
 

PB3D: a new code for edge 3-D ideal linear peeling-ballooning
stability
Citation for published version (APA):
Weyens, T., Sánchez, R., Huijsmans, G. T. A., Loarte, A., & García , L. (2017). PB3D: a new code for edge 3-D
ideal linear peeling-ballooning stability. Journal of Computational Physics, 330, 997-1009.
https://doi.org/10.1016/j.jcp.2016.10.054

Document license:
CC BY-NC-ND

DOI:
10.1016/j.jcp.2016.10.054

Document status and date:
Published: 01/02/2017

Document Version:
Typeset version in publisher’s lay-out, without final page, issue and volume numbers

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.jcp.2016.10.054
https://doi.org/10.1016/j.jcp.2016.10.054
https://research.tue.nl/en/publications/d908f914-4340-48e5-90db-9fbd43b2bc50


JID:YJCPH AID:6932 /FLA [m3G; v1.190; Prn:9/11/2016; 18:56] P.1 (1-13)

Journal of Computational Physics ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

PB3D: A new code for edge 3-D ideal linear 

peeling-ballooning stability ✩

T. Weyens a,b,∗, R. Sánchez a, G. Huijsmans b,d, A. Loarte c, L. García a

a Departamento de Física, Universidad Carlos III de Madrid, Madrid 28911, Spain
b Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
c ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France
d Institute for Magnetic Fusion Research, CEA, 13108 Saint-Paul-lez-Durance, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 July 2016
Received in revised form 18 October 2016
Accepted 24 October 2016
Available online xxxx

Keywords:
PB3D
Ideal linear MHD stability
Peeling-ballooning
High-n
Edge
3-D

A new numerical code PB3D (Peeling-Ballooning in 3-D) is presented. It implements 
and solves the intermediate-to-high-n ideal linear magnetohydrodynamic stability theory 
extended to full edge 3-D magnetic toroidal configurations in previous work [1]. The 
features that make PB3D unique are the assumptions on the perturbation structure through 
intermediate-to-high mode numbers n in general 3-D configurations, while allowing for 
displacement of the plasma edge. This makes PB3D capable of very efficient calculations of 
the full 3-D stability for the output of multiple equilibrium codes. As first verification, it is 
checked that results from the stability code MISHKA [2], which considers axisymmetric 
equilibrium configurations, are accurately reproduced, and these are then successfully 
extended to 3-D configurations, through comparison with COBRA [3], as well as using 
checks on physical consistency. The non-intuitive 3-D results presented serve as a tentative 
first proof of the capabilities of the code.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Magnetohydrodynamics (MHD) theory is a mathematically convenient and widely used tool in the study of hot plasmas, 
such as the ones appearing in toroidal magnetic confinement devices, such as tokamaks and stellarators, even in regions in 
parameter space where, strictly speaking, the assumptions on which it is based are less valid. Nonetheless, MHD instabilities 
often lead to a rather hard limit on the stability of toroidal plasma configurations. Hence, it is important to study MHD in 
detail and the topic of interest in this work is the global ideal linear intermediate-to-high-n MHD stability of edge 3-D
toroidal equilibrium configurations, where n is a measure of localization of the instabilities around the magnetic field lines.

The reason for focusing on the high-n assumption (also called “short-wavelength”), is that the resulting modes can be 
easily excited and can grow quickly, while at the same time spanning a large fraction of the plasma cross-section, which 
can give them the power to couple energy from the hot plasma core to the cold surface [4, sec. 7]. However, modes with 
more intermediate n numbers can also be important. The so-called peeling-ballooning modes, for example, are among the 
most important instabilities, where peeling modes have a distinct intermediate-n nature, whereas ballooning modes are 
described accurately through high-n theory. Among other things, they have been shown to be a prime candidate to explain 
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the periodic outbursts observed experimentally, called ELMs [5], which can cause large power fluxes to the components in 
fusion devices and deteriorate plasma confinement [6].

Here, the term intermediate-to-high-n therefore refers to an expansion in the parameter n accurate not just up to leading 
order in n, but also to second order. To preserve clarity, furthermore, in the remainder of this work, the term “high-n” is 
understood to include “intermediate-n” as well.

The high-n assumption was pioneered theoretically some time ago in the bulk plasma of axisymmetric configurations 
[7], after which it was extended to edge configurations [8], and also to bulk 3-D configurations [9]. An important common 
aspect of these theories, however, is that they all make use of Eikonal formulations for the spatial behavior (and normal 
modes for the time behavior) of the perturbation vector ξ (r, t) of the form

ξ (r, t) = ξ (r) eiωt = ξ̂ (r) einS(r)eiωt , (1)

where ω is the (complex) frequency of the normal mode and S is the Eikonal, defined through

B · ∇ S = 0 , (2)

with B the magnetic field, which through the large factor n decouples the derivatives into a slow derivative parallel to the 
magnetic field and a fast derivative perpendicular to it. Subsequently, through judicious choices of the form and behavior 
of the amplitude ξ̂ , this carries on to decoupling of the MHD equations in different orders. Finally, the lowest order is then 
decoupled for the flux surfaces, and yields an ordinary differential equation,1 usually known as the ballooning equation, that 
describes the stability for every flux surface separately. Higher orders typically yield the shape of the amplitude function ξ̂ .

