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The problems of high linear conductivity in an electric field, as well as nonlinear conductivity, are

considered for plasma-like systems. First, we recall several observations of nonlinear fast charge

transport in dusty plasma, molecular chains, lattices, conducting polymers, and semiconductor

layers. Exploring the role of noise we introduce the generalized Fokker-Planck equation. Second,

one-dimensional models are considered on the basis of the Fokker-Planck equation with active and

passive velocity-dependent friction including an external electrical field. On this basis, it is possible

to find the linear and nonlinear conductivities for electrons and other charged particles in a homo-

geneous external field. It is shown that the velocity dependence of the friction coefficient can lead

to an essential increase of the electron average velocity and the corresponding conductivity in com-

parison with the usual model of constant friction, which is described by the Drude-type conductiv-

ity. Applications including novel forms of controlled charge transfer and non-Ohmic conductance

are discussed. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917327]

I. INTRODUCTION

According to the classical conductance theory due to

Paul Drude, Ohmic currents are proportional to external field

and inversely proportional to the friction constant mc0,1

where m is the mass and c0 the collision frequency.

The elementary Drude theory calculates the drift veloc-

ity vD from the equilibrium between electrical field and fric-

tion forces

eE ¼ mc0vD; vD ¼
eE

mc0

; (1)

where c0 is the velocity-independent friction coefficient. The

Drude current and the corresponding conductivity are, there-

fore, equal to

jD ¼ nevD ¼
ne2E

mc0

; rD ¼
ne2

mc0

: (2)

Many systems do not obey such a simple dependence but

show complex nonlinear dependence. For electrolytes, a

strong increase of the conductivity with the field was first

observed by Max Wien and is known as the Wien effect, and

Hans Falkenhagen and Lars Onsager have contributed to the

theoretical interpretation, see Ref. 2. Nonlinear effects in

strong electric fields are also known from plasma physics.3,4

Further examples of nonlinear conduction phenomena were

studied experimentally and theoretically for special poly-

mers.5,6 In dusty plasmas, nonlinear effects can be observed,

in particular, in relation to the ion drag force.7

In typical Drude-like conductors as electrolytes, par-

tially ionized plasmas, semiconductors and metals charge

velocities at a typical field strength of 1 V/cm are smaller

than 1 m/s. In the more exotic conductors, we have in mind

here as special PDA-polymers5 and in dusty plasmas the

characteristic velocities can reach up to 1000 times higher.

For this reason, the field values we explore may be poten-

tially important for the development of new fast conductors

very different from superconductors.

Typically high drift velocities are nonlinear and non-

Ohmic. Non-Ohmic high drift velocities depending on the

field strength were observed experimentally in many differ-

ent systems.5,7

Theoretical models were developed in part based on

Fokker-Planck models with complicated friction and diffusion

functions including negative friction.8–10 Nonlinear non-

Ohmic conductance phenomena were studied experimentally

and theoretically also in nonlinear driven electric circuits.11–13

Different approaches in the framework of polaron theory were

given in Refs. 14–19, and this list could easily be extended.

We note that the low-field drift corresponds to a high con-

ductivity which may be much higher then the Drude conduc-

tivity. Here, we study the conductivity in the framework of

Fokker-Planck theory. More precisely, we consider different

physical systems. The electron conductivity, which dominat-

ing in the total conductivity for many systems is associated

with random neutral or charged scatterers. For the case of neu-

tral scatterers, the Fokker-Planck equation is valid for the dis-

tribution function of momentum magnitude, which varies

slowly (in contrast with the angle variable). For charged scat-

terers, a small transferred momentum approximation is always

valid for weakly non-ideal plasma systems due to the domina-

tion of small angle scattering. However, the generalizeda)Email: satron@mail.ru
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Fokker-Planck equation is also applicable to, e.g., ionic con-

ductivity (or to heavy dust particles in dusty plasmas) due to a

small transferred momentum for Coulomb scatterers, as well

as for the case of light neutral scatterers due to the mass differ-

ence. The generalized Fokker-Planck equation based on the

probability transition function W(q, p) which describes the

probability that a particle with momentum p passes from point

p0 to point p per unit time by transferring the momentum q ¼
p0 � p to the ambient medium (e.g., scatterers). For systems

far from equilibrium, the p-dependence of the friction and dif-

fusion coefficient conditioned by the p-dependence of the

function W(q, p) can play a crucial role (see, e.g., Refs. 8, 16,

and 19). The development of this approach for different p-de-

pendent friction coefficients is considered below to show the

opportunity to reach a relatively high conductivity by varying

the p-dependence of the friction coefficient. In particular, the

velocity-dependent friction coefficient can lead to a long tail

in the velocity distribution function of carriers. We should

stress that the considered problems are also closely related to

motion of living objects.

II. FOKKER-PLANCK EQUATION IN A
HOMOGENEOUS EXTERNAL ELECTRIC FIELD

In the general homogeneous case for collisions, leading

to normal diffusion, we use the equation for particles with

charge �e (e is positive) and mass m

@f v; tð Þ
@t

� eE

m

@f v; tð Þ
@v

¼ @

@vi
c vð Þvif v; tð Þ þ

@

@vj
Di;j vð Þf v; tð Þ

� �
: (3)

Let us consider pure formally the one-dimensional case. The

distribution is the sum of two parts: fþ with velocity parallel

to E, and f� with velocity antiparallel to E

@f a v; tð Þ
@t

� a
eE

m

@f a v; tð Þ
@v

¼ @

@v
c vð Þvf a v; tð Þ þ

@

@v
D vð Þf a v; tð Þ

� �
; (4)

where a ¼ 6 and everywhere the variable v changes from 0

to1, since the direction of velocity is taken into account by

the sign of a.

