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Assessment of Demand-Response-Driven Load
Pattern Elasticity Using a Combined Approach

for Smart Households
Nikolaos G. Paterakis, Member, IEEE, Akın Taşcıkaraoğlu, Member, IEEE,
Ozan Erdinç, Senior Member, IEEE, Anastasios G. Bakirtzis, Fellow, IEEE,

and João P. S. Catalão, Senior Member, IEEE

Abstract—The recent interest in the smart grid vision
and the technological advancement in the communica-
tion and control infrastructure enable several smart ap-
plications at different levels of the power grid structure,
while specific importance is given to the demand side.
As a result, changes in load patterns due to demand re-
sponse (DR) activities at end-user premises, such as smart
households, constitute a vital point to take into account
both in system planning and operation phases. In this
study, the impact of price-based DR strategies on smart
household load pattern variations is assessed. The house-
hold load datasets are acquired using model of a smart
household performing optimal appliance scheduling con-
sidering an hourly varying price tariff scheme. Then, an
approach based on artificial neural networks (ANN) and
wavelet transform (WT) is employed for the forecasting
of the response of residential loads to different price sig-
nals. From the literature perspective, the contribution of
this study is the consideration of the DR effect on load pat-
tern forecasting, being a useful tool for market participants
such as aggregators in pool-based market structures, or for
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load serving entities to investigate potential change require-
ments in existing DR strategies, and effectively plan new
ones.

Index Terms—Artificial neural networks (ANN), demand
response (DR), electric vehicles (EV), home energy manage-
ment, load forecasting, smart household, wavelet transform
(WT).

NOMENCLATURE

The main nomenclature used throughout the paper is stated
below. Other symbols and abbreviations are defined where they
first appear.

A. Indices
t Period of the day index in time units [h or min].

B. Parameters
Aj Approximate series at level j.
AEm Energy requirement of smart appliance m [kWh].
CEEV Charging efficiency of the EV.
CREV Charging rate of the EV [kW per time interval].
Dj Detail series at level j.
DEEV Discharging efficiency of the EV.
DREV Discharging rate of the EV [kW per time inter-

val].
Fm Period in which the operation of smart-appliance

m should be finished.
N Maximum power that can be drawn from the grid

[kW].
P other

t Inelastic power demand of the household [kW].
RPm Rated power of smart appliance m [kWh].
Sm Period in which the operation of smart appliance

m should be started.
SOEEV ,ini Initial state-of-energy of the EV [kWh].
SOEEV ,max Maximum allowed state-of-energy of the EV

[kWh].
SOEEV ,min Minimum allowed state-of-energy of the EV

[kWh].
Ta Arrival time of the EV.
Td Departure time of the EV.
T dur

m Duration of operation of smart-appliance m.
T f,c Period at which EV should be fully charged.
T f,d Period at which EV should be fully discharged,

if applicable.
ΔT Time step duration [h].
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λ
buy
t Price of energy bought from the grid

[cents/kWh].
C. Variables

PA
m,t Power of smart appliance m during period t

[kW].
PEV ,ch

t EV charging power [kW].
PEV ,dis

t EV discharging power [kW].
PEV ,used

t Power used to satisfy household load from the
EV [kW].

P grid
t Power supplied by the grid [kW].

SOEEV
t State-of-energy of the EV [kWh].

um,t Binary variable –1 if smart appliance m is ON

during period t, else 0.
uEV

t Binary variable –1 if EV is charging during pe-
riod t, else 0.

ym,t Binary variable –1 if smart appliance m starts
during period t, else 0.

zh,m,t Binary variable –1 if smart appliance m stops
during period t, else 0.

I. INTRODUCTION

A. Motivation and Background

THERE is an increasing trend for smart grid applications in
different parts of the world, also promoted by incentives

given by the governments of leading countries. A central concept
within the smart grid vision is to enable the active participation
of demand-side resources instead of simply considering them
as passive power consumers [1], [2]. In this respect, demand
response (DR) strategies are adopted in order to induce effec-
tive changes in the load demand instead of only adapting the
generation side to load changes [3], [4].