For a full description of a general high-n mode, however, an Eikonal cannot be used easily, as it suffers from important 
limitations, such as the lack of periodicity [10] which makes it difficult to reconstruct periodic solutions, the assumed shapes 
for the perturbation amplitudes, and the difficulty of treating the cases in which the edge of the plasma is perturbed.

Because of these reasons, as an alternative, general Fourier modes of the form ∼ ξ̂ (ψ) exp [nζ − mθ ] can be used instead 
in a (ψ, θ, ζ ) coordinate system with ψ a flux coordinate and θ poloidal and ζ toroidal angles. A flux coordinate is a 
function that monotonously varies across the nested flux surfaces of ideal plasmas (i.e. without resistivity), such as enclosed 
volume or flux; and it is convenient to deform the angular coordinates so that the magnetic field becomes straight [11]. 
Furthermore, the correct treatment of edge-perturbed plasmas is also possible, through formally considering the toroidal 
system as the union of the plasma and a surrounding vacuum, connected by an edge that in theory can support a jump 
in the magnetic field through a skin current, and by investigating the perturbed potential and kinetic energy of the whole 
system; a strategy referred to as the extended energy principle [12].

For axisymmetric equilibria, this was the approach followed by the numerical code ELITE [5]. In the theory behind PB3D 
the approach is more general [1], as full 3-D configurations are considered, and when they are restricted to axisymmetry, 
this leads to the same range of validity as the original ELITE.2 In 3-D, one would expect greater complexity and com-
putational requirements, but an important finding is that the numerical problem to be solved is not substantially more 
complex than that for the axisymmetric case, as the fluted (see subsec. 2.2) high-n nature of the modes leads naturally to a 
separation of scales that reduces the dimension of the problem by one.

Apart from this, to motivate the search for a 3-D solution, some examples of 3-D configurations include the breaking 
of axisymmetry, such as due to the usage of ferromagnetic Tritium Breeder Modules in ITER, discrete toroidal field coils in 
tokamaks that introduce a toroidal field ripple, or axisymmetry-breaking resonance magnetic perturbation (RMP) coils for 
ELM control that work by explicitly breaking axisymmetry. Recently, these topics have started attracting ample interest, and 
mostly so for the RMP coils, as ELM control is becoming very important in the next-generation tokamaks such as ITER.

In [13], for example, the 3-D corrugation of the plasma edge was identified as one of the key ingredients in the mech-
anism of ELM control through RMPs, (the simulation of which is a task for which PB3D would be very well suited). As an 
alternative to full 3-D treatments, perturbative approaches to 3-D effects were used in both [14] and [15], where the for-
mer is geared mostly towards configurations with magnetic islands, and the latter towards 3-D modifications of otherwise 
axisymmetric equilibria. Finally, work with the CAS3D code that is able to perform 3-D stability analysis, but which does 
not employ the high-n assumption, was presented already in [16]. That research was geared towards stellarators, which are 
fully 3-D configurations, that can also suffer from instability issues, and where perturbative approaches are not possible.

After this introduction to and situation of the current work, the theoretical model derived in [1] is shortly summarized 
in the next section. Subsequently, in sec. 3, numerical aspects of the new PB3D code, such as the discretization methods and 
employed algorithms, are discussed. Following this, in sec. 4 information is given about the verification of PB3D, making 
use of comparisons with numerical codes MISHKA [2] and COBRA [3], as well as checks on physical consistency. Finally, in 
sec. 5, a summary follows.

1 Or possibly a set of two if the plasma is compressible [9].
2 ELITE has recently been extended to include a higher order in the expansion in n, not yet present in the PB3D theory.
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2. Theoretical model

The theoretical model on which the PB3D code is based, was developed in [1] and is shortly summarized here. First, 
some general information is given about the extended energy principle that is used and afterwards the description of 
the magnetic field is discussed, as well as the specific form of the perturbations used in this work. Finally, stability is 
investigated, making use of minimized energy.

2.1. Extended energy principle

As discussed in the previous section, the extended principle is used for normal modes with frequency ω. This leads to 
expressions for the perturbed potential and kinetic energy for the system composed of plasma connected to surrounding 
vacuum at the plasma edge. It is advantageous to make use of the Rayleigh Quotient formulation which identifies eigenvalues 
ω2 of the normal modes with stationary values of the quotient �, defined as the ratio of perturbed potential and kinetic 
energy:

� [ξ ,Qv] ≡ δW [ξ ,Qv]

K [ξ ]
≡ δWp [ξ ] + δW s [ξ ] + δWv [Qv]

1
2

∫
p ρ |ξ |2 dr

, (3)

where ρ is the plasma mass density and ξ and Qv are the plasma, respectively the vacuum magnetic field perturbation, and 
where it is illustrated that the perturbed potential energy is composed of parts corresponding to the plasma (subscript p), 
the edge surface (s) and the surrounding vacuum (v):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δWp (ξ) = 1

2

∫
p

dr

[
|Q|2
μ0

− ξ∗ · J × Q + γ p |∇ · ξ |2 + (ξ · ∇p)∇ · ξ∗
]

δW s (ξ) = 1

2

∫
s

dS

[
|n · ξ |2 n ·

�
∇

(
μ0 p + B2

2

)�]
s

δWv (Qv) = 1

2

∫
v

dr

[
|Qv|2
μ0

]
.

