
 

Integrated maintenance and spare part optimization for
moving assets
Citation for published version (APA):
Eruguz, A. S., Tan, T., & van Houtum, G. J. (2018). Integrated maintenance and spare part optimization for
moving assets. IISE Transactions, 50(3), 230-245. https://doi.org/10.1080/24725854.2017.1312037

DOI:
10.1080/24725854.2017.1312037

Document status and date:
Published: 04/03/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1080/24725854.2017.1312037
https://doi.org/10.1080/24725854.2017.1312037
https://research.tue.nl/en/publications/ea13d9e1-ad75-4b47-bada-25b88a9d0a46


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uiie21

IISE Transactions

ISSN: 2472-5854 (Print) 2472-5862 (Online) Journal homepage: http://www.tandfonline.com/loi/uiie21

Integrated maintenance and spare part
optimization for moving assets

Ayse Sena Eruguz, Tarkan Tan & Geert-Jan van Houtum

To cite this article: Ayse Sena Eruguz, Tarkan Tan & Geert-Jan van Houtum (2018) Integrated
maintenance and spare part optimization for moving assets, IISE Transactions, 50:3, 230-245, DOI:
10.1080/24725854.2017.1312037

To link to this article:  https://doi.org/10.1080/24725854.2017.1312037

© 2018 The Author(s). Published with
license by Taylor & Francis© Ayse Sena
Eruguz, Tarkan Tan and Geert-Jan van
Houtum
Accepted author version posted online: 12
Apr 2017.
Published online: 21 Jun 2017.

Submit your article to this journal 

Article views: 429

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=uiie21
http://www.tandfonline.com/loi/uiie21
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2017.1312037
https://doi.org/10.1080/24725854.2017.1312037
http://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/24725854.2017.1312037
http://www.tandfonline.com/doi/mlt/10.1080/24725854.2017.1312037
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2017.1312037&domain=pdf&date_stamp=2017-04-12
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2017.1312037&domain=pdf&date_stamp=2017-04-12


IISE TRANSACTIONS
, VOL. , NO. , –
https://doi.org/./..

Integrated maintenance and spare part optimization for moving assets

Ayse Sena Eruguz, Tarkan Tan and Geert-Jan van Houtum

School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

ARTICLE HISTORY
Received  April 
Accepted  March 

KEYWORDS
Maintenance; replacement;
spare parts; moving assets;
inventory; maritime;
condition-based
maintenance

ABSTRACT
Weconsider an integratedmaintenanceand sparepart optimizationproblem for a single critical component
of a moving asset for which the degradation level is observable. Degradation is modeled as a function of
the current operating mode, mostly dictated by the actual location of the moving asset. The spare part
is stocked at the home base that the moving asset eventually visits. Alternatively, the spare part can be
stocked on-board the moving asset to prevent costly expedited deliveries. The costs associated with spare
part deliveries and part replacements depend on the operating mode. Our objective is to minimize the
expected total discounted cost of spare part deliveries, part replacements, and inventory holding over an
infinite planning horizon. We formulate the problem as a Markov decision process and characterize the
structure of the optimal policy, which is shown to be a bi-threshold policy in each operating mode. Our
numerical experiments show that the cost savings obtained by the integrated optimization of spare part
inventory and part replacement decisions are significant. We also demonstrate the value of the integrated
approach in a case study from the maritime sector.

1. Introduction

Maintenance and spare parts holding costs are known to
be significant contributors to the overall operating costs for
many moving assets, such as maritime assets (e.g., ships, ves-
sels, submarines), aircraft, commercial vehicles (e.g., trucks,
buses, trains), and military equipment (e.g., frigates, strike-
fighters). For maritime assets, maintenance activities can con-
stitute between 25 and 35% of the operating costs (Turan
et al., 2009). For commercial airlines, maintenance accounts for
around 10% of an airline’s total costs (Lam, 1995). The total
spare parts inventory in the aviation industry was estimated
to be 45 billion U.S. dollars in 1995 (Flint, 1995). In addition
to the significant costs associated with maintenance and spare
parts inventory, unexpected downtimes can lead to a signifi-
cant loss of revenue and can affect health, safety, and the envi-
ronment. For instance, daily shipping operation of a tanker can
yield as much as $20 500, which would be lost during downtime
(United Nations Conference on Trade and Development, 2013).
Downtime of naval ships can seriously affect national security.
For such assets, maintenance and spare parts optimization is
essential to decrease overall operating costs and to increase asset
availability.

A component is called critical when the consequences associ-
ated with its failure are significant. In practice, such components
are usually maintained by the so-called repair-by-replacement
strategy; i.e., the component is removed from the asset and
replaced by a new or as-good-as-new spare part. This reduces
the maintenance execution time and the resulting downtime
(Van Houtum and Kranenburg, 2015). In this setting, the avail-
ability of spare parts is crucial, as emergency shipments and the
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downtime associated with waiting for the spare parts may be
very costly. Traditionally,maintenance and spare parts inventory
decisions are made separately. However, a separate optimization
may lead to poor solutions, as it ignores the interdependencies
between the two decisions. In general, integrated optimization
provides remarkable improvement in terms of cost and availabil-
ity comparedwith separate optimizations (Kabir andAl-Olayan,
1996; van Horenbeek et al., 2013).

For many technical systems, it is possible to measure param-
eters of the critical components that reveal the actual degra-
dation behavior (van Houtum and Kranenburg, 2015). This
enables the prevention of failures by means of Condition-Based
Maintenance (CBM); i.e., by executing a preventive replace-
ment at the moment that a pre-specified degradation thresh-
old is exceeded. In practice, measurements can be performed
via periodic inspections or advanced sensor technologies. Phys-
ical degradation models investigate the quantitative relation
between degradation, usage, and environment (see, e.g., Tinga
(2010) and Tinga and Janssen (2013)). In this article, we con-
sider a critical component of amoving asset for which the degra-
dation level is observable and can be modeled as a function of
the current operatingmode.Operatingmodes represent the cur-
rent location of the moving asset, how the component is used,
and under what environmental conditions it operates. For many
moving assets, the sequence and duration of operating modes
are more realistically modeled as random variables (see, e.g.,
Alam and Al-Saggaf (1986) and Çekyay and Özekici (2015)).

Under the commonly used repair-by-replacement strategy,
the spare part must be on-board the moving asset to allow
replacement of the component. In practice, the spare part is
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usually available at a fixed location in the home base, which is
taken to be a location that the moving asset is expected to even-
tually visit. Depending on the application, the home base can be
a harbor, hangar, or garage. Typically, the cost associated with
delivering a spare part is negligible when the moving asset is
already in the home base. However, the cost of the delivery of a
spare part can become significant when the asset is operating at a
remote location. Such a delivery is made bymeans of an aircraft,
helicopter, boat, dedicated vehicle, etc. To prevent expensive
deliveries, the spare part can be stocked on-board the moving
asset. A holding cost is incurred if the spare part is kept on-board
the asset. This holding cost can become relatively high, due to
several factors including the spare part’s unit-value, the risk of
obsolescence, and limited space availability on-board the asset.

The work reported in this article is motivated by our col-
laboration with Fugro Marine Services (FMS). Fugro is the
world’s largest integrator of geotechnical, survey, subsea, and
geosciences services. A major part of its turnover relates to
exploration of the seafloor. For these operations, survey ves-
sels are employed. The availability of these vessels is of major
importance, as the activities performed generate significant rev-
enues. FMS is Fugro’s in-house vessel management company.
FMS manages maintenance-related activities on survey vessels
and other types of vessels.We considered a critical component of
one of these vessels in the case study presented in Section 6. FMS
considered the component under consideration to be reliable,
based on the specifications of the Original Equipment Manu-
facturer (OEM). Thus, the replacement of this component was
planned to be performed on a time-based schedule and it was
decided to not to hold the spare part on-board the vessel. How-
ever, the component failed before its preventive replacement
time while the vessel was operating at a remote location. The
expedited delivery of the spare part incured an approximate cost
of €10 000. In addition, the downtime cost due to a 1-day delay
in operations, which significantly varied over time, was within
the range €20 000–€50 000 in this case. This situation could have
been avoided if the spare part of this relatively cheap component
was held on-board the vessel. On the other hand, it was neither
realistic nor economic to always hold spare parts on-board a ves-
sel. First of all, the available space on-board a vessel is usually
very limited. Some of the critical components are very expen-
sive, resulting in significant holding costs. This shows that there
is a need for a structured approach to make the decisions on
when to put a spare part on-board a vessel and when to replace
the component just-in-time. Such an approach should take into
account the randomness in the sequence and the duration of
operatingmodes, as well as the relation among operatingmodes,
component degradation, and cost parameters. To the best of our
knowledge, this problem has not been studied in the literature.

We formulate the above-presented problemas aMarkov deci-
sion process model, in which the objective is to minimize the
expected total discounted cost. Given that many moving assets
have very long service times, we develop an infinite-horizon
model. We characterize the structure of the optimal policy,
which is found to be a bi-threshold policy in each operating
mode.Moreover, we provide insights regarding the performance
of the optimal policy comparedwith four benchmark policies. In
these benchmark policies, replacement decisions are optimized
and spare part inventory decisions are pre-defined as follows:
never keep a spare part on-board a vessel or always keep a spare

part on-board a vessel. Our numerical experiments show that,
compared with the considered benchmark policies, the cost sav-
ings obtained by the optimal policy can be significant.