For E¼ 0, the stationary solution fsðvÞ is not dependent

on a (fþs ¼ f�s ¼ f 0
s ðvÞ) and reads

f a
s v; tð Þ � f 0

s vð Þ ¼ C

D vð Þ exp �
ð

vc vð Þ
D vð Þ dv

� �
: (5)

Here, C is the normalization constant.

Since the values cðvÞ and D(v) depend on modulus v and

E¼ 0 we arrive at the normalization condition

ð1
0

f�s vð Þdvþ
ð1

0

fþs vð Þdv ¼ 2

ð1
0

f 0
s vð Þdv ¼ n;

n ¼ 2C

ð1
0

dv

D vð Þ exp �
ðv

0

v0c v0ð Þ
D v0ð Þ

dv0

 !
: (6)

If cðvÞ and D(v) are not dependent of v we find that the

equilibrium condition satisfies the Einstein relation c0=D0 ¼
m=T and normalization leads to the following equality

(x � v2=v2
0; v2

0 � 2D0=c0):

C ¼ nD0

ffiffiffiffiffiffiffiffi
m

2pT

r
f 0
s ¼ n

ffiffiffiffiffiffiffiffi
m

2pT

r
exp � c0v

2

2D0

� �

¼ nffiffiffi
p
p

v0

exp �x2ð Þ: (7)

III. INFLUENCE OF A HOMOGENEOUS EXTERNAL
ELECTRIC FIELD: GENERAL SOLUTION IN
ONE-DIMENSIONAL CASE

Let us generalize solution (5) for the case of the system

in an external homogeneous field. The general stationary so-

lution can be easily found for arbitrary v-dependence of the

friction and diffusion coefficients cðvÞ and D(v) by substitu-

tion the value vcðvÞ þ aeE=m instead vcðvÞ

f a
s vð Þ ¼ C0a

D vð Þ exp �
ð

vc vð Þ þ aeE=m

D vð Þ dv

 !
: (8)

For the case of constant cðvÞ ¼ c0 and DðvÞ ¼ D0 (this case

corresponds to equilibrium if the Einstein relation c0=D0 ¼
m=T is fulfilled and the electric field E¼ 0) the distribution

function is equal to

f a
s vð Þ ¼ C0a

D0

exp � v2c0

2D0

� a
eEv

mD0

� �
: (9)

By using the normalization condition we find

C0þ ¼ C0� � C0 ; C0 ¼ n
ffiffiffiffiffiffiffiffiffiffi
D0c0

p ffiffiffiffiffiffi
2p
p exp �e2E2=2c0m2D0

� �
:

(10)

For the case of a weak electric field, (7) reads as

f a
s vð Þ ¼ C0

D0

exp � v2c0

2D0

� �
1� a

eEv

mD0

� �
; (11)

where C0 ¼ C0ðE ¼ 0Þ due to linearity of the approximation

is determined by equality

C0 E ¼ 0ð Þ ¼ n
ffiffiffiffiffiffiffiffiffiffi
D0c0

p ffiffiffiffiffiffi
2p
p ; (12)

which we have to use for calculating of the current.

Then, the current in the linear approximation (11) and

(12) equals

j ¼ �e
X

a

ð
dvvaf a

s vð Þ ¼ �e

ð
dvv fþs vð Þ � f�s vð Þ
	 


¼ e2E
2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0c0=2p

p
mD2

0

ð1
0

dvv2 exp � v2c0

2D0

� �
¼ Ee2n=mc0:

(13)

This result corresponds to the Drude formulation.

Now we calculate the nonlinear stationary current
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j ¼ �e
C0

D0

ð1
�1

dvv exp � v2c0

2D0

� eEv

mD0

� �

¼ e2E
C0

mc0

ffiffiffiffiffiffiffiffiffiffi
2p

c0D0

s
exp

e2E2

2m2D0c0

" #
: (14)

By use of the normalization function (10), we again arrive at

the Drude result

j ¼ e2nE=mc0: (15)

Therefore, the Fokker-Planck equation for the one-

dimensional case with constant coefficients c0 and D0 even for

a strong homogeneous electric field leads to a current that is

linearly dependent on E and to the Drude conductivity,

although the velocity distribution is a nonlinear function of E.

On other hand, we know that in a plasma there are run-

ning electrons due to a decrease of the friction force at high

velocities (which behaves as 1=v2, see, e.g., Ref. 20).

Therefore, to describe real systems we have to extend our con-

sideration on the case of the velocity-dependent friction coef-

ficient. Such type of extension can be applied to various

physical systems, e.g., plasmas or polarons in solid matter, or

dust particles in a dusty plasma. For each case, we should

specify the particular velocity dependence of the friction coef-

ficient. An example of such a system is considered in Sec. IV.

IV. THE MODEL WITH A VELOCITY-DEPENDENT
PASSIVE FRICTION

On the basis of the previous arguments in the classical

case, we have considered a non-equilibrium situation to devi-

ate from the Einstein relation and from the picture described

above.