(4)

Here, J is the plasma current, defined through μ0J = ∇ × B, p is the plasma pressure, γ the adiabatic constant, n the unit 
vector normal to the plasma edge surface and the quantity Q is the perturbation of the magnetic field

Q = ∇ × (ξ × B) . (5)

An advantage of the generalized energy principle, is that the perturbations only need to satisfy the essential boundary 
conditions⎧⎪⎨

⎪⎩
ξ regular (on p) ,

n · ∇ × (ξ × Bv) = n · Qv (on s) ,

n · Qv = 0 (on exterior wall) ,

(6)

as the natural boundary conditions are already taken into account automatically.

2.2. Magnetic field and Fourier modes

Fourier modes are used in the angular coordinates θ and ζ , which in this work are chosen so that the magnetic field

B = ∇ζ × ∇ψ + q(ψ)∇ψ × ∇θ , (7)

appears straight with its pitch constant on each flux surface and given by the safety factor q (ψ) = dζ
dθ

, with as flux coordinate 
the scaled enclosed poloidal flux ψ = ψpol

2π . To further simplify the situation, the toroidal coordinate, is replaced by the field 
line label α = ζ − qθ , the resulting magnetic field being proportional to the covariant unit vector in the θ direction:

B = 1

J
eθ , (8)

with J the Jacobian, which is why θ is called the parallel coordinate or magnetic coordinate.3 In the resulting (α,ψ, θ)

coordinate system, the Fourier modes then have the form:

3 This is the for the case when the enclosed poloidal flux is used as normal coordinate. If the toroidal flux is used, the parallel coordinate is not θ but ζ . 
PB3D is capable of this, but the rest of the discussion is limited to using the poloidal flux as normal coordinate.
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ξ (α,ψ, θ) = ξ̂ (ψ) ei[(nq−m)θ−nα] . (9)

From basic stability considerations, it can be seen that acceptable high-n modes must be fluted [17, sec. 8.11], meaning 
that their parallel dependence should be of the same order as the equilibrium variations, as opposed to their fast perpen-
dicular dependence. The introduction of the α coordinate then leads to a natural separation of these two length scales that 
decouples the modes that belong to different field lines as is illustrated in [1, fig. 1]. This is expressed in the exponent of 
eq. (9) through the condition nq−m

n � 1.

2.3. Minimized perturbed energy

Employing the Fourier form of the perturbations of eq. (9) in the expressions for the perturbed energies of eqs. (4), 
through the analytical minimization of certain stabilizing term the different components of the perturbation can all be 
written in terms of the normal component X = ∇ψ · ξ , and through the decoupling of modes belonging to different field 
lines, the mode vector of the perturbation, X = (X1, X2, . . . , XM)T contains only M components due to the θ dimension. The 
resulting expressions for the perturbed plasma potential and kinetic potential then reduce to integrals over ψ of bilinear 
form relating the vector of the modes of ξ to the perturbed energies:

δWp = 1

2

∫
v

X∗PXdψ , (10)

K = 1

2

∫
v

X∗KXdψ , (11)

where the tensors P and K are both of the same form, so they can be bundled by defining the Lagrangian

L = P − ω2K , (12)

with elements Lk,m given by, using non-standard terminology, magnetic average modes of the quantities Lk,m , defined as

Lk,m =
∫
α

J ei(k−m)θ Lk,mdθ , (13)

where the integration runs along a field line with label α. Note that this is a consequence of the fact that only modes 
pertaining to the same field lines are coupled. Also note that the Lagrangian formulation is equivalent to using the Rayleigh 
Quotient.

The quantities Lk,m = Pk,m − ω2 Kk,m are second order differential operators with elements of the form

Lk,m = L0
k,m +

←−
d

dψ
L1∗

m,k + L1
k,m

−→
d

dψ
+

←−
d

dψ
L2

k,m

−→
d

dψ
, (14)

which are Hermitian, since L0
k,m and L2

k,m are individually so. This expresses the fact that there are no losses in ideal MHD. 
The arrows in above equation indicate the direction in which the derivatives are to be taken.

Apart from this, the perturbed energy of the vacuum reduces to a surface term δvac
k,m , and it can be shown that a perturbed 

skin current on the plasma edge is not allowed as it would be very stabilizing, so that the contribution due to the edge is 
zero.

Finally, Euler minimization of the Rayleigh Quotient in the different functions X∗
k (ψ) leads to a coupled set of second-

order ordinary differential equations (ODEs) of the functions Xm (ψ) that contain an eigenvalue ω2 due to the time 
derivatives present in the kinetic energy as related to the square of the velocity. Furthermore, the necessary partial in-
tegrations that translate normal derivatives of the complex conjugate functions X∗

k , introduce boundary terms at the edges 
of the integration boundaries in ψ , which leads to a contribution at the plasma edge, which is added to the contribution 
δvac

k,m due to the vacuum—the contribution at the plasma center vanishes as the perturbations are assumed to vanish there; 
core instabilities are not the interest of high-n theory.

