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ABSTRACT
A fundamental challenge in large-scale cloud networks and
data centers is to achieve highly efficient server utilization
and limit energy consumption, while providing excellent user-
perceived performance in the presence of uncertain and time-
varying demand patterns. Auto-scaling provides a popular
paradigm for automatically adjusting service capacity in re-
sponse to demand while meeting performance targets, and
queue-driven auto-scaling techniques have been widely in-
vestigated in the literature. In typical data center architec-
tures and cloud environments however, no centralized queue
is maintained, and load balancing algorithms immediately
distribute incoming tasks among parallel queues. In these
distributed settings with vast numbers of servers, centralized
queue-driven auto-scaling techniques involve a substantial
communication overhead and major implementation burden,
or may not even be viable at all.

Motivated by the above issues, we propose a joint auto-
scaling and load balancing scheme which does not require
any global queue length information or explicit knowledge of
system parameters, and yet provides provably near-optimal
service elasticity. We establish the fluid-level dynamics for the
proposed scheme in a regime where the total traffic volume
and nominal service capacity grow large in proportion. The
fluid-limit results show that the proposed scheme achieves
asymptotic optimality in terms of user-perceived delay perfor-
mance as well as energy consumption. Specifically, we prove
that both the waiting time of tasks and the relative energy
portion consumed by idle servers vanish in the limit. At the
same time, the proposed scheme operates in a distributed
fashion and involves only constant communication overhead
per task, thus ensuring scalability in massive data center op-
erations. Extensive simulation experiments corroborate the
fluid-limit results, and demonstrate that the proposed scheme
can match the user performance and energy consumption of
state-of-the-art approaches that do take full advantage of a
centralized queue.

KEYWORDS
auto-scaling; cloud networking; data centers; delay perfor-
mance; energy saving; fluid limits; Join-the-Idle queue; load
balancing
∗Also with Nokia Bell Labs, Murray Hill, NJ, USA.

1 INTRODUCTION

Background and motivation. Over the last two decades, data
centers and cloud networks have evolved into the digital
factories of the world. This economical and technological
evolution goes hand in hand with a pervasive trend where
human lives are increasingly immersed in a digital universe,
sensors and computers generate ever larger amounts of data,
businesses move IT processes to cloud environments, and
network functions are migrated from dedicated systems to
shared infrastructure platforms. As a result, both the sheer
volume and the scope of applications hosted in data centers
and cloud networks continue to expand at a tremendous rate.
Indeed, a substantial portion of the applications hosted in
these systems increasingly have highly stringent performance
requirements in terms of ultra-low latency and high relia-
bility. There is strong empirical evidence that 100 ms delay
can have a major adverse impact on ecommerce sales, and
just a few ms latency can have catastrophic consequences for
real-time processing and control functions that are migrated
to cloud networks. In addition, the energy consumption has
risen dramatically and become a dominant factor in manag-
ing data center operations and cloud infrastructure platforms.
The energy consumption in US data centers is estimated to
be around 70 million MegaWatt hours annually, the equiv-
alent of 6 million homes, which has not only made cooling
a challenging issue, but also carries immense financial and
environmental cost.

A crucial challenge in the above context is to achieve effi-
cient server utilization and limit energy consumption while
providing excellent user-perceived performance in the pres-
ence of uncertain and time-varying demand patterns. This
is strongly aligned with the critical notion of service elastic-
ity, which is at the heart of cloud technology and network
virtualization. Service elasticity hinges on the basic premise
that the sheer amount of available resources is abundant,
and not likely to act as a bottleneck in any practical sense.
Thus the key objective is to dynamically scale the amount of
resources that are actively utilized with the actual observed
load conditions so as to curtail cost and energy consumption,
while satisfying certain target performance criteria. Achieving
ideal service elasticity is highly challenging, since ramping
up service capacity involves a significant time lag due to the
lengthy setup period required for activating servers, which
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typically exceeds the latency tolerance of real-time processing
and control functions by orders-of-magnitude. This can be
countered by keeping an ample number of idle servers on,
which however would result in substantial cost and energy
wastage. As a further issue that adds to the above challenge,
scalability requires low implementation overhead and mini-
mal state exchange, especially in distributed systems with
huge numbers of servers.

Auto-scaling provides a popular paradigm for automati-
cally adjusting service capacity in response to fluctuating
demand, and is widely deployed by major industry players
like Amazon Web Services, Facebook, Google and Microsoft
Azure. While some auto-scaling approaches are primarily pre-
dictive in nature, and use load forecasts based on historical
records, more advanced mechanisms that have been proposed
in the literature operate in a mostly reactive manner. The
latter mechanisms exploit actual load measurements or state
information from a centralized queue to dynamically activate
or deactivate servers, and are inherently better suited to
handle unpredictable load variations. In typical data center
architectures and cloud environments however, no central-
ized queue is maintained, and load balancing algorithms
immediately distribute incoming tasks among parallel queues.
In these distributed settings with vast numbers of servers,
centralized queue-driven auto-scaling techniques involve a
substantial communication overhead and major implemen-
tation burden, or may not even be viable at all. Indeed,
even if global queue length information could be gathered,
the lack of a centralized queueing operation implies that
the overall system is not work-conserving, i.e., some servers
may be idling while tasks are waiting at other servers. Aside
from the communication overhead, it hence remains unclear
what performance to expect in non-work-conserving scenarios
from auto-scaling techniques designed for a centralized queue.

Key contributions. Urged by the above observations, we pro-
pose in the present paper a joint auto-scaling and load balanc-
ing scheme which does not require any global queue length
information or explicit knowledge of system parameters, and
yet achieves near-optimal service elasticity. We consider a
scenario as described above where arriving tasks must in-
stantaneously be dispatched to one of several parallel servers.
For convenience, we focus on a system with just a single
dispatcher, but the proposed scheme naturally extends to
scenarios with multiple dispatchers.

The proposed scheme involves a token-based feedback
protocol, allowing the dispatcher to keep track of idle-on
servers in standby mode as well as servers in idle-off mode or
setup mode. Specifically, when a server becomes idle, it sends
a message to the dispatcher to report its status as idle-on.
Once a server has remained continuously idle for more than
an exponentially distributed amount of time with parameter
µ > 0 (standby period), it turns off, and sends a message to
the dispatcher to change its status to idle-off.

When a task arrives, and there are idle-on servers available,
the dispatcher assigns the task to one of them at random,

and updates the status of the corresponding server to busy
accordingly. Otherwise, the task is assigned to a randomly
selected busy server. In the latter event, if there are any idle-
off servers, the dispatcher instructs one of them at random
to start the setup procedure, and updates the status of the
corresponding server from idle-off to setup mode. It then takes
an exponentially distributed amount of time with parameter
ν > 0 (setup period) for the server to become on, at which
point it sends a message to the dispatcher to change its status
from setup mode to idle-on.

Note that tasks are only dispatched to ‘on’ servers (idle
or busy), and in no circumstance assigned to an ‘off’ server
(idle-off or setup mode). Also, a server only sends a (green,
say) message when a task completion leaves its queue empty,
and sends at most one (red, say) message when it turns off
after a standby period per green message, so that at most
two messages are generated per task.

In order to analyze the response time performance and
energy consumption of the proposed scheme, we consider a
scenario with N homogeneous servers, and establish the fluid-
level dynamics for the proposed scheme in a regime where the
total task arrival rate and nominal number of servers grow
large in proportion. This regime not only offers analytical
tractability, but is also highly relevant given the massive
numbers of servers in data centers and cloud networks. The
fluid-limit results show that the proposed scheme achieves
asymptotic optimality in terms of response time performance
as well as energy consumption. Specifically, we prove that for
any positive values of µ and ν both the waiting time incurred
by tasks and the relative energy portion consumed by idle
servers vanish in the limit. The latter results not only hold
for exponential service time distributions, but also extend to
a multi-class scenario with phase-type service time distribu-
tions. To the best of our knowledge, this is the first scheme to
provide auto-scaling capabilities in a setting with distributed
queues and achieve near-optimal service elasticity. Extensive
simulation experiments corroborate the fluid-limit results,
and demonstrate that the proposed scheme can match the
user performance and energy consumption of state-of-the-art
approaches that do assume the full benefit of a centralized
queue.

Discussion of related schemes and further literature. As men-
tioned above, centralized queue-driven auto-scaling mecha-
nisms have been widely considered in the literature [1, 11,
17, 18, 20–22, 29, 35, 37]. Under Markovian assumptions, the
behavior of these mechanisms can be described in terms of var-
ious incarnations of M/M/N queues with setup times. A par-
ticularly interesting variant considered by Gandhi et al. [11] is
referred to as M/M/N/setup/delayedoff. In this mechanism,
when a server s finishes a service, and finds no immediate
waiting task, it waits for an exponentially distributed amount
of time with parameter µ. In the meantime, if a task arrives,
then it is immediately assigned to server s (or one of the idle-
on servers at random), otherwise server s is turned off. When
a task arrives, if there is no idle-on server, then it selects one
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of the switched off servers s′ say (if any), starts the setup
procedure in s′, and waits in the queue for service. The setup
procedure also takes an exponentially distributed amount of
time with parameter ν. During the setup procedure, if some
other server completes a service, then the waiting task at the
head of the queue is assigned to that server, and the server
s′ terminates its setup procedure unless there is any task w
waiting in the queue that had not started a setup procedure
(due to unavailability of idle-off servers at its arrival epoch).
In the latter event, the server continues to be in setup mode
for task w. Gandhi et al. [11] provide an exact analysis of this
model, and observe that this mechanism performs very well
in a work-conserving pooled server scenario. There are sev-
eral further recent papers which examine on-demand server
addition/removal in a somewhat different vein [26, 27]. Gen-
eralizations towards non-stationary arrivals and impatience
effects have also been considered recently [29].

Another related strand of research that starts from the
seminal paper [38] is concerned with scaling the speed of
a single processor in order to achieve an optimal trade-off
between energy consumption and response time performance.
In this framework, a stream of tasks having specific deadlines
arrive at a processor that either accepts the task and finishes
serving it before the deadline, or discards the task at arrival.
The processor can work faster at the cost of producing more
heat. To strike the optimal balance between the revenue
earned due to task completions and the energy usage, the
server can scale its speed, (possibly) depending on its current
load. Dynamic versions of this speed-scaling scenario have
been studied in [3, 8, 9, 36, 37] A further research direction [1,
17, 18, 20–22] considers online algorithms for the use of green-
energy sources distributed across geographically different
locations that meet the energy demands and reduce expensive
energy storage capacity.

