

Parallel computation of the reachability graph of petri net
models with semantic information
Citation for published version (APA):
González-López de Murillas, E., Fabra, J., Álvarez, P., & Ezpeleta, J. (2017). Parallel computation of the
reachability graph of petri net models with semantic information. Software : Practice and Experience, 47(5), 647-
668. https://doi.org/10.1002/spe.2438

DOI:
10.1002/spe.2438

Document status and date:
Published: 01/05/2017

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1002/spe.2438
https://doi.org/10.1002/spe.2438
https://research.tue.nl/en/publications/e9151534-a70d-4e19-9ffe-d6ca76680d21

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–23
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Parallel Computation of the Reachability Graph of Petri Net
Models with Semantic Information

Eduardo González-López de Murillas1, Javier Fabra2, Pedro Álvarez2, Joaquı́n Ezpeleta2

1Architecture of Information Systems (AIS) group in the Department of Mathematics and Computer Science, Eindhoven
University of Technology, The Netherlands (e-mail: e.gonzalez@tue.nl)

2Institute of Engineering Research (I3A) in the Department of Computer Science and Systems Engineering, University
of Zaragoza, Spain (e-mail: {jfabra, alvaper, ezpeleta}@unizar.es

SUMMARY

Formal verification plays a crucial role when dealing with correctness of systems. In a previous work the
authors proposed a class of models, the Unary RDF Petri Nets (U-RDF-PN), which integrated Petri nets and
(RDF-based) semantic information. The work also proposed a model checking approach for the analysis of
system behavioural properties that made use of the net reachability graph. Computing such a graph, specially
when dealing with high level structures as RDF graphs, is a very expensive task that must be considered.
This paper describes the development of a parallel solution for the computation of the reachability graph of
U-RDF-PN models. Besides that, the paper presents some experimental results when the tool was deployed
in cluster and cloud frameworks. The results not only show the improvement in the total time required for
computing the graph, but also the high scalability of the solution, which make it very useful thanks to the
current (and future) availability of cloud infrastructures. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Petri nets, Reachability graph, Semantics, Parallel computing, High-perfomance
computing, Cloud computing.

1. INTRODUCTION

From a technological point of view, Service Oriented Computing (SOC) has become the backbone
of information systems for business companies. Independently of the specific way services
are implemented (own host system, service providers, cloud infrastructures, etc.), services are
fundamental elements for developing (added value) distributed applications for heterogeneous
environments. The use of semantic techniques was a big help in automating the process of
describing, discovering and integrating provided services in order to develop new business
processes [1].

Independently of the technological infrastructures used for their deployment, current information
systems are complex enough to make necessary the use of methodologies allowing not only to help
in understanding and designing the system, but also in studying its possible behaviours so that a
set of required properties could be analysed (system analysis) or, even, imposed (system synthesis
and control). Petri nets [2] are a family of formalisms well suited for the modelling and analysis
of concurrent/distributed systems which have been extensively used in different domains where
workflows were a very natural way of dealing with modelling, analysis and implementation (see [3]
for a general overview, and [4] for a specific view from the point of view of business processes
or [5, 6, 7, 8] for semantic business process).

For the work on the domain of concurrent/distributed systems that also include semantic
information, [9] presented a class of high level Petri nets, named Unary RDF Petri Nets (U-RDF-
PN), as a formalism integrating the control flow view of Petri nets and semantic technologies to

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

deal with data (at arc and transition notation and at marking level). In order to analyse U-RDF-PN
systems, the Computation Tree Logic (CTL) based model checker COMBAS was developed [10].

The temporal logic model checker presented in [9] required the computation of the model
reachability graph. Reachability graph generation is known to be a complex problem from a
computational point of view. This is because of the state explosion problem: the system can have a
very big number of states (even be infinite).

In the case of a finite state space, different techniques have been developed trying to alleviate
that problem. In some cases, specific components or properties of the models are used to reduce the
number of states to be computed and stored. This is the case of stubborn sets [11] or symmetries [12].
In other cases, special data structures, such as the binary decision diagrams [13] or some kind of
variants, are used for very efficient computation and storage [14, 15]. Other authors have focused on
the definition of non-standard semantics in order to reduce the transition system and, therefore, the
complexity of the reachability graph. This is the case of the LOTOS formal specification language,
used to verify temporal properties is model checking [16].

In the case of non-finite reachability graphs, some techniques have been developed based on the
concept of coverability graph [17, 18]. These techniques avoid the infiniteness of the graph, still
providing with the capacity of analyzing a wide set of behavioral properties.

An alternative way, looking for a gain in computer power, is the development of parallel
implementations. Different architectures, either based on shared memory [19, 20] or in distributed
memory [21], have been proposed. Also, some effort has been done to support parallel programming
languages and to ease the paralelization of existing code [22]. Efficient implementations of binary
decision diagrams have been proposed in [23, 24] providing engineers with a powerful technology
for the implementation of parallel space generators and analysers.

The nature of the model in [9] makes each state to be quite complex. A state is composed of two
parts. On the one hand, the distribution of tokens in places, where each token is an RDF graph. On
the other hand, since transitions can have postconditions, a state also has a logic formula, expressed
according to the smt-lib standard [25], stating some relations among the model parametric values.
This specificity and complexity makes that usual techniques for reachability graph construction
and analysis were not applicable, making the implementation of new tools necessary. A working
prototype was presented in [10]. However, we soon realized that space requirements for storing
states and computing power for calculating them required a much more efficient and scalable
solution.

Considering previous parallel solutions we concluded that a shared memory architecture would
lack of the scalability and performance we were looking for. We wanted to be able to scale and
adapt the tool for problems of different sizes. Choosing a shared memory approach would establish
a (short) limit in the set of problems we could deal with, being such limit related to the capabilities
of computing hardware. Therefore, a parallel implementation that could take advantage of the
computing clusters at our disposal as well as the cloud-based resources any user or organization
can hire if necessary, on demand and under a pay-per-use approach, was proposed as a valid and
suitable approach.

As has been mentioned before, previous work exists on parallelizing or distributing the
computation of reachability graphs. However, none of these solutions considers U-RDF-PNs as
a modeling formalism. To support this special kind of high level Petri nets was the motivation to
develop our own implementation. Further on, during the experimentation phase we encountered
several challenges. First, the distribution and allocation of computational resources on distributed
environments was not trivial. Second, it was necessary to adapt to the configuration particularities
of each of these platforms. Third, many of these execution environments can be unstable due to
several reasons: hardware failure, conflict with co-located processes from other users, lack of disk
space, network errors, etc. Handling all this instability poses a big challenge that none of the existing
solutions in the literature is able to tackle at the moment. Therefore, fault tolerance became one of
the main goals when developing our solution.

This paper describes the proposed parallel solution as well as some experimental results to
measure how power increases when new computing resources are integrated, showing that the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 3

solution scales properly. In order to also show the flexibility of the tool, it has been used in a cluster
environment as well as in the Google Cloud infrastructure. Section 2 describes the main elements
involved in U-RDF-PN. Sections 3 and 4 describe the design and implementation of the tool while
Section 5 show the experimental results obtained when it has been deployed in a Condor-based
cluster and in the Google Cloud. Finally Section 6 introduces some conclusions and future work
lines that could be followed in order to extend/improve the current research.

2. THE PROBLEM

Let us briefly describe the formalism of Unary-RDF-Petri nets (U-RDF-PN) and then state the
problems that appeared when trying to compute the reachability graph. In the next section we will
present the solutions proposed to deal with the problem of computing such graph using a parallel
implementation.

2.1. U-RDF Petri nets

We are assuming the reader is familiar with (high level) Petri nets, and knows about its main
definitions and properties. In this section we are going to informally describe the specific elements
of the subclass of the U-RDF Petri nets.