Therefore, the resulting system of equations is of the form

∑
m

{
L

0
k,m Xm −

(
L

1∗
m,k Xm

)′ + L
1
k,m X ′

m −
(

L
2
k,m X ′

m

)′} = 0 , (15)

and a total surface contribution∑{(
δvac

k,m + L
1∗
m,k

)
Xm + L

2
k,m X ′

m

}
= 0 , (16)
m
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with the primes indicating normal derivatives. With k = 1 . . . M and m = 1 . . . M , these are M equations for M functions 
Xm , containing an eigenvalue ω2, and the second equation serves as a boundary condition for the first, combined with the 
boundary condition of vanishing perturbations at the plasma center, mentioned earlier.

Expressions for the elements of the tensors P j
k,m , pertaining to the plasma potential energy δWp, and K j

k,m , to the plasma 
kinetic energy K are given for j = 0 . . . 2 by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 0
k,m = 1

μ0

|∇ψ |2
J 2 B2

(
DU 0∗

k −J S − μ0σ
J B2

|∇ψ |2
)(

DU 0
m −J S − μ0σ

J B2

|∇ψ |2
)

− σ

J

(
J S + μ0σ

J B2

|∇ψ |2
)

+ (nq − k) (nq − m)

μ0J 2 |∇ψ |2 − 2p′κn

P 1
k,m = 1

μ0

|∇ψ |2
J 2 B2

(
DU 0∗

k −J S − μ0σ
J B2

|∇ψ |2
)

DU 1
m

P 2
k,m = 1

μ0

|∇ψ |2
J 2 B2

DU 1
m DU 1∗

k ,

(17)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K 0
k,m = ρ

|∇ψ |2 + |∇ψ |2
B2

U 0∗
k U 0

mρ

K 1
k,m = |∇ψ |2

B2
U 0∗

k U 1
mρ

K 2
k,m = |∇ψ |2

B2
U 1∗

k U 1
mρ ,

(18)

where S is the shear, σ is the parallel current and κn and κg are the normal and geodesic components of the curvature:

S = − 1

J
∂�α

∂θ
, (19)

σ = εi jk

μ0

1

B2J
∂ B j

∂ui
Bk , (20)

κn = ∇ψ

|∇ψ |2 B2
· ∇⊥

(
μ0 p + B2

2

)
, (21)

κg = − 1

2p′
1

J
∂σ

∂θ
, (22)

making use of the covariant components of the magnetic field Bi = gθ,i/J and the following definition for �i :

�i = ∇ψ · ∇ui

∇ψ · ∇ψ
. (23)

Subsequently, the quantities U i
m and DU i

m , for i = 0, 1, correspond to the geodesic component of the plasma perturbation 
U = ∇ψ×B

|∇ψ |2 · ξ , minimized as a function of the normal component X , and the parallel derivative:

Um =
[

U 0
m + U 1

m
d

dψ

]
(Xm) , (24)

DU i
m = ∂U i

m

∂θ
+ i (nq − m) U i

m , (25)

where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U 0
m = − (

�α + q′θ
) + i

n

1

Bθ

[
Bαq′ +Jμ0 p′ + i (nq − m)

(
Bαq′θ − Bψ

)]
+ i

n

1

Bθ

nq − m

n
J B · ∇ψ × ∇

(
�θ ei(nq−m)θ

)
e−i(nq−m)θ ,

U 1
m = i

n

(
1 + nq − m

n

Bα

Bθ

)
.

(26)

and the remaining quantities have their usual meaning.
A discussion concerning the physical meaning of the different terms in above equations is given in [1].
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3. Numerical aspects of PB3D

In this section, first the discretization of the system of ODEs is discussed, followed by a subsection considering the code 
structure and a section giving information about the used algorithms.

3.1. Discretization

In PB3D, functions Xm (ψ) are discretized using finite differences at I normal positions ψi . The M different modes 
are then bundled at each of these I normal positions into the new vector X of size I × M whose components Xmi ≡
Xm (ψi) e−imθ .

Subsequently discretizing the differential operators of eqs. (15) and (16) then naturally leads to a generalized eigenvalue 
problem of the form:

AX = λBX , (27)

with A and B matrices corresponding to the potential and kinetic energy, X the eigenvector and λ = ω2 the eigenvalue, so 
that λ > 0 denotes stability and λ < 0 instability. The discretized boundary condition (eq. (16)) enters in the last rows and 
columns of the matrices and the other boundary condition, the vanishing of the discretization at the plasma center, at the 
first rows and columns.

