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Abstract Inorder to detect salient lines in spherical images,
we consider the problem of minimizing the functional

I
[e€y(s)),/8*+ ké (s) ds foracurve y on asphere with fixed
0

boundary points and directions. The total length [ is free, s
denotes the spherical arclength, and kg denotes the geodesic
curvature of y. Here the smooth external cost € > § > 0
is obtained from spherical data. We lift this problem to the
sub-Riemannian (SR) problem in Lie group SO(3) and show
that the spherical projection of certain SR geodesics pro-
vides a solution to our curve optimization problem. In fact,
this holds only for the geodesics whose spherical projection
does not exhibit a cusp. The problem is a spherical exten-
sion of a well-known contour perception model, where we
extend the model by Boscain and Rossi to the general case
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& >0,¢ # 1. For € = 1, we derive SR geodesics and eval-
uate the first cusp time. We show that these curves have a
simpler expression when they are parameterized by spheri-
cal arclength rather than by sub-Riemannian arclength. For
case € # 1 (data-driven SR geodesics), we solve via a SR
Fast Marching method. Finally, we show an experiment of
vessel tracking in a spherical image of the retina and study
the effect of including the spherical geometry in analysis of
vessels curvature.

Keywords Sub-Riemannian geodesics - Geometric control -
Spherical image - Lie group SO(3) - Vessel tracking

1 Introduction

In computer vision, it is common to extract salient curves
in flat images via data-driven minimal paths or geodesics
[1-5]. The minimizing geodesic is defined as the curve that
minimizes the length functional, which is typically weighted
by a cost function with high values at image locations with
high curve saliency.

Another set of geodesic methods, partially inspired by the
psychology of vision, was developed in [13,14]. In these
articles, sub-Riemannian (SR) geodesics in respectively the
Heisenberg H(3) and the Euclidean motion group SE(2) are
proposed as a model for contour perception and contour inte-
gration.

The combination of such contour perception models with
data-driven geodesic methods has been presented in [40].
There, a computational framework for tracking of lines via
globally optimal data-driven sub-Riemannian geodesics on
the Euclidean motion group SE(2) has been presented with
comparisons to exact solutions [28].

@ Springer
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Fig. 1 Photography of the retina. A part of the retina is projected onto
the image plane. The camera coordinates are denoted by (X, Y), and
object coordinates are denoted by (x, y)

In this work, we extend this framework for tracking of lines
in spherical images (e.g., images of the retina, cf. Fig. 1).
This requires a sub-Riemannian manifold structure in a dif-
ferent Lie group, namely the group SO(3) (consisting of 3D
rotations) acting transitively on the 2-sphere S2.

Here we study the problem Peypve (SZ) of finding a smooth
curve n(-) on a unit sphere S? that satisfies given boundary
conditions (both positions and velocities)

n(0) =ng, n() =n;, n(0) =ny, n'() =n)

and minimizes the functional

1
¢ 2 4 k2(s) ds,
/O (n(s)),/§ g(s)ds

where kg (-) denotes the geodesic curvature of n(-), s denotes
the spherical arclength, and total length [ is free, see Fig. 2.
Furthermore, we include a curve-stiffness parameter & > 0.
In the optimization functional, we also include an external
cost factor € : §2 — R adding for adaptation to a given
spherical image data. We state this problem Pcurve(Sz) more
explicitly in Sect. 2.2.

The problem Peyrve(S?) is a spherical analog of a well-
known problem Peyrve (Rz) [30,31] (cf. Fig. 2) of finding a
smooth curve x(-) on a plane R that satisfies given boundary
conditions

x(0) =x9 = (Xo, Yp), X'(0) =x; = (cos O, sin Op),
x() =x; = (X1, Y1), X()=x| = (cosOp,sinO),

and minimizes the functional

l
/ c(x(5)v/EZ + K2(5) ds,
0

@ Springer

Fig. 2 Left: problem Pcyrye (Sz): for given boundary conditions on a
2D sphere (both positions and velocities), we aim to find a curve mini-
mizing the functional compromising length and geodesic curvature. In
the optimization functional, we also include an external cost induced
by spherical image data. Right: problem Peurve(R?) [30,31]: for given
boundary conditions on a 2D plane, to find a curve minimizing the com-
promise between length and curvature. The external cost factor is added
for adaptation to flat image data (see [40]).

where k(s) denotes the curvature, / denotes the total length,
and curve stiffness is regulated by & > 0. The external cost
factor ¢ : R> — R is added for adaptation to a given flat
image data (see [40]).

There are three motivations for our study. The first motiva-
tion comes from a medical image analysis application, where
automatic extraction of the vascular retinal tree on images is
helpful for early detection of many diseases, such as diabetic
retinopathy, glaucoma, atherosclerosis, and others (see, e.g.,
[6,18]). Optical retinal images are mostly acquired by flat
cameras, and as a result, distortion appears. Such distortion
could lead to questionable (distorted) geometrical features
(vessel curvature, thickness, etc.) that are used as biomark-
ers [6,10,11] for different diseases. We will show that the
distortion that appears near the boundary of a flat image can
play a significant role in the quantitative analysis of the vas-
cular structure and its curvature. As the retina itself is not
flat, we should include the spherical geometry both in image
processing and in image representation in order to avoid dis-
tortion. Such distortion comes from the central projection of
the physical retinal surface to the image plane. It is illustrated
in Fig. 1, where (X, ¥) denote Cartesian camera coordinates
and (x, y) denote spherical object coordinates. This moti-
vates us to study data-driven SR geodesics on the rigid body
rotation group SO(3) and their spherical projections; like-
wise, it was done (see [39,40]) for flat images and lifting to
the roto-translation group SE(2).

The second motivation comes from models of the visual
system of mammals. As mentioned by Boscain and Rossi
[15], the problem Peyrve (Sz) can be considered as a spher-
ical extension of a (flat) cortical-based model Peyrve (R2)
for perceptual completion, proposed by Citti and Sarti [14],
and Petitot [13]. Such a spherical extension is again motivated
by the fact that the retina is not flat. By the same argument,
cuspless SR geodesics in SO(3) could provide a model of
association fields in the psychology of vision (see [31]). Note
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that nonuniform distribution of photoreceptors on the retina
can be included in our model by putting an external cost €
on a hemisphere.

The third motivation for this study is that in geometric con-
trol theory optimal synthesis for the SR problem in SO(3) has
not been achieved in the general case (not even for the case
of uniform cost € = 1), despite many strong efforts in this
direction [15,19-23,44,45]. In this paper, we will not pro-
vide optimal synthesis analytically, but instead we do provide
a HIB theory for computing globally optimal (data-driven)
geodesics. In previous works [39,40], we achieved this for
SR geodesics in SE(2), used for tracking of blood vessels in
flat 2D images.

In view of these three motivations, we lift the problem
Peurve 0n the set S2 to a SR problem on the group SO(3),
which we will call Pyec, and we provide explicit formulas for
SR geodesics. This allows us to describe the set of endpoints
in SO(3) reachable by geodesics whose spherical projections
do not contain cusps. Furthermore, we present a Hamilton—
Jacobi—Bellman PDE theory that allows us to numerically
compute the SR distance map, from which a steepest descent
backtracking (via the Pontryagin maximum principle) pro-
vides only the globally optimal geodesics for general external
cost and general £ > 0. We verify our numerical solution, by
comparison with exact geodesics in the case € = 1. Finally,
we use these results in a vessel tracking algorithm in spherical
images of the retina, without central projection distortion.

The main contributions of this article are:

e New formulas for the geodesics of Peurve(S?) for the
uniform cost case € = 1.

e Analysis and parametrization of cusp points arising in
spherical projections of geodesics of Prpec (SO(3)).

e A new HIB-PDE theory for the numeric computa-
tion of globally optimal geodesics of Peurve (S?) and
Prec (SO(3)) for the general external cost case, with ver-
ification for € = 1.

e Tracking of lines in spherical image data (e.g., retinal
images) without central projection distortion, with com-
parison to tracking of lines in flat image data.

1.1 Vessel Tracking in Spherical Images of the Retina

In this subsection, we first describe the mapping from object
coordinates on the retina to camera coordinates, and then we
discuss the relevance of considering spherical images of the
retina rather than flat images, which are commonly used in
the medical application (see Fig. 1). We show that distortion
appears inevitably on flat images, with a significant relative
error (up to 7%) in length measures. Even larger relative
errors (over 20%) appear in the application of differential
operators (used for vessel detection).

<

‘(\e‘.\ca\

Fig. 3 Top: schematic eye [42] and central projection of images onto
the retina. Here R &~ 10.5mm. Bottom: schematic eye, enlarged to
support Eq. (1)

We base our computations on the reduced schematic eye
model (see Fig. 3), which is commonly used in clinical oph-
thalmology (see, e.g., [42]). Let R be the radius of an eyeball,
a be the distance from the nodal point N to the center C, and
Y be the angle between visual axis and a light ray passing
through N. Here we consider a simplified model, where the
optical axis (the best approximation of a line passing through
the optical center of the cornea, lens, and fovea) coincides
with the visual axis (the line connecting fixation point and the
fovea).! The average radius of a human eye is R ~ 10.5mm,
and the maximum distance between nodal point N and the
central point C iS apmax = 17 mm — 10.5mm = 6.5 mm.

Now we switch to mathematical object coordinates of the
retina where we use the eyeball radius to express lengths, i.e.,
wehave R = land apmax = 1%?;‘& ‘R = % in dimensionless
coordinates.

In order to compute the maximum absolute angle ymax, let
us express the angle |y| with respect to center of the eyeball
(see right Fig. 3). Expressing the squared length of segment
N Q yields

(@ + Rcos |7)*cos2 ¢ = (a + Rcos|3)? + R sin? [3].

Solving this equation with respect to cos|y|, we obtain
unique nonnegative solution:

! There is small difference between these two axes (c.f. Fig. 33 [42])
which we neglect in our basic model.

@ Springer
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|3(a, R, ¥)| = arccos (cos1// V1= “ZSIE# — %) (D

A standard fundus camera used for producing of the retinal
images has the angular range ¢ € [—7, 1. Thus, substi-
tution R = l,a = i—%, and = % in Eq. (1) gives the

maximum angle
Ymax ~ 0.63rad ~ 36°. 2)

We rely on the following parameterization of the image
sphere S? and the retinal sphere S (see Fig. 4):

) n(x,y) = (cosxcosy, cosxsiny, sinx)T,
8% 5 (=2a,0,0)” — (cosxcosy, cosxsiny, sinx)!,

withx, ¥ € [-5, F]and y, y € [-7, 7].

Next we present the explicit relation between the object
coordinates (¥, y)—spherical coordinates on a unit sphere S2
representing the surface of the eyeball; flat photo coordinates
(X, Y)—Cartesian coordinates on the image plane and the
spherical coordinates (x, y) on the image sphere, see Figs. 1
and 4.

To take into account the distance from the eyeball to the
camera in our model, we introduce a parameter n > 0. In
Fig. 4, by setting n = 1 we fix the distance equal to (a + ¢)
radiuses of the eyeball. This corresponds to the case when
the image sphere S is obtained by reflection of the physical
retinal sphere S2 through the point (—a, 0, 0f e R3. In this
case, we have

(x,y) = (X, y), 3

and we will always rely on this identification in the sequel.
The general case n > 0 can be taken into account by con-
gruency and scaling X — nRX,Y — nRY.

