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A (fragment of a) process algebra satisfies unique para@ehposition if the definable behaviours
admit a unique decomposition into indecomposable paratielponents. In this paper we prove
that finite processes of thecalculus, i.e. processes that perform no infinite exeastisatisfy this
property modulo strong bisimilarity and weak bisimilari@ur results are obtained by an application
of a general technique for establishing unique parallebdgaosition using decomposition orders.

1 Introduction

A (fragment of a) process algebra hasique parallel decompositio(UPD) if all definable behaviours
admit a unique decomposition into indecomposable paratieiponents. In this paper we prove that
finite processes definable in timecalculus satisfy this property modulo strong bisimikadind modulo
weak bisimilarity.

From a theoretical point of view, this property is interagtbecause it can be used to prove other
theoretical properties about process calculi. For ingamnelying on unique parallel decomposition,
Moller proves in [18, 19] that PA and CCS cannot be finitelyoaxatized without auxiliary operations,
and Hirshfeld and Jerrum prove in [12] that bisimilarity isctable for normed PA. Unique parallel
decomposition can be also used to define a notion of normal.f@uch a notion of normal form is
useful in completeness proofs for equational axiomatinatin settings in which an elimination theorem
for parallel composition is lacking (see, e.g., [1, 2, 3, 9])1In [13], UPD is used to prove complete
axiomatisation and decidability results in the context bfgher-order process calculus.

From a practical point of view, unique parallel decompositcan be used to devise methods for
finding the maximally parallel implementation of a behavif&], or for improving verification methods
[10]. In [8], a unique parallel decomposition result is uasd tool in the comparison of different security
notions in the context of electronic voting.

The UPD property has been widely studied for different pssagalculi and variants of the parallel
operator. Milner and Moller were the first to establish a urigarallel decomposition theorem; they
proved the property for a simple process calculus that allthve specification of all finite behaviours
up to strong bisimilarity and includes parallel compositia the form of pure interleaving without in-
teraction between its components [16]. Moller, in his ditedg@®n [17], extended this result replacing
interleaving parallel composition by CCS parallel composi and then also considering weak bisim-
ilarity. Christensen, also in his dissertation [5], prowedque decomposition for normed behaviours
recursively definable modulo strong bisimilarity, and fdirteehaviours recursively definable modulo
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distributed bisimilarity; the proof of the latter resulties on a cancellation law for parallel composition
up to distributed bisimilarity, first established by Calstei as [4, Lemma 4.14].

Most of the aforementioned unique parallel decompositesuits were established with subsequent
refinements of an ingenious proof technique attributed tmédi In [15], the notion oflecomposition
order is introduced in order to formulate a sufficient conditionammmutative monoids that facilitates
an abstract version of Milner’s proof technique. It is theoved that if a partial commutative monoid
can be endowed with a decomposition order, then it has urdguemposition. Thus, an algebraic tool
is obtained that allows one to prove UPD for a process catdojufinding a decomposition order.

The tool can deal with most of the settings aforementionedhik paper, we show how the tool can
also be applied to obtain unique parallel decompositionltg$or finite processes of thre-calculus w.r.t.
strong bisimilarity and w.r.t. weak bisimilarity. But, this end, we do face two complications: The first
complication, in the context of the-calculus is that, as opposed to previous settings, thengigasition
order is not directly induced on the commutative monoid afcgsses by the transition relation. The
culprit is that, in general, two parallel components mayefirgo a single indecomposable process as a
result of scope extrusion. To define the decomposition ongeconsider a fragment of the transition
relation that avoids this phenomenon. The second comigicatvhich arises only in the case of weak
bisimilarity, is that certain transitions are deemed ueobable, and that, as a consequence, there are
transitions that do not change state (are between wealkilyildis processes). We demonstrate that a
decomposition order can, nevertheless, be obtained byiignsuchstuttering transitions

The paper [7] studies unique parallel decomposition vboth strong bisimilarity and weak bisimi-
larity for the appliedrr-calculus. The applied-calculus is a variant of the-calculus that was designed
for the verification of cryptographic protocols. Its maimfiere is that channels can only transmit vari-
ables and the values of the variables are set usitige substitutionsRoughly, active substitution is an
extension of the grammar of threcalculus that works as a ‘memory’ that save the value of mbbe.
Because the variables in a transition are observable butrtémories’ are not, it is possible to mask
sensitive information. The proof of the result for the sggaase in [7] relies on induction over therm
of a process and the fact that the norm of the arguments odlglaromposition is less than the norm of
the parallel composition. Unfortunately, this propertyna true because of the restriction operator (see
Section 4 for a counter example). This is the reason why weceksurselves to finite processes in the
strong setting. The proof of the weak case in [7] follows thegp technique attributed to Milner. The
general techniques from [15] cannot be applied directiyhim detting of the applied-calculus due to
the active substitutions.

In [14], the second author presented an adaptation of thergkeresult of [15] in order to make
it suitable for establishing unique parallel decompositiio settings with a notion of unobservable be-
haviour. The ensued technique amounts to showing thatdhsition relation induces a so-calleeak
decomposition order satisfying a property that is cafpedver cancellation In the present paper, we
show how, instead of using the adapted technique from [bé]original technique from [15] may be
applied in settings with a notion of unobservable behayioansidering a stutter-free fragment of the
transition relation. This method appears to be simpler thammethod suggested by the result in [14].

