

Cloud-based design and virtual prototyping environment for
embedded systems
Citation for published version (APA):
Werner, S., Lauber, A., Koedam, M. L. P. J., Becker, J., Sax, E., & Goossens, K. G. W. (2016). Cloud-based
design and virtual prototyping environment for embedded systems. International Journal of Online Engineering,
12(9), 52-60. https://doi.org/10.3991/ijoe.v12i09.6142, https://doi.org/10.3991/ijoe.v12i09.6142

DOI:
10.3991/ijoe.v12i09.6142
10.3991/ijoe.v12i09.6142

Document status and date:
Published: 01/01/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.3991/ijoe.v12i09.6142
https://doi.org/10.3991/ijoe.v12i09.6142
https://doi.org/10.3991/ijoe.v12i09.6142
https://doi.org/10.3991/ijoe.v12i09.6142
https://research.tue.nl/en/publications/cb400258-b721-40d7-952c-5123e330ae33

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

Cloud-based Design and Virtual Prototyping
Environment for Embedded Systems

http://dx.doi.org/10.3991/ijoe.v12i09.6142

S. Werner1, A. Lauber1, M. Koedam2, J. Becker1, E. Sax1, K. Goossens2
1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

2 Eindhoven University of Technology (TUE), Eindhoven, Netherlands

Abstract—The design and test of Multi-Processor System-
on-Chips (MPSoCs) and development of distributed appli-
cations and/or operating systems executed on those hard-
ware platforms is one of the biggest challenges in today’s
system design. This applies in particular when short time-to-
market constraints impose serious limitations on the explo-
ration of the design space. The use of virtual platforms can
help in decreasing the development and test cycles. In this
paper, we present a cloud-based environment supporting
the user in designing heterogeneous MPSoCs and develop-
ing distributed applications. Therefore, the design environ-
ment generates virtual platforms automatically allowing fast
prototyping cycles especially in the software development
process, and exports the design to a hardware flow synthe-
sizing compatible FPGA designs. The extension of the pe-
ripheral models with debug information supports the devel-
oper during test and debug cycles and avoids the need of
adding special debug codes in the application. This improves
the readability, portability and maintainability of produced
software. Additionally, this paper presents the benefits of
using cloud-based design environments in engineers’ train-
ings and educations. Therefore, the framework supports
testing the system including complex software stacks with
prerecorded data or testbenches.

Index Terms—Rapid Prototyping, Virtual Platform, Parallel
Programming, cloud-based services, OVP, System Level
Design, Simulation

I. INTRODUCTION
The design and test of Multi-Processor System-on-

Chips (MPSoCs) including software has proven to be an
attractive challenge in embedded systems design automa-
tion. The increasingly complex hardware/software-design
for those systems, associated with short time-to-market
constraints impose serious limitations on the exploration
of the design space, and make it necessary to introduce
new kinds of development environments and methodolo-
gies. The use of virtual platforms and high level simula-
tion may decrease the time-to-market of these architec-
tures while providing the means to exploit, debug and
verify architectures with different features and at early
development stages.

Several high level simulation frameworks have
emerged in the recent past or have been constantly ex-
tended (e.g. SystemC [1]) to stay relevant in the continu-
ing trend towards higher abstractions and faster simula-
tions. Instruction Set Simulators (ISS) like Open Virtual
Platforms (OVP) [2] focusses on maximized execution
speed by using morph functions utilizing binary transla-

tion into native host instructions. Thus it allows to test
code compiled for the targeted hardware architecture,
without the need to recompile it for the real hardware
platform. OVP is well supported by several IP vendors
and thus offers a selection of already implemented models
of processors and peripherals (e.g. timer, UART). As a
trade-off for their execution speed, the simulation is only
instruction accurate and there is no native way to improve
accuracy or bring timing information into the simulations.
But virtual prototyping environments like OVP offer in-
depths debugging features compared to the targeted plat-
form in hardware.

The rest of the paper is organized as follows: Section II
introduces other frameworks for design space exploration
and system level design of MPSoCs. Section III gives an
overview of the design environment developed during a
collaborative research project. In section IV the virtual
prototyping platform environment controlled and used by
the design environment is explained. Section V and VI
describe and evaluate the use of the remote design and
prototyping environment by means of two different appli-
cation examples. Section VII concludes the results and
gives an outlook to planned extensions improving the
usability and extensibility.

II. RELATED WORK
The design of and application development for hetero-

geneous MPSoCs is challenging in terms of choosing an
architecture matching all constraints and developing a
distributed application suitable for the chosen architecture.
Therefore, a number of different approaches for design
and simulation environments using frameworks for virtual
prototyping and/or design space exploration in their back
end were developed. SystemC [1] is the most popular
framework and offers the possibility to specify and simu-
late software and hardware blocks of a system at different
levels of abstraction. Besides the option of simulation,
SystemC code can serve as input for High Level Synthesis
(HLS) tools. This allows the development of hardware and
software components on one code base and synthesizing
the hardware blocks directly to emulate systems on
FPGAs. But there are also approaches using Instructions
Set Simulators (ISS) like Open Virtual Platforms (OVP)
[2].

In [3] Ambrose et al. present a framework for rapid pro-
totyping heterogeneous multicore systems in FPGA. They
developed a remote accessible framework named ARGUS
to design systems consisting of pre-designed components
in hardware and software. For evaluation purposes multi-
ple FPGA boards are set up with a server to allow testing

52 http://www.i-joe.org

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

Figure 1. Software Architecture of SimplifyDE and Flow integration

the assembled system remotely. Since the design needs to
be synthesized each time before it can be tested, this ap-
proach is not suitable for rapid prototyping software and
needs real FPGA boards for testing.