The central projection I7 (cf. Fig. 1) from (x, y) to (X, ¥)
including the scaling factor n > 0 (with physical dimension
length in units of R) is given by

(a+c)sinx ¥y — (a+c)cosxsiny

“

=—
a-+cosxcosy a + cosx cosy

The inverse mapping I7~! from (X, Y) to (x, y) forn = 1
is given by

x = arcsin(X p(X, Y)),

v = arg(pi(X, ¥) +1 Y p(X, ), )

where

a(a+c)+ Ea,c(xy Y)
(X24+Y)+(a+0)?’

p(X.Y) =

@ Springer
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Fig. 4 Spherical object coordinates (x, y) on a retina, Cartesian cam-
era coordinates (X, Y) on a flatimage of the retina, and spherical camera
coordinates (x, y) on a spherical image of the retina

(@+0)8ac(X,Y) —a(X? +¥?)

P = T e Y Y @t o

’

with 5, (X, Y) = /(X2 4+ Y2)(1 — a?) + (a + ¢)%.
In these formulas, we need to substitute a = apax = %
and ¢ = ‘5—‘ < R =1, depicted in Fig. 4, where we work in

dimensionless coordinates.
1.1.1 Quantification of Local and Global Deformation

The local deformation from spherical photo coordinates
(x, y) to planar photo coordinates (X, Y) is now given by
the Jacobian

X ax
J(x,y) =det 9x (x,y) gii(x’y))

oy Gy
_(a+ ¢)? cos x(1 + acosx cos y) 2

(a + cos x cos y)3

In mathematical analysis, we can set n = 1; however, in
experiments 7 is to be taken into consideration. Note that for
n = 1 we have

0.77~ J(0,0) < J(x,y) < J YVmax; Ymax) ~ 1.1,

showing that local deformation plays a considerable role and
varies in (x, y).

Next we consider the global distortion along the line x =
0.Itis defined as GD(y) = %M, and it has a maximum
when y = ymax. We have
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0 <GD(y) < GD(ymax) ~ 0.07, Remark 1 The formula for A; follows by
and we see the distortion up to 7% along the line x = 0. The A1 = aR(g’gy’H) w A2= —Wlld, Az = Wlm-

same holds along the line y = 0.

We conclude that it makes a considerable difference to
study Peurve (Sz) or Peurve (Rz) in the retinal imaging applica-
tion. In the sequel, we will write Peyrve instead of Peyrve (Sz)
as we will always be concerned with the case where the base
manifold equals S.

2 Problem Pcypve 0n S2 and Prec in SO(3)

In this section, we first provide preliminaries on group theo-
retical tools and notation, and then we show that the spherical
projection of certain SR geodesics y(-) on the Lie group
SO(3) provides solution curves to the problem Peypye On s2,
which we formulate next.

2.1 Mathematical Foundation and Notations

The Lie group SO(3) is the group of all rotations about the
origin in R®. We shall denote a counterclockwise rotation
around axis a € S with angle ¢ via Ra, 4, in particular for
rotations around standard axes

e; = (0,0, DT,

e =(1,0,007, e =(0,1,0)7,

We use representation of SO(3) by 3 x 3 matrices

R(X, Yy, 6) - Re3,yRe2,—xRe1,0

cxcy —sxcyst —syct sysf —sxcyco

=\ cxsy cycld —sxsysd —cysd —sxsych |(6)
SX cx s cx cO
where we denote cx = cosx,cy = cosy,cd = cosb,

sx =sinx, sy = siny, s = sinf, and where

T
(x,y,0) € [—5, 5] x R/(27Z) x R/{27Z). %
The Lie group SO(3) defines an associated Lie algebra

50(3) = T1a(SO(3)) = span(Ay, Az, A3),

00 0 001 0-10
Ai=100-1}, A=]| 000}, A3=]|100],
010 —-100 000

where T14(SO(3)) denotes the tangent space at the unity ele-
ment e € SO(3), represented by identity matrix Id, which
corresponds to the origin in the parameter space

e ~ Id ~ {(x,y,0) =(0,0,0)}.

The nonzero Lie brackets are given by

[A1, A2l = A3, [Al, A3l = —Az, [A2, A3l = A1 (8)
There is a natural isomorphism between so(3) and the Lie
algebra L of left-invariant vector fields in SO(3), where com-
mutators of the vector fields in L correspond to the matrix

commutators in so(3)
[RA,RB] = R[A,B], A,Beso(3), ReS0(3). )

We express L in matrix form as

X1(x,y,0) = —R(x,y,0)Az,
Xa(x,y,0) = R(x,y,0)Ay, (10)
X3(x,y,0) = R(x,y,0)As.

L = span(X1, X2, X3),

Remark 2 Note that at the unity one has
Xl}ld =—4As, X2|1d = Ar, X3‘Id = A3.
The formulas for X; in (10) follow by (cf. Remark 1)

Xi|p =R OB, Xa|p =R @R, X3z =R 0yR)|a.

&
We also use the isomorphism between so(3) and R3
A; ~e, RA;R™'~ Re;, (11)

where A; € 50(3), R € SO(3),¢; e R, i =1,2,3.
Note that (6) is a product of matrix exponentials:

R(x,y,0) = e’ e 42041 (12)

We choose to rely on this parameterization to keep the anal-
ogy with previous SE(2) models [28,31,40] mentioned in
introduction.

2.2 Statement of the Problem P¢ypve

Let S2 = {n € R3 | n]] = 1} be a sphere of unit radius.
We consider the problem Peyrve (see Fig. 2), which is for
given boundary points ng,n; € S and directions n; €
Tno(52), M} € Ty, (5?), [Inj|l = |In}|| = 1 to find a smooth
curve n(-) : [0,1] — S? that satisfies the boundary condi-
tions

n(0) =ng, n() =n;, n'(0) =ng, n'()) =nj, (13)

and for given £ > 0 minimizes the functional

@ Springer
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!
Lm@):= [ € 2 4 k2(s) ds, 14
(n()) /0 (0(5)), /€2 + K2(s) ds (14)

where kg (s) denotes the geodesic curvature on §2 of n(+)
evaluated in time s, and € : S% — [, +00),8 > 0,is a
smooth function that we call “external cost.”

Here the total length / is free and s = fos ldo =
fos [[n’(o)|| do denotes the spherical arclength. Thus, we have
IIn’(s)|| = 1 and the Gauss—Bonnet formula
ke(s) =m"(s) - (n(s) x n'(s)). (15)

Remark 3 In introduction, we provided two motivations for
this problem, where the external cost € plays a different role.
Firstly, there is a motivation coming from retinal images,
where € is adapted to spherical image data. Secondly, there
is a motivation from the modeling of human vision, where the
nonuniform distribution of photoreceptors can be modeled by
the external cost.

Remark 4 Withoutloss of generality, we can fix the boundary
conditions as

n(0) =e;, n() =n;, n'(0) =e3, n'(/) =n], (16)

since the problem is left-invariant w.r.t. the natural left action
of SO(3) onto 2 for ¢ = 1. But also for € # 1 we can fix
these boundary conditions by shifting the external cost. This
boundary value convention is used throughout this article for

Pcurve .

Remark 5 Following the previous works [30,31] in SE(2)
group, we do not expect existence of minimizers for the prob-
lem Peurve (SZ) in general.

2.3 Statement of Py Problem in SO(3)

We call Ppec the following SR problem in SO(3):

R = —uiRA> + upRA,, (17)

R(0) = 1d, R(T) = Ryin, (18)
T

L(R()) = /C(R(t)),/ézu%(t)+u%(t)dt — min, (19)
0

R € SOQB), (ui,uz) €eR* &>0, (20)

with T > O free.

The external cost C : SO3) — [§,4+00),8 > 0, is
a smooth function that is typically obtained by lifting the
external cost € from the sphere S to the group SO(3), i.e.,
C(R) =¢&€(Rey).

We study the problem Ppec for C = 1 (case of uni-
form external cost) in Sect. 3, but let us first consider some
preliminaries.

@ Springer

Remark 6 In Ppec, we only have two velocity controls u
and u» in a 3D tangent space Tg(;)(SO(3)) (cf. Fig. 5).

Remark 7 The existence of minimizers for the problem Pppec
is guaranteed by Chow-Rashevskii and Filippov theorems on
sub-Riemannian manifolds [37]. Moreover, the geodesics of
Pec are smooth, since there are no abnormal extremals (see
Example 1.3.13 in [49]).

Remark 8 Sub-Riemannian manifolds are commonly defined
by a triplet (M, A, G), with manifold M, distribution A C
T (M) and metric tensor G. In our case

M= SO(3), A =span{RA|, RA,}, 21
G(R, R) = C*() (6%u} +u3) ,

where the controls #; and u; are components of velocity

vector w.r.t. moving frame of reference, see (17). The choice

of the sub-Riemannian structure (21) is determined by the

initial conditions n(0) = e; and n’(0) = e3 in (16).

Remark 9 By virtue of Cauchy-Schwarz inequality, the
problem of minimizing the sub-Riemannian length £ is
equivalent to the problem of minimizing the action functional

E2ut (1) +us(t) 5

T
E(R()) = / C%(R(1)) >
0

— min, (22)

with T fixed (see, e.g., [33]).

Remark 10 In analogy with the SR problem Ppec in SE(2),
cf. [30,31], we sometimes call X; = —RA, the “spatial
generator” and X» = RA; the “angular generator”, despite
the fact that X; and X, are both angular generators on S2.
The problem Ppec(SO(3)) can be seen as a model of the
Reeds-Shepp car on a sphere. The Reeds-Shepp car can move
forward and backward and rotate on a place. The input u
controls the motion along X1, and the input u, controls the
motion along X, see Fig. 5.

2.4 Relation Between the Problems P¢yrve and Piec

We call a spherical projection the following projection map
from SO(3) onto S2 (see Fig. 6):

SO(3) > R+ Rej € §%. (23)
In coordinates (x, y, #) defined by (6), we have
COS X COS y

cosx siny
sin x

R(x,y,0)e; = =n(x,y) € §%. (24)

So we see that (x, y) are spherical coordinates on S2.
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Fig. 5 The controls u; and u, along the “spatial generator” X and the
“angular generator” X» (cf. Remark 10)

et

Fig. 6 Left: illustration of the parameterizations used in Ppec and
Peurve- The rotations are parameterized by (12), i.e., by angles x, y,
and 6 of rotation about basis axes, see (6). Right: illustration of the
Hopf fibration [45]—circle bundle with the base 52

In problem Pcyrve, One is interested in a curve n(s)
= R(z(s)) e;, which satisfies (13) and minimizes (14). Here
R(t) = R(x(1), y(1), 0()), and

= Se: 2 4 k2(o)do.
() /0 (n(0),/82 + B (0)do

Next we show that the spherical projection (23) of cer-
tain minimizers of Pyec provides solution of problem Peypve.-
More precisely, this only holds for the minimizers whose
spherical projection does not have a cusp.

