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Online Contrastive Divergence with Generative Replay:
Experience Replay without Storing Data
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Eric Eaton · Peter Stone · Antonio Liotta

This article is a pre-print version!

Abstract Conceived in the early 1990s, Experience Replay (ER) has been shown to be a
successful mechanism to allow online learning algorithms to reuse past experiences. Tradi-
tionally, ER can be applied to all machine learning paradigms (i.e., unsupervised, supervised,
and reinforcement learning). Recently, ER has contributed to improving the performance of
deep reinforcement learning. Yet, its application to many practical settings is still limited
by the memory requirements of ER, necessary to explicitly store previous observations.
To remedy this issue, we explore a novel approach, Online Contrastive Divergence with
Generative Replay (OCDGR), which uses the generative capability of Restricted Boltzmann
Machines (RBMs) instead of recorded past experiences. The RBM is trained online, and does
not require the system to store any of the observed data points. We compare OCDGR to ER on
9 real-world datasets, considering a worst-case scenario (data points arriving in sorted order)
as well as a more realistic one (sequential random-order data points). Our results show that in
64.28% of the cases OCDGR outperforms ER and in the remaining 35.72% it has an almost
equal performance, while having a considerably reduced space complexity (i.e., memory
usage) at a comparable time complexity.
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1 Introduction

Experience Replay (ER) (Lin, 1992) (dubbed interleaved learning in McClelland et al (1995))
has been shown to be a successful mechanism in helping online learning algorithms to
reuse past experiences. In ER, the data acquired during the online learning process is stored
explicitly and presented repeatedly to the online learning algorithm, such as reinforcement
learning (RL) (Adam et al, 2012), deep reinforcement learning (DRL) (Mnih et al, 2015), or
supervised learning (McClelland et al, 1995). The ER process enables the learner to achieve
good performance from limited training data, and helps to break temporal correlations in
the observations which go against the i.i.d assumptions of many stochastic gradient-based
algorithms (Schaul et al, 2015). Since ER uses recorded data in chunks, it has sometimes
been deemed a batch learning approach (Kalyanakrishnan and Stone, 2007). In general, ER
focuses on the reuse of observed data in its raw form as stored in memory, replaying it to the
online learner. However, this causes ER to scale poorly, as the memory requirements increase
as the environment and system requirements increase. One common practice is to limit the
available memory of the ER mechanism and to either 1.) discard the oldest experiences as
the memory buffer becomes full and/or 2.) prioritize the experiences (Schaul et al, 2015).

From a biological sense of memory (i.e., hippocampal replay in McClelland et al (1995)),
the human brain does not store all observations explicitly, but instead it dynamically generates
approximate reconstructions of those experiences for recall. This idea has also been applied
to online learning through model-based learning as an alternative to ER. Such approaches
indirectly reuse experiences by first modeling the environment, and then using that model
to generate new data. This procedure is used by Dyna and other model-based learning
approaches (Sutton et al, 2008). Building a model will generally require less memory than
storing the raw data, and can diminish the effects of noise in the observations. However,
model learning incurs additional computational costs and, more importantly, will introduce
modeling errors that can significantly decrease performance (Sutton et al, 2008). For this
reason, it is necessary to look for alternatives that are able to scale effectively (which is one
of the biggest issues in ER) and yield performance results that are comparable with those
obtained under ER, without increased computational complexity.

At the same time, Restricted Boltzmann Machines (RBMs) (Smolensky, 1987), the
original building blocks in deep learning models (Bengio, 2009), besides providing in
an unsupervised manner good weights for the deep belief networks initialization (LeCun
et al, 2015), have been shown to be very good density estimators and to have powerful
generative capabilities (Salakhutdinov and Murray, 2008; Mocanu et al, 2016). Due to these
capabilities RBMs and models derived from them have been successfully applied to various
problems also as standalone models. Examples of these applications are: modeling human
choice (Osogami and Otsuka, 2014), collaborative filtering (Salakhutdinov et al, 2007),
information retrieval (Gehler et al, 2006), transfer learning (Ammar et al, 2013), or multi-
class classification (Larochelle and Bengio, 2008). However, in all of the above settings
RBMs have been used offline using offline training algorithms. This reduces drastically their
capabilities to tackle real-world problems which can not be handled on server clouds using
GPU computing, and require fast training algorithms capable of continuous learning when the
the environment is changing. For example, in the world of wireless sensor networks which
is by definition an environment with low-resources (e.g., memory, computational power,
low energy) devices to perform anomaly detection in time series directly in the wireless
nodes would help improving the network capacity on various components (e.g., lifetime,
avoid data traffic congestions), as exemplified in Bosman et al (2017). We then hypothesize
that due to their density estimation capabilities RBMs which have been used recently to
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estimate the similarity between data distributions in various domains (e.g., image quality
assessment (Mocanu et al, 2014), Markov decision processes (Ammar et al, 2014)), could
be used to perform anomaly detection directly on any wireless node if they would have
available an online training algorithm which has low memory requirements (best case is to
store none of the historical data). Still, to our knowledge, there are no dedicated algorithms to
train RBMs in a fully online manner—the only currently available solution is to employ ER
mechanisms with memory, by following the successful examples from other deep learning
models (e.g., Mnih et al (2015)).