In case standby periods are infinitely long, idle servers
always remain active and the proposed scheme corresponds
to the so-called Join-the-Idle-Queue (JIQ) policy, which has
gained huge popularity recently [2, 23]. In the JIQ policy,
idle servers send tokens to the dispatcher to advertize their
availability. When a task arrives and the dispatcher has tokens
available, it assigns the task to one of the corresponding
servers (and disposes of the token). When no tokens are
available at the time of a task arrival, the task is simply
dispatched to a randomly selected server.

Fluid-limit results in [32, 33] show that under Markovian
assumptions, the JIQ policy achieves a zero probability of
wait for any fixed subcritical load per server in a regime
where the total number of servers grows large. Results in [25]
indicate that the JIQ policy exhibits the same diffusion-limit
behavior as the Join-the-Shortest-Queue (JSQ) strategy, and
thus achieves optimality at the diffusion level. These results
show that the JIQ policy provides asymptotically optimal
delay performance while only involving minimal communi-
cation overhead (at most one message per task). However,
in the JIQ policy no servers are ever deactivated, resulting
in a potentially excessive amount of energy wastage. The

scheme that we propose retains the low communication over-
head of the JIQ policy (at most two messages per task) and
also preserves the asymptotic optimality at the fluid level,
in the sense that the waiting time vanishes in the limit. At
same time, however, any surplus idle servers are judiciously
deactivated in our scheme, ensuring that the relative energy
wastage vanishes in the limit as well.

Organization of the paper. The remainder of the paper is orga-
nized as follows. In Section 2 we present a detailed model de-
scription, and provide a specification of the proposed scheme.
In Section 3 we state the main results, and offer an inter-
pretation and discussion of their ramifications with the full
proof details relegated to Section 6. In Section 4 we describe
how the fluid-limit results extend to phase-type service time
distributions. In Section 5 we discuss the simulation experi-
ments that we conducted to support the analytical results
and to benchmark the proposed scheme against state-of-the-
art approaches. We make a few brief concluding remarks and
offer some suggestions for further research in Section 7.

2 DETAILS OF MODEL AND ALGORITHM

Model description. Consider a system of N parallel queues
with identical servers and a single dispatcher. Tasks with
unit-mean exponentially distributed service requirements
arrive as a Poisson process of rate λN (s) = Nλ(s) at time
s ≥ 0, where λ(·) is a bounded positive real-valued function,
bounded away from zero. In case of a fixed arrival rate,
λ(s) ≡ λ is assumed to be constant. Incoming tasks cannot
be queued at the dispatcher, and must immediately and
irrevocably be forwarded to one of the servers where they
can be queued, possibly subject to a finite buffer capacity
limit B. The service discipline at each server is oblivious to
the actual service requirements (e.g., FCFS). A turned-off
server takes an Exp(ν) time (setup period) to be turned on.

We now introduce a token-based joint auto-scaling and
load balancing scheme called TABS (Token-based Auto Bal-
ance Scaling).

Algorithm specification. TABS:

• When a server becomes idle, it sends a ‘green’ mes-
sage to the dispatcher, waits for an Exp(µ) time
(standby period), and turns itself off by sending a
‘red’ message to the dispatcher (the corresponding
green message is destroyed).

• When a task arrives, the dispatcher selects a green
message at random if there are any, and assigns the
task to the corresponding server (the corresponding
green message is replaced by a ‘yellow’ message).
Otherwise, the task is assigned to an arbitrary busy
server, and if at that arrival epoch there is a red mes-
sage at the dispatcher, then it selects one at random,
and the setup procedure of the corresponding server
is initiated, replacing its red message by an ‘orange’
message.
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Q1

busy
yellow

idle-on
green

∆0

idle-off
red

∆1

standby
orange

busy server
becomes idle

task assigned to
idle-on server

stand by period
ends, rate = µ

setup period
ends, rate = ν

idle-on server
not available

Figure 1: Illustration of server on-off decision rules in the
TABS scheme, along with message colors and state variables.

• Any server which activates due to the latter event,
sends a green message to the dispatcher (the corre-
sponding orange message is replaced), waits for an
Exp(µ) time for a possible assignment of a task, and
again turns itself off by sending a red message to the
dispatcher.

The TABS scheme gives rise to a distributed operation in
which servers are in one of four states (busy, idle-on, idle-
off or standby), and advertize their state to the dispatcher
via exchange of tokens. Figure 1 illustrates this token-based
exchange protocol. Note that setup procedures are never
aborted and continued even when idle-on servers do be-
come available. When setup procedures are terminated in
the latter event, the proposed scheme somewhat resembles
the delayed-off scheme considered by Gandhi et al. [11] in
terms of auto-scaling actions. This comes however with an
extra overhead penalty, without producing any improvement
in response time performance or energy consumption in the
large-capacity limit, as will be shown later.

Notation. Let

QN (t) := (QN1 (t), QN2 (t), . . . , QNB (t))

denote the system occupancy state, where QNi (t) is the num-
ber of servers with queue length greater than or equal to
i at time t, including the possible task in service. Also, let
∆N

0 (t) and ∆N
1 (t) denote the number of idle-off servers and

servers in setup mode at time t, respectively. Note that the
process (QN (t),∆N

0 (t),∆N
1 (t))t≥0 provides a proper state

description by virtue of the exchangeablity of the servers
and is Markovian. The exact analysis of the above system
becomes complicated due to the strong dependence among
the queue length processes of the various servers. Moreover,
the arrival processes at individual servers are not renewal
processes, which makes the problem even more challenging.
Thus we resort to an asymptotic analysis, where the task
arrival rate and number of servers grow large in propor-
tion. In the limit the collective system then behaves like a
deterministic system, which is amenable to analysis. The
fluid-scaled quantities are denoted by the respective small
letters, viz. qNi (t) := QNi (t)/N , δN0 (t) = ∆N

0 (t)/N , and
δN1 (t) = ∆N

1 (t)/N . For brevity in notation, we will write

qN (t) = (qN1 (t), . . . , qNB (t)) and δN (t) = (δN0 (t), δN1 (t)). Let

E =
{

(q, δ) ∈ [0, 1]B+2 : qi ≥ qi+1, ∀i, δ0 + δ1 +
B∑
i=1

qi ≤ 1
}
,

denote the space of all fluid-scaled occupancy states, so that
(qN (t), δN (t)) ∈ E for all t. Endow E with the product
topology, and the Borel σ-algebra E , generated by the open
sets of E. For stochastic boundedness of a process we refer to
[28, Definition 5.4]. For any complete separable metric space
E, denote by DE [0,∞), the set of all E-valued càdlàg (right
continuous with left limit exists) processes. By the symbol ‘ d−→’
we denote weak convergence for real-valued random variables,
and convergence with respect to Skorohod-J1 topology for
càdlàg processes.

3 OVERVIEW OF RESULTS
In this section we provide an overview of the main results
and discuss their ramifications. For notational transparency,
we focus on the case of exponential service time distributions.
In Section 4 we show how some of the results extend to
phase-type service time distributions, at the expense of more
complex notation.

Theorem 3.1 (Fluid limit for exponential service
time distributions). Assume that (qN (0), δN (0)) converges
weakly to (q∞, δ∞) ∈ E, as N → ∞, where q∞1 > 0. Then
the process {(qN (t), δN (t))}t≥0 converges weakly to the deter-
ministic process {(q(t), δ(t))}t≥0 as N →∞, which satisfies
the following integral equations:

qi(t) = q∞i +
∫ t

0
λ(s)pi−1(q(s), δ(s), λ(s))ds

−
∫ t

0
(qi(s)− qi+1(s))ds, i = 1, . . . , B,

δ0(t) = δ∞0 + µ

∫ t

0
u(s)ds− ξ(t),

δ1(t) = δ∞1 + ξ(t)− ν
∫ t

0
δ1(s)ds,

where by convention qB+1(·) ≡ 0, and
u(t) = 1− q1(t)− δ0(t)− δ1(t),

ξ(t) =
∫ t

0
λ(s)(1− p0(q(s), δ(s), λ(s)))1[δ0(s)>0]ds.

For any (q, δ) ∈ E, λ > 0, (pi(q, δ, λ))i≥0 are given by

p0(q, δ, λ) =
{

1 if u = 1− q1 − δ0 − δ1 > 0,
min{λ−1(δ1ν + q1 − q2), 1}, otherwise,

pi(q, δ, λ) = (1− p0(q, δ, λ))(qi − qi+1)q−1
1 , i = 1, . . . , B.

We now provide an intuitive explanation of the fluid limit
stated above. The term u(t) corresponds to the asymptotic
fraction of idle-on servers in the system at time t, and ξ(t)
represents the asymptotic cumulative number of server se-
tups (scaled by N) that have been initiated during [0, t]. The
coefficient pi(q, δ, λ) can be interpreted as the instantaneous
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fraction of incoming tasks that are assigned to some server
with queue length i, when the fluid-scaled occupancy state is
(q, δ) and the scaled instantaneous arrival rate is λ. Observe
that as long as u > 0, there are idle-on servers, and hence all
the arriving tasks will join idle servers. This explains that if
u > 0, p0(q, δ, λ) = 1 and pi(q, δ, λ) = 0 for i = 2, . . . , B. If
u = 0, then observe that servers become idle at rate q1 − q2,
and servers in setup mode turn on at rate δ1ν. Thus the
idle-on servers are created at a total rate δ1ν + q1 − q2. If
this rate is larger than the arrival rate λ, then almost all the
arriving tasks can be assigned to idle servers. Otherwise, only
a fraction (δ1ν + q1 − q2)/λ of arriving tasks join idle servers.
The rest of the tasks are distributed uniformly among busy
servers, so a proportion (qi− qi+1)q−1

1 are assigned to servers
having queue length i. For any i = 1, . . . , B, qi increases
when there is an arrival to some server with queue length
i − 1, which occurs at rate λpi−1(q, δ, λ), and it decreases
when there is a departure from some server with queue length
i, which occurs at rate qi − qi−1. Since each idle-on server
turns off at rate µ, the fraction of servers in the off mode
increases at rate µu. Observe that if δ0 > 0, for each task
that cannot be assigned to an idle server, a setup procedure is
initiated at one idle-off server. As noted above, ξ(t) captures
the (scaled) cumulative number of setup procedures initiated
up to time t. Therefore the fraction of idle-off servers and the
fraction of servers in setup mode decreases and increases by
ξ(t), respectively, during [0, t]. Finally, since each server in
setup mode becomes idle-on at rate ν, the fraction of servers
in setup mode decreases at rate νδ1.