(25)

Definition 1 The spherical projection of a minimizer of
Pmec is said to have a cusp at 1 = 1, if there exists
€ > 0, st ui(@ui(b) < Oforalla € (g — €, tiusp)
and b € (tfygp, feusp + €)- That is, if the control in front of
the “spatial” generator X switches sign locally. We are inter-

ested in the first cusp time feysp = mill\}{tcnusp > 0}, and we call
ne

smax the corresponding value of spherical arclength, s.t. Zcysp
= 1 (Smax) Via (25).

Notice that if #1 = 0 then the trajectory of Ppec is projected
at a single point on §? which does not provide a solution to
Peurve. This allows us to define sy« as

Smax = inf{s > 0] u1(t(s)) = 0}, (26)

so that feysp = # (Smax)-

The following theorem states that minimizers n(s) of
Peurve for s € [0, smax) are given by spherical projec-
tion of the minimizers R(z) of Pmec for 1 € [0, 1045p).
Here s denotes the spherical arclength parameter, defined
by ||%n(s)|| = 1, and ¢ denotes the SR arclength, defined

by C(R(1)),/§2ui(®) +u3(1) = 1.

Theorem 1 Let R(t),t € [0, T] be a minimizer of Pmec
parameterized by SR arclength, and let the corresponding
optimal control (uy(t), u(t)) satisfy the inequality uy(¢t) > 0
forallt € [0, T]. Set

np = €,

n, = e;3,
Then for such boundary conditions, Peurve has a minimizer
n(s), along which we have

n; = R(T) ey,

27
n/1 = R(T) e3. @7)

ds
ui(t) = g @),
n(s) = R(z(s)) er, ! (28)
’ e {uz(l) = kDL (),
— [ e JEX+ k(o) do, 29
1(s) /0 (n(0)),/§ ¢(o)do (29)
for0 <s <l < smax, and T = t(l).
Proof See Appendix 1. O
3 The Sub-Riemannian Problem P, in SO(3)

In this section, we study the problem Ppec in the special
case of uniform external cost C = 1, which we call P} .
This problem can be seen as a left-invariant SR problem in
Lie group SO(3), and it was tackled by many authors (see
[15,20-23,44,45]) in different contexts. It is remarkable that
the statement of the problem is very simple, but due to the
high complexity of the formulas describing geodesics, the
minimizers are still unknown for general £ > 0. The case
& = 1 corresponds to a symmetric SR structure in SO(3),
and it was completely solved in [15,20,30,44,45]. In this
section, we consider the general case £ > 0 and derive ana-
lytic formulas for the geodesics using the parametrization (6)
for SO(3). Further, in Sect. 5 these formulas allow us to verify
our numerical approach to compute the global minimizers of
Pmec, presented for the first time by knowledge of the authors.

In our analytical study, first we introduce a coordinate
chart in SO(3) and write the optimal control problem PL .
in this chart. Then we apply Pontryagin maximum princi-
ple (PMP), which is the first-order necessary condition for
optimality [37], and we derive the explicit formulas for the
sub-Riemannian geodesics. Afterward we explain the notion
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of sub-Riemannian wavefront and sphere. Finally, we discuss
what is known about optimality of the geodesics.

3.1P!

1 . as Optimal Control Problem on S? x S!

In this section, we introduce the chart in SO(3) and for-
mulate problem P,lnec given by (17)—(20), see Sect. 2.3, as
an optimal control problem on M = S)%! y X Sé, where
(x,y) € [=F. 51 x R/{27xZ} are the spherical coordinates,
cf. (24), and 0 € R/{2w7Z}. We use this specific chart to
stress the analogy with the closely related problem in SE(2)
group (see [30,31]).

Consider a smooth curve y(-) = (x(-), y(),0()) €
C™(R, S, x §;) departing from the origin, i.e., y(0) =
e = (0,0, 0).In Sect. 2.1, we parameterized the group SO(3)
by the angles x, y, 8, recall (6). A smooth curve y(-) cor-
responds to a smooth curve R(-) in SO(3) defined by the
one-parameter family of matrices

R(t) = R(x(1), y(1),0(1)) € SOQ3), (30)

depending smoothly on the parameter ¢ € R and satisfying
the initial condition R(0) = Id. A tangent vector of R(t) =
R(x(t), y(t),0(t)) is expressed as

g  OR. OR. IR,
= —X — —0.
ax Ty T e

Therefore, the control system (17) can be rewritten as

X cos o 0
y=\|y | =1\ —secxsinf Jui+| 0| us. (3D
% tan x sin 6 1

Vector fields near the controls u; are two of three of the basis
left-invariant vector fields in SO(3) expressed in our chart.
We denote them by X1, X», and the third basis left-invariant
vector field is given by their commutator X3 = [X1, X2].
Thus we have

cos 6 0 sin 6
X;=| —secxsinf |, X, = , X3=| secxcos6 .
tan x sin 6 1 —tan x cos @

(32)

=]

Then problem Prlnec given by (17)-(20) for C = 1, taking
into account Remark 9, is equivalent to the following optimal
control problem:

y =uiX| +usXo, (ur,up) € R? (33)
yO) =e, y(T)=vsin=(x1,y,0) €S xS, (34

_1 T2 o .
&= £°ui+u5) dt — min, £ > 0. (35)
2 Jo

@ Springer

Remark 11 A projective version of problem P, with& = 1
is studied in [16]. It is obtained by identification of antipodal
directions 6 and 6 + m; thus, its solution is given by min-
imum between two geodesics with terminal configurations
h = (x1,y1,61) and h = (x1, y1, 01 + ). The associated

SR distance is given by

d¥(g.h) = “min Ly ().
v () € Lip([0, T], SOQ3)),
v () =g, y(T) € {h, h},
y()ea
The model in [16] is connected to problem PL . via right

shift g > g - €™ A3¢=342 The local chart is obtained by
linear transformationa = 5 — x,b = y,6 = & + 7. The
existence of optimal trajectories whose spherical projection

contains a cusp is mentioned in [16].
3.2 Application of the Pontryagin Maximum Principle

In this subsection, we apply the Pontryagin maximum prin-
ciple (PMP) to problem P,1,[lec given by (33)—(35) and derive
the Hamiltonian system of PMP. Here we follow standard
geometric control theory (see, e.g., [37]).

Due to the absence of abnormal extremals (see Remark 7),
we consider only the normal case, where the control-
dependent Hamiltonian of PMP reads as

2.2 2
Hy(,v) = (h, ur X1+ un Xo) — S4H2,

3
with A = 3 aed vk € T M.
k=1

Here v = (x,y,0), X; are given by (32), (-, -) denotes
the action of a covector on a vector, and (d vl dv2,d 1)3)
= (dx,d y, d#) are basis one forms.

The maximization condition of PMP reads as

Hyy(A(2), v (1))

1
(60Xt Xabon = (i +13) ).

= max
(u1,uz)€R?

where u () denotes an extremal control and (A(¢), y(¢)) is an
extremal.

Introduce left-invariant Hamiltonians #; = (A, X;),
i = 1,2,3. The maximization condition gives the expres-
sion for the extremal controls

uy = hs. (36)

Then the maximized Hamiltonian, which we call “the Hamil-
tonian”, reads as

1 (h3
H=§ $—2+h2 ) 37
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The vertical part (for momentum components /;) of the
Hamiltonian system of PMP is given by

3

. 0H 0h; oh; 0H

hi ={H,h;} = <—————>, (38)
! ! ; 0vj 0A;

where {-, -} denotes the Poisson bracket (see [37]).
Using the standard relation between Poisson and Lie
brackets {h;, hj} = (A, [X;, X;]), we get

{H, h1} = ha {ha, b1} = —hahs3,

1 1
{H, hy} = é_zhl {h1, ho} = §—2h1h3,

1 1
{H, h3} = é_zhl {h1, h3} + ha {ha, h3} = (1 - 5—2) hih;.
Thus the Hamiltonian system with the Hamiltonian H
follows by the last three identities and (38):

/’.11 = —hyh3, X = %COS@,
A . h .
f'lz— &2 hihs, ).)_—é—ésecxsma (39)
h3=(1—§2)h1h2 6 =4 sin0 tanx + hy
— vertical part, — horizontal part,
with the boundary conditions
h1(0) = hY, hy(0) = hY, h3(0) = hY, (40)

x(0)=0, y0 =0, 6(0)=0.

In (39), the horizontal part follows from (36) and (31).

It is known that the Hamiltonian system (39) is Liouville
integrable [25,27], and it was explicitly integrated in [19,22].
In the next subsections, we classify the possible solutions by
values of the parameter &, and we adapt the explicit solution
to our coordinate chart (x, y, 8) € M, where we follow the
analogy to the closely related problem in SE(2). This allows
us to obtain simpler formulas than in [19,22].

3.3 Classification of Different Types of Solutions

Here we describe the domains of parameter £ > 0, which
correspond to different dynamics of the Hamiltonian system
(39). Itis well known (see, e.g., [22]) that this system has two
integrals of motion that depend only on momentum compo-
nents /; (see illustration in Fig. 7)

h2
2H = S_é + h3 = 1 - the Hamiltonian, (41)
M?* =h? +h3 + h% - Casimir function. (42)

Different values of the Hamiltonian H correspond to different
speed along extremal trajectories y (-). By fixing the value

h3 h3 hs

hy ha hy ha hi : hao
Elliptic (£ < 1) Linear (£ = 1) Hyperbolic (£ > 1)
. ’ oA

thg ) hs

-3 hz.

Fig. 7 Top: integral manifolds of the vertical part of (39). The red

sphere is a coadjoint orbit M2 = h% + h% + h%, and the green cylinder
2

is the Hamiltonian 2H = 2—; + h% = 1. Bottom: vector field plot on the

(h2, h3) plane (Color figure online)

H = % in (41), we use SR arclength parameter

1 t
r=/ \/g|y<r>(y'(r),y'(r)>dr=/ 1dr
0 0

along extremal trajectories. The momentum trajectory h(t)
can be seen as the curve formed by intersection of the cylinder
H = % and the sphere M = const (see the yellow line in
Fig. 7).

Elimination of /| from (41) and (42) yields

R3(1 — %) + h3 = M? — &2,

Since h% < 1, there exist the following types of solution of
the vertical part of (39):

1) Elliptic for £ < 1, M? > £2;

2) Linear for & =1, M? > 52;

3) Hyperbolic for & > 1, M?> # &2, M > 1;

4) A point (0,0) for &€ < 1, M? = £2;

5) A segment of a straight line for§ =1, M = 1;

6) Two crossing segments of straight lines for & > 1, M? =
£%;

7) No solution otherwise.

According to this classification, we will refer to the case
& < 1l astheelliptic case, &£ = 1 as the linear case, and & > 1
as the hyperbolic case.

3.4 Geodesics in SR Arclength Parametrization

In this subsection, we provide explicit formulas for the SR
geodesics, where we reexamine results from [19,22].
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In the coordinates (8, ¢) € R/{4xZ} x R, defined by
hlz’g‘cosg, hg:sing, hy = — 43)

the vertical part of (39) becomes a system of mathematical
pendulum

. oo
g =c, B(0) = 2arg (—1 +1h0),

» § 2 (44)
¢=—rsin, c(0)=%,

where r = Slz —1 € (—=1,400). Thus r € (—1,0) corre-

sponds to the elliptic, » = 0 to the linear, and r € (0, +00)
to the hyperbolic case.