The paper is organized as follows. In Section 2, we brieflpltebe abstract framework introduced
in [15] to prove UPD results. In Section 3 we recall the syratad different semantics of threcalculus.
Section 4 is composed of two subsections. In Section 4.1 tsednce the notion oflepthof a process
and we prove some properties of this notion. In Section 4.2igeethese results and the result in Sec-
tion 2 to prove that finite processes of tirecalculus satisfy unique parallel decomposition w.rorsg
bisimilarity. Section 5 follows a similar structure. In $ien 5.1 we introduce the notion girocesses
without stuttering transitionand we prove some properties of this kind of processes. Tregperties
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and the result in Section 2 are used in Section 5.2 to provdittie processes of the-calculus satisfy
unique parallel decomposition w.r.t. weak bisimilarity. Section 6 we present some final remarks.

2 Decomposition orders
In this section, we briefly review the theory of unique decosifion for commutative monoids that we
shall apply in the remainder of the paper to prove UPD resultise context of ther-calculus.

Definition 1. A commutative monoids a set M with a distinguished element e and a binary opematio
on M denoted bysuch that for all xy,ze M :

* X-(y-2) = (x-y)-z (associativity);
* X-y=Yy-X (commutativity);
e X-e=e-x =X (identity).
In the remainder of the paper we often suppress the synualse||.

Definition 2. An element p of a commutative monoid M is caliedecomposablée p + e and p=xy
implies x=e ory=e.

Definition 3. Let M be a commutative monoid.d&compositionin M is a finite multi-sef py, ..., pk|] of
indecomposable elements of M such thatpp---px is defined. The element m,---px in M will be called
thecomposition associateslith the decompositiop, ..., p|, and, conversely, we say thgt, ..., pkf

is adecompositiorof the element p p,---px of M. Decompositions d ] ps,...,pkf and d =1pj,....p

are equivalent in M (notation ¢ d’) if they have the same composition, i.ey- pp---px = p1---p. A
decomposition d in M isiniqueif d = d’ implies d= d’ for all decompositions din M. We say that an
element x of M has anique decompositioif it has a decomposition and this decompaosition is unique.
If every element of M has a unique decomposition, then wehsayvt hasunique decomposition

Theorem 1 below gives a sufficient condition to ensure thatransutative monoidM has unique
decomposition. It requires the existence afewomposition ordefor M.

Definition 4. Let M be a commutative monoid; a partial ordeon M is adecomposition ordef

1. itiswell-founded i.e., for every non-empty subsgdtc M there is me M such that for all me M,
m’ <m implies M= m. In this case, we say that m iscaminimal element of/;

2. the identity element e of M is the least element of M witheetstox, i.e., ex x for all X in M;

3. xisstrictly compatiblei.e., forall xy,ze M if x <y (i.e. xxy and x# y) and yz is defined, xzyz;
4. itis precompositionali.e., for all xy,ze M x < yz implies x y'Z for some y<y and Z< z; and
5. itis Archimedeani.e., for all xy e M x" < y for all n e Ng implies that x e.

Theorem 1([15]). Every commutative monoid M with a decompaosition order haguendecomposition.

3 The r-calculus

We recall the syntax of tha-calculus and the rules to define the transition relatior].[R@e assume a
set ofnamesor channelsy. We usea, b, ¢, X,y,z to range ovel .
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nPLp

—— (Out) 5 (Inp) (Tau) ———————  (Mat)
RyP = P x(2).P = P{y/z} rP5P [x=x]P %P
a a
— P’ P—P
% (Sum-L) ———F——— bn(a)n(Q)=2  (Par-L)
P+Q—F PIQ—=P[Q
XY o Xy X(2) o, X2~
P—=P — — —
- Q=@ (Comm-L) P TP Q=0 z¢(Q) (Close-L)
PIQ5LP|Q PIQ5vz(P'|Q)
i) , Xz / i) /
"~ s¢n(a@) (Res) P ,ix ©pen) PP (Rep-act
vz(P) 2> vz(P') vz(P) 2, pr iP5 prip
Xy Xy X(2) XZ
PSP PSP op pXpr
- (Rep-Comm) P - P P—P z¢ fn(P) (Rep-Close-L)
IP = (P'|P") |IP IP = (vz(P'|P")) |IP

Table 1: Transition rules for the-calculus

Definition 5. Theprocesses, summatioasad prefixesof the r-calculus are given respectively by

P:== M | P|P" | vzP | P
M:== 0 | mP | M+M’
= Xy | x(2) | T | [x=ym

We denote witlil the set of processes of tiecalculus.

An occurrence of a namee V is boundin a proces® if it is in the scope of a restrictionz or of an
inputa(z). A nameacV is freein a proces$ if there is at least one occurrenceathat is not bound.
We writebn(P) andfn(P) to denote, respectively, the set of bound names and freenainagproces®.
Theset of namesf a proces#® is defined byn(P) = bn(P) ufn(P). We employ the following convention
of the r-calculus w.r.t. names.

Convention 1. [20, P.47] In any discussion, we assume that the bound naf@s/@rocesses or actions

under consideration are chosen to be different from the safree in any other entities under consid-
eration, such as processes, actions, substitutions, atsdofenames. This convention is subject to the

limitation that in considering a transition I:);Q» Q, the name z that is boundX@z) and in P may occur
free in Q. This limitation is necessary for expressing somyteusion.

The transition relation associated to a term is defined byules in Table 1, where we have omitted
the symmetric version of the rules (Sum-L), (Par-L), (Coaand (Close-L). We denote with the set
of visible actionghat can be executed by a proc&ssI1, i.e. A= {xy|x,ye V} u{Xy|xye V}u{X(2) |
X,ze V}. The actionr is theinternal action We defineA; = Au{t}. ForP,P’ M anda € A;, we write
P -5 P’ if there is a derivation oP — P’ with rules in Table 1.