In this paper, we combine the generative capabilities of RBMs with the biological
inspiration behind experience replay, yielding a novel algorithm to train RBMs in online
settings, which we call Online Contrastive Divergence with Generative Replay (OCDGR).
In comparison with state-of-the-art ER techniques, OCDGR acts more like the experience
replay concept in a biological sense. Instead of explicitly storing past observations in memory,
it generates new training data dynamically to represent historical observations, using the
generative capabilities of the RBM itself. In contrast to model-based learning approaches,
which learn models for the environment (Sutton et al, 2008), OCDGR relies on the underlying
RBM, which models only the observed data distribution—a substantially easier problem.
OCDGR derived methods may have a wide applicability to a variety of tasks (e.g., regression,
classification, reinforcement learning, anomaly detection), but in this paper we focus on
demonstrating the benefits of OCDGR over current ER approaches on the RBMs main task
(i.e., distribution estimation), this being a must have for any further developments. Thus,
using 9 real-world datasets we show how OCDGR outperforms ER in training RBMs, while
having reduced memory requirements and an equivalent time complexity.

The remainder of this paper is organized as follows. Section 2 presents background
knowledge about experience replay and restricted Boltzmann machines for the benefit of the
non-specialist reader. Section 3 introduces our proposed method, while Section 4 describes
the experiments performed and assesses the results. Finally, Section 5 concludes the paper
and presents further research directions.

2 Background and Related Work

In this section, we first discuss related work on ER. Next, background informations on RBMs
and their offline training methods are presented.

2.1 Experience Replay (ER)

Experience replay was first introduced for RL in Lin (1992) and for supervised learning
in McClelland et al (1995). Later on, a number of methods have been proposed for ER,
aiming to model the environment and to optimize the performance of online learning. A
complete review of ER applicability does not constitute a goal of this paper, but as an
example, Kalyanakrishnan and Stone (2007) showed that the standard RL and the batch
approaches (ER) are easily comparable in terms of performance. Recently, ER and its
variants have contributed to improving deep reinforcement learning (DRL) (Mnih et al, 2015).
Narasimhan et al (2015) proposed a form of re-sampling in the context of DRL, separating
the learner experience into two parts: one for the positive rewards and one for the negative.
Ororbia et al (2015) proposed an online semi-supervised learning algorithm using deep hybrid
Boltzmann machines and denoising autoencoders. However, all of these approaches require
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Fig. 1: Restricted Boltzmann Machine architecture.

memory to explicitly store past observations for recall, making them less suitable to the
online learning setting.

2.2 Restricted Boltzmann Machines

In this paper, we use the generative capabilities of Restricted Boltzmann Machines (RBMs)
to dynamically generate new training data during the online learning process, instead of
explicitly storing and recalling past observations. We next review the mathematical details of
RBMs. They were introduced by Smolensky (1987) as a powerful model to learn a probability
distribution over its inputs. Formally, RBMs are generative stochastic neural networks with
two binary layers: the hidden layer h = [h1, h2, .., hnh ] ∈ {0, 1}nh , and the visible layer
v = [v1, v2, .., vnv ] ∈ {0, 1}nv , where nh and nv are the numbers of hidden neurons and
visible neurons, respectively. In comparison with the original Boltzmann machine (Ackley
et al, 1985), the RBM architecture (Figure 1) is restricted to be a complete bipartite graph
between the hidden and visible layers, disallowing intra-layer connections between the units.
The energy function of an RBM for any state {v,h} is computed by summing over all
possible interactions between neurons, weights, and biases as follows:

E(v,h) = −aTv − bTh− hTWv , (1)

where W ∈ Rnh×nv is the weighted adjacency matrix for the bipartite connections between
the visible and hidden layers, and a ∈ Rnv and b ∈ Rnh are vectors containing the biases for
the visible and hidden neurons, respectively. For convenience, we can bundle the RBM’s free
parameters together into Θ = {W,a,b}. Functionally, the visible layer encodes the data,
while the hidden layer increases the learning capacity of the RBM model by enlarging the
class of distributions that can be represented to an arbitrary complexity (Taylor et al, 2011).
Due the binary state of the neurons, the free energy of the visible units may be computed
as (Bengio, 2009):

F(v) = −aTv −
∑

j
log(1 + exp (bj +Wj:v)) , (2)

where Wj: represents the jth row of the matrix W. The activations of the hidden or visible
layers are generated by sampling from a sigmoid S(·) according to: P (h = 1|v, Θ) =
S(b+Wv) and P (v = 1|h, Θ) = S(a+WTh) .
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2.3 Offline RBM Training via Contrastive Divergence

The RBM parameters can be learned effectively by following the log-likelihood gradient
computed over a training set D, with nv-dimensional binary instances. The log-likelihood
gradient is given by:

EP̂

[∂(logP (v))

∂θ

]
= −EP̂

[∂F(v)
∂θ

]
+ EP

[∂F(v)
∂θ

]
, (3)

where P̂ represents the empirical distribution of D and EP is the expectation computed
under the model distribution (Bengio, 2009). However, sampling from P to compute the free
energy and running long Monte-Carlo Markov Chains (MCMC) to obtain an estimator of
the log-likelihood gradient is usually intractable. Due to this intractability, Hinton (2002)
proposed an approximation method called Contrastive Divergence (CD), which solves the
above problem by making two approximations. The first approximation is to replace the
average over all possible inputs from the second term of Equation 3 by a single sample. The
second approximation is to run each MCMC chain for only a specific number of steps (nCD ),
starting from a data point v0 ∈ D, as follows:

v0 P (h|v0)7−→ h0 P (v|h0)7−→ v1 P (h|v1)7−→ h1 799K vnCD 7−→ hnCD .

The free parameters can then be updated afterwards via:

∆Θ =
∂F(v0)

∂θ
− ∂F(vnCD )

∂θ
, (4)

yielding the following update rules for the free parameters of binary RBMs:

∆Wji ∝ v0i h0j − vnCD
i hnCD

j for 1 ≤ i ≤ nv, 1 ≤ j ≤ nh

∆ai ∝ v0i − vnCD
i for 1 ≤ i ≤ nv (5)

∆bj ∝ h0j − hnCD
j for 1 ≤ j ≤ nh .

Several other variants of contrastive divergence have been proposed to train RBMs offline.
Examples of these are: persistent contrastive divergence (Tieleman, 2008), fast persistent con-
trastive divergence (Tieleman and Hinton, 2009), parallel tempering (Desjardins et al, 2010),
and the replace of the Gibbs sampling with a transition operator to obtain a faster mixing
rate and an improved learning accuracy without affecting the computational costs (Brügge
et al, 2013). Yet, in this paper we use the original CD (Hinton, 2002), as it is easily adaptable
to online settings, and at the same time it is widely used and allows for a direct comparison
with other results reported in the literature.

3 Online Contrastive Divergence with Generative Replay

This section presents our novel algorithm to train RBMs online: Online Contrastive Diver-
gence with Generative Replay (OCDGR). Our approach adapts the standard CD algorithm (see
Section 2.3) to the online learning setting, and uses dynamic generation of data as a replay
mechanism. We show how an RBM trained via OCDGR can have the same functionality
as training via ER. However, OCDGR provides the significant advantage of not needing to
explicitly store past observations in memory, substantially reducing its space complexity.
To our knowledge, this capability is unique, since other state-of-the-art experience replay
mechanisms require a memory dataset to store historical data.
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(a) RBM training via Experience Replay
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ℬ3 ℬ𝑛 

𝑅𝐵𝑀 θ1  𝑅𝐵𝑀 θ2  𝑅𝐵𝑀 θ𝑛  

(b) RBM training via OCDGR

Fig. 2: A comparison of ER with memory and OCDGR for training RBMs online. Each
subscript ·t represents a discrete time step t. Bt represents a batch of observed data between
t − 1 and t, while B̂t represents samples generated by the RBM model using the free
parameters Θt−1 (i.e., the parameters values at time t− 1).

