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Abstract. In this paper we study the heat transfer in a turbulent channel flow, which is periodically heated 
through its walls. We consider the flow of air and water vapor using direct numerical simulation. We consider 
the fluid as a compressible Newtonian gas. We focus on the heat transfer properties of the system, e.g., the 
temperature difference between the walls and the Nusselt number. We consider the dependence of these 
quantities on the frequency of the applied heat flux. We observe that the mean temperature difference is quite 
insensitive to the frequency and that the amplitude of its oscillations is such that its value multiplied by the 
square root of frequency is approximately constant. Next we add droplets to the channel, which can undergo 
phase transitions. The heat transfer properties of the channel in the case with droplets are found to increase by 
more than a factor of two, compared to the situation without droplets. 

1 Introduction 

Turbulent flows laden with a large number of small 
heavy droplets play an important role in many 
applications such as pollutant dispersion in the 
atmosphere and heat transfer in power stations. It is 
important to investigate the heat properties of the flow, 
which are influenced by the droplet behaviour.  
In the past fifteen years several studies were conducted in 
order to investigate droplet-laden turbulent flows. In 1997 
Mashayek [1] conducted an Euler-Lagrange simulation 
study of droplet-laden homogeneous turbulence with two-
way coupling in momentum, mass and energy. A study of 
the mixing layer with embedded evaporating droplets was 
reported by Miller and Bellan [2]. In 2010 Masi et al. [3] 
investigated the interaction of a non-isothermal droplet-
laden turbulent planar jet with a cloud of inertial 
evaporating droplets. 
In this study we focus on wall-bounded turbulence by 
considering turbulent channel flow with a dispersed 
droplet phase undergoing phase transition. As a point of 
reference we consider the flow of water droplets in air, in 
which the presence of water vapor is accounted for. 
Throughout the paper under the carrier phase or carrier 
gas a mixture of air and water vapor is meant while water 
droplets will be referred to as the dispersed phase. The 
top wall of the channel is heated periodically and the 
bottom wall is cooled in such a way that the total energy 
of the system is conserved. The key difference between 
the previously mentioned studies and the current is that 
we consider conditions in which not only evaporation of 

droplets but also their growth by condensation are 
important. 
Studies [4] and [5] show that a time-periodic external 
agitation changes the properties of the turbulent flow. In 
this study we do not change the flow itself but impose a 
time-periodic heat flux through the walls of the channel 
which has the form: �� � ���� � 	 
�����where  will 
be referred to as the frequency of the heat flux. In [6] the 
heat transfer properties of the system were investigated in 
case of a constant heat flux through the walls of the 
droplet-laden turbulent channel flow. In this study we 
focus on the resulting response of the effective heat 
transfer in turbulent channel flow without water droplets 
in case of an oscillating heat flux. We investigate the 
dependence of the temperature difference between the 
two walls on the frequency of the heat flux through the 
walls. We vary this frequency and determine the mean 
temperature difference, the amplitude of its oscillations 
and the phase lag which shows how much the resulting 
signal of the temperature difference lags behind the 
applied heat flux. In addition, we perform a simulation 
with droplets and show that the Nusselt number which 
measures the effectiveness of the heat transfer between 
the walls is increased considerably by their presence. 
The carrier gas is treated using the compressible 
formulation since the applied heat flux causes a 
temperature gradient in the wall-normal direction of the 
channel and, consequently, a gradient in mass density of 
the carrier gas, which is achieved by a mean motion of 
gas from the hot to the cold wall . This mean gas flow in 
the wall-normal direction is quantified by the wall-
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normal momentum component averaged in the 
homogeneous directions and in time which is in the 
incompressible formulation is equal to zero. 
The organization of the paper is as follows. In section 2 
we present the governing equations for the two phases. In 
section 3 the numerical algorithm for the treatment of the 
low Mach number turbulent droplet-laden channel flow 
with phase transitions will be presented. In section 4 we 
describe the initial conditions and discuss the results. 
Finally, the concluding remarks are collected in section 5.  
 

2 Governing equations for the gas-
droplets system 

In this section we first discuss the flow set-up. 
Subsequently, the set of partial differential equations for 
the carrier phase, i.e., the gas consisting of air and water 
vapor, the system of ordinary differential equations for 
the dispersed phase and the source terms describing the 
coupling between the two phases will be presented in 
separate subsections. 