Importantly, if the discretization is done judiciously, A and B are Hermitian, reflecting the energy-conserving nature of 
ideal MHD in a numerical way. Though PB3D can handle this process using central differences of arbitrary order, for the 
sake of illustration, only the results for the first order are described here, using

f (1) = f i+1 − f i−1

�
− �2

6
f (3) +O

(
�4

)
≈ f i+1 − f i−1

�
,

(28)

with constant step size � = ψi+1 −ψi . Defining the discretized Lagrangian as L ≡ A −λB, the generalized eigenvalue equation 
becomes

LX = 0 , (29)

where now the bar notation is left out as henceforth all the quantities are assumed to be magnetic average modes.
Discretizing the Euler eq. (15), the bulk of the matrix L is found to be given by the superposition along the diagonal of 

a Hermitian stencil consisting of nine (M × M) blocks of the form(
1

2�

)2
L2

i − 1
2�

L1†
i −

(
1

2�

)2
L2

i

− 1
2�

L1
i L0

i
1

2�
L1

i

−
(

1
2�

)2
L2

i
1

2�
L1†

i

(
1

2�

)2
L2

i

. (30)

The matrix L is adapted at the first and last normal position i = 1 and i = I to incorporate the boundary conditions. At 
the first position, the perturbation is set to zero by introducing an artificial eigenvalue λBC and adapting the first row and 
column block of the matrices A and B to

Ai j =
{
1λBC if i = j = 1

0 if else
and Bi j =

{
1 if i = j = 1

0 if else
. (31)

The stencil at the last position i = I is modified using the boundary condition from eq. (16)

0 1
2�

δvac 0

1
2�

δvac L0,mod
I 0

0 0 0

, (32)

with

L0,mod
I = L0

I −
(

L1
I + δvac

)(
L2

I

)−1 (
L1

I + δvac
)†

. (33)

Finally, it is interesting to note that the stencil from eq. (30), which resulted from the discretization of the Euler equation 
(eq. (15)), can also be interpreted directly as the terms in the Lagrangian by considering the quadratic form 1

2 X†LX as the 
discretized version of
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Fig. 1. PB3D general flowchart. In every Richardson level, it is checked whether the relative error between successive levels falls below a threshold. If not, 
the parallel grid is refined; If so, Richardson extrapolation (R.A.) is applied to get an approximation of higher precision. An explanation for the double arrow 
labeled par. jobs is given below, in the paragraph concerning the equilibrium driver. PB3D outputs the relevant variables using HDF5 at completion of each 
driver, and reads them in the subsequent drivers, but this is not portrayed here.

L = δW − K = 1

2

∫
v

X∗ (
P − ω2V

)
Xdψ , (34)

the discretized integral reduced to a summation in the quadratic form. Indeed, the factors of the stencil that builds up L
have a clear connection to the terms of the operators V j and K j in eq. (14), the terms for j = 0 ending up in the central 
elements of the stencil, the terms with j = 1 in the main row and column and the terms with j = 2 in the diagonal 
elements. As a consequence, it can be seen that an extension to higher orders central differences is straightforward: The 
stencil of eq. (30) then just grows in size and the factors change. Practically, apart from an easy way to implement general 
discretization orders, this is of importance as well as it can be seen that explicit storage of (only the nonzero elements of) 
the matrix will contain a lot of redundant information. It is then better to make use of so-called matrix-free methods, where 
only the operations of the matrix on vectors or matrices are defined in the numerical code.

3.2. Code structure

PB3D is written in a modular way, so that it can be run using the output of various equilibrium codes and to make the 
stability calculation customizable.

The essence of PB3D consists of four major parts called drivers: the input driver, the equilibrium driver, the perturbation 
driver and the solution driver. There is also a standalone program called POST that does the post-processing of PB3D output, 
with a single driver. The different drivers function completely independently, to allow for easy modularization, with commu-
nication between them going exclusively through optimized HDF5 channels using an output data file, for the large datasets, 
as well as some minor global variables for book-keeping. Apart from this, PB3D makes use of the technique of Richardson 
extrapolation [18, sec. 16.4] as well as methods of keeping the memory usage below a threshold, on three different levels. 
Finally, the whole PB3D code is parallelized using MPI to make efficient use of modern computing resources. Fig. 1 explains 
this general structure.

Note that to find the straight field line coordinates, a similar procedure is done as in [3], i.e. by finding the zero’s of

α − ζ + qθ = 0 , (35)

but here a variant of Brent’s algorithm, called Zhang’s algorithm [19], is used.
Subsequently, a word should be said about the ways in which PB3D treats the perturbation mode numbers. One can 

either choose between prescribing them manually, setting a primary mode number n (fast-varying field line label α; no 
coupling) and the secondary mode number m (slowly-varying parallel coordinate θ ; coupling). However, it is usually more 
efficient to use the fast version, where the user prescribes only the number of secondary modes numbers. PB3D will then 
automatically calculate the mode numbers that are closest to resonance nq ≈ m. Not only does this greatly reduce the 
number of modes, and thus the computing time necessary, but it will also result in matrices A and B that are much better 
conditioned as the whole theory behind PB3D is built on this resonant condition.

Finally, in the next paragraphs, some more information is given about the method of Richardson extrapolation, as well 
as on so-called energy reconstruction.