3.1 Intuition and Formalism

Our algorithm is motivated by the fact that hippocampal replay (McClelland et al, 1995)
in the human brain does not recall previous observations explicitly, but instead it generates
approximate reconstructions of those past experiences for recall. At the same time, RBMs
can generate good samples of the incorporated data distribution via Gibbs sampling (Bengio,
2009). Intuitively, by using those generated samples (instead of previous observations from
stored memory as in ER) during the online training process, any RBM model can retain
knowledge of past observations while learning new ones.

Before entering into the technical details of our proposed method, we mention that further
on we use the following notations: Bt represents a batch of observed data between time t− 1
and t, while B̂t represents samples generated by the RBM model using the free parameters
Θt−1 (i.e., the parameters values at time t− 1). Figure 2 summarizes the main differences
between the OCDGR (Figure 2b) and ER mechanisms (Figure 2a) for training RBMs online,
showing how ER explicitly stores previous observations in memory for recall, while OCDGR

dynamically generates samples from its current model of the input data distribution. Clearly,
the memory used by ER increases linearly with the amount of data observed (up to a fixed limit
for memory-bounded ER methods), while by contrast, OCDGR maintains the same memory
footprint throughout the training process. Also, note that OCDGR has the Markov property
that P (Θt) depends only uponΘt−1 and Bt, while the ER mechanism with memory does not,
since for ER, P (Θt) is dependent upon {Θt−1,B1,B2, . . . ,Bt}. This is an important aspect
for an algorithm which runs for an indefinite amount of time, as may occur in many real-time
systems. Formally, OCDGR is a continuous-time Markov chain with finite (countable) state
space X , given by a family {RBM t = RBM (t)}t>0 of X such that:

1. t 7→ RBM (t) are right-continuous step functions, and
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2. ∀s, s1, ..., sk ∈ X , and every sequence of times t1 < t2 < ... < tk < tk+1, it holds
that:

P
(
RBM (tk+1) = s | RBM (tk) = sk, ...,RBM (t1) = s1

)

= P
(
RBM (tk+1) = s | RBM (tk) = sk

)
.

The second condition is the natural continuous-time analogue of the Markov property,
and it requires that the future is conditionally independent of the past given the present RBM.
A continuous time Markov chain is a non-lattice semi-Markov model, so it has no concept of
periodicity. Consequently, the long-runtime averages equals the limiting probabilities, and it
has an equilibrium distribution.

3.2 Algorithm

OCDGR is presented as Algorithm 1. As input, the algorithm accepts various meta-parameters,
two of them being specific for OCDGR, while the others are common to all RBM models
(Algorithm 1, line 2). The two meta-parameters specific for OCDGR are the number of Gibbs
sampling steps for the generation of the new training data points (nGs), and the number of
new data points generated by the RBM with Gibbs sampling (nB̂). The common RBMs
meta-parameters include the number of hidden neurons (nh), the number of visible neurons
(nv) (which is given by the dimensionality of the data), the number of CD steps (nCD ), the
number of training epochs (nE), the number of data points stored in a mini-batch before
the RBM parameters are updated (nB), the learning rate (α), the momentum (ρ), and the
weight decay (ξ). Except for the two OCDGR specific parameters, the settings for the others
are discussed by Hinton (2012).

The algorithm first initializes the RBM’s free parameters Θ and the discrete time step t
(lines 3–5). Each time step, the algorithm observes a new data instance, collecting nB new
data points into a mini-batch Bt (lines 8–10). After observing nB new data points, OCDGR

updates the RBM’s parameters (line 11–41). The update procedure proceeds in two phases:
Dynamic generation of historical data (lines 14–22) As it has been shown in Desjardins
et al (2010) and in Cho et al (2010) that RBMs can sample uniformly from the state space,
we generate nB̂ new training data points to represent past observations based on the data
distribution modeled by the RBM at time t − 1; these generated data points are collected
into the set B̂t. To obtain good data points with high representational power, we perform
Gibbs sampling starting from random values of the hidden neurons drawn from a uniform
distribution U(0, 1).
CD update with generative replay (lines 26–41) In the second phase, we update the
RBM’s weights and biases (Θ) using standard CD for a number of epochs, computing the
update only over the most recent mini-batch composed by the union of Bt and B̂t. This most
recent mini-batch consists of 1.) the data points observed between time t− 1 and time t and
2.) the data points generated by the RBM at time t. Note that line 39 of Algorithm 1 contains
the general form of the update equation, in which Ψ+ (statistics collected from the data)
and Ψ− (statistics collected from the model) can be computed for each free parameter type
using Equation 5. Finally, the data points observed between t− 1 and t, and the data points
generated with the RBM at time t are deleted from memory, and OCDGR advances to the
next discrete time step t+ 1 (lines 42–46).