2.1 Description of the flow domain 

We consider a water-air system in a channel, bounded by 
two parallel horizontal plates. We focus on a two-phase 
system, consisting of a carrier phase and a dispersed 
phase, consisting of liquid water droplets. The carrier 
phase is represented using the Eulerian approach while 
the dispersed phase is treated in the Lagrangian manner. 
In Figure 1 a sketch of the flow domain is presented. The 
domain has a size of ��� in the streamwise direction, 
which is denoted by �, and ��� in the spanwise 
direction, �, where � is half the channel height. In 
addition, � is the coordinate in the wall-normal direction. 
The total volume of the domain is defined by �. The top 
wall of the channel is denoted by � � � and the bottom 
wall by � � ��.  A heat flux of the following form is 
applied through the walls: �� � ���� � 	 
�����where  
is the frequency of the heat flux, ��� 	 are the mean heat 
flux and the amplitude of its oscillations. The flux at both 
walls is equal in size but opposite in sign in order to 
conserve the total energy of the system. Studies done by 
Kim et al. [7] motivate the use of periodic boundary 
conditions in � and � directions. In addition, no-slip 
conditions are enforced for the gas at the walls.  
 
 
2.2 The carrier gas  
 
We solve the following system of equations for 
(�� ��� �� � �: 
 �����������������������������������!"� � !#���#� � �$���������������������������� 
 �������!"�� � �#!#�� � � ���!#%& ����� �� !#�'���(�#������������� �������������������������������������������� )*����������������� 
 

 
Figure 1 The droplet-laden channel geometry 
 
 ���������������������������!"� � �# � (+ � ,%�,� �� �")$-�������������.� �����������������������������!"� � �#!#� � �!#/ �#� � �$���������������� 
 
where �� ��� �� �  stand for mass density, velocity 
components, temperature and vapor mass fraction, 
respectively. The system (1)-(4) was obtained following 
the asymptotic analysis in powers of the Mach number by 
M01 ller [8]. An important result of this analysis is the 
decomposition of the pressure into two parts: %"2"3* �%���� � 45&%&�6� ��, where %� depends only on time and %& depends on time and spatial coordinates. All variables 
in (1)-(4) except the pressure are the leading terms in the 
expressions for the power series of the Mach number.  
In (2) ' denotes the gas dynamic viscosity and (�#  is the 
compressible form of the rate-of-strain tensor. Moreover, 
in (4) 7  stands for the diffusive mass flux of water vapor. 
The right-hand side of the temperature equation contains (+ which  is a complicated expression and reflects several 
mechanisms of temperature change: heat transfer because 
of conduction and because of diffusion and viscous 
heating. In order to close the system (1)-(4) we use the 
ideal gas law for the air-water vapor mixture : 
 ������������������%� � ��83�9�� � � � � ��8:3")9� ����������;� 
 
where 83�9� 8:3")9  stand for the specific gas constants of 
air and water vapor, respectively. 
The terms �$� � )*�� �")$-�denote the two-way coupling 
terms and will be discussed in the next subsection. 
The system (1)-(4) is made non-dimensional using a set 
of reference scales of the system. The reference 
temperature, �9)< , is the initial mean temperature, while 
the reference mass density, �9)<�is the initial mean mass 
density of the fluid. The reference length =9)<  is chosen 
as half the channel height �; specifically, we consider a 
water vapor-air system flowing between a channel with =9)< � ��>?. The velocity scale �9)< is taken as the 
initial bulk velocity �@�of the gas. As a result of making 
the governing equations non-dimensional, the final 
system of equations contains the Prandtl number Pr, the 
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Mach number Ma and the Schmidt number Sc. The initial 
conditions which will be given in Section 3 define the 
non-dimensional parameters of the flow.  
The system considered in this study is turbulent channel 
flow at a Reynolds number ABC �� �;D�which has often 
been studied in literature [9]. From this value and the 
initial conditions we find the reference velocity and the 
reference speed of sound and, consequently, the Mach 
number which is on the order of 0.005. The considered 
flow belongs to low Mach number compressible flows. 
 