The “SystemCoDesigner” developed by Haubelt et al.
[4] accelerates the design space exploration using behav-
ioral SystemC models. It provides a correct-by-
construction generation of rapid prototypes from behav-
ioral model. The framework requires the SystemC models
to be written using the SYSTEMoC library and to only
communicate via SystemC FIFOs. Therefore, the applica-
tion domain is restricted to multi media, networking, and
streaming applications. SystemCo-Designer explores the
design space with annotated SystemC codes and infor-
mation from a component library to select an implementa-
tion. As in [3] the rapid prototyping of the selected im-
plementation is done on a real FPGA board, which causes
the overhead of synthesizing before prototyping.

Zimmermann et al. [5] present a simulation-oriented
framework to overcome this bottleneck. It uses UML-
based descriptions of software and hardware architecture
to generate a virtual execution platform in SystemC. The
hardware platform is specified and configured using
SysML and equipped with additional information. The
software components are wrapped and instantiated inside
the hardware resources. To link the several system com-
ponents the framework uses a layered approach for TLM-
based simulation. This approach needs to annotate soft-
ware codes and runs the software on the host. Therefore, it
has limitations in the development of hardware-related
software stacks. A way to reuse embedded hardware and
software components to improve the system design pro-
cess are outlined in [6].

In [7] Abdi et al. present an “Embedded System Envi-
ronment” (ESE) focusing more on the application devel-
opment. It consists of a set of tools supporting a model-
based design methodology for MPSoCs and provides two
levels of abstraction levels. The first one is the ESE Front
End and provides the automatic generation of TLM-code
(and virtual platforms) and application code. Thus, it sup-
ports the software development process by providing
Software-in-the-Loop in TLM-level. The ESE Back End
represents the second level of abstraction. It automatically
transforms the TLM description of the Front End to a

CAM model (Cycle Accurate Model), and creates and
synthesizes FPGA project files using Xilinx tools. Since
the ESE generates SystemC codes using Timed TLM
(TTLM) and operating systems and related codes are
modeled as sc_modules, the software stacks are executed
on the host natively and not on an emulated or simulated
processor model. This improves the performance of the
simulation but does not allow the development of low
level software stacks due to the incompatibility between
the binary interfaces of the host and the target platform.

To overcome the lack of missing ABI compatibility
Aguiar et al. [8] uses an instruction set simulator (ISS) in
their Hellfire Framework. The framework allows the ap-
plication development for Hellfire OS. It creates a simula-
tion platform for a homogeneous MPSoC, runs simula-
tions and provides analysis facilities even for the operating
system. If one of the developed C applications needs to
run on several cores, the user has to split the code in sev-
eral tasks manually. Magalhaes et al. [9] extended the
Hellfire Framework with web-based interface to generate
the simulation platform and add NoC support to the simu-
lator.

Almeida et al. [10] introduce a cloud based framework
using virtual platforms and functional simulation. Setting
up and compiling virtual platforms allows significantly
shorter cycles in software development and design space
exploration compared to synthesizing FPGA designs.
Another advantage is the missing limitation in terms of
hardware resources. This regards the number of simulta-
neously available boards, but also the constraints given by
the available FPGA like size of block memory (BRAM).
But the proposed framework only allows the design and
exploration of bus based multiprocessor architectures
running small independently working baremetal software
stacks.

III. THE DESIGN ENVIRONMENT
The presented design environment, called SimplifyDE,

was developed during a collaborative research project. Its
original intention is giving the terminal and text based
simulation framework Open Virtual Platforms (OVP) a
graphical user interface (GUI) to increase the productivity.
It allows the user to start quickly with setting up new
virtual platforms for a targeted hardware architecture and

iJOE ‒ Volume 12, Issue 9, 2016 53

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

performing simulations, without the need of a long train-
ing period. Besides the original focus of providing a web-
based GUI for OVP, SimplifyDE is integrated in the
hardware and software flow as shown in Figure 1, target-
ing the FlexTiles Development Platform [11] that is based
on the CompSOC design flow [12] including support for
the realtime operating system CoMik [13] and its commu-
nication services. Thus, SimplifyDE can generate and
export XML-files which describe the hardware and are
compatible to the hardware flow and can be used to syn-
thesize an FPGA design directly (see (a) in Figure 1).
Furthermore, SimplifyDE is integrated in the software
flow [12] developed for the operating system to generate
code templates containing all management code and
hardware abstraction layers (block (b) in Figure 1). This
hides the complexity of this code from the user who only
needs to insert own functions as described later in section
B of this chapter. During the “Compilation” step (c) the
virtual prototyping platform is setup and the “OVP Mod-
el” compiled, and the application codes including the
operating system and drivers are cross-compiled and the
“Application Binary/Bundle” is generated. The final
“Simulation” step (d) runs the simulation, loads the cross-
compiled executables in the virtual platform and processes
the simulation output. The postprocessing is optional and
depends on the chosen test method.

A. Designing an architecture
With the dialog shown in Figure 3 the user can specify

the system view of the targeted hardware architecture. The
depicted example consists of five MicroBlaze processors,
one MB Monitor (explained later in section V.B), a shared
memory and a DVI card. The components are intercon-
nected with a Network-on-Chip in mesh topology and a
dimension of 3 by 2.