This article is organized as follows. Section 2 presents the
related literature. Section 3 formulates the problem as a Markov
decision process model. Section 4 characterizes the structure
of the optimal integrated policy. Section 5 provides numeri-
cal experiments and several insights regarding the performance
of the optimal policy compared with four benchmark policies.
Section 6 presents a case study for demonstration purposes.
Section 7 draws some conclusions and suggests potential future
research directions.

2. Literature review

This article relates to threemain research streams, namely, CBM
optimization for components subject toMarkovian degradation,
maintenance optimization of mission-based systems, and inte-
grated maintenance and spare parts inventory optimization.

A large body of the CBM literature models degradation
as a Markov process (Elwany et al., 2011). The earliest and
basic replacement models for components subject toMarkovian
degradation can be found in Kolesar (1966), Derman (1970),
and Kawai et al. (2002). For these models, it is shown that under
some monotonicity assumptions the optimal replacement pol-
icy that minimizes the expected total discounted cost in an infi-
nite time horizon is a threshold-type policy. This means that
there exists a threshold with respect to the degradation level
above which the optimal decision is to replace the component
and below which the optimal decision is to do nothing. Over
the last decades, the structure of optimal replacement policies
have been investigated in different problem settings (see, e.g.,
Makis and Jiang (2003), Kurt and Kharoufeh (2010); Elwany
et al. (2011)). Çekyay et al. (2011) reviewed CBM models with
Markovian degradation, for which threshold-type policies are
optimal. They showed that these policies are not necessarily
optimal in a variety of cases and the optimal policy may have
a rather complex structure.

There is a vast literature on systems performing missions
that are composed of different phases or stages. In the literature,
these systems are called phased-mission systems or mission-
based systems. These systems are analogous to those that are
subject to different operatingmodes andmission environments.
Many papers have focused on reliability and availability analysis
for such systems (see, e.g., Esary and Ziehms (1975), Kim
and Park (1994), Mura and Bondavalli (1999), and Kharoufeh
et al. (2010)). To the best of our knowledge, maintenance
and replacement models for mission-based systems and for
systems subject to randomly varying environments are limited.
Waldmann (1983) investigated the structure of an optimal
replacement policy for a system subject to stochastic degrada-
tion in a random environment. The author provided sufficient
conditions to establish the optimality of threshold-type policies.
Özekici (1995) modeled the environment using a semi-Markov
process and used the intrinsic aging concept for degradation.
The intrinsic age represents the cumulative hazard accumu-
lated over time during the operation of the component in the
randomly varying environment. Under increasing failure rate
distribution functions in all environments and reasonable cost
structures, the author showed that the threshold-type intrinsic
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age replacement and repair policies are optimal. In a similar
setting, Zhang et al. (2013) and Çekyay and Özekici (2015)
provided extensions to deal with the multi-component case.
Ulukus et al. (2012) modeled the environment as a finite-state
Markov process. They assumed that the system accumulates
degradation at a linear rate whose value depends on the environ-
ment. They showed that there exists an optimal threshold-type
replacement policy for each environment. Considering similar
degradation dynamics, Flory et al. (2015) extended the work
of Ulukus et al. (2012) to partially observable environments.
Çekyay andÖzekici (2012) defined both themission process and
the degradation process as finite-state Markov processes where
the generator of the degradation process depends on the phases
of the mission. They discussed optimal repair and replacement
problems and characterized the optimal policies under some
monotonicity assumptions. In this article, our assumptions
regarding mission and degradation processes are similar. The
mission process (operating modes) is described as a finite-state
Markov process. The degradation process of the component is
defined by another finite-stateMarkov process and ismodulated
by the mission process. Different from the existing papers in
this research stream, we investigate an integrated problem by
taking the spare part inventory decision into account.

In the last decades, several integrated maintenance and spare
parts inventory optimization models have been developed.
Many papers in this research stream rely on the assumption
that components’ lifetime/reliability distributions are given.
Armstrong and Atkins (1996) considered a single component
subject to age-based replacement. They investigated the optimal
combination of replacement and ordering time that minimizes
the total replacement and inventory costs. Armstrong and
Atkins (1998) provided several extensions to the previous work,
generalizing the cost terms and the replenishment time of spare
parts. Kabir and Al-Olayan (1996) proposed a policy for inte-
grated optimization of age-based replacement and spare parts
ordering. They considered a number of identical components.
Their simulationmodel reported a remarkable improvement on
the total cost compared with separate optimization. To the best
of our knowledge, only a few articles are available for compo-
nents subject to CBM. Wang et al. (2008) considered a number
of identical components and developed a condition-based
replacement and spare parts ordering policy. They modeled the
degradation of components as discrete-time Markov chains.
They used Monte Carlo simulation to evaluate the performance
of the proposed policy. Wang et al. (2009) combined Monte
Carlo simulation and a genetic algorithm to determine the opti-
mal parameters of the condition-based replacement and spare
parts ordering policy. Elwany and Gebraeel (2008) enabled
the use of sensor information and proposed a method that
dynamically updates replacement and ordering decisions based
on the physical condition of the equipment. They highlighted
the advantages of using the proposed methodology compared
with that of Armstrong and Atkins (1996). We refer the reader
to van Horenbeek et al. (2013) for a complete review of this
research stream. Unlike our work, existing research does not
investigate an integrated maintenance and inventory optimiza-
tion problem from a moving asset perspective. To the best of
our knowledge, none of these models incorporates the relation
among operating modes, component degradation, and cost
parameters.

3. Markov decision process formulation

In this section, we present theMarkov decision process formula-
tion of our integrated maintenance and spare part optimization
problem.

Let I be a non-empty finite set representing different oper-
ating modes of the moving asset. Operating modes dictate the
current location of the moving asset, how the component is
used, and under which environmental conditions it operates.
For example, operating modes can be defined as “wait in the
home base,” “transit to location l,” “perform mission m in envi-
ronment e,” etc.We assume that the operation process evolves as
a Continuous-Time Markov Chain (CTMC), X ≡ {Xt , t ≥ 0},
on the discrete state space I. Therefore, the duration of operating
mode i ∈ I is assumed to be exponentially distributed with rate
μi. The probability that the system jumps from operating mode
i ∈ I to operating mode k ∈ I is denoted by Q(i, k). Generally,
Q(i, i) = 0 for all i ∈ I, but technically one can allow Q(i, i) to
be larger than zero. As further demonstrated in Section 6, the
operation process of a real-life system can be well represented
by such a Markov process.

The degradation of the component also evolves as a CTMC,
Y ≡ {Yt , t ≥ 0} on a discrete state space J ≡ {0, 1, . . . , F}, rep-
resenting degradation levels from perfect (0) to failure state (F),
where F > 1. Transitions between degradation levels are from j
to j + 1 for j ∈ Ĵ, where Ĵ ≡ J\{F}. The degradation process is
modulated by the operation process; i.e., transition rate λi j for
the transition from j to j + 1 depends on the current operating
mode i ∈ I. We note that the number of degradation levels and
operating modes can be arbitrarily large. Therefore, this consti-
tutes a fairly general degradation process.

We assume that at most one spare part can be stocked
on-board the moving asset. This assumption is not unrealistic
considering the limited space availability on-board the vessel.
Moreover, the component lifetime is usually much higher
than the time between two successive home base visits; i.e., in
practice, it is not likely to observe two or more failures during
one mission. We denote the number of spare parts on-board
the vessel by u ∈ U , whereU ≡ {0, 1}.

We define the state of the Markov decision process as
(i, j, u) ∈ I × J ×U , a realization of the joint process (X,Y,Z)
where X denotes the current operating mode, Y is the current
level of degradation, andZ is the number of spare parts on-board
the vessel. We restrict our attention to a model where decisions
are only made at transition instants. A decision maker observes
the system at each decision epoch (i.e., each time instant at
which a transition occurs) and makes decision a ∈ {0, 1, 2},
which can be one of the following:

0: Do nothing
1: Deliver a spare part
2: Replace the part
The set of possible actions A(i, j, u) in state (i, j, u) ∈ I ×

J ×U is defined as

A(i, j, u) =

⎧⎪⎪⎨
⎪⎪⎩

{0, 1} if i ∈ I, j ∈ Ĵ, u = 0
{0, 2} if i ∈ I, j ∈ Ĵ, u = 1
{1} if i ∈ I, j = F, u = 0
{2} if i ∈ I, j = F, u = 1

.

At a decision epoch, action 0 (do nothing) can be chosen if
the component has not failed. Action 1 (spare part delivery) is
possible if there is no spare part on-board the vessel. Action 2
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(part replacement) can be performed only if the spare part is
already on-board the vessel.

We assume that a part replacement or a spare part deliv-
ery can be scheduled to occur immediately and instantaneously.
Therefore, action 1 brings the system from state (i, j, 0) to state
(i, j, 1) immediately. Similarly, action 2 brings the system from
state (i, j, 1) to state (i, 0, 0) immediately. After each transition,
a new action can be taken. That is, a spare part delivery can be
immediately followed by a part replacement and vice versa. For
example, if the component failed when the spare part was not
on-board the vessel, a spare part delivery and a part replacement
should take place consecutively, bringing the system from state
(i, F, 0) to state (i, F, 1) and then from state (i, F, 1) to state
(i, 0, 0) instantaneously. In this case, both actions take place at
the same time instant.