The system (44) has a symmetry (,g(t) =B80)+m, 7=
—r), which allows us to study the elliptic case and obtain the
hyperbolic case by symmetry observations. Note also that
the linear case should be treated separately, but the equations
in this case are much simpler. Therefore, in the remainder of
this manuscript we restrict ourselves to the case r > 0 <
0<&<l.

In the following theorem, we provide explicit formulas for
SR geodesics in SR arclength parametrization.

Theorem 2 A solution of the system (39) reads as

hi(t) =g cos B, o) =sin B h3() = £51,

x(1) = arg(y/ R, (1) + R3, (1) +iR31(1), (5)
y(1) = arg(Ry11(2) +iR21 (1)),
0(1) = arg(Rs3(1) +iR52(1),

where (B(t), c(t)) is a trajectory of (44), and

Ri1(t) Ria(t) Ri3(1) B B .
R() = (RZI(t) R (1) R23(t)) = DOT Y (A3 o =X (A2 O AL
R31(t) R32(t) R33(1)
LT
1o apo
where Dy = % 0 Mhs Mhy

W “w
0 _ 70 0
hy —hy  hy

with =/ M? — (h9)2,

M = J00)? + (12 + 2,

and where
fa)=mg<dﬁa)+hao+imao,
oM L h3(0) (46)
)’(f)—s—2<f—/0 mdf ,

0(1) = arg (h3(t) —ih1(1)).

Proof See Appendix 2. O
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Fig. 8 Spherical projection of various sub-Riemannian geodesics in

SO(@3)

Note that (B(t), c(t)), and y(¢) admit explicit expression
in Jacobi elliptic functions and elliptic integrals of the first,
second, and third kind [19]. We present plots of spherical
projections (23) of extremal trajectories in Fig. 8. Here it is
remarkable that the spherical projections of SR geodesics
in SO(3) can represent cusps, which can be undesirable
for image analysis applications. This motivates us to study
SR geodesics before the first cusp in their spherical projec-
tions. For short, we call such curves “cuspless geodesics.” In
Sect. 4, we describe the possible end conditions, which can be
connected by a cuspless geodesic, and in Sect. 5, we provide
PDE-based approach for solving the boundary value problem
(BVP) for data-driven SR geodesics, where we reformulate
the problem as a solution to the SR-eikonal equation.

3.5 Sub-Riemannian Wavefronts and Spheres

A useful tool for studying geodesics in left-invariant optimal
control problems is the exponential map? that maps an initial
momentum /(0) and a time ¢ to the endpoint of correspond-
ing geodesic y () [i.e., the exponential map integrates the
Hamiltonian system (39)]:

CTX(SO@3)) x R — SO(3),

Exp (h(0). 1) > ().

47

Now we explain the notion of wavefront. By definition, the
wavefront consists of endpoints of all the geodesics of the
same length T':

(48)

Wﬂnz{&mMMTﬂMQEUﬁmax}

H(h(0) = 3

2 Not to be confused with the exponential map from Lie algebra to Lie
group.
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The outer surface of a wavefront forms a sub-Riemannian
sphere, which is a set of endpoints equidistant from e:

S(T) = { Exp(h(0), T) | h(0) € T, (SO(3)),
1
Hh(©0) = 7. tew (h(0)) = T}
={g €S0Q3) ld(e,g) =T},

where d(q1, g2) denotes the sub-Riemannian distance
between ¢; and ¢» and t.,; denotes the cut time, i.e., an
instance of time, when a geodesic loses its optimality.

3.5.1 What Is Known About Optimality?

In the previous subsection, we computed SR geodesics or
in other words extremal trajectories. It is known (see, e.g.,
[33,37]) that sufficiently short arcs of SR geodesics are SR
length minimizers (optimal trajectories). It is also known that
in general a geodesic loses its optimality after a cut point. The
corresponding instance of time is called cut time, and the set
of all cut points in configuration space forms the so-called
cut locus. In general, it is complicated to derive cut loci [37].

Remark 12 There are two reasons for a geodesic to lose opti-
mality:

1) Local optimality is lost at a conjugate point (critical point
of exponential map that integrates the Hamiltonian sys-
tem);

2) Global optimality is lost at a first Maxwell point (when
two geodesics meet with the same length for the first
time).

In problem P .., both the Maxwell set and the conjugate

locus are not known. The estimation of the first Maxwell
time was given in [19], but still neither the cut locus, nor
the SR length minimizers are known yet for general & > 0.
The cut locus in a special case of the bi-invariant metric (for
& = 1) was obtained in [15]. In [22], conjugate locus in
the Riemannian case was constructed, and by considering a
SR metric as a limiting case of the Riemannian metric, the
corresponding formulas for the conjugate locus in SR case
could be obtained.

Here we do not provide such a limiting procedure. Instead,
motivated by applications, in Sect. 5 we propose a numerical
solution to compute the SR length minimizers and spheres.
In Sect. 4, motivated by the study [31], we also give some
statements on optimality of cuspless geodesics. We show
that in contrast to SE(2) case [30,31] there exist nonoptimal
cuspless SR geodesics.

4 Sub-Riemannian Geodesics in SO(3) with
Cuspless Spherical Projection

In this section, we study cuspless SR geodesics. Such
geodesics allow parametrization by spherical arclength,
which leads to simpler formulas than using SR arclength
parametrization (see Sect. 3). Spherical arclength param-
eterization breaks down, when the spherical projection of
a geodesic exhibits a cusp for the first time. So a natu-
ral question arises to characterize the set of end conditions
R C SO(3) reachable by cuspless geodesics, similar to the
SE(2) case studied in [31].

The cuspless SR geodesics are projections in SO(3) of the
trajectories of the Hamiltonian system (39) that are going in
positive direction of X (i.e., u1(t) > 0) before the first cusp
time ¢ < feusp. Thus, by virtue of (36) the cuspless constraint
is given by

hi(t) > 0, forallt € [0, T].

We shall often rely on short notation /; (s) := h; (¢ (s)), where
we stress our notations

, d . d

hi = —]’li and h,’ = —hi
ds dt

in order to avoid confusion with the chain law for differen-

tiation. Recall (26) and note that spax for a given geodesics

is determined by its initial momentum. We write smax (7(0))

when we want to stress this dependence. We derive an explicit
formula for spax (2(0)) in Sect. 4.1.

Theorem 3 For any s € [0, smax(1(0))), h1(0) > O the
system (39) is equivalent to the following system (see cor-
responding vector flow in Fig. 7):

x'(s) = cosO(s),
Y (s) = —secx(s)sin6(s),
0’(s) = sin O (s) tan x(s)+ (49)

Eha(s)/\/1 = h3(s),

— horizontal part,

hi(s) = €24 >0,
Ry (s) = h(s),
Ry(s) = (€2 — Dha(s),

— vertical part,
with the boundary conditions

ha(0) = hY,  h3(0) =AY, (50)
x(0) =0, y(0)=0, 6(0)=0.

Proof Express the dynamics (39) in the spherical arclength
parameter s. We have

_ 1,0
= By h2(0) = hy,

Hy(s) = Y500 = BOERE2 — (62— 1) ha(s), ha(0) = Y.

{h&(s) = d) Ml — y(s),
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Here we recall that u; = %, see (28), and h; = Ezul, see
(36). Thus we obtained the vertical part of (49). Doing the
same for the horizontal part in (39), we obtain the full system

—272 2
(49), where the Hamiltonian H(s) = =120 _ 1

together with the cuspless constraint /1 (s) > 0 allows us to
write h1(s) = &,/1 — h3(s).

Finally, the boundary conditions (50) follow from (40), since
t=0&s5s=0. m]

Note that in contrast to the mathematical pendulum
ODEs (44) expressed in SR arclength 7, where the Jacobi
elliptic functions appear, the vertical part in s parameteri-
zation now is a simple linear system of ODEs integrated in
elementary functions. To obtain simpler formulas, we define
the parameter x € C (where one should take principal square
root):

VEZ—1, for& > 1.

Theorem 4 The general solution of the vertical part in (49)
forall € # 1 is given by

—£24
X:/ﬁ:{‘/l &4, for0 < & < 1, 51)

0
ha(s) = h(z) coshsy + }% sinh s x,
h3(s) = hYcoshsx + xh)sinhsx, (52)

hi(s) = &,/1 — h3(s),

and for the case & = 1, we find straight lines parallel to h;
axis in the (hy, h3)-phase portrait:

ha(s) = h9 +hYs,
h3(s) = hY, (53)

hi(s) = /1 — h3(s).

Proof The solution to the system of ODEs is unique and it
is readily checked (52) is a solution of the vertical part of
(49) for all £ # 1. For & < 1, we take main values for the
complex square root and complex sinh and cosh. For both
E=1and & | 1 and & 1 1, we have hy(s) = hg —}—hgs and
h3(s) = hY. o

4.1 Computation of the First Cusp Time

To analyze the cusp points in problem Peyrve, we need to
determine smax (£(0)). It is given, recall (26) and (36), by the
minimal positive root of equation /1 (s) = O:

Smax (7(0)) = min{s > 0| h1(s) = 0}.

Theorem 5 When moving along a SR geodesic t +— y(t),

the first cusp time is computed as teysp (h(0)) = 1 (Smax (7(0)),
recall (25), where

@ Springer

sgn(h)—h)
hg

for x =0, hg;éO,

llog S'(Oﬁﬂé) for x # 0«20, (54)
X hyx+h3 h)x +h§ #0,

+o00 otherwise,

Smax ((0)) =

withs; = sgn (Re (h9x + hY)) and ik = (h)*+(1 — (h9)?)
x2 eR.

As a result, in the SR manifold (SO(3), A, G), recall (21),
there do exist nonoptimal cuspless geodesics.

Proof See Appendix 3. O

The presence of nonoptimal cuspless geodesics is remark-
able, asin the SE(2) group every cuspless geodesic is globally
optimal [31].

4.2 Geodesics in Spherical Arclength Parametrization

In this subsection, we derive the formulas for cuspless SR
geodesics in s parameterization.

Theorem 6 The unique solution of (49) is defined for
s € [0, Smax (7 (0))], where smax (h(0)) is given by (54). The
solution to the vertical part is given by Theorem 4, and the
solution to the horizontal part is given by

x(s) = arg(,/ R3,(s) + R3,(s) + iR31(5)),

y(s) = arg(Ry1(s) + iR (s)), (55)
0(s) = arg(R33(s) + iR32(5)),

where

Ry1(s) Ria(s) Riz(s) . . ~
R(s) = | Ra1(s) Rna(s) Ro3(s) | = D e¥®43 e7¥ ()42 6 )AL
R31(s) R32(s) Ra3z(s)

En3\1-09% Y
1 n

Dy = 4 MhY EM1-0* | | and

n W

hy —& /1 —hDHr  hd
X(s) = arg (,/M2 — h3(s) + ihz(s)) ,

3(s) = EM? /S—l_h%(a)da
) M? — h3(0) ’

6(s) = arg <h3(s) —i& 1 — hg(s)) ,

with = \[M? — (W92, M = \[£2(1 — (h)?) + (h)? + (hD)2.