Petri nets are a technology widely used in the world of workflows [26, 27]. As usual in Petri nets,
a system state is modeled by means of the net marking while system evolutions are represented as
the enabling and firing of transitions.

In order to be able to incorporate semantic information to Petri net models, we developed the class
of Unary-RDF-Petri nets, U-RDF-PN [9]. In our approach, RDF is used to describe information
about the inputs and outputs of each task represented in the workflow, as well as information about
the data flows which are carried out through the workflow.

U-RDF-PN belongs to the family of hight level Petri nets and share the notions of place, arc,
transition and marking. Semantics have been incorporated in the tokens of the nets (tokens are RDF
graphs with information related to the object the token refers to), in arc inscriptions (which are RDF
graph-patterns, a set of RDF triple patterns) and, finally, in transitions (incorporating preconditions,
postconditions and guards related to the transition input and output arc inscriptions).

Figure 1-a) sketches the main elements that define the structure of a Petri net: transitions and
related arcs and places, with their inscriptions, as well as the tokens, whose distribution in places
define the marking [2]. In the figure, transition corresponds to the invocation to a task called
align warp.

As usual in Petri nets, a system state is modelled by means of the net marking while system
evolutions are represented as the enabling and firing of transitions [28]. Tasks will be modelled by
means of transitions, as sketched in Figure 1, as follows:

1. Tokens in places will be RDF graphs, as well as the tokens produced by transition firings.
2. Transition input arcs will correspond to RDF graph patterns in the transition input arcs. At a

given state, a token in an input place entailing the RDF graph pattern in the corresponding arc
is a possible binding for firing the transition.

3. Transitions can have attached guards. A guard is a boolean expression involving URIs, literals
and input variables (variables used in RDF graph patterns attached to the input arcs). Among
the possible graph candidates, only those satisfying the guard can be used to enable the
transition.

4. A transition is enabled at a given marking when candidate tokens are found for every input arc
so that a binding is possible (which means that the same variable in different input arcs must
correspond to the same value in the different input candidate tokens) and so that the guard
attached to the transition is made true for the chosen values.

5. The RDF graph pattern attached to the output arcs represent task outputs, while the
postcondition mapping associates to a transition its corresponding postcondition, establishing
the relation between the input and output task values.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

"jpg"

4095

2010

"Anatomy

Image"

ex:Image1

300

ex:RefImage

Im:has

Type

Im:has

GMax

Im:has

GMin

rdf:type

Im:has

Sizehdr

Im:has

RefIm

ai1

"jpg"

4096

2013

"Reference

Image"

ex:Image1

320

Im:has

Type

Im:has

GMax

Im:has

GMin

rdf:type

Im:has

Sizehdr

ri

align_warp

p01 p00

p11

(?AImExt="jpg" OR ?AImExt="tif")

AND (?AImExt=?RImExt) AND

(?ARefImID = ?RImageID)

Guard

?ai ?ri

?warp

align_warp

p01 p00

p11

(?AImExt="jpg" OR ?AImExt="tif")

AND (?AImExt=?RImExt) AND

(?ARefImID = ?RImageID)

Guard

?ai ?ri

?warp

Im:has

RefIm

ex:Image1

ex:RefImage

ex:RefMatrix

ex:RefVoxel

22

32

42

123

135

143

Im:hasDimx

Im:hasDimy

Im:hasDimz

Im:hasSizex

Im:hasSizey

Im:hasSizez

Im:hasMatrix

Im:hasVoxel

warp1

a)

b)

Figure 1. a) Scheme of a transition and related arcs and places in a U-RDF-PN b) The model after transition
firing

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 5

Figure 1-b) shows the marking of the considered places once transition align warp fired.
For a formal and complete introduction of U-RDF-PN the reader can have a look at [9].

2.2. Computation of the reachability graph

For a given Petri net, the reachability graph is the graph containing the set of reachable markings
(obtained after the sequential firing of transitions from the initial marking) as nodes and an arc
joining two states m1 and m2 if m2 is reachable from m1 by firing a transition. Since the transition
will be fired for a concrete binding, the binding itself is associated to the arc.

The generation of the reachability graph is based on the classical algorithm used for computation
of the reachability graph in Petri nets [2].

The algorithm is quite simple. Initially, the reachability graph only contains the initial marking,
being this marking the only marking on a stack of pending (to be processed) markings. Then an
iterative process is applied as follows: take the marking in the top of the stack; compute the possible
firings from that marking, as well as the marking reached for each possible firing (possible successor
markings); if the new marking is not in the until-now computed reachability graph, add such marking
and state transition to the graph, and also push this marking into the stack. The process terminates
when the stack is empty. The method relies on two main functions. The first one is the function that,
for a given marking, computes the set of enabled transition firings, as well as the markings reached
in case of such firings. The second one, the function that, given two markings, determines whether
they are equivalent or not.

In the case of U-RDF-PN, the functions involved in the reachability graph computation must
work with RDF annotations: the function looking for enabling of transitions, the function for firing
a transition and, finally, the function checking for the equivalence of two markings. As shown in [9],
evaluating these functions is a quite time-consuming task and then, computing the reachability graph
of U-RDF-PN, can become a very hard task. In fact, the model uses the simply entailment, which, as
proved in [29], is NP-complete when patterns contain blank nodes (in our case this can occur when
looking for transition enabling) and is in P when the target graph does not contain blank nodes (in
our case this occurs when comparing reachable markings for equivalence). Therefore, besides the
inherent cost associated to the number of possible reachable states, U-RDF-PN must consider the
cost of looking for possible bindings for transition enabling when building the reachability graph.

This is the reason for looking for a parallel implementation that alleviates the problem. Given the
high dependency between operations in the Reachability Graph generation problem, the distribution
of the algorithm requires a central coordinator that handles task assignment and controls the
finalization of the computation. That is why a master-worker architecture has been chosen for the
implementation. The following sections describe the solution we have implemented and the results
obtained.

The proposed method is assuming the URDF-PN model has a finite reachability graph. In the case
of URDF-PN models, as in any other high level Petri net formalism, proving the finiteness of the
reachability graph of a given model is not an easy task. There are two elements whose combination
could influence that question. On the one hand, the structure of the net, which could lead to places
with an infinite number of (either identical of different) tokens. On the other hand, the post-condition
mapping associated to transitions, which, together with the domains of the variables involved in
the input and output patterns of transitions, could allow the generation of an infinite sequence of
different tokens.

There are some usual sufficient conditions preventing the previous circumstances to occur. For
instance, the use of finite domains for variables, as well as the use of mapping having finite images
for the case of infinite variable domains, allows to avoid having an infinite number of different
tokens [12, 30]. With respect to the possibility of having an infinite number of repeated tokens in
the net, usually the study of the supporting ordinary Petri net model (the Petri net model resulting
when arc and transition inscriptions are removed [9]) can give sufficient conditions to avoid such
situation. This is the case, for instance, of acyclic or bounded Petri nets (Petri nets whose places
are covered for p-invariants, which establish upper bounds to the number of tokens in places, for
instance).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

3. TOWARDS A PARALLEL IMPLEMENTATION

As explained in previous sections, reachability graph computation is a highly expensive process
in both memory and time. We point at developing a distributed program for the computation of
the reachability graph in a parallel way, so it could be deployed in either cluster, grid or cloud
infrastructures. This would open the possibility of dealing with complex systems. The development
of the solution was a long process, which will be explained in greater detail in the following sections.
However, for the sake of clarity, a brief overview of the final architecture is provided below.