New system components can be added by drag-and-
drop one of the available components in the menu bar
(white bar) in an empty square in the schematic represen-
tation. To remove or configure a component the user can
use a context menu opened by right-clicking on the mod-
ule. The user can also define hybrid architectures using
NoCs and busses for communication. For both kinds of
interconnect, options for the transmission frequency and
token size, defining the corresponding parameters for the
communication infrastructure, are available.

Additionally, the system components like processor
systems and video card can be configured. For instance,
the user can select if the processor runs a baremetal appli-
cation or an operating system, in the presented work dif-
ferent versions of CoMik. Furthermore, settings for the
clock frequency and memory size can be made. For the
supported processor system components the user can
specify which peripheral devices like AD-converters,
PWMs and UART are part of the CPU system and the
corresponding memory map. For input and output devices
the user can upload and assign files which can be used
during the prototyping phase, serving as input data to be
processed by the system component or as reference values
for data calculated by it respectively (“Postprocessing” in
Figure 1).

The designed architecture is not only used to create a
corresponding virtual platform. It can also generate and
export an XML file compatible to the hardware design
flow using Xilinx tools. This file contains the description
of the hardware system design generated in the GUI and is

Figure 2. Defining a CSDF-graph with dot

Figure 3. Defining a hardware architecture

compatible to the hardware flow. Thus, the file can be
used as input for this part of the FlexTiles toolchain to
generate and synthesize the hardware platform for the
Xilinx ML-605 or FlexTiles Development Platform [11].

B. Application design
The presented framework is optimized to support the

development of streaming applications based on the Mod-
el-of-Computation (MoC) “Cyclo-Static Dataflow”
(CSDF) [14]. The CSDF MoC is suited for streaming
applications like image processing where there is an end-
to-end requirement for throughput and latency. The actors
in a CSDF-graph represent the computational kernels, and
the edges represent the data transfer between the actors.
The actors and edges can be manual, or automatically
mapped to the MPSoC platform.

In the framework the user can draw the highlevel struc-
ture of the application by defining a CSDF-graph for the
application to be implemented using the dot format. A
preview of the graph corresponding to the current descrip-
tion is drawn and shown to its right as depicted in Figure
2. After saving the dataflow graph, the information can be
used in the mapping dialog shown in Figure 4. Here the
nodes of the CSDF-graph are represented by red squares.
With the list boxes at the bottom edges the corresponding
node can be assigned to one of the processing system
components available in the previously defined hardware
system architecture (Figure 3).

54 http://www.i-joe.org

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

Figure 4. Mapping nodes of CSDF-graph to processing units (some

names are shorten improving readability)

After the definition of the basic architecture of the
streaming application and its initial mapping to the archi-
tecture, the user can create and assign C source files to the
processing units and define common files, used by all
processing units. The text editor integrated in the frame-
work supports syntax highlighting and can be used to
either develop C code from scratch or inserting available
resources by uploading or pasting them in the source files.
To ease the development of CSDF and CoMik related
applications the user can “Generate Templates”. Doing so,
the information given by the user in the dialogs shown in
Figure 2 and Figure 4 is used to generate C source files
containing all operating system, hardware drivers and
communication management code. After the generation
process the user only needs to insert the user code for the
actors, represented by the nodes of the CSDF graph in the
corresponding function prototypes named as the nodes in
the graph.

The implemented code can be cross compiled within
the cloud based design environment. If the compiler pro-
duces errors or warnings, these will be shown in the
browser. After the cross compilation the generated exe-
cutables can be directly executed in the framework on a
virtual platform based on the definition of the system
architecture or downloaded to run the software on hands-
on hardware devices. The virtual platform and the simula-
tion environment used in the framework are introduced
and explained in the next chapter.

IV. SIMULATION ENVIRONMENT

A. Open Virtual Platforms
Compared to SystemC OVP focusses on maximized

execution speed by using morph functions utilizing binary
translation into native host instructions. This allows to test
software by using the application binaries already cross-
compiled for the target architecture without the need of
additional annotations in the code. Therefore, the tested
applications are completely compatible to the Application
Binary Interface (ABI) of the target system. Since several
IP vendors support OVP and a large selection of already
implemented models of processors and peripherals (e.g.
timer, UART, etc.) is available. As a trade-off for the
execution speed, the simulation is only instruction accu-
rate and there is no native way to improve accuracy or
bring timing information into the simulations. On the
other side, OVP allows in-depths debugging of the created
platforms. Thus, GDB can be used to debug all parts of
the system, not only the software running on the CPU and
the register content of the CPU as on a standard embedded
hardware platform. Additionally, it can be used to get
information out of the peripheral devices without the need

PWM Channel 0 disabled
PWM:: Timestep 0: CPRD1 written to 0. This equals a
PWM-frequency of 0 Hz
PWM:: Timestep 0: CPRD1 written to 444. This equals a
PWM-frequency of 18018 Hz
PWM Channel 0 enabled

Listing 1.: Output of the Simulation environment showing enhanced
debugging output of the peripherals

Figure 5. block diagram of the targeted hardware architecture

of specialized tools. So the users do not need an external
programmer to debug.

Furthermore, the virtual platform simulated in OVP ex-
ecutes the code already cross-compiled for the targeted
architecture. This means that no recompilation is needed
to use it later on the real hardware platform. An executa-
ble successfully tested on a virtual platform fulfills all
functional requirements needed to run on the targeted
hardware platform.