Proof 1t follows from Theoremes 2, 3, and 4. Momentum
component % is expressed in sy via the Hamiltonian (37)
which equals to % along SR geodesics. The sign of 71(0) is
equal tothe signof u1(0) = % (0) and therefore nonnegative.
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Fig. 9 Spherical projection of cuspless SR geodesics in SO(3) in ellip-
tic, linear, and hyperbolic cases

Regarding the integration constraints, we note that M? =
h? +h3+h3and0 < hy = £,/1 — 3 and

>:§M2,/1 —h3

d_i_id_y_]\/ﬂ hi
M? — h3

ds ~ hpdr M2 — i3
from which the result follows. O

Remark 13 In contrast to general SR geodesics in SO(3)
given in ¢ parameterization, where Jacobi elliptic func-
tions appear, the cuspless SR geodesics in SO(3) given in
s parameterization involve only a single elliptic integral
s/ 2

i ﬁda. This integral can be expressed in terms of
0 - 2(‘7)

standard elliptic integrals. For example, in the elliptic case

£ <1, M? > £% we have

ho(s) = psin¥(s),

where p = ,/”ﬁ—;iz, W(s) = sy/1— &2 + W, with ¥ =

arg(% +1h2(0)), which yields

s \/_72
§s) = M [ Mmsnia) g,
0

M2—p2sin2 (¥ (0))

W (s) —
_ M f /1—p?sin (lI/)dlI,
rs) 3 M2—p2 sin(¥)

_ \/:"’__§<F (). p%) ~ Fo, p2) — (1= 1)
x (7 (

2 2
L0 (). 0?) = 1 (£ %0, %)) )

where F' denotes an elliptic integral of the first kind and I7
denotes an elliptic integral of the third kind.

See plots of projected cuspless geodesics n(s) = R(s) e; for
s € (0, smax) in Fig. 9.

5 PDE Approach for Data-Driven SR Geodesics in
SO@3)

In this section, we adapt the PDE approach for data-driven
SR geodesics in SE(2) [39,40] to the SO(3) group. Here we
consider the basis left-invariant vector fields X; as differen-
tial operators of the first order, and we write X; (V) for the
derivative of a function W : SO(3) — R along X;.

We aim to solve the following optimal control problem:

2
p(®) =Y uiXilyq), fort €[0,T1,

i=1

y(t) €SO3), y(0) =e, y(T)=gi, (u,u) € R?,
T

l(y(~))=/ C(y(t))\/E2u}(t) + u5(t) dt — min.
0

Here the terminal time 7 is free; and C SO3) —
[8, +00), § > 0 is the external cost.

By rescaling of time t = % € [0, 1] simultaneously with
controls u; (t) = Tu; (T 1), we write down the explicit solu-

tions as

0
dso(3) (g.e)

1
= inf [VGl,@ @@, y@)dr. (56)
yO=ey) =g o
()€ Alygy.

y € Lip([0, 1], SO(3))

Here the sub-Riemannian metric tensor
G=C0) (80 o' +0’ @ 0?) (57)
is defined only on the distribution A, recall Remark 8.

5.1 Sub-Riemannian Fast Marching in SO(3)

Here we propose a SR-FM method (sub-Riemannian fast
marching) for the computation of data-driven SR length
minimizers (not necessarily cuspless) in SO(3) group, as a
solution to the SR-eikonal system (62). This method was suc-
cessfully used in [41] for the computation of data-driven SR
length minimizers in SE(2) group. The method is based on
a Riemannian approximation of sub-Riemannian manifold,
and computing Riemannian geodesics in highly anisotropic
space, which becomes the SR manifold in the limiting case
as anisotropy tends to infinity.

Here we follow the explanation in [41], where we work
now in new settings of the SO(3) group and use the coordinate
chart (x, y, ) defined in Sect. 3.1. Recall that the basis left-
invariant vector fields® X; in SO(3) are given by the following

3 n previous works [39,40], X; was denoted by .A;
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differential operators:

X1 =cosf dy —secxsinf dy + tan x sin 6 dg,
X2 = 0y,

X3 =sin6 9, + sec x cos @ dy — tan x cos O dy,

and corresponding basis left-invariant one forms o', satisfy-
ing (@', X;) = 5;, are expressed as

w! = cosfdx — cosxsin6 dy,

®? = sinx dy +do,

3 = sin@ dx + cos x cos 6 dy.

(58)

We approximate the sub-Riemannian manifold by a Rie-
mannian manifold by fixing a small ¢ > 0. Moreover, the
SR-eikonal equation (62) is well defined and it can be derived
as a limiting case of the eikonal equation on a Riemannian
manifold via the inverse metric tensor, see Appendix 4. Let
us denote the Riemannian distance as follows:

d§0(3) (g.e)

= inf (59)

y0) =e y) =g,
y € Lip([0, 1], SO(3))

1
[V Gely ) (@), y (@) dr.
0

with Riemannian metric tensor G, given by
G = C2() (5%)1 o' +0?@0?+ 50 ® a)3) . (60)

Remark 14 In our approach, we shall rely on standard notion
of viscosity solution [7,8,12] of the Riemannian eikonal
equation, which admits a generalization to the sub-Rieman-
nian case. See details in Appendix 4.

The following theorem summarizes our approach for the
computation of data-driven sub-Riemannian length minimiz-
ers in SO(3).

Theorem 7 Let ¢ # e € SO(3) be chosen such that
there exists a unique minimizer y; : [0,1] — SO(@3) of
d§0(3) (g, e) such that y} () is not a conjugate point for all
t € [0, 1] and all ¢ > 0O sufficiently small.

Then Tt +— dgom (e, vy (7)) is smooth and the minimizer
v5 (T) is given by yi(t) = vy (1 — 1), with
vp(T) = —u1(t) Xily,r) — u2(7) X2l ©1)

»w(0) =g,

with

(ui(v), uz(7)) =

W(g) X1ly, @) W)
(C(Vb(f)))z ( yng 3 XZl)/[;(T)(W) ’
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and with W(g) denoting the viscosity solution of the follow-
ing boundary value problem:

2
BV 4 (Xal, W) = Clg). forg #e.

W(e) = 0.

(62)

For an outline of the proof, see Appendix 4, where we rely
on a similar approximation approach as in [48, ch. 5, app. A]
for an elastica functional and in [36, Thm. 2, Cor. 2, app. A]
for a SR problem on SE(2).

Remark 15 The approach in Theorem 7 can be adapted for
producing only the cuspless minimizers. See Appendix 4.

Remark 16 The SR spheres of radius 7 centered at e are given
by & = {g € SO(3) [W(g) =1}.

Remark 17 Recall that conjugate points are points where
local optimality is lost. For a formal definition and character-
ization, see [35, def. 8.4.3, cor. 8.4.5]. We would conjecture
that the assumption on the conjugate points in the above the-
orem is not really needed, as even the conjugate points that
are limits of first Maxwell points do not seem to cause prob-
lems in the backtracking procedure, akin to the SE(2) case
[40, App. D], but nevertheless our proof in Appendix 4 does
rely on this assumption.

From the derivations above Theorem 7, we see that the fast
marching approach for computing SR geodesics in SE(2),
cf. [41], is easily generalized to the SO(3) case. To this end,
we replace the matrix representation for G, expressed in the
fixed (x, y, 6) Cartesian coordinate frame. In the SO(3) case,
it equals

C*(H)E? 0 0
M, =R 0 C2() 0 mT,
0 0 C2()gre?
with
cos o 0 sin @
R=| —cosx sinf sinx cosx cosf
0 1 0

Here the diagonal matrix in the middle encodes the anisotropy
between the X; directions, while the matrix R is the basis
transformation from the moving coframe {wl, w?, w3} to
the fixed coframe {dx, dy, d6}, recall (58), in which the fast
marching implementation via special anisotropic stencils [5]
is used.

In Sect. 6.1, we will show that the thereby obtained fast
marching approach already presents reasonable precision for
e = 0.1. Experiments in Sect. 6.3 show the application of
the method (with data-adaptive nonuniform cost) to tracking
of blood vessels in retinal images.
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6 Experiments

In Sect. 6.1, we verify the SR-FM method by comparison of
SR length minimizers/spheres obtained via SR-FM with the
exact SR geodesics/wavefronts (cf. Sect. 3) for the case of
uniform external cost (i.e., C = 1). In Sect. 6.2, we compare
SR geodesics and wavefronts in the groups SE(2) and SO(3)
(Sect. 6.2.1) for the uniform external cost case. In Sect. 6.3,
we provide experiments of vessel tracking by SR geodesics
in SO(3) when the external cost C is induced by spherical
data, and compare them to the result of vessel tracking on the
corresponding flat image by SR geodesics in SE(2).

6.1 Verification of the Fast Marching Method in the
Case of Uniform External Cost

In this subsection, we perform the experiments to validate the
SR Fast Marching (SR-FM) method proposed in Sect. 5.1.
The goal of the experiments is to check that the method pro-
duces an accurate approximate solution to the SR problem
in SO(3) group in the case of uniform external cost C = 1.
In all the experiments, we fixed the anisotropy parameter of
the Riemannian approximation as ¢ = 0.1.

In the first experiment, we compare the geodesics y
obtained via SR-FM with the exact cuspless geodesics y (+)
computed via analytic formulas in Theorem 6. We perform
the comparison as follows:

FM()

1) Fix & > 0 and the initial momenta /(0).

2) Compute the first cusp time sy,4x (7 (0)) corresponding to
h(0), and set Sepg = min{s;, 4 (7(0)), %}.

3) Compute the geodesic y (s), s € [0, Seng] via Thm. 6.

4) Compute the distance function W(g) in the domain
g=,y,0)e[-%, 5] x[-m ] x [-m, 7] via SR-
FM. Here we compute the distance function in the grid
of 201 x 401 x 401 points and then interpolate it using
third-order Hermite interpolation.

5) Compute the geodesic y ™ (t),t € [0, W(gena)] Via
backtracking (61) from the endpoint g1 = ¥ (Send)-

6) Plot the spherical projections of y(s) and y ¥ (¢) and
compare them.

A typical result of the comparison is shown in Fig. 10,
where we set& = 1.5, h3(0) = 0 for all the curves and varied
initial momentum A5 (0) € {—0.99, —0.81, —0.63, —0.45,
—0.27, —0.09, 0.09, 0.27, 0.45,0.63,0.81,0.99}. As a
result, we see that the geodesics computed numerically via
SR-FM accurately follow the exact geodesics.

We have performed a series of such experiments and
always obtained similar results when the geodesics ' (s)
were optimal for s € [0, sénd].ltwas alsoremarkable that SR-
FM resulted into different curves (length minimizers) when

Fig. 10 Top: the spherical projection of cuspless SR geodesics in
SO(3) computed by exact formulas in Theorem 6 (green dashed lines)
and our numerical fast marching approximations (red lines). Bottom:
example of nonoptimal cuspless geodesics (Color figure online)

the geodesic yi(s) was not optimal for s € [0, sénd]. Such
an example is illustrated in Fig. 10 (bottom). The question
of optimality of SR geodesics in SO(3) in the general case
& > 0 is an open important problem, recall Sect. 3.5. Here
we provide a numerical SR-FM method for computing only
the optimal geodesics. In analogy with how it was done in
[40], it is possible to compute Maxwell sets numerically. We
have a strong conjecture that optimality is lost at the first
Maxwell point induced by reflectional symmetries along the
geodesic. We leave the computation of Maxwell points and
analysis of optimality of the geodesics as a direction for future
work.