 
2.2 The dispersed phase 
 
The dispersed phase of the system consists of water 
droplets. In the current study the droplet volume fraction 
is chosen to fluctuate around �DEF and therefore we 
consider two-way coupling according to the classification 
proposed by Elghobashi [10]. The point-particle approach 
is justified by the maximum ratio of the droplet diameter 
and the Kolmogorov scale which is equal to 
approximately 0.3 [9]. 
The detailed model for the droplets can be found in [6]. 
For each droplet we solve a system of ordinary 
differential equations following the model in [2]. The 
location of the droplet G� is governed by the kinematic 
condition where H� stands for the droplet velocity: �����������������������������������������IG�I� � H��������������������������������������J� 
 
In the water-air system droplets have a much higher mass 
density than the carrier phase and, therefore, the Stokes 
drag force acting on them is dominant. We solve the 
following equation of motion with the standard Schiller-
Naumann drag correlation [11]: 
 
 ������������������IHKI� � L�G�� �� � H��MN�� O� � DP�;ABN���PQRST������U� 
 
where L�G�� �� is the velocity of the carrier gas at the 
droplet position. Moreover, MN�� defines  the droplet 
relaxation time and ABN�� is the droplet Reynolds number: 
 ������������������������ABN�� � I��VL�G�� �� � H�V' �����������������������W����� 
 
where I��stands for the droplet diameter. 
We also consider the change in time of the droplet energy X� � Y*Z���  where Y* is the specific heat of liquid water 
and Z�� �� are droplet mass and temperature, respectively. 
The droplet energy changes because of evaporation and 
condensation and heat exchange at the droplet surface: 
 ����������� II� X� � [ IZ�I� � [$\����G�� �� � ����������������]� 
 
where [ � ^� � Y- �� denotes the specific enthalpy of 
water vapor with ^� and Y-  the latent heat at 0 K and the 
specific heat at constant pressure of water vapor, 

respectively. The correlation for forced convection 
around a sphere is used for the heat transfer coefficient [$ [12]. Finally, \� denotes the surface area of the 
droplet and ��6�� �� the carrier phase temperature at the 
droplet position.  
In order to close the system of equations we require an 

expression for 
N$_N" , the rate of evaporation and 

condensation of a droplet. We use the following equation 
[12]: 
 ������������������IZ�I� � � Z�`a.MN��`> b� � � � �c��� � � �d�� ������������������D� 
 
where � �c�� and � �d���are the vapor mass fractions at a 
distance e from the surface of the droplet and on the 
surface of the droplet, respectively. Moreover, e 
describes the thickness of the vapor film around the 
droplet. For the Sherwood number Sh we use the 
correlation for a sphere [12]. In addition, � �d is found 
using Antoine’s relation [13] and, subsequently, the ideal 
gas law to find the water vapor fraction. In order to find � �c  we recall the point-particle approach and treat it as 
the vapor mass fraction of the carrier phase at the position 
of the droplet, i.e., � �c � � �G�� ��P 
The two-way coupling terms present in (1)-(4) �$� ��")$-��� )*  are found from the conservation of the 
total mass, energy and momentum of the system. For 
example, the two-way coupling term in (1) and (4) is 
given by: ����������������������$ � �f IZ�I�� e�G � G����������������������������� 
 
 
where the sum is taken over all the droplets in the 
domain.  The delta-functions express that the coupling 
terms act only at the positions of the droplets, consistent 
with the underlying point-particle assumption. 
This completes the description of the governing equations 
for the two phases. In the next section we present the 
numerical algorithm for the mathematical model 
presented in this section. 
 

3 The low Mach number time-stepping 
method 

The decomposition of the pressure into two parts and the 
presence of its space-dependent part in equation (2) only 
motivate us to use the pressure-correction method for low 
Mach number compressible flow. We extend the 
algorithm proposed by Bell et al. [14] to two-phase 
turbulent channel flow with phase transitions.  
The system of governing equations for the carrier phase 
(1)-(4) with the vector of unknowns g � h�� ��� �� � i�is 
written as: 
 ���������������������������!g!� � =�g� � j�g������������������������������������ 
 
where = and k are linear and nonlinear operators, 
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respectively. The linear operator consists only of the term � lm !�%&, all the other terms in equations (1)-(4) belong to 