Our objective became to implement a parallel version of the COMBAS [10] reachability graph
generator and to deploy it in the HERMES cluster. HERMES is a cluster hosted by the Aragón
Institute of Engineering Research (I3A) ∗. In general terms, HERMES consists of 1308 cores and
2.56 TB of RAM. At the moment of this writing, all the general purpose processors in HERMES use
a 64-bits Intel hardware architecture and a Scientific Linux, version 5.5, as the operating system.
Cluster nodes are externally connected using 10-Gigabit routers and internally connected using a
Gigabit link, allowing high-speed data transfers. The cluster is managed by means of the HTCondor
middleware †, version 7.8.4.

Let us now describe the main concepts behind marking storage, signatures and comparison
processes. Markings (states) of a U-RDF-PN model are RDF graphs, composed of RDF triples.
Two markings are considered as equal if they are equivalent in terms of RDF graphs: if each one
entails each other.

Entailment [31] uses inference for a given ontology, so that two non equal graphs can be
equivalent. For instance, given a graph:
A={:a :isA :Book,:b :isA :Book}
and a graph
B={:a :isA :Book,:b :isA :Publication,:b :isA :Book}
, they are clearly different. However, if we consider one ontology in which
:Book :isA :Publication
, inference application to A and B will give the same equivalent graph:
{:a :isA :Book,:a :isA :Publication,:b :isA :Book,:b :isA

:Publication}
We have used this property to generate a canonical form for each marking as follows: duplicated

triples are removed, being the remaining ones then sorted in alphabetical order; then, all the sorted
triples are concatenated in a single string, on which a hash function is applied, obtaining a long
integer as the hash of the marking. Therefore, the signature of each state is a data structure that
contains the following fields: the (unique) name of the state, the hash of the semantic representation
of the state, the additional parametric data of the state in SMT-lib format [25] and, finally, a list of
nodes containing a copy of such state. This nodes list is stored in the form of 〈key − value〉 pairs,
where the key represents the index associated to each worker node, and the value is the name used
to store the state in such node.

Doing so, the signature of a marking with several hundreds of KBytes is compressed to a few
bytes, as can be seen in the example below:

{ name: "state-125",
semantic-hash: 1652659789226454879,
parametric-data: ["(= a true)",

"(= b 9)",
"(= c 3)"],

nodes: ["1"=>"state-125",
"3"=>"state-211",
"5"=>"state-789"]}

∗Aragón Institute of Engineering Research (I3A)
†http://research.cs.wisc.edu/htcondor/

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 7

Comparing the hash of two markings becomes comparing two long integers. However, knowing
whether two markings are equivalent is a more complex process that is carried as a specific job (and
will be detailed later on Section 4). Selection of the hash function is non trivial, since collisions
generate an important penalty in efficiency. In our case, since the semantic representation of a
state is canonicalized into a single string, the hasCode method of the standard String Java Class
is used. Given a string s, the hash is computed using the following formula: hashCode(s) =∑n−1

i=0 s[i] · 31n−1−i, where n is the string length.
Figure 2 depicts the high-level view of the system architecture, based on a master-worker

approach. The configuration is composed of a single master and a set of workers, whose number is
specified at deployment time by the user.

System	 Interface	
WS	 API	

Scheduler	 Deployment	 component	

Master	
Slave	 Slave	 Worker	

Compu9ng	
infrastructure	

<net, #nodes>

Figure 2. High-level view of the (master-worker) architecture implemented

On the top-level, the user accesses the system through a Web service-based system interface. The
user must provide the system with the net to be processed as well as the number of nodes to be used
for the computation (for master and worker processes). The system interface directly connects to
a deployment component, which coordinates with a scheduler component in order to set-up in the
used computing infrastructure the required master-worker configuration.

The framework has been designed to exploit the computational power of clusters, grids and
clouds, trying to reduce the network communication as much as possible. The process is divided
in small jobs which are performed by the workers. Each worker iteratively execute two types of
jobs:

• State job: For a given reachable state, the worker must compute all of its successors. Then, for
each of them it computes the signature, which is then transferred to the master if necessary. A
more detailed description will be given on next section.

• Comparison job: whenever two states signatures collide, the master detects this and generates
a comparison job between both states. Therefore, the worker assigned with this task must
compare their full representation and determine if they correspond to equivalent states or not.

The master node is the one in charge of distributing jobs and controlling the start-up and
termination of the process. The workers request jobs to the master, perform the task and return
the results back.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

Let us establish the relationship between nodes, states and signatures. Not only computation tasks
will be distributed among workers, but also the set of states: each worker will store (some of) the
markings it computes. The master is the only process that has a global view of the set or computed
reachable markings: when a worker obtains a possible new marking, it computes a signature for
it, which is sent to the master. The master will then decide what to do with such marking, telling
the worker to store it if it is new (no other marking exists with the same signature) or telling him
to do some additional work. The objective of doing so has two main objectives. On the one hand,
to distribute markings among different resources, making possible dealing with bigger systems, as
markings are quite big structures whose size can vary between a few Kbytes to hundreds of them
(depending on the nature of the net as well as the used annotations). On the other hand, to improve
the system performances, reducing as much as possible moving complete markings among different
resources.

Finally, Figure 3 provides a detailed overview of both master and workers first shown in Figure 2.
On the one hand, a master is composed of three main storage units: a hash table containing the
states signatures, and two queues that store the jobs with the status which are marked as pending-to-
be-processed and pending-to-be-compared (to-process and to-compare queues, respectively). These
three storage units are used as inputs for the states signature comparer component, whose process
will be detailed later on this section. On the other hand, the job dispatcher coordinates with the
workers in order to provide them with jobs that are queued on the to-process or on the to-compare
queues.

Both master and workers expose their functionalities by means of REST [32] interfaces.
Therefore, both master and workers (even among themselves) directly interact using these
interfaces. Trying to improve performance, when possible these REST interactions are
complemented with direct socket connections, thus avoiding the necessity of managing the
processing REST messages. This way, the proposed solution can be deployed on network-
independent nodes as well as on local/private networks (improving the latency and response times
in this last case).

On the other hand, workers compose of four different storage units: a local queue that contains the
jobs to be processed by that node as well as a local queue to store the states pending to be compared
(to-process and to-compare queues, respectively); a local storage for states that have been processed
and, finally, a local instance of a Virtuosso Triple Store (including its semantic reasoner).

From the worker’s perspective, the job retriever component first requests jobs to the master, and
puts these jobs on the to-process local queue. A similar process is achieved by the comparison
job retriever component. Then, the state successor generator component processes them using the
Virtuosso Triple Store and saves the resulting states on the local storage unit. The state successor
generator also interacts externally with the master in order to generate the next state to compute.
The stored states are then compared by the states comparator component, that uses the to-compare
queue to complete the process.

Interaction among workers is carried out by the communitation between the state successor
generator and the states comparator components of the nodes. Nodes organize themselves in order
to conduct the computation/comparison process.

With respect to checkpointing, both master and workers contain a local checkpointer component
that will perform the checkpointing process as described in Section 5.2.

Finally, we must remark that each component that contains the MapDB‡ label shares the
characteristics of this data structures implementation library, this is, an HD file-based persistence
and a memory caching mechanism.

‡MapDB http://www.mapdb.org/

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 9

Master	

HTTP	 REST	 service	 /	 IN	 socket	

Local	
checkpointer	

Checkpoint	
coordinator	

State’s	 signatures	

MapDB	

General	 queue	

MapDB	 “To	 process”	

General	 queue	

MapDB	 “To	 compare”	

State’s	
signature	
comparator	

Job	
dispatcher	

Virtuoso	 DB	
Triple	 Store	 &	
Seman2c	 reasoner	

Local	 queue	

MapDB	 “To	 process”	

Local	 queue	

MapDB	 “To	 compare”	

Local	 storage	 for	
states	

MapDB	

Local	
checkpointer	

State	 finder	

HTTP	 REST	 service	 /	 IN	 socket	

Job	 retriever	

State	
successor	
generator	

States	
comparator	

Comparison	
job	 retriever	

Worker	

W
orkers’	 interac@on	

Figure 3. Detail of both master and workers internal components and dependencies

4. SYSTEM DESCRIPTION

Let us now describe how the reachability graph is obtained. The process is composed of a set of
stages, depicted in Figure 4.