B. Enhanced debugging features compared to real
hardware

A big challenge in embedded parallel programming is
the reduced availability of debugging features compared
to tools like Visual Studio used for developing applica-
tions for desktop systems since usually special debug
hardware is needed like the MDM available for Micro-
Blaze processors on Xilinx devices. To open the black
box, most embedded systems represent, the models of the
peripherals used in the virtual platform are extended with
some intelligence and knowledge taken from the data
sheets like the right order of setting bits in the control
registers of the timer for example. Listing 1 shows an
example output of the application scenario introduced in
VI.C where the PWM peripheral gives information about
the currently set frequency and channel for controlling
electrical engines. Other messages give information about
the validity of set values or compliance with values range.
So the peripheral models can give a hint to the user if the
code does not fulfill the specification. This is of special
interest for typical issues occurring when programming
embedded systems like potentially incompatible data
caused by different endiannesses or different handling of
signs, causing in overflows for example. The biggest ad-
vantage of introducing this kind debug information in the
peripheral models of the virtual platform is that there is no
need any more to insert debug sequences and outputs in
the application code. This reduces the overhead during the
development process since the application designer can
focus just on application programming and does not need
deep knowledge about the peripheral devices. Further-

iJOE ‒ Volume 12, Issue 9, 2016 55

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

more, the performance and maintainability of the source
codes are improved since the number of lines of code can
be reduced significantly. This is especially the case, if one
application is developed for several different architectures
which typically leads to the use of complex ifdef-
constructs.

V. APPLICATION DEVELOPMENT – SUSAN

A. The SUSAN application
SUSAN [15] (“Smallest Univalue Segment Assimilat-

ing Nucleus”) is a collection of algorithms performing
edge and corner detection. The SUSAN application, as
depicted in Figure 6 has been extended with a small con-
trast enhance filter and is further parallelized to meet the
required throughput constraints.

The algorithms determine which parts of the image are
closely related to one pixel, by associating each individual
pixel with a local image region which is of similar bright-
ness to that pixel. Doing so, a mask is applied centered in
the pixel of interest. The amount of pixels within the mask
which have a similar intensity is called “Univalue Seg-
ment Assimilating Nucleus” (USAN). Those pixels that
have a USAN smaller than a predefined threshold are
good candidates for being edge points. If the number of
pixels within a USAN is smaller than some (predefined)
threshold, there is a possibility that the pixel of interest is
an edge point. Afterwards the momentums of the USAN
are computed to determine the direction of the edge. A
following thinning removes unwanted edge pointes and
adds edge points where they should be reported but have
not been.

The described methodology is split into tasks as depict-
ed in Figure 6. GetImage reads in a colored image and
converts it to grayscale (brightness). Furthermore, this
task enables data parallelism within an image, the image is
chopped in sections called Minimum Coded Units
(MCUs). Each MCU is transmitted as so-called
MCU_Block. The following task SUSANUsan relays the
MCU_Block to SUSANDirection after processing each
image MCU, together with the calculated
MCU_EdgeStrength. Additionally it calculates a Bright-
ness Lookup Table (BLT) and keeps it locally. To avoid
communication overhead the task SUSANDirection com-
putes a locally stored BLT as well and calculates
MCU_EdgeDirection and relays it to the next task togeth-
er with MCU_Block and MCU_EdgeStrength. SUSAN-
Thin thins the individual edges and transfers the
MCU_Block and the resulting edges to PutImage. This
task finally stitches the MCUs together and draws the
identified edge(s) on the output image.

B. Targeted hardware platform and virtual equivalent
The targeted architecture of the multi-processor layer of

the hardware is depicted in Figure 5 and is an instance of
the FlexTiles Development Platform [11][12]. This design
flow provides a tile based template for creating SoCs for
running applications with mixed time-criticality. It relies
on two complexity-reducing concepts: composability and
predictability to reduce the design and integration com-
plexity of applications. The hardware platform consists of
different types of tiles connected to each other via a Net-
work-On-Chip (NoC) [16]. The NoC, at runtime, can be
configured to provide isolated point-to-point (ptp) connec-

Figure 6. SDF graph of SUSAN Edge Detection

tions with a guaranteed throughput and latency. In this
instance there are five MicroBlaze based processor tiles
used for computation, each tile runs the real-time operat-
ing system CoMik[13]. These tiles communication over
the ptp connections using a software FIFO implementation
and direct memory access (DMA) units. Because the
FlexTiles platform uses distributed shared memory hierar-
chy, the NoC can be replaced by direct memory access in
OVP without violating the models correctness in OVP. In
the OVP model the processor tiles use the processor mod-
el of the Microblaze and an identical memory hierarchy.
The DMA is modeled using an ABI compatible module
and the timer unit was replaced by a model of the Xilinx
timer extended with additional interrupt signals.

The Monitor tile is used for the initial bootstrap of the
platform and after the platform is started it gathers all
debug outputs from the different processor tiles via dedi-
cated debug FIFOs. It sends these messages as (com-
pressed) binary information via UART to a host machine.
The OVP model exactly models this setup (see “MB Mon-
itor” in Figure 3).

The DDR tile consists of an Ethernet interface to trans-
fer data, like application bundles, from outside the plat-
form to the DDR. Application bundles contain a descrip-
tion of the required resources and the executable code.
These bundles once placed at a specific memory location
are processed by the multi-tile loader [17] that instantiates
the new application in the running system. In the simula-
tion model, data can be directly placed into the shared
memory. Therefore, the Ethernet interface is not needed to
load data in the simulation environment. Thus, it is not
part of the simulated hardware platform.