Fixed point. In case of a constant arrival rate λ(t) ≡ λ < 1,
the fluid limit in Theorem 3.1 has a unique fixed point:

δ∗0 = 1− λ, δ?1 = 0, q∗1 = λ and q∗i = 0, (1)

for i = 2, . . . , B. Indeed, it can be verified that p0(q∗, δ∗, λ) =
1 and u∗ = 0 for (q∗, δ∗) given by (1) so that the derivatives
of qi, i = 1, . . . , B, δ0, and δ1 become zero, and that these
cannot be zero at any other point in E. Note that, at the
fixed point, a fraction λ of the servers have exactly one task
while the remaining fraction have zero tasks, independently
of the values of the parameters µ and ν.

The next proposition states the global stability of the fluid
limit, i.e., starting from any point in E, the dynamical system
defined by the system of integral equations in Theorem 3.1
converges to the fixed point (1) as t→∞.

Proposition 3.2 (Global stability of the fluid limit).
Assume (q(0), δ(0)) = (q∞, δ∞) ∈ E. Then

(q(t), δ(t))→ (q∗, δ∗), as t→∞,

where (q∗, δ∗) is as defined in (1).

There are general methods to prove global stability if the
evolution of the dynamical system satisfies some kind of
monotonicity property induced by the drift structure [24, 34].
Here, it is not straightforward to establish such a monotonic-
ity property, and harder to find a suitable Lyapunov function.
Instead we exploit specific properties of the fluid limit in

order to prove the global stability. Observe that the global
stability in particular also establishes the uniqueness of the
fixed point above. The proof of Proposition 3.2 is presented
in Section 6.

The global stability can be leveraged to show that the
steady-state distribution of the N th system, for large N , can
be well approximated by the fixed point of the fluid limit
in (1). Specifically, in the next proposition, whose proof we
provide in the appendix, we demonstrate the convergence of
the steady-state distributions, and hence the interchange of
the large-capacity (N →∞) and steady-state (t→∞) limits.
Since the buffer capacity B at each server is finite, for each
N , the Markov process (QN (t),∆N

0 (t),∆N
1 (t)) is irreducible,

has a finite state space, and thus has a unique steady-state
distribution. Let πN denote the steady-state distribution of
the N th system, i.e.,

πN (·) = lim
t→∞

P

(
qN (t) = ·, δN (t) = ·

)
.

Proposition 3.3 (Interchange of limits). As N →∞,
πN

d−→ π, where π is given by the Dirac mass concentrated
upon (q?, δ?) defined in (1).

Performance metrics. As mentioned earlier, two key perfor-
mance metrics are the expected waiting time of tasks E[WN ]
and energy consumption E[PN ] for the N th system in steady
state. In order to quantify the energy consumption, we as-
sume that the energy usage of a server is Pfull when busy or
in set-up mode, Pidle when idle-on, and zero when turned
off. Evidently, for any value of N , at least a fraction λ of the
servers must be busy in order for the system to be stable, and
hence λPfull is the minimum mean energy usage per server
needed for stability. We will define E[ZN ] = E[PN ]− λPfull
as the relative energy wastage accordingly. The next proposi-
tion demonstrates that asymptotically the expected waiting
time and energy consumption for the TABS scheme vanish in
the limit, for any strictly positive values of µ and ν. The key
implication is that the TABS scheme, while only involving
constant communication overhead per task, provides perfor-
mance in a distributed setting that is as good at the fluid
level as can possibly be achieved, even in a centralized queue,
or with unlimited information exchange.

Proposition 3.4 (Asymptotic optimality of TABS
scheme). In a fixed arrival rate scenario λ(t) ≡ λ < 1, for
any µ > 0, ν > 0, as N →∞,
(a) [zero mean waiting time] E[WN ]→ 0,
(b) [zero energy wastage] E[ZN ]→ 0.

Proof of Proposition 3.4. By Little’s law, the mean
stationary waiting time E[WN ] in the N th system may be
expressed as (Nλ)−1

E[LN ], where LN =
∑B

i=2 Q
N
i repre-

sents a random variable with the stationary distribution of
the total number of waiting tasks in the N th system. Thus,
E[WN ] = λ−1∑B

i=2 q
N
i , where qN is a random vector with

the stationary distribution of qN (t) as t → ∞. Invoking
Proposition 3.3 and the fixed point as identified in (1), we
obtain that E[WN ]→

∑B

i=2 q
∗
i = 0 as N →∞.
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Denoting by UN = N − QN1 −∆N
0 −∆N

1 the number of
idle-on servers, the stationary mean energy consumption per
server in the N th system may be expressed as
1
N
E[(QN1 +∆N

1 )Pfull+UNPidle] = E[(qN1 +δN1 )Pfull+uNPidle].

Applying Proposition 3.3 and the fixed point as identified
in (1), we deduce that E[PN ] → (q∗1 + δ∗1)Pfull + u∗Pidle =
(1 − δ∗0)Pfull − u∗(Pfull − Pidle) = λPfull as N → ∞. This
yields that E[ZN ] = E[PN ]− λPfull → 0. �

The quantitative values of the energy usage and waiting
time for finite values of N will be evaluated through extensive
simulations in Section 5.

Comparison to ordinary JIQ policy. Consider the fixed arrival
rate scenario λ(t) ≡ λ. It is worthwhile to observe that the
component q of the fluid limit in Theorem 3.1 coincides with
that for the ordinary JIQ policy where servers always remain
on, when the system starts with all the servers being idle-on,
and λ + µ < 1. To see this, observe that the component
q depends on δ only through (pi−1(q, δ))i≥1. Now, p0 = 1,
pi = 0, for all i ≥ 1, whenever q1 + δ0 + δ1 < 1, irrespective
of the precise values of (q, δ). Moreover, starting from the
above initial state, δ1 can increase only when q1 + δ0 = 1.
Therefore, the fluid limit of q in Theorem 3.1 and the ordinary
JIQ scheme are identical if the system parameters (λ, µ, ν)
are such that q1(t) + δ0(t) < 1, for all t ≥ 0. Let y(t) =
1− q1(t)− δ0(t). The solutions to the differential equations

dq1(t)
dt = λ− q1(t), dy(t)

dt = q1(t)− λ− µy(t),

y(0) = 1, q1(0) = 0 are given by

q1(t) = λ(1− e−t), y(t) = e−(1+µ)t

µ− 1
(
et(λ+ µ− 1)− λeµt

)
.

Notice that if λ+ µ < 1, then y(t) > 0 for all t ≥ 0 and thus,
q1(t) + δ0(t) < 1, for all t ≥ 0. The fluid-level optimality
of the JIQ scheme was shown in [32, 33]. This observation
thus establishes the optimality of the fluid-limit trajectory
under the TABS scheme for suitable parameter values in
terms of response time performance. From the energy usage
perspective, under the ordinary JIQ policy, since the asymp-
totic steady-state fraction of busy servers (q∗1) and idle-on
servers are given by λ and 1−λ, respectively, the asymptotic
steady-state (scaled) energy usage is given by

E[P JIQ] = λPfull + (1− λ)Pidle = λPfull(1 + (λ−1 − 1)f),

where f = Pidle/Pfull is the relative energy consumption of
an idle server. Proposition 3.4 implies that the asymptotic
steady-state (scaled) energy usage under the TABS scheme is
λPfull. Thus the TABS scheme reduces the asymptotic steady-
state energy usage by λPfull(λ−1 − 1)f = (1− λ)Pidle, which
amounts to a relative saving of (λ−1−1)f/(1+(λ−1−1)f). In
summary, the TABS scheme performs as good as the ordinary
JIQ policy in terms of the waiting time and communication
overhead while providing a significant energy saving.

4 EXTENSION TO PHASE TYPE SERVICE
TIME DISTRIBUTIONS

In this section we extend the fluid-limit results to phase type
service time distributions. Specifically, the service time of each
task is described by a time-homogeneous, continuous-time
Markov process with a finite state space {0, 1, . . . ,K}, initial
distribution r = (ri : 0 ≤ i ≤ K), transition probability
matrix R = (ri,j), and the mean sojourn time in state i being
γ−1
i . State 0 is an absorbing state, and thus represents a

service completion, while state j is referred to as a type-j
service, and is assumed to be transient. For convenience, and
without loss of generality, it is assumed that ri,i = 0 for all i,
and that any incoming task has a non-zero service time (r0 =
0). Consider a time-homogeneous discrete-time Markov chain
with the state space {0, 1, . . . ,K}, and transition probability
matrix P = (pi,j), where pi,j = ri,j for i ≥ 1, p0,j = rj
j ≥ 1, and p0,0 = 0. Let η = (η0, . . . , ηK) be the stationary
distribution, i.e., η satisfies

η0ri +
K∑
j=1

rj,iηj = ηi, i ≥ 1,
K∑
i=0

ηi = 1. (2)

The mean of the phase type service time distribution [31] is
(
∑K

i=1 ηi/γiη0)−1, and is assumed to be one.
We assume now that the service discipline at each server

is not only oblivious of the actual service requirements, but
also non-preemptive, and allows at most one task to be
served at any given time. Let QNi,j(t) denote the number of
servers with queue length at least i and providing a type-j
service at time t. Thus, QNi (t) =

∑K

j=1 Q
N
i,j(t). Denote the

fluid-scaled quantities by qNi,j(t) = QNi,j(t)/N and the vector
qN (t) = (qNi,j(t) : 1 ≤ i ≤ B, 1 ≤ j ≤ K). Let δN0 (t) and
δN1 (t) be as defined before. Let

Ê =
{(

(qi,j)1≤i≤B,1≤j≤K , (δ0, δ1)
)

: q1,j , δ0, δ1 ∈ [0, 1],

qi+1,j ≤ qi,j , ∀i, j, δ0 + δ1 +
K∑
j=1

q1,j ≤ 1
}

denote the space of all fluid-scaled occupancy states, so that
(qN (t), δN (t)) ∈ Ê for all t, and as before, endow Ê with the
product topology, and the Borel σ-algebra Ê , generated by
the open sets of Ê.