The assumption of instantaneous replacements and deliver-
ies is reasonable when the duration of these actions is much
shorter than the mean component lifetime. In practice, even
short downtimes can lead to significant costs. In this model, the
downtime is translated into cost parameters. We distinguish a
part replacement cost and a spare part delivery cost. At the time
that a preventive replacement occurs in operating mode i ∈ I,
the replacement cost cpri > 0 is charged. If the system is found
to be failed, then a corrective replacement must be performed
at a corrective replacement cost ccri , where ccri ≥ cpri for i ∈ I.
The replacement cost parameters cpri and ccri include the cost of
labor and the cost of downtime due to preventive and corrective
replacement actions, respectively.

For a spare part delivery that takes place when the system
is in operating mode i ∈ I, a preventive spare part delivery cost
cpdi ≥ 0 is incurred. The cost of a preventive delivery includes
the price of the spare part and the transportation cost. The trans-
portation cost depends on the location of the moving asset; i.e.,
on the operating mode. We assume that a spare part is always
available at the home base. By definition, the moving asset even-
tually visits the home base.When themoving asset is at its home
base, the spare part can be directly put on board with a negligi-
ble transportation cost (regular delivery). If the moving asset is
at a remote location at the moment a spare part is requested, the
delivery should bemade bymeans of an aircraft, helicopter, boat,
dedicated vehicle, etc. (expedited delivery).We translate the dif-
ference between regular and expedited deliveries into cost terms,
by differentiating the spare part delivery cost with respect to
operatingmodes. In principle, preventive deliveries do not cause
downtime if the component has not failed. If the component
has failed, additional costs may be incurred, due to the cost of
an emergency shipment and the cost of downtime while waiting
for the spare part. To represent these additional costs, we intro-
duce a corrective spare part delivery cost ccdi , where ccdi ≥ cpdi
for i ∈ I. Moreover, holding the spare part on-board the moving
asset incurs a holding cost h > 0 per time unit.

We apply uniformization to convert the continuous-time
Markov decision problem into an equivalent discrete-time
Markov decision problem. We add fictitious transitions from
state (i, j, u) ∈ I × Ĵ ×U to itself, ensuring that the total rate
out of a state is equal for all states (i, j, u) ∈ I × Ĵ ×U . The
latter refers to the so-called uniformization rate (see Alagoz
and Ayvaci (2010)). We select a positive uniformization rate

v such that v = max{vi j|i ∈ I, j ∈ Ĵ} where vi j = μi + λi j. In
our Markov decision model, how long the system stays in a
state depends on the action taken. Under uniformization, if
action 0 is taken, the next transition (and decision epoch) is
after an exponentially distributed time with mean 1/v in each
state (i, j, u) ∈ I × Ĵ ×U . In this case, one of the following
transitions can occur at the subsequent transition instant: (i)
the system can jump from degradation level j ∈ Ĵ to j + 1
with probability λi j/v ; (ii) the system can jump from operat-
ing mode i ∈ I to operating mode k ∈ I, k �= i with probabil-
ity μiQ(i, k)/v ; or (iii) the system can occupy the same state
after transition with probability 1 − vi j/v . If action 1 or 2 is
taken, the transition to the subsequent state is instantaneous.
Due to the latter, our formulation is slightly different from the
standard Markov decision process formulation in Puterman
(1994), in which all transitions are as described for action 0.
For illustration purposes, we depict an exemplary process in
Appendix A.

We assume a continuous discount rate α > 0 so that any cost
incurred at some future time t is discounted by a factor e−αt .
Hence, the discount factor in the uniformized process can be
defined as

β =
∫ ∞

0
ve−(v+α)τdτ = v

v + α
.

The discounted holding cost of keeping a spare part on board
during t time units is

∫ t

0
he−ατdτ = h

α
(1 − e−αt ).

If there is a spare part on-board the vessel and action 0 is
taken, then the expected discounted holding cost between two
decision epochs in the uniformized process is∫ ∞

0

h
α
(1 − e−αt )ve−vtdt = β

v
h.

The expected total discounted cost between two decision
epochs in the uniformized process r(i, j, u, a) if action a is taken
in state (i, j, u) is equal to

r(i, j, u, a) = H(i, j, u, a)+C(i, j, u, a),

where H(i, j, u, a) is the lump sum equivalent of the contin-
uous cost and C(i, j, u, a) is the lump sum cost of action a ∈
A(i, j, u) in state (i, j, u):

H(i, j, u, a) =
{
β

v
h if i ∈ I, j ∈ Ĵ, u = 1, a = 0

0 otherwise
,

C(i, j, u, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cpdi if i ∈ I, j ∈ Ĵ, u = 0, a = 1
ccdi if i ∈ I, j = F, u = 0, a = 1

cpri if i ∈ I, j ∈ Ĵ, u = 1, a = 2
ccri if i ∈ I, j = F, u = 1, a = 2
0 otherwise

.
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We note that the uniformized process and the original
process have the same lump sum cost under instantaneous
transitions. Let V (i, j, u) be the value function representing
the minimum expected total discounted cost using the optimal
policy if the operating mode is i, the degradation level is j, and
the number of spare parts on-board the vessel is u. The opti-
mal replacement problem can be formulated by the following
dynamic programming equation:

V (i, j, u) = min
a∈A(i, j,u)

{r(i, j, u, a)+ �aV (i, j, u)}, (1)

where operators�0,�1, and�2 refer to the actions of doingnoth-
ing, a spare part delivery, and a part replacement, respectively:

�0V (i, j, u) = β

v

[ ∑
k∈I, k�=i

μiQ(i, k)V (k, j, u)+ λi jV (i, j + 1, u)

+ (v − vi j)V (i, j, u)
]

for i ∈ I, j ∈ Ĵ, u ∈ U, (2)

�1V (i, j, 0) = V (i, j, 1) for i ∈ I, j ∈ J (3)
�2V (i, j, 1) = V (i, 0, 0) for i ∈ I, j ∈ J. (4)

Equation (2)models possible future random events following
the decision to do nothing. It consists of three types of transi-
tions. The first one is the transition in operatingmodes, bringing
the system from state (i, j, u) to (k, j, u) where i, k ∈ I, i �= k.
The second one represents the component’s degradation, bring-
ing the system from state (i, j, u) to (i, j + 1, u) where j ∈ Ĵ.
The third one represents the transitions from state (i, j, u) to
itself, which is a consequence of the uniformization procedure.
Equation (3) corresponds to the decision to deliver a spare part,
in which case the system jumps immediately from state (i, j, 0)
to state (i, j, 1). Finally, Equation (4) represents the replacement
decision that resets the number of spare parts on-board the ves-
sel and the degradation level to zero. Under Equations (3) and
(4), at each decision epoch, a part replacement can immedi-
ately follow a spare part delivery and vice versa. We note that the
state space of the model is discrete, the action space A(i, j, u) ∈
{0, 1, 2} is finite for each (i, j, u) ∈ I × J ×U . The model satis-
fies the conditions of Theorem6.2.10 in Puterman (1994), which
establishes the existence of an optimal deterministic stationary
policy and the convergence of the value iteration algorithm to
the optimal value. A value iteration algorithm that is designed
to deal with immediate and instantaneous actions is given in
Appendix B.

4. Optimal policy

In this section, we analyze the structure of the optimal policy.
We start by stating three theorems that establish monotonicity
results related to the component’s degradation level. From this,
we derive the structure of the optimal policy, which is an operat-
ing mode–dependent bi-threshold policy. The proofs of the the-
orems are given in Appendices C to E.

Theorem 1. V (i, j, u) is non-decreasing in j ∈ J for each i ∈ I
and u ∈ U .

This theorem states the following. Consider two components
in operating mode i ∈ I while u ∈ U spare parts are on-board

the vessel. If the degradation level of the first component is
higher than the second one, then the minimum expected total
cost of the first component cannot be less than the minimum
expected total cost of the second component.

Theorem 2. V (i, j, u) is submodular in ( j, u) ∈ J ×U ; that is,

V (i, j, 1)−V (i, j, 0)−V (i, j − 1, 1)+V (i, j − 1, 0) ≤ 0
for each i ∈ I and j ∈ J\{0}.

In Theorem 2, we consider the difference between the two
cases: (i) there is a spare part on-board the vessel and (ii) there
is no spare part on-board the vessel. We show that in a certain
operatingmode, when a component’s degradation increases, the
increase in the minimum expected total cost in case (i) can-
not be greater than that of case (ii). In other words, if the spare
part is not on-board the vessel, the cost increase resulting from
the component’s degradation is higher compared with the case
where the spare part is on-board the vessel.

Theorem 3. In each i ∈ I, there exists an optimal part replace-
ment threshold ψ(i) ≤ F and an optimal spare part delivery
threshold ξ (i) ≤ F such that

a∗(i, j, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if j < ξ(i), u = 0
1 if j ≥ ξ (i), u = 0
0 if j < ψ(i), u = 1
2 if j ≥ ψ(i), u = 1

.