Definition 6. Strong bisimilarityis the largest symmetric relation ovier, notation~, such that whenever
P~Q, if PSP’ then there is Os.t. Q- Q' and P ~ Q.
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The relation~ is not compatible with input prefix: We have that

2x| a(y) ~ 2xa(y) + a(y) .2x ,

whereas
b(a).(zx| a(y)) # b(a).(zxa(y) +a(y).2),

because whenis received over the channalwe have

(zx|a(y)){a/z} 1 (zxa(y) +a(y) .2){a/z} .

Hence,~ is not a congruence for the full syntax of thecalculus. It is, however, a so-callegn-input
congruencgsee [20, Theorem 2.2.8]): it is compatible with all the otbenstructs in the syntax. In the
present paper we shall only use the fact thag compatible with parallel composition, i.e.,?f ~ Q;

andP, ~ Qy, thenP | P, ~ Q1 | Q2.
We recall now the weak variant of bisimilarity. We wrile=> P’ if P =P’ or if there areP,...,P,

withn>0st. P=Py— ... 5 P,=P. We writeP = Q with a € A; if there areP’,Q’ s.t. P —
P Q' = Q. Notice the difference betwedh— P’ andP — P’, in the second case, at least one
T-transition is executed.
Definition 7. Weak bisimilarityis the largest symmetric relation ovEl, notationw, such that whenever
P~Q, (i) if P % P’ with a € A then there is Qs.t. Q== Q’ and P ~ Q' and (ii) if P - P’ then there is
Qst. Q= Q and P~Q'.

Like strong bisimilarity, it is only possible to prove thats a congruence for non-input contexts (see
[20, Theorem 2.4.22]).

4 Unique decomposition with respect to strong bisimilarity

In this section, we shall use the result presented in Se2ttorprove that everfinite r-calculus process
has a unique parallel decomposition w.r.t. strong bisirtylaln Section 4.1 we introduce the definition
of depth of a process and some of its properties. We also iexplay we restrict our development to
finite processes. In Section 4.2 we present the unique dexsitigm result.

4.1 The depth of a process

Given a seX, we denote withK* the set of finite sequences overwheree € X* is the empty sequence.
For w = aiay---an € A; with n> 0, we writeP “, P’ if there are processd®,P;,...,P,s.t. P=F &,
P L2, Oy P,=P. If w=¢, thenP “p impliesP’ = P. If we are not interested iR’, we write P .

In addition, we writeP | if forall a € A;, P 7%

Definition 8. Let length: A7 — Ng be the function defined by

0 if w=¢,
lengthlw) =<{length w’)+1 if w=aw anda #1
lengthw')+2 if w=aw anda=T1



50 Unique Parallel Decomposition for thecalculus

Definition 9. A process R I is normedif there isw € A; such that R pr |. We denote witlhl,, the set
of normed processes. The depfh, - Nou {co} and the norm I, — Np of a normed process &f1 are
defined, respectively, by

depth(P) =sup({length(w) | P> P’ and P {})
norm(P) =inf({length(w) | P> P’ and P | })

Wheresup(X) = oo whenever X is an infinite set, antf () = co.

We remark that we have assigned a higher weight to occursesfebe labelr in the definition of the
length of a sequenc® € A;. This is to ensure that depth is additive w.r.t. parallel position (i.e., the
depth of a parallel composition is the sum of the depths @fitsponents), as we shall prove in Lemma 6)
below. As opposed to other process calculi for which unigeeochposition has been established (see,
e.g. [15]), due to scope extrusion, norm is not additive fierrt-calculus: Consider

P=Ry| P =vz(az) | a(x).xa

P is normed because — vz(0|'za) | but P, is not because it only performs an execution of infinite
length. Then, to ensure this kind of properties, one appreacld be just consider normed processes.
Unfortunately this is not enough. Consider

Q=Qo|Q1=vz(az) |a(x).xa

Processe®), Qo andQ; are normed and, moreover, they perform no infinite executidaspite this,
we have thahorm(Q) = 2, becaus&) 5 vz(0|za) |, andnorm(Qp) + norm(Q1) = 1+ 2= 3. Moreover,
notice that the norm of the arguments of a parallel commusig not less than the norm of the parallel
composition, i.e.norm(Q) = 2 andnorm(Q1) = 2. In particular, these examples show that item 4 in
Lemma 3 of [7] (norm is additive) is false, and, as a consegeiesome proofs in [7] are flawed. The
authors of [7] proposed a solution to this problem that weudis in the conclusion of this paper. So, to
facilitate inductive reasoning, we will considinite processeand depth.

Definition 10. A process R I is finite if there is ne Ny s.t. there is naw = a1az---an.1 € A7 such that
P2 We denote witlhl ¢ the set of finite processesIaf

Following the last example, we have tlatQop, Q1 € M anddepth Q) = 3= depth( Qo) + depth(Q1).

To conclude this section we present a collection of resnttkiding lemmas and theorems. Most of
the lemmas are only needed to prove the theorems. The thea@manonly few lemmas will be used in
the next section. Theorem 2 states that bisimilar procdsmes the same depth. Theorem 3 states that
the depth of a parallel composition of two processes noiniliai to O is greater than the depth of each
process. Thanks to these results, we will able to extend dtiemof depth to equivalence classes and
apply inductive reasoning.