Residential end-users are responsible for a significant por-
tion of electrical energy consumption, reaching up to 40% [5],
and therefore, residential DR strategies are given specific im-
portance. Smart households may act in order to lower their
electricity bills or can be directly controlled by load serving
entities (LSEs) in order to mitigate demand peaks. For the pur-
pose of enabling smart residential end-users premises, home
energy management systems (HEMS) are employed to allow
for the effective operation of such end-user points in coordina-
tion with LSEs under DR strategies [6]. HEMS receive relevant
input information (such as pricing data that can be day-ahead,
hour-ahead, peak power limits, and warnings for planned contin-
gencies) from LSEs and schedule the operation of all electrical
loads of the household with a predefined aim under imposed
constraints by means of LSE restrictions and consumer prefer-
ences.

As regards the current state of HEMS adoption around the
world, major differences can be noticed from region to region.
The U.S. leads the adoption of HEMS. European utilities are
also supporting relevant pilot projects [7]. Nevertheless, one
may argue that since benefits for both the consumers and the
utilities have already been recognized and because numerous
major companies (including Siemens, Intel, etc.) have already
rendered commercially available HEMS [8], their penetration
rate in the near future is likely to increase.

Currently, the main barrier to the widespread adoption of
such systems is their cost. However, in the longer term, the
investment costs can be met by the benefits for the consumer.
Typically, hourly prices are lower than flat rates. Furthermore,
subsides and other incentives may be offered by utilities since
shifting electricity eases the stress on the power distribution sys-
tem (improving reliability, limiting ageing of equipment, etc.)
[9]. Another crucial concern is the preservation of the com-
fort level of the end-users. However, several appliances (such as
washing machines, dishwashers, and electric vehicles–EVs) can
be operated in such a way that the demand is reduced during
relatively high price periods without compromising the end-
user’s comfort. For such smart households and other end-users
premises, price elasticity of the electrical demand is strongly
related to real-time pricing, indicating the relative change in
demand that would result from a change in the electricity price
[10].

Modeling the reaction of a consumer to price variations
through elasticity involves the determination of the so-called
elasticity matrix that is created by analyzing the behavior of the
consumer, as well as the possible facilities the consumer may
own, such as energy storage systems, distributed generation,
and EVs or the actual ability of shifting the power requirements
[11]. This matrix-based consideration of elasticity is basically
employed as a feedback term when used in electricity price ad-
justment procedure [11]. This process requires the exact knowl-
edge of the elasticity coefficients, something that is not easily
defined a priori. Especially for the smart household structure
that can include several thermostatically and nonthermostati-
cally controllable appliances with different characteristics, it
can even be less efficient and may not be effective to provide
elasticity matrices that would also need relevant updates. Thus,
to overcome the necessity of exact knowledge of elasticity coef-
ficients and the mentioned assumption-based comparison, load
forecasting tools that will also consider price elasticity of the
load variations can be developed, serving also as a tool for ag-
gregators to provide a more effective planning of their actions
in day-ahead markets.

B. Literature Overview

A broad literature has been dedicated to the implementa-
tion of various load forecasting strategies from different points
of view. Borges et al. [12] employed an autoregressive (AR)
model for the forecasting of individual substation loads and
then aggregated the obtained forecasts with bottom-up and top-
down methodologies. However, the detailed dynamics of dif-
ferent types of individual end-users (residential, industrial, and
commercial) were not considered in [12], a fact that prevents
the possibility of applying different pricing schemes to different
end-user types due to their usage habits and the possibility to
respond to DR strategies. Ozturk et al. [13] provided a two-
side interactive DR operation and restructuring between utility
and a residential end-user, in which the utility forecasts the be-
havior of residential load to restructure its pricing strategy in
order to shave peaks in the original load pattern. However, the
methodology in [13] is based on first forecasting the normal
load pattern and then providing a DR strategy to reshape it.
Byun et al. [14] employed a load forecasting strategy as a part
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of their smart energy distribution and management system to
derive load patterns and update through end-user usage data,
but neglected the direct impacts of imposed pricing schemes on
load pattern variations. Chaouch [15] applied a methodology
to forecast intraday household load pattern by using historical
data based on usage habits, but has also neglected the use of
pricing-load pattern data pairs that can be significantly useful
for aggregators to determine the way in which end-users react
to pricing schemes aiming to effectively schedule their short-
and mid-term activities. Behnke et al. [16] utilized an artificial
neural network (ANN)-based load forecasting model as a part
of a smart microgrid energy management system. Nevertheless,
they have only considered historical data-based forecasted load
as a basis for considering the possible deviations caused by DR
actions. Ghelardoni et al. [17] proposed a long-term energy load
forecasting methodology that was presented as a useful tool for
smart grid applications to better observe the load usage statistics.
As a general informative study, Hernandez et al. [18] provided
a detailed survey on load forecasting techniques.