This theorem shows that the optimal policy is an operating
mode–dependent bi-threshold policy on the degradation level.

Remark 1. The spare part delivery threshold can be greater than
or equal to the part replacement threshold, which may seem
counterintuitive in the sense that one would expect a spare part
delivery to precede a part replacement in all operating modes.
This is because whether a replacement decision is made or not
depends on the number of spare parts on-board the vessel. If
there is no spare part on-board the vessel at a certain degrada-
tion level and operating mode, the additional cost of delivering
a spare part may not repay the risk of a failure. However, if there
is already a spare part on-board the vessel for the same degrada-
tion level and operating mode, it may be optimal to replace the
component. Appendix F provides an example supporting this
remark.

5. Numerical experiments

In this section, we execute numerical experiments in order to
test the performance of the optimal policy and to assess the value
of integrated spare part andmaintenance optimization.We com-
pare the optimal policy to four benchmark policies, in which
replacement decisions are not integrated with spare part opti-
mization. These policies simplify spare part inventory decisions
by “never” or “always” keeping the spare part stock on-board the
vessel. Replacement decisions are optimized in all benchmark
policies.

In the first benchmark policy, the spare part stock is never
kept on-board the vessel. That is, a spare part delivery is always
followed by a part replacement. In addition, preventive deliver-
ies are not allowed when themoving asset is away from its home
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Table . Operating mode transition probability matrix.

Q(i, k)    

 . . . .
 . . . .
 . . . .
 . . . .

Table . Operating mode transition rates.

Operatingmode transition
rate (per year):μi    

High    
Low    
Low in mission    

base. As a consequence, preventive part replacements can only
occur at the home base. We refer to this policy as never spare
part policy (NP). Denoting the home base by i = 0, spare part
delivery and part replacement thresholds in NP are such that
ξ (i) = ψ(i) = F for all i ∈ I\{0} and ξ (0) = ψ(0) ≤ F . The
second policy is similar to NP, the only difference being that
preventive deliveries are allowed when the moving asset is away
from the home base.We call this policy a never spare part policy
with preventive deliveries (NPP). In NPP, the spare part delivery
threshold becomes equal to the part replacement threshold in
each operating mode; i.e., ξ (i) = ψ(i) ≤ F for all i ∈ I. In the
third policy, the spare part is put on-board the vessel whenever
the asset is at its home base (if it is not already on-board). We
refer to this policy as always spare part policy (AP). In AP, pre-
ventive deliveries in operating modes other than the home base
are not allowed. That is, the spare part delivery threshold is zero
at the home base and is equal to the failure threshold in all other
operating modes; i.e., ξ (0) = 0 and ξ (i) = F for all i ∈ I\{0}.
Finally, we relax AP to allow preventive deliveries outside the
home base and call this policy as the always spare part policy
with preventive deliveries (APP). As such, APP enables more
than one preventive replacement in between home base visits.
In APP, ξ (0) = 0 and ξ (i) ≤ F for all i ∈ I\{0}. The setup of
the experiments is described in Section 5.1 and the results are
discussed in Section 5.2.

5.1. Setup

We consider a critical component with four operating states
I ≡ {0, 1, 2, 3}where 0 represents the home base of themoving

asset, 1 and 3 intermediate states, and 2 the mission state. Inter-
mediate states may correspond to transit states from the home
base to the mission site or vice versa. The operating mode tran-
sition probability matrix is defined as in Table 1, representing a
deterministic cyclic sequence of operating modes.

Three alternatives are considered regarding the operating
mode transition rates (see Table 2). Alternative 1 fits to a
commercial setting similar to the real-life case that we present
in Section 6. In that case, missions and home base visits have
short durations. Alternative 2 reflects our observations from
the defense industry (Navy ships) where mission durations and
home base visits are long. To enrich our comparative analysis,
we also consider Alternative 3, in which mission durations are
very long compared with home base visits.

Depending on the component, degradation can be uniform
in different operatingmodes, high duringmissions, or high dur-
ing home base visits. For example, power on/off switching has a
significant influence on degradation for some electronic com-
ponents; in this case, degradation rates may be higher at the
home base where the systems are often switched on/off. On
the other hand, if the degradation is linearly related to oper-
ating time and the component mostly operates during mis-
sions, the degradation would be higher in missions (cf. the
case study in Section 6). In these numerical experiments, we
consider 10 degradation levels J ≡ {0, 1, . . . , 9} and different
degradation profiles for each operating mode i ∈ I as given in
Table 3.

We take the same preventive replacement costs cpri =
€1000 for all operating modes i ∈ I. The cost parameters con-
sidered for corrective replacement ccri , transportation ctri , and
the spare part’s price csp are given in Table 4. We note that the
preventive spare part delivery cost consists of the cost of trans-
portation and the spare part’s price; i.e., cpdi = ctri + csp in oper-
ating mode i ∈ I. The additional spare part delivery cost in the
case of failure cadi is the difference between preventive and cor-
rective deliveries, reflecting a possible downtime cost or the
additional cost of an emergency shipment; i.e., ccdi = cpdi + cadi
in operating mode i ∈ I. Three alternatives are considered for
the annual holding cost rate hra, 10% (low), 25% (medium), and
50% (high). The annual holding cost is calculated bymultiplying
the annual holding cost rate with the cost of the spare part; i.e.,
h = hracsp. The annual discount rate of money is taken as 2%,
resulting in the continuous rate α = − ln(0.98). We note that
the considered cost ranges are based on our observations from
real-life cases that consist of both commercial (survey vessels)

Table . Degradation rates.

j
Degradation rates (per year): λi j i          

Uniform           —
          —
          —
          —

High in mission           —
          —
          —
          —

High in home base           —
          —
          —
          —
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Table . Cost parameters in thousand €.

Operatingmode i

Cost parameters (€ (x)) Alternatives    

Transportation cost (ctri ) Low  . . .
Medium    
High    

Additional delivery cost (cadi ) Yes    
No —

Corrective replacement cost (ccri ) Low .
Medium 
High 

Spare part’s price (csp) Low .
Medium 
High 

and defense equipment (the Navy ships) in the maritime sec-
tor. Overall, we obtain 36 × 2 = 1458 instances with the com-
bination of different alternatives considered. The value iteration
algorithm given in Appendix B was coded in C on a DELL com-
puter with Intel Core i5-4300U processor (1.90 – 2.50 GHz) and
4.00 GB RAM.

5.2. Results

We assess the value of the integrated approach by comparing
its performance with the four benchmark policies in terms of
average and maximum cost increase. The cost increase was
calculated by CS = (C −C∗)/C∗, where C is the expected
total discounted cost under the benchmark policy and C∗ is
the optimal cost obtained by our integrated maintenance and
spare part optimization model. In addition, we calculated the
percentage of instances for which the expected total discounted
cost obtained under the benchmark policy coincides with the
optimal cost (denoted by OC %).

Our numerical experiments show that the integrated
approach has significant value. As shown in Table 5, the
average cost increases under the benchmark policies NP,
NPP, AP, and APP are 78, 20, 30, and 27%, respectively. The
benchmark policies are not very likely to give the optimal
cost. The percentage of instances for which the optimal cost
coincides with the cost obtained by NP, NPP, AP, or APP is 5,
22, 2, or 12%, respectively. Not surprisingly, NP and AP are
outperformed by NPP and APP, respectively. The average cost
performance of NPP is found to be better than that of APP.
In addition, the never spare part policies (NP and NPP) are
more likely to give the optimal cost than the always spare part
policies (AP and APP) for most of the cases. Nevertheless,
the maximum cost increases in the never spare part poli-
cies are significantly higher compared with always spare part
policies, meaning that the latter are usually more robust. In
what follows, we summarize our observations regarding the
performance of benchmark policies in different parameter
settings.

Observation 1. Our numerical experiments show that APP
is near-optimal when the spare part is cheap. NPP is well-
performing if the spare part is expensive or the operating mode
transition rates are high or transportation costs are low. For
the above-mentioned cases, the associated benchmark policy
could be preferred, due to its practical benefits (e.g., ease of
implementation and communication of the spare part inventory
decisions). For all other cases, the optimal policy is advisable, as
the benchmark policies would lead to significant cost increases.

Observation 2. When the spare part is never stocked on-board
the vessel, relying on preventive replacements at the home base
significantly deteriorates the cost performance. The cost perfor-
mance ofNP is significantlyworse comparedwithNPPwhen the

Table . Cost increases under the benchmark policies compared to the optimal policy.