the nonlinear part. The right-hand sides of the ordinary 
differential equations for the dispersed phase (6), (7), (9) 
and (10) are also considered as the nonlinear part.  For 
the time integration a three-stage low-storage hybrid 
implicit-explicit Runge-Kutta method is used [15]. In this 
method only the values of the unknowns from the 
previous stages are used in the nonlinear operators, while 
the linear operator also requires the values at the current 
stage. We do not solve all quantities simultaneously. We 
do it in the following order.  First, we solve the system of 
equations for the dispersed phase, (6), (7), (9) and (10) 
explicitly using droplets and gas values at the previous 
stage. The right-hand sides of the droplet equations 
contain gas properties at the droplet location. In order to 
determine these, tri-linear interpolation is applied [9].  
After finding the droplets properties at the new stage, we 
also obtain the two-way coupling terms at this stage. 
Next, we solve the system of equations for the carrier 
phase: first, we find the temperature and vapor mass 
fraction at the new stage, next, the mass density and 
finally, the velocity. Such an order is chosen because the 
values of the temperature, pressure, mass density and 
vapor mass fraction at the new stage are required for the 
velocity which is solved partially implicitly. 
The temperature and the vapor mass fraction equations, 
(3) and (4), are solved explicitly. These quantities are 
transported with the speed of the flow and, consequently, 
the restriction on the time step from the stability 
condition does not lead to very small time steps. 
A special procedure is applied to find the mass density of 
the carrier phase.  The mass density can be calculated 
from equation of state (5) if apart from temperature and 
vapor mass fraction also %�  is known. In order to find %� 
we integrate (1) over the total computational domain �  
and obtain the total mass at the new stage, Z. We express 
the mass density from equation of state (5) and integrate 
this expression over the computational domain in order to 
find Z using the dependence of %� on time only. As a 
result we obtain the following expression in which Z� � 
and �  are known: 
 ������������Z � %� n I��83�9�� � � � � �8:3")9� o ������������.� 
 
From (13) we find %� and the mass density is obtained 
from (5). 
For the carrier gas velocity we apply an extension of the 
pressure-correction procedure usually applied to 
incompressible flows, [16]. It consists of three steps.  
First, a provisional velocity from the Navier-Stokes 
equation, based on velocity, density, temperature and 
pressure from the previous time is calculated. This 
velocity does not satisfy the constraint on the divergence 
of velocity which will be derived momentarily and which 
in case of incompressible flow is p� q �L � D. In order to 
correct the provisional velocity a Poisson equation for 
pressure is derived from this constraint and it is solved 
during the second step. During the third step we correct 

the provisional velocity with this pressure. 
The expression for the divergence of the velocity is 
obtained following a few steps. To find the constraint on 
velocity for compressible flow we start with the 
expression for the material derivative of %�  following Bell 
et al. [14], using equation of state (5): 
 �����������������,%�,� � !%�!� ,�,� � !%�!� ,�,� � !%�!� ,� ,� ���������������� 
 
Next we substitute the three material derivatives in (14) 
from the governing equations (1)-(4). All partial 
derivatives in (14) follow from equation of state (5). 
After these substitutions we obtain an expression for p� q �L in which the only unknown term is 

r-sr" . In order to 

find this missing term we integrate the expression for p� q �L over the computational domain applying the 
boundary conditions for the velocity. Using the 
independence of %� of the spatial coordinates we obtain 

the desired expression for 
r-sr"  and, consequently, we find 

the expression for the divergence of the velocity.  
Knowing this expression for p q L, we can apply the 
pressure-correction procedure. First, we find a 
provisional velocity Lt in an explicit way from (2). This 
velocity does not satisfy the requirement for the 
divergence of the velocity.  During the second step we 
find %&  at the new stage from the Poisson equation: 
 ��������������������p ���ul p%&�ul � p q Lt � p q L�ulv�ulw� ����������������;� 
 
 
where x � � defines the new stage and x is equal to 0, 1 or 
2, and v is one of the coefficients in the time-integration 
algorithm [15]. The expression for p q LKuy is known. It 
contains %�, the temperature, the vapor fraction and the 
mass density at the new stage. All these values were 
found before during the current stage and it is possible to 
calculate the right-hand side of (15) and, consequently, to 
find %&�ul. During the third step of the pressure-correction 
procedure we apply the correction: 
 �������������������L�ul � Lt � w�v�ul ���ul p%&�ul��������������������J� 
 
The final velocity L�ul satisfies the expression for the 
divergence of the velocity referred to previously. This 
finishes the description of one stage of one time-step. 