Theorem 4.1 (Fluid limit for phase type service
time distributions). Assume that (qN (0), δN (0)) converges
weakly to (q∞, δ∞) ∈ Ê, as N → ∞, where

∑K

j=1 q
∞
1,j > 0.

Then the sequence of processes {qN (t), δN (t)}t≥0 converges
weakly to the deterministic process {q(t), δ(t)}t≥0, as N →
∞, which satisfies the following integral equations: for i =
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1, . . . , B and j = 1, . . . ,K,

qi,j(t) = q∞i,j +
∫ t

0
λ(t)pi−1,j(q(s), δ(s), λ(s))ds (3)

+
∫ t

0

K∑
k=1

(qi,k(s)− qi+1,k(s))γkrk,jds− γj
∫ t

0
qi,j(s)ds

+
∫ t

0

K∑
k=1

(qi+1,k(s)− qi+2,k(s))γkrk,0rjds,

δ0(t) = δ∞0 + µ

∫ t

0
u(s)ds− ξ(t), (4)

δ1(t) = δ∞1 + ξ(t)− ν
∫ t

0
δ1(s)ds, (5)

where by convention qB+1,j(·) ≡ 0, j = 1, . . . ,K, and

u(t) = 1−
K∑
j=1

q1,j(t)− δ0(t)− δ1(t), (6)

ξ(t) =
∫ t

0
λ(s)

(
1−

K∑
j=1

p0,j(q(s), δ(s), λ(s))
)
1[δ0(s)>0]ds.

For any (q, δ) ∈ Ê, λ > 0, p0,j(q, δ, λ) = rj if u = 1 −∑K

j=1 q1,j − δ0 − δ1 > 0, j = 1, . . . ,K, and otherwise

p0,j(q, δ, λ) = rj min
{
λ−1
(
δ1ν+

K∑
j=1

(q1,j−q2,j)γjrj,0
)
, 1
}
,

and for i = 1, . . . , B,

pi,j(q, δ, λ) =
(

1−
K∑
j=1

p0,j(q, δ, λ)
)
qi−1,j − qi,j∑K

j=1 q1,j
.

Let us provide a heuristic justification of the fluid limit
stated above. As in Theorem 3.1, u(t) corresponds to the
asymptotic fraction of idle-on servers in the system at time t,
ξ(t) represents the asymptotic cumulative number of server
setups (scaled by N) that have been initiated during [0, t].
The coefficient pi,j(q(t), δ(t), λ(t)) can be interpreted as the
instantaneous fraction of incoming tasks that are assigned to
a server with queue length i ≥ 1 and currently providing a
type-j service, while p0,j specifies the fraction of incoming
tasks assigned to idle servers starting with a type-j service.
The heuristic justification for the pi,j values builds on the
same line of reasoning as for Theorem 3.1. As long as there
are idle-on servers, i.e., u > 0, incoming tasks are immediately
assigned to one of those servers, and the initial service type is
chosen according to the distribution r. Notice that the busy
servers and the servers in setup become idle at total rate
δ1ν +

∑K

j=1(q1,j − q2,j)γjrj,0. For the case when u = 0, we
need to distinguish between two cases, depending on whether
δ1ν+

∑K

j=1(q1,j−q2,j)γjrj,0 > λ or not. In the first case, the
incoming tasks are again assigned to idle-on servers immedi-
ately. However, if δ1ν+

∑K

j=1(q1,j−q2,j)γjrj,0 ≤ λ, then only
a fraction λ−1(δ1ν +

∑K

j=1(q1,j − q2,j)γjrj,0 of the incoming
tasks are immediately taken into service. In both of the above

two subcases, the service types of the incoming tasks follow
the distribution r. This explains the expression for the p0,j
values. Also, given that an incoming task does not find an
idle-on server, it is assigned to a server that has queue length
i and is currently providing a type-j service with probability(∑K

j=1 q1,j
)−1(qi−1,j−qi,j). This explains the expression for

pi,j for i ≥ 1. Now, notice that the expressions for δ0, and
δ1 remain essentially the same as in Theorem 3.1 due to the
fact that the dynamics of δ0, and δ1 depends on qi,j ’s only
through the fraction of incoming tasks that join an idle-on
server, which is determined by the coefficients p0,j(q, δ, λ).
Finally, qi,j decreases if and only if there is a completion of
type-j service at a server with queue length at least i. Here,
we have used the fact ri,i = 0. Now, qi,j can increase due to
three events: (i) assignment of an arriving task, which occurs
at rate λpi−1,j(q, δ, λ), (ii) service completion of some other
type, which now requires service of type j, and this occurs at
rate

∑
k
(qi,k − qi+1,k)γkrk,j , (iii) service completion occurs

at some server, the task exits from the system, and the next
task at that server starts with a type-j service. This occurs
at rate

∑K

k=1(qi+1,k − qi+2,k)γkrk,0rj .

Fixed point of the fluid limit. In case of a constant arrival
rate λ(t) ≡ λ < 1, the unique fixed point of the fluid limit in
Theorem 4.1 is given by

δ∗0 = 1− λ, δ∗1 = 0, q∗1,j = ηj
η0γj

λ, j = 1, . . . ,K, (7)

and q∗i,j = 0 for all i = 2, . . . , B. Indeed, it can be verified
that the derivatives of qi,j , i = 1, . . . , B, j = 1, . . . ,K, δ0, and
δ1 are zero at (q∗, δ∗) given by (7), and that these cannot
be zero at any other point in Ê. Thus, the fixed point is
unique as before. Notice that in this case also at the fixed
point a fraction λ of the servers have exactly one task while
the remaining fraction have zero tasks, independent of the
values of the parameters µ and ν, revealing the insensitivity
of the asymptotic fluid-scaled steady-state occupancy states
to the duration of the standby periods and setup periods.
Further, note that

∑K

j=1 q
∗
1,j = λ from the fact that the mean

service time is one, irrespective of the initial distribution r,
transition probability matrix R, and parameters γj . Thus
the values of q∗1 , . . . , q∗B in the fixed point are insensitive in a
distributional sense with respect to the service times. They
only depend on the service time distribution through its
mean, and higher-order characteristics like variance have no
impact on the steady-state performance in the large capacity
limit whatsoever.

5 SIMULATION EXPERIMENTS
In this section we present extensive simulation results to illus-
trate the fluid-limit results, and to examine the performance
of the proposed TABS scheme in terms of mean waiting time
and energy consumption, and compare that with existing
strategies.

Convergence of sample paths to fluid-limit trajectories. The
fluid-limit trajectories for the TABS scheme in Theorems 3.1
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Figure 2: Illustration of the fluid-limit trajectories for N =
105 servers. The left figure is for constant arrival rate λ(t) ≡
0.3. The middle figure considers a periodic arrival rate given
by λ(t) = 0.3 + 0.2 sin(t/10). The right figure considers a
hyper-exponential service time distribution. An incoming task
demands either type-1 or type-2 service with probabilities
0.75 and 0.25, respectively. The durations of type-1 and type-
2 services are exponentially distributed with parameters 2 and
0.4, respectively, and thus the mean service time is 1.

and 4.1 are illustrated in Figure 2 for N = 105 servers and
three scenarios (constant arrival rate, periodic arrival rate
and hyper-exponential service time distribution). In all three
scenarios the mean standby periods are µ−1 = 10 and the
mean setup periods are ν−1 = 10. In all cases, the fluid-limit
paths and the sample paths obtained from simulation are
nearly indistinguishable. Notice that in case of a time-varying
arrival rate the period of fluctuation is only 20π ≈ 63 times as
long as the mean service time, which is far shorter than what
is usually observed in practice. Typically, service times are
of sub-second order and variations in the arrival rate occur
only over time scales of tens of minutes, if not several hours.
Even in such a challenging scenario, however, the fractions
of idle-on servers and those with waiting tasks are negligible.
In case of the hyper-exponential service time distribution,
we note from the bottom figure that the long-term values
of q1 = q1,1 + q1,2, q2 = q2,1 + q2,2, δ0 and δ1 agree with
the corresponding quantities in the top chart for exponential
service times. This reflects the asymptotic insensitivity in
a distributional sense mentioned at the end of Section 4,
and in particular supports the observation that the proposed
TABS scheme achieves asymptotically optimal response time
performance and energy consumption for phase-type service
time distributions as well.

Convergence of steady-state performance metrics to fluid-limit
values. In order to quantify the energy usage, we will adopt
the parameter values from empirical measurements reported
in [4, 11, 12]. A server that is busy or in setup mode, con-
sumes Pfull = 200 watts, an idle-on server consumes Pidle =
140 watts, and an idle-off servers consumes no energy. We
will consider the normalized energy consumption. Thus, the
asymptotic steady-state expected normalized energy con-
sumption E[P/340] is given by 10/17(q1 + δ1) + 7/17u =
10/17(1− δ0)− 3/17u. Note that the optimal energy usage
(with no wastage, i.e., δ0 = 1−λ = 0.7, δ1 = 0, q1 = λ = 0.3)
is given by 3/17. Also recall that the asymptotic expected
steady-state waiting time is given by E[W ] = λ−1∑B

i=2 qi.

In Figure 3 average values of the performance metrics,
taken over time 0 to 250, have been plotted. We can clearly
observe that both performance metrics approach the asymp-
totic values associated with the fixed point of the fluid limit
as the number of servers grows large. Comparison of the
results for ν = 0.01 and ν = 0.1 shows that the convergence
is substantially faster, and the performance correspondingly
closer to the asymptotic lower bound, for shorter setup pe-
riods. This is a manifestation of the fact that, even though
the fraction of servers in setup mode vanishes in the limit
for any value of ν, the actual fraction for a given finite value
of N tends to increase with the mean setup period. This
in turn means that in order for the fluid limit values to be
approached within a certain margin, the required value of N
increases with the mean setup period, as reflected in Figure 3.
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Figure 3: Energy usage and mean waiting time for N =
102, 103, 104, 105 servers, mean standby period µ−1 = 10, and
mean setup periods ν−1 = 10, 100.