Never spare part policies Always spare part policies

NP NPP AP APP

Parameter Alternative
Avg.
(%)

Max.
(%)

OC
(%)

Avg.
(%)

Max.
(%)

OC
(%)

Avg.
(%)

Max.
(%)

OC
(%)

Avg.
(%)

Max.
(%)

OC
(%)

Degradation rates Uniform            
High in mission            
High in home
base

           

Operating mode
transition rates

High            
Low            
Low in mission            

Corrective
replacement
cost

Low            
Medium            
High            

Transportation cost Low            
Medium            
High            

Add. exp. cost in
case of failure

No            
Yes            

Spare part’s price Low            
Medium            
High            

Holding cost rate Low            
Medium            
High            

Overall
Avg./Max.
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transportation costs are low, corrective replacement and correc-
tive delivery costs are high, degradation is fast during missions,
and themoving asset is mostly performing amission. Moreover,
the cost performance of NP is non-monotonous with respect
to transportation costs. This can be explained as follows. When
transportation costs are low, preventive deliveries are favorable
away from the home base; i.e., we often observe that ξ (i) < F for
i ∈ I\{0} in the optimal policy. SinceNP is restricted to ξ (i) = F
for i ∈ I\{0} (i.e., no preventive spare part deliveries away from
the home base), it performs poorly for low transportation costs.
On the other hand, when transportation costs are high, preven-
tive deliveries away from the home base are much less favorable.
Nevertheless, NP becomes more expensive since the spare part
cannot be stocked on-board the vessel.

Observation 3. When the spare part is put on-board the mov-
ing asset whenever it is at its home base, the cost saving resulting
from preventive deliveries performed away from the home base
is usually very limited. This can be seen by looking at the dif-
ference between AP and APP in terms of average cost increase
(3%). Enabling more than one replacement in between home
base visits leads to significant cost benefits only under extreme
conditions (e.g., the combination of high corrective costs, low
price of the spare part, long mission durations, and high degra-
dation rates during missions).

Observation 4. The cost performance of all benchmark poli-
cies is very sensitive to the structure of the degradation rates.
The performance of never spare part policies deteriorates when
a component’s degradation is fast during missions. On the other
hand, the always spare part policies perform relatively poorly
when degradation is fast at the home base. For the uniform
degradation rates that we consider, the component’s lifetime is
longer compared with other alternatives. This is shown to cause
a very poor performance in always spare part policies.

Observation 5. Different from the always spare part policies,
the performance of the never spare part policies is very sensi-
tive to changes in the operating mode transition rates. This is
because, when the spare part is not stocked on-board the vessel,
the total cost of spare part deliveries is highly dependent on the
operation process. In particular, NPP performs very well when
the operatingmode transition rates are high; i.e., when the home
base visits are frequent. These cases greatly improve the average
performance of NPP.

Observation 6. The cost performances of NPP, AP, andAPP are
almost insensitive with respect to corrective replacement and
corrective delivery costs. This is due to the trade-off between
preventive and corrective costs being taken into account while
optimizing replacement thresholds ψ(i) for all i ∈ I. This does
not hold for NP, as preventive deliveries and replacements can-
not be performed away from the home base, by the definition
ξ (i) = ψ(i) = F for all i ∈ I\{0} under NP.
Observation 7. In our numerical experiments, the average
computation time of the optimal policy (47 seconds) is com-
parable to those of AP (31.1 seconds) and APP (30.8 seconds).
NP (1.8 seconds) and NPP (1.7 seconds) outperform the other
policies in terms of computation time. This is because the state
information that indicates the number of spare parts on-board

the vessel is irrelevant inNP andNPP, resulting in smaller action
and state spaces. The difference in terms of computation time
will become significant for problems with larger state spaces or
higher degradation/transition rates, due to the structure of the
solution algorithm (cf. Appendix B). For cases where one of the
benchmark policies is known to be well-performing (cf. Obser-
vation 1) and the optimal policy is computationally expensive,
a near-optimal solution can be found using that benchmark
policy.

6. Case study: Cooling fan of a survey vessel

In this section, real-life data acquired from FMS are utilized to
demonstrate our integrated maintenance and spare part opti-
mization model. As briefly introduced in Section 1, a major
part of Fugro’s business activity relates to exploration of the
seafloor, for which survey vessels are used. These vessels use
Diesel Electric Propulsion (DEP) systems that produce thrust
and create movement. The DEP system consists of several sub-
systems. The centrifugal cooling fan of the frequency convertor
is a part of the DEP system. The frequency converter gener-
ates heat as a consequence of its operation and needs to be
cooled down by a cooling fan. As the failure of the cooling
fan can lead to a fire, the DEP system needs to be stopped
if the cooling fan fails, which results in downtime. The cool-
ing fan can be easily replaced at all locations and a stock
of spare parts can be kept either on-shore or on-board the
vessel.

The daily reports of survey vessels contain information
about the duration of different states, such as length of stay in a
harbor, sailing to a location, performing operations, or waiting
for suitable weather conditions. For the case of unsuitable
weather conditions, the vessel sails to a location near the shore
and waits there for improved weather conditions. When this
happens the vessel sails back to its operation site. Otherwise, the
vessel returns back to the harbor. There also exist consecutive
missions; i.e., a mission can be followed by anothermission with
a transit phase in between. Based on the daily reports, we have
categorized the operating modes as follows: “harbor,” “transit-
to-mission,” “mission,” “transit-to-harbor,” and “weather.” We
have analyzed a data set of 3 years regarding the sequence of
these operating modes and their duration. As for the appropri-
ateness of theMarkovianmodel, we have also tested whether the
durations of operation modes are well represented by exponen-
tial distributions. For all operatingmodes, except for the transit-
to-mission state, the exponential distribution assumption is not
rejected by the Kolmogorov–Smirnov test at the 95% confidence
level. The corresponding transition rates and the transition
probability matrix are given in Table 6. Based on the failures
experienced by FMS, the failure of the ball bearing is found to be
the main reason for the failure of the cooling fan. According to
the OEM, the service life of the bearing system mainly depends
on the thermal load on the bearing; i.e., the thermal fatigue. The
OEM provides the L10 fatigue life of the bearing, which is the
time at which 10% of the bearings can be expected to have failed.
The OEM states that the L10 fatigue life is approximately 40 000
operating hours at an ambient temperature of 40°C. Based on
this information, FMS treats cooling fans as reliable and holds
no spare parts on-board a vessel. The current policy employed
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Table . Transition rates and the transition probability matrix.

Transitionmatrix:Q(i, k) Harbor Transit-to-mission Mission Transit-to-harbor Weather Transition/year:μi

Harbor . . . . . 
Transit-to-mission . . . . . 
Mission . . . . . 
Transit-to-harbor . . . . . 
Weather . . . . . 

Table . Degradation rates.

j
i          

Degradation rates (per year): λi j Harbor . . . . . . . . . .
Transit-to-mission . . . . . . . . . .
Mission . . . . . . . . . .
Transit-to-harbor . . . . . . . . . .
Weather . . . . . . . . . .

by FMS corresponds to a time-based block replacement policy.
The replacement is done during dry-dockmaintenance, which is
mandatory every 5 years. Corrective maintenance is performed
if the cooling fan has failed before dry-dock maintenance.

Over the last 3 years, FMS has observed significantly shorter
service lives. The earliest failures have occurredwithin the range
of 2000–5000 operating hours. In the pursuit of better represent-
ing the expected failure times of the ball bearing, we used the
fatigue life prediction model presented in Harris and Barnsby
(2001):

Lna = a1a2a3L10, (5)

where Lna is the adjusted bearing fatigue life and a1, a2, and a3
are life adjustment factors for the selected reliability level, mate-
rial, and operating conditions, respectively. As the vessel under
consideration always operates in the same geographical region,
environmental conditions were assumed to be similar for all the
different operating modes. After applying Equation (5) (based
on the qualitative information obtained fromFMS), the adjusted
fatigue life of the ball bearing was found to be 4300 operating
hours. The adjusted fatigue life is consistent with the failures that
FMS has observed.

The degradation process was modeled based on our service
life estimation in Equation (5) and considering how the cool-
ing fan is used in different operating modes. We note that the
cooling fan is in use only when the bow thruster is operating.
This is required to make the vessel more maneuverable in the
mission, harbor, and weather states. Using expert knowledge,
we have assessed the operating time of the cooling fan in differ-
ent operating modes. Assuming that the degradation is linearly
correlated with the operating time, the cooling fan is expected

Table . Cost parameters.

Operatingmode

Preventive
replacement
cost cpri

Corrective
replacement
cost ccri

Preventive
delivery cost

cpdi

Corrective
delivery cost

ccdi
(€) (€) (€) (€)

Harbor    
Transit-to-mission      
Mission      
Transit-to-harbor      
Weather    

Table . Cost performance of different policies.

Expected total discounted
cost over an infinite

horizon
Cost increase compared to

the optimal policy
(€) (%)

Current policy   —
Adjusted policy   
Never spare part policies   
(NP and NPP)

Always spare part policies   
(AP and APP)

Optimal policy   —

to degrade 17 times faster during missions than during har-
bor or weather states. In transit states, the degradation of the
cooling fan is assumed to be negligible, as it is never utilized.
Based on this information, we built an Erlangian degradation
process for each operatingmode where F = 10 and the rates out
of each state to the next degradation state are 0.41, 0.00, 7.13,
and 0.41 for harbor, transit, mission, and weather states, respec-
tively. By doing this, we divided the lifetime of the component
in 10 equal parts (see Table 7). There is a small amount of data
to statistically support the degradation process that we propose.
Nevertheless, this degradation process is found to reflect actual
operation based on the observations of FMS.