Lemma 1. For all P €My, P4 0implies deptfiP) > 0.
Lemma 2. If PeM; and P> P, a € A, then P e MM and deptiiP) > depti(P).
Theorem 2. If P ~ Q then Pe M iff Q € M¢; moreover, dept{P) = depth(Q).
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Proof. Suppose tha® ~ Q. Then, clearlyP =, iff Q 2., and hence® ¢ M iff Qely.

To prove thatdepth(P) = depth(Q), first note that if°, Q ¢ M, thendepth(P) = co = depth(Q). In
the case that remains, batlepth( P) anddepth{ Q) are natural numbers; we proceed by induction over
depth(P). If depth(P) =0 thenP ~ 0 by Lemma 1, sdQ ~ 0 and thereforedept Q) = 0. Suppose
now depth(P) =n> 0. Assume that the statement holds for processes with degshttham. Suppose
depth(Q) = m> nthen there iKY’ s.t. Q — Q' andm=length(a) + depth(Q'). By definition of~, we get
PL P, P~ Q. By Lemma 2deptP’) < depth(P), thereforedepth(P’) = depth(Q’) anddeptH(P) >
depth(P") +length(a) = m> n=depth(P), i.e. we get a contradiction. Similarly, for the caipth(Q) =
m< n, we can reach a contradiction by considering a transfien P’ with n= length(a) + depth(P").
Then we can concludéepth(P) = depth Q). O

Lemma 3. Let PP’ e My, w = aw' € A} be such that RS P/ “, and deptiiP) = length(w). Then
depth(P") = length(w") and therefore depitP) = depti(P’") + length(a).

Lemma 4. For all P € M¢, depti(P) > depti(vz(P)) for all ze V.

Lemma 5. Let RQe Mt and w € A7 be such that PQ =, and lengti{w) = depth(P | Q). Then, there
are wy, wy € A; such that P Q-2 and lengti{cn ) + length(w,) = length(w).

Proof. We proceed by complete induction ar depth(P) + depth(Q). Suppose that the property holds
for parallel compositions of finite processes such that the ef the depths is smaller than> 0. Let
w = aw' andR be such thalength(w) =nandP | Q 2, R, We analyse the different ways of deriving
the first transition (we omit the symmetric cases).
« Case (Par-L). TheR % P’ andR= P’ | Q. By Lemma 3 and inductiodepth(P’ | Q) =length ') <
nand then there are, andw, s.t.P —, Q 2 andlength(w, ) +length(w,) = length(w’). Then
P andlength(a w, ) +length(w,) = length(w).

» Case (Comm-L). TheR LA P, Q 2, Q andR=P’'| Q" anda = 1. By Lemma 3 and induction
depth(P’ | Q") =length(w’) < length(1) + length(w’) = n and then there arey andw; s.t. P aly
Q 2, andlength(wy ) +length(wy,) = length(w’). ThenP >, andQ o, andlength(Xyow, ) +
length(xyaw, ) = length(T) +length( ') = length(w).

» Case (Close-L). Thei® LGR PQ5Q, a=1andR=vz(P |Q). The side condition of

(Close-L) allows us to use the rules (Par-L) and its symmefersion, therP | Q T P Q.

On one hand, by Lemma 4iepth(P’ | Q") > depth(vz(P’ | Q')). On the other handjepth(P’ |
Q') < depth(vz(P' | Q")) becausew = T’ is a maximal executionlength(t) = length(xzx2,
vz(P’ | Q) =2 and by Lemma 3. Thedepth(P’ | Q') = dept{vz(P’ | Q')) < n. Moreover, there

)_((Z) Xz

is ' such thaP’ | Q’ LR andlength(Xzxzv") = depth(P | Q). ThenP|Q — P’ | Q —— with
length(xzew'") < n. From this point we can repeat the proof of the first case.
O

Lemma 6. For all processes €I, depti(P | Q) = depth(P) + deptH Q).

Proof. By Lemma 5 we can ensuepth(P | Q) < depth(P) + depth Q). On the other hand, by Con-

vention 1, we have thd® 2, or Q& impliesP | Q 2, This allows us to concluddepth(P | Q) >
depth(P) + depth(Q) and thereforelepth(P | Q) = depth(P) + depth(Q). O
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Lemma?7. Forall P,QeMN, PQeN¢ iff P|QeMjs.
Theorem 3. If P,Q,RelM¢, P40, Q4 0and P|Q ~ R then deptfP) < depth(R) and depttiQ) < depth(R).

Proof. By Lemma 1depth(P) >0, depth(Q) > 0. By Theorem 2depth(R) = depth(P| Q). By Lemma 6,
depth(R) = depth(P) + depth Q) and we concludéepti(P) < depti(R) anddepth Q) < depthR). O

4.2 Unique decomposition

The commutative monoid associated with modulo~ is defined by

e P.={[P].:Pel¢} where[P].={P":P' ~P}

«e=[0]_eP..

* | :P.xP.—P.issuchthafP]_| [Q].=[P|Q].

By Lemma 7 we have that the definition [pfs sound. By Theorem 2 we have thatRlle [P] . have the
same depth. Then we can lift functidepthto P.., i.e. depti([P]..) = depth(P).

Lemma 8. P. with neutral elemenf0]_ and binary operation|| is a commutative monoid. l.e|,c
P. x P.. satisfies the associativity, commutativity and identityperties.