Let us consider the model of friction for the classical

non-equilibrium stationary system of charged particles,

when the friction coefficient is positive for all velocities (so-

called passive friction)

c vð Þ ¼ c0

1þ lv2

1þ bv4
; D ¼ D0: (16)

The decrease in the friction coefficient for high velocities is

typical for Coulomb systems and associated with the velocity

decreasing the effective friction force acting on the carrier.20

Then the distribution (5) (for the case E¼ 0) reads

fs vð Þ ¼ C

D0

1

1þ bv4ð Þc0l=4bD0
exp � c0

2D0

ffiffiffi
b
p arctg

ffiffiffi
b

p
v2

� �
;

(17)

where C is determined by the normalization condition (the

substitution f �
ffiffiffi
b
p

v2 is used)

C ¼ nD0b
1=4ð1

0

df

f1=2 1þ f2
� �c0l=4bD0

exp � c0

2D0

ffiffiffi
b
p arctgf

� � : (18)

The limiting forms for the function fsðvÞ are (it is easy to ver-

ify that the limits b! 0 and v!1 are not transposed)

lim
v!1

fs vð Þ ¼ C

D0

1

1þ bv4ð Þc0l=4bD0
exp � c0

ffiffiffi
p
p

2
ffiffiffiffiffiffi
2b
p

D0

 !

’ C0

vc0l=bD0
; (19)

lim
v!0

fs vð Þ ’ C

D0

exp � c0v
2

2D0

� �
’ C

D0

1� c0v
2

2D0

� �
: (20)

Obviously, the distribution has a long tail in velocity space

and in this sense is anomalous.21–24

To find the stationary solution in a homogeneous electric

field, we have to apply the substitution cðvÞ ! cðvÞ þ
ðaeE=mvÞ in (3) and then calculate the distribution. Instead

(9), taking into account (8) (for D¼D0), we find the general

(nonlinear on E) solution for the considered form (16) of the

friction cðvÞ

f a
s vð Þ ¼ Ca

D0

1

1þ bv4ð Þc0l=4bD0
exp � c0

2D0

ffiffiffi
b
p arctg

ffiffiffi
b

p
v2

� �

� exp � aeEv

mD0

� �
: (21)

Let us at first investigate the linear response on the

external field E. Then the part of the distribution f
ð1Þ
s ðvÞ,

which determines the linear conductivity reads

f 1að Þ
s vð Þ ¼ �aE

eC

mD2
0

v

1þ bv4ð Þc0l=4bD0

� exp � c0

2D0

ffiffiffi
b
p arctg

ffiffiffi
b

p
v2

� �
; (22)

and the current equals

j ¼ Ee2 C

mD2
0b

3=4

ð1
0

dg
g1=2

1þ g2ð Þc0l=4bD0

� exp � c0

2D0

ffiffiffi
b
p arctg g

� �
; (23)

where the normalization constant Ca ¼ C is determined by

Eq. (18).

The conductivity r � rðp; qÞ for this system can be

written in the form

r p;qð Þ

¼rD

c0

ð1
0

dg
g1=2

1þg2ð Þc0l=4bD0
exp � c0

2D0

ffiffiffi
b
p arctgg

� �

D0b
1=2

ð1
0

df

f1=2 1þf2
� �c0l=4bD0

exp � c0

2D0

ffiffiffi
b
p arctgf

� �:

(24)

If we introduce the dimensionless constants p ¼ c0l=4bD0

and q ¼ c0

2D0

ffiffi
b
p , we find

r p; qð Þ
rD

¼ 2qI p; qð Þ;

I p; qð Þ �

ð1
0

dg
g1=2

1þ g2ð Þp exp �q arctg gð Þð1
0

df

f1=2 1þ f2
� �p exp �qarctg fð Þ

:

(25)
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As is easily verify by taking b! 0 (q!1) in the function I
only a very small f; g are essential and in the exponential func-

tion in (25) we have to expand arctg f and arctg g. The expres-

sions ð1þ f2Þp; ð1þ g2Þp can be replaced by 1, taking into

account that in p the value l=b is finite if we suppose l ¼
Const � b (or l=b! 0). Then, we arrive at Iðp; qÞ ¼ 1=2q. This

means that such type approximation leads to rðp; qÞ ¼ rD, as

above in Eq. (15). However, this approximation is not relevant,

since large velocity values always play a role.

Figure 1 shows (in different views) the surface

rðp; qÞ=rD ¼ 2qIðp; qÞ (on the figures r0 � rD). We should

mention that for small values of f; g the integral contains a

singularity in the nominator if p � 0:75. As can be seen in

the figures for large p and q the ratio r=rD tends to unity.

The above consideration leads to the essential conclu-

sion that the conductivity linearized in E can increase for

certain parameter values of the velocity dependent passive

friction (in comparison with a velocity-independent friction

coefficient).

V. FOKKER-PLANCK THEORY OF DRIVEN MOTION

A. Stationary distributions of driven particles

In this section, we consider particle motion in the case

of a velocity-dependent friction coefficient which may be

negative at small velocities. This kind of motion in non-

equilibrium systems is often called the driven motion or

active motion. As is clear, there is a certain velocity V0 for

such motion, for which the friction coefficient changes sign

cðV0Þ ¼ 0.

Using the Gaussian white noise as fluctuation source,

the distribution function of driven charged particles f ðr; v; tÞ
obeys the Fokker-Planck equations (3) and (4) with a

velocity-dependent friction coefficient which is negative for

some values of the velocity10,25 (see, e.g., Figure 2). For

typical examples, the distribution function deviates from

Boltzmann and has two maxima at some finite velocities

6V0, as shown in Figure 3 (see, e.g., Refs. 10 and 26). We

assume below a purely thermal noise DðvÞ ¼ D0 ’ c0T=m
and define a characteristic velocity by the condition

c V0ð Þ
D V0ð Þ

¼ 0: (26)

In this case, fsðvÞ has maxima different from zero.

Several authors as, see, e.g., Ref. 27 have proposed to

introduce a so-called non-equilibrium potential sometimes

also referred to as stochastic potential /0ðvÞ, defined as

FIG. 1. Graphical representation of the dependence r=rD as a function of the parameters p and q, plotted for two different viewing angles.