The Deployment and Start-up stage consists of the deployment and start-up of the execution
over the chosen infrastructure. Figure 5 depicts the steps performed during the deployment phase.
First, the user provides the system with the net willing to be processed as well as the number
of nodes in which the computation will be deployed (setp 1). We are assuming that resources
are homogeneous, which allows us to consider all workers are equivalent, avoiding this way the
necessity of managing load balancing and other related aspects.

The user specifications are sent through the Systems Interface component. This information is
then passed to the Deployment component (the deployer, step 2), which connects to the Scheduler
in order to get a deployment plan. A deployment plan consists of the specification of the nodes that
will be required, as well as the category of each node (master/worker) and endpoint information
(IP, port, service, etc.) to connect with these nodes (step 3). These nodes are then deployed on the
computing infrastructure (step 4).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

Deploy	 	
&	 	

Start-‐up	

States	
computa2on	

States	
comparison	

Checkpoin2ng	
process	

Finaliza2on	
(Packing	 and	
storing	 results)	

Figure 4. Stages that are followed during the computation of a reahability graph.

Cluster/Grid	 User	 Interface	
Systems	 Interface	 component	

Master	
Slave	
Slave	
Worker	

Deployer	

LaunchExperiment (net, nodes)

Step	 2	

Step	 3	

Step	 1	

Step	 4	 Step	 4	

Step	 5	

Step	 7	

Step	 6	

Figure 5. Deployment and start-up process

After that, both master and worker nodes send their endpoint information to the Deployment
component (step 5), which is in charge of broadcasting the list of nodes and endpoints to all nodes
(step 6). Then, the computing process starts. After that, the deployer terminates (step 7).

The general RG computing process is composed of three different processes: the states
computation process, the states comparison process and, finally, the checkpointing process.

Figure 6 shows the states computation process interactions among master and workers. The states
computation process is started by the master node that creates job specifications (to be done by
workers) in order to compute the different states of the RG, starting from the initial marking (step
1).

Worker	

Queue	
“to_process”	

Master	

States	 table	

Worker	 ‘	
(from	 signature’s	 list)	

Steps	 1	 &	 2	

Step	 3	

Step	 4	

Step	 5	

Figure 6. States computation process interactions

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 11

A worker has two main processes. The one that is taking job specifications from the master and
putting them into a local queue to process; and a second one, which is processing the jobs in the
queue (step 2). This last process retrieves a job from the local queue and looks for the corresponding
state in the local repository. In case the state is not found, it asks for it to the proper worker (step 3).
The list of suitable workers is specified in the signature.

The worker looks for the possible transitions the state enables and computes the successors the
firing of such transitions would lead to. For each one of these successors, the signature is computed,
being the resulting signatures sent to the master node (step 4). The master will then check if these
signatures exist in the states signature table (step 5). If a signature does not exist in that table, it is
inserted into it. Otherwise, a comparison job specification is generated and sent to the worker.

Code listings 1 and 2 sketch the pseudocode of the most representative parts of the computation
process in both worker and master nodes, respectively.

The states comparison process starts when the worker receives a comparison job. A comparison
job is a different type of job, which uses two signature structures, one for each state to be compared,
lets say Sa and Sb. Any worker can make use of such signatures to retrieve the complete graph
describing each state in order to be compared. Figure 7 depicts the main interaction at this stage.

Worker	 Master	

States	 table	 States	 table	

Worker	 ‘	
state	 A	

Worker	 ‘‘	
state	 B	

Step	 1	

Step	 4	
Step	 5	 Step	 2	

Step	 3	

Figure 7. States comparison process interactions

Once the worker node has received the comparison job (step 1), it checks whether Sa and Sb are
in its local storage (step 2). The local state storage of each worker is implemented as a MapDB
HashMap, making possible a fast access to states (as they are cached in memory), maintaining
persistence (as the HashMap is stored on disk) and allowing for fast check-pointing, as the whole
HashMap is stored in the disk as a single file (instead of dealing with thousands of very small files).

The comparison algorithm performs the following actions. It first compares the semantic hash of
Sa and Sb. If they are different, the algorithm returns false. Otherwise, it compares the canonical
representation of Sa and Sb. In case their representations are different, each state is looked for on
the local repository. If it is not found there, the state is requested to a worker from the list of suitable
workers that was specified on the signature. This way the canonical representation is obtained as a
string; the method returns false (step 3).

In case the canonical representations is equal, the algorithm returns the result of the comparison
of the parametric equivalence between Sa and Sb. The comparison is performed using an instance of
the SMTsolver (CVC) [33], initializing the description of the variables, introducing the statements
of both Sa and Sb and performing an equivalence check [10].

Code listings 3 and 4 sketch the pseudocode of the most representative parts of the computation
process in both master and worker nodes, respectively.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

As a result of the comparison process in a worker node, a boolean value is obtained. This value,
along with the signature of the state B, is sent back to the master (step 4), so this state (Sb) can be
added to the general table if the state was different of Sa, or discarded on the contrary (step 5).

When the reachability graph computation process finishes, the resulting graph is stored in RDF
format in the database, and it can be obtained through the SPARQL interface of the RDF store [9].

1 whi le (j = r e q u e s t c o m p u t a t i o n j o b ()) {
2 s = g e t s t a t e l o c a l (j . g e t s i g n a t u r e ()) ;
3
4 i f (s == n u l l) {
5 s = g e t s t a t e r e m o t e (j . g e t s i g n a t u r e ()) ;
6 }
7
8 s c l i s t = c o m p u t e s u c c e s s o r s (s) ;
9

10 f o r (s c : s c l i s t) {
11 sg = c o m p u t e s i g n a t u r e (sc) ;
12 s e n d s i g n a t u r e t o m a s t e r (sg) ;
13 }
14 }

Listing 1: Computation process (Worker)

1 whi le (sga = w a i t f o r s i g n a t u r e ()) {
2 s g b l i s t = s t a t e s t a b l e . s e a r c h b y s e m a n t i c h a s h

(sg . g e t s e m a n t i c h a s h ()) ;
3
4 i f (s g b l i s t == n u l l) {
5 s t a t e s t a b l e . i n s e r t s i g n a t u r e (sga) ;
6 q u e u e c o m p u t a t i o n j o b s . add (sga) ;
7 } e l s e {
8 f o r (sgb : s g b l i s t) {
9 q u e u e c o m p a r i s o n j o b s . add (sgb , sga) ;

10 }
11 }
12 }

Listing 2: Computation jobs process (Master)

1 whi le (c r = w a i t f o r c o m p a r i s o n r e s u l t ()) {
2
3 sga = c r . g e t s i g n a t u r e a () ;
4 sgb = c r . g e t s i g n a t u r e b () ;
5
6 e q u i v a l e n t s t a t e s = c r . g e t c o m p a r i s o n r e s u l t () ;
7
8 i f (e q u i v a l e n t s t a t e s == f a l s e) {
9 s t a t e s t a b l e . i n s e r t s i g n a t u r e (sgb) ;

10 q u e u e c o m p u t a t i o n j o b s . add (sgb) ;
11 }
12 }

Listing 3: Comparison jobs process (Master)