In order to use the Theorem 1 we need to defindPora decomposition order. In [15, 14], it is
shown that the transition relation directly induces a dguosition order on a commutative monoid of
processes. In the case of thecalculus, however, the order induced by the transitioati@h cannot
be directly used, as is illustrated by the following exampbefine a binary relation» ¢ P.. x P. by
[R]. ~ [S]. if there isR € [R]_ andS ¢ [S]_ such thaR - S. We denote the inverse of the reflexive-
transitive closure of~ by <.,, i.e., <., = (~*)™1. The orderx.. is not precompositional. Consider the
processe® = vz.(azzcca) andQ = a(x).x(y).yb. Then

* P|Q=vz(azzcca) | a(x).x(y).ybL vz.(zccal z(y).yb) = Rand therefore

* [PLIQL. = [PIIQ]. ~ [R]. =[vz(zctal z(y).yb)]...

» Note thatR executes only one transition, i.ez.(zcca| z(y).yb) 5 vz(Ta|th), theniitis clear that
there are no processBsandQ’ s.t.
[vz(azzeTa)] ~"[P'].  [a(x)x(y).ybl.~"[Q]. [P II[Q].=[vz(zcTal z(y).yb)].,

The particularity of this example is thecope extrusion We need to define an order based on a
fragment of the transition relation that avoids this pheanon. We shall define the partial ordeover
P.. as the reflexive-transitive closure of the relatierc P. x P.., which is, in turn, defined as follows:

—0={([P].,[Q].):P5QaecA; and A Py,Py eM¢ S.t. Ry £ O,P, £ O,y | P, ~ P}

=1 ={([Po|P1].,[Qo[Pi].) : [Po]. =k [Qol.,PreM¢}
U{([Ro| P, [P Qu1].) : [Pr]. =k [Qu].,PoeM¢}

[ee]
—>:U—>n .
k=0

The partial ordek is defined as the inverse of the reflexive-transitive closiire i.e., <= (—"*)"1,
We write [P]_ < [Q]. if [P]. < [Q]. and[P]. # [Q].. Notice that the definition of> avoids any kind of
communications between the arguments of the parallel tgrethis ensures that the scope extrusion is
also avoided.
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Lemma 9. If [P]_ — [Q].. then deptli[Q].) < deptH([P]..).
Lemma 10. < is a partial order.

Proof. We have to prove that is reflexive, antisymmetric, and transitive.is reflexive and transitive
because itis the reflexive-transitive closure-af To prove thak is antisymmetric notice thaP] < [Q]_
implies [Q]. = [Pn]. — ... = [P1]. = [Po]. = [P]. for n> 0 and then, by Lemma Yepth([P].) <
depth([Q]..). Therefore[P]_ < [Q]. and[Q]. < [P]. implies[P]_=[Q].. O

In Lemma 12, we prove that is a decomposition order. To prove this result we need to dddta
auxiliary result, Lemma 11.

Lemma 11. If P € Mt and depttiP) > 0 then there is Q s.{P]. — [Q]..

Proof. We proceed by complete induction over depthP). Assume that the hypothesis holds for
values less than > 1. Suppose there are i, Py € M such thaP ~ Py| P, Py £ 0 andP; £ 0. Given that

n>1then there isr e A; s.t. P P'. Then[P]. —o [P']. and therefordP]_ — [P’].. Finally, we can
define[Q]. = [P']...

Suppose there ai®, Py € Mt such thaP ~ Py | Py, Py £ 0andPy 4 0, then[P]_ = [Py| P1].. By Theo-
rem 3depth Py) < depth(P) and by Lemma Hepth(Py) > 0. By induction there i€ s.t. [Py]. — [Qo]..
and therefore there lss.t. [Py]. —k [Qo].. By definitions of—y,1 and—, [Py | P1]. —k+1 [Qo| P1]. and
[Po| P1]. — [Qo | Pi]... Therefore if we defin€Q].. = [Qp || P1].. the proof is complete. O

Lemma 12. < c P. xP. is a decomposition order.

Proof. 1. x<is well-founded. We have to prove that every non-empty sulkB.. has a<-minimal
element. LeX c P, with X # @. Let[P]_ be s.t.[P]_ ¢ X anddepth([P].) = min{depth([Q]..) |
[Q]. € X}, then[P]_ is a minimal element oK by Lemma 9 and definition of.

2. [0]. isthe least element &f. w.r.t. <. We considefP]_ and proceed by induction atepth(P). If
depth(P) = 0, thenP ~ 0 and therefordP] _ = [0].. Suppose thadepti(P) =n>0. By Lemma 11
there isQ s.t. [P]. — [Q].. By Lemma 9depth Q) < depth(P). By induction and definition of,
[0]. <[Q]. < [P]..

3. < s strictly compatible. Suppod&]_ < [P]. and considefP]_ || [S].. By definition of< there
arePy,...,PyeM¢, withn>0, s.t.[P].=[P]. = [Pi]. — ... = [R]. = [Q]... By definition of—,

for eachi =0,...n-1 there isk s.t.[R], — [Qi].. Definek=max{k; :i=0,...n-1}. Then

[P1.II[S]. = [Po]. I [S]. = [Po [ S]. =ks1 - —kea [Pn]S]. = [Pl [ [S].. = [Q]. Il [SL.

By definition of —,

[PL IS =Rl 1 [S]. = [Ro|S]. = ... = [”a[ S| = [Ra. [ [S].. = [Q]. [ [S].