FIG. 2. Graphical representation of different friction functions cðvÞ. Curve 1

corresponds with Eq. (16), showing a clear local maximum. The other

curves include the value cðV0Þ ¼ 0 (the values of V0 are different for differ-

ent functions cðvÞ): curve 2 represents the Gruler function (29), and curve 3

the SET function given by (31), which corresponds to Eq. (30) with a¼ 0.

Curve 4 represents the extended SET-model given by Eq. (30) with a> 0.
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fsðvÞ ¼ C exp ð�/0ðvÞÞ; (27)

where C is the normalization constant. In the context of po-

laron theory, Gogolin introduced the notation effective

energy by �ðvÞ ¼ T/0ðvÞ.6 Note that for the quantum-

statistical polaron systems in organic chains (see, e.g., Ref.

6), the effective energy spectra with some minimum differ-

ent from v¼ 0 was found. Distribution functions with two

symmetrical maxima were also found for certain solectron

systems. In these systems, electrons are driven to velocities

near to the sound velocity.11–15,28 The stochastic potentials

(effective energies) have for these velocities minima differ-

ent from zero (right panel of Figure 3). It is easily to verified

that the stochastic potential /0ðvÞ as well as the effective

energies �ðvÞ are straightforwardly connected with the func-

tions cðvÞ and D(v).

Here, we consider only classical models, expecting,

however, that the tools developed here may be applied to a

larger spectrum of systems with bistable distribution func-

tions. In order to proceed, we have to specify the functions

cðvÞ;DðvÞ. Several simple formulae for the friction functions

of driven particles are in use. The so called SET-“ansatz”

reads26

c vð Þ ¼ c0 �
dq

cþ dv2
: (28)

Another “ansatz” is the Schienbein-Gruler formula which

was empirically founded by measurements of cell motion29

c vð Þ ¼ c0 1� V0

jvj

� �
: (29)

The general kinetic approach to this kind of active motion

has been justified in Ref. 22, where the Schienbein-Gruler

formula has been found as the particular case on the basis of

microscopical kinetic theory for active friction. A combina-

tion of the Schienbein-Gruler formula and SET-“ansatz”

gives the empirical relation

c vð Þ ¼ c0 � q
d þ asign vð Þ
cþ avþ dv2

: (30)

This empirical formula is convenient as a formal generaliza-

tion of different models of active friction (driven motion)

which have been justified theoretically or on the basis of ex-

perimental observations for various systems—from biological

object motion22 to active dust motion due to the drag force in

dusty plasma.8,30,31 For the case d ¼ 0; c ¼ 0; q ¼ c0V0, this

reduces to the Gruler formula and for a¼ 0 to the SET for-

mula. Note that for a¼ 0, Eq. (30) can be written in the in the

following form:25

c vð Þ ¼ c0

v2 � l
v2 þ j

; j � c

d
; l � q=c0 � c=d: (31)

In the case of positive l (note that in this section, in con-

trast with Sec. IV, the value l can be positive or negative;

in this section, the same notations have, in general, a differ-

ent sense and a different range of values). The friction coef-

ficient (31) equals zero at v � V0, where V2
0 ¼ l. For the

most simple Gruler case (29), the stationary distribution

reads29

fs vð Þ ¼ C exp � c0

2D0

jvj � V0ð Þ2
� �

(32)

and demonstrates bistability, which is typical for other types

of active motion (see, e.g., Fig. 3). Some particular results

for the case d > 0; a ¼ 0; c ¼ 0 have been found in Ref. 25.

The diffusion function is not so well studied. Several

explicit results for dusty plasmas may be found in Refs. 9

and 10. In following analysis, we use for the diffusion coeffi-

cient D(v) the simplest approximation, namely,

DðvÞ ¼ D0 ¼ const: (33)

In the special case of a thermal heat bath we have

D0 ’ c0T=m, where c0 is the characteristic friction. For the

stationary distribution function fsðvÞ in the SET-model, we

find for the value a¼ 0, using the notations (31)

fs vð Þ ¼ nZ�1
0 1þ d

c
v2

� �a

exp � c0

2D0

v2

� �
; a ¼ q

2D0

; (34)

where

FIG. 3. The left panel shows a graph

of two typical Gruler-type bistable ve-

locity distributions: curves 1 and 2 rep-

resent the distribution function fsðvÞ
according to Eq. (32) for V

ð1Þ
0 < V

ð2Þ
0 .

The right panel shows a graph of the

corresponding shapes of the stochastic

potential of driven particles defined by

Eq. (27). Curve 1 corresponds to the

Maxwell distribution, curves 2 and 3

correspond to the Gruler-type distribu-

tion with V
ð2Þ
0 < V

ð3Þ
0 , respectively.
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Z0 ¼
ðþ1
�1

dv exp � c0

2D0

v2 � q

c0

ln 1þ d=cð Þv2
� �� �� �

: (35)

Here, as above, we use normalization of the distribution

function fs of the particle density n. For the stochastic poten-

tial of driven charges and the friction function (31), we get

/0 vð Þ ’ c0

2D0

v2 � q

c0

ln 1þ d=cð Þv2
� �� �

: (36)

The distribution function has two different limits (see Fig. 3).