It is easy to observe that an RBM trained with OCDGR acts at any time step t as a genera-
tive replay mechanism to provide repetition of approximated past experiences, providing a
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1 %% Initialization of the various parameters
2 Set nh, nv , nGs, nCD , nE , nB , nB̂ , α, ρ, ξ
3 Initialize RBM parameters Θ0(i.e., W0, a0, b0)∼ N (0, σ)

4 Set ∆ΘnE
0 = 0

5 Set t = 1, Bt = ∅
6 %% A continuous loop to handle sequential incoming data
7 while system is running do
8 Observe a new data point d
9 Add d to Bt

10 if Bt contains nB observed data points then
11 Set B̂t = ∅
12 %% Generate new data points with the RBM
13 if t > 1 then
14 for i = 1 : nB̂ do
15 %% Run Gibbs sampling
16 Initialize h ∼ U(0, 1)
17 for k = 1 : nGs do
18 Infer P (v = 1|h, Θt−1)
19 Infer P (h = 1|v, Θt−1)

20 end
21 Add v to B̂t

22 end
23 end
24 %% Update parameters
25 Set Θ0

t = Θt−1 and ∆Θ0
t = ∆Θ

nE
t−1

26 for e(epoch) = 1 : nE do
27 %% Create a training batch from Bt and B̂t

28 Set V = Bt ∪ B̂t

29 Infer P (H = 1|V, Θe−1
t )

30 %% Collect positive statistics Ψ+

31 Compute Ψ+ from V and H
32 for k = 1 : nnCD do
33 Infer P (V = 1|H, Θe−1

t )

34 Infer P (H = 1|V, Θe−1
t )

35 end
36 %% Collect negative statistics Ψ−

37 Compute Ψ− from V and H
38 %% Perform parameters update
39 ∆Θe

t = ρ∆Θe−1
t + α[(Ψ+ − Ψ−)/(nB + nB̂)− ξΘe−1

t ]

40 Θe
t = Θe−1

t +∆Θe
t

41 end
42 Set Θt = Θ

nE
t

43 %% Clean the memory
44 Delete B̂t, Bt from memory
45 %% Advance to the next time step
46 Set t = t+ 1, Bt = ∅
47 end
48 end
Algorithm 1: Online Contrastive Divergence with Generative Replay. Note that OCDGR

only stores the last variant of Θe
t and ∆Θe

t in memory. Still, we notate them as being
indexed by t for a better illustration of the time and training epochs dimensions.

memory-free alternative to ER. In our experiments, we demonstrate empirically that OCDGR

can be used successfully to train RBMs in an online setting.
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Table 1: Datasets characteristics.

Dataset Dataset Properties
Domain Features [#] Train samples [#] Test samples[#]

MNIST digits 784 60000 10000
ADULT households 123 5000 26147

Connect4 games 126 16000 47557
DNA biology 180 1400 1186

UCI Mushrooms biology 112 2000 5624
evaluation NIPS-0-12 documents 500 400 1240

suite OCR-letters letters 128 32152 10000
RCV1 documents 150 40000 150000
Web Internet 300 14000 32561

3.3 Computational Complexity

The primary difference between ER and OCDGR at each discrete time step t is that ER has
to recall random data from memory, while OCDGR generates the data via Gibbs sampling.
For ER, the memory recall time depends upon the hardware platform and the programming
environment (e.g., Matlab, C++), and so is not easily quantifiable. For OCDGR, the dynamic
generation of historical data phase using Gibbs sampling requires, on one side, a small
number of matrix multiplication (which may be parallelized) and are linearly dependent by
nGs and, on the other side, the computation of the sigmoid functions for the visible and
hidden neurons. This yields a per-update time ofO(2nGsnvnh + nGsnh + nGsnv), which
in the typical case of nGs = 1, reduces to O(nvnh).