The cost parameters differ between operating modes and are
as listed in Table 8. The preventive replacement costs mainly
consist of the cost of labor. The preventive delivery costs include
the spare part’s price, which is €3600 and the cost of transporta-
tion, which is €10 000 (applied if the vessel is in transit or on a
mission). During a bad weather situation, the vessel takes shel-
ter near the shore, which results in lower transportation costs.
During a harbor stay, the cost of transportation is negligible.
The corrective replacement and delivery costs can be significant
during mission and transit-to-mission states, due to the result-
ing downtime. A corrective replacement was estimated to take
4 hours and an expedited delivery lasts almost 1 day. The down-
time cost associated with the delay in operations is an intangi-
ble parameter and can vary to a major extent over time. In this
case study, we took the downtime cost as €30 000 per day; how-
ever, this should not be taken as the actual cost incurred by FMS.
We refer the reader to Section 5 for the impact of the downtime
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Figure . Threshold values obtained for different policies.

cost on the solution performance (this is reflected in corrective
costs). In this case study, the holding cost rate was taken as 25%
per year and the continuous rate is set to α = − ln(0.98).

Considering the degradation information given in Table 7,
we adapted the replacement interval of the current policy.
Indeed, the initial service life of the component was overes-
timated and the current policy excludes the relation between
operatingmodes and degradation. The replacement interval was
adjusted using the bisection method. Under the adjusted policy,
the component is replaced at fixed time intervals of 1.5 years
instead of 5 years and the spare part is never stocked on-board
the vessel.

Table 9 summarizes the performance of different policies in
terms of cost. We note that the total cost obtained by the cur-
rent policy is coherent considering what FMS has faced for the
last few years. Assuming that the degradation model that we
have built reflects the degradation of the cooling fan, the current
policy performs significantly worse compared with the adjusted
policy. The adjusted policy is found to be 47% more expensive
than the optimal policy. This is mainly a result of the oper-
ating modes and condition information being neglected and
the replacements are made in a time-based manner under the
adjusted policy.

Figure 1 demonstrates the threshold values obtained by
the optimal policy and the benchmark policies. We observe
that the never spare part policies encourage early replace-
ments in the harbor to deal with the risk of corrective deliv-
eries/replacements in non-harbor states. On the other hand,
the always spare part policies postpone the replacement in the
operating modes in which the corrective replacement costs are
relatively low (harbor, transit-to-harbor, and weather states).
Moreover, NP and AP give the same solution as NPP and APP,
respectively. This is due to the fact that preventive delivery
costs are high in non-harbor states and the frequency of har-
bor visits is very high compared with the frequency of failures.
This makes preventive deliveries unfavorable in non-harbor
states.

We observe that the never spare part policies outperform the
always spare part policies. This is due to harbor visits being
very frequent, offering many opportunities for cheap preven-
tive replacements in the harbor. Nevertheless, compared with
the optimal policy, both simple policies are shown to be very
costly. Total cost increases of about 11 and 38% are observed
under the never spare part policies and the always spare part
policies, respectively. Even under very frequent harbor visits, it

is not optimal to “never” keep a stock of the spare part on-board
the vessel. The optimal policy provides a solution in which the
component is stocked on-board the vessel when the risk of fail-
ure is high, providing a trade-off between spare part deliveries,
part replacements, and holding costs.

7. Conclusions

In this article, we have considered an integrated maintenance
and spare part optimization problem for a single critical com-
ponent of a moving asset. We have proposed a Markov decision
model and analyzed the optimal integrated policy. We have
shown that the optimal policy is an operating mode–dependent
bi-threshold policy. Numerical experiments have been provided
to assess the value of the optimal policy compared with four
benchmark policies. In these benchmark policies, replace-
ment decisions are optimized but not integrated with spare part
inventory decisions. These policies simplify spare part inventory
decisions by “never” or “always” keeping a stock of the spare part
on-board the vessel. Through a comparative analysis, we have
shown that our integrated approach has significant value. Sim-
plifying spare part inventory decisions results in an average cost
increase of at least 20%. The benchmark policies are unlikely to
be optimal, except under some specific conditions such as very
high or very low prices of the spare part or transportation costs.

The problem studied in this article was motivated by a real-
life problem faced at FMS. Fromour collaborationwith themar-
itime sector, we observed that failure-related historical data are
usually limited. This makes the characterization of the degrada-
tion process challenging. In modeling the degradation and fail-
ure behaviors of the components, physical models are known to
be less data demanding than data-driven models. Moreover, the
difference associated with operating modes can be incorporated
into physical models, using the quantitative relation between
usage, environment, and degradation. Nevertheless, consider-
able effort is generally needed to develop such models.

We considered a single critical component and at most one
spare part kept on-board of the moving asset. Our numerical
experiments show that under extreme conditions, performing
more than one replacement in between home base visits would
be cost-effective. Therefore, allowing a stock of more than one
spare part on-board a vessel can potentially lead to a better
solution. In this direction, extension of our model requires the
consideration of fixed costs associated with delivering multiple
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spare parts at a time; i.e., the economies of scale in spare part
deliveries. This can be captured by extending the state and the
action space of our model. The investigation of the optimal
policy structure would be an interesting topic in this extension.
We note that if a non-consumable and critical component
has to be replaced more than one time in between home base
visits, one can question the existence of a design problem.
For such cases, one should consider increasing reliability by
redesign or built-in redundancy. Existing research considers
CBM and inventory optimization problems for identical and
independent components (see, e.g., Wang et al. (2008), (2009)
and Xie and Wang, (2008)). These works take non-zero lead
times, fixed ordering costs, and shortage costs for spare parts
into account. As these aspects increase problem complexity,
the proposed solution methods are approximate, combining
techniques such as simulation and genetic algorithms. To the
best of our knowledge, there exists no work in the literature that
considers non-identical components (see also van Horenbeek
et al., (2013)). The consideration of economic, structural, and
stochastic dependencies between multiple components has a
great practical relevance for moving assets. In practice, there
exist fixed costs associated withmaintenance and ordering spare
parts, whichwould promote clustering or opportunistic policies.
In this respect, a direct extension of our Markov decision pro-
cess would be affected by the curse of dimensionality. In order
to solve such real-life problems, the application of approximate
dynamic programming can be investigated (Powell, 2007).

In this article, we assumed that spare parts are always avail-
able at the home base. In practice, the home base is a central
warehouse where the stock of spare parts is limited and pooled
to serve severalmoving assets. If spare parts are directly assigned
to moving assets and stocked on-board, the benefit of inven-
tory pooling at the central warehouse vanishes. In particular,
this happens if lateral transshipments from one asset to another
are not allowed. In our model, this effect can be taken into
account implicitly, by inflating the holding cost rate. However,
this approach is approximate. An exact approach would be to
analyze this problem from multi-echelon spare parts inventory
perspective, considering a number of moving assets served by a
central warehouse (see, e.g., Muckstadt (2005) and van Houtum
and Kranenburg (2015)).

Furthermore, in this article, the consequences associated
with system failure have been translated into cost parame-
ters. In practice, estimating intangible corrective cost terms
is not straightforward, in particular, when failures affect peo-
ple’s health, safety, and environment. If modeling the trade-off
between preventive and corrective costs is not obvious, the focus
should lie on availability and reliability measures. The relation
between system design and availability–reliability requirements
needs to be closely investigated in the design phase of a system.

We note that although our motivation came from amaritime
application, the model and the results presented in this article
may be applied to other moving assets such as aircraft, commer-
cial vehicles, and military equipment. The rapid development
of advanced sensor technologies is making the condition
monitoring of components more affordable and feasible. The
condition information provided by sensors can be especially
useful for critical systems operating in environments that vary
randomly over time. This is due to the changes in environmental
conditions and system usage being related to the rate at which

degradation accumulates (Ulukus et al., 2012). The model that
we propose is highly valuable considering the trend of shifting
from time-based maintenance to CBM. Moreover, repair-by-
replacement is a common practice for high-value capital assets
in general (Driessen et al., 2015). Our model can be of value
when there is an option of stocking the spare part on-board a
moving asset. Depending on the application to be performed,
the model can be easily tailored to adjust to the number of
operating modes, their duration/sequence, associated costs, and
degradation parameters.
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Appendix A: Markov decision process with immediate
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0, a spare is delivered when degradation level j is greater than
one. In operating mode i = 1, spare part delivery is performed
when the component has failed. In both operating modes, the
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cess, when action 0 is taken under the given policy, the probabil-
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Figure A. Markov chain illustrating the uniformized process under a given policy.

transitions from a state to itself are not depicted for ease of
exposition (the corresponding probabilities are qii = 1 − vi j/v ).
Immediate transitions under the given policy are shown by
dotted arcs.

Appendix B: Value iteration algorithm

LetVn(i, j, u) be the expected total discounted cost over a time
horizon of n periods, where each period has an expected length
1/v . Without loss of generality, we selectV0(i, j, u) as follows:

V0(i, j, u) =

⎧⎪⎨
⎪⎩
0 if j ∈ Ĵ, i ∈ I, u ∈ U
ccdi + ccri if j = F, i ∈ I, u = 0
ccri if j = F, i ∈ I, u = 1.

(A1)

We introduce an additional notation σa to represent the
instantaneous part replacements and spare part deliveries:

σa =
{
0 for a = 0
1 for a = 1, 2.