In the case V2
0 � 2D0=c0 � v2

0, the distribution has well

expressed bistability; in the opposite case, it is more like a

Maxwell distribution. The “sum over states” Z0 (35) can be

rewritten, according to (34) as

Z0 ¼
ðþ1
�1

dv 1þ d

c
v2

� �a

exp � c0

2D0

v2

� �
: (37)

This quantity may be represented in the following conven-

ient notation:

Z0 ¼ v0

ffiffi
s
p ð1

�1
dg 1þ g2
� �a

exp �sg2
� �

¼ v0

ffiffiffiffiffi
ps
p

U
1

2
; aþ 3

2
; s

� �
; (38)

where we introduced the variable g � v=
ffiffiffi
j
p

and the nota-

tions s ¼ j=v2
0; t ¼ l=v2

0; a � sþ t and used the known rep-

resentation for the hypergeometric functions (Rea > 0; this

condition wholly covers the region of possible driven

motion, where the condition l > 0 is necessarily fulfilled).

The function Uða; b; zÞ

U a; b; zð Þ ¼ C�1 að Þ
ð1

0

dtta�1 1þ tð Þb�a�1
exp �ztð Þ;

C að Þ ¼
ð1

0

dtta�1 exp �tð Þ

U
1

2
; aþ 3

2
; s

� �
¼ 1ffiffiffi

p
p
ð1

0

dtt�1=2 1þ tð Þa exp �stð Þ (39)

is sometimes called the Kummer-Tricomi function and can be

represented by a linear combination of the degenerated hyper-

geometric function Uða; b; zÞ � 1F1ða; b; zÞ. According to

Refs. 30 and 31, the explicit representation is, respectively,

U a; b; sð Þ � W a; b; sð Þ ¼ exp s=2ð Þ
sb=2

Wb=2�a; b�1ð Þ=2 sð Þ;

U
1

2
; aþ 3

2
; s

� �
¼ 1ffiffiffi

p
p
ð1

0

dtt�1=2 1þ tð Þa exp �stð Þ

¼ exp s=2ð Þ 1

s
a
2
þ3

4

Wa
2
þ1

4
;a
2
þ1

4
sð Þ; (40)

where Wk;lðsÞ is the Whittaker function.

For calculations of the averages values hv2li (l positive

and integer), we can use the general representation related

with Z0

hv2li ¼ 1

Z0

ffiffi
s
p

v0

� �2lþ1
ð1
�1

dgg2l 1þ g2
� �a

exp �sg2
� �

¼
ffiffi
s
p

v0

� �2l
C lþ 1

2

� �
U lþ 1

2
; lþ aþ 3

2
; s

� �

C
1

2

� �
U

1

2
; aþ 3

2
; s

� � :

(41)

For large values of s (we use Ref. 32)

U a; b; sð Þ ’ 1

sa
1�

a1ð Þ 1þ a� bð Þ1
s

� �
; (42)

where ðaÞn � Cðaþ nÞ=CðaÞ. Therefore, for large values of

s it follows from (42)

U
1

2
; aþ 3

2
; s

� �
¼ 1ffiffi

s
p 1þ a

2s

� �
;

U
3

2
; aþ 5

2
; s

� �
¼ 1

s3=2
1þ 3a

2s

� �
; (43)

Z0 ¼
ffiffiffi
p
p

v0 1þ a
2s

� �
: (44)

For small values of s the representation for Uða; b; sÞ is dif-

ferent for various aþ 3
2
. To find the limiting values of the

“sum over states” Z0 for small s, we consider the limits

U
1

2
; aþ 3

2
; s

� �
� C aþ 1=2ð Þ

C 1=2ð Þ s�a�1=2; Z0 � v0C aþ 1=2ð Þs�a; a 	 1=2ð Þ;

� C aþ 1=2ð Þ
C 1=2ð Þ s�a�1=2 þ O 1ð Þ; Z0 � v0C aþ 1=2ð Þs�a; �1=2 < a < 1=2ð Þ;

� � 1

C 1=2ð Þ ln sþ w 1=2ð Þ½ 
; Z0 � �v0s1=2ln sþ w 1=2ð Þ½ 
; a ¼ �1=2ð Þ;

� C �a� 1=2ð Þ
C �að Þ þ O s�a�1=2ð Þ; Z0 � v0

C �a� 1=2ð Þ
C �að Þ

ffiffiffiffiffi
ps
p

; �3=2 < a < �1=2ð Þ;

� 1

C 3=2ð Þ þ O slnsð Þ; Z0 � v0

1

C 3=2ð Þ
ffiffiffiffiffi
ps
p

; a ¼ �3=2ð Þ;

� C �a� 1=2ð Þ
C �að Þ þ O sð Þ; Z0 � v0

C �a� 1=2ð Þ
C �að Þ

ffiffiffiffiffi
ps
p

; a < �3=2ð Þ: (45)
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As we already mentioned above, the distribution func-

tion (34) for l < 0 (passive friction) has quasi-Maxwellian

form with a maximum at v¼ 0; for the case of driven motion

l > 0, the distribution function is bistable with a maximums

at v ¼ 6
ffiffiffi
l
p

(Fig. 3). For the case of driven motion

a ¼ q=2D0 ¼ c0ðjþ lÞ=2D0 > 0, since l > 0.

Similar to the Gibbs theory, the quantity Z0 (“partition

function”) is a useful tool for many applications. For exam-

ple, the dispersion of the distribution may be expressed as a

derivative (j � sv2
0) of Z with respect of s

hv2i ¼ �sv2
0

@lnZ0 a; sð Þ
@s

� �
a�sþt¼const:

¼ sv2
0

2

U
3

2
;aþ 5

2
; s

� �

U
1

2
;aþ 3

2
; s

� � :
(46)

For large values of s the universal asymptotic behavior Z0 is

given by (44) and we then find

hv2i ¼ v2
0

2

1þ 3a=2s

1þ a=2s
: (47)

Now we consider simple estimation of the quantity hv2i
for a small s. For active motion l > 0, the value a is always

positive, and therefore, to calculate hv2i approximately in

this case we may use the two first lines in (45) to find

hv2i ¼ av2
0: (48)

This representation is also correct for passive friction

(l < 0) if a ¼ sþ t > 0.

