(b) (c) (d)

Figure 8.13: (a) Sheet tensors (λ � 0.008) on different coronal (top), sagittal (middle), and axial (bottom)
slices. Ellipsoids with Pλ < 0.2 are not shown for clarity, and the sheet tensors are colored according
to Fig. 8.5(b). (b) High-SPI area with streamlines (paths

(
Φ̂w

h2
◦ Φ̂v

h1

)
(p) and

(
Φ̂v

h1
◦ Φ̂w

h2

)
(p) with hmax �

5voxels used to compute the Lie bracket in a voxel marked by awhite asterisk) of the CC and the CST in the
left hemisphere. Non-orthogonal angles can be recognized, and the white arrow indicates crossing sheets.
(c) Amedial and sagittally oriented sheet structure, formed by parts of the CC/CST and anterior-posterior
oriented association fibers. (d) A low SPI area in which the fibers look like a sheet from a superior view,
but clearly diverge when inspecting other viewpoints (1) and (2).
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Figure 8.14: Sheet tensors (satisfying Pλ > 0.2, λ � 0.008) on different coronal (top), sagittal (middle), and
axial (bottom) slices, computed with hmax � 3voxels.

Fig. 8.16 shows a comparison between the SPI and three diffusion tensor imaging
(DTI) shape indices (recall Section 2.3.1), which have been used in previous work to
detect sheet-like regions in DTI data [355].

8.3.3.2 Inter-subject variability

Fig. 8.17 shows results for 3HCP subjects (first three rows, hmax � 5voxels � 6.25mm)
and the MASSIVE data set (last row, hmax � 2.5voxels � 6.25mm). For each subject,
corresponding coronal, sagittal, and axial slices are shown in the different columns
(two different slices per viewpoint). The arrows highlight examples of high-SPI areas
that visually appear consistent across subjects. In Fig. 8.18 we show a quantitative
comparison between the HCP subjects after registration of the corresponding FA
images, which illustrates a moderate overlap between the maximum SPI maps after
binarization.
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Figure 8.15: SPI plotted against angle. High SPI can be encountered for angles ranging from 40◦ − 90◦,
which is in the range of the angular resolution of the used reconstruction technique. There are only slightly
more voxels with high SPI for angles closer to 90◦.

(a) (b) (c)

Figure 8.16: Scatter plots of the SPI and three DTI measures, cf. Section 2.3.1. (a) Linear coefficient cl. (b)
Planar coefficient cp. (c) Spherical coefficient cs.

8.3.3.3 The influence of spatial resolution

Fig. 8.17 compares theMASSIVEdata set (2.5mm isotropic voxels) with theHCPdata
sets (1.25mm isotropic voxels), where we kept the maximum distance hmax constant
at 6.25mm. In the MASSIVE data set the same high-SPI areas can be recognized as
in the HCP data.

Fig. 8.19 shows results for the same subject as in Fig. 8.13 (voxel size 1.25mm,
hmax � 5voxels � 6.25mm) and Fig. 8.14 (voxel size 1.25mm, hmax � 3voxels �

3.75mm), but now we down-sampled the data spatially (voxel size 2.5mm, hmax �

2.5voxels � 6.25mm). The same sheet structures can still be recognized, but some
finer-scale structures get lost.

In Fig. 8.20 we illustrate the effect of changes in the angle threshold t, Alg. 2,
which determines the maximum curvature allowed at a specific spatial scale.
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Figure 8.17: Visual comparison of sheet structures between subjects and spatial scales (tensors with
Pλ < 0.2 are not shown for clarity, colors according to Fig. 8.5(b), and we set λ � 0.008). Examples of
visually similar sheet structures are indicated by the arrows.
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(a) FA-based registration pipeline

(b) FA after registration

(c) SPI after registration

(d) Thresholded SPI

Figure 8.18: Preliminary results of a quantitative comparison between three HCP subjects. (a) An FA
map for one subject before (left) and after (right) registration to the FMRIB58 template (middle) using
Elastix [201] with the Oxford-optimized settings described in [155]. (b) Registered FA maps for the three
HCPdata sets. (c) The voxel-wisemaximum-SPImaps corresponding to (a). The binarizedmaps (Pλ > 0.2)
corresponding to (b) and (c) used in similarity computations. The mean Dice similarity between the three
data sets is approximately 0.28.
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Figure 8.19: Sheet tensors (satisfying Pλ > 0.2, λ � 0.008) on different coronal (top), sagittal (middle), and
axial (bottom) slices, computed with hmax � 2.5voxels on a sub-sampled data set.

(a) t � cos 15◦ (b) t � cos 25◦ (c) t � cos 35◦ (d) t � cos 45◦

Figure 8.20: SPI for different angle thresholds. Setting the angle threshold too low (15◦) can result in failure
to detect curved sheets or spurious high SPI values because of early termination of paths (white arrows).
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Figure 8.21: The detection of sheet structure with different diffusion weightings in the MGH HCP data
set, overlaid on the FA of the b � 1000 s/mm2 shell (tensors with Pλ < 0.2 are not shown for clarity, colors
according to Fig. 8.5(b), and we set λ � 0.008).

8.3.3.4 The influence of diffusion weighting

Fig. 8.21 shows maps of the SPI for different diffusion weightings (b � {1000, 3000,
5000, 10000} s/mm2) of the MGH HCP data set, where we use CSD to extract the
fODF peaks for every shell separately (hmax � 5voxels). At b � 1000 s/mm2 the
SPI was significantly lower, which is the direct consequence of the decreased ability
to resolve crossing fibers. b � 10000 s/mm2 results in the most extensive high-SPI
areas, although most of these regions could already be recognized at a b-value of
3000 s/mm2.

8.3.3.5 The influence of diffusion MRI technique: CSD vs. DSI

Fig. 8.22(a) shows results of a single Lie bracket computation in tissue on the MGH
DSI data set (hmax � 3voxels � 6mm). Here, we visualize a tensor if

���[̂·, ·]⊥p ��� ≤ 0.008

(all tensors have the same size), and we color the voxel red if the minimum
���[̂·, ·]⊥p ���

in that voxel is larger than 0.025 (which would indicate that there is likely no sheet
structure locally, see e.g. Fig. 8.11). The arrows indicate high-SPI areas that could also
be identified in the previous experiments. Many high

���[̂·, ·]⊥p ��� estimates are found in
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(a)

(b) (c)

Figure 8.22: (a) A map of
���[̂·, ·]⊥p ��� for the MGH DSI data set (hmax � 3voxels). A tensor is visualized if���[̂·, ·]⊥p ��� ≤ 0.008 with colors according to Fig. 8.5(b) (tensors have the same size, arrows indicate example

areas), andwe color the voxel red if theminimum
���[̂·, ·]⊥p ��� in that voxel is larger than 0.025. Rectangles show

spatially continuous example areas of high minimal
���[̂·, ·]⊥p ���, the corresponding paths for the voxel marked

by a white asterisk are visualized in (b) and (c). The pathways clearly do not form a sheet but instead
‘diverge’ from the plane when inspecting them from a rotated view (orientation indicated by arrows).

the gray matter, but the rectangles indicate example areas in the white matter where
most likely no sheet exists. The paths in these areas are visualized in Figs. 8.22(b)
and 8.22(c).

8.4 Discussion

The hypothesis that brain pathways cross nearly orthogonally forming two-
dimensional sheet-like structures is an active topic of debate [57, 364, 365]. To date,
there is no consensus on the large-scale existence of sheet structure, partly because
the conditions for sheet structure are unclear (e.g. whether or not it depends on or-
thogonal angles), and, more importantly, because extensive quantitative proof is still
lacking. In this work, we have focused on the definition of sheet structure defined
as a surface formed by interwoven pathways, which does not depend on the angle
of crossing fibers (see also Fig. 8.15 for a plot of the angle against the sheet prob-
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ability index (SPI)). We have recapitulated the Frobenius theorem and investigated
the discrete Lie bracket as a quantitative indicator of sheet structure. We performed
extensive validation of the resulting algorithm by quantifying the effects of different
settings and parameters. Finallywe presented an investigation into the extent of sheet
structure presence in the human brain for different spatial resolutions, diffusionMRI
models, and other acquisition parameters.

8.4.1 Sheet or no sheet? Consistency with previous work

The first question that comes to mind is whether we can now prove or disprove
the ubiquitous existence of sheet structure in the brain. Our simple simulations
show that the discrete Lie bracket can distinguish between vector fields that do and
do not form a sheet structure (Figs. 8.7 and 8.8). Also in the case of vector fields
derived from diffusionMRI simulations, the method is able to correctly identify data
representing a sheet structure (Figs. 8.9 and 8.11). We found that the performance
was dependent on factors such as noise, voxel size, curvature, true Lie bracket normal
component magnitude, and the chosen diffusion MRI technique, which we discuss
in the following sections. To be able to extend the findings from our simulations to
the brain, however, we need to make the strong assumption that the vectors (or ODF
peak directions) represent true underlying fiber directions, and that tractography
correctly reconstructs trueunderlying bundles.Although these assumptions are often
considered to be more or less valid in many connectivity studies, it is well-known
that tractography is subject to many limitations and challenges [185], also a concern
raised by Catani et al. [57].

Based on our results from real diffusion MRI data (Figs. 8.11, 8.12, 8.13, 8.17, 8.21,
and 8.22), we can only state that the data supports the existence of sheet structures
at several locations in the brain at the investigated scales, with the SPI indicating
the likelihood. Tractography pathways at locations with high SPI values were visu-
ally confirmed to form a sheet by reconstructing the path neighborhood as in [365]
(Figs. 8.13(b) and 8.13(c)). Relying only on visual inspection of (layers of) pathways,
however, holds an important pitfall: where paths seem to form a sheet from a partic-
ular point of view (since a grid pattern is easy to recognize by the human eye), they
may not be an actual sheet, which becomes more apparent when the view is rotated
(Figs. 8.13(d), 8.22(b) and 8.22(c)). This discrepancy clearly shows the added value
of quantitative analysis in the investigation of such structures in the brain. Whereas
Wedeen et al. [364, 365] state that “no brain pathways were observed without sheet
structure”, our results indicate that this is not the case: crossing fiber regions with
very low SPI could be identified at this scale (Figs. 8.11, 8.12, 8.13, 8.17, 8.21, and 8.22).
At some locations no reliable conclusion can be drawn on the existence of sheet struc-
ture for various reasons (e.g. only one fiber population could be reconstructed, the
normality condition of the different bootstraps was not fulfilled, or the SPI was not
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clearly ‘high’ or ‘low’ (Fig. 8.12(c)) e.g. due to a high standard deviation in the Lie
bracket normal component estimates).