In order to further examine the above observations and
also investigate the impact of the mean standby period, we
present in Figure 4 the expected waiting time of tasks E[WN ]
and energy consumption E[PN ] for λ = 0.3 and various val-
ues of N and ν, as a function of the mean standby period µ−1.
The results are based on 100 to 200 independent simulation
runs, and we confirmed through careful inspection that the
numbers in fact did not show significant variation across runs.
In order to examine the impact of the load, we have also
conducted experiments for λ = 0.9 which are included in
the appendix and show qualitatively similar results. Just like
before, the asymptotic values of both performance metrics
are clearly approached as the number of servers grows large,
and the convergence is noticeably faster and the performance
markedly better, for shorter mean setup periods (larger ν).
The performance impact of the mean standby period µ−1

appears to be somewhat less pronounced. Both performance
metrics generally tend to improve as the mean standby period
increases, although the energy consumption starts to slightly
rise when the standby period increases above a certain level
in scenarios with extremely short setup periods. The latter
observation may be explained as follows. For finite N -values,
if the standby period is extremely small relative to the setup
period, then the servers tend to deactivate too often, and as a
result, setup procedures are also initiated too often (which in
turn involve a relatively long time to become idle-on). Note
that the servers in setup mode use Pfull while providing no
service. Thus the energy usage decreases by choosing longer
standby periods (smaller µ). On the other hand, again for
small N -values, very long standby periods (smaller µ) are
not good either. The reason in this case is straightforward;
the idle-on servers will unnecessarily remain idle for a long
time, and thus substantially increase energy usage with very

little gain in the performance (reduction in waiting time).

As mentioned above, the required value of N for the fluid-
limit regime to kick in increases with the mean setup period,
and broadly speaking, the asymptotic values are approached
within a fairly close margin for N = 103 servers, except
when the setup periods are long or the standby periods are
extremely short. By implication, for scenarios with N = 103

or more servers, the TABS scheme delivers near-optimal per-
formance in terms of energy consumption and waiting time,
provided the setup periods are not too long and the standby
periods are not too short. It is worth observing that setup
periods are basically determined by hardware factors and
system constraints, while standby periods are design param-
eters that can be set in a largely arbitrary fashion. Based on
the above observations, a simple practical guideline is to set
standby periods to relatively long values.

For smaller numbers of servers, long setup periods, or
extremely short standby periods, finite-N effects manifest
themselves, and the actual performance metrics will differ
from the fluid-limit values. This does not imply though that
the performance of the TABS scheme is necessarily far from
optimal, since the absolute lower bound attained in the fluid
limit may simply not be achievable by any scheme at all for
small N values.

Comparison with centralized queue-driven strategies. To com-
pare the performance in distributed systems under the TABS
scheme with that of the corresponding pooled system under
the M/M/N/setup/delayedoff mechanism, we also present in
Figure 4 the relevant metrics for the latter scenario. Quite
surprisingly, even for moderate values of the total number of
servers N , the performance metrics in a non-work-conserving
scenario under the TABS scheme are very close to those for
the M/M/N/setup/delayedoff mechanism. Thus, the TABS
scheme provides a significant energy saving in distributed
systems which is comparable with that in a work-conserving
pooled system, while achieving near zero waiting times as
well. In fact, it is interesting to observe that for relatively
long setup periods the waiting time in the distributed sys-
tem under the TABS scheme is even lower than for the
M/M/N/setup/delayedoff mechanism! This can be under-
stood from the dynamics of the two systems as follows. When
an incoming task does not find an idle server, in both sys-
tems an idle-off server s (if available) is switched to the setup
mode. By the time s completes the setup procedure and turns
idle-on, in the pooled system if a service completion occurs,
then the task is assigned to that new idle-on server and the
setup procedure of s is discontinued. Therefore, when a next
arrival occurs, the setup procedure must be initiated again.
As a result, this might cause the effective average waiting
time to become higher. On the other hand, in the distributed
system once a setup procedure is initiated, it is completed in
any event. This explains why for relatively long setup periods
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Figure 4: Comparison between TABS and M/M/N/setup/delayedoff schemes as functions of the mean standby period µ−1 in
terms of mean energy consumption and waiting time, for mean setup periods ν−1 = 1, 10, 100, N = 102, 103, 104 servers.
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the TABS scheme provides a lower waiting time than the
M/M/N/setup/delayedoff mechanism.

6 PROOFS
The proof of Theorem 3.1 consists of describing the evolu-
tion of the system as a suitable time-changed Poisson pro-
cess, which can be further decomposed into a martingale
part and a drift part. This formulation can be viewed as a
density-dependent population process (cf. [10, Chapter 11]).
The martingale fluctuations become negligible on the fluid
scale, and the drift terms converge to deterministic limits.
While the convergence of the martingale fluctuations is fairly
straightforward to show, the analysis of the drift term is
rather involved since the derivative of the drift is not con-
tinuous. As a result, the classical approaches developed by
Kurtz [10] cannot be applied in the current scenario. In the
literature, these situations have been tackled in various differ-
ent ways [6, 7, 13–16, 30, 34]. In particular, we leverage the
time-scale separation techniques developed in [15] in order
to identify the limits of drift terms.

Let us introduce the variables UN (t) = N − QN1 (t) −
∆N

0 (t)−∆N
1 (t), uN (t) = UN (t)/N , IN0 (t) = 1[UN (t)>0], and

IN1 (t) = 1[∆N
0 (t)>0]. Note that UN (t) represents the number

of idle-on servers at time t.

Random measure representation. We will now write the sys-
tem evolution equation in terms of a suitable random mea-
sure. The transition rates of the process {ZN (t)}t≥0 :=
{(∆N

0 (t), UN (t))}t≥0 are described as follows.
(i) When an idle server turns-off, ∆N

0 increases by one and
UN decreases by one, and this occurs at rate NµUN ;

(ii) When a server is requested to initiate the setup pro-
cedure, UN must be zero at that epoch. Thus, ∆N

0
decreases by one while UN remains unchanged, and
this occurs at rate λN (t)1[UN =0,∆N

0 >0];
(iii) When a busy server becomes idle, or a server finishes

its setup procedure to become idle-on, ∆N
0 remains

unchanged while UN increases by one, and this occurs
at rate N(qN1 − qN2 + νδN1 );

(iv) When an arriving task is assigned to an idle server, ∆N
0

remains unchanged while UN decreases by one, and
this occurs at rate λN (t)1[UN>0].

Let Z̄+ = Z+ ∪ {∞} denote the one-point compactifica-
tion of the set of non-negative integers, equipped with the
Euclidean metric, and the Borel σ-algebra B, induced by the
mapping f : Z̄+ → [0, 1] given by f(x) = 1/(x+1). Let vN (t)
denote the vector (qN (t), δN (t)).

Observe that {(vN (t),ZN (t))}t≥0 is a Markov process de-
fined on E × Z̄2

+. Further, equip [0,∞) with the usual Eu-
clidean metric and the Borel σ-algebra T. We define a random
measure αN on the product space [0,∞)× Z̄2

+ by

αN (A1 ×A2) :=
∫
A1

1[ZN (s)∈A2]ds, (8)

for A1 ∈ T, A2 ∈ B. Define

R1 = {(z1, z2) ∈ Z2
+ : z2 = 0},

R2 = {(z1, z2) ∈ Z2
+ : z2 = 0, z1 > 0}.

Then the Markov process
{

(qN (t), δN (t))
}
t≥0

can be written
as in (9), where MA, M0, M1, Mi,D for i = 1, . . . , B are
square-integrable martingales. A step-by-step derivation of
the representation in (9) is presented in the appendix. We first
show that the scaled martingale parts converge in probability
to zero processes as N →∞.

Proposition 6.1. For any T ≥ 0, supt∈[0,T ] |Mk(t)|/N P−→
0 for k = A, 0, 1, and supt∈[0,T ] |Mi,D(t)|/N P−→ 0, for all
i = 1, . . . B.

Let L denote the space of all measures γ on [0,∞)× Z̄2
+

satisfying γ([0, t] × Z̄2
+) = t, endowed with the topology

corresponding to weak convergence of measures restricted to
[0, t]× Z̄2

+ for each t. We have the following lemma:

Lemma 6.2 (Relative compactness). Suppose that vN (0)
converges weakly to v∞ = (q∞, δ∞) ∈ E as N → ∞, with
q∞1 > 0. Then the sequence of processes {(vN (·), αN )}N≥1 is
relatively compact in DE [0,∞)× L and the limit (v(·), α) of
any convergent subsequence satisfies

q1(t) = q∞1 +
∫

[0,t]×Rc
1

λ(s)dα−
∫ t

0
(q1(s)− q2(s))ds

qi(t) = q∞i +
∫

[0,t]×R1

qi−1(s)− qi(s)
q1(s) λ(s)dα

−
∫ t

0
(qi(s)− qi+1(s))ds, i = 2, . . . , B,

δ0(t) = δ∞0 + µ

∫ t

0
u(s)ds−

∫
[0,t]×R2

λ(s)dα

δ1(t) = δ∞1 +
∫

[0,t]×R2

λ(s)dα− ν
∫ t

0
δ1(s)ds,

(10)

with u(t) = 1− q1(t)− δ0(t)− δ1(t).

To prove Lemma 6.2, we verify the conditions of relative
compactness from [10, Corollary 3.7.4]. We present the precise
conditions and the proof of Lemma 6.2 in the appendix. We
will now prove the fluid-limit result stated in Theorem 3.1.

Proof of Theorem 3.1. Using [15, Theorem 3], we can
conclude that the measure α can be represented as

α(A1 ×A2) =
∫
A1

πq(s),δ(s)(A2)ds, (11)

for measurable subsets A1 ⊂ [0,∞), and A2 ⊂ Z̄2
+, where for

any (q, δ) ∈ E, πq,δ is given by some stationary distribution
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qN1 (t) = qN1 (0) + 1
N

(MA(t)−M1,D(t)) +
∫

[0,t]×Rc
1

λ(s)dαN −
∫ t

0
(qN1 (s)− qN2 (s))ds,

qNi (t) = qNi (0) + 1
N

(MA(t)−Mi,D(t)) +
∫

[0,t]×R1

qNi−1(s)− qNi (s)
qN1 (s)

λ(s)dαN −
∫ t

0
(qNi (s)− qNi+1(s))ds, i = 2, . . . , B,

δN0 (t) = δN0 (0) + 1
N

(M0(t)−MA(t)) + µ

∫ t

0
uN (s)ds−

∫
[0,t]×R2

λ(s)dαN ,

δN1 (t) = δN1 (0) + 1
N

(MA(t)−M1(t)) +
∫

[0,t]×R2

λ(s)dαN − ν
∫ t

0
δN1 (s)ds.