Since for a¼ 0 and for arbitrary values of s the functions

U 1
2
;aþ 3

2
; sÞ ¼U 1

2
; 3

2
; sÞ ¼ 1=

ffiffi
s
p��

and Uð3
2
; 5

2
;sÞ ¼U 1

2
; 3

2
; sÞ

�
¼ 1=s3=2 we arrive at Z0 ¼ v0

ffiffiffi
p
p

. This case describes the

equilibrium stationary solution (7). It is easily verified that for

equilibrium the explicit value of hv2i equals

hv2i ¼ v2
0

2
: (49)

All particular cases of various a-values and small values of s
can be considered by using (45).

B. Nonlinear drift of driven charges including external
fields

In the presence of electrical fields, the stationary Fokker-

Planck equation is in our approximation given by Eq. (4) and

the general stationary solution is given by Eq. (8).

The typical behavior of the distribution function fsðvÞ is

shown graphically in Fig. 4 for various values of the homo-

geneous electric field.

The calculation of the nonlinear drift velocity for driven

particles is in general a complicated problem. An analytical

solution was given so far only for the model studied by

Dunkel et al.25 This model corresponds to a SET model with

j¼ 0 (or c=d ! 0). The solution is expressed by hypergeo-

metric functions.25 In general, there are two limits which can

be easy calculated: (i) E! 0 and (ii) E!1.

Let us first consider the low field limit, which is the range

of Ohm’s law, where the current is proportional to the field

j ¼ rE. By linearization of the distribution function Eq. (8)

and assuming DðvÞ ¼ D0, we obtain for the mean velocity

hvi ¼
ð

dvvfs v;Eð Þ

¼
ð

dvvfs v;E ¼ 0ð Þ 1� v
eE

mD0

þ O E2ð Þ
� �

: (50)

In the linear approximation one derives

hvilinear on E ¼
jejE
mD0

hv2iE¼0: (51)

This result, which expresses a special form of the

fluctuation-dissipation theorem, reduces the calculation of

the Ohmic current to the dispersion of the distribution for the

case of zero field.

For the friction function in the form (31) we find—by using

linear approximation on the electrical field, see (51)—for the

conductivity in terms of the functions Uða; b; sÞ the following:

r ¼ ne2

mD0

hv2iE¼0 ¼
ne2

mD0

sv2
0

2

U
3

2
; aþ 5

2
; s

� �

U
1

2
; aþ 3

2
; s

� � : (52)

In the approximation of maximal driven velocity

(a� 1) explained above, we find (see (48)) for the Ohmic

conductivity

r ’ ne2

mD0

av2
0: (53)

In relation to the Drude conductivity this gives the estimate

r
rD
’ 2a: (54)

FIG. 4. Typical velocity distributions for three different electrical fields

(e1 < e2 < e3) according to Eq. (8). The graph shows schematically the

shape of the distributions for increasing fields as a function of the velocity v
for e1 (curve 1), e2 (curve 2), and e3 (curve 3). It is observed that the distribu-

tion is shifted by an external field to the field direction. With increasing field

strength e the left maximum disappears and the right maximum increases. In

strong fields, the distribution possesses only one maximum.
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Note that the maximal velocity changes in a broad interval

between the thermal velocity and driven velocity V0 as fol-

lows form Fig. 4 and Eq. (34). Therefore, we show that driv-

ing effects may lead to a strong enhancement of the Ohmic

conductivity for a > 1.

Let us consider qualitatively the opposite case of large

fields. Then, the distributions shown in Fig. 4 are getting

mono-stable since cðvÞ ’ c0 at v� v0. In this limit, the dis-

tribution approaches the form equivalent to (14)

fs v;Eð Þ ¼ nZ�1
0 exp � c0

2D0

v� vDð Þ2
� �

; vD ¼
jejE
mc0

: (55)

Here, vD is the Drude velocity. This gives for the mean

velocity

hvi ¼ jejE
mc0

¼ vD; (56)

and the conductivity is similar to the Drude conductivity

(15). This result proves that in the limit of large fields the

system behaves like a Drude system, the influence of driven

motion of charges is negligible. Knowing the behavior of

conductivity at low and at high electric fields, it remains to

study the intermediate region.

In the following, we use introduce the electrical field E
via the variable � which is equivalent to the Drude velocity

� ¼ jejE=mc0 � vD or via the dimensionless variable

e ¼ eE
ffiffiffi
j
p

=mD0. This leads in the Drude conductivity (see

Introduction) for linear approximation on field E.

Typical curves for the drift velocity of nonlinear systems

in an electrical field show changing slopes.28 An observation

often described is that a steep linear increase for small field

values e is followed by a plateau which is then followed

again by a linear increase at higher fields e.6,13,15–17 Most of

these observations refer to polaron-type systems and they are

based on numerical simulations and analytical estimates. A

full theoretical explanation of these findings is still lacking.

We will give now a systematic derivation of the drift and

the conductivity in the electrical field for models of nonlinear

on electric field friction function. In the following, we concen-

trate on the SET-model which seems to be most realistic.

We will do several transformations and use the follow-

ing non-dimensional variables g� v=
ffiffiffi
j
p

; s�j= v2
0; t¼l=v2

0;
a¼ sþ t; e¼ eE

ffiffiffi
j
p

=mD0¼2vD
ffiffiffi
j
p

=v2
0�2�

ffiffiffi
j
p

=v2
0�2�

ffiffi
s
p
=v0.