An extension card providing DVI interfaces for stream-
ing video input and output is connected to the FlexTiles
Development Platform. It has a high-performance direct
interface to the DDR memory, so that the video buffers
can be located in the DDR. The framebuffers can then be
directly accessed by the processor tiles connected via the
NoC. The initial configuration of the DVI interfaces like
setting the framebuffer location is done by the Monitor
tile. To support video input and video output in the simu-
lation model as well, it was updated with some additional
peripherals, which are described in the next sections.

C. Video peripherals in the Virtual Platform
For a first validation of the SUSAN edge detection run-

ning on our virtual platform we configured the video pe-
ripheral in file mode. This enables using image files as
input and storing the calculated image as file as well. In
both cases the peripherals appear as Xilinx VGA-/DVI-IP-
core and the same driver code can be used as on the real
hardware platform. The validation with image files has the
advantage of reproducible results in case of misbehavior.
Furthermore, it is possible to stop the execution of the
application and use debugging tools like GDB, which is

!""#$!""#%

!""#&

!""#'!""(

!)*+,-.)

/01-231-2 /01-2456)7
*582

/01-29:52 "0*+,-.);<3=>?87@

;<3=>?87@

;<3=AB.)#
/*6)2.*:

;<3=>?87@

;<3=AB.)#
/*6)2.*:

;<3=AB.)#
456)7*582

;<3=>?87@

;<3=AB.)#
456)7*582

!A9+;!=1*-*)

"6)"687)11
C5?*)6 ;<3=>?87@

/01-231-2
/01-2456)7

*582

;<3=>?87@

;<3=AB.)#
/*6)2.*:

;<3=>?87@

;<3=AB.)#
/*6)2.*:

;<3=AB.)#
456)7*582

56 http://www.i-joe.org

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

not possible when a camera delivers a continuous input
stream. Since the OVP model potentially runs faster than
the physical FPGA prototype, this approach has another
advantage: The next image can be read in directly after the
calculation for the previous image has finished. This
avoids slowing down the simulation to be compatible to
the frame rate of an incoming stream provided by a cam-
era, and therefore shortens the test cycles in the early
phase of the validation process. After the successful vali-
dation of the implemented SUSAN edge detection han-
dling files, the peripherals are adapted to access hardware
devices connected to the host machine as described in
[18]. This validates the output of the application running
in the simulated environment with the output of the same
application running on an FPGA-board by simply compar-
ing the images shown in the SDL window (“connected” to
OVP platform) and in the screen (connected to FPGA)
respectively.

D. Results
The SUSAN application was used to validate the com-

plete design environment. Using SimplifyDE the applica-
tion was ported to the target platform and validated for
functional correctness. In a second step modification
where made to the application so it efficiently uses the
chosen hardware platform. Because this part of the appli-
cation design could be executed on the generated OVP
platform model of the hardware it allowed for quick itera-
tions and verification of the changes like; parallelizing
part of the application, increasing block sizes and the
addition of a contrast enhance filter. Once the result was
satisfactory the generated application bundle was ran on
the synthesized version of the hardware on the FlexTiles
FPGA board, producing the desired output. Important to
note is that the applications running on the OVP platform
and the final FPGA prototype are completely identical and
do not require recompilation. Even the underlying operat-
ing system modifications where limited to add support for
a different timer used on OVP.

VI. EATURES SUPPORTING ENGINEERS’ TRAININGS AND
COLLABORATIONS

Besides the features described in the previous chapter
which support system designers and application develop-
ers in designing and programming MPSoCs, we extended
SimplifyDE with some features focusing on engineers’
training and collaboration, described in the subsection A.
The advantages of web based remote physical labs and the
reasons for improved understanding of modeling and
programming can be found in [19]. The educational bene-
fits of using a virtual IDE for programming is discussed in
[20] and [21]. The section B presents how to extend de-
sign projects with unit tests, which allows using the
framework for first experience and education purposes, as
well as for collaborative work on complex MPSoC appli-
cations. The final subsection C gives a short overview
about collected experience in using the design environ-
ment in workshops and largescale trainings. An overview
of remote laboratory for embedded systems design and the
advantage of hardware-software integration and testing is
given in [22].

A. User management and project protection
To allow collaboration on one hand and provide the op-

portunity of using the framework in trainings for MPSoC

Figure 7. Access rights in projects settings

programming, a specialized user management system is
integrated in SimplifyDE. It allows the definition of
groups and users, where one user can be assigned to sev-
eral groups. To ease the creation of user accounts and the
group assignments by automation, a CSV file can be im-
ported. This feature is of special interest when the frame-
work is used in largescale trainings as described later in
section C.

The access rights specifies the use of the particular parts
of the flow, described in chapter III, for groups of users.
The creator of a design project can specify these settings
for each project, as shown in Figure 7. The depicted con-
figuration for the project “susan” allows only the group
“participants” to use the project. Only users of groups
listed in “Group access settings” can copy the project for
further processing, here the group “participant”. However,
even in their own copy they cannot change the defined
hardware architecture and dataflow. As can be seen, the
different “visibility” setting correspond to the particular
steps of the flow illustrated in Figure 1. For the example
shown it means that the users cannot use part (a) and the
first half of part (b). One real-world scenario for those
restrictions is the use for training purposes. An expert can
create an example project and provide them to participants
of a workshop about programming of MPSoCs. In this
example the participants can work with the provided
source codes and change the mapping of tasks to the pro-
cessors. If several users need to work on one project with
full access rights, they must be members of the same
group.