For (i, j, u) ∈ I × J ×U and n ∈ N0, where N0 is the set of
non-negative integers,Vn+1(i, j, u) can be computed by

Vn+1(i, j, u) = min
a∈A(i, j,u)

{r(i, j, u, a)+ �aVn+σa (i, j, u)},
(A2)

where�aVn+σa (i, j, u) is defined as follows for a = 0, a = 1, and
a = 2, respectively:

�0Vn(i, j, u) = β

v

[ ∑
k∈I, k�=i

μiQ(i, k)Vn(k, j, u)

+ λi jVn(i, j + 1, u)+ (v − vi j)Vn(i, j, u)
]
,

for i ∈ I, j ∈ Ĵ, u ∈ U (A3)

�1Vn+1(i, j, 0) = Vn+1(i, j, 1) for i ∈ I, j ∈ J, (A4)
�2Vn+1(i, j, 1) = Vn+1(i, 0, 0) for i ∈ I, j ∈ J. (A5)

Due to instantaneous part replacements and spare part
deliveries, value iteration should substitute updated values of
Vn+1(i, j, u) at the (n + 1)th iteration. In state (i, 0, 1), if the
optimal decision is to replace the part, this decision will not be
immediately followed by a spare part delivery. This is because
Vn+1(i, 0, 1) = cpri + cpdi +Vn+1(i, 0, 1) cannot hold since c

pr
i >

0 and cpdi ≥ 0 for each i ∈ I. Therefore, Vn+1(i, 0, 1) is equiva-
lent to

Vn+1(i, 0, 1) = min
{
cpri + �0Vn(i, 0, 0),

β

v
h + �0Vn(i, 0, 1)

}
for i ∈ I. (A6)

Starting with Equation (A6), Vn+1(i, j, u) can be evaluated
in decreasing order of u ∈ U and increasing order of j ∈ J using
Equation (A2). As such, Equations (A4) and (A5) can be indi-
rectly expressed in terms of Vn(i, j, u) for each (i, j, u) ∈ I ×
J ×U. This overcomes instantaneous transitions for all states.
What follows presents the value iteration algorithm that is
designed to solve Equation (1). We refer to Puterman (1994,
Theorem 6.3.1., p. 161) for further details about the convergence
of such a value iteration algorithm to the optimal value of the
infinite-horizon problem.

Step 1: Set n = 0 and ε = 0.0001. Select V0(i, j, u) as Equa-
tion (A1).

Step 2: For each (i, j, u) ∈ I × J ×U , compute Vn+1(i, j, u) in
decreasing order of u ∈ U and increasing order of j ∈ J:
If ( j, u) = (0, 1) use Equation (A6). Otherwise, use Equa-
tion (A2).

Step 3: If for each (i, j, u) ∈ I × J ×U ,
|Vn+1(i, j, u)−Vn(i, j, u)| < ε(1 − β)/2β , then go to
Step 4. Otherwise, increment n by one and return to Step 2.

Step 4: For each (i, j, u) ∈ I × J ×U , choose the optimal sta-
tionary policy by

a∗(i, j, u) = argmin
a∈A(i, j,u)

{r(i, j, u, a)+ �aVn+σa (i, j, u)}

and stop.
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Appendix C: Proof of Theorem 1

In order to prove Theorem 1, we first introduce Lemmas A1 to
A4.

Lemma A1. For each i ∈ I and n ∈N0, if �0Vn(i, j, 1) is non-
decreasing in j ∈ Ĵ, then Vn+1(i, j, 1) is non-decreasing in j ∈ Ĵ.

Proof of Lemma A1. From Equation (A2), Vn+1(i, j, 1) can be
re-written as follows for each i ∈ I, j ∈ Ĵ, and n ∈N0:

Vn+1(i, j, 1) = min
{
cpri +Vn+1(i, 0, 0),

β

v
h + �0Vn(i, j, 1)

}
.

(A7)

For each i ∈ I, the cost of preventive replacement cpri +
Vn+1(i, 0, 0) and the term (β/v )h are constant and do not
depend on j ∈ Ĵ. Therefore, if �0Vn(i, j, 1) is non-decreasing in
j ∈ Ĵ, then Equation (A7) is also non-decreasing in j ∈ Ĵ. �

Lemma A2. For each i ∈ I and n ∈ N0:
(a) Vn(i, j, 1) is non-decreasing in j ∈ J.
(b) �0Vn(i, j, 1) is non-decreasing in j ∈ Ĵ.

Proof of Lemma A2(a). We first prove Lemma A2(a) by induc-
tion.

Basis: Lemma A2(a) holds for n = 0 by Equation (A1).
Induction Step: For each i ∈ I, assume thatVn(i, j, 1) is non-

decreasing in j ∈ J for a given n > 0 (induction hypothesis).
From Equation (A3), we have the following for j ∈ Ĵ\{0}:
�0Vn(i, j, 1)− �0Vn(i, j − 1, 1)

= β

v

[ ∑
k∈I, k�=i

μiQ(i, k)Vn(k, j, 1)+ λi jVn(i, j + 1, 1)

+ (v − vi j)Vn(i, j, 1)
]

− β

v

[ ∑
k∈I, k�=i

μiQ(i, k)Vn(k, j − 1, 1)+ λi, j−1Vn(i, j, 1)

+ (v − vi, j−1)Vn(i, j − 1, 1)
]

= β

v

[ ∑
k∈I, k�=i

μiQ(i, k)(Vn(k, j, 1)−Vn(k, j − 1, 1))

+ λi j(Vn(i, j + 1, 1)−Vn(i, j, 1))

+ (v − vi, j−1)
(
Vn(i, j, 1)−Vn(i, j − 1, 1)

)]
. (A8)

The second equality follows from the definition of vi j and
vi, j−1, which are equal to μi + λi j and μi + λi, j−1, respectively.
We note that v ≥ max{vi j|i ∈ I, j ∈ J} by definition. Therefore,
Equation (A8) is greater than or equal to zero for each i ∈ I and
j ∈ Ĵ\{0} under the induction hypothesis. Thus, �0Vn(i, j, 1)
is non-decreasing in j ∈ Ĵ for each i ∈ I. Using Lemma A1,
Vn+1(i, j, 1) is non-decreasing in j ∈ Ĵ for each i ∈ I.

It remains to prove thatVn+1(i, F, 1)−Vn+1(i, F − 1, 1) ≥ 0
for all i ∈ I. For j = F , we have

Vn+1(i, F, 1) = ccri +Vn+1(i, 0, 0) ≥ cpri +Vn+1(i, 0, 0)

≥ Vn+1(i, F − 1, 1)foralli ∈ I, n ∈ N0. (A9)

The first inequality follows from the definition of preven-
tive and corrective cost parameters. The second inequality holds
by the definition of Vn+1(i, F − 1, 1). Thus, for each i ∈ I,
Vn+1(i, j, 1) is non-decreasing in j ∈ J, completing the induc-
tion and the proof of Lemma A2(a).

From Lemma A2(a), Equation (A8) is greater than or equal
to zero for each i ∈ I, j ∈ Ĵ\{0}, and n ∈ N0, implying that
Lemma A2(b) holds.

�
We note that Lemma A2(b) is required to prove Theorem 2.

Lemma A3. For each i ∈ I and n ∈ N0, if �0Vn(i, j, 0) is non-
decreasing in j ∈ Ĵ, then Vn+1(i, j, 0) is non-decreasing in j ∈ Ĵ.

Proof of Lemma A3. From Equation (A2), Vn+1(i, j, 0) can be
re-written as follows for each i ∈ I, j ∈ Ĵ, and n ∈ N0:

Vn+1(i, j, 0) = min
{
cpdi +Vn+1(i, j, 1), �0Vn(i, j, 0)

}
.

(A10)

From Lemma A2(a), Vn+1(i, j, 1) is non-decreasing
in j ∈ J for each i ∈ I and n ∈ N0. Lemma A3 fol-
lows from Equation (A10), in which Vn+1(i, j, 0) is the
minimum between two non-decreasing terms in j ∈ Ĵ.

�
Lemma A4. For each i ∈ I and n ∈ N0:

(a) Vn(i, j, 0) is non-decreasing in j ∈ J.
(b) �0Vn(i, j, 0) is non-decreasing in j ∈ Ĵ.

Proof of Lemma A4. The proof of Lemma A4 is along the
same lines as the proof of Lemma A2, replacing u = 1 by u =
0, Lemma A1 by Lemma A3, Lemma A2 by Lemma A4, and
Equation (A9) by

Vn+1(i, F, 0) = ccdi +Vn+1(i, F, 1) ≥ cpdi +Vn+1(i, F − 1, 1)
≥ Vn+1(i, F − 1, 0) for all i ∈ I, n ∈ N0.

The first inequality follows from Equation (A9)
and ccdi ≥ cpdi . The second equality follows from Equa-
tion (A10). �

We note that Lemma A4(b) is required to prove Theorem 3.

Proof of Theorem 1. Theorem 1 follows from Lemma A2(a)
and Lemma A4(a). Since they hold for all n ∈ N0, they also
hold for the infinite-horizon functionV (i, j, u)wheren tends to
infinity. �

Appendix D: Proof of Theorem 2

In order to prove Theorem 2, we first introduce Lemmas A5 to
A7.