Certain areaswith high SPI valueswere found to be qualitatively consistent across
subjects (Fig. 8.17), indicating that our framework provides reproducible results. In
agreementwithWedeen et al. [364, 365], we found high SPI values in crossing regions
of the corpus callosum with the cingulum (see []) and SLF 1-3 (e.g. Fig. 8.13(c)), and
observed the continuous (grid) character of these major longitudinal pathways (as
opposed to them being clearly distinct). We also found high SPI values in crossing re-
gions of the corpus callosum and the corticospinal tract (Fig. 8.13(b)). The existence of
this sheet structure has been much debated, and here we find that the data supports
sheet structure at the location where these pathways cross [365] with non-orthogonal
angles [57]. However, we did not find a high SPI at crossings between callosal path-
ways and the fornix due to a high standard deviation of the Lie bracket normal
component estimates. We could therefore not draw a reliable conclusion whether or
not the data supports sheet structure at this location. Further extensive localization of
sheet structures and investigation of the involved pathways is subject to future work.

Is the sheet structure something that can be trivially found in the brain, or is
it a ‘special’ configuration? Wedeen et al. [364] remarked that the sheet structure
“is mathematically specific and highly atypical, having prior probability ≈ 0”, and
that “there are no mechanisms known whereby technical limitations will create it
as an artifact”. Indeed, most configurations of vector fields do not form a sheet
structure, and in this sense the sheet structure is thus special. On the other hand, one
configuration in which two thicker bundles trivially form sheets is when they are
both straight. Even though this may approximately occur in some regions (e.g. in the
cingulum/corpus callosum), tracts exhibit a significant curvature at the scalewe have
investigated, and the results we have obtained also show high SPI in regions with
high curvature in the streamlines of both vector fields (e.g. Fig. 8.13(b)). At this point,
we cannot ascribe this phenomenon to a more straightforward alternative geometry.

We did not further investigate the issue of pathways making sharp turns [364],
which we consider a separate topic; it cannot easily be addressed by current trac-
tography algorithms or by the frame tractography used here because of necessary
smoothness constraints.

8.4.2 The issue of scale

The discrete Lie bracket, and thus the derived SPI and sheet tensor maps, are locally
defined in terms of the surrounding structure. The term ‘local’ here implies that
spatial scale is an important factor in the method. The flow distance hmax (that
determines the extent to which the neighborhood is taken into account), the voxel
size δ, and the curvature of the streamlines affect the performance of the algorithm
in different but related ways.
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In Fig. 8.7 we show that for a fixed voxel size and fixed curvature, an increase in
hmax improves the accuracy and precision of the method. This is likely a result of the
corresponding increase of the number of data points in the least squares fit used to
compute �[v ,w]p , cf. Section 8.2.1.3, which is determined by hmax and the fixed step
size ∆h � δ/2. This also motivates the incorporation of multiple loop configurations
and the exploration of all four ‘quadrants’ surrounding point p (Section 8.2.1.3).
Though increasing hmax generally has a positive effect, its value is naturally limited
by the domain of definition of the vector fields. If a significant number of the loops
extend beyond this domain, the accuracy and precision can be expected to drop. This
means we should not choose the value of hmax to be much greater than the expected
size of the sheet structure,which leads to the interpretation of hmax as a sheet structure
scale parameter: hmax serves as an approximate lower bound to the size of the sheet
structures that can be detected with the algorithm. Note that taking hmax ≤ 1voxel
does not lead to reliable estimates of the Lie bracket (Fig. 8.7), so the voxel size δ is,
not unexpectedly, a hard limit on the size of detectable sheet structures. Related to
the note that “grid structure was maintained at all scales, from the single voxel, to
the lobe, to the hemisphere” [365], we can thus conclude that it is only possible to
reliably detect sheet structures larger than the voxel scale.

Fig. 8.7 furthermore shows that the accuracy and precision varies with the voxel
size δ and with hmax in voxels, but remains relatively constant when hmax is defined
in millimeters (the product of the former two) at the scales considered. This gives
the definition of hmax as a sheet structure scale parameter a more intuitive physical
interpretation. In our real data experiments, we kept hmax constant at 6 − 7mm. The
optimal detection of a given sheet structure then involves tuning of these parameters:
for example smaller or highly curved sheet structures require smaller voxel sizes (to
be able to set hmax > 1voxel) at the cost of a lower precision when keeping hmax in
voxels constant, or at the cost of higher computational demands when calculating
more paths for a higher hmax in millimeters. This lower precision at smaller voxel
sizes (Fig. 8.7) occurs because the tractography error in terms of voxels remains more
or less constant for a given SNR and hmax in voxels. Deviations in the Lie bracket,
having units mm−1, will thus be larger for a smaller voxel size in terms ofmillimeters.
This implies that the normal component of the Lie bracket should be larger in order
to still be able to distinguish sheet from non-sheet for a given SNR and hmax in voxels
at a smaller voxel size. The physical limits of detecting sheets at particular scales
have to be examined further in future work. At the scale investigated in our work,
curvature does not have a significant effect (Fig. 8.8(b)).

The angle threshold is another parameter that can be varied in our algorithm.
In this work, we have set a constant angle threshold of 35◦ for the whole brain. In
tractography, however, a single thresholdmight not be optimal for all brain pathways
and should be adapted to the curvature of the tract relative to the voxel size and the
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SNR of the data, amongst others [61]. This reasoning can be extended to the frame
tractography used in our algorithm: the angle threshold being set too low might
result in suboptimal Lie bracket normal component estimates and a failure to detect
curved sheets (Fig. 8.20). Conversely, if the angle threshold is set too high, this might
result in tracts taking a wrong turn, outliers, and a lower accuracy and precision.

8.4.3 The impact of the diffusion MRI technique

The impact of the diffusion MRI method—the use of diffusion spectrum imaging
(DSI) versus e.g. constrained spherical deconvolution (CSD)—has also been a big
part of the debate [57, 364]. This discussion centers on the ability of these models to
accurately resolve the orientations of fiber populations. Although the initial concern
was that DSI “does not allow separation of fibers that cross at non-orthogonal angles,
thus making a grid structure of interwoven sheets a very likely configuration” [57],
we find instead that the ability to robustly detect fiber populations mainly influences
the precision and accuracy of the Lie bracket estimates (and thus the SPI), but it does
not necessarily promote sheet structure.

The first factor of importance is the ability to detect crossing fibers, since (1) the Lie
bracket cannot be computed in voxelswith a single fiber population, and (2) paths end
prematurely if peaks of a vector field are missing, reducing the number of difference
vectors and thus potentially reducing the accuracy and precision (a similar effect as
shown in Fig. 8.7,where a lower hmax in voxels equals a lower amount of reconstructed
paths).We visually confirmed that in theDSI experiment (Fig. 8.22) a lower amount of
crossing fibers was detected than in a CSD experiment with similar or lower spatial
resolution (e.g. MASSIVE data in Fig. 8.17), resulting in a lower amount of voxels
where the Lie bracket could be computed. This is in agreement with Catani et al. [57],
where it was stated that DSI likely has a lower angular resolution. A second criterion
that is of importance here is robustness to noise, or the accuracy and precision of the
peak estimates.We investigated this effect using simulated diffusionMRI data (based
on the best scoring model of experiments in Ferizi et al. [119], which also included
high b-values). The results shown in Fig. 8.9 suggest that the performance of DSI and
CSD is comparable for a broad range of SNR with CSD having a higher precision,
contradicting the statement inWedeen et al. [364] that “DSI should present the lower
risk of bias”.

A comparison between the CSD results of the MASSIVE data with voxel size
δ � 2.5mm (Fig. 8.17, bottom row) and the MGH DSI data with δ � 2mm (Fig. 8.22)
reveals similar large-scale high-SPI areas. These sheet areas could also be observed in
theWU-MinnHumanConnectome Project (HCP) subjects (Fig. 8.17, first three rows).
Neither CSD nor DSI results in the detection of sheet structure at every crossing fiber
location in the brain. Based on our findings, we conclude that DSI has no bias towards
detecting sheet structure, and also reveals non-sheet areas (Fig. 8.22).
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A higher diffusionweighting generally causes an increase in the number of voxels
with a significantly high SPI value (Fig. 8.21). Using CSD we find very little high-SPI
areas in the b � 1000 s/mm2 shell of the MGH HCP data set, while for higher b-
values the percentage of voxels that are likely to form sheet structures increases. This
is consistent with the fact that the angular resolution increases with higher b-values,
confirming the importance of a reasonable “diffusion resolution” [364]. Increased
diffusion weighting, however, also comes at the cost of a lower SNR. Generally, a
b-value of 3000 s/mm2 is used for CSD, and the vast majority of the sheets detected
at this b are retained when moving to higher diffusion weighting.

With the ever increasing amount of proposed diffusion models, the reliable ex-
traction of fiber directions is still an active area of research. To assess the presence
of sheet structure in diffusion MRI data, one requires a robust and reliable means to
determine these peak directions. Our method is general and not limited to a particu-
lar diffusion MRI technique or acquisition scheme, and we therefore believe that its
performance can be improved with ongoing technical developments in the field.

8.4.4 Further methodological considerations

The least squares reconstruction of �[v ,w]p (Section 8.2.1.3) is sensitive to errors due
to the approximation of Eq. (8.14), and to errors in the streamline tractography. The
approximation errors depend on h1 and h2, and on the underlying vector fields.
These errors are small and turn out to be negligible compared to other sources
of errors. The tractography errors result from measurement noise, interpolation,
curvature of the tracts, and step size ∆h (which is linked to the voxel size in our
case), among others. Our experiments indicate that noise has the largest effect; in
the case of infinite SNR the estimate is accurate. Regarding interpolation, we opted
for simple nearest neighbor interpolation of the vector fields for reasons of speed
and computational efficiency (both for DSI and for CSD). In the case of CSD we
performed additional experiments using fiber ODF interpolation (strictly speaking
the actual diffusion measurements would have to be interpolated), which is more
precise (Fig. 8.9(a) and Fig. 8.10) but also more computationally intensive because
peak extraction has to be performed at every step. In future work, more advanced
tractography algorithms could be used to reconstruct the loops and estimate the Lie
bracket (e.g. usingmore complex integration schemes or combiningmodel fitting and
tractography (e.g. [78, 286]). The question ofwhether the added benefit outweighs the
additional computation time (the streamlines computed in the algorithm are fairly
short) remains to be answered.