B. Enhance integrated projects with unit tests
Another feature the design environment provides is the

opportunity to support training sessions for application
developers with standard sample solutions. Here the own-
er of an integrated project can deliver a project including
all codes to other users while some codes are only availa-

iJOE ‒ Volume 12, Issue 9, 2016 57

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

ble in the background and not visible to the users. This is
possible due to the sequence the Web Front-End process
files to compile the applications and the virtual platform,
illustrated in Figure 8.

Each time the Web Front-End triggers operations pro-
cessing files, it checks if a temporary folder for this user
session already exists. If this is not the case, it copies a
template folder containing all folder structures, Makefiles
and shared libraries needed by the Back-End to perform
all operations. Afterwards, the sequence generates a list of
all files created during the “Application Development”
step (Figure 1, part (b)). Since files uploaded, created or
edited during this step are only stored in the database of
the SimplifyDE, the framework iterates over all files and
stores them in the private copy of the template folder if a
non-empty version is available in the database. Therefore,
empty files are not loaded from the database and potential-
ly existing files in the private template folder are not re-
placed. Since the WebGUI only shows information stored
in the database, this constraint allows the project owner to
provide source files which are not visible to users who
copied the project. Furthermore, the users can develop
their own codes within the design environment and re-
place the codes partially.

During workshops and training sessions this feature can
accelerate achieving learning results, since it allows to test
single modules of a complexer application very early. It
allows the participants to test their particular modules (i.e.
for controlling ADCs to read in sensor data), even if they
have not implemented the entire software yet. Missing
source files are replaced by the framework during the
cross-compilation process. In training scenarios where
several persons should work collaborative on a bigger
project, this feature allows the participants to test their
modules independently before integrating them in one
bigger software system.

C. Use in engineers’ trainings and collaborative work
The design and simulation environment was used in

several trainings and workshops on conferences to present
the benefits achieved by using virtual platforms for rapid
prototyping and to give hands-on experiences to partici-
pants. Usually those workshops have a limited number of
participants. To highlight the benefits of providing Simpli-
fyDE as web-based service, this section gives a brief
overview over a project-based training and focuses on the
use of this framework in a largescale training with several
sessions where participants need to work collaborative. A
complete description of the course and teaching session
and its procedure can be found in [23]. Other approaches
to overcome these limitations by using a learning man-
agement system can be found in [24] and [25].

At our university we provide hardware related pro-
gramming laboratories for the faculties of electrical engi-
neering and mechanical engineering, with up to 350 stu-
dents participating. In one of the laboratories at the faculty
of electrical engineering and information technologies the
students have to program the hardware abstraction layer
(HAL) of a two-wheeled, self-balancing vehicle. The huge
amount of students leads to a bottleneck in programmable
hardware platforms, since only a limited number of hard-
ware platforms can be provided. However, access to the
platform during programming is needed for debugging,
especially for hardware related programming. Therefore, a
virtual platform is set up, that can be accessed at any time

timestep: 0..........
<...>
 timestep: 10000......
*** simulation finished ***
<...>
Info
Info --
Info SIMULATION TIME STATISTICS
Info Simulated time : 105.35 seconds
Info User time : 2.89 seconds
Info System time : 0.05 seconds
Info Elapsed time : 2.95 seconds
Info Real time ratio : 35.77x faster
Info --

Listing 2: Output of the Simulation environment showing the speedup
compared to real hardware

!"#$%&'&()
*%+,"&)-&"'.",/

0&"'.")."#$%&'&()
%+,"&)&%#)

."#$+'.")*%+,"&

1%!&233"&)*&%#)

4"5)6&%1.781,

9%',)+2:.)%*)*2+":
;$"&)$&%-"::%&<

(":

62+")21)+2:./

9%',)*2+")*&%#)
,'.'5':"=)&"$+'-")2.)
21)."#$%&'&()*%+,"&

(":

>"#%?")*2+")*&%#)+2:.

0%#$2+")'++)
-%,":)21)

."#$%&'&()*%+,"&

1%

62+")21),'.'5':")
"#$.(/

1%

(":

@::"#5+")'1,)
-%#$2+")A2&.B'+)

C+'.*%&#

Figure 8. Sequence of the compilation process

and any place for debugging during the laboratories and
home programming. On the other hand, our virtual plat-
form provides more options in terms of debugging than
the real hardware.

Listing 2 shows one of the biggest advantages the use
of a virtual platform has in our scenario. The models of
the input and output devices, in this scenario the ADCs
and PWMs, can run with significantly higher sample rates
than possible in the real hardware platform. This allows to
simulate a test drive, needing about 105 seconds in reality,
in less than 3 seconds. So the use of the virtual platform
not only avoids the bottleneck of insufficient number of
available hardware devices. It allows much shorter testing
and debugging cycles.

Further acceleration of testing is provided by the option
of testing single modules in the framework. It allows the
participants to test their particular modules (i.e. for con-
trolling the ADCs), even if they have not implemented the
entire software yet. Source files, not yet implemented, are
replaced by the framework during the cross-compilation
process. This allows the students to test their modules
independently before integrating them in one software
system. Additionally, the prototyping environment deliv-
ers four different outputs after postprocessing the log-
information: the standard output of the compiler showing

58 http://www.i-joe.org

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

potential warnings and error, an output of the simulator
showing the debugging hints of the peripheral models and
some more information about the overall simulation run.
The other two outputs compare the data pre-recorded
during test drives with the simulated values for the PWM
and the GPIOs including information about the standard
deviation. This allows to check quickly if the values calcu-
lated by the students’ codes are correct. A complete de-
scription of the hands-on experience in the laboratory and
the usage of the simulator as well as test phases and eval-
uation can be found in Werner et al. [26]. After a success-
ful simulation the executable can be downloaded and used
to program the real hardware platform.

