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Abstract: We investigated the passivation of III-V semiconductor nanostructures using 

wet-chemical ammonium sulfide treatment and SiOx encapsulation. We achieved an 

ultra-low surface recombination velocity value of ~530 cm/s enabling the future 

development of high-performance room-temperature nanolasers. 
OCIS codes: (140.0140) Lasers and laser optics; (160.0160) Materials; (250.5300) Photonic Integrated 

Circuits; (250.5980) Semiconductor Optical amplifiers  

   

1. Introduction 

In the last few years, many nanoscale light sources have been reported, such as nanocavity lasers employing III-

V materials as the gain medium [1, 2]. Scaling down the laser sources to the size below their operation wavelength 

(< 1.5 µm) will greatly contribute for the deployment of on-chip optical interconnects thanks to their small footprint, 

low energy consumption and high speed [2]. Despite recent efforts, difficulties in achieving room temperature (RT) 

and continues wavelength (CW) operation with high output optical power considerably limits the use of nanolasers 

in future optical communication systems. Among many challenges, non-radiative processes including surface 

recombination have been shown to have a detrimental effect in the efficiency of deeply etched pn-junctions such as 

in sub-wavelength cavity nanolasers [2]. Due to the high surface-to-volume ratio of such nanostructures, large areas 

of the active material are exposed with a high density of non-radiative recombination centers formed from the 

bombardment of high energy ions during etching. As the size of the active region becomes comparable with the 

carrier diffusion length, surface effects begin to strongly influence their performance. Since the non-radiative 

processes reduce the radiative efficiency, the threshold current of a nanolaser increases as the injected carriers 

recombine faster [3]. Therefore, the reduction of non-radiative centers is a key factor for enabling RT at CW 

operation in nanolasers. 

Although surface recombination strongly limits the performance of sub-µm devices, passivation treatments of 

the surface of nanoscale III-V semiconductor heterostructures have remained almost unexplored apart from a 

recently published photonic crystal nanolaser [1,3] reporting a 3-fold reduction of the surface velocity (S=4x10
3
 

cm/s) when compared to best values obtained in [4] (S=1.2x10
4 
cm/s). Here, we report ultra-low surface velocities 

for sub-µm III-V deeply etched nanopillars using a sulfide passivation treatment that comprises a gentle wet etching 

of the active material plus ammonium sulfide solution at 20% followed by a thin SiOx capping. We observed a very 

robust passivation effect that enhances the photoluminescence (PL) up to two orders of magnitude compare with 

un-passivated samples. Time-resolved microPL measurements further confirm the substantial improvements 

showing two orders of magnitude increase of the carrier life times and allowing us to estimate an ultra-low surface 

recombination of S~530 cm/s, which, to our knowledge is a record for nano structures. Most importantly, this ultra-

low surface recombination is a key enabler for the future development of efficient, high power, and 

room-temperature electrically pumped nanocavity lasers. 

2.  Fabrication and Technology 

A series of experiments were performed to test (NH4)2S (ammonium sulfide) plus thin SiOx capping passivation 

on undoped InP/InGaAs/InP nano-pillars. The layer stack is a pn-junction of InP with bulk InGaAs (350 nm 

thickness) material as shown in Figure1 a). The sample comprises 7 equal patterns of two rows; each with 15 square 

pillars. The pillars side ranged from 270 nm to 3.4 µm.  

The fabrication involved electron beam lithography (EBL), followed by dry etching with inductively coupled 

plasma (ICP) to etch the pillars until ~1 µm depth. It included wet etching steps plus oxygen plasma treatment to 

clean the surface of the pillars. Figure 1a-d) shows the schematic of the pillar after being capped by SiOx and 
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Scanning Electron Microscope (SEM) pictures of the pillar array, a 1µm cross-section side pillar, the top view of a 

pillar with 2.7µm side and the smallest test pillar with 270 nm side.  

The samples, named R1-Q1 to R1-Q7 were tested with two different passivation approaches: both processes 

started with a standard oxygen plasma cleaning of 10 minutes at 300W plus 2 minutes into diluted H3PO4 followed 

by 10 s gentle etching of the active material done by H2O:H2SO4:H2O2 (5000:1:8). After that, the samples were 

divided for different tests as Table 1 in Figure 2a) shows. The first test comprised 5 cycles of oxygen plasma plus 

wet chemical cleaning of 2 minutes with H3PO4 followed by rinsing with ultra-pure water (UPW) and drying with 

an N2 pistol. The second test implied ammonium sulfide as passivation agent where the samples were submerged in 

a solution of 100:10 H2O:(NH4)2S-20%solution during 5 minutes [3, 4]. 

For each test a thin cap layer of 50 nm SiOx, or 10 nm Al2O3 was deposited on top of the pillars to obtain a 

lasting passivation. The deposition was done either with Plasma Enhanced Chemical Vapor Deposition (PECVD) at 

300 C or Atomic Layer Deposition (ALD) at 150 C (see figure 2 a)), the deposition was performed right after the 

oxygen plasma or ammonium sulfide passivation processes.  