4 Channel heat transfer characteristics  

4.1 Initial conditions  

The simulations are started from a turbulent velocity field 
obtained from a simulation without droplets and with 
adiabatic boundary conditions. This simulation was done 
until the statistically steady state was satisfactorily 
developed.  
We use the following initial conditions: atmospheric 
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pressure, room temperature and relative humidity equal to 
100%. These conditions correspond to the case examined 
in [4]. The non-dimensional parameters of the 
simulations along with the thermodynamic parameters of 
the flow for the reference temperature of 293.15 K can be 
found in [4]. 
The initial condition for the simulations is a snapshot of 
the solution of the system (1)-(4) in the absence of 
droplets and with adiabatic boundary conditions. 
Consequently, we start from a constant mass density and 
a constant temperature; the initial vapor mass fraction is 
found from the initial condition for the relative humidity. 
 We randomly distribute 2,000,000 droplets over the 
volume of the channel. The initial droplet diameter is 

given by 
N_z � .PD] { �DE|. These initial conditions 

permit us to consider the two-way coupling regime but 
not four-way coupling yet and to treat droplets using the 
point-particle approach, [9], [10]. 
In this study we consider a periodic heat flux through the 
walls of the form: �� � ���� � 	 
�����where �� is 

equal to .�� }~�. A constant heat flux of this value was 

applied in [6] to droplet-laden turbulent channel flow and 
caused a temperature difference approximately equal to   
3 K between the two walls in the steady state. We choose 	 to be equal to ½ to have significant heat transfer 
modulation caused by the periodic heat flux through the 
walls. In [6] we found that the transient stage of the 
system lasts for approximately 0.1 s. This transient arises 
from the development of a mean temperature gradient. 
This motivates us to consider the frequency  � �D��
El 
which corresponds to a period equal to the typical time 
scale of the transient. Along with  � �D��
El we also 
perform simulations of the turbulent channel flow 
without droplets at  � D� ��� �DD��
El to investigate 
the channel heat transfer properties. Next we add droplets 
to the channel and perform a simulation at  � �D��
El. 

4.2 Motivation for compressible formulation 

In this study compressibility refers to the changes in the 
mass density due to the development of the temperature 
gradient in the wall-normal direction caused by the 
applied heat flux through the walls. Consequently, we get 
a net transfer of gas from the upper hot wall to the bottom 
cold wall. In order to quantify this, we considered the gas 
wall-normal momentum component averaged over the 
homogeneous directions and time during the initial 
transient stage and in the statistically steady state for case 
of  � D, Figure 2. During the initial stage it is 
everywhere negative which is consistent with the gas 
movement due to the temperature gradient between the 
walls. In the statistically steady state this momentum 
component is close to zero and this result is confirmed by 
averaging continuity equation (1) over the periodic 
directions and time. In the incompressible formulation 
this averaged quantity is always equal to zero [17]. The 
net wall-normal gas movement during the initial stage 
motivates us to use the compressible formulation. 
 
 

 
 
Figure 2 The wall-normal momentum component averaged 
over the homogeneous directions and over time as a function of 
the wall-normal coordinate. Time averaging is performed for 
dashed: [0s; 0.1s], solid: [2s; 4s]. 

4.3 Turbulent channel flow 

In this subsection we analyse the heat transfer 
characteristics in terms of the behaviour of the 
temperature difference between the two walls w� and the 
Nusselt number. 
First, we consider w� for  � D, Figure 3. The 
temperature difference reaches the steady state at a time 
approximately equal to 2 s. Starting from this time, we 
average w� in time and obtain a mean value denoted as w�� equal to approximately 8.47 K, Table 1. 
 
 

 
Figure 3 The temperature difference between the walls for  � D 
 
For the case of an oscillating heat flux the temperature 
difference between the walls w� is written as: 

��������������w� � w���� � ��
���� � ��� �� w����������������U� 
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where w��� �� � stand for the mean temperature 
difference, the amplitude of its oscillations and the phase 
lag. Moreover, w��� denotes the fluctuating contribution 
due to turbulence. In Figure 4 we show w��as a function 
of time for  � �D��
El. 

 

 

Figure 4 The temperature difference between the walls for  � �D��
El. 
 
We perform phase averaging of the resulting temperature 
difference for all non-zero values of frequency considered 
in this paper. This means that we collect full periods of a 
resulting signal starting from the moment of time in 
which the signal of w��is in the statistically steady state. 