4 Experiments and Results

Firstly, we considered a toy scenario (i.e., an artificially generated dataset) to illustrate the
OCDGR behavior. Secondly, we evaluated OCDGR performance on the MNIST dataset1 of
handwritten digits, and on the UCI evaluation suite (Germain et al, 2015). Thus, overall, the
evaluation was performed on 9 datasets coming from different domains, which are detailed
in Table 1.

To simulate the online learning setting, each training instance was fed to the RBM training
algorithm only once in a sequential manner in one of two orders: 1.) a worst-case scenario,
in which the data instances are presented in order of the classes, and 2.) a more realistic
scenario, in which the instances are ordered randomly.

The update procedure of the RBM’s free parameters was triggered each time after the
system had observed and collected 100 data points (i.e., nB = 100). To find the best meta-
parameters specific for OCDGR (i.e., nB̂ , nGs) we conducted a random search. Based on this
small experiment, before each update procedure took place, we generated another nB̂ = 300
data points according with Algorithm 1, lines 14–22, with nGs set to 1. Moreover, another
reason to set a small number of steps for Gibbs sampling when new data points are generated
(i.e., nGs = 1) is given by the fact that if we use samples from the model for both components
of the gradient (i.e., Equation 3), these will cancel out in expectation. Except when specified
otherwise, the other meta-parameters used usually in the RBM training process were set to
standard values, such as nE = 10, nCD = 1, α = 0.05, ρ = 0.9 (except the first 5 training
epochs in which ρ = 0.5), and ξ = 0.0002, following (Hinton, 2012). Please note that even

1 http://yann.lecun.com/exdb/mnist/. Last visit on 26 September 2016.
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Fig. 3: Illustration of the OCDGR’s behavior (toy scenario). At any time, the samples generated
by RBMOCD are distributed equally among all observed classes. The y-axis uses the log-
scale.

a higher number of contrastive divergence steps (i.e., nCD ) may lead to a better performance
on some specific datasets, i.e., MNIST, it leads also to an increasing amount of computations.
As our goal was to propose a fast algorithm to train RBMs in an online manner also on
low-resources devices, we preferred to perform most of our experiments using just 1 step
contrastive divergence.

4.1 Illustration of OCDGR’s behavior (toy scenario)

To easy visualize the quality of the samples generated by RBMs trained with OCDGR

(RBMOCD) we have considered a toy scenario with artificially generated data and an RBM
with 100 visible neurons and 50 hidden neurons. For training we have created 10000 data
points (each data point being a binary vector of 100 elements) split in 10 classes of 1000 data
points each, as following. For Class 1 p(vi = 1) = 0.3 ⇔ 1 ≤ i ≤ 10 and p(vi = 1) =
0⇔ 11 ≤ i ≤ 100, and so on up to Class 10 for which p(vi = 1) = 0.3⇔ 91 ≤ i ≤ 100
and p(vi = 1) = 0 ⇔ 1 ≤ i ≤ 90. During training, we have firstly observed all data
instances belonging to Class 1, and after that we have generated 1000 samples with the
trained RBMOCD. Next, we have continued the training procedure using all data points
belonging to Class 2, and then we have generated another 1000 samples, and further on we
repeated this procedure until all 10 classes have been considered. To classify the samples
generated by RBMOCD we used k-nearest neighbors. Figure 3 shows that OCDGR behaves
as expected and as new classes are observed the RBMOCD enlarges its encoded distribution.

4.2 Evaluation

We compared our proposed method, RBMOCD , against 1.) RBMs trained using Experience
Replay with a Memory Limit (RBMER-ML) and 2.) RBMs trained using Experience Replay
with Infinite Memory (RBMER-IM ). For a fair comparison, in the case of RBMER-ML we
limited the number of data points stored in memory to occupy approximately the same number
of bytes as the parameters ofRBMOCD . We highlight that by allowing RBMER-ML to have
an experiences memory of the same size with the RBMOCD parameters means that, in fact,
RBMER-ML needs a double memory size than RBMOCD , as it needs also some memory to
store its own parameters. In contrast, we allow RBMER-IM to store all observed data points
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(a) Worst case scenario, with instances in ascending
order by digit.
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(b) Realistic scenario, where the instances are ordered
randomly.