 
Figure1 a) Schematic of a pillar with thin cap of SiOx, b) Fabricated pillar array, c) 1µm pillar cross-section side, d) Top view of a 2.7µm 

pillar, e) Smallest etched pillar of 270nm cross-section side. 

 

Figure2 a) Table of passivation methods used on the etched pillars, b) µPL measurements for samples encapsulated in SiOx and Al2O3 

with oxygen plasma method c) µPL measurements for samples encapsulated in SiOx and Al2O3 with ammonium sulfide method. 

3.  Characterization and results 

 

To characterize the passivation quality we performed µPL and TRPL measurements shown in Figure 2 b, c). 

First we measured the PL of each of the 15 pillars from R1-Q1 to R1-Q7. Then, we performed TRPL measurements 

on each pillar to measure the lifetime of the carriers while exciting the pillars with a laser pulse. Experiments 

performed with oxygen plasma treatment and those with ALD encapsulation showed poor passivation performance. 

Thus we only report the results obtained from sample R1-Q5 passivated with (NH4)2S and encapsulated with SiOx. 

In order to measure the ratio of increment in PL and TRPL we compared R1-Q5 with R1-Q3 only passivated with 

(NH4)2S. 

We can summarize µPL experiments in Figure 2b, c). A strong improvement of the µPL intensity (by 5 and 22 

times for big and small pillars respectively) using ammonium sulfide treatment is observed. The graphs depict the 

integrated spectra for two types of pillars; pillar 15 with 3.4µm cross-section side (Fig 2b), and pillar 1 with 270 nm 

side. 

Regarding TRPL measurements, we employed a time-correlated single photon counting to investigate the carrier 

dynamics in InP/InGaAs/InP nanopillars with varying cross section. In the experiment, we optically pumped the 
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nanopillars using a pulsed laser at 968 nm with a periodic pulse train at 10 MHz and pulse width <100 ps. The 

photoluminescence was coupled into a single mode optical fiber using a microscope objective and then guided to a 

superconducting single photon detector (SSPD). For the TR measurements, a histogram of photon arrival times was 

built by correlating the SSPD output with the pulse pattern generator trigger with a correlation card (Pico Harp 300). 

As expected, sample R1-Q5 shows longer carrier lifetimes for all pillars sizes (from 0.27 to 3.4 µm). Figure 3a) 

shows the lifetime comparison of a sub-micron cross-section pillar of 270 nm between the untreated sample (black), 

and the ones passivated with (NH4)2S (blue) and (NH4)2S + SiOx (red). Impressive lifetimes of 24 ns (and 46 ns for 

570 nm side pillar) were recorded. It has been demonstrated elsewhere that the lifetime of bulk InGaAs can achieve 

values of even 100 ns [5]. The implication of such long lifetimes is an extreme reduction of the surface 

recombination of the pillars. The surface recombination was estimated by performing a linear fit of the carrier 

lifetimes using the equation 1/ 1/ 2 /PL b S d   [2], where 
PL  is the effective carrier lifetime, 

b  is the carrier 

lifetime in the bulk material, S is the surface velocity, and d is the side length of the pillar with square cross-section. 

Figure 3b) shows the experimental data with sub-micron pillars and the linear fit from which the surface 

recombination is extracted. An ultra-low surface recombination of around 530 cm/s is estimated, which is to our 

knowledge a record low surface recombination for deeply etched sub-micron pn-junctions. This value is two orders 

of magnitude lower than the surface recombination velocity for the un-passivated samples, estimated to be ~1.2x10
4
 

cm/s. 

 
Figure3 a) TRPL for a 270 nm side length pillar: untreated, with (NH4)2S and with (NH4)2S+SiOx, b) Surface recombination velocity of sub-

micron pillars with (NH4)2S + SiOx treatment. 

4.  Conclusions 

We tested two different passivation processes with a series of cycles of oxygen plasma and ammonium sulfide 

plus a thin capping of SiOx or Al2O3. We demonstrated a robust passivation process with (NH4)2S + thin SiOx 

capping. The passivation process is lasting and reliable. To prove it, we measured samples again after some days and 

retrieved the same excellent values. We obtained from the integrated µPL measurements around 100x better results 

in comparison with samples without passivation and TRPL that resulted in impressive carrier lifetimes of 46 ns for 

sub-micron side pillars, a value close to the bulk material. With the long lifetimes we were able to estimate an ultra-

low surface recombination value of 530 cm/s; which, to the best of our knowledge, is a record low value of surface 

recombination velocity for deeply etched III-V nano pn- junctions. These results are highly encouraging for the 

fabrication of electrically pumped sub-µm lasers or any active deeply etched sub-µm device.  

We acknowledge support of ERC Advance Grant NOLIMITS and Marie Skłodowska-Curie 2014-IF-659012 for 

founding our research. 
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