By Lemma 9 andh> 0, depth([P]_ || [S]..) > depth([Q].. [ [S]..). Then[Q]. || [S]. < [P]. [| [S]

4. < is precompositional. Suppo$B]_<[Q]. || [R]., we have to prove there af®']_<[Q]. and
[R].<[R].s.t[P].=[Q]. I [R].. f Q~R~0thenQ' ~ R ~0and the conditions are satisfied.
Suppose that only one of both processes is bisimil@ ¥W.1.0.g. suppos€ + 0 andR~ 0. In this
case,[P]. <[Q]. || [R]. = [Q]., then if we defindQ’]. = [P]. and[R']. = [0]., the conditions
are also satisfied. Suppose now tkag 0 andR 4 0. By definition of < there aren > 0 and
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processe$,...,S s.t. [Q]. || [R]. =[Q|R].=[S]. = ... = [S]. =[P].. The proof proceed
by induction onn. Suppose that the hypothesis holds fipmwe prove the case+ 1. Given that
[Sv1]. =[QIR]. =[Q]. | [R]. — [S]., by definition of—, there iST s.t. either[Q]. — [T].
and[S].=[T|R]. or,[R]. = [T]. and[$]. = [Q| T].. (We have omitted the sub-index ef
because it does not play any role.) W.l.o.g. suppose[@at— [T]. and[S,].=[T|R].. Then
[P].<[T|R].=[T]. I [R].. Byinduction there ar€T’]_and[R']_s.t.[T']_<[T]., [R].<[R].
and[P]_=[T']. || [R].. BecausdT]_ <[Q]. andx is a partial order, we have thit'] < [Q].
and we can conclude the proof.

5. < is Archimedean. Suppose th@]_,[Q]. ¢ P. are s.t.[P]" <[Q].. for all ne No. By Lemma 6,
depth(P") = n-depth(P). Given thatdepth( Q) € Ny we can conclude thatepth(P) = 0 and there-
fore [P].=[0]..

U

By Theorem 1, it follows thaP.. has unique decomposition.

Corollary 1. The commutative monofel. has uniqgue decomposition.

5 Unique parallel decomposition with respect to weak bisimarity

To prove the result of unique parallel decomposition wstitong bisimilarity, we relied on the definition
of depth and on the properties that are satisfied when we téd@ccount strong bisimilarity. In partic-
ular, we proved that all strongly bisimilar processes h&aesame depth. For the weak bisimilarity we
do not have the same property. Consider the following psEes

P=xy0 P=1txy0 P’'=1.1.Xy0

Notice thatP ~ P’ ~ P”, despite thisdepth(P) < depth(P’) < depth(P”). To avoid this problem and
to adapt the ideas behind results in the previous sectiorwilveonsider processes withostuttering
transitions A transitionP — P’ is a stuttering transition ifr = T andP ~ P'.

We could not establish UPD for normed processes in the stsefting, because the norm of the
arguments of a parallel composition is not necessarilyttess the norm of the parallel composition. In
the weak setting, it is known that normed processds db not satisfy UPD w.r.t. bisimilarity. Consider
the following counter example [7]: defie= vz(zc| z(x).!ab| z(y)). P is normed because — vz(0 |
z(x).!ab| 0) | but there is no a unique parallel decompositiorPdfecausé® ~ P | P.

We study processes without stuttering transitions in 8ech.1. Using the results developed in
that section and Theorem 1, in Section 5.2 we prove that faefprocesses there is a unique parallel
decomposition w.r.t. weak bisimilarity.

5.1 Processes without stuttering steps

For w=ajap---ay € A; with n> 0, we writeP — P/ if there are processd®,Py,...,Pys.t.P=F =N
Pl =% ... =% Py =P If w=¢, thenP == P’ impliesP = P’
Definition 11. A process R N5 is a processwithout stuttering transitiond there are now € A* and

P, P" My st. P== P 5 P” and P ~P". We denote witlfil,, the set of processes Bf; without
stuttering transitions.
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In Section 4.1 we discussed why we do not consider infinitegsses, this discussion also applies
for weak bisimilarity. By definition[1,, < I¢. This fact and Lemma 14 ensure that we can use processes
in M, to define properties over equivalence classes of procas§esw.r.t. weak bisimilarity.

To prove Lemma 14 we need to introduce some notation and Leh3m@/e writex(z).P to denote
vz.XzP. We callx(z) abound-output prefix\We useA to range over prefixes, including bound-outputs.

Lemma 13. For all P € I there are prefixeds, ..., A, and processes;P.., P, such that P- 31, A;.P.

Proof. The proof proceeds by structural induction Bn CasesP = 0, P = r.P’ are straightforward by
definition. For the casP = P, + P, by induction hypothesis there are procesQes Y i Ai.R andQz =

Y jesAj-Pj and bisimulations?; andR, s.t. B R¢ Qk for k=1,2. Itis easy to see thd(P,Q1+ Q) }u Ry

U Ry is a bisimulation. CasP = P; | P, is straightforward by induction and the Expansion Lemma-for
in the r-calculus [20, Lemma 2.2.14]. Thanks this lemma we can dkaefor allP = Y AR and
Q=YjAjQj there isR= Y\« AkR¢ S.t. P| Q~ R. CaseP = vzP’ proceeds by structural induction on
P, If P'=0thenvzP’ ~ 0= Y2, Ai.R. If P = .P” then there are three cases to analysez (i)( 1) then
P~ m.(vzP"), (i) m=Xzthenvz.P’ can be denoted ¥%(z)P”, (iii) ze n(r1) andrr+Xzthenvz.m.P” ~ 0.

If P’ = Py+ P, then notice thavz(Py + Py) ~ vzPy + vz.Py; by induction there are processgg, AP and
YjeaAjPj st vzPy~ Yig AR andvz. Py ~ 3 ,5AjPj. From this point, the proof follows as in the case
P =P, +P,. Finally, caseP’ = Ry | P, can be reduced to the previous case using the Expansion Lemma
for ~ (J20, Lemma 2.2.14])). O

Lemma 14. For every process PTI1¢ there is Qe My, s.t. P~ Q.