To estimate the Lie bracket and its normal component at point p we reconstruct
multiple loop configurations, in all quadrants surrounding point p, and with a range
of walking distances. Currently we do a simple linear least squares fit (Section 8.2.1.3)
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on the difference vectors of these loops.Wedonot take into account the variance of the
measurements or potential outliers that arise, for example, when the tractography
takes a wrong path during the reconstruction of a loop. This can potentially be
improved by doing a (robust) iteratively weighted least squares fit, with the weight
dependent on the variance of the values for a given h1 h2 from corresponding loops.
In addition, the variance of the difference vectors from single loops potentially holds
information on the sheet probability; however, it does not give information on the
uncertainty of the underlying peaks.

To compute the SPI maps in the case of CSD we use residual bootstrapping, since
the acquisition of repeated diffusion MRI data sets is mostly not feasible. In Fig. 8.11
we show comparable results between the SPI obtained with residual bootstrapping
and the SPI obtained with true noise iterations (in the case of simulations). To the
best of our knowledge no bootstrapping method exists for DSI, so the reported
DSI results are based on a single noise iteration. This makes the quantification and
investigation of sheet structure more difficult since the choice of threshold has a hard
effect on the visualization of the sheet tensors, sometimes resulting in regions with
noisy (isolated) sheet tensors and high Lie bracket normal components (Fig. 8.22).
This further illustrates the necessity of more extensive evaluation of measurement
variance (i.e., the computation of the SPI as opposed to considering only a single
measurement) for reliable quantification of sheet structure.

When computation of the SPI was possible (in the case of CSD), we set λ � 0.008
andwe excluded the small percentage of voxels that didnot havenormally distributed
Lie bracket normal components over the bootstrap iterations. In future work, the
distribution of normal components per voxel and the optimal way to extract an SPI
from this (e.g. detection of outliers, fitting, threshold settings) could be investigated
more thoroughly. In this work, the value for λ was chosen based on the variability in
simulation experiments, and the used setting resulted in regions of smoothly varying
SPIwith sheet tensors of a similar orientation (i.e., normal) in a certain neighborhood.
This suggests that continuous sheet structures could perhaps be better visualized as
actual surfaces; tractography couldbe extended to sheetographybymeansof a surface
propagation process. There are examples of surface reconstruction approaches for
DTI data, e.g. [355, 385], which compute stream surfaces at points where the DTI
tensor has a high planarity coefficient cp [372], see Fig. 8.16. We found points in
the data where the SPI and the cp were both high, and where the reconstructed
surfaces corresponded well with the information represented by the sheet tensor.
This is however no strict prerequisite for the presence of sheet structure. There are
places with a high cp without sheet structure (i.e., low SPI due to spatial incoherence
of the data), and places with a low cp that do show evidence of sheet structure (i.e.,
high SPI, for example in the case of several sheet structures crossing in a voxel).
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In thismanuscript we view the Lie bracket in terms of the integral curves of vector
fields (Eq. (8.14)), which is equivalent to a combination of differential operators on
the vector fields known as the commutator (see Eq. (8.3) for details). This raises the
question of whether there might be an alternative way to calculate the Lie bracket
that does not require the reconstruction of many loops, which is computationally
expensive. A direct discretization of Eq. (8.3)would involve the computation of vector
fieldderivatives,which is a complicatedoperation.Afinite difference implementation
does not give stable results in the case of noise. A very recently proposed method
to estimate the Lie bracket for diffeomorphic registration purposes computes central
difference Jacobians of discrete vector fields by considering them as bandlimited
signals in the Fourier domain (i.e., truncating the high frequency components) [384].
However, in addition to discretization and noise, our application has other major
challenges: (1) all peaks in a certain neighborhood would have to be clustered into
distinct vector fields to be able to compute the Jacobian; (2) there are potential sign
inconsistencies between neighboring peaks; and (3) there is no guarantee that all
peaks of a vector field exist in a certain neighborhood. The first two challenges are
addressed in our algorithm by clustering the peaks into vector fields ‘on the fly’
during the proposed frame tractography. The third challenge still affects our method:
In the case of missing peaks the path is terminated, resulting in fewer difference
vectors to compute the Lie bracket. This has an important influence on the precision
of the estimates (see e.g. the experiments for different hmax in Fig. 8.7). Future work
will be directed towards investigating whether the alternative definition of the Lie
bracket in terms of the Jacobians can be used to obtain an estimate of the SPI, omitting
the computationally expensive reconstruction of many paths per voxel required for
the current method. Preliminary results of these efforts have been presented at the
ISMRM [333, 334].

8.4.5 Future perspectives

Our results indicate that areas with high SPI values are relatively consistent between
healthy subjects, and we therefore hypothesize that they could be used as new struc-
tural features of the brain. The extensiveness, orientation, and spatial distribution
of sheet structures could be altered in the case of pathology. For example, if these
sheets truly occur in the brain like “the warp and weft of fabric” [365], it might
be the case that space occupying lesions could dislocate the whole sheet structure
as opposed to individual pathways. Another interesting feature could be the an-
gle between pathways that form sheets through the shape of sheet tensors; it was
shown that there was a significant crossing-angle difference in the frontal connec-
tions between a schizophrenia and healthy control group [268]. The hypothesis that
sheet structures have a close connection to development, axonal path finding, and
the chemotactic gradients of early embryogenesis [365] can now be investigated in
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a quantitative fashion. Whereas we only visually confirmed the consistency of areas
with high SPI values between subjects in this work, a quantitative evaluation should
be performed in future work. Such an inter-subject or inter-group evaluation would
require a way to register these structures towards each other. Preliminary results
of a quantitative comparison in which we registered the fractional anisotropy (FA)
images of HCP subjects and calculated the overlap of thresholded maximum SPI
maps indicated only a moderate overlap (Fig. 8.18). However, in analogy to recent
insights in tract-based analyses, it is likely not optimal to work in voxel coordinate
space and register scalar volumes such as FA, since such methods can for example
not distinguish between nearby but differently oriented tracts [253]. Instead, point
correspondences should be found ‘in the space of sheet structures’. Ongoing devel-
opments in registration of tensor fields (e.g. [381] which could potentially be applied
to sheet tensors), ODFs and multi-fascicle models (e.g. [284, 326]), and tractography
data (e.g. [147, 253]) could contribute towards this end.

Although we find that the diffusion MRI data investigated in this work supports
the existence of- sheet-like structures at certain locations in the brain, it should be
noted that the diffusion MRI data reflects just a few aspects of the true underlying
structure and its derived tracts do not correspond to true axons. Ideally, the existence
of sheet structure should also be validated with a ‘gold standard’, such as histology,
and quantified with other techniques that can map brain structure orientations.
Exciting new technologies such as CLARITY [70] and polarized light imaging [20]
could provide more insight into the existence of sheet structures and the scale on
which they exist. Our method can be used in combination with such techniques: the
Lie bracket computation is based on vector fields and could therefore be extended to
directional data derived from these other techniques.
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The threeparts of this thesis—Modeling,Processing, andAnalysis—cover a small subset
of topics where techniques and ideas related to geometry are of use to diffusionMRI.
We have attempted throughout to root these techniques in a solid theoretical foun-
dation, either by formalizing existing approaches, or by proposing new techniques
from first principles. In this concluding chapter we review the key contributions pre-
sented in this work, and place them in the context of current challenges and existing
solutions.

In Part I we considered Riemannian and Finsler manifolds as geometrical mod-
eling frameworks for the analysis of diffusion-weighted MRI data. The fundamental
relevance of these geometries in the context of diffusionmodeling is discussed from a
mathematical point of view in Section 9.1, and their practical applicability to diffusion
MRI, specifically to neuroimaging, is discussed in Section 9.2. Potential applications
of the large gradient strength approximation employed in the derivations of Part I are
discussed in Section 9.3. In Section 9.4 we discuss the usage of the proposed geomet-
rical features in the analysis of diffusion-weighted data, and in Section 9.5 we briefly
look at generalizations of the Finslerian framework. In Section 9.6 we consider finally
the large-scale geometrical organization of the brain, as discussed in Chapter 8.

9.1 Relevance of geometry in diffusion

Given a stochastic process with well-defined moments, there is a sensible way in
which one can define various associated geometries. In the case of Riemannian ge-
ometry this has been known for some time (see e.g. the book by Ikeda et al. [168]),
where the second order (central) moments of a process, i.e., the mean squared dis-
placements, determine a Riemannian metric tensor. When a process is governed
entirely by its second order moments, i.e., if it is normally distributed with zero
mean, then this relation is invertible—the Riemannian metric contains all statistical
information about the stochastic process. Generically, distances and other geomet-
rical concepts that can be derived from the metric are directly related to particle
dynamics, e.g. shortest paths in the Riemannian manifold represent the most likely
route along which particles in Brownian motion move between points. We speak of
a geometrical framework: one can apply techniques from the associated geometrical
theory to process and analyze the given statistical data.

The Riemannian geometrical framework can be extended to the case of Finsler
geometry using the reasoning presented in Chapter 3, where we establish a funda-
mental relationbetween the cumulant generating function of a (compactly supported)
stochastic process, and the geometrical structure of an associated Finsler manifold.
Specifically, we find that the level sets of the cumulant generating function can be
interpreted as Finslerian spheres, which uniquely determine the local geometry of
themanifold. These level sets asymptotically approach the (convex hull of the) largest
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displacements in the process, and where Riemannian geometry describes the most
likely displacements in a process, Finsler geometry thus describes the largest—and in
some sense least likely—displacements.

By viewing diffusion as a stochastic process—i.e., as a sequence of ran-
dom displacements that are governed by (approximately) the same probability
distributions—the fundamental relevance of these two frameworks is revealed. The
Riemannian framework captures the central limit [66] characteristics of the diffusion
process: as the number of collisions between particles tends to infinity, the probability
distribution of the process will asymptotically approach a Gaussian distribution, and
the bulk motion of particles can then be described completely by the mean squared
displacements. The Finslerian framework, on the other hand, is related to rare events
in the diffusion process, which are typically considered a topic of the theory of
large deviations [353]. Finsler geometry captures statistical properties of a diffusion
process that are not accurately described by its asymptotic distribution. The precise
relation between large deviations theory and Finsler geometry is a subject of ongoing
research.