(9)

of the Markov process with transitions

(Z1, Z2)→


(Z1, Z2) + (1,−1) at rate µu
(Z1, Z2) + (−1, 0) at rate λ1[Z2=0,Z1>0]

(Z1, Z2) + (0, 1) at rate q1 − q2 + νδ1

(Z1, Z2) + (0,−1) at rate λ1[Z2>0],

(12)

with u = 1−q1−δ0−δ1. Additionally, the measure πq,δ satis-
fies πq,δ(Z2 = ∞) = 1, if u > 0 and πq,δ(Z1 = ∞) = 1
if δ0 > 0. Thus we will show that for any (q, δ) ∈ E,
πq,δ is unique, and that πq(s),δ(s)(R1) = p0(q(s), δ(s)) and
πq(s),δ(s)(R2) = (1− p0(q(s), δ(s)))1[δ0(s)>0] as described in
Theorem 3.1 (we have omitted the argument λ(s) in p(·, ·, ·)
to avoid cumbersome notation). We will verify the uniqueness
of the stationary measure πq,δ of the Markov process (Z1, Z2)
subsequently case-by-case.

Case-I: u > 0, δ0 > 0. In this case, by the definition of πq,δ
stated above, πq,δ(Z2 = Z1 = ∞) = 1. Thus, πq,δ(R1) =
πq,δ(R2) = 0.

Case-II: u > 0, δ0 = 0. Here by definition of πq,δ πq,δ(Z2 =
∞) = 1. However, if Z2 = ∞, then by (12), Z1 increases
by one at rate µu, and decreases at rate 0. Since πq,δ is the
stationary measure, we also have πq,δ(Z1 = ∞) = 1, and
thus, πq,δ(R1) = πq,δ(R2) = 0.

Case-III: u = 0, δ0 > 0. In this case, πq,δ(Z1 = ∞) = 1.
Again note that if Z1 =∞, then by (12), Z2 increases by one
at rate q1 − q2 + νδ1, and decreases by one at rate λ1[Z2>0].
Thus,

• if q1 − q2 + νδ1 ≥ λ, then πq,δ(Z2 = 0) = 0, and
consequently, πq,δ(R1) = πq,δ(R2) = 0,

• if q1−q2+νδ1 < λ, then πq,δ(Z2 = 0) = λ−1(q1−q2+
νδ1), and πq,δ(R1) = πq,δ(R2) = λ−1(q1− q2 + νδ1).

Case-IV: u = 0, δ0 = 0. Observe that in this case, due to
physical constraints, it must be that πq,δ(R2) = 0. To
see this, recall the evolution equation from (10). Note that
δ0(t) = 0 forces its derivative to be non-negative (since δ0 is
non-negative), and thus δ′0(t) ≥ 0. Now, πq(t),δ(t)(R2) > 0
implies that δ′0(t) < 0, and hence, this leads to a contradic-
tion. Furthermore, πq,δ(Z2 = 0, Z1 > 0) = 0 implies that

πq,δ(Z2 = 0) = πq,δ(Z2 = 0, Z1 = 0). Again, if Z1 = 0,
then by (12), Z2 increases by one at rate q1 − q2 + νδ1, and
decreases by one at rate λ1[Z2>0]. Thus, an argument similar
to Case-III yields that πq,δ(R1) = 0, if q1 − q2 + νδ1 ≥ λ,
and πq,δ(R1) = λ−1(q1 − q2 + νδ1), if q1 − q2 + νδ1 < λ.
Combining Cases I-IV, we have

πq,δ(R1) = 1− p0(q, δ, λ), πq,δ(R2) = 1[δ0>0]πq,δ(R1),

and the proof of Theorem 3.1 follows from Lemma 6.2. �

Proof sketch of Proposition 3.2. We now provide a
brief proof outline of Proposition 3.2. A detailed proof is
presented in the appendix.

Convergence of q1(t). First we will establish that q1(t)→ λ
as t→∞. The high-level intuition behind the proof can be
described in two steps as follows.

(1) First we prove that lim inft→∞ q1(t) ≥ λ. Assume the
contrary. Because q1(t) can be shown to be non-decreasing
when q1(t) ≤ λ, there must exist an ε > 0, such that

q1(t) ≤ λ− εν, ∀ t ≥ 0. (13)

If q1(t) were to remain below λ by a non-vanishing margin,
then the (scaled) rate q1(t) − q2(t) of busy servers turning
idle-on would not be high enough to match the (scaled) rate
λ of incoming jobs. If there are idle-on servers or sufficiently
many servers in setup mode, we can still assign incoming
jobs to idle-on servers, but this drives up the fraction of busy
servers q1(t) and cannot continue indefinitely due to (13).
This means that we cannot initiate an unbounded number of
setup procedures. Since we cannot continue to have idle-on
servers either, this also implies that a non-vanishing fraction
of the jobs cannot be assigned to idle servers, and hence we
will initiate an unbounded number of setup procedures, hence
contradiction.

(2) Next we show that lim supt→∞ q1(t) ≤ λ. Suppose not,
i.e., lim supt→∞ q1(t) = λ+ε for some ε > 0. Recall that q1(t)
is non-decreasing when q1(t) ≤ λ. Hence, there must exist a
t0 such that q1(t) ≥ λ ∀ t ≥ t0. If q1(t) were to get above λ by
a non-vanishing margin infinitely often, then the cumulative
number of departures would exceed the cumulative number
of arrivals by an infinite amount, which cannot occur since
the (scaled) initial number of tasks is bounded.
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Convergence of q2(t). Based on the fact that q1(t) → λ as
t → ∞, we now claim that q2(t) → 0 as t → ∞. The high-
level idea behind the claim is as follows. From the convergence
of q1(t), we know that after a large enough time, q1(t) will
always belong to a very small neighborhood of λ. On the
other hand, if q2(t) does not converge to 0, then it must have
a strictly positive limit point. In that case, since the rate of
decrease of q2(t) is at most q2(t), it will be bounded away
from 0 for a fixed amount of time infinitely often. In the
meantime, the rate at which busy servers become idle-on will
be strictly less than the arrival rate of tasks. This in turn,
will cause q1(t) to increase substantially compared to the
small neighborhood where it is supposed to lie, which leads
to a contradiction.

Convergence of δ0(t) and δ1(t). Since q1(t)− q2(t)→ λ and
q2(t) → 0, as t → ∞, it follows that p0(q(t), δ(t), λ) → 1
as t → ∞. From the evolution equation of δ0(t), the rate
of increase goes to zero, and since the rate of decrease is
proportional to δ0(t), using Gronwall’s inequality, we obtain
δ1(t)→ 0 as t→∞. Consequently, δ0(t)→ 1− λ as t→∞.
This completes the proof of Proposition 3.2. �

7 CONCLUSIONS
Centralized queue-driven auto-scaling techniques do not cover
scenarios where load balancing algorithms immediately dis-
tribute incoming tasks among parallel queues, as typically
encountered in large-scale data centers and cloud networks.
Motivated by these observations, we proposed a joint auto-
scaling and load balancing scheme, which does not require
any global queue length information or explicit knowledge
of system parameters. Fluid-limit results for a large-capacity
regime show that the proposed scheme achieves asymptotic
optimality in terms of response time performance as well
as energy consumption. At the same time, the proposed
scheme operates in a distributed fashion, and involves only a
constant communication overhead per task, ensuring scala-
bility to massive numbers of servers. This demonstrates that,
rather remarkably, ideal response time performance and min-
imal energy consumption can be simultaneously achieved in
large-scale distributed systems.

Extensive simulation experiments support the fluid-limit
results, and reveal only a slight trade-off between the mean
waiting time and energy wastage in finite-size systems. In
particular, we observe that suitably long but finite standby
periods yield near-minimal waiting time and energy consump-
tion, across a wide range of setup durations. We expect that a
non-trivial trade-off between response time performance and
(normalized) energy consumption arises at the diffusion level,
and exploring that conjecture would be an interesting topic
for further research. It might be worth noting that in the
present paper, we have not taken the communication delay
into consideration, and assumed that the message transfer
is instantaneous. This is a reasonable assumption when the
communication delay is insignificant relative to the typical

duration of the service period of a job. When the communi-
cation delay is non-negligible, one might modify the TABS
scheme where a task is discarded if it happens to land on an
idle-off server. In this modified scheme, the asymptotic frac-
tion of lost tasks in steady state should be negligible, since
the rate at which idle-on servers are turning of is precisely
zero at the fixed point, and it would be useful to further
examine the impact of communication delays.
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A FLUID CONVERGENCE
First, we verify the existence of the coefficients pi(·, ·, ·) for all
t ≥ 0, i = 1, 2, . . . , B. From the assumptions of Theorem 3.1,
and the fact that λ(t) is bounded away from 0 (by some λmin
say), we claim that if q1(0) = q∞1 > 0, then q1(t) > 0 for all
t ≥ 0. To see this, it is enough to observe that in the fluid
limit the rate of change of q1(t) is non-negative whenever
q1(t) < λmin. Indeed, if q1(t) < λmin, then

λ(t)p0(q(t), δ(t), λ(t))− (q1(t)− q2(t))
≥ min{λ(t)− (q1(t)− q2(t)), δ1(t)ν}
≥ min{λmin − q1(t), δ1ν} ≥ 0,

and thus the claim follows. Therefore below we will prove
Theorem 3.1 until the time qN1 hits 0, and the above argu-
ment then shows that if qN1 (0) P−→ q∞1 > 0, then on any finite
time interval [0, T ], with probability tending to 1, the process
qN1 (·) is bounded away from 0, proving the theorem for any
finite time interval.