To verify the SR-FM method we also perform experiments
with comparison of the geodesics obtained via SR-FM and
the general geodesics (not necessarily cuspless) given by
Theorem 2. A typical result is presented in Fig. 11 (top).
Here we again observe an accurate result of SR-FM, but now
for the geodesics whose spherical projections have cusps.

To conclude this section, we provide one more experiment,
where we compare the exact sub-Riemannian wavefronts and
SR spheres computed via SR-FM. We show that the SR-
FM method provides a distance function WW(g) that closely
approximates the SR distance d (e, g) = WW(g).InFig. 11, we
show the comparison of the exact wavefront WF(é—gn) and
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Fig. 11 Top: comparison of exact SR geodesics in SO(3) (green
dashed lines) obtained via analytic formulas (Theorem 2) and
SR geodesics computed numerically via SR-FM (red lines). Here
€ = 45t = 3, and initial momenta (h}(0),h5(0)) =
{(=5,-0.99), (=5,0.99), (5, —0.99), (5, 0.99)}. Bottom: Comparison
for & = 1 of wavefront in SO(3) (green transparent surface) obtained
via the analytic formulas of Theorem 2 for T = %n and the SR sphere
(orange solid surface) for the same T', obtained via SR-FM (Color figure
online)

isosurface SFM(%T[) = {g € SO3) W(g) = %rr}. Here
we see that the isosurface computed via SR-FM accurately
follows the outer surface of the exact wavefront (i.e., exact
SR sphere). A similar picture was obtained for different radii
T.

6.2 Comparison of SR Geodesics and Wavefronts in
SE(2) and SO3) for C =1

In this subsection, we compare SR geodesics and wavefronts
in SE(2) and SO(3) and analyze their applicability in image
processing. We also include a short discussion about opti-
mality of geodesics, which is closely related to the analysis
of self-intersections of wavefronts and the study of cut loci.
To this end, we provide accurate plot of the wavefronts near
their singularities.
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6.2.1 Comparison of SR Wavefronts in SO(3) and SE(2) for
Cc=1

In this subsection, we show a comparison of the SR wave-
fronts in SO(3) and SE(2) in the case of uniform external
cost C = 1. Here we employ the fact that the coordinate
chart (x, y, 6) in Sf, y X S; was chosen in the way to obtain
the analogy with (X, Y, ®) € R2 x S!. This allows us to plot
SR wavefronts of SO(3) and SE(2) in the same 3D plot.

In this comparison, we use the SR arclength parameteriza-
tion 7, where the geodesic 39 (.) is given by exponential
map Exp(ho, -), recall (47), i.e., by the projection in SO(3) of
the solution of the Hamiltonian system (39), with initial con-
dition 1(0) = h°, 303 (0) = ¢ = (0, 0, 0). To establish
the comparison of wavefronts we switch to polar coordinates
(B, ¢), recall (43), where the Hamiltonian system in SO(3)
reads as:

,3 )'C:écosﬂcose,
=c
’ . 1 .
2 = —<cosfsecxsin®,
(=180 gy, |1 T E0F .
§ ¢9=sm/3+§cos,3tanxs1n9,

— vertical part, — horizontal part.
A solution to this system is given by Theorem 2.

The Hamiltonian system for SR geodesics in SE(2) (see,
e.g., [29] ) reads as:

B:c, ):(:éfosﬁcos.@,
C 1 Y:—gcosf}sm@,
¢ = 5sin(28), . .

® = sin 8,
— vertical part, — horizontal part.
A solution to this system is given in [29]. Indeed, we observe
a clear similarity between the SO(3) and SE(2) case, when
using parametrization (6).

In Fig. 12, we plot the SR wavefronts in SO(3) and SE(2)
for several values of end time 7'. In these plots, we identify
(x,y,0)and (X, Y, ®), so that the red surfaces WEFSE@) are
the SR wavefronts of SE(2) and the green surfaces WES0()
are the SR wavefronts of SO(3). We see a very similar shape
of WFS9® and WFSE® for small radii 7', but the differ-
ence increases when T increases. Thus, we conclude that the
SR geodesics in SO(3) can be locally approximated by the
SR geodesics in SE(2), but globally they are considerably
different.

One can also observe that the singular points* of WFS0®)
are located near singular points of WFSE?) This leads us
to a conjecture that the location of conjugate points (open
problem) can be estimated by the location of conjugate points

4 By singular points, we mean either conjugate or Maxwell points
(recall Remark 12).
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Fig. 12 Comparison of SR wavefronts in SE(2) (red) and SO(3)
(green) for T = 0.5,& = 1,n = 1. A zoomed in picture for the blue
square is provided in Fig. 13 (Color figure online)

of WFSE@) Note also that in the general case £ > 0 the
set of singular points has a complicated shape. In Fig. 13,
we present more detailed plot of the singularities, with the
depicted Maxwell set and special cases of conjugate points,
which are limit points of the Maxwell set on SR sphere (outer
part of wavefront).

In Fig. 13, we observe that the wavefront in SO(3) has a
very special symmetry when & = 1. This is not present for
& # 1, and this never happens in the SE(2) group. The case
& = 1 for SR manifold in SO(3) was completely examined in
[15], where it was shown that locally the conjugate locus is an
interval, and globally it is a circle without a point. Changing
& destroys the symmetry, conjugate and Maxwell points are
getting separated, and the conjugate locus has an astroidal
shape [34].

6.2.2 Comparison of SR Geodesics in SO(3) and SE(2) for
c=1

In this subsection, we again consider the case C = 1 and
compare SR geodesics yso(3)(-) = (x(-),y(-),0()) and
ySE@Q () = (X(),Y(-),O()) in the image plane. The
SR-FM method is used for computation of the geodesics
parameterized by SR arclength. Here we prepare background
for comparison of the geodesics in retinal images via the
schematic eye model, recall Sect. 1.1, where as a departure
point we use an image (white for C = 1) on a plane Oyy,
recall Fig. 4.

See Fig. 14, where we compare SE(2) and SO(3) SR
geodesics projected on the plane and on the sphere (via map-
pings I7T and I7~"). For details, see Appendix 5.

6.3 Vessel Analysis via SO(3) SR Geometry and SE(2)
SR Geometry

As explained in introduction in Sect. 1.1, we need to include
the spherical geometry of the retina rather than the flat geom-
etry of the flat image. This spherical geometry is encoded in
our spherical image model, see Fig. 4. Next we will analyze

the effect of including this geometry in the SR-FM vessel
tracking method along data-driven SR geodesics in SO(3).

More precisely, we propose vessel tracking in object coor-
dinates (or spherical image coordinates) via SR geometry
in SO(3) as an extension of vessel tracking in flat images
[39,40] along SR geodesics in SE(2). Therefore, we want
to investigate whether including the correct spherical geom-
etry makes a difference in the vessel tracking in practice.
Although a complete detailed comparison on large data sets
is left for future work, we present preliminary experiments
which indeed indicate considerable differences in both trac-
tography and curvature measurements. These experiments
are shown in Figs. 15 and 16 and next we explain them.

We apply the same scheme as in Sect. 6.2.2, but now we
compute data-driven geodesics, where the external cost is
induced by image data. Next we explain the construction of
the external cost that is applied in all experiments. For the
sake of simple comparison, we restrict ourselves to a cost
depending on the spherical coordinates only, and we set

VFI(x, )\
o <1+ AIVEFIE, ) | ©9

where we use standard multiscale vesselness [50]

(VE)(X,Y)
_# BE DY)
—e #3007 a2 UGa(X, V),

with A;(X,Y) eigenvalues of the Gaussian Hessian of
image F : R> — R (maximized over scales) ordered by
M (X, Y)| < [A(X, Y)|, with B = ¢ = 0.3, and with unit

. 1, for A >0,
step function U (L) = ]
0, otherwise.

Here we note that the Gaussian Hessian is given by H(G* F)
and computed by Gaussian derivatives [51] at multiscales
s = %0’2 € {2, 3,4, 5} in term of pixel sizes.

In the experiment in Figure 15, we show that there is a con-
siderable difference between SE(2) SR geodesics and SO(3)
SR geodesics. We see that when internal geometry is dom-
inant over the external cost (A small) the SR geodesics in
SO(3) are more stiff than SR geodesics in SE(2), and there-
fore in the boundary value problem they are less eager to take
shortcuts and better follow the vessel structure. In case A is
large (external cost is dominant than the internal geometry),
we see only small differences in the overall locations of the
SE(2) curves and SO(3) curves. The results are stable w.r.t.
choice of 1 < 1 < 2 (which controls the distance from the
camera to the eye ball, relative to eye ball radius, recall Fig. 4).

In the next experiment, we measure the curvature of the
curves obtained by the vessel tracking method via SE(2)
geometry and via SO(3) geometry. For this experiment, we
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£ =1

Fig. 13 Comparison of self-intersections of SR wavefronts in SE(2)
(red) and SO(3) (green) for & = 1 (linear case) and & = 0.5 (elliptic
case). Here T = 0.5 and n = 1. The viewpoint is taken from the inside
of the SR sphere. In this figure, we plot the part of wavefront depicted

Fig. 14 Comparison of an SE(2) SR geodesic (blue) and an SO(3) SR
geodesic (red), from left to rightin (x, y) spherical image coordinates,
(X, Y) flatimage coordinates, and plotted on the sphere S2 (Color figure
online)

used the values £ = 3,2 = 50 and n = 2. Although in
this case the result of tractography is very similar for the
SE(2) and SO(3) curves, we show that there is a considerable
difference in their curvature.

Corollary 1 (from Theorem 1) The geodesic curvature of a
spherical projection of data-driven geodesic yS° () satis-

fies

2 Xalyso ) (WO)

KS0B) () = .
‘ Xilysoo ) (WSOD)
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by the blue square in Fig. 12. If & # 1 both the wavefronts in SE(2)
and in SO(3) do not intersect at a single point. The first Maxwell sets
are depicted by dashed violet lines. The first conjugate points on the SR
sphere are depicted by yellow dots (Color figure online)

Proof The first equality in the chain

us(-) _
ui(-)

2h2(') _ 2X2|y(-)(W)
hi() Xilyoy W)

3

is implied by Eq. (28). The second equality follows from
application of PMP to problem Pyec, Which gives u = %

and upy = % The third equality follows from the fact that
in the points where the Bellman function WV is differentiable
(almost everywhere in our case) its derivatives are given by
components of momentum covector by = X1(W), hy =
X>o(W), see [37]. O

By the same argument, it can be checked (see [31] and
[40]) that the planar curvature of spatial projections of SR
geodesics in SE(2) satisfies

2 Aalyseor ) (WEP)

SE(2) _
K ) = ,
() =¢ A IVSE(Z)(A) (WSE(Z))

with A; = cos ®dx +sin ®dy, Ay = dp basis left-invariant
vector fields SE(2).