Proof. The proof of the result follows by complete induction ma depth(P). By Lemma 13 folP € M
there are prefixeay, ..., A, and processeB,, ..., R, such thaP ~ Y[ ; A;.R. By induction and Lemma 2,
for eachi there isQ; € M, s.t. B ~ Q;. Then if we define

Q= Zie{lwn} andP#R AiLQi
we getQs.t.Qell, andP~ Q. O

We cannot restrict our attention only to processes$lip because the property of not executing
stuttering transitions is not preserved by parallel cortpes Consider the process®s = vz(az) and
Py =a(x).(Xb+1.Th). BothPy,Py e My, butPy || Py ¢ M, because

Po || PL=vz(az) || a(x).(Xb+1.Tb) 5 vz(0|| (zb+1.Ch)) ~ T.Cb~TDb

If we compare this fact with the strong setting, we can sayittienot possible to prove a lemma similar
to Lemma 7 for processes ity .

As in Section 4.1, we conclude with a collection of theoremd Bemmas. Theorems 4 and 5 are
equivalent, respectively, to Theorems 2 and 3 but w.r.tcggses irill;, and weak bisimilarity. Most of
the lemmas are needed to prove these results and only a féwrofdare used in the next section.

Lemma 15. IfP I, and P:w>QforweA’; then Qe M.

Proof. SupposeQ ¢ M, then there arev’ ¢ A* andQ’, Q" e M s.t. Q = Q' 5 Q" with @ ~Q". Let

@ obtained fromw by removingt’s actions. TherP =2 Q 5 Q” and therefore® ¢ M, , which is a
contradiction. O
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Lemma 16. If P,Qe M, are s.t. P~ Q and PL P with a ¢ A, then Q_L> Q',i.e. Q executes at least
a transition, and P~ Q’

Proof. If a + 1 the result is straightforward by Def. 7. ¢f = T and there is no transitioQq 5 Q1 s.t.
Q= Qp — Q; = Q' andP’ ~ Q' thenP’ ~ Q sinceP ~ Q. This implies thaP ~Q~ P, i.e. P — P’
is a stuttering transition. This contradid®s 1. O

Theorem 4. If P,Qe My, and P~ Q then deptfiP) = depth( Q).

Proof. We proceed by complete induction oves depth(P). If depth(P) =0, thenP ~ 0 and moreover
P~ 0. BecauseP ~ Q andP ~ 0, there is noa e As.t. Q :a>. Taking into account this fact, if there
isQ s.t. Q5 Q', Q is such thaQ’ ~ 0. This creates a contradiction beca@e> Q' is a stuttering
transition andQ <M. ThenQ ~ 0 and thereforalepth(Q) = 0 = dept(P). Supposedept(P) = n+1.
Let w=aw' € A; andP’ be s.t. lengthlw) =n+1 andP 2 P Y, BecauseP ~ Q and Lemma 16
there areQp, Q1, Q' s.t. Q=— Qg A, Q= Q' andP’' ~ Q'. By inductiondepth(P") = deptH Q") and
thereforedepth(Q) > depth(P) = n+1. We prove now that when we assuhepth(Q) > n+ 1 we reach
a contradiction; it then follows thateptH Q) = n+ 1. AssumedepthQ) >n+1 and letw = aw’ € A;
be such tha® R o LN Q' | andlength(w) = deptHQ). Because® ~ Q and Lemma 16 there B s.t.
P== B, B~ anddepth(P) =n+1> depth(P). By the complete inductiodepth(P) = depth(Q). Then,
we reach a contradictiom+ 1 > depth(P) = depth(Q) > n+1. O

Lemma 17. If P M and P-5 P’ with o # T then P# P

Proof. Let w e A* be the largest sequence = P }. Then there is n®@ s.t. P == Q. On the
other hand® ==, thereforeP # P’. O

Lemma 18. If Pely is s.t. P£0and forall P eM¢,a € Aq, P-L P’ |, then there i1’ # T S.t. Pa—/>.

Proof. BecauseP ¢ O there isa s.t. P 2, Ifforall P/ e MNi,aechA;, P Lp } anda =1 thenP~ 0 and
therefore all transitions that can be executedPlaye stuttering transitions. This contraditsM,. O

Theorem 5. If P,Q,Re My, P#0, Q4 0 and P| Q~ R then depttP) < depth(R) and deptliQ) <
depth(R).

Proof. We provedepth(P) < depti(R), the proof thatlepti( Q) < depth(R) is analogous. Note that, since
Q#0, there i with depth( Q') = 1 that is reachable froi, that is, there existe& € A* s.t.Q =, Q' and
Q' # 0 (we remark the symbat) and for allQ"” e M¢,a € Ar, Q A, Q" |. Then, by Lemma 15 €M,
and, by Lemma 18)’ 2, with o # 1. Furthermore, by Convention 1 and the symmetric versiomlef r
(Par-L) we have the® || Q =P | Q. ByLemmal7P || Q 4p [Oanda +#Timply P|| Q" #P| O~P.
BecauseP € M, wheneverSe M, andS~ P || Q', depth(S) > 1+ depth(P) (x). Given thatR~P | Q,
P|IQ —=.p | Q implies there iR s.t. R== R andR ~P | Q. By Lemma 15R €M, . In addition,
by (x), depth(R') > 1+depth(P). Finally depth(R) > depth(R") > 1+ depthP) > depth(P). O

Lemma19. If P,QeMy, P~ Q and P==. P', with a € A, then there is Qs.t. Q=a> Q.
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5.2 Unique parallel decomposition

The development in this section is similar to the developmrSection 4.2, for this reason in some
cases we use the same notation. This will not be a problenubedsth developments are independent.
In order to use Theorem 1 we need to define a commutative mavitida decomposition order. The
commutative monoid is defined by

e P.={[P]s:PeM¢} where[P],={P":P ~P}

* e=[0], eP..