Richardson extrapolation Richardson extrapolation is used in PB3D to get better approximations to the numerical integrals 
of the field lines averages. Use is made of explicit knowledge of the discretization scheme, so that the results for numerical 
grids with equal boundaries but different numbers of points are combined to reduce the error further. More exactly, for 
equidistant step size �ψ and discretization through finite differences of order 1, the difference between the true mathe-
matical operator in eq. (15) and the discretized version is indicated by the operator

δL [X] =
∞∑

l=1

�ψ2l

(2l + 1)!

⎡
⎣L

1
X (2l+1) −

(
L

1†
X
)(2l+1) −

∞∑
j=0

�ψ2 j

(2 j + 1)!
(

L
2

X (2 j+1)
)(2l+1)

⎤
⎦ , (36)
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where the superscripts indicate normal derivatives. For general discretization orders p, this can be written as

δL =
∞∑

l=1

al�ψ2pl . (37)

Assuming the same kind of dependence on the resulting eigenvalue as well, the information from the solutions of R of 
different step sizes can be combined, yielding a recursive formula for λ(R)

r [20, p. 270]

λ
(R)
r = λ

(R)
r−1 + λ

(R)
r−1 − λ

(R−1)
r−1

22pr − 1
for r = 1 . . . R , (38)

with λ(R)
0 the eigenvalue. This expression is then an approximation of order O

(
�ψ2p(R+1)−1

)
to the physical eigenvalue.

The fact that the parallel grids used in PB3D are equidistant, with the set of points of a certain Richardson level r equal 
to the set of points of the previous level r − 1, plus the set of intermediary points, has implications. An important advantage 
is that for Newton–Cotes formulas of order 1 and 3 (i.e. trapezoidal rule and Simpson’s 3/8 rule), not only the points but the 
entire integrals calculated for the previous Richardson levels can be used in the calculation of the integrals of the current 
level, which cuts memory usage almost by half. For these Newton–Cotes rules, the integral Ir calculated with all the points 
of a Richardson level r > 1 is given by:

Ir = Ir−1

2
+ Kr , (39)

where Kr is a combination of only the new points for this Richardson level (i.e. the intermediary points with respect to the 
points of level r − 1), differing slightly from the general Newton–Cotes formulas to account for boundary effects.4

As explained in Fig. 1, after each Richardson level r > 1, PB3D checks whether the relative difference between the 
eigenvalue found in this level and the previous level is lower than a certain threshold. If so, Richardson extrapolation is 
applied to combine the eigenvalues calculated for all the previous levels 1 . . . r into the approximation with the lowest 
error. If convergence is not yet reached, the process starts again after refining the parallel grid by adding the intermediate 
points, as stated above. Again, it should be noted that the calculations for the next Richardson level will then only use these 
intermediary points, i.e. half the refined grid, which is not a general feature of Richardson extrapolation schemes. Note that, 
as the eigenvectors are a function of the normal coordinate only, the eigenvectors found for the current Richardson level 
can be used easily as a first guess for the next one, sometimes drastically cutting computing time.

Finally, the modular structure of PB3D grants the opportunity for restart. A simulation that has been done up to Richard-
son level r can be (re)started up to level r + 1. This allows for added control of the Richardson extrapolation loop.

Energy reconstruction POST is a complementary post-processing program for PB3D output. Among other things, it is worth 
mentioning that in POST energy reconstruction is performed, by which the following is meant: The eigenvector can be used 
to calculate the individual terms that constitute the plasma potential as well as kinetic energy. Not only does this provide 
a final and thorough check on consistency5 through checking whether the Rayleigh Quotient � from eq. (3) is equal to the 
eigenvalue λ, it also allows for the individual inspection of these terms to ascertain their individual strengths, for example 
to see whether an instability is current- or pressure-driven.

4. Verification

The PB3D is verified by comparing it with other numerical codes, as well as using criteria of physical consistency. In 
a first subsection, the axisymmetric equilibrium model CBM18 is discussed, which is then used in subsec. 4.2 to perform 
verification for axisymmetric configurations. Subsequently, this is extended to a 3-D configuration in subsec. 4.3.

The codes HELENA [2] and VMEC [21] yield the equilibrium configuration, where HELENA is axisymmetric and VMEC is 
3-D. For stability comparison, MISHKA [2] is used, which is a general-n code that employs axisymmetric HELENA equilibria, 
as well as COBRA [3], which is an infinity-n stability code that makes use of an Eikonal formulation and investigates the 
stability of 3-D VMEC equilibria by solving the Ballooning equation. The numerical tool ELITE [5], referenced to in the 
introduction, is not compared with directly, but ELITE has been verified extensively with MISHKA itself.

Note that all stability results concern the most unstable mode and are stated using MISHKA normalization, using the 
major radius at the magnetic axis and the toroidal magnetic field on axis.

4 For example, for Simpson’s 3/8 rule, the coefficients of quadrature ci in ∫ f (ψ)dψ ≈ 3
8 �ψ

∑
i ci f i = Ir are given by 1 3 3 2 3 3 2 · · · 2 3 3 1, and have 

to be modified to 3 3 2 3 2 · · ·2 3 3 for Kr .
5 Naturally, these terms do end up in the matrices A and B of the generalized eigenvalue equation (eq. (27)) through the vectorial and tensorial pertur-

bation variables discussed in the previous paragraphs, but only after algebraic manipulations that do not preserve their individuality.
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Fig. 2. Safety factor, pressure profile and cross-section for CBM18.