Thus the curvature analysis can be simply done based
on vessel tracking, and this shows the benefit of our algo-
rithm. In Fig. 16, we show an experiment of vessel curvature
measurement based on tracking via SO(3) geometry and via
SE(2) geometry. For completeness, we added also a compar-
ison with a planar curvature x5°®)(.) of a planar projection
rM() = Mx(), y()) of Y0P () = (x(-). y(). 60)).
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Fig. 15 Comparison of vessel tracking via yS°®) SR geodesics in
SO(3) (green solid lines) in object coordinates and via ySE? SR
geodesics in SE(2) (red dashed lines) in the planar camera coordi-

Fig. 16 Left: two curves from the experiment in Fig. 15 (right-bottom
figure) are depicted with slight shift. The upper curve is a spatial pro-
jection I"SE@) of the data-driven SR geodesic ySE? with depicted (in
color) planar curvature «SE? on rop of the curve. The lower curve
I"S0®) is the planar projection of the SR geodesic yS°®) with depicted
geodesic curvature K;OG) on top of it. Right: three graphs are shown
in the same plot: planar curvature ¥SE@ of 'SE@); geodesic curva-

We can see a considerable difference in curvature mea-
surement via SO(3) geometry and SE(2) geometry. It is also
seen that the difference between k3°®) and K? O3 s not very

nates. Here the planar projection I'S0®) of 1yS0®) and spatial projection
I'SE@ of ySEQ) are depicted in the same flat image (Color figure online)

Kl — kSE(2) (a L)
—#5°®(a 0)
----550@) (o )

g 06 of spherical projection of yS°®); planar curvature S°®) of

SO(3)
8

ture K
I'SO0) The effect of considering geodesic curvature « in object
coordinates on S? rather than planar curvature «5°® in photo coordi-
nates on projection on R? is visible (compare the green solid and dashed
graphs). A bigger difference comes from using SO(3) SR geometry
than SE(2) SR geometry (compare red and green graphs) (Color figure
online)

significant. Thus we see the importance of including correct
spherical geometry in vessel tracking algorithm in retinal
images.
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Fig. 17 Comparison of vessel tracking in a spherical image of the
retina via SR geodesic (green solid line) and Riemannian geodesic (red
dashed line) in SO(3) (Color figure online)

6.4 Vessel Analysis via SO(3) SR Geometry and SO(3)
Riemannian Geometry

Next we address the general benefit of using SR geodesics
rather than (isotropic) Riemannian geodesics in the tracking
of salient lines (blood vessels) in spherical images. To this
end, we show a typical example where the tracking induced
by a sub-Riemannian geodesic gives better result than the
tracking induced by a Riemannian geodesic. The experiment
in Fig. 17 is performed similar to Sect. 6.3, but now we com-
pare the result of vessel tracking via SR geodesics (obtained
by SR-FM) and Riemannian geodesics (isotropic metric with
& = 1). From this experiment, we see that similarly to the
SE(2) case [40] the tracking via Riemannian geometry suf-
fers from incorrect jumps toward nearly parallel neighboring
vessels and yields nonsmooth curves, the tracking via SR
geometry gives the desirable result.

7 Conclusion

Data-driven sub-Riemannian geodesics in 3D Lie groups are
a suitable tool for tractography of blood vessels in retinal
imaging. In previous works on the SE(2) case [40,41], prac-
tical advantages have been shown in comparison with the
(isotropic) Riemannian case, and geodesic methods in the
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image domain. However, these models included a SR geom-
etryon SE(2) = R2 x S! based on lifts of flat images, which
does not match the actual object geometry: The retina is
spherical rather than planar, cf. Fig. 1, Fig. 3, and Fig. 4.
A similar observation holds for models in the psychology of
contour perception in human vision [30].

Therefore, for geometric tracking we propose a frame bun-
dle above S2, cf. Fig. 6, instead of a frame bundle above R2.
Geometric tracking of geodesics is done along globally opti-
mal data-driven SR geodesics in SO(3) (and their spherical
projections) by our new numerical wavefront propagation
method. The method was validated for the uniform cost case
by comparisons with exact geodesics which we derived in
Sect. 3, cf. Figs. 10 and 11. Here, in contrast to the SE(2)
case [31], we do not have a scaling homothety. As a result,
the parameter £ has a considerable effect on the geometry,
and for & = 1 we identify the linear case, for & > 1 we
identify the hyperbolic case, and for & < 1 we identify the
elliptic case, cf. Figs. 7 and 9.

For all of these cases, we have computed the first cusp time
in Theorem 5 (the first time where the spherical projection of
a SR geodesic exhibits a cusp). Also, we have presented new
formulas for such “cuspless” SR geodesics in Theorem 6.
These formulas only involve a single elliptic integral thanks
to spherical arclength parametrization, and for £ # 1 our for-
mulas are simpler than the general formulas for SR geodesics
in SO(3).

Furthermore, we used a specific parametrization of Lie
group SO(3) that allowed us to compare between SR
geodesics / wavefronts in SO(3) to SR geodesics / wave-
fronts in SE(2), cf. Figs. 12 and 13. In our comparison we
took into account a standard optical model for the map-
ping between object coordinates on the retina and camera
coordinates in the acquired planar retinal image. In our
experiments, the differences between the SO(3) case and
the SE(2) case are considerable, both for the case of uni-
form cost, cf. Fig. 14, and for the data-driven case in the
retinal image analysis application, cf. Fig. 15. In general,
we see that for realistic parameter settings (in optics) the
SO(3) geodesics have a slower variation in curvature and
are less eager to take shortcuts, see, e.g., Fig. 15 and 16.
Furthermore, there are visible differences between geodesic
curvature of data-driven SR geodesics on the sphere and the
curvature of their planar projections. As in retinal imaging
applications, curvature is considered as a relevant biomarker
[9-11] for detection of diabetic retinopathy and other sys-
temic diseases, the data-driven SR geodesic model in SO(3)
is a relevant extension of our data-driven geodesic model
in SE(2). Here we restricted ourselves to feasibility stud-
ies. More extensive comparisons between SO(3) geodesics
and SE(2) geodesics on large retinal imaging benchmark
sequences are beyond the scope of this article and are left
for future work.
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Finally, we note that the computation time for data-driven
SR geodesics in SO(3) is exactly the same as for the SE(2)
case. Our specific choice of coordinates of SO(3) allowed
us to modify the very efficient fast marching approach [41],
with a simple replacement of the metric tensor matrix.
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Appendix 1: Proof of Theorem 1

The function s(t) = fot ui(r)dt is differentiable and
increasing for ¢ € [0, T']; then there exists an inverse func-
tionz(s), s € [0,1],] = s(T), differentiable and increasing.
Notice that %(t) = u1(t), which gives the second equality
in (28).

Define R(s):=R(t(s)), n(s):= R(s)er, n(¢t):= R(t)e; =
n(s(¢)). From the dynamics of Ppyec, we obtain identities

W(s) =00 ()G () = —R()Azer + ZHFR(s)Arer = R(s)es,

n(s) = —R(s)Azes + ‘24N R(5) A3 =—R(s)e; — 2L R(s)ey.

Then the Gauss—Bonnet formula (15) gives

ke (s) = (—R(s)el - ngg;gé(s)ez) - (R(s)er x R(s)es) =12l
which implies the third equality in (28).
The boundary conditions (27) for the curve n(s) follow
from its definition and the boundary conditions for R(t).
Recall that by definition C(R(#)) = €(n(s(¢))). Since the
minimizer R(t) is parameterized by SR arclength, we have
CH(R(1)) (%u} (1) + u3 (1)) = 1, whence §5(s) = ;—lay; =

C(R(r(s)»,/s%% = €(5)), /€2 +k2(s), which

implies (29) after integration w.r.t. s.
Thus, we can see that the optimization functionals of
Peurve and Ppee coincide:

fOT C(R(1),/E2u?(t) +us(t)dt = jol en(s)),/€2 +k2(s)ds.

But also the dynamics coincides, in the following sense. If
n(s),s € [0, i], is a smooth curve on the sphere S2 with
the initial conditions f(0) = e, n’'(0) = e3 and a geodesic
curvature Izg (s), then it can be lifted to a curve R(s) in SO(3)
that is a trajectory of control system (17) with the controls
ii1(s) = 1,ii2(s) = kg(s) and the initial condition R(0) =
Id. The curve R(s)e; on S2 has the same initial conditions
and geodesic curvature as n(s), thus ﬁ(s)el = n(s).
Summing up, since R(¢) is a minimizer of Ppec, then its
projection n(s) to the sphere 52 is a minimizer of Peyrve.

Appendix 2: Integration of the Hamiltonian

System PL

To integrate the Hamiltonian system (39), we follow the idea
of V. Jurdjevic [24], where one can employ left invariance
and introduce initial rotation Do of momentum space, such
that the initial momentum transforms to #(0) = (0, 0, M),
solve the problem in this simple case (i.e., to find the tra-
jectory Ié(t) that corresponds to 4#(0) = (0,0, M)), and
obtain general solution R(#) by a backward transformation
R(t) = Dy 'R(1).

Proof of Theorem 4.1 Substitution of (36) to (31) gives

_ 0 0 —hE2
R=R2, 2= 0 0 —n =—%A2+h2(z)A1.
mE2h 0

The Hamiltonian system can be written as a Lax type of
system [19]

P = [P, £2]— vertical part, (64)

R = RS$2— horizontal part. (65)
Here P(t) = —h1(1)®?* + ha(H)w! + h3(1)w’ is a momen-
tum covector expressed in the basis ', dual to A;, le.,
(@', Aj) = &;. The vertical part (64) has P(t) =
R~ (t)P(0)R(¢) as a solution. Thus, the Hamiltonian sys-
tem (64)—(65) preserves the norm of momentum covector
h(t) = (ha(t), —hi (), h3(1)), i.e., the value M? = h3(r) +
h%(t) + h%(t), whose isosurface is a coadjoint orbit of
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SO(3). The Killing form allows to identify so(3) and so(3)*
(see [19]), and by isomorphism (11), we write

P(t) = R™'(t)P(O)R(t) ~ h(t) = h(0) R(¢). (66)

Next we apply a left action of SO(3) on solution curve R(-)
R() = DoR(), (67)

where Dy is chosen such that the initial momentum matrix
P (0) and initial covector 2(0) = (—h2(0), h1(0), h3(0)) are
reduced to a simple form

P(0) = MA3 and h(0) = (0, 0, M), (68)

as the nicest possible representant within the coadjoint orbit
of SO(3).

Next we represent the rotation matrix R in form (6), i.e.,
R = /A3 g2 eéAl, where we parameterize the rotations
, %],y e R/(27Z),0 € R/(2n 7).
Substitution of (68) in (66) gives the momentum matrix

via 3 angles x € [——

A3

~ — - ~
P(t) = Me 0 eX(DA2 o =Y (A3 Az eY(MA3 =X (1) A2 o0(1) A} ,

and the equivalent relation for the momentum covector

(h2, —h1, h3)
cosx 0 —sinx 1 0 0
= (0,0, M) 01 0 0 cos® —sin6

sinx 0 cosx 0 sinf cos®

By multiplying the matrices in the right-hand side, we obtain

ha(t) = M sin X (1),
—hy(t) = M sin0(t) cos £(t), (69)
hs(t) = M cos (1) cos £ ().