Martingale representation. For a unit-rate Poisson process{
N (t)

}
t≥0

and a real-valued càdlàg process {A(t)}t≥0, the
random time-change [10, 28]

{
N (
∫ t

0 A(s)ds)
}
t≥0

is the unique
process such that

N
(∫ t

0
A(s)ds

)
−
∫ t

0
A(s)ds is a martingale. (14)

Thus the evolution of the system is described by (15), where
NA, Ni,D for i = 1, . . . , B, N0, N1 are independent unit-rate
Poisson processes. Using (14) and (15), we obtain the martin-
gale representation of the process as in (16), where recall that
MA,M0,M1,Mi,D for i = 1, . . . , B are square-integrable
martingales. The fluid-scaled martingale decomposition is
thus given by (17). Note that the process {ZN (t)}t≥0 defined
in Section 6 determines the system constraints (indicator
terms IN0 and IN1 ) in (17). Thus, (17) can be written in
terms of the random measure αN as in (9).

Proof of Proposition 6.1. We only give proof forMA

and the other cases can be proved similarly. Fix any T > 0 and
η > 0. The proof makes use of the fact that the predictable
quadratic variation process of a time-changed Poisson process
is given by its compensator [28, Lemma 3.2]. Using Doob’s
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QN1 (t) = QN1 (0) +NA
(∫ t

0
(1− IN0 (s))λN (s)ds

)
−N1,D

(∫ t

0
(QN1 (s)−QN2 (s))ds

)
,

QNi (t) = QNi (0) +NA
(∫ t

0
IN0 (s)

QNi−1(s)−QNi (s)
QN1 (s)

λN (s)ds
)
−Ni,D

(∫ t

0
(QNi (s)−QNi+1(s))ds

)
, i = 2, . . . , B,

∆N
0 (t) = ∆N

0 (0) +N0

(
µ

∫ t

0
UN (s)ds

)
−NA

(∫ t

0
IN0 (s)IN1 (s)λN (s)ds

)
,

∆N
1 (t) = ∆N

1 (0) +NA
(∫ t

0
IN0 (s)IN1 (s)λN (s)ds

)
−N1

(
ν

∫ t

0
∆N

1 (s)ds
)
,

(15)

QN1 (t) = QN1 (0) +MA(t)−M1,D(t) +
∫ t

0
(1− IN0 (s))λN (s)ds−

∫ t

0
(QN1 (s)−QN2 (s))ds,

QNi (t) = QNi (0) +MA(t)−Mi,D(t) +
∫ t

0
IN0 (s)

QNi−1(s)−QNi (s)
QN1 (s)

λN (s)ds−
∫ t

0
(QNi (s)−QNi+1(s))ds, i = 2, . . . , B,

∆N
0 (t) = ∆N

0 (0) +M0(t)−MA(t) + µ

∫ t

0
UN (s)ds−

∫ t

0
IN0 (s)IN1 (s)λN (s)ds,

∆N
1 (t) = ∆N

1 (0) +MA(t)−M1(t) +
∫ t

0
IN0 (s)IN1 (s)λN (s)ds− ν

∫ t

0
∆N

1 (s)ds,

(16)

qN1 (t) = qN1 (0) + 1
N

(MA(t)−M1,D(t)) +
∫ t

0
(1− IN0 (s))λ(s)ds−

∫ t

0
(qN1 (s)− qN2 (s))ds,

qNi (t) = qNi (0) + 1
N

(MA(t)−Mi,D(t)) +
∫ t

0
IN0 (s)

qNi−1(s)− qNi (s)
qN1 (s)

λ(s)ds−
∫ t

0
(qNi (s)− qNi+1(s))ds, i = 2, . . . , B,

δN0 (t) = δN0 (0) + 1
N

(M0(t)−MA(t)) + µ

∫ t

0
uN (s)ds−

∫ t

0
IN0 (s)IN1 (s)λ(s)ds,

δN1 (t) = δN1 (0) + 1
N

(MA(t)−M1(t)) +
∫ t

0
IN0 (s)IN1 (s)λ(s)ds− ν

∫ t

0
δN1 (s)ds.

(17)

qN1,j(t) = qN1,j(0) + 1
N
M1,j(t) +

∫
[0,t]×Rc

1

rjλ(s)dαN +
∫ t

0

K∑
k=1

(qN1,k(s)− qN2,k(s))γkrk,jds

+
∫ t

0

K∑
k=1

(qN2,k(s)− qN3k(s))γkrk,0rjds− γj
∫ t

0
qN1,j(s)ds

qNi,j(t) = qNi,j(0) + 1
N
Mi,j(t) +

∫
[0,t]×R1

qNi−1,j(s)− qNi,j(s)∑K

j=1 q
N
1,j(s)

rjλ(s)dαN +
∫ t

0

K∑
k=1

(qNik(s)− qNi+1,k(s))γkrk,jds

+
∫ t

0

K∑
k=1

(qNi+1,k(s)− qNi+2,k(s))γkrk,0rjds− γj
∫ t

0
qNi,j(s)ds

δN0 (t) = δN0 (0) + 1
N
M0(t) + µ

∫ t

0

(
1−

K∑
j=1

qN1,j(s)− δN0 (s)− δN1 (s)
)

ds−
∫

[0,t]×R2

λ(s)ds,

δN1 (t) = δN1 (0) + 1
N
M1(t) +

∫
[0,t]×R2

λ(s)ds− ν
∫ t

0
δN1 (s)ds.

(18)
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Martingale inequality [19, Theorem 1.9.1.3], we have

P

(
sup
t∈[0,T ]

|MA(t)|
N

> ε

)
≤ 1
N2ε2E (〈MA〉T )

≤
NT supt∈[0,T ] λ(t)

N2ε2 → 0,

and the proof follows. �

Conditions of relative compactness. Let (E, r) be a complete
and separable metric space. For any x ∈ DE [0,∞), κ > 0
and T > 0, define

w′(x, κ, T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

r(x(s), x(t)), (19)

where {ti} ranges over all partitions of the form 0 = t0 <
t1 < . . . < tn−1 < T ≤ tn with min1≤i≤n(ti − ti−1) > κ
and n ≥ 1. Below we state the conditions for the sake of
completeness.

Theorem A.1 ([10, Corollary 3.7.4]). Let (E, r) be
complete and separable, and let {Xn}n≥1 be a family of pro-
cesses with sample paths in DE [0,∞). Then {Xn}n≥1 is rel-
atively compact if and only if the following two conditions
hold:
(a) For every η > 0 and rational t ≥ 0, there exists a compact

set Γη,t ⊂ E such that

lim
n→∞

P (Xn(t) ∈ Γη,t) ≥ 1− η.

(b) For every η > 0 and T > 0, there exists κ > 0 such that

lim
n→∞

P

(
w′(Xn, κ, T ) ≥ η

)
≤ η.

Proof of Lemma 6.2. Note from [10, Proposition 3.2.4]
that, to prove the relative compactness of (vN (·), αN ), it
is enough to prove relative compactness of the individual
components.

Let Lt denote the collection of measures γt where γt is
the restriction of γ on [0, t]× Z̄2

+. Note that, by Prohorov’s
theorem, Lt is compact, since Z̄2

+ is compact. The topology
on L is defined such that any sequence {γN}N≥1 is relatively
compact in L if and only if {γtN}N≥1 is relatively compact in
Lt for any t > 0. Since Lt is compact, any sequence {γN}N≥1
is relatively compact in L. Thus, the relative compactness of
αN follows. To see the relative compactness of {vN (·)}n≥1,
first observe that E is compact and hence the compact con-
tainment condition (a) of Theorem A.1 is satisfied trivially
by taking Γη,t ≡ E.

Let {MN (t)}t≥0 denote the vector of all the martingale
quantities appearing in (9). Denote by ‖ · ‖, the Euclidean
norm. For condition (b), we can see that, for any 0 ≤ t1 <
t2 <∞,

‖vN (t1)− vN (t2)‖ ≤ C(t2 − t1) + 1
N
‖MN (t1)−MN (t2)‖,

(20)
for a sufficiently large constant C > 0 where we have used
qNi ≤ 1, for all i, λ(t) is bounded, and the fact that (qNi−1 −

qNi )/qN1 ≤ 1. From Proposition 6.1, we get, for any T ≥ 0,

sup
t∈[0,T ]

1
N
‖MN (t)‖ P−→ 0.

Now, the proof of the relative compactness of (vN (t))t≥0 is
complete if we can show that for any η > 0, there exists a
δ > 0 and a partition (ti)i≥1 with mini |ti − ti−1| > δ such
that

lim
N→∞

P

(
max
i

sup
s,t∈[ti−1,ti)

‖vN (s)− vN (t)‖ ≥ η
)
< η. (21)

Now, (20) implies that, for any partition (ti)i≥1,

max
i

sup
s,t∈[ti−1,ti)

‖vN (s)− vN (t)‖ ≤ C max
i

(ti − ti−1) + ζN ,

where P (ζN > η/2) < η for all sufficiently large N . Now take
δ = η/4C and any partition with maxi(ti − ti−1) < η/2C
and mini(ti − ti−1) > δ. Now on the event {ζN ≤ η/2},

max
i

sup
s,t∈[ti−1,ti)

‖vN (s)− vN (t)‖ ≤ η.

Therefore, for all sufficiently large N ,

P

(
max
i

sup
s,t∈[ti−1,ti)

‖vN (s)− vN (t)‖ ≥ η
)

≤ P (ζN > η/2) ≤ η,
(22)

and the proof of the relative compactness of (vN (t))t≥0 is
now complete. The fact that the limit (v, α) of any convergent
subsequence of (vN , αN ) satisfies (10), follows by applying
the continuous-mapping theorem. �

Proof of Theorem 4.1. The proof of Theorem 4.1 is
identical to the proof of Theorem 3.1, which starts again
by establishing the martingale decomposition for qNij of the
form (18). The definitions of the sets R1, R2 remain exactly
the same. Thus the convergence result Lemma 6.2 holds
for qN = (qNij )1≤i≤B,1≤j≤K . The arguments for the time
scale separation part remain unchanged as well, except the
transition rate (Z1, Z2) → (Z1, Z2) + (0, 1) in (12) changes
to
∑K

j=1(q1j − q2j) + νδ1. �

B CONVERGENCE OF STATIONARY
DISTRIBUTION

Proof of Proposition 3.2. The proof follows in three
steps: in Lemma B.1, we show that q1(t) → λ as t → ∞,
using this we show in Lemma B.2 that q2(t)→ 0, and then
finally we deduce that δ0(t)→ 1− λ and δ1(t)→ 0.

Lemma B.1. q1(t)→ λ as t→∞.

Proof. We first state four useful basic facts based on the
fluid limit in Theorem 3.1. These are then used to prove
Claims 1 and 2 which together imply Lemma B.1.