The variables e and � are proportional to the electric field.

We use the general expression for the nonlinear current

in the considered model

j ¼ �e

nv0

ffiffi
s
p ð1

�1
dgg 1þ g2
� �a

exp �sg2 � eg
� �

ð1
�1

dg 1þ g2
� �a

exp �sg2 � eg
� � : (57)

Since the nominator is the derivative of the denomina-

tor, a more convenient form may be obtained by using the

procedure similar to the Gibbs method in thermodynamics,

by writing

j ¼ env0

ffiffi
s
p @lnZ e; a; sð Þ

@e
; (58)

where the “sum over states” is

Zðe; a; sÞ ¼
ð1
�1

dgð1þ g2Þa expð�sg2 � egÞ: (59)

The whole problem is now reduced to estimating one func-

tion Z depending on the variable e and on two parameters a
and s and the partial derivatives of Z.

Let us now consider the case of integer a-values in more

detail. For the case a¼ 1, we find the explicit result for arbi-

trary value of e

Zðe; 1; sÞ ¼
ð1
�1

dgð1þ g2Þ expð�sg2 � egÞ: (60)

The explicit result for Zðe; 1; sÞ in this case reads

Zðe; 1; sÞ ¼
ð1
�1

dgð1þ g2Þ expð�sg2 � egÞ

¼ expðe2=4sÞ
ffiffiffiffiffiffiffi
p=s

p
½1þ ðe2=4s2 þ 1=2sÞ
: (61)

The corresponding nonlinear current for an arbitrary electric

field (or arbitrary e) can be easily calculated

j e; 1; sð Þ ¼ envD 1þ 1

s 1þ e2=4s2 þ 1=2sð Þ

� �
: (62)

For both limiting cases s! 0 and s!1, the nonlinear cur-

rent jðe; 1; sÞ tends to the Drude result jD ¼ envD.

For the case of a weak electric field (allowing for linear

approximation), Eq. (62) gives for the linearized current

jLðe; 1; sÞ as

jL e; 1; sð Þ ¼ envD 1þ 2

1þ 2s

� �
: (63)

Therefore, in the linear approximation there is an increase of

the linear conductivity

jL e; 1; sð Þ
jD

� r 1; sð Þ
rD

¼ 1þ 2

1þ 2s

� �
� 1þ 2s

1þ s

� �
: (64)

For the cases of active (l > 0) and passive (l < 0) friction

in the limit s� 1, the conductivity tends to the Drude result

rð1; s� 1Þ ! rD. For a small values s� 1, the linear con-

ductivity tends to the maximum rð1; s� 1Þ ! 3rD.

For a large electric field e� 1, Eq. (62) also implies a

linear behavior of the current similar to the Drude result

j e� 1; 1; sð Þ
jD

� r 1; sð Þ
rD

¼ 1: (65)

Let us now consider the case a¼ 2. For Zðe; 2; sÞ we

arrive at the expression

Zðe; 2; sÞ ¼ expðe2=4sÞ
ffiffiffiffiffiffiffi
p=s

p
½1þ ðe2=2s2 þ 1=sÞ

þ ðe4=16s4 þ 3e2=4s3 þ 3=4s2Þ
: (66)

The corresponding nonlinear current for a¼ 2 is given

by
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j e; 2; sð Þ ¼ envD �
1þ e2=2s2 þ 1=s

� �
þ e4=16s4 þ 3e2=4s3 þ 3=4s2
� �

þ 2

s
þ e2

2s3
þ 3

s2

� �
1þ e2=2s2 þ 1=sð Þ þ e4=16s4 þ 3e2=4s3 þ 3=4s2ð Þ½ 
 : (67)

In linear approximation this becomes

jL e; 2; sð Þ
jD

� r 2; sð Þ
rD

¼ 1þ 12þ 8s

3þ 4sþ 4s2
: (68)

For the case a¼ 2, as for the case a¼ 1, the nonlinear con-

ductivity rð2; sÞ tends to rD for both limiting values of the

parameter s, namely, for s!1 and s! 0. For the case of

linear conductivity, the corresponding current jLðe; 2; s!
1Þ ! 0 and jLðe; 2; s! 0Þ ! 5. Therefore, the maximum

linear conductivity exists at the value s¼ 0 and equals

rð2; 0Þ ¼ 5rD.

For a large electric field e� 1, Eq. (68) also implies a

linear behavior of the current jðe� 1; 2; sÞ ! jD, similar to

the Drude result, as for the case a¼ 1.

It is also interesting to calculate the linear current for an

arbitrary value of the parameter a. In this case, we need only

the functions

Zðe ¼ 0; a; sÞ ¼
ð1
�1

dgð1þ g2Þa expð�sg2Þ (69)

and

@Zðe; a; sÞ=@e ’ e
ð1
�1

dgg2 1þ g2
� �a

expð�sg2Þ þ OðeÞ

¼ e½Zðe ¼ 0; aþ 1; sÞ � Zðe ¼ 0; a; sÞ
 þ OðeÞ: (70)

The current in the case under consideration equals

j e; a; sð Þ ¼
env0

ffiffi
s
p

Z e ¼ 0; a; sð Þ
@Z e; a; sð Þ

@e

¼ envDs
U 3=2; aþ 5=2; sð Þ
U 1=2; aþ 3=2; sð Þ : (71)

It is easy to see that this result is identical to Eq. (52). Some

particular cases of simplification for the functions

Uðm=2; a; sÞ for various a-values are presented in Ref. 33.