The period is equal to 
&�� . We divide each period in 700 

points. Next we perform averaging over all periods of the 
signal, starting from the statistically steady state.  The 
phase-averaged signal for  � �D��
El is shown in 
Figure 5. From the phase-averaged signal we find w��� �� � and the turbulent contribution. In particular, w�� is obtained as the mean temperature of the phase-
averaged signal while � is the amplitude. In addition, the 
phase lag shows how much the phase-averaged signal 
lags behind the applied heat flux.  
We calculate the statistical error caused by the choice of 
the time interval used for averaging. We perform 
averaging over a certain time interval: for  � �D��
Elit 
is [2 s; 5 s], Figure 4. In order to find the error we divide 
this interval into N equal parts and we calculate the value 
of all characteristics of the signal by averaging over these 
intervals separately. At each interval i we find �� where a 
denotes w��� �� � or RMS of w���. Then we calculate the 
averaged value of a which is denoted by ��. Next the error 
is computed as: 

����������������������� � ��k � ���kf��� � ���&�
��l �������������������W� 

 
The mean values along with the statistical errors are 
shown in Table 1. 
 

 

 �h
Eli w����[K] �w�� [K] � 8�(�+s� 
      0 8.47�0.05   0.054�0.009 �� 8.501�0.0

06 
2.108�0.008 0.56� �0.014 0.078�0.006 

�D� 8.47�0.02 0.73�0.02 0.739�0.011 0.031�0.008 �DD� 8.47�0.06 0.227�0.002 0.797�0.003 0.059�0.003  
 

Table 1 The characteristics of the resulting signal for the 
turbulent channel flow. 

 
 

 

Figure 5 Phase-averaged signal for  � �D��
El. 

We conclude that the mean temperature does not depend 
on the frequency of the heat flux through the walls. At the 
same time we find that with increasing frequency the 
phase lag also increases, Table 1.  The RMS of the 
turbulent contribution does depend on the frequency of 
the heat flux, but without clear trend .  
The calculated values of � permit to find its dependence 
on frequency which is �� � Y���� in good 
approximation, figure 6.  
 
4.4 Droplet-laden turbulent channel flow 
 
Also a simulation with droplets at  � �D��
El was 
performed. We also performed phase averaging of the 
temperature difference between the walls for this case. 
The resulting w�� in this case is equal to 3.1 K. The 
values of � and � are twice smaller than without droplets 
at the same frequency. 
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Figure 6 Amplitude � of phase-averaged temperature 
difference. The solid line shows the dependence �� � Y����; 
the symbols represent the simulation results. 
 
In [6] a simulation with droplets at  � D�was performed. 
From its results we find that w�� in this case is also 
approximately equal to 3.1 K. Consequently, the mean 
temperature difference also does not depend on the 
frequency of the heat flux also in the presence of water 
droplets. 
To express the efficiency of heat transfer between the 
walls we consider the Nusselt number, which is defined 
in the following way: 
 ����������������������������������j0 � ����:3**w����� �����������������������������������W� 
 
where �:3**�stands for the thermal conductivity of the gas 
at the wall. 
The Nusselt number is calculated according to (18) in 
cases without and with droplets at  � �D��
El. The 
difference in w�� leads to a Nusselt number which is 
larger by a factor more than two when droplets are 
present. 

5 Conclusions 

Droplet-laden turbulent channel flow with phase 
transitions was simulated with a special time integration 
method developed for two-phase turbulent low Mach 
number flows undergoing phase transitions. A periodic 
heat flux was applied through the walls. We varied the 
frequency of this flux between 0 and �DD��
ElP First, we 
performed simulations of the turbulent channel flow in 
the absence of droplets. We found that the mean 
temperature difference between the walls of the channel 
is not dependent on the frequency of the applied heat 
flux. At the same time, the amplitude of oscillations of 
the temperature difference decreases with increasing 
frequency. The dependence of this amplitude on the 
frequency was found to be inversely proportional to the 
square root of the frequency in good approximation. The 
phase lag was found to increase if we increase the 
frequency of oscillations. In the future we plan to 
investigate this dependence better performing more 
simulations with intermediate values of frequency. 

The presence of droplets which can undergo phase 
transitions was seen to increase the heat transfer within 
the channel by more than a factor of 2. We observe that 
the mean temperature difference is independent of the 
frequency of the applied heat flux. In addition, the 
amplitude of the temperature difference oscillations and 
its phase lag were found to decrease by approximately a 
factor of 2 in comparison with the case without droplets. 
In the future, we plan to investigate resonant turbulence 
further by modulating the turbulent flow and using a 
periodic time dependent pressure-gradient. 
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