From (69) we immediately have 0(r) = arg (h3(t) —ihi (1)),

and since x(t) € [——, =] = cosx(t) > 0, we can also

T
272
express X () = arg (1 /h%(t) + h%(t) + ihz([))

To obtain y(z) first notice that due to left invariance, the
matrix R satisfies the same equation as R, i.e., R = RQ.
Thus %, ¥, 0 satisfy the same equations as x, y, 6, i.e., the
horizontal part of (39). Thus we have

hi(t)

y(t) = — 2 sec X (1) sinO(z), (70)

with the initial condition 7(0) = 0 following from R(0) =
Dy.

@ Springer

By virtue of (69), we can express (70) as

L(t) — ﬂ ﬂ & F(1)
WEE\Rorro) T
M [t hi(r)
= — —d7
£2 Jo hi(r)+h3(x)

Further, since M2 = h%(t) + h%(t) + h%(z) = const, we have

~t__ / h3(v)
) M2 — h2(r) '

Thus we obtained solution for % (), (), 6(¢). To finish the
proof, it only remains to obtain solution for x(¢), y(¢), 0(¢).
Recall that the expression (46) for R(z) follows from orthog-
onality of matrix Dy, i.e., Dy - Dg , and parameterization
of R(t) by x (1), y(1), 0(t) as R(t) = e¥ V43 g =x(NA2 0N A1

To find x(¢), y(t), 6(¢) notice that action of R(¢) on e and
R™(t) = RT(¢) on e;3 gives

(Ri1 (), Ro1 (1), R31(1)"

= (cosx(t) cos y(t), cos x(t) sin y(z), sinx(t)?, (71)
(R31(1), R3 (1), Ry3(1))"

= (sinx (1), cos x(¢) sin 0(z), cos 6(t) cosx (1)), (72)

Since x(t) € [-75, 5], first two equations in (45) follow

from (71) and the third equation in (45) follows from (72). O

Appendix 3: Proof of Theorem 5

Recall that we consider the case (see Remark 4) where the
curve starts from e; € S and goes in the direction of upper
half of the sphere with tangent vector e3. Therefore, we have
h1(0) = u1(0) = 0, h(0) > 0.
-272 2
Via the Hamiltonian H(s) = M = %, we

express hi(s) = &,/1 —h3(s) = V/x2 +1,/1 — h3(s). As

a result, one has
hi(s) =0 < ha(s) = £1. (73)

In the linear case x = 0, Eq. (73) reads as hO + h3s = =1,
that has the minimal positive root

0 0
sgn(hs) —hy

Smax <h07 ho) = hg
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In the elliptic and the hyperbolic cases, we need to find a
minimal positive root of

/’ZO
hgcoshsx+—3$inhsx=:|:1. (74)
X

In the elliptic case, we have x = ia, wherea = /1 — £2 ¢
(0, 1), yielding solution

snfax <a, ho, hg)

sgn(h9) (1/(h§)2—a2 (1—(h‘2>)2)+iu)

hS+ia hY

= —é log

Denote k¥ = (h9)? + (1 — (h9)?) x*. Notice that when

(h)? 0y2
5+ ()" <1 & k < 0 we have smax (7(0)) = oo and

therefore we have cuspless trajectory of infinite SR length,
recall (25). This fact is also clear from phase portrait of
dynamic of vertical part (52), see Fig. 7 (bottom, left), where
intersection of the integral curve with the red straight line
indicates the moment, when cusp appears. We see that some
geodesics have no cusps in their spherical projection up to
infinity. Notice that since SO(3) is compact, it has bounded
diameter (i.e., there exists D > 0, such that the SR distance
between any two elements of SO(3) does notexceed D). Thus
in contrast to SE(2) group, where every cuspless geodesic is
optimal (see [31]), we observe that there exist nonoptimal
cuspless geodesics in SO(3) group.

In the hyperbolic case x = a = /€2 — 1, £ > 1, we have
k > 0 and the minimal positive root of (74) reads as

la h9-+h3]|

a?(1-(h2)+ 12 +a
st (a,h, hY) = Llog (— e

Finally, using the parameter x = /€2 — 1, we have a single
formula (54) for all cases. O

Appendix 4: Outline of the Proof of Theorem 7

By the result in [35, Thm 11.15], points g € SO(3) where
the SR distance ng(S) (e, -) given by (56) is nonsmooth are
either conjugate points, Maxwell points, or abnormal points.
So by assumption (and absence of abnormal geodesics due
to a 2-bracket generating distribution A, cf. [37, ch:20.5.1]),
we see that dg0(3) (e, -) is smooth at {y(;‘(r) |0 <t <1}
As a result, the mapping

0,113 T > ddo3) (e v5 (1) € RY

is smooth as it is a smooth composition of maps. Similarly
for the Riemannian case ¢ > 0, recall (59), we have by the
assumptions that

(0,113 T = dgp3)(e, ¥ (v)) € RT

is smooth for all € > 0.

Let G—! denote the inverse metric tensor associated with
G given by (57), and let G;! denote the inverse metric tensor
associated with G, given by (60).

Now we rely on standard results [7,12] on backtracking
of optimal Riemannian geodesics in Riemannian manifolds.
This means that we find the smooth optimal geodesics via an
intrinsic gradient descent on the Riemannian distance map
We(g) == d§0(3)(g, e). This yields the identity

V() = We(g) G dWe (v (1)), (75)

where W, is the unique viscosity solution [7,12] of the cor-
responding Riemannian eikonal equation given by

Gel (Gelp)™ AL (), (Gl dWe@) =1, 0
for g # e, and W;(e) = 0.

Next we transfer these standard results toward the sub-
Riemannian case, by a limiting procedure. Firstly, we
note that following a fully tangential approach to [36,
App.A,Thm.2] yields (see Remark 18 below) the following
respectively pointwise and uniform convergence:

hf& We(g) = Wo(g), and y, — y5 , ase | 0. (77)
&

Secondly, one has for any smooth function f : SO(3) - R
that the intrinsic gradients converge:

limG;ldf(e) =G dr ()
el0

&2

©£iﬁl) (%‘_2 Xl|ng1|g+X2|ng2|g+? X3|ng3|g)

=& 2 X1y f Xilg + Xalg f Xalg, forall g € SO3). (78)
Thirdly, as y,* and y;;" are solutions to the Hamiltonian system
of the Pontryagin Maximum Principle, the trajectories are

continuously depending on & > 0 and so are their derivatives.
As a result, we have

75 (2) = lim 720 @ lim Wi () (G ') (7 (1)
(77;78) 131 . % (79)
L9 o) (g dlim m) (1;?3 y; (r))
7

D Wig) G W (1)).
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Furthermore, from (76) it follows that

1= £i$/gg|g (Gelz! dWece). Gl ae (o))

= \/g|g (915" W), 61, awie))

where we note that the third term under the square root, after
substitution of (78), vanishes. Finally, the viscosity solution
property [7,12] is also naturally carried over due to continu-
ous ¢ dependence of the Hamiltonian and the convergences
amn, (79). O

Remark 18 The idea for the convergence (77) which is tan-
gential to the SE(2) = R? x S! case considered in [36,
App.A,Thm.2] is based on a similar convergence result
by Jean-Marie Mirebeau & Chen Da of a related elastica
model [48, app.A]. It relies on closeness of controllable
paths [48, Cor.A.5] and Arzela-Ascoli’s theorem. Another
ingredient is the continuity of the mapping of the pair
(e, g) onto the corresponding indicatrix B.(g) := {v €
T,(SO(3)) | ng (v, v) < 1}, i.e., the continuity of

[0, €0] x SOM3) > (&, 8) > Be(g) € P(T¢(SO(3))),

where the powerset P (1, (SO(3))) of each tangent space
T,(SO3)) = R3 is equipped with the metric topology
induced by the Hausdorff distance. The proof of this con-
tinuity is straightforward and is therefore omitted here.

The SR-eikonal and Backtracking Equations for
Cuspless SR Geodesics

Now in this article, we are primarily interested in the SR
geodesics whose spherical projection does not have cusps.
This can be taken into account by modifying the standard
SR-eikonal equation (62) as

ax (0, W))2
\/Wﬁm(wnkcw forg #e,

(80)
Wi(e) =0,
and backtracking equation (61) as
Yo (t) = —u1 () X1ly,y — u2() Xaly, 1) &1
vp(0) = g1,
_ max(0.X1 |y, () V) _ XalyoOW)
where u1(t) = —garg,ay 12 = 4,6 ad

where the system is integrated for ¢ € [0, W(g1)].

The idea behind this is that for cuspless SR geodesics one
has u positive which holds by if the corresponding momen-
tum component 71 = X (W) is positive. Note that in the
eikonal equation one substitutes momentum 2 = d)V into the

@ Springer

Hamiltonian to achieve equidistant wavefront propagation
[12]. For further details and analysis on the positive control
restriction on a similar problem on SE(2), see [36]. Similar
analysis benefits may be expected on the SO(3) case, but this
is beyond the scope of this article.

Appendix 5: Comparison of the SE(2) and SO(3)
Geodesics in the Image Plane

We organize the comparison in the following way:

1) Choose an initial condition Vy = (Xg, Yy, ®p) and a
terminal condition V; = (X1, Y1, ®1) in

D = [Xmin, Xmax] X Ymin, Yimax] x [=7, 7] C R? x §! = SE(2),

where Xpax = Ymax = —Xmin = —Ymin = (¢ +
a)tan Yax = %gg tan T g- . These values are obtained from
schematic eye model for n = 1, recall Sect. 1.1, where
Ymax = % is a maximum scanning angle via a standard
fundus cameras.

2) Compute the SR distance WSE@ (V) = ¢5E@ vy, V) in
the volume of interest D > V via SR-FM-SE(2) (sub-
Riemannian fast marching in SE(2), see [41]).

3) Find via backtracking in SE(2) (see [41]) a geodesic
ySE@ () satisfying ySE@(0) = Vyand ySE@(T) = v,
with T = WSE@ (v)).

4) Find the initial condition vy = (xq, yo, o) and the termi-
nal condition v; = (x1, y1, 61) in SO(3), obtained from
Vo and V via planar projection I7~!, recall Eq. (5), as
(i, yi) =T~ 1(X;, Y;) = (@1(X,Y), ®2(X, Y)) and

0; = arg (1(X;, Yi, ©;) +icos @1(X;, Yn(X;, ¥;, ©;))

where

. 1 .
x(Xi,Yi,@i):—g “lx,. 1) €08 O+ |(x~ v;) sin ©;,
. 45

n(X;, Y, @i):— |(X1 y[)COS@ + |(Xz Yi) sin ©; .

5) Compute the SR distance WSO (1) = d50®) (yg, v)
in the domain v € D = [Xmin, Xmax] X Vmin» Ymax] X
[—m, 7] via SR-FM in SO(3). Here we set x,ux
= Ymax = —Xmin = —Ymin = 0.63, recall Eq. (1).

6) Find viabacktracking (61)a geodesic yS°®) (.) satisfying
y30@(0) = vp and y3°C)(T) = vy.

7) Plot in the image plane both the spatial projection
I'SE@ () = (X (), Y () of the geodesic ySE@ () and
the planar projection SOy = M (x(-), y(-)) of the
geodesic yS0B3) ().
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