VII. CONCLUSION AND ONGOING WORK
This paper presents the cloud-based design environment

SimplifyDE providing an intuitive GUI for designing
system architectures for virtual and FPGA-based single
and multi-processor designs. Besides the option of gener-
ating files compatible to the Xilinx toolflow to support the
synthesis of FPGA designs directly, the design environ-
ment generates a vitual platform based on Open Virtual
Platforms (OVP) which is fully compatible to the FPGA
design in terms of software and application development.
Thus, SimplifyDE supports the cross-platform develop-
ment of embedded control applications including operat-
ing systems, drivers and other complex software stacks
within the browser. Additionally, with CSDF a widely
used Model of Computation for streaming applications is
supported by generating C template files, where the user
only needs to add code executed by the actors. The code
responsible for handling and controlling the underlying
hardware is hidden from the developer. The entire source
code can be compiled, tested and debugged inside the
cloud-based IDE. In doing so, the models of the peripheral
devices used in the virtual platform support the user with
further information about the internal states of the periph-
erals which opens the black box, the physical embedded
system usually represents. This helps shorten the devel-
opment cycles and keep design complexity under control.

Secondary, this paper presents the successful transfer of
results obtained in a collaborative research project (Sim-
plifyDE and the ABI-compatible simulation based on
OVP) in engineers’ training by using the framework in
workshops for advanced users and in a hardware-related
programming laboratory participated by more than 300
undergraduate students in electrical and mechtronic engi-
neering. Especially the students at our institute use the
rapid prototyping features of the framework extensively.
Thereby, they benefit from the enhanced debugging fea-
tures of the virtual platform improving their learning curve
and its fast execution, resulting in shorten test cycles.

The work on SimplifyDE is still on-going. We will in-
tegrate some more assistance features improving the sup-
port in defining unit tests in own projects. Another task is
extending the back end layer of the simulation environ-
ment with other simulation frameworks like SystemC and
Simulink to provide a fully integrated co-simulation envi-
ronment.

REFERENCES
[1] SystemC. [Online]. Available: http://www.accellera.org/home/
[2] Open virtual platform. [Online]. Available: www.ovpworld.org

[3] Ambrose, J.A.; Tuo Li; Murphy, D.; Gargg, S.; Higgins, N.;
Parameswaran, S., "ARGUS: A Framework for Rapid Design and
Prototype of Heterogeneous Multicore Systems in FPGA," in
VLSI Design (VLSID), 2015 28th International Conference on ,
vol., no., pp.29-34, 3-7 Jan. 2015, http://dx.doi.org/10.1109/
VLSID.2015.10

[4] C. Haubelt, T. Schlichter, J. Keinert and M. Meredith, "System-
CoDesigner: Automatic design space exploration and rapid proto-
typing from behavioral models," Design Automation Conference,
DAC 2008. 45th ACM/IEEE, Anaheim, CA, 2008.
http://dx.doi.org/10.1145/1391469.1391616

[5] J. Zimmermann, S. Stattelmann, A. Viehl, O. Bringmann and W.
Rosenstiel, "Model-driven virtual prototyping for real-time simu-
lation of distributed embedded systems," 7th IEEE International
Symposium on Industrial Embedded Systems (SIES'12), Karls-
ruhe, 2012, pp. 201-210. http://dx.doi.org/10.1109/SIES.2012.
6356586

[6] A. Parkhomenko, A. Sokolyanskii, V. Shepelenko, Y. Zalyubov-
skiy and O. Gladkova, "Reusable solutions for embedded systems
design," 2016 13th International Conference on Remote Engineer-
ing and Virtual Instrumentation (REV), Madrid, 2016.
http://dx.doi.org/10.1109/rev.2016.7444491

[7] S. Abdi, Y. Hwang, L. Yu, H. Cho, I. Viskic and D. D. Gajski,
"Embedded system environment: A framework for TLM-based
design and prototyping," Proceedings of 21st IEEE International
Symposium on Rapid System Protyping, Fairfax, VA, 2010.
http://dx.doi.org/10.1109/RSP.2010.5656342

[8] A. Aguiar and F. Hessel, "Virtual Hellfire Hypervisor: Extending
Hellfire Framework for embedded virtualization support," Quality
Electronic Design (ISQED), 2011 12th International Symposium
on, Santa Clara, CA, 2011, pp. 1-8. http://dx.doi.org/10.1109/
ISQED.2011.5770725

[9] F. G. Magalhaes, O. Longhi, S. J. Filho, A. Aguiar and F. Hessel,
"NoC-based platform for embedded software design: An extension
of the Hellfire Framework," Thirteenth International Symposium
on Quality Electronic Design (ISQED), Santa Clara, CA, 2012.
http://dx.doi.org/10.1109/ISQED.2012.6187480

[10] Marchesan Almeida, G.; Bellaver Longhi, O.; Bruckschloegl, T.;
Hubner, M.; Hessel, F.; Becker, J., "Simplify: A Framework for
Enabling Fast Functional/Behavioral Validation of Multiprocessor
Architectures in the Cloud," in Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE
27th International , vol., no., pp.2200-2205, 20-24 May 2013,

[11] SMT166 – Development Board, version 1.01 (8th February 2013),
Sundance, www.sundance.com/prod_info.php?board=smt166

[12] Sven Goossens, Benny Akesson, Ashkan Beyranvand Nejad,
Andrew Nelson, Martijn Koedam, and Kees Goossens, The
CompSOC design flow for virtual execution platforms; Invited
paper, in Proc. FPGA World, September 2013.