1 whi le (j = r e q u e s t c o m p a r i s o n j o b ()) {
2 sga = j . g e t s i g n a t u r e a () ;
3 sgb = j . g e t s i g n a t u r e b () ;
4
5 sa = g e t s t a t e l o c a l (sga) ;
6 i f (s a == n u l l) {
7 sa = g e t s t a t e r e m o t e (sga) ;
8 }
9

10 sb = g e t s t a t e l o c a l (sgb) ;
11 i f (sb == n u l l) {
12 sb = g e t s t a t e r e m o t e (sgb) ;
13 }
14
15 e q u i v a l e n t s t a t e s = f a l s e ;
16
17 i f (sga . g e t s e m a n t i c h a s h () == sgb .

g e t s e m a n t i c h a s h ()) {
18
19 i f (s a . g e t c a n o n i c a l () == sb . g e t c a n o n i c a l ()) {
20 e q u i v a l e n t s t a t e s =

c o m p a r e p a r a m e t r i c e q u i v a l e n c e (sa , sb) ;
21 }
22
23 }
24
25 s e n d c o m p a r i s o n r e s u l t t o m a s t e r (sga , sgb ,

e q u i v a l e n t s t a t e s) ;
26 }

Listing 4: Comparison states process (Worker)

5. EXPERIMENTATION AND RESULTS

Let us now report the experimental results obtained for three different cases: the first two ones
correspond to the same implementation on the HERMES cluster: with and without applying error
recovery strategies. The third one corresponds to a deployment in a cloud environment (the Google
Cloud Platform [34]). For the experiments, the reachability graph of two different configurations of
the First Provenance Challenge (FPC) scientific workflow [35], enhanced with semantic information
was computed.

The First Provenance Challenge§ is an experiment from the area of Functional Magnetic
Resonance Imaging (fMRI). Its aim is to create population-based brain atlases from the fMRI Data

§http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceChallenge

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 13

Nodes Execution time (mins) Speedup
1 859.58 1

10 75.03 11.46
20 37.64 22.84
50 15.24 56.40

100 7.64 112.44
150 5.47 157.20
200 4.30 199.68

Table I. Execution times and speedup of the RG generation for FPC-2pckts experiment on HERMES

Center’s archive (currently, this archive is hosted in a cloud-based environment in the neuroimaging
data repository at NITRC¶) of high resolution anatomical data.

Figure 8 depicts the workflow of this example. As shown, the workflow specifies the set of
processing steps to be carried out over the input in order to obtain the final result. In each stage there
is a specific procedure which process the input data and generates the output, which is then used
as an input for the next stage. The input of the workflow are a set of four brain images (Anatomy
Image 1 to 4) and a single reference brain image (Reference Image), which is used with each
previous brain image as input for the different stages of the workflow. For each image, besides the
pixel image itself there is the metadata information (Anatomy header 1 to 4 and Reference
Header). As a result, images are processed and the atlas of the images on each coordenate X, Y
and Z are obtained.

Let us now briefly depict the different stages of the workflow. The first stage requires as input
parameters a brain image, the reference image and also the metadata information attached to the
brain image. At this stage, the align warp process compares the reference image to determine
how the new image should be warped, this is, the position and shape of the image adjusted, to match
the reference brain. As an output, this procedure generates the optimal warp parameter set which
defines the spatial transformation to be performed in the next stage (Warp Params 1 to 4). At
second stage, the transformation of the image is performed by the reslice process using each
warp parameter set. This creates a new version of the original brain image with the configuration
defined in the warp parameter set. The output is a resliced image. These first two stages can be
executed in parallel. Once all the execution flows (one per each input image) have finished, all the
re-sliced images are averaged into one single image using the softmean procedure at the third
stage. As a result, an atlas image and its attached metadata information are generated.

Then, the averaged image is sliced for each dimension (x, y and z) to give a 2D atlas along
a plane in that dimension, taken through the center of the 3D image. The output is an atlas data
set, which is then converted into a graphical atlas image using the ImageMagick utility convert
(fourth and fifth stages, respectively).

The First Provenance Challenge is a good example which reflects the traditional elements in
scientific computing scenarios, and which will properly introduce our approach.

5.1. First experiment: HERMES cluster

The first experiment was executed in the HERMES cluster, choosing the FPC for the case of two
packages of images (FPC-2pckts experiment). The reachability graph contains 1082 = 11664 states.
In average, each state required 8 Kbytes of disk space, while its signature required 1.3 Kbytes.
Table I and Figure 9 show the execution results when using between 1 and 200 computation nodes.
As it can be seen, the method is really scalable, obtaining very good speed-up results.

The speedup value gives an insight of the performance gain obtained with the parallel version of
the algorithm, as the number of computing nodes is increased. It is interesting to remark that, from
10 to 150 nodes, the speedup is higher than the number of nodes. This special phenomenon is called

¶http://www.nitrc.org

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

Figure 8. Workflow of the First Provenance Challenge.

super linear speedup, and despite seeming illogical obtaining a reduction of the execution time in
a factor greater than the number of processors involved, its explanation can be found in the cache
effect. Not only the computational power of processors is joined, but also the caches and storage
space present in the memory hierarchies of the used processors. Thus, joining all the RAM from the
involved nodes, less disk access is needed for the same state space.

However, despite the promising speedup obtained, different problems arose when addressing
larger problems:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 15

Execution time for FPC 2pckt (11664 states) on Hermes

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0

9

18

27

36

45

54

63

72

81

Number of computation nodes

E
x
e
c
u
ti
o
n

 t
im

e
 (

m
in

s
)

Figure 9. Comparison of execution times per number of nodes for RG generation of PFC 2pckts on HERMES

• Memory usage: during the computation, large data structures are used. The size of such
structures varies with the size of the problem and the number of states generated. For small
experiments, this does not represent a limitation. However, when computing hundreds of
thousands or millions of states, RAM availability can become a real problem.

• Random failures of the underlying infrastructure: nodes shutdown, Condor failures, RAM
starvation due to coexistent processes, etc. These problems, out of control for the application,
can provoke failures of some of the instances of the distributed computation. Due to the
high dependency between nodes of the considered distribution strategy, the failure of a single
worker node will surely trigger a failure effect domino of the executing processes.

• Network failures: whether caused by the network infrastructure, congestion or destination
hosts unavailability (due to node shutdowns), these failures can have a similar effect to the
ones in the previous item, also generating a generalized shutdown.

Due to the problems mentioned above, the execution of larger experiments would not be
successfully achievable. To overcome such limitations, a second version was developed, including
some fault tolerance techniques and failure recovering strategies.

5.2. Addition of checkpointing techniques

Failures looked to happen in a random manner, making it impossible to predict which nodes, when,
or how many of them would fail. Such uncertainty meant we had to find a trade-off between the time
and resources spent on failure counter-measures and the ones wasted when failures appear. Due to
the way Condor works, when a job fails because of a node shutdown, the job is restarted from the
initial state, which means that the computations done until the failure moment will be lost. Since
the considered problem is really demanding from the computational point of view, we envisaged
to apply some recovery strategy so that those results obtained until the failure instant could be
recovered, avoiding the necessity of recomputing them. Checkpointing represents a good way to
achieve this goal. Checkpointing is a concept that can be implemented in very different manners:

• Condor-based checkpointing: Condor provides a checkpointing mechanism [36] for jobs. The
mecanism is restricted to the Standard universe, which only allows for the execution of mono
process jobs. Given that the proposed architecture requires of multithreading, this approach
did not solve our problem.

