

# Disturbance feedforward control for air mount systems with acoustic resonances

*Citation for published version (APA):* Beijen, M. A., Heertjes, M. F., & Butler, H. (2016). Disturbance feedforward control for air mount systems with acoustic resonances. In Book of Abstracts of the 35th Benelux meeting on Systems and Control, 22-24 March 2016, Soesterberg, The Netherlands (pp. 149). Twente University.

Document status and date: Published: 01/01/2016

## Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

## Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

### General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
  You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

### Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

# Disturbance feedforward control for air mount systems with acoustic resonances

M.A. Beijen, M.F. Heertjes, and H. Butler

Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (NL), E-mail: M.A.Beijen@tue.nl

# 1 Introduction

Disturbance feedforward control (DFC) can be used to improve disturbance suppression performance of air mount systems with air tanks. Those tanks often give rise to acoustic resonances that subsequently limit performance. This paper, which is in line with our work in [1], presents a self-tuning DFC strategy that improves performance and can deal with acoustic resonances.

A description of the uncontrolled air mount system consists of the transfer functions  $P_1$  (from base frame acceleration r to payload accleration y), and  $P_2$  (from control force u to y). Bode diagrams for  $P_1$  and  $P_2$  are given in Figure 1, which assumes a fourth-order model with one acoustic resonance.



**Figure 1:** Bode diagrams for  $P_1$  (solid) and  $P_2$  (dashed).

### 2 Disturbance feedforward control

Figure 2 shows the self-tuning controller structure. Using the z-transformation, the control signal reads

$$U(z) = \sum_{i=1}^{4} w_i(z) \mathcal{B}_i(z) R(z),$$
(1)

with  $z \in \mathbb{C}$ , basis functions  $\mathcal{B}_i$  which are orthonormal [2] to optimize convergence speed, and self-tuning weights  $w_i$ . The goal is to find all  $w_i$  such that the filterederror e is minimized. This is done with a self-tuning algorithm based on Filtered-error Least Mean Squares (FeLMS). The update block in Figure 2 performs the updates of  $w_i$ . Filter F removes sensor noise, and N is used for residual output shaping in the frequency domain. Two feedforward controllers  $C_{FF}$  are considered, i.e. a reduced-order (RO) controller and a full-order (FO) controller. The RO controller has two basis functions, while the FO controller has four basis functions. The latter can compensate for the acoustic resonance.



Figure 2: Implementation of the self-tuning controller.

#### 3 Results

Figure 3 shows Bode plots of transmissibility functions,

$$T(s) = P_1(s) + P_2(s)C_{FF}(s)F(s),$$
(2)

i.e. the transfer functions from r to y. It is observed that the RO controller only increases disturbance suppression up to the acoustic resonance frequency. The FO controller also increases performance at frequencies beyond the acoustic resonance. The controlled systems suffer from performance deterioration at very low and high frequencies due to causality aspects [3].



Figure 3: Transmissibility functions

# References

[1] M.A. Beijen et al., Modeling and feedforward compensation of air mounts with internal Helmholtz resonances. Accepted at the American Control Conference (2016), Boston, MA, USA.

[2] P.S.C. Heuberger et al., Modelling and Identification with Rational Orthogonal Basis Functions. Springer, 2005.

[3] M.M. Seron et al., Fundamental limitations in Filtering and Control. Springer, 1997.