9.2 Geometrical frameworks in diffusion MRI

In Part I we discussed how geometrical frameworks can be applied in diffusion
MRI. In diffusion MRI we measure an ensemble average propagator (EAP), which
represents the probability of a particle in an ensemble undergoing a given translation
over a fixed diffusion time. We can measure an EAP in ensembles centered around
different points in an imaged sample, and by combining the associated metrics at all
points we can define amanifold that represents statistical properties of the ensembles
in the sample. Subsequent processing of the data can then be done on this manifold,
where the geometrical framework naturally handles spatial correlations in the data
that are otherwise difficult to manage.

In most diffusion MRI experiments, anisotropy in an observed stochastic process
is not an intrinsic property of the observed particles. Instead, the displacement prob-
ability distribution typically reflects the anisotropy of a static ambient structure that
is probed by an isotropically diffusing medium. If the diffusion characteristics of the
medium are known, geometrical frameworks naturally allow us to factor these out.
The geometry then solely represents the structure embedded in the medium, which
can be investigated independently from the medium used to probe it. Additional
processing may be useful to filter out the effect of other irrelevant interactions, as
described in Chapter 4. It is widely accepted that the structure probed by diffusion
MRI in neuroimaging is predominantly made up of axonal membranes [30].

It is useful to think of a reconstructed geometry as the ‘simplest prototypical sam-
ple’ that explains the observations. The complexity in the stochastic processes under-
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lying the measurements is encoded in (typically minor) deformations of a Euclidean
base space. This interpretation, as well as the intuitive relations between metric and
particle motion described in Section 9.1, are provably valid when the displacement
probability distributions of different particles in the observed ensemble are similar. In
diffusionMRI terminology, this means that the presented frameworks can be applied
straightforwardly if the metric can be approximately inferred from the contributions
of a single diffusion compartment. This assumption is not universally valid in prac-
tice, and in situations where there is more than one relevant diffusion compartment
the interpretation of the geometrical frameworksmay have to be adapted.We do note
that this assumption is only necessary for the described interpretations—as long as
the moments/cumulants of the EAP are well-defined, geometrical frameworks can
be used to process and analyze the data.

Thehumanbrain is generally accepted to contain two (essentiallynon-exchanging)
compartments that have an observable impact on the diffusion-weighted signal in
typical acquisitions: the intra-axonal compartment, and the extra-axonal compart-
ment [14, 30, 206, 246, 250]. In the neuroimaging experiments presented in Chapter 6
we assume that the only relevant compartment is the extra-axonal compartment, and
that the intra-axonal compartment can be safely neglected. This is motivated by the
derivations inChapter 3 that showhow large gradient strength acquisitions are biased
towards large displacements, which can be expected to occur in the relatively unre-
stricted extra-axonal compartment [206, 250]. The promising results obtained with
the barrier orientation distribution function (barrier ODF or bODF) in Section 6.3.1
that rely on this assumption are also encouraging in this regard. However, although
theremay be strong arguments supporting the notion that the Finsler function should
in theory represent the extra-axonal compartment, there are some practical consid-
erations to take into account. After all, the asymptotic relation between the Finsler
function and the diffusion MRI signal in Eq. (3.29) formally only applies in the
unattainable large gradient strength limit G → ∞, and our interpretation of the re-
sults in Chapters 3 and 6 is based on the intuition that the more practical estimates
provided by Eq. (3.36) can be used to approximate the true Finsler function. In future
work we intend to generalize Eq. (3.29) from an asymptotic relation to an asymptotic
expansion [108, 278], i.e., a series expansion that describes a function as its argument
tends towards infinity. If this is possible, we can clarify exactly how our assumption
of infinite gradient strengths impacts our analysis, and perhaps even derive more ac-
curate models that resolve the dissonance between the practical cumulant expansion
(valid near the origin) and our theoretical relations (valid away from the origin).
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9.3 The strong gradient extremal path approximation

A recent overview paper by Novikov et al. [250] lists three regimes to categorize dif-
fusion MRI models based on the diffusion time ∆. In the limit ∆→ 0 very few spins
have had an opportunity to interact with their surroundings, and only the surface-to-
volume ratio between barriers and medium is required to fully describe the average
spin dynamics [236]. The second regime is the limit ∆→ ∞, where the central limit
theorem applies to all diffusion compartments separately, recall also Assumption 1.
The propagator thus becomes a weighted average over the per-compartment Gaus-
sian (attractor) distributions, which forms the basis of a large number of current
models [14, 32, 119, 124, 250, 265, 297, 317, 321, 376, 382]. The Riemannian frame-
work (Chapter 2) fits in this regime, but in general geometrical frameworks such as
proposed and discussed in this thesis belong to the last regime, that of intermediate
diffusion times. In this regime spins have time to interact with their immediate sur-
roundings, but coarse-graining is not yet complete, i.e., the central limit theorem only
gives a first order approximation for the observables in a compartment. Theoretical
developments in the intermediate ∆ regime are often complex, involving e.g. “qual-
itatively distinct behavior along [123, 248] and transverse [45, 123] to the neurites in
the brain” [250].

In Chapter 3, where we derive the Finslerian framework, we approached this
challenge by focusing on the large gradient strength limit G→∞. This again greatly
simplifies the diffusion MRI signal equations, and the application of the G → ∞
approximation extends beyond the narrow pulse approximation that we assumed
throughout this work. The easiest way to see how, is by considering the path integral
formulation of diffusion-weighted MRI [234]:

S[G] �
∫

C∈Ω̃
eiγ

∫ T
0 〈G(t),C(t)〉 dt dρ(C), (9.1)

where the argument G : �→ (
�3)∗ of the signal is a function of time with G(t) � 0

outside the range [0, T]. The path integral sums over the set Ω̃ of all possible spin
paths C : [0, T] → �3, dρ(C) is the associated path probability measure, and G is a
general gradient sequence that scales linearly with a gradient strength parameter G
and which satisfies ∫ T

0
G(t)dt � 0. (9.2)

Considering the same limit as in Section 3.2.2 then gives

log S[−iG] ∼ γ sup
C∈Ω̃

∫ T

0
〈G(t), C(t)〉 dt (G→∞) . (9.3)
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(a) (b)

Figure 9.1: (a) The gradient sequence for the single diffusion encoding PGSE sequence, where we assume
that the pulse width δ is negligible. We show effective gradients, including effects of any refocusing
pulse(s). (b) An extremal path (gray) that maximizes

∫ T
0 〈G(t), C(t)〉 dt for the gradient sequence shown

in (a), the boundary containing all spins after diffusing for a time ∆ (blue), and a vector representation of
the gradient co-vector (dashed black arrow). In the large gradient strength approximation, only spins that
follow paths close to the extremal path(s) are relevant to the diffusion MRI signal formation. In this case
the extremal paths are only determined by the effective displacement of spins, which has to be maximal
relative to the gradient orientation.

Eq. (9.3) shows that mainly the extremal paths (relative to the functional 〈G, C〉)
are relevant in the formation of the diffusion signal S at large gradient strengths.
This could for instance be useful in the analysis of generalized diffusion encod-
ing (GDE) [110, 313, 371, 379] sequences like double or multi diffusion encoding
(DDE or MDE) sequences [64, 73, 235, 255, 256, 309] or q-space trajectory imaging
sequences [370], whose interpretation is the subject of ongoing research efforts [267].

Let us consider some basic examples. In the narrow pulse approximation of the
standard PGSE sequence (Fig. 9.1(a), also called a single diffusion encoding sequence
or SDE) we have a fixed gradient covector G with norm ‖G‖ � G and

G(t) � G
(
δ(t) − δ(t − ∆)) , (9.4)

with δ(x) � 1 if x � 0 and 0 otherwise, and Eq. (9.3) clearly reduces to Eq. (3.27). In the
path integral formalism, this relation states that the cumulant generating function is
proportional to the largest displacement along the gradient orientation, i.e., the signal
is dependent on the paths whose ‘projection’ on the gradient orientation is maximal.
In Chapter 3 we assumed that the stochastic behavior of spins could be modeled as a
Finslerian (locally Minkowskian) isotropic transport process, so that these extremal
paths would be straight lines, but in the general case these paths could be arbitrarily
curved, Fig. 9.1(b).

Take now the following simple variation of Eq. (9.4) shown in Fig. 9.2(a):

G(t) �
{

G
(
δ(t) − 1

∆
)

if 0 ≤ t < ∆
0 else

. (9.5)

We will refer to this for now as an asymmetric diffusion encoding sequence (ADE).
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(a) (b)

Figure 9.2: (a) The gradient sequence for an ADE sequence, where we assume that the width δ of the
initial pulse is negligible. We show effective gradients, including effects of any refocusing pulse(s). (b) An
extremal path (gray) thatmaximizes

∫ T
0 〈G(t), C(t)〉 dt for the gradient sequence shown in (a), the boundary

containing all spins after diffusing for a time ∆ (blue), and a vector representation of the gradient co-vector
(dashed black arrow). In the large gradient strength approximation, only spins that follow paths close to
the extremal path(s) are relevant to the diffusion MRI signal formation. In this case the extremal paths are
restricted to straight lines with an orientation determined by the applied gradient.

In this case, the cumulant generating function reduces asymptotically to

log S[−iG] ∼ γ sup
C∈Ω̃

∫ T

0
〈G(t), C(t) − C(0)〉 dt (G→∞) . (9.6)

In the PGSE sequence gradients were turned off for the duration of the displacement,
and as a result the actual paths resulting in the large relevant displacements was
unimportant. But with ADE the gradients are always on, and the extremal paths are
then straight lines, see Fig. 9.2(b). A slightly different but similar conclusion could
be drawn for e.g. oscillating gradient spin echo (OGSE) sequences [296]. Because of
their targeted sensitivity to spins of interest, it may well be that ADE (and OGSE)
sequences are practicallymore suited for Finsler-basedmodeling. In the path integral
formalism, a comparison between the results of ADE and PGSE could be a measure
of the diffusion dispersion around the gradient orientation. ADE sequences could
potentially be adapted to sensitize the scanner to arbitrary spin paths.