[13] Nelson, A.; Nejad, A.B.; Molnos, A.; Koedam, M.; Goossens, K.,
"CoMik: A predictable and cycle-accurately composable real-time
microkernel," Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014 , vol., no., pp.1,4, 24-28 March
2014

[14] G. Bilsen et al., “Cycle-static dataflow,” IEEE Trans. Signal
Process., vol. 44, no. 2, pp. 397–408, 1996.
http://dx.doi.org/10.1109/78.485935

[15] S. M. Smith, J. M. Brady; “SUSAN - A New Approach to Low
Level Image Processing”, International Journal of Computer Vi-
sion (Vol. 23, 1995, p. 45-78); DOI: 10.1.1.24.2763

[16] Radu Stefan, Anca Molnos, and Kees Goossens, dAElite: A TDM
NoC supporting QoS, multicast, and fast connection set-up. In
IEEE Transactions on Computers, 2012.

[17] Shubhendu Sinha, Martijn Koedam, Gabriela Breaban, Andrew
Nelson, Ashkan Nejad, Marc Geilen, Kees Goossens, Composable
and Predictable Dynamic Loading for Time-Critical Partitioned
Systems on Multiprocessor Architectures, Elsevier J. on Micro-
processors and Microsystems (MICPRO), November 2015.

[18] S. Werner, L. Masing, F. Lesniak and J. Becker, "Software-in-the-
Loop simulation of embedded control applications based on Virtu-
al Platforms," 2015 25th International Conference on Field Pro-
grammable Logic and Applications (FPL), London, 2015,
http://dx.doi.org/10.1109/fpl.2015.7294020

iJOE ‒ Volume 12, Issue 9, 2016 59

PAPER
CLOUD-BASED DESIGN AND VIRTUAL PROTOTYPING ENVIRONMENT FOR EMBEDDED SYSTEMS

[19] S. Peter, F. Momtaz and T. Givargis, "From the browser to the
remote physical lab: Programming cyber-physical systems," Fron-
tiers in Education Conference (FIE), IEEE, El Paso, TX, 2015.
http://dx.doi.org/10.1109/fie.2015.7344228

[20] D. Pawelczak and A. Baumann, "Virtual-C - a programming
environment for teaching C in undergraduate programming cours-
es," 2014 IEEE Global Engineering Education Conference
(EDUCON), Istanbul, 2014, pp. 1142-1148
http://dx.doi.org/10.1109/EDUCON.2014.7096836

[21] M. Cooper, “Remote laboratories in teaching and learning – issues
impinging on widespread adoption in science and engineering ed-
ucation” , International Journal of Online Engineering (iJOE), Vol
1 - No 1, 2005

[22] A. V. Parkhomenko, O. Gladkova, E. Ivanov, A. Sokolyanskii, S.
Kurson, “Development and Application of Remote Laboratory for
Embedded Systems Design”, International Journal of Online En-
gineering (iJOE), Vol 11 - No 3, 2015

[23] Tradowsky, C.; Lauber, A.; Werner, S.; Beuth, T.; Mueller-Glaser,
K. D.; Sax, E., "Porter for the ITIV LABS – Objective-Related
Engineering Education in an Undergraduate Laboratory", in Jour-
nal of Teaching and Education, vol. 4, pp. 45–58, 2015

[24] T. Richter, P. Grube and D. Boehringer, "Integrating an online
programming lab into ILIAS," Remote Engineering and Virtual
Instrumentation (REV), 2014 11th International Conference on,
Porto, 2014, pp. 31-34; http://dx.doi.org/10.1109/REV.2014.
6784187

[25] T. Richter and D. Boehringer, "ViPLab ??? An online program-
ming lab," 2016 13th International Conference on Remote Engi-

neering and Virtual Instrumentation (REV), Madrid, 2016, pp.
269-270. http://dx.doi.org/10.1109/rev.2016.7444479

[26] S. Werner, A. Lauber, J. Becker, E. Sax, „Cloud-based Remote
Virtual Prototyping Platform for Embedded Control Applica-
tions”, In 13th International Conference on Remote Engineering
and Virtual Instrumentation (REV), 2016
http://dx.doi.org/10.1109/REV.2016.7444459

AUTHORS
S. Werner is with Karlsruhe Institute of Technology

(KIT), Karlsruhe, Germany.
A. Lauber is with Karlsruhe Institute of Technology

(KIT), Karlsruhe, Germany.
M. Koedam is with Eindhoven University of Technol-

ogy (TUE), Eindhoven, Netherlands.
J. Becker is with Karlsruhe Institute of Technology

(KIT), Karlsruhe, Germany.
E. Sax is with Karlsruhe Institute of Technology (KIT),

Karlsruhe, Germany.
K. Goossens is with Eindhoven University of Technol-

ogy (TUE), Eindhoven, Netherlands.

Submitted 12 August 2016. Published as resubmitted by the authors
14 September 2016.

60 http://www.i-joe.org