• Java Virtual Machine checkpointing: Several tools exist [37] which perform checkpointing
of a Java Virtual Machine instance in a configurable way. This could look as a quite
straightforward solution to overcome the problem, without requiring any code modification.
It also allows synchronizing checkpointings of several instances. However, this kind of
checkpointing pauses the execution of the virtual machine, creating a dump of memory, which

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

would interfere with ongoing communications, file writes and other operations. All that would
lead to an inconsistent state even if all the checkpoints are performed at the same time in a
synchronized fashion.

• Local asynchronous checkpointing: If every node performs checkpoints asynchronously, they
could store different states at different time instants. Given the fact that the computations on
each node are dependent on the states stored in other nodes, a roll-back operation could lead
to an inconsistent state. Such inconsistency can cause a failure when a node asks for a state
which was generated in a different node, but which is not present any longer because it was
computed after the last checkpoint in such node. This excludes asynchronous checkpointing
as a valid solution.

As a consequence, the solution adopted was to design a checkpointing system adapted to
the considered distributed architecture. It was implemented at the application level and use
synchronization techniques to ensure consistency between individual node checkpoints. The
presence of a shared file system in HERMES made this task easier, so the checkpoints of each
node could be stored in a persistent and common location, making files available for resuming
processes after a failure. A checkpointing coordinator process, executed by the master node, will
monitor heartbeats from each node; it will also coordinate the checkpoint procedure using a two-
phase commit protocol (2PC).

The checkpointing method has to periodically stop the computation of new reachable states in
the workers, so that they can save their current state (basically, the current set of reachable states
each one has). Given that this process pauses the computation flow, the checkpointing period will
certainly affect the overall computation time. Its choice represents a trade-off between information
loss in case of failure, and computation time penalty generated by the checkpointing. In the context
of an environment very prone to failure, a shorter period could benefit the execution time. However,
in a stable environment, a longer period would avoid to spend too much time on unnecessary
checkpoints. Based on the experiments we conducted, we set an hour as an adequate period.

The checkpointing process involves both workers and master nodes. The implemented process is
as follows. As a first step, the master sends a checkpointing signal to all workers. When a worker
receives the signal it stops retrieving new jobs from the master. Its aim is now to consume local jobs
(those jobs stored in its local queue). When the queue has been cleaned up the worker notifies the
master that it is ready for checkpointing, and waits for the master’s answer. Once the master has
received the ready messages from every worker, it sends the go for checkpoint message. A worker,
upon reception of that signal, saves and compresses the set of states he is storing, as well as an
execution log (with verbose debug information for diagnostic purposes), and also an MD5 hash of
the resulting file is generated. On his side, the master also saves and compresses his state (general
job queue, comparison queue, generated states counter and execution log file), also generating the
corresponding MD5 hash. Once all the workers signal completion of the saving phase, the master
verifies the checkpoints and resumes the computation. The resulting tar.gz files are stored in
a common shared file system (via nfs, ftp ... services) in a specific directory, so it could be
retrieved in case a rollback would be necessary.

In the first version of the technique, workers stored states as single text files in a common
directory. It soon become clear that it was a bad idea, as the archiving of a directory containing
thousands of small text files took tens of minutes. The situation got worse as the number of states
increased. To deal with that drawback, the saving phase was redesigned so as to use one single
database file per node, which is known to provide much better performance [38]. This allowed to
skip the archiving step and directly proceed with the compression of a larger file, which is much
more efficient.

This version was tested on the HERMES cluster with the FPC workflow for the case of three
packages of images (FPC-3pckts), which has 1083 = 1259712 reachable states. The results of the
experiment are shown in Table II and Figure 10.

As it can be seen, the impact of the checkpointing procedure in the whole process is rather low,
compared to the saved time in case of failure given that the absence of checkpoints would require
restarting from the beginning, losing all the achieved results until that point. Looking at Figure 11 we

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 17

Nodes 100 200
RG Computation time 2106.58 1249.15

Total checkpointing time 199.58 196.99
Total time 2306.16 1446.14

Number of failures 3 1
Time wasted by failures 180 60

Total time with failures 2486.16 1506.14
Number of checkpoints 32 19

Average checkpointing time 6.24 10.37
Checkpointing impact on total time (%) 8.65 13.62

Checkpointing impact on total time
with failures (%) 8.03 13.08

Table II. Execution times (mins) of the RG generation for FPC 3pckts experiment on HERMES with
checkpoint

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

100 200

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

in
s
)

Number of computation nodes

RG Computation Time
Total Checkpointing Time

Time wasted by failures

Figure 10. Comparison of execution times per number of nodes for RG generation of PFC-3pckts on
HERMES with checkpointings

see that with 100 workers failures occur after 300, 1500 and 1750 mins approximately, which would
have caused the loss of 1750 mins in absolute time and the restart of the procedure. The technique
acquires much more interest when the experiment takes a time longer than the maximum period
observed without failures (which will surely require restarting computations as the results of some
failures). Figure 11 shows the evolution, with respect to time, of the number of computed states,
when 100 and 200 worker nodes are used. Short steps in the chart correspond to checkpointing
processes (time consumption without node computation), and long horizontal pauses correspond to
failures (time to detect failure and restart computation from the last checkpoint).

5.3. Cloud-based deployment

The general structure of the proposed solution had as one of its aims to allow any organization being
able to analyse their models despite not having a cluster framework at their disposal (which will be
the most usual case). Currently, cloud-based infrastructures are a very adequate mean for getting
on-demand computing and storage resources with a high scalability. This was one of the reasons
for deploying the experiments on the cloud. A second reason was going further in the study of the
system scalability with respect to the number of processes involved, going beyond the maximum
number of nodes that we could use in HERMES (200 nodes). We chose the Google Cloud Platform
infrastructure [34], but the experiment could have been deployed in any public or private cloud.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

18 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500

N
u

m
b

e
r

o
f

c
o

m
p

u
te

d
 s

ta
te

s
 (

x
1

0
0

0
)

Execution time (mins)

Experiment 108^3 states. 200 vs 100 workers Hermes

 Distinct 200 workers
 Distinct 100 workers

Figure 11. Evolution of the number of computed states with respect to time for RG generation of PFC-3pckts
on HERMES, with checkpoint

Nodes 400 800
RG Computation time 301.56 211.88

Total checkpointing time 13.16 8.26
Total time 314.72 220.14

Number of failures 0 0
Time wasted by failures 0 0

Total time with failures 314.72 220.14
Number of checkpoints 5 3

Average checkpointing time 2.63 2.75
Checkpointing impact on total time (%) 4.18 3.75

Checkpointing impact on total time
with failures (%) 4.18 3.75

Table III. Execution times (mins) of the RG generation for FPC-3pckts experiment on Google Cloud with
checkpointing

Two different executions of the PFC-3pckts experiment were carried out, with 400 and 800
workers respectively. To do so, 51 (machine) instances were requested, one for the master and fifty
for the workers. The master node was executed in a ”n1-standard-4” machine with 4 cores and 15
GB of RAM. The workers were executed in ”n1-highcpu-16” machines, hosting each machine 8
workers for the first experiment (400 workers) and 16 workers for the second one (800 workers).
Every machine used a disk of 40 GB with Debian 7.6, Linux kernel 3.2.0-4-amd64 and Oracle
Java SE JRE 1.7.0 67, sharing all the instances the same local network. The “gcloud compute”
command-line tool, part of the Google Cloud SDK [39], was used to automate the deployment
of the whole set of machines. The deployment phase (getting the required resources and starting
computing processes) took 25 minutes.