Finally take the standard DDE sequence, a repeated SDE sequence separated by
a time constant τ, parameterized by two diffusion times ∆1 , ∆2, and two gradient
vectors G1 ,G2 scaled by a global gradient strength parameter G:

G(t) � GG1
(
δ(t) − δ(t − ∆1)

)
+ GG2

(
δ(t − ∆1 − τ) − δ(t − ∆1 − τ − ∆2)

)
, (9.7)

see Fig. 9.3(a). Ifwe assume a small τ, we find that extremal paths for this sequence are
a concatenation of the corresponding extremal paths in the single diffusion encoding
case, cf. Figs. 9.1(b) and 9.3(b). We could thus interpret these measurements as being
sensitive to a specific (unsigned) curvature, which could have potential applications
in neuroimaging as a method to distinguish between kissing and crossing fiber
pathways.
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(a) (b)

Figure 9.3: (a) The gradient sequence for a basic DDE sequence, wherewe assume that the pulsewidths are
negligible. We show effective gradients, including effects of any refocusing pulse(s). (b) An extremal path
(gray) that maximizes

∫ T
0 〈G(t), C(t)〉 dt for the gradient sequence shown in (a), the boundary containing

all spins after diffusing for a time ∆1 + τ + ∆2 (blue), and a vector representation of the gradient co-vector
(dashed black arrow). In the large gradient strength approximation, only spins that follow paths close to
the extremal path(s) are relevant to the diffusion MRI signal formation. If τ is small, the extremal paths
are determined by the extremal paths of the corresponding SDE sequences.

9.4 Applications of geometrical frameworks

The benefit of this new geometrical perspective comes both from an abstraction that
helps to distill the essence of a given problem, and from the immediate access to
an expanded body of existing solutions and methods for these abstract problems. In
neuroimaging applications one wishes for example to understand what information
about the brain is captured by the signal, and how to performameaningful analysis of
the data. Regarding the brain as a specific type of manifold as discussed in Part I, can
help in solving practical problems such as interpolation and tissue characterization.

One of the important tools provided by geometrical frameworks are geodesics,
which function as a natural means to investigate spatial correlations in the data. The
interpretation of geodesics depends both on the geometry and on the application.
In the case of the Riemannian framework for diffusion MRI, geodesics represent the
trajectories along which water molecules are most likely to move. As such, they are
also related to the diffusion-governed redistribution of cells and nutrients, which has
been used for example by Mosayebi et al. [243] to predict the bulk growth of gliomas
in the humanbrain.With the formal definition of the Finslerian framework,Chapter 3,
we can now also interpret Finslerian geodesics in terms of the observed stochastics—
they represent the fastest route connecting two points in the manifold, as traversed
by particles in Brownian motion. We can easily envision these geodesics playing an
even more important role in tumor growth predictions. By the same arguments used
in the Riemannian case we can argue that Finslerian geodesics would describe the
peripheral spread of an invading tumor. This could be relevant e.g. for radiation
therapy planning, where an accurate delineation of the tumor extent is essential.

Diffusion MRI literature related to geodesics [17, 29, 51, 103, 128, 141, 163, 169,
171, 218, 227, 228, 254, 266, 269, 271, 281, 305–307, 343] has so far been predominantly
concerned with the study of structural (neuronal) connections in the brain, i.e., ge-
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odesic tractography and/or connectivity. With few exceptions [171, 218, 254] these
works rely on different metric definitions (in terms of the diffusion-weighted data)
from those used in modeling, because the standard ‘modeling’ metric (Chapter 2)
can be shown to produce inaccurate results in various realistic scenarios [163, 171]. In
Chapter 7 considered at a typical case where Riemannian geodesic tractography has
problems, and showed that the scaledRiemannianmetric [141] proposed inChapter 2
leads to improved tractography by discouraging passage through isotropic diffusion
regions. We further show in the Finsler case that we obtain more plausible connec-
tivity maps by using new connectivity measures based on recent developments in
Riemannian connectivity analysis [269].

However, despite the advancements achieved by usingmodifiedmetrics, there re-
main fundamental unanswered questions about the tenets of geodesic tractography.
To our knowledge, there is no solid case for the hypothesis that axonal fiber pathways
correspond to geodesics of some ‘holy grail’ geometry, nor are there verifiable condi-
tions or assumptions that would validate this hypothesis. This makes it very difficult
to either provide arguments in favor of geodesic tractography, or to categorically
reject it. Given recent results that underscore the inefficacy of state-of-the-art tracto-
graphy algorithms [104, 225], and because there are no practical means to validate
tractography output, the problem should be approached much more methodically
than is currently the case. Though likely not in the form of geodesic tractography, we
do think that the abstraction provided by the concept of a geometrical framework
may be of use in this regard.

Aside from geodesics there are a number of other potentially relevant features
that can be derived from the presented frameworks. Firstly there is the barrier ODF,
which we proposed in Chapter 6 as an alternative axonal orientation distribution
function. (The bODF can be seen to some extent as separate from the Finslerian
framework, although the two are intimately related.) Like the fiber ODF, the barrier
ODF may be of use in a variety of (non-geodesic-based) tractography algorithms.
Then there are various global features, which (as described in Section 2.5.3.2) can
generally be expressed in terms of the differential structure of the Riemannian or
Finsler manifold. One example that we mentioned previously would be the geodesic
deviation (or Jacobi field [21]), which gives a measure of the degree of divergence in
nearby geodesics. This measure has been used in DTI [18], for example as a stopping
criterion for tractography [306], and could be useful to identify branching points of
fiber pathways.

9.5 Extensions of the Finslerian framework

In Section 1.2.1 we introduced geometrical modeling in relation to constrained de-
formations of Euclidean space. From this perspective, Riemannian geometry can be
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interpreted as a scaling deformation of the local space (parameterized by the scaling
factors along three orthogonal directions), and Finsler geometry as an elastic scal-
ing along arbitrary orientations. Increasingly complex deformations lead to more
complex (and more powerful) geometries, and following the successful generaliza-
tion from Riemannian geometry to Finsler geometry, one might wonder which other
geometries might be useful in describing stochastic processes.

One logical next step in the development of geometrical frameworks would be a
generalization to Kawaguchi spaces, which allow e.g. bending of the local Euclidean
space. Lengths of curves in aKawaguchi spacedependnot onlyon the curve’s position
and orientation, but also on higher order derivatives of the curve at each point. The
length functional in a Kawaguchi space is thus of the form F

(
C(t), ÛC(t), ÜC(t), . . . ) ,

where dots denote derivatives of a suitably differentiable curve C : [0, L] → M,
and where F satisfies a complex combination of conditions to ensure that the length
integral

LF(C) B
∫ L

0
F
(
C(t), ÛC(t), ÜC(t), . . . ) dt (9.8)

is invariant under changes of the parameter t [193]. Restricting F to position and ori-
entation dependencies reduces it to a Finsler function. Because higher order deriva-
tives at a point provide increasingly accurate information about a neighborhood,
Kawaguchi spaces that depend on increasingly higher order derivatives form a nat-
ural hierarchy of features to describe the local structure.

While the benefits of Kawaguchi-based frameworks may be significant, there
are serious challenges both from a theoretical and from a practical point of view.
Even if there is e.g. a measurable ‘curvature component’ detectable in a diffusion
process, it will probably be very difficult to extract the intricate associated geometric
structures, and in the context of diffusion MRI possibly involve more complicated
pulse sequences [255, 267, 370].

9.6 The geometrical organization of the brain
The origin of the human brain’s extraordinary capabilities is one of the major un-
resolved questions of today. The recently proposed sheet structure hypothesis [365]
promises a possible starting point for an explanation in terms of the brain’s forma-
tion at early stages of development. The study of Wedeen et al. [365], based on an
extensive investigation into the structure of the brain using diffusion MRI, identified
sheet-like structures of interwoven fiber pathways indicating an inherently grid-like
organization of neuronal connections. The axes of this grid appeared to correspond
to the principal axes of development, suggesting that the three chemotactic gradients
of embryogenesis are the primary forces guiding early axonal growth. The valid-
ity of this hypothesis would have wide-ranging implications far beyond the field of
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diffusion MRI.
The extensive presence of sheet structure in the brain has been debated since its

proposal [57, 95, 327, 331, 363–365], in part due to a lack of quantitative characteriza-
tion. In this thesis and related works [92, 328–335] we have formalized the necessary
and sufficient condition for sheet structure to exist, leading to the proposal of the sheet
probability index (SPI) which indicates the extent to which the data locally supports
sheet structure at a given spatial scale. We performed an extensive validation of the
SPI on artificial vector fields, which showed that we can quantitatively distinguish
sheet from non-sheet structure, with spatial resolution and SNR being important
factors that influence the accuracy and precision. Diffusion MRI experiments on real
data reveal a high SPI at various locations in the brain at the investigated scale, but
low SPI areas were also identified. Several high SPI areas could consistently be recog-
nized across subjects, scanners, and spatial resolutions, independent of the employed
diffusionmodel (i.e., CSDvs.DSI). Since tractographypathways do not represent true
axons, validation of sheet structure with other technologies is necessary, and we note
that the proposed method can be extended to quantify sheet structure in other types
of directional data as well.

We already discussed a number of potential improvements of the currently em-
ployed SPI methodology in Section 8.4. Here we finally treat a possible reformulation
of the sheet structure hypothesis based on the Funk–Radon transform, which we
briefly invoked when discussing the barrier ODF in Chapter 6. Given an ODF that
represents the orientations of the axons in a voxel, we find that the Funk–Radon
transform associates a measure of perpendicular axon density to each orientation. As
a result, the Funk–Radon transform of the ODF (e.g. the planar barrier ODF if one
considers the bODF) could be interpreted as a sheet orientation distribution func-
tion. The existence of sheet structure is then guaranteed not by conditions on the
Lie bracket (recall Chapter 8) but e.g. by continuity of the sheet ODF peaks, which
is a much simpler property to verify. This would additionally allow us to perform
‘sheetography’ using standard ODF-based tractography algorithms.