Fig. 3. Comparison between results from PB3D (squares), MISHKA (crosses) and COBRA (dashed line). At every value for the primary mode number n, the 
number of secondary modes m is adjusted until convergence is reached, where the fast version of PB3D automatically sets the optimal resonating range.

4.1. CBM18 equilibrium model

The axisymmetric circular tokamak model called CBM18 is used, which is designed to be ballooning unstable6 through 
a steep pressure gradient [22]. This model is used in HELENA format as well as ported to the VMEC format. Fig. 2a shows 
pressure p and safety factor q, that are flux quantities, with dependence only on ψ . A poloidal cross-section of this circular 
tokamak model is shown as well in Fig. 2b.

4.2. Axisymmetric verification

The PB3D results for CBM18 are directly compared to the results given by the numerical code MISHKA. In these simula-
tions, the fast version of PB3D is used with 500 normal grid points, since increasing it beyond that number only marginally 
changes the results. In the Richardson extrapolation loop, the number of parallel grid points is automatically increased in 
the fundamental interval −π . . .π until a relative error of 10−10 is reached. The number of poloidal harmonics, on the other 
hand, is manually increased until convergence of the most unstable eigenvalue was reached. In this axisymmetric case, the 
field line label α has no influence. Furthermore, COBRA [3] is also used to give the limit of n → ∞. The results are plot in 
Fig. 3.

There is good agreement with simulations done with the numerical codes ELITE and GATO in [22, fig. 6], taking into 
account a factor 1.5 due to the difference in normalization for the growth rate, due to the usage of R

B = 1.5 m
T instead 

of 1.0 m
T . Furthermore, there is similar behavior of increasing instability for higher n in both cases, i.e. for more localized 

modes. This is a consequence of the ability of the mode to become better and better localized in the regions of bad 
curvature. Also, it can be seen that they have the same marginal point, i.e. the mode number n for which there is marginal 
stability. However, PB3D gives slightly more unstable results, but this is explained by the fact that the problems solved 
are basically of different nature between the two codes, due to the high-n approximation employed in the former code as 
compared to the general-n approach in the latter, which affects the different terms in a different way. In fact, the exact same 
phenomenon can be observed for ELITE, for example in [5, fig. 4], with a relative difference similar to the 10% obtained here. 
Furthermore, COBRA uses the infinite-n assumption, which makes it represent the limiting case, as can be seen from the 
figure.

6 Careful verification using peeling cases has to wait for a complete implementation of the vacuum term ξvac subsection 3.1.
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Fig. 4. Most unstable mode for a simulation of the stability of CBM18 using n = 10 and 30 modes m.

Fig. 5. Energy reconstruction as a function of the number of grid points in the VMEC equilibrium model and in the discretization of the eigenvector. The 
number of grid points of either the discretization of the eigenvector or the VMEC equilibrium that is not varied, is kept constant at 500, and the simulations 
were done using n = 10, with 20 modes m. At left axis, squares show γ = √−λ and circles show reconstructed � = √−�. At right axis, triangles show the 
relative difference εrel in logarithmic scale.

Subsequently, Fig. 4 shows a comparison of the mode structure between PB3D and MISHKA simulations for a CBM18 run 
with n = 10, using 30 Fourier modes with optimally chosen m. In Fig. 4a, it can be seen that the individual Fourier mode 
amplitudes Xm (ψ) as well as the global envelope show a Maxwellian structure around the pressure drop, as expected from 
infinity-n theory [7]. Furthermore, the destabilizing ballooning effect is obtained through the normal displacement of the 
individual modes with mode numbers m, each resonating on its own rational surface q ≈ m

n (not shown). In Figs. 4b and 
4c, a visual comparison is displayed between PB3D and MISHKA of the global mode structure of X (ψ, θ) in a poloidal 
cross-section.

Finally, the energy reconstruction discussed in the paragraph concerning the post-processing driver, is employed as a 
check on physical consistency: In Fig. 5, a comparison is made between the calculated eigenvalue λ and the ratio of potential 
to kinetic energies in the Rayleigh Quotient � through energy reconstruction for different numbers of normal grid points 
(Fig. 5a) and in the discretization of the eigenvector (Fig. 5b). It can be seen that the energy reconstruction improves for 
increasing number of equilibrium grid points, but that the improvement for increasing the grid points of the discretization 
of the eigenvector only works up to the same order as the number of grid points in the underlying equilibrium model.
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Fig. 6. Comparison between 3-D results from PB3D (triangles) and COBRA (dashed line), as well as the original large (L) axisymmetric results (PB3D with 
squares and COBRA with dashed line from Fig. 6), and results for the smaller (S) axisymmetric version (PB3D with circles and COBRA with dashed line). 
Again, the primary mode n is varied and for every value of it, the number of secondary modes m is adjusted until convergence is reached, where the fast 
version of PB3D automatically sets the most resonating range. The 3-D result is more unstable than either the small or big CBM18 axisymmetric result.