Fig. 4: Performance on the MNIST dataset. For each model, we plot the average log probabil-
ities computed on the entire test set, with error bars representing the standard deviation of the
average log probabilities computed on each digit class.

in memory. To train both experience replay models, i.e., RBMER-ML and RBMER-IM , we
use a similar algorithm to Algorithm 1. The only main difference is that instead of generating
new samples using the RBM models themselves (Algorithm 1, lines 11-23), we retrieve
those samples from the replay memory. Moreover, same as for RBMOCD, in the case of
RBMER-ML and RBMER-IM models, we used 300 randomly chosen data points from the
memory of past experiences and the same meta-parameters values. To quantify the generative
performance of the trained networks, we used Annealed Importance Sampling (AIS) with the
same parameters as in the original paper (Salakhutdinov and Murray, 2008) to estimate the
partition function of the RBMs and to calculate their log probabilities. On each dataset, after
all training data points were given to the learner, we computed the average log probabilities
on the entire test set.

4.2.1 Worst Case Scenario: Sorted Order

In the first scenario, we have used the binarized MNIST dataset. During training, the data
instances were ordered sequentially in ascending order of the digits (0, 1, . . . , 9), making it a
difficult scenario for online learning. For each algorithm, we considered various numbers of
hidden neurons (nh ∈ {25, 250, 500}), and 784 visible neurons (i.e., 28× 28 binary image).
Figure 4a shows that RBMOCD outperforms RBMER-ML in all cases, independent of the
number of hidden neurons. Moreover, it outperforms even RBMER-IM when it has enough
representational power (i.e., 250 and 500 hidden neurons). It is interesting to see that while the
generative power of RBMOCD increases with the number of hidden neurons, RBMER-IM

is not significantly affected when given more hidden neurons. Further, the RBMER-ML model
loses its generative power when the number of hidden neurons is increased. These results
may be explained by the fact that having more hidden neurons helps RBMOCD to better
model the data distribution. In contrast, in the case of experience replay mechanisms with
memory, a larger RBM would need more past-experience training data to avoid forgetting
the distribution of the first observed data points, especially in the case of RBMER-ML. This
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Fig. 5: Model performance over time on the realistic scenario using the MNIST dataset. The
straight lines represent the average log probabilities computed on the entire test set, while the
shadowed areas represent the standard deviation of the average log probabilities computed
on each digit class.

situation does not occur forRBMOCD , due to the fact the data points generated randomly by
the RBM itself using Gibbs sampling approximate well the distribution of the past-experience
data. For the sake of clarification, we mention that even if at a first look an inter-class standard
deviation of 30− 40 nats for all online trained models is striking, in fact, it is same as the
one obtained for the offline trained RBMs.

4.2.2 Realistic Scenario: Random Order

In the second more realistic scenario, the training instances were presented sequentially in
random order. As this is an usually encountered situation, herein, besides the MNIST dataset,
we have used also the UCI evaluation suite (Germain et al, 2015). The latter one contains
contains 8 real-world binary datasets from various domains, specially selected to evaluate the
performance of density estimation models.

MNIST dataset. Figure 4b shows that RBMOCD outperforms both RBMER-ML and
RBMER-IM , when it has enough representational power (i.e., 250 and 500 hidden neurons).
As in the previous experiment, the generative performance of RBMOCD increases as the
number of hidden neurons increases, but the gain in performance is even higher in this
situation, culminating with −114.53 nats in the case of an RBM with 500 hidden neurons.
Thus, RBMOCD outperforms RBMER-IM by 35.39 nats at the same number of hidden
neurons. In fact, RBMOCD with 500 hidden neurons outperforms by 11.01 nats even the
state-of-the-art results reported by Salakhutdinov and Murray (Salakhutdinov and Murray,
2008) (see Table 2, third row) for an RBM with 500 hidden neurons trained completely offline
with standard one-step contrastive divergence. Besides the improved average performance on
the entire test set, also observe that as the number of hidden neurons increases in the case
of RBMOCD , the standard deviation (computed on the average log probabilities from each
digit class) decreases. The smaller standard deviation implies that the model represents all
classes well, without imbalance.
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Table 2: Realistic scenario. The results are given for RBMs with nh = 500 and nCD = 1.
On the MNIST dataset the offline RBM results are taken from Salakhutdinov and Murray
(2008), while on the UCI evaluation suite the offline RBMs results are taken from Germain
et al (2015).