Lemma A5. For each i ∈ I, j ∈ Ĵ\{0}, and n ∈ N0, if action 2 is
optimal in state (i, j − 1, 1), then action 2 is also optimal in state
(i, j, 1).

Proof of Lemma A5. Fix operating mode i ∈ I and n ∈ N0. Sup-
pose that j ∈ Ĵ\{0}.
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From Equation (A7), the optimality of action 2 means that
the cost associated with action 2 is less than or equal to the cost
associated with action 0. Hence, if action 2 is optimal in state
(i, j − 1, 1), then

cpri +Vn+1(i, 0, 0) ≤ β

v
h + �0Vn(i, j − 1, 1).

From Lemma A2(b), we have

cpri +Vn+1(i, 0, 0) ≤ β

v
h + �0Vn(i, j, 1).

Thus, action 2 is also optimal in state (i, j, 1), completing the
proof. �

Proof of Lemma A6. The following inequality holds for all i ∈ I,
j ∈ Ĵ\{0}, and n ∈ N0:

Vn+1(i, j, 1)−Vn+1(i, j − 1, 1)+Vn+1(i, j − 1, 0)
≤ �0Vn(i, j, 1)− �0Vn(i, j − 1, 1)+ �0Vn(i, j − 1, 0).

(A11)

Proof of LemmaA6. Fix operatingmode i ∈ I and n ∈N0. Sup-
pose that j ∈ Ĵ\{0}.

From Equation (A10), we have Vn+1(i, j − 1, 0) ≤
�0Vn(i, j − 1, 0). Similarly, from Equation (A7), we have

Vn+1(i, j, 1) ≤ β

v
h + �0Vn(i, j, 1).

Therefore, if

Vn+1(i, j − 1, 1) = β

v
h + �0Vn(i, j − 1, 1),

then Equation (A11) holds. Otherwise, if Vn+1(i, j − 1, 1) =
cpri +Vn+1(i, 0, 0), then Vn+1(i, j, 1)−Vn+1(i, j − 1, 1) = 0
by Lemma A5. From Lemma A2(b), �0Vn(i, j, 1)−
�0Vn(i, j − 1, 1) ≥ 0 and, thus, Equation (A11)
holds. �
Lemma A7. For each i ∈ I and n ∈ N0, the following inequalities
hold:

(a)Vn(i, j, 1)−Vn(i, j, 0)−Vn(i, j − 1, 1)+Vn(i, j − 1, 0)
≤ 0 for j ∈ J\{0}. (A12)

(b)�0Vn(i, j, 1)− �0Vn(i, j, 0)− �0Vn(i, j − 1, 1)
+�0Vn(i, j − 1, 0) ≤ 0 for j ∈ J\{0}. (A13)

Proof of LemmaA7. Wefirst prove LemmaA7(a) by induction.

Basis: Lemma A7(a) holds for n = 0 under Equation (A1).
Induction Step: For each i ∈ I and j ∈ J\{0}, assume that

Lemma A7(a) holds for a given n > 0 (induction hypothesis).
� Case 1: j = F .
By definition, Vn+1(i, F, 0) = ccdi +Vn+1(i, F, 1). Hence, for

n + 1, the left-hand side of Equation (A12) is

− ccdi −Vn+1(i, F − 1, 1)+Vn+1(i, F − 1, 0). (A14)

Equation (A14) is less than or equal to zero sinceVn+1(i, F −
1, 0) ≤ Vn+1(i, F − 1, 1)+ cpdi and cpdi ≤ ccdi .

� Case 2: j ∈ Ĵ\{0} andVn+1(i, j, 0) = cpdi +Vn+1(i, j, 1).

For n + 1, the left-hand side of Equation (A12) is

− cpdi −Vn+1(i, j − 1, 1)+Vn+1(i, j − 1, 0). (A15)

From Equation (A10), Equation (A15) is less than or equal to
zero.

� Case 3: j ∈ Ĵ\{0} andVn+1(i, j, 0) = �0Vn(i, j, 0).
For n + 1, the left-hand side of Equation (A12) becomes

Vn+1(i, j, 1)− �0Vn(i, j, 0)−Vn+1(i, j − 1, 1)+Vn+1(i, j − 1, 0).
(A16)

From the definition of operator �0, we have the following:

�0Vn(i, j, 1)− �0Vn(i, j, 0)− �0Vn(i, j − 1, 1)
+�0Vn(i, j − 1, 0)

= β

v

[ ∑
k∈I, k�=i

μiQ(i, k)(Vn(k, j, 1)−Vn(k, j, 0)

−Vn(k, j − 1, 1)+Vn(k, j − 1, 0))+ λi j(Vn(i, j + 1, 1)
−Vn(i, j + 1, 0)−Vn(i, j, 1)+Vn(i, j, 0))
+ (v − vi, j−1)(Vn(i, j, 1)−Vn(i, j, 0)

−Vn(i, j − 1, 1)+Vn(i, j − 1, 0))
]
.

(A17)

From the induction hypothesis, Equation (A17) is less than
or equal to zero for each i ∈ I and j ∈ Ĵ\{0}. Lemma A6 implies
that Equation (A16) is less than or equal to Equation (A17).
Hence, Equation (A16) is less than or equal to zero for each
i ∈ I and j ∈ Ĵ\{0}, completing the induction and the proof of
Lemma A7(a).

From Lemma A7(a), Equation (A17) is less than or equal
to zero for each i ∈ I, j ∈ Ĵ\{0}, and n ∈ N0, implying that
Lemma A7(b) holds. �

Proof of Theorem 2. Theorem 2 follows from Lemma A7(a).
Since Equation (A12) holds for all n ∈ N0, it also holds
for the infinite horizon function V (i, j, u) where n tends to
infinity.�

Appendix E: Proof of Theorem 3

Lemma A8. For each i ∈ I, j ∈ Ĵ\{0}, and n ∈ N0, if action 1 is
optimal in state (i, j − 1, 0), then action 1 is also optimal in state
(i, j, 0).

Proof of LemmaA8. Fix operatingmode i ∈ I and n ∈N0. Sup-
pose that j ∈ Ĵ\{0}.

From Equation (A10), the optimality of action 1 means that
the cost associated with action 1 is less than or equal to the cost
associated with action 0. Hence, if action 1 is optimal in state
(i, j − 1, 0), then

cpdi +Vn+1(i, j − 1, 1) ≤ �0Vn(i, j − 1, 0). (A18)

From Lemma A4(b), we have

cpdi +Vn+1(i, j − 1, 1) ≤ �0Vn(i, j, 0).
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If Vn+1(i, j − 1, 1) = cpri +Vn+1(i, 0, 0), then
Vn+1(i, j, 1) = cpri +Vn+1(i, 0, 0) = Vn+1(i, j − 1, 1) from
Lemma A5. In this case, it holds that cpdi +Vn+1(i, j, 1) =
cpdi +Vn+1(i, j − 1, 1) ≤ �0Vn(i, j, 0) and, thus, action 1 is
optimal in state (i, j, 0).

Otherwise, if Vn+1(i, j − 1, 1) = (β/v )h + �0Vn(i, j −
1, 1), then Equation (A18) can be re-written as

cpdi + β

v
h + �0Vn(i, j − 1, 1) ≤ �0Vn(i, j − 1, 0). (A19)

From Lemma A7(b), we have

�0Vn(i, j, 1)− �0Vn(i, j, 0)− �0Vn(i, j − 1, 1)
+�0Vn(i, j − 1, 0) ≤ 0. (A20)

Inequalities (A19) and (A20) imply

cpdi + β

v
h + �0Vn(i, j, 1) ≤ �0Vn(i, j, 0).

From Equation (A7), Vn+1(i, j, 1) ≤ (β/v )h +
�0Vn(i, j, 1). Thus,

cpdi +Vn+1(i, j, 1) ≤ �0Vn(i, j, 0).

In this case, action 1 is optimal in state (i, j, 0), completing
the proof. �

Proof of Theorem 3. The existence of an optimal replace-
ment threshold ψ(i) ≤ F in operating mode i ∈ I follows from
Lemma A5. The existence of an optimal spare part deliv-
ery threshold ξ (i) ≤ F in operating mode i ∈ I follows from
Lemma A8. Since both lemmas hold for all n ∈ N0, they
also hold for the infinite-horizon problem where n tends to
infinity. �

Appendix F: Illustrative example for Remark 1

As an illustrative example to Remark 1, we use one of the
instances of the test bed described in Section 5. We consider
the combination given in Table A1. Figure A2 demonstrates
the threshold values obtained by the optimal policy. For this
example, under the optimal policy, a preventive spare part
delivery would not be performed away from the home base
since ξ (i) = F = 9 for all i ∈ I\{0}. That is, if the spare part is
not on-board the vesssel, a preventive part replacement would
not be optimal. However, if the spare part has already been
delivered at the home base, it is optimal to perform a preventive
part replacement in i ∈ I\{0} since ψ(i) ≤ F .
Table A. Illustrative example parameters.

Degradation rates Uniform
Operating mode transition rates High
Corrective replacement cost Medium
Transportation cost High
Add. exp. cost in case of failure No
Spare part’s price High
Holding cost Medium

Figure A. Threshold values of the optimal policy.
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