9.7 Conclusion
Diffusion MRI is used to investigate spatial correlations in complex diffusion pro-
cesses and (implicitly) in the underlying structure, and differential geometry natu-
rally provides the tools to analyze different aspects of the imaging data. With more
and more local properties being included in modern diffusion models, structured
reasoning in terms of geometry can be useful to identify relevant parameters and to
guide the development of novelmodels, acquisitions, and analysis techniques. Recent
evidence suggesting an innately sheet-like geometrical organization of fiber pathways
in the human brain, exemplifies the importance of geometry in neuroimaging.
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Implementation
Classes` and Diffusica`

This appendix contains information on the twoWolfram Language packages written
to support the research presented in this thesis. Most of the code used to generate
the result shown in this manuscript is bundled in the Diffusica` package, which
is in essence a general coding framework with guidelines on where and how to
include medical image processing code. Diffusica` is built on top of the Classes`
package, which provides the class functionality used to represent models, data, etc.
The Classes` package has also been used as the basis for e.g. the LieAnalysis` package
(lieanalysis.nl). Both Classes` and Diffusica` are open source under the Apache
2.0 license. The sections in this appendix are included almost verbatim as tutorials in
the documentation of these packages.

A.1 The Classes` package
The Classes` package provides a basic implementation of hierarchical classes, includ-
ing property inheritance and invariant declaration. In this section we will discuss
how to set up a package with Classes`, and how to work within a Classes`-based
package.

A.1.1 Classes setup

TheClasses` packageprovides tools to easily create packages thatworkwith objects or
instances. These instances are of the form class [< |elements | >], where the head class
defines the class to which the instance belongs, and the elements in the Association
object represent the data in the instance. The classes in the Classes` package are
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designed to resemble as closely as possible existing constructs like FittedModel and
CompiledFunction. The standard definition of a class is done through three functions
(listed below). DeclareClass designates specific symbols as a class symbol that can
function as a head of a class instance. DeclareDefaults is used to define the default
elements in an instance that provide values in case none are provided explicitly.
DeclareInvariant defines a pure function called the invariant, that defines when a
class instance is valid. In the following sections we will explain how these functions
can be used to create a basic classes setup, and how custom properties and functions
can be defined for these classes.

DeclareClass designate a symbol as a class

DeclareDefaults sets the defaults for a class symbol

DeclareInvariant sets the invariant for a class symbol

Functions used to setup classes.

A.1.1.1 Basic setup

Start with loading the Classes` package.

Load the Classes` context

Needs["Classes`"]

Top-level classes In this sectionwewill walk through the standard setup of classes,
with the first step the declaration of a top-level class using DeclareClass.

Declare the top-level class TopClass

DeclareClass[TopClass]

Once a symbol is declared a class, ClassQ will return True.

Check if TopClass is a declared class

ClassQ[TopClass]

True
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From a declared class symbol class, class instances can be generated by evaluating
class[].

Create a simple instance of the TopClass class

tc = TopClass[]

The declared class only has the bare-bone definitions that make up a class, and
these are typically expanded firstly by declaring defaults for the elements that are
to be included in the class instances. Classes are based internally on associations,
and key-value pairs used in classes have the same makeup as their counterparts in
Association objects.

Provide the defaults for TopClass

DeclareDefaults[TopClass,
<|

"FirstElement" -> 1,
"DelayedElement" :> 2,
Plot[x, {x,-1,1}] -> 3

|>
]

For a given instance, values can be assigned to elements by a user as will be
discussed in Section A.1.2. It is generally necessary to constrain the allowed values;
for a class representing a person it makes sense to allow strings in elements that
represent a first or last name, but not for elements that represent age or height.
These constraints can be enforced with invariants, which are pure functions that
have to return Truewhen applied to an Association of the instance elements. The tag
ValidQ::elfail is reserved for messages regarding invariants. It is advised to define
failure messages as specifically as possible, to help users with debugging.
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Declare the invariant for TopClass

DeclareInvariant[TopClass,
{

IntegerQ[#[["FirstElement"]]] /.
False :> (

Message[
ValidQ::elfail,
"FirstElement",
"TopClass",
"be an integer"

];
False

) &
}

]

Once default elements are defined for a class, they take effect even for previously
defined objects.

The defaults for TopClass are immediately accessible for the previously defined symbol

Retrieve[tc, "FirstElement"]

1

Invariants can be manually checked using the function ValidQ.

Verify that the default elements of TopClass satisfy the invariant

ValidQ[tc]

True

If an instance does not satisfy the invariant, ValidQ returns False and a warning is printed

tcInvalid = Affix[tc, "FirstElement" -> Pi];
ValidQ[tcInvalid]

Affix: The affix operation produced an invalid instance of class TopClass.

ValidQ: The expression fails to satisfy the supplied invariant.

False
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The ValidQ::elfailmessages are typically suppressed, but can be printed using the
option "Verbose".

The "Verbose" option of ValidQ provides information to narrow down why an instance is invalid

ValidQ[tcInvalid, "Verbose" -> True]

ValidQ: The element FirstElement fails to satisfy the invariant of the class TopClass;
its value should be an integer.

ValidQ: The expression fails to satisfy the supplied invariant.

False

Child classes A child class can be defined that inherits from a previously defined
class.

Declare the class ChildClass as a child of TopClass

DeclareClass[ChildClass, TopClass]

Create a simple instance of the ChildClass class

cc = ChildClass[]

Child classes inherit formatting rules, class and instance properties, default elements,
and invariants.

A child class inherits defaults from its parent

cc[["FirstElement"]]

1

The inherited defaults can be redefined by evaluating DeclareDefaultswith the child
class as an argument. DeclareDefaults can also be used to specify additional defaults.
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Provide the defaults for ChildClass, which supersede the definitions inherited from TopClass

DeclareDefaults[ChildClass,
<|

"FirstElement" -> 10,
"SecondElement" -> Pi

|>
];

cc[["FirstElement"]]

10

DeclareInvariant can also be used for child classes, though invariants of the
parent cannot be removed locally; child classes by construction have to satisfy the
invariants of its parents. Instead, DeclareInvariant can be used to further narrow
down the range of values allowed in class elements. Because DeclareDefaults and
DeclareInvariant check if existing defaults and invariants are satisfied, one usually
declares the defaults before defining an invariant.

Declare the invariant for ChildClass, which poses additional constraints on top of the invariant already specified for
TopClass

DeclareInvariant[ChildClass, {NumericQ[#[["SecondElement"]]] &}];

The child class can be verified to be a valid class with TopClass as its parent

ValidQ[cc, TopClass]

True

ValidQ[tc, ChildClass]

False

A.1.1.2 Instantiation

Now thatwehave our classes defined,weneed an easyway to create instances of these
classes. The default way to do this is by applying the class symbol to an association
or a list of rules. This works relatively well, but it is not always convenient to specify
different elements whose values are always defined in the same way. In this scenario,
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we can overload the class symbol to translate a simpler input into an instance. These
generation methods are implemented at the same level as class properties that we
will discuss in the next section, so some care should be taken that there is no overlap
with e.g. the pre-defined class properties.

Overload a class symbol to simplify instance generation

TopClass[int_Integer] := TopClass["FirstElement" -> int]

TopClass[12]

A.1.1.3 Information extraction

The rough setup is now complete, we have a top-level class and a child class that
inherits from it, and we have functionality to easily generate class instances. Next
we add functionality to these classes in the form of properties and functions. We
distinguish between two type of properties: class properties and instance properties.

Note that properties and functions that create new class instance should never
create invalid instances.

Class properties Class properties are defined independent of the elements that
make up a class instance, and are stored as DownValues of the class symbol.

Define the class property "ClassString", which returns a string with the class name

TopClass["ClassString"] = "TopClass";

These properties can be defined with the same flexibility as otherWolfram Language
definitions, though they are typicallyused for very class-specific andfixeddefinitions.

Like other properties and rules, class properties are passed down from the parent
class to the child class, so we can request class properties of the child that are only
defined specifically for the parent. One simple example of how this helps in practice
is with the pre-defined "Base" property, which is by default defined only for base
classes (classes without parents).
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Class properties are inherited by child classes

ChildClass["ClassString"]

“TopClass”

Class properties can be overwritten on a per-child basis. Children of a class with
an altered class property will inherit from the first parent in the hierarchy which has
a definition for the property, and if no definition can be found amessage is generated.

Unknown properties remain unevaluated and generate a message

ChildClass["UnknownString"]

ChildClass: No definition/value was found for the property UnknownString.

ChildClass[“UnknownString”]

Instance properties Completely analogous to class properties, we can define in-
stance properties for class instances, which are easily identified by their heads.

Define the instance property "FirstElementPlusTwo", which adds two to the element "FirstElement"

inst_TopClass["FirstElementPlusTwo"] := inst[["FirstElement"]] + 2;

tc["FirstElementPlusTwo"]

3

Instance properties are inherited just like class properties, and can be redefined for
specific purposes just the same. Inheritance is essentially implemented with a catch-
all definition for class symbols and instances, which forwards queries to the parent
if no definition is found for the class itself.

The instance property "FirstElementPlusTwo" is inherited by the children of TopClass

cc["FirstElementPlusTwo"]

12

Instance properties do not necessarily need to be strings, though for many ap-
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plications the majority of properties likely are. The standard usage of for example
CompiledFunction objects would be an example of (what we loosely refer to as) a
property that is not a string, but instead a pattern.

Functions Properties provide a convenient way to directly query a class instance,
but are too constricted for general functionality. As an alternative, functions can be
defined for class instances in the usual way.

Define a function that returns the class defaults for the class to which an instance belongs

getClassDefaults[inst_?ValidQ] := inst[[0]]["ClassDefaults"]

getClassDefaults[cc]

<| “FirstElement” -> 10, “SecondElement” -> Pi |>

More specific patterns can be used to narrow down function definitions to specific
classes, or to specific branches in a hierarchy.

Functions can similarly be defined to act on specific class symbols. There are no
strict guidelines for which functionality should be implemented as a property, and
which as a function, and the most natural division in practice typically depends on
the situation.

A.1.1.4 Formatting

By default, class instances are formatted using the function defined by the "Format"
property, which is inherited by the class’ children. To setup inheritable formatting
rules, the user would thus have to overwrite this property. Formatting rules specified
through other means are not typically inherited.

A.1.1.5 Classes in package development

Whendeployed in apackage environment, it is convenient to place all class definitions
in their own contexts. The class definitions introduced before would be included in
a package structure is shown in Code A.1 and A.2.