The results obtained from the experiments are shown in Table III. As it can be seen, the number
of computed states per time unit scales in a reasonable way. Using 400 worker nodes the execution
time was 315 minutes. On the other hand, using twice the number of worker nodes (800 nodes), the
time was 221 minutes, which represents a reduction of about a 30% on the execution time. This is so
because in the last case there was an under-use of the set of processors. No failures were registered,
as the nodes were fully dedicated to the experiment, and no external events or users activities could
affected the computation process. Therefore, the checkpointing process could be avoided in order
to obtain some better results. However, as it can be easily noticed, the impact of checkpointings was
not really significant on the overall time (about 4% in both cases).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 19

Nodes 400 800
Total time (mins) 314.72 220.14

n1-standard-4 machines 1 1
Cost of n1-standard-4 machine per hour $0.177 $0.177
Total cost of n1-standard-4 machines $0.93 $0.65

n1-highcpu-16 machines 50 50
Cost of n1-highcpu-16 machine per hour $0.448 $0.448
Total cost of n1-highcpu-16 machines $117.50 $82.19

GBs of disk per machine 40 40
Cost of 1GB of disk per month $0.04 $0.04

Total cost of disk $0.58 $0.40
Total cost of experiment $119.01 $83.24

Table IV. Monetary cost (in $USD) of the RG generation for FPC-3pckts experiment on Google Compute
Engine with checkpointing.

Figure 12 depicts the comparison of execution times per number of nodes for the generation of
the reachability graph in the First Provenance Challenge problem on Google Cloud with checkpoint.

The graph presented in Figure 13 provides a more detailed view of the performance in both
experiments. Horizontal steps in the chart correspond to checkpointing processes (time consumption
without node computation).

It is evident that duplicating the number of workers improves the performance. However, the total
execution time is not reduced to 50% of the long run but a 70% approximately. This is probably
due to the difference between the “resources per worker” rate. That is, the number of physical cores
and amount of RAM memory available for each worker instance. Both experiments (400 and 800
workers) were executed on the same underlying infrastructure, same settings and same amount of
resources. That means that each worker in the 400 nodes experiment gets twice as much resources
(2 cores and 1.8 GB of RAM) as each worker in the 800 nodes experiment (1 core and 900 MB
approximately). This generates a certain overhead given that each of the 50 machines handling the
workers had to deal with double number of processes, network connections and disk I/O operations.
Also, the Master node had to take care of double number of workers opening connections, requesting
new jobs and returning results.

One of the main reasons behind the decision of adopting such configuration is the difficulty to
allocate more than 50 machines of such characteristics in a single Zone in Google Cloud. Usually
usage quotas apply, which are quite strict by default and its increment requires contacting Google
Customer Support directly. By default no more than 24 CPUs per zone can be allocated. However,
our plans were to launch 50 machines with 16 cores each, plus another machine with 4 cores.
That sums up to 804 cores. After some email exchange with customer support the CPU quota was
increased to 900 cores per zone.

Also, the associated monetary cost‖ of deploying such big number of high performance machines
was a big impediment. Both experiments used 50 instances of n1-highcpu-16 machines, one n1-
standard-4 machine and 40GB of disk per instance. The combined cost sums up to $202.25 as can
be seen in Table IV.

Despite such inconveniences, the main motivation to perform this experiment was to prove the
scalability of this distributed approach to the generation of reachability graphs, and show that cloud
systems represent a very adequate infrastructure for the problem we are dealing with in this paper.
Therefore, it seemed as a great opportunity to test the approach using a number of resources beyond
the limits found in clusters and grids available to us at the moment of performing this study.

There is no reason to directly compare the absolute results obtained with Hermes and those
obtained with the cloud-based version, since the experiments have been executed under very

‖Google Compute Engine Pricing https://cloud.google.com/compute/pricing

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

20 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

different conditions. However, we can analyse the different behaviour of both deployments. Hermes
is a cluster, shared with tens of other users, with a high usage rate and no strict execution quotas.
Therefore, in such environment, it is very likely that our jobs will find themselves affected by
other user’s processes. When processes do not behave responsibly in terms of resource usage, the
computation nodes would reach such a saturation level that very often they would collapse and
crash. This lead to failures and process restarts, which was one of the main reasons to implement
the checkpointing strategy described in previous sections.

The collision of our processes with other user’s processes, when competing for the shared
resources, explain the irregularities observed in the shape of lines in Figure 11. Also, the long steps
(around minute 300, 1500 and 1800) observed in the 100 workers experiment represent the global
failures and restarts of the whole computation from the last checkpoint. Smaller steps are due to the
checkpoint phases performed every 60 minutes, which required the computation to stop for a few
minutes.

The main difference with the Cloud based experiment is the absence of failures in the last one.
Also the checkpoints are much faster given that the checkpoint files are not transmitted anywhere,
given that each computation instance has its own persistent disk which is not removed even in case
of failure.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

 350

400 800

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

in
s
)

Number of computation nodes

RG Computation Time
Total Checkpointing Time

Time wasted by failures

Figure 12. Comparison of execution times per number of nodes for RG generation of PFC 3pckts on Google
Cloud with checkpoint

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350

N
u

m
b

e
r

o
f

c
o

m
p

u
te

d
 s

ta
te

s
 (

x
1

0
0

0
)

Execution time (mins)

Experiment 108^3 states. 800 vs 400 workers Google Cloud

 Distinct 800 workers
 Distinct 400 workers

Figure 13. Comparison of states computation and execution times per number of nodes for RG generation
of PFC 3pckts on Google Cloud with checkpoint

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 21

6. CONCLUSIONS

The construction of the reachability graph in Petri nets is a classical problem that in the case of U-
RDF-PN requires working with RDF annotations. This introduces a new problem, as the evaluation
of the functions used to compute the reachability graph involve RDF graphs, as well as entailment
operators, which are very expensive from a computational point of view. As a result, the whole
process becomes a much more complex task from both time and computing resources point of view.

During the literature review, it became clear that the existing solutions on computation of
reachability graphs do not support U-RDF-PN nets. In addition to this, despite the existence of
some parallel and distributed implementations, none of them was fault tolerant. This was a critical
requirement due to the fact that the instability we faced when dealing with most of the execution
environments. All these reasons motivated us to develop our own implementation.

In this paper we have shown a parallel implementation that solves the problem. The proposed
approach is based on a master-worker architecture that can be deployed on most computing
paradigms (from grid to cluster or cloud). The architecture of both master and worker components
has been depicted as well as their implementations.

The results should go deeper in different directions. The experiments have been executed in
cluster and cloud computing infrastructures. As shown, both cases allow building the reachability
graph in a reasonable amount of time. However, the comparison between cluster and cloud has
opened a new research line: the use of dynamic and adaptive checkpointing strategies. In the
experiments, a checkpointing process was periodically executed. However, the results have shown
that the time between checkpoints may/should vary, and the implementation should be able to adapt
itself in order to get a good trade-off between robustness and efficiency. For instance, when using
clouds with on-demand instances, checkpointing impact could be minimized, as no evictions or
hardware failures may be expected. However, when working in hihgly-used clusters or in cloud
systems using pre-emptive instances (as the case of Spot Instances of Amazon EC2 [40], for
instance), checkpointing period is a very important parameter. From the deployment point of view,
we are looking at the use of other techniques such as map-reduce [41]. The reachability graph
building and processing can be effectively managed using this technique, but the introduction of
semantics would require to analyse dependencies between nodes and other complex aspects that
may limit the use of this approach.

A different direction of improvement seeks at the implemented algorithm. It would be interesting
to study whether classical techniques used in Coloured Petri nets for obtaining a more compact
graph (such as symmetries [12]) could be adapted. It would also be interesting to remove the
constraint of the reachability graph being finite adapting techniques used for the computation of
the coverability graph [42, 17, 18].

ACKNOWLEDGEMENTS

This work has been funded by project TIN2014-56633-C3-2-R from the Spanish Government and project
JIUZ-2015-TEC-04 from the University of Zaragoza.