Dataset Online models Offline model
RBMOCD RBMER-IM RBMER-ML RBM

MNIST -114.52 -151.67 -167.11 -125.53
ADULT -19.64 -18.08 -17.28 -16.26

Connect4 -16.28 -16.03 -17.64 -22.66
DNA -103.14 -111.81 -114.84 -96.74

UCI Mushrooms -16.64 -20.38 -17.58 -15.15
evaluation NIPS-0-12 -290.06 -365.03 -339.82 -277.37

suite OCR-letters -47.61 -51.35 -53.85 -43.05
RCV1 -53.28 -56.34 -79.06 -48.88
Web -33.47 -32.58 -35.07 -29.38

To better understand RBMOCD’s behavior, we performed an additional experiment in
the realistic scenario. We again trained RBMOCD, RBMER-ML, and RBMER-IM models,
each with 500 hidden neurons. However, in this experiment, we measured performance on
the MNIST test set during the training phase after every 1,000 observed data points. Figure 5
shows an interesting behavior for all three models. The RBMOCD has a very stable learning
curve which increases over time. In contrast, RBMER-ML and RBMER-IM show unstable
learning curves. This behavior can be explained by the fact that when the probability of
selecting for replay any past observed data point decreases below a certain threshold, then
the subset of the selected data points for replay no longer represents well the distribution
of the past-experience data, and the models become over-fitted. To avoid this situation, the
number of selected data points from the replay memory would need to increase linearly with
the number of observations. However, this solution is infeasible as it will lead to a linear
increase in the computational complexity of RBMER-ML and RBMER-IM over time, leading
to non-realistic online learning algorithms. In contrast, RBMOCD is a Markov chain and it
is not affected by this situation, explaining why RBMOCD outperforms RBMER-ML and
RBMER-IM after observing approximately 8,000 instances.

In our final experiment on the MNIST dataset, we varied the number of contrastive
divergence steps, training an RBMOCD with 500 hidden neurons using 3 steps and 10
steps of contrastive divergence. Similarly to the RBM’s behavior reported by Salakhutdinov
and Murray (Salakhutdinov and Murray, 2008), further CD steps improved the generative
performance of these models. In the case when nCD = 3, the average log probabilities on
the MNIST test set was -108.96; for nCD = 10, it was -104.31.

UCI evaluation suite. Herein, we have trainedRBMOCD , RBMER-ML, and RBMER-IM

with nh = 500, and nv set to the number of features of each dataset. The results reflected
in Table 2 show that RBMOCD outperforms RBMER-ML and RBMER-IM on 5 out of 8
datasets, while on the other 3 has a very close generative performance to the top performer.
Overall, we may observe that as the size of the dataset increases, or as data distribution
became more complex, RBMOCD starts having a clear advantage over RBMER-ML or
RBMER-IM .

In all experiments performed, we observed that our MATLAB implementations of all algo-
rithms ran in approximately the same time. Given the same RBM configuration, RBMER-IM

was slightly slower then RBMOCD , which was slightly slower then RBMER-ML. However,
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the differences were on the order of few milliseconds, with one note that for RBMER-IM ,
the difference increased with the number of data points saved in memory.

5 Conclusion

We have proposed a novel method, Online Contrastive Divergence with Generative Replay
(OCDGR), to train RBMs in online settings. Unlike current experience replay mechanisms
which directly recall recorded observations from memory, OCDGR uses the generative capa-
bilities of RBMs to dynamically simulate past experiences. As a consequence, it does not
need to store past observations in memory, substantially reducing its memory requirements.
We demonstrated that RBMs trained online with OCDGR outperform RBMs trained online
using experience replay mechanisms with memory, with few exceptions, in which their
performance is comparable. We highlight that in some cases they even outperform RBMs
having a similar number of hidden neurons, but trained offline with standard contrastive
divergence.

In future work, we intend to understand better the effect of the various OCDGR meta-
parameters (especially the relation between the number of generated samples and the number
of observed samples) on the RBM’s generative performance, and to extend OCDGR to other
suitable generative models, e.g., deep Boltzmann machines, autoencoders. Other interesting
research directions, which we hope to investigate, is to use to use RBMs trained with
OCDGR to perform anomaly detection in low-resources devices, to control DRL algorithms
by generating RL atomic operations instead of using experience replay mechanisms with
memory to store them, to perform online supervised learning by generating input-output pairs
for the online training of deep networks.
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