Functions that apply to specific classes can be placedwithin the class’ context, but
they could also be placed in their own context. The rule of thumb when developing
packages on topof theClasses` package, is that functions shouldbe asnon-intrusive as
possible. Core functionality should be implemented as functions that act on standard
Wolfram Language expressions, and class functions should only be shells that extract
the necessary information from a class instance, feed those to the core functions, and
restructure the output into another class instance when needed.
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Structure of a Classes`-based package

(*Create a separate context for every class*)
BeginPackage["myClasses`TopClass`", {"Classes`"}];

(*Declares a top level class TopClass*)
DeclareClass[TopClass];

(*Provide the defaults of TopClass*)
DeclareDefaults[TopClass,

<|"FirstElement" -> 1, "DelayedElement" :> 2|>
];

(*Declare the invariant of TopClass*)
DeclareInvariant[TopClass,

{
IntegerQ[#[["FirstElement"]]] /.
False :> (

Message[
ValidQ::elfail,
"FirstElement",
"TopClass",
"be an integer"

];
False

) &
}

];

(*Define properties for TopClass in the `Private` context to prevent
cluttering of the public myClasses` context*)
Begin["`Private`"];

(*Generative methods*)
TopClass[int_Integer] := TopClass["FirstElement" -> int]

(*Class properties*)
TopClass["ClassString"] = "TopClass";

(*Instance properties*)
inst_TopClass["FirstElementPlusTwo"] := inst[["FirstElement"]] + 2;

(*End `Private` context*)
End[];

(*End package context*)
EndPackage[];

Code A.1

236



Implementation | Classes` and Diffusica`

Structure of a Classes`-based package (cont.)

(*Place the child class in a subcontext of the top-level class*)
BeginPackage["myClasses`TopClass`ChildClass`",

{
"Classes`",
"myClasses`TopClass`"

}
];

(*Declare a second class that inherits properties, invariant, and
defaults from TopClass*)
DeclareClass[ChildClass, TopClass];

(*Introduce one new element ("SecondElement"), and change the
default value of another ("FirstElement")*)
DeclareDefaults[ChildClass,

<|
"FirstElement" -> 10,
"SecondElement" -> Pi

|>
];

(*The declared invariants are added on top of the invariant of the
parent class*)
DeclareInvariant[ChildClass, {NumericQ[#[["SecondElement"]]] &}];

(*Begin the `Private` context*)
Begin["`Private`"];

(*Again we can add custom properties, and overwrite others*)
inst_ChildClass["SecondElementDivTwo"] := inst[["SecondElement"]]/2;

(*End the `Private` context*)
End[];

(*End the package*)
EndPackage[];

Code A.2
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A.1.2 Working with classes

In this section we walk through the basics of working with packages built on top of
Classes`, which would be the typical situation for an end-user.

There are two fundamental objects in the Classes` package, class symbols and
class instances. Class symbols are simply symbols that have been designated to be
classes with DeclareClass, and towhich all functionality of a specific class is attached.
Class instances are the actual class objects that a user works with, which represent
mutable data that are naturally grouped together. Among other things, this section
covers how to modify and extract data stored in class instances. The basic functions
used to work with class symbols and instances are listed below.

ClassQ check if a symbol is a declared class

ValidQ validate a class instance

Affix
add or change an element value in an
instance

AffixTo
add or change an element value in a
symbol representing an instance

ClassSet
operator form of AffixTo that works
similar to Set

ClassSetDelayed
operator form of AffixTo that works
similar to SetDelayed

Retrieve
retrieve values of elements in an
instance

Basic functions that work with class symbols or instances.

A.1.2.1 Classes basics

Start with loading the Classes` package, and setting up a very simple class structure
that will be used throughout this section.

Load the Classes` context and create some classes.

Needs["Classes`"];
DeclareClass[TopClass];
DeclareDefaults[TopClass, <|"FirstElement" -> 1|>];
DeclareClass[ChildClass, TopClass];
inst_TopClass["FirstElementSquared"] := Normal[inst]["FirstElement"]^2
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Class symbols The first basic object in a Classes`-based package are the class sym-
bols. These are symbols that have some basic functionality that simplifies their usage
as class symbols, which are typically created using the function DeclareClass. The
function ClassQ can be used to check whether a certain symbol is a class symbol.

Check if a symbol is a class

ClassQ[TopClass]

True

All functionality for class symbols and class instances is stored as DownValues,
UpValues, etc. for the class symbol. These definitions are typically hidden from the
userwith the attribute ReadProtected, but unless the symbol is locked users can access
this information by removing the ReadProtected attribute.

Class instances Class instances are the objects that can be created as belonging
to a specific class. These instances work essentially like Association objects, with
key-value pairs in which information is stored. Instances are most easily created by
mapping the class symbol on an Association object.

Create a class instance

tc = TopClass[<|"FirstElement" -> 10|>]

Class instances can be reduced to an Association using Normal.

Convert a class instance to an Association

Normal[tc]

<| “FirstElement” -> 10 |>

Values stored in class instances can be accessed with the function Retrieve, or, alter-
natively, using the overloaded Wolfram Language function Part.

239



Appendix A

Retrieve values in a class instance

Retrieve[tc, "FirstElement"]

10

tc[["FirstElement"]]

10

If necessary the overloaded Part functionality can be disabled using Block.

Extracting information using Part, with and without overloading

FullForm[tc]

TopClass[Association[Rule[“FirstElement”, 10]]]

tc[[1]]

10

Block[{Classes`Private`$PartOverload = False}, tc[[1]]]

<| “FirstElement” -> 10 |>

Values can be modified and added using Affix and AffixTo, which work on class
instances similar to how Append and AppendTowork on Association objects.
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Modify and add values in a class instance

Affix[tc, "FirstElement" -> 12]

Normal[tc]

<| “FirstElement” -> 10|>

AffixTo[tc, "SecondElement" -> 12]

Normal[tc]

<| "FirstElement" -> 10, "SecondElement" -> 12 |>

For now it is not possible to use Set and SetDelayed to modify class instances,
but ClassSet and ClassSetDelayed function in much the same way. ClassSet and
ClassSetDelayed have the infix forms <

� and <:�.

Modify and add values in a class instance using ClassSet

tc[["FirstElement"]]
<
� 1

1

Normal[tc]

<| “FirstElement” -> 1, “SecondElement” -> 12 |>

ClassSet can also be used to convert an instance of one class to an instance of another
class. This is done by changing its head, which can be accessed with Part.
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Convert a class instance

tc[[0]]
<
� ChildClass

ChildClass

tc

Values stored in class instances are generally constrained by the class invariant,
which is a pure function that gives True if the Association object derived from a class
instance represents a valid structure. This invariant can be defined using the function
DeclareInvariant. Invalid instances should never occur unless users incorrectly mod-
ify an instance themselves. Package functions shouldnever generate invalid instances.
The function ValidQ can be used to validate instances, and the option "Verbose" can
be used to help figure out why an instance is invalid.

Validate an instance using ValidQ

ValidQ[tc]

True

Affix, AffixTo, ClassSet, and ClassSetDelayed, are all low-level functions, which can
in principle generate invalid instances. This is the case, because functions are allowed
(though discouraged) to use these low-level functions to generate invalid instances
as intermediate results. Affix and other functions will generate error messages if an
invalid instance is created.

Note that there is no real encapsulation in Classes`. All elements in an instance
can always be modified.

A.1.2.2 Properties

Properties are the basic means for the user to interact with class symbols and in-
stances. They provide a natural way to quickly extract information from an instance
in a form that is useful for a user. The second way of interacting with class symbols
and instances is through functions, but the details of those functions are specific to the
Classes`-basedpackages and should be covered in the correspondingdocumentation.
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All properties of a parent class are defined (by inheritance) for a child class, but
not all properties for a child class necessarily exist for every parent. In rare cases,
properties that exist for a parent class can be redefined, re-implemented, or even
re-purposed for child classes.

Class properties Class properties are DownValues of a class symbol, and provide a
simpleway to store class specific information. There are some default class properties
defined at declaration.

Class properties are data and methods stored as DownValues of a class symbol

TopClass["Class"]

TopClass

TopClass["Instance"]

TopClass["Defaults"]

<| “FirstElement” -> 1|>

String properties, which typically make up the majority of class properties, can
be listed with the "Properties" property. Non-string class properties are generally
methods used in class instance generation, which should be covered in the package’s
documentation.

List all string properties

TopClass["Properties"]

{“Base”, “Class”, “ClassDefaults”, “ClassInvariant”, “Defaults”, “Format”, “Instance”, “Invari-
ant”, “ParentDefaults”, “ParentInvariant”, “Parents”, “Properties”}

Instance properties Instance properties are implemented as SubValues of a class
symbol, so that they are accessed in the same way as class properties.
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Instance properties provide access to information derived from the data stored in a class instance

tc["FirstElementSquared"]

1

String properties, which typically make up themajority of class properties, can be
listedwith the "Properties"property. The fewnon-string properties should be clearly
described in the package documentation, and are typically almost self-evident, as in
e.g. CompiledFunction.

List all string properties of an instance

tc["Properties"]

{"FirstElementSquared", "Properties"}

Properties are generally implemented with the assumption that an instance is
valid, and errors can occur if this is not the case. There is no strict requirement
for properties to ensure validity of an input instance, though this may be enforced
differently in different packages.

A.1.2.3 Customization

The more advanced use of the Classes` package, even for some end-users, is the
custom addition of instance properties, classes, and functions. One other typical
example would be a user-side copy of a class, to which they can add their own
definitions and modifications without having to modify any package functionality.

A child of a class, without any changes to the defaults and the invariant, can function as a copy of the class

DeclareClass[myTopClass, TopClass]

A.2 The Diffusica` package

Diffusica` is a modular package built on top of the Classes` package, intended for
medical image processing and focused at the moment mainly on the analysis of
diffusion-weighted MRI data. The tutorial presented in this section does not cover
most of the more advanced functionality included in Diffusica`, of which a lot is still
under development and thus not fully documented. Some of the functions in the
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package are not yet implemented, and are referenced here to guide the development
of these functions when there comes a need to include them.

A.2.1 Package design

In this tutorial we cover the design of the Diffusica` package. We discuss the use of
classes to represent data, how algorithms can be designed to process these classes
and their instances, and how the Diffusica` package is structured to facilitate quick
prototyping in the development of such algorithms.

Included functionality is still limited at the current stage, as the package is in-
tended to be used for collaborative development.

Load the Diffusica` context

Needs["Diffusica`"]

A.2.1.1 The Object class

The Object class is used to associate information to positions in a common space
{z, y, x, . . . }, and is the core structure used to represent data in Diffusica`. Data inside
an Object instance is stored internally in an object space {z′, y′, x′, . . . }.