Fact 1. q1(t) is nondecreasing if q1(t) − q2(t) ≤ λ. In
particular, if q1(t) ≤ λ, then q1(t) is nondecreasing.
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Proof. Note that the rate of change of q1(t) is determined
by λp0(q(t), δ(t))− q1(t) + q2(t). So it suffices to show that
the latter quantity is non-negative when q1(t) − q2(t) ≤ λ.
This follows directly from the fact that
p0(q(t), δ(t)) ≥ min

{
λ−1(δ1(t)ν + q1(t)− q2(t)), 1

}
. (23)

y

Define the subset X ⊆ E as

X :=
{

(q, δ) ∈ E : q1 + δ0 + δ1 = 1, δ1ν + q1 − q2 ≤ λ
}
,

and denote by 1X (q(s), δ(s)) the indicator of the event that
(q(s), δ(s)) ∈ X . Observe that q1(t) can be written as

q1(t) = q1(u) +
∫ t

u

δ1(s)ν1X (q(s), δ(s))ds

+
∫ t

u

[λ− q1(s) + q2(s)]1Xc (q(s), δ(s))ds.
(24)

The above representation leads to Facts 2, 3 stated below.
Fact 2.

q1(t) ≥ q1(u) +
∫ t

u

[λ− q1(s) + q2(s)]1Xc (q(s), δ(s))ds.

Fact 3.

q1(t) ≥ q1(u) + ν

∫ t

u

δ1(s)ds− (ν + 1)
∫ t

u

1Xc (q(s), δ(s))ds.

Fact 4. For all sufficiently small ε > 0,

ξ(t) ≥
∫ t

0

(
λ− εν

2 − q1(s)
)

ds−
∫ t

0
1[u(s)>0]ds

−
∫ t

0
1[δ1(s)>ε/2]ds.

Proof. Observe that

ξ(t) =
∫ t

0
λ(1− p0(q(s), δ(s), λ))1[δ0(s)>0]ds

≥
∫ t

0
λ(1− p0(q(s), δ(s), λ))1[δ0(s)>0,u(s)=0,δ1(s)≤ε/2]ds,

and on the set {s : δ0(s) > 0, u(s) = 0, δ1(s) ≤ ε/2} we have
p0(q(s), δ(s), λ) ≤ λ−1(εν/2 + q1(s)). Therefore,

ξ(t) ≥
∫ t

0

(
λ− εν

2 − q1(s)
)
1[δ0(s)>0,u(s)=0,δ1(s)≤ε/2]ds.

Moreover, if δ0(s) = 0, u(s) = 0, δ1(s) ≤ ε/2, then q1(s) ≥ 1−
ε/2, and for ε < 2(1−λ)/[1−ν]+ we have λ−εν/2−q1(s) < 0.
Thus we finally obtain that

ξ(t) ≥
∫ t

0

(
λ− εν

2 − q1(s)
)
1[u(s)=0,δ1(s)≤ε/2]ds

≥
∫ t

0

(
λ− εν

2 − q1(s)
)

ds−
∫ t

0
1[u(s)>0]ds

−
∫ t

0
1[δ1(s)>ε/2]ds,

where the second inequality follows from λ− εν/2− q1(s) ≤
λ < 1. y

In order to break down the proof of Lemma B.1, we will
establish the following two claims.

Claim 1. lim inft→∞ q1(t) ≥ λ.

Proof. Assume the contrary. Using Fact 1, q1(t) is non-
decreasing when q1(t) ≤ λ, and thus there must exist an
ε > 0, such that

q1(t) ≤ λ− εν, ∀ t ≥ 0. (25)
By Fact 2 there exist positive constants K1,K2 (possibly
depending on ε) such that ∀ t ≥ 0∫ t

0
1Xc (q(s), δ(s))ds < K1 =⇒

∫ t

0
1[u(s)>0]ds < K1,

(26)
and by Fact 3, and (26)∫ t

0
δ1(s)ds < K1 =⇒

∫ t

0
1[δ1(s)> ε

2 ]ds < K2. (27)

Note that since δ1(t) = δ1(0) + ξ(t) − ν
∫ t

0 δ1(s)ds, it must
be the case that lim supt→∞ ξ(t) < ∞. On the other hand,
Fact 4, together with (26), and (27), implies that ξ(t)→∞
as t→∞, which leads to a contradiction. y

Claim 2. lim supt→∞ q1(t) ≤ λ.

Proof. Suppose not, i.e., lim supt→∞ q1(t) = λ + ε for
some ε > 0. Because q1(t) is non-decreasing by Fact 1 when
q1(t) ≤ λ, there must exist a t0 such that q1(t) ≥ λ ∀ t ≥ t0.
In that case,

B∑
i=1

qi(t)

=
B∑
i=1

qi(t0) + λ

∫ t

t0

B∑
i=1

pi−1(q(s), δ(s), λ)ds−
∫ t

t0

q1(s)ds

≤
B∑
i=1

qi(t0)−
∫ t

t0

[q1(s)− λ]+ds,

and thus,∫ t

t0

[q1(s)− λ]+ds ≤
B∑
i=1

qi(t)−
B∑
i=1

qi(t0) <∞.

This provides a contradiction with lim supt→∞ q1(t) = λ+ ε,
since the rate of decrease of q1(t) is at most 1. y

�

Lemma B.2. q2(t)→ 0 as t→∞.

Proof. Lemma B.1 implies that for any M, ε > 0, there
exists T (ε,M) <∞, such that |q1(t)− λ| ≤ ε/M for all t ≥
T (ε,M). We will show that lim supt→∞ q2(t) = 0. Suppose
not, i.e., q2(T ) > ε > 0 for some T > T (ε,M). Since the
rate of decrease of q2(t) is at most q2(t), it follows that
q2(t) ≥ 9ε/16 for all t ∈ [T, T + 1/2], and hence

q1(t)− q2(t) ≤ λ+ ε

M
− 9ε

16 ≤ λ−
ε

2 , (28)
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for M ≥ 16. Due to Fact 2,

q1

(
T + 1

2

)
− q1(T ) ≥ ε

2

∫ T+ 1
2

T

1Xc (q(s), δ(s))ds.

Since
q1

(
T + 1

2

)
− q1(T ) ≤ 2ε

M
,

it follows that∫ T+ 1
2

T

1Xc (q(s), δ(s))ds ≤ 4
M
. (29)

Also, Fact 3 yields

q1

(
T + 1

2

)
− q1(T ) ≥ ν

∫ T+ 1
2

T

δ1(s)ds− 4ν(ν + 1)
M

.

Again since
q1

(
T + 1

2

)
− q1(T ) ≤ 2ε

M
,

it follows that

ν

∫ T+ 1
2

T

δ1(s)ds ≤ 4ν(ν + 1) + 2ε
M

≤ 5ν(ν + 1)
M

, (30)

for ε sufficiently smaller than ν. We will now proceed to show
that (30) yields a contradiction. Notice that

δ1(t) = δ1(T ) +
∫ t

T

λ(1− p0(q(s), δ(s), λ))1[δ0(s)>0]ds

− ν
∫ t

T

δ1(s)ds

≥
∫ t

T

(λ− q1(s) + q2(s))1Xc (q(s), δ(s))ds1[δ0(s)>0]ds

− 2ν
∫ t

T

δ1(s)ds.

Using (28), we obtain for all t ∈ [T, T + 1/2],

δ1(t) ≥ −2ν
∫ t

T

δ1(s)ds+ ε

2

∫ t

T

1X (q(s), δ(s))1[δ0(s)>0]ds

≥ −2ν
∫ t

T

δ1(s)ds+ (t− T ) ε2 −
ε

2

∫ t

T

1Xc (q(s), δ(s))ds

− ε

2

∫ t

T

1[u(s)=0,δ0(s)=0]ds

≥ −2ν
∫ T+ 1

2

T

δ1(s)ds− ε

2

∫ T+ 1
2

T

1Xc (q(s), δ(s))ds

+ (t− T ) ε2 −
ε

2

∫ T+ 1
2

T

1[u(s)=0,δ0(s)=0]ds,

and using (29) and (30), it follows that

δ1(t) ≥ −10ν(ν + 1)
M

− 2ε
M

+ (t− T ) ε2

− ε

2

∫ T+ 1
2

T

1[δ1(s)≥(1−λ−ε/M)]ds

≥ ε

16 for all t ∈
[
T + 1

4 , T + 1
2

]
,

for M sufficiently large, and observing that due to (30),∫ T+ 1
2

T

1[δ1(s)≥(1−λ−ε/M)]ds ≤
5(ν + 1)

M(1− λ− ε
M

) ≤
10(ν + 1)
M(1− λ) ,

for ε small enough. �

Since q1(t)−q2(t)→ λ and q2(t)→ 0, as t→∞, it follows
from (23) that p0(q(t), δ(t), λ) → 1 as t → ∞. Also, an
application of Gronwall’s inequality to

δ1(t) = δ1(0) +
∫ t

o

λ(1− p0(q(s), δ(s), λ))ds−
∫ t

0
δ1(s)νds,

yields δ1(t) → 0 as t → ∞. Consequently, δ0(t) → 1 − λ as
t→∞. This completes the proof of Proposition 3.2. �

Proof of Proposition 3.3. Note that the proof of the
proposition follows from [5, Corollary 2]. The arguments are
sketched briefly for completeness.

Observe that πN is defined on E, and E is a compact set.
Prohorov’s theorem implies that πN is relatively compact,
and hence, has a convergent subsequence. Let {πNn}n≥1 be
a convergent subsequence, with {Nn}n≥1 ⊆ N, such that
πNn

d−→ π̂ as n → ∞. We will show that π̂ is unique and
equals the measure π.

Notice that if (qNn(0), δNn(0)) ∼ πNn , then we know
(qNn(t), δNn(t)) ∼ πNn for all t ≥ 0. Also, the process
(qNn (t), δNn (t))t≥0 converges weakly to {(q(t), δ(t))}t≥0, and
πNn

d−→ π̂ as n→∞. Thus, π̂ is an invariant distribution of
the deterministic process {(q(t), δ(t))}t≥0. This in conjunc-
tion with the global stability in Proposition 3.2 implies that
π̂ must be the fixed point of the fluid limit. Since the latter
fixed point is unique, we have shown the convergence of the
stationary measure. �
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