Notice that we cannot ensure that for BILP” € [P]_, depth(P’") = depth(P”). Then, we extend the
notion of depth in the following way. Defif@]® =[P],nM,. For[P], ¢ P, depth([P],,) = deptr(P’)
with P’ € [P]2. This definition is sound because of Lemma 14 and Theorem 4.

Lemma 20. P, with neutral elemen{0]_ and binary operation|| is a commutative monoid. |.g},c

P. x P, satisfies the associativity, commutativity and identiyperties.
We shall define the partial orderover P, using the relation— c P, x P, defined as follows:

—0={([P]..[QL.): 3P e [P1?.Q ¢ [QI? :P' == Q. a e A,
and? Py,PLeMy, s.t.Py#0,PL #0,Py | Py~ P}

=1 = {([Po|P1]..[Qo|P1].) : [Po]. =k [Qol.,PreMs}
U{([Po|P].: [Po[Qul.) : [P]y =k [Qu]. PoeMi}

(9]
= =
k=0

The partial ordek is defined as the inverse of the reflexive-transitive closfire i.e., <= (—*)"1. We
write [P], < [Q], if [P], <[Q]. and[P], # [Q].-

Notice that in this case> takes into account processeslin, and weak transitions that execute at
least one transition. Also notice that we are avoiding comigations between the arguments of the
parallel composition in order to avoid scope extrusion.

Similarly to the strong setting, we need two lemmas, Lemniaariti 22, to prove that is a partial
order (Lemma 23). In addition, to prove thats a decomposition order, we need the Lemma 24 that is
equivalent to Lemma 11. The proofs of these results follawilarly to their respective counterpart in
the strong setting. (The complete proofs are in the appendix

Lemma 21. If [P]. — [Q]., then for allP ¢ [P]. there area € A; and Q¢ [Q], s.t.P == .

Lemma 22. If [P], — [Q], then deptid[P],) > deptH([Q],.).
Lemma 23. < is a partial order.
Lemma 24. If P M and depttiP) > 0 then there is Q s.{P], — [Q]..

We are ready to prove that P, x P, is a decomposition order. This proof does not present clsange
w.r.t. proof of Lemma 12 except that for proviags Archimedean, we use Theorem 5. Notice that there
is no lemma equivalent to Lemma 6 in the weak setting.

Lemma 25. < ¢ P, x P, is a decomposition order.
By Theorem 1, it follows thaP, has unique decomposition.
Corollary 2. The commutative monok, has unique decomposition.
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6 Final Remarks

In this paper we have proved that finite processes ofttealculus satisfy UPD w.r.t. both strong bisim-
ilarity and weak bisimilarity. We have obtained these rissubing the technique presented in [15] (see
Theorem 1) and different properties that are satisfied ih satting. For the strong setting, we had to
prove properties related to the depth of processes. For ¢ladk setting, we had to prove properties re-
lated to processes that execute no stuttering transitioosresults show that the abstract framework of
[15] can be used in the context of thecalculus, dealing with the complications that arise fraropse
extrusion. In addition, the same framework can be used tbvd#athe weak setting if one considers
processes without stuttering transitions. In this way, weehavoided the abstract technique introduced
in [14] which is considerably more involved than the teclueighat we have used in this paper.

In Section 4 we showed with two examples that norm is not aedibr the rr-calculus and therefore
some proofs in [7] are flawed. After pointing out this probléonDreier et al., they proposed us an
alternative definition of norm to solve it. Call this variamrm’. Roughly,norm’ should not consider
traces where there is a scope extrusion of processes. Wetthsnsolution may work for the applied
r-calculus, but is not suitable for the variant of tirecalculus considered in the present paper. We
first explain what is the problem in our context, and then whyg problem is not present in applied
In the first example in Section 4, we h&k Py | P, = vz(az) | a(x).!Xa. Process is not normed, i.e.

norm (P) = oo, because the only finite trace that the process exedatés,vz(o 'za) |, goes through a
scope extrusion. Now, consider the process

P’ =vz(az).(0] a(x).'ka) + a(x).(vz(az) |'xa) + 1.(vz(0|'za)) ;

it would be normed according to the alternative definitiopgasted above (thetransition fromP’ is not

the result of a scope extrusion). Now, sirRds just the expansion d?, it is clear thatP ~ P’. Thus, we
find that the property of being normed is not compatible withrbilarity. Since the appliedrcalculus
does not include the construct for non-deterministic ahoieeded for the expansion, this problem is not
present there.

An open question that leaves this paper is related with UPEhefrr-calculus w.r.t. strong full
bisimilarity[20]. Strong full bisimilarity is a stronger notion of bisirfation that is a congruence for all
constructs of ther-calculus. We have tried to apply the abstract techniquaithgetting so far without
success. When we tried to repeat the result in Section fgakto account the universal quantification
in the definition of strong full bisimilarity, a problem aesvhen we wanted to prove that the order
is a decomposition order. Particularly, we were not ablertvg that the order is strict compatible.
Notice that this problem is not present in thgynchronoust-calculug20], a well-known fragment of
the rr-calculus, because (strong) bisimilarity and (strong))idimilarity coincide.
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