Different types of data sets impose different constraints on the data, and so these
different types can be implemented as child classes of Object. Basic algorithms act-
ing on these data sets can then be implemented as instance properties, while more
complex algorithms can be implemented as class functions. The Object class is stored
in the Diffusica`Classes` context, and child classes are included in the appropriate
subcontexts, e.g. in Diffusica`Classes`Object`.

The Object class has the following default elements:

Common space and object space The "Transformation" element contains a function
used to translate points {z′, y′, x′, . . . } in the object space to a common space. This
transformation function is typically affine, but in future releases will also allow
arbitrary non-rigid transformations. The object space always has "DimensionlessUnit"
units to facilitate storage in PackedArray objects, though the common space can have
arbitrary units as specified through the "Transformation" element. Child classes of
Object typically constrain the dimensions and units of the common space.

Localized data The "Data" and "Positions" elements provide a flexible way to
store localized information. The "Data" element is a PackedArray object of arbitrary
dimensions. The "Positions" element is either an integer denoting the dimensionality
of the "Data" array, or a PackedArray object of compatible dimensions that provides the
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"Background" Automatic
The background value used when
there is no defined data

"Data" 0
Packed array or number containing
the data stored in the object

"History" {}
A record of functions applied to
the object

"Labels" {}
A list of rules that associates labels
to specific values in "Data"

"Positions" 0

Packed array of positions in
common space associated to
"Data", or an integer indicating the
dimensionality of the data

"Source" Null
The source from which the
instance is derived

"Transformation" Automatic
The mapping from object space to
common space

"InverseTransformation" Automatic
The mapping from common space
to object space

Elements in the Object class.

(index-wise) corresponding positions explicitly. In the latter case, the last dimension
of the "Positions" array determines the dimensionality of the stored data. If the
"Data" array has fewer dimensions than indicated by the "Positions" element, only
the first indices are used to determine a value. With the default unspecified "Data",
"Positions" can be used to store purely positional information such as points and
curves. Using Explicate, both the "Data" and the "Positions" elements can be given
explicit values, such that for every index in "Data" there is a corresponding element
in "Positions" that provides the corresponding position.

Extracting values The data associated to a point {z, y, x, . . . } in the common space
can be extracted using instance[z, y, x, . . . ], which by default uses a nearest neighbor
algorithm in the common space. A default value, determined by the "Background"
element, is returned if there is nodata associatedwith a givenposition. If "Background"
is Automatic, a zero array of the proper dimensions is used. Child classes of Object
may use different interpolation schemes by default.

Labels The "Labels" element is a list of rules that transforms values in the "Data"
element to labels. These labels can be used for example to identify different data sets,
or to provide localized visualization options.
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Meta data The "History" and "Source" elements are used to store processing meta
data of an object. The "Source" element provides the expression or file from which
the instance is derived, and "History" contains a list of all functions that have been
applied to the instance. This information should in principle be sufficient to recreate
an object instance.

Object processing There is a large set of basic Object processing functionality in-
cluded in the Diffusica`Processing` context. These functions are based on the Wol-
fram Language’s handling of Image and Image3D expressions, and many functions
(e.g. ImageAdd) have Object counterparts (e.g. DataAdd). These functions are all written
specifically to take into account the common space. For example, DataAddwill perform
addition in the common space, not in the object space.

A.2.1.2 Functions

Diffusica` follows the design principles of the Wolfram language and the Classes`
package—basic information about an object is implemented through class and in-
stance properties, while more general and more complicated functionality is accessi-
ble through high level functions. These functions are typically wrappers that provide
access to class-specific implementations.

Diffusica` has the following symbols reserved for these wrapper functions. Not
all of the listed functions are implemented in the current version of the package, and
new functions are likely to be added in future releases.

Construction Generate data from a model

Enhancement Enhance data

Reconstruction Fit a model to a data set

Registration
Compute a registration to an atlas or a
data set

Simulation Generate simulated data

Tractography Compute tractograms

Visualize Visualize class instances

Symbols reserved for wrapper functions in the Diffusica` package.
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A.2.1.3 Formats

Diffusica` is designed to include Import/Export converters to support specific data
formats. Because of the current emphasis on diffusion MRI, a converter for the NIfTI
file format is included for example. TheNIfTI converter canbedownloaded separately
from github.com/tomdelahaije.

Example usage of the NIfTI converter.

{meta, data} = Import["C:\\path\\avg152T1_RL_nifti.nii.gz", "NIfTI"][[;; , 2]];
Dataset[meta]

SlicePlot is a Diffusica` built-in function used to visualize arbitrary planes in three-dimensional data sets.

SlicePlot[data]
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Converters are stored in the Diffusica`Convert` context, but are always registered
to theWolfram Language Import/Export functions. If applicable, as is the case for the
NIfTI format, files can often also be converted directly to an Object instance using
instance generation.
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Expressions
Spherical Harmonics Expressions and Identities

Throughout this thesis we have employed spherical harmonics Ym
l to describe func-

tions on the sphere. We work with the convention

Ym
l (θ, φ) B

√
2l + 1

4π

√
(l − m)!
(l + m)!e

imφPm
l (cos θ), (B.1)

with l � 0, 1, . . . and m � −l ,−l + 1, . . . , l, and with Pm
l the associated Legendre

polynomial. The spherical harmonics are orthonormal, i.e., we have∫
S2

Ym1
l1
(r̂)Ym2

l2
(r̂)dσ(r̂) � δl1 ,l2δm1 ,m2 , (B.2)

where the bar indicates complex conjugation, dσ is the Lebesgue measure on the
sphere S2, and δ is the Kronecker delta with δi , j � 1 if i � j and 0 otherwise. We
further rely on

Ym
l � Ym

−(l+1) (B.3)

to extend the definition of spherical harmonics to negative integers l. Finally, we
typically express real-valued function on the spherewith themodified [101] spherical
harmonic basis Ỹm

l defined as

Ỹm
l (θ, φ) B


√

2Re
{
Ym

l (θ, φ)
}

m < 0
Y0

l (θ, φ) m � 0√
2 Im

{
Ym

l (θ, φ)
}

m > 0
. (B.4)
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The fundamental dual tensor defined in Eq. (3.40) can be expressed in terms of the
spherical harmonic expansion coefficients c′ inH2(r, θ, φ) � r2 ∑∞

l�0
∑l

m�−l c′ml Ym
l (θ, φ),

such that h i j(θ, φ) � ∑∞
l�0

∑l
m�−l c′ml Qm

l (θ, φ) for some alternative basis Qm
l . The co-

efficients c′ can be expressed in terms of c using the Clebsch–Gordan coefficients.
Simply applying the (inverse) change of coordinates given in Eq. (3.32) to the func-
tion r2Y′(θ, φ), with Y′(θ, φ) B ∑∞

l�0
∑l

m�−l c′ml Ym
l (θ, φ), and computing the proper

derivatives then gives the following expression for h i j(θ, φ):

h11(θ, φ) � a1 cos2 φ + a2 sin2 φ − a3 sin(2φ) + a0 ,

h12(θ, φ) � a3 cos2 φ − a3 sin2 φ +
a1 − a2

2 sin(2φ),
h22(θ, φ) � a2 cos2 φ + a1 sin2 φ + a3 sin(2φ) + a0 ,

h13(θ, φ) � a5 cosφ + a6 sinφ,
h23(θ, φ) � a5 sinφ − a6 cosφ,
h33(θ, φ) � a4 + a0 ,

(B.5)

where

a0 B a0(θ, φ) � Y′(θ, φ), (B.6)

a1 B a1(θ, φ) � 1
2

(
Y′θθ(θ, φ) cos2 θ + Y′θ(θ, φ) sin 2θ

)
, (B.7)

a2 B a2(θ, φ) � 1
2

(
Y′θ(θ, φ) cot θ + Y′φφ(θ, φ) csc2 θ

)
, (B.8)

a3 B a3(θ, φ) � 1
2

(
Y′θφ(θ, φ) cot θ − Y′φ(θ, φ) cos 2θ csc2 θ

)
, (B.9)

a4 B a4(θ, φ) � 1
2

(
Y′θθ(θ, φ) sin2 θ − Y′θ(θ, φ) sin 2θ

)
, (B.10)

a5 B a5(θ, φ) � 1
2

(
Y′θ(θ, φ) cos 2θ − Y′θθ(θ, φ) cos θ sin θ

)
, (B.11)

a6 B a5(θ, φ) � 1
2

(
Y′θφ(θ, φ) − 2Y′φ(θ, φ) cot θ

)
, (B.12)

and where the subscripts in Y′ denote differentiation. The (artificial) singulari-
ties at θ � 0, π that occur in these expressions can be avoided by applying
the identities given in the work of Eshagh [118], see also Janssen et al. [170].
Eq. (3.41) is most easily expressed in terms of the coefficients c, where we write
Y(θ, φ) B ∑∞

l�0
∑l

m�−l cm
l (κ)Ym

l (θ, φ) to get

ξ(r,θ,φ)�rY(θ,φ)
©«

Y(θ,φ)sinθcosφ+Yθ(θ,φ)cosθcosφ−Yφ(θ,φ)cscθsinφ
Y(θ,φ)sinθsinφ+Yθ(θ,φ)cosθsinφ+Yφ(θ,φ)cscθcosφ

Y(θ,φ)cosθ

ª®®¬.
(B.13)
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This givesξ(r, θ, φ) � rY(θ, φ)
√

Y2(θ, φ) + Y2
θ(θ, φ) + Y2

φ(θ, φ) csc2 θ. (B.14)

The determinant of the fundamental dual tensor h is finally given by

det h(θ, φ) � b4
0
[(b0 + b1 + b3)(b0 + b5) − (b2 − b4)2

]
, (B.15)

with

b0 B b0(θ, φ) � Y(θ, φ), (B.16)
b1 B b1(θ, φ) � Yθ(θ, φ) cot θ, (B.17)
b2 B b2(θ, φ) � Yφ(θ, φ) cot θ csc θ, (B.18)
b3 B b3(θ, φ) � Yθθ(θ, φ), (B.19)
b4 B b4(θ, φ) � Yθφ(θ, φ) csc θ, (B.20)
b5 B b5(θ, φ) � Yφφ(θ, φ) csc2 θ. (B.21)

Note that these expressions can be trivially applied to the Finsler function expression
in Eq. (3.43) and dual expressions.
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