Taking into account the general relation between the

functions Uða; b; zÞ and Wk;lðzÞ (Ref. 33)

Wk;lðzÞ ¼ expð�z=2Þz1=2þlUð1=2þ l� k; 1þ 2l; zÞ;
k ¼ b=2� a; l ¼ b=2� 1=2: (72)

and the particular relations Wa=2�1=4;a=2þ3=4ðsÞ¼expð�z=2Þ
sa=2þ5=4Uð3=2;aþ5=2;sÞ and Wa=2þ1=4;a=2þ1=4ðsÞ¼expð�z=2Þ
s3=4þa=2Uð1=2;aþ3=2;sÞ, we obtain

j e! 0; a; sð Þ ¼ envDs
U 3=2; aþ 5=2; sð Þ
U 1=2; aþ 3=2; sð Þ

¼ envD

ffiffi
s
p Wa=2�1=4;a=2þ3=4 sð Þ

Wa=2þ1=4;a=2þ1=4 sð Þ
: (73)

VI. CONCLUSIONS

The shape of nonlinear conductivity curves may be quite

complicated, depending on the particular sets of the parame-

ters which are responsible for the type of the velocity distri-

bution functions. Figure 5 gives a graphical representation of

the dependence of the conductivity on the parameters s and e
for a¼ 1 and a¼ 2, according to the analytical results given

above. The left panel of Fig. 5 shows the low field conductiv-

ity in relation to the Drude conductivity for the two values of

a ¼ 1; 2 as a function of the parameter 1=2s. This parameter

may be considered as a kind of “effective temperature” since

it determines the dispersion of the distribution. The increase

of the ratio jL=jD has a simple physical meaning. Let us

rewrite the effective friction cðvÞ (31) via the parameters s
and a (see determinations above (57)) as

c v; a; sð Þ ¼ c0

v2 � av2
0 þ sv2

0

v2 þ sv2
0

: (74)

FIG. 5. Graphs showing the typical

relation of the conductivity to the

Drude conductivity. Left panel:

Monotonic increase of the ratio of the

linear current (field independent con-

ductivity) to the Drude current with

decreasing parameter s (curves 1 and 2

represent alpha¼ 1 and 2, respec-

tively). Right panel: Increase of the

current with increasing dimensionless

field e. The curves correspond to a ¼
1; s ¼ 1=2 (curve 1) and a ¼ 2; s ¼
1=2 (curve 2) for jD ¼ e.
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The derivative c0ðv; a; sÞ on u � 1=2s for fixed a is negative

and proportional to a. Therefore, the increase in linear cur-

rent jL in comparison with the Drude current obeys the

decrease in the effective friction coefficient. The current

jLða ¼ 2Þ is higher than jLða ¼ 1Þ due to the mentioned pro-

portionality c0ðv; a; sÞ � a. For large u, the current jLðaÞ as a

function of u is flattened.

Therefore, we observe a strong increase in the low field

conductivity in relation to the Drude value for larger values of

u ¼ 1=2s. This tendency is also shown in the right panel of

Figure 5 which shows the dependence of the nonlinear (in gen-

eral) current on the dimensionless field e. For low electric fields

e > 0 (the low e linear regime, where jðs ¼ 1=2; a
¼ 1Þ � e; jðs ¼ 1=2; a ¼ 2Þ � e, and according to the results

shown in the left panel, jðs ¼ 1=2; a ¼ 2Þ > jðs ¼ 1=2;
a ¼ 1Þ > jD). The nonlinear effects may also increase the low-

field conductivity substantially, especially for large a. The

highest value of the derivative (conductivity) is observed for

relatively low fields, then the derivative decreases monotoni-

cally with the field from the highest value (zero-field conduc-

tivity) to the Drude value of conductivity (equal to unity in the

notation in the right panel of Fig. 5, with rD ¼ 1 and jD ¼ e).
These results reflect analytical expressions (62) and (67),

obtained for particular values of the parameter a. Consideration

of the nonlinear current (9)–(15), (62), (67) confirms that the

Drude current behavior in the large field limit is a general prop-

erty of the Fokker-Planck approach if cðvÞ ! c0 at large v.

Large v limit corresponds to the large electric field E.

The result of numerical evaluations of the current for a

large set of values of the parameters a and s is shown graphi-

cally in Fig. 6. The panels show the behavior of vðeÞ for vari-

ous values of the parameters s and t ¼ a� s. The graphs

reveal that the typical shape of the vðeÞ profile is similar to that

in the cases a¼ 1 and a¼ 2. However, they also demonstrate

some new aspects, such as the individual dependence on the

parameters t and s, which gives rise to different shapes of the

curves. This property demonstrates that the characteristic de-

pendence on the field may be very different and depends sensi-

tively on the particular set of t and s-values. This sensitivity

provides the interesting possibility to shape a “characteristics

on demand,” just by choosing particular values of t and s. The

problem of providing a “current-voltage characteristics on

demand” might be of interest for applications to problems of

nonlinear electronics. The generalization of the Fokker-Planck

theory developed in this paper may provide the tools for con-

structing a particular desired characteristic.

By our analysis, based on the Fokker-Planck models, we

have shown in the present paper that nonlinear effects may

substantially increase low field conductivity. Typically, as

shown by the examples given in Figs. 5 and 6, the increase

reduces at high electrical fields again to the value provided by

the linear Drude theory. Therefore, the search for highly con-

ducting materials should include nonlinear effects and the

present generalized Fokker-Planck model may give important

hints for search of highly conducting materials by variations

of the material and system parameters (such as the effective

temperature D and the friction cðvÞ). Furthermore, we have

shown that the nonlinear theory may give important tools how

to shape a “current-voltage characteristics on demand.”
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