Fig. 7. Comparison of potential energy terms for n = 20. These consist of the stabilizing line bending energy (LB) and the potentially destabilizing bal-
looning term (B) and kink term (K), displaying the normal components and geodesic components individually. This is done for the large (L) and small (S) 
axisymmetric cases, and the hybrid 3-D case, described above.

4.3. 3-D verification

The VMEC version of CBM18 has been adapted to a 3-D version through varying the poloidal cross-section radius a (ζ )

toroidally by 10% over the whole toroidal range ζ = 0 . . . 2π , meaning that α(0)
α(π)

= 1.1. The pressure profile and safety factor 
is unchanged and the position of the magnetic axis approximately so. Admittedly artificial, what matters is that this test 
case is 3-D.

This is reflected in a change of most unstable growth rate,7 which is seen in Fig. 6, showing the results from PB3D and 
COBRA, as well as the results copied from the axisymmetric case, which is referred to as the large case.

Also, a small case is provided, which corresponds to the axisymmetric configuration with a cross section equal to the 
smaller end of the modified 3-D case with constant radius equal to a (π) of the 3-D case. This small case was designed to 
have the same pressure profile as the large case, and the same safety factor. It is not directly evident why the small case 
is slightly more unstable in the limit n → ∞ but with the marginal n-value higher than the large case, but in Fig. 7 the 
energy reconstruction is provided. In this figure, the relative contributions of six components of the plasma potential energy 
are plot, corresponding to the normal and geodesic components of the line-bending energy which is always stabilizing; the 
ballooning term (proportional to the pressure gradient) and the peeling term (proportional to the parallel current), which 
can be destabilizing. (See for example [17, eq. (8.87)].) It can be seen that the difference between the large and small case 
is indeed quantitative.

Now, curiously, it can be seen that the PB3D results for the 3-D equilibrium are more unstable than either the small and 
large cases, an effect also observed in COBRA.

To investigate this, the energy reconstruction is also displayed in Fig. 7. The main difference now is the large destabilizing 
normal component of the ballooning term, and the reduced compensation by stabilizing line bending. And though the 
geodesic components of both the ballooning and kink term are even slightly stabilizing, perhaps contrary to expectations, 
due to the toroidal change that has been created by merging the two axisymmetric cases, this is a far smaller effect.

Admittedly, it is an artificial test case, but clearly 3-D results can in some cases deviate strongly from axisymmetric ones 
PB3D provides the tool to study this.

Finally, contrary to the axisymmetric case, for these 3-D configurations, a discussion regarding the influence of the 
field-line label α and the limits θmax on the parallel bounding box −θmax ≤ θ ≤ θmax is important, which will also provide a 
check on physical consistency: Namely, α can be understood as the base of the magnetic field lines, i.e. the toroidal position 
ζ0 at the midplane θ = 0. As the entire flux surface is covered by the field lines, along which is integrated in the magnetic 

7 It should be mentioned that other types of toroidal modifications, such as by squishing and expanding just the height or major radius, or applying a 
twist, have been tested and confirmed to generally lead to qualitative similar results. The same counts for toroidal modifications with more periods. The 
physical investigations of these configurations will be a subject of further work.
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Fig. 8. The influence of the bounding box in the parallel direction θmax.

average modes (eq. (13)), the parallel integration should range from −∞ . . .∞. It should therefore be expected that the 
field line label α have no influence on the final results.

Fig. 8a shows how well this is approximated in practice using a parallel bounding box of finite size. It can clearly be 
seen that the results for small bounding boxes are strongly dependent on α, which reflects that the modes are artificially 
confined to only use the information of a limited subspace of the 2-D flux surfaces. For larger sizes of bounding boxes—and 
correspondingly larger number of parallel points—the difference, however, falls of linearly with the size as can be seen in 
Fig. 8b.

5. Summary

The new 3-D linear ideal high-n MHD stability code PB3D is presented, which simulates the high-n ideal linear MHD 
stability in 3-D magnetic configurations including edge effects. Typical high-n modes that appear are peeling-ballooning 
modes, which have been linked to, for example, ELM cycling phenomena observed, as well as RMP techniques that break 
the axisymmetry of plasma for controlling them. It is expected that 3-D configurations offer can offer exciting new insights, 
such as possible new ranges in parameter space of enhanced stability. Furthermore, it is important that edge effects are 
taking into account correctly.

This paper focused on verifying the PB3D code using checks on physical consistency as well as by comparing results 
with MISHKA and COBRA. Good qualitative agreement is found and the quantitative differences are explained through dif-
ferences in assumptions between these numerical codes. Furthermore, since MISHKA and COBRA have each been extensively 
benchmarked with other codes (such as ELITE, GATO for MISHKA, or TERPSICHORE for COBRA), this verification exercise has 
provided further confirmation of the correctness of the approach used in PB3D and its implementation.

A first proof of the capabilities of the code is also presented with some non-intuitive results considering 3-D effects, 
with the aim of providing a numerical tool that can be used to study them. Further work will focus on the applications of 
the code and extracting physical results.
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