REFERENCES

1. Papazoglou MP, Traverso P, Dustdar S, Leymann F. Service-Oriented Computing: State of the Art and Research
Challenges. IEEE Computer 2007; 40:38–45.

2. Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 1989; 77(4):541–580.
3. Girault C, Valk R. Petri Nets for System Engineering: A Guide to Modeling, Verification, and Applications. Springer-

Verlag New York, Inc., 2001.
4. van Hee KM, Sidorova N, van der Werf J. Business process modeling using petri nets. Transactions on Petri Nets

and Other Models of Concurrency VII, Lecture Notes in Computer Science, vol. 7480. Springer Berlin Heidelberg,
2013; 116–161.

5. Li X, Fan Y, Sheng QZ, Maamar Z, Zhu H. A petri net approach to analyzing behavioral compatibility and similarity
of web services. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans May 2011;
41(3):510–521.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22 E.GONZALEZ-LOPEZ DE MURILLAS,J.FABRA,P.ALVAREZ,J.EZPELETA

6. Koliadis G, Ghose A. Verifying Semantic Business Process Models in Inter-operation. IEEE International
Conference on Services Computing, 2007; 731–738.

7. Xiong P, Fan Y, Zhou M. A petri net approach to analysis and composition of web services. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans 2010; 40(2):376–387.

8. Liu G, Jiang C, Zhou M. Process nets with channels. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans 2011; 42(1):213–225.

9. Ibáñez MJ, Fabra J, Alvarez P, Ezpeleta J. Model checking analysis of semantically annotated business processes.
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 2012; 42(4):854–867.

10. González-López de Murillas E, Fabra J, Alvarez P, Ezpeleta J. Combas: a semantic-based model checking
framework. ADVCOMP 2012, The Sixth International Conference on Advanced Engineering Computing and
Applications in Sciences, 2012; 46–52.

11. Valmari A. Stubborn Sets for Reduced State Space Generation. Advances in Petri Nets 1991; :491–515.
12. Haddad S, Ilié J, Taghelit M, Zouari B. Symbolic reachability graph and partial symmetries. Application and Theory

of Petri Nets 1995, Lecture Notes in Computer Science, vol. 935. Springer Berlin Heidelberg, 1995; 238–257.
13. Bryant RE. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. Technical Report, Carnegie

Mellon University 1992.
14. Pastor E, Roig O, Cortadella J, Badia RM. Petri net analysis using boolean manipulation. Proceedings of the 15th

International Conference on Application and Theory of Petri Nets, Springer-Verlag, 1994; 416–435.
15. Miner A, Ciardo G. Efficient reachability set generation and storage using decision diagrams. Application and

Theory of Petri Nets, Lecture Notes in Computer Science, vol. 1639. Springer Berlin Heidelberg, 1999; 6–25.
16. Barbuti R, De Francesco N, Santone A, Vaglini G. Loreto: a tool for reducing state explosion in verification of lotos

programs. Software: Practice and Experience 1999; 29(12):1123–1147.
17. Finkel A. The minimal coverability graph for petri nets. 12th International Conference on Applications and Theory

of Petri Nets: Advances in Petri Nets, Springer-Verlag, 1993; 210–243.
18. Wang S, Zhou M, Li Z, Wang C. A new modified reachability tree approach and its applications to unbounded petri

nets. IEEE Trans. Systems, Man, and Cybernetics: Systems 2013; 43(4):932–940.
19. Allmaier SC, Horton G. Parallel shared-memory state-space exploration in stochastic modeling. Solving Irregularly

Structured Problems in Parallel. Springer, 1997; 207–218.
20. Allmaier S, Kowarschik M, Horton G. State space construction and steady-state solution of GSPNs on a shared-

memory multiprocessor. Petri Nets and Performance Models, 1997., Proceedings of the Seventh International
Workshop on, IEEE, 1997; 112–121.

21. Marenzoni P, Caselli S, Conte G. Analysis of large GSPN models: a distributed solution tool. Proceedings of the
Seventh International Workshop on Petri Nets and Performance Models, IEEE, 1997; 122–131.

22. Friedman R, Goldin M, Itzkovitz A, Schuster A. Millipede: Easy parallel programming in available distributed
environments. Software: Practice and Experience 1997; 27(8):929–965.

23. Arunachlam P, Chase C, Moundanos D. Distributed binary decision diagrams for verification of large circuits. IEEE
International Conference on Computer Design: VLSI in Computers and Processors, 1996; 365–370.

24. van Dijk T, Laarman A, van de Pol J. Multi-Core BDD Operations for Symbolic Reachability. Electronic Notes in
Theoretical Computer Science 2013; 296:127 – 143.

25. Barrett C, Stump A, Tinelli C. The smt-lib standard: Version 2.0. Proceedings of the 8th International Workshop on
Satisfiability Modulo Theories, vol. 13, 2010; 14.

26. van der Aalst WMP. The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and
Computers 1998; 8(1):21–66.

27. Guan Z, Hernandez F, Bangalore P, Gray J, Skjellum A, Velusamy V, Liu Y. Grid-flow: a grid-enabled scientific
workflow system with a petri-net-based interface: Research articles. Concurrency and Computation: Practice and
Experience 2006; 18:1115–1140.

28. van der Aalst WMP, Hee K. Workflow Management: Models, Methods, and Systems. MIT Press: Cambridge, MA,
USA, 2002.

29. ter Horst HJ. Completeness, decidability and complexity of entailment for {RDF} Schema and a semantic extension
involving the OWL vocabulary . Web Semantics: Science, Services and Agents on the World Wide Web 2005;
3(23):79 – 115.

30. Kordon F, Linard A, Paviot-Adet E. Optimized Colored Nets Unfolding. Springer Berlin Heidelberg, 2006; 339–
355.

31. Hayes P. RDF Semantics. Technical Report, W3C Recommendation 2004. Http://www.w3.org/TR/rdf-mt/.
32. Richardson L, Ruby S. RESTful web services. O’Reilly Media, Inc., 2008.
33. Barrett C, Tinelli C. Cvc3. Computer Aided Verification, Springer, 2007; 298–302.
34. Google Cloud Platform. https://cloud.google.com. Accessed on August, 2016.
35. Moreau, L et al. Special issue: The first provenance challenge. Concurrency and Computation: Practice and

Experience 2008; 20:409–418.
36. Litzkow M, Tannenbaum T, Basney J, Livny M. Checkpoint and migration of UNIX processes in the Condor

distributed processing system. Computer Sciences Department, University of Wisconsin, 1997.
37. Ansel J, Arya K, Cooperman G. Dmtcp: Transparent checkpointing for cluster computations and the desktop. IEEE

International Symposium on Parallel and Distributed Processing, 2009; 1–12.
38. Wang F, Xin Q, Hong B, Brandt SA, Miller EL, Long DD, McLarty TT. File system workload analysis for large

scale scientific computing applications. Proceedings of the 21st IEEE/12th NASA Goddard Conference on Mass
Storage Systems and Technologies, 2004; 139–152.

39. Google Cloud SDK. https://cloud.google.com/sdk/. Accessed on August, 2016.
40. Amazon Elastic Computing Cloud (Amazon EC2). http://aws.amazon.com/ec2/. Accessed on August, 2016.
41. Dean J, Ghemawat S. Mapreduce: Simplified data processing on large clusters. Commun. ACM 2008; 51(1):107–

113.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

PARALLEL COMPUTATION OF THE REACHABILITY GRAPH OF A SEMANTIC PETRI NET 23

42. Huber P, Jensen AM, Li, Jepsen LO, Jensen K. Reachability trees for high-level petri nets. Theor. Comput. Sci. Sep
1986; 45(3):261–292.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