These papers together with other studies not referred here
have provided valuable contributions to the application of smart
grid concepts through forecasting techniques. However, none
of these studies has considered the load pattern forecasting of
a residential end-user committed to price-based DR strategies
aiming to investigate the impacts of different pricing signals on
the expected end-user load. Indeed, this is a novel point of this
study and the basis of a useful tool, especially for aggregators
and system operators in order to achieve both economic and
technical benefits.

As a supporting document describing why and how the lack
of such price-elastic demand forecasting tools is affecting the
loads and Independent System Operators (ISOs), [19] analyzed
the California ISO market using real data. The analysis provided
in [19] concluded that price spikes can occur in day-ahead and
real-time markets for demand bids with high level of elasticity
due to several factors. One major factor is that the accuracy of a
load forecasting realized by an ISO can decrease due to not con-
sidering significant changes in demand induced by changes in
prices. Thus, Kohansal and Mohsenian-Rad [19] recommended
the development of load forecasting tools that also consider the
impact of price elasticity on demand. This issue is also ana-
lyzed in [20] and [21]. In this study, price elasticity of demand
is explicitly taken into account in the forecasting procedure. In
this way, a tool apt to be used by the operators of systems of-
fering extensive residential DR programs can be developed as
suggested in [19]–[21].

C. Contributions

In this study, an HEMS model is used to construct price-load
pairs which are applied to a hybrid wavelet transform (WT)-
ANN load forecasting approach. The contribution of this study
is twofold.

1) The proposed study provides a direct mapping between
input price patterns and output DR driven load patterns.
This scheme will allow the LSEs to further improve their
planning by changing the pricing scheme, or by imposing
further limitations of peak power if the expected load
pattern needs to be restricted.

2) There are two major problems in defining the price elas-
ticity of a smart household that are bypassed by apply-
ing the proposed methodology: 1) the concept of price
elasticity requires the knowledge of a set of “basis” or
“expected” prices and consumption according to which
the calculations should be performed; and 2) physical
constraints such as the availability of the EV, user com-
fort preferences, etc., complicate the calculation of cross
elasticity.

D. Organization

The remainder of this paper is organized as follows:
Section II discusses the approaches targeting at forecasting the
demand of an aggregated group of consumers or an individual
consumer. Section III describes the MILP model of the HEMS
and the WT-ANN forecasting approach for the load pattern elas-
ticity assessment driven by DR. Section V describes the results
obtained for different test cases. Finally, in Section VI, conclu-
sion is drawn.

II. FORECASTING THE LOAD OF AN AGGREGATION VERSUS A

SINGLE CONSUMER

Extensive literature has been devoted to the forecasting of
load demand. Two main categories of studies may be identified
in terms of the approach that is followed: either forecasting is
performed considering an aggregation of consumers, or for an
individual consumer, even at the level of a specific appliance.
Regarding the first category, there has been a great deal of
studies that assess the applicability of different approaches such
as time series models, ANN, and Fuzzy Logic (FL) on load
forecasting at distribution transformer, region, and country level.
The adequate accuracy of these approaches is a result of the
relatively regular behavior of an aggregation of a wide range of
loads. On the contrary, a limited—yet increasing—number of
studies with respect to individual consumer demand forecasting
have been published so far, mainly due to two reasons: 1) lack of
high-resolution data for these small-scale units; and, 2) dynamic
and stochastic load profiles affected greatly by consumer habits
and usage patterns, appliance specifications, seasonal changes,
etc. The main difference between forecasting the load of a group
of consumers and the load demand of a single end-user is that the
former can be accurately predicted based mainly on historical
data. Nevertheless, despite these differences and the complexity
involved in forecasting individual load profiles, both points of
view are areas of intense research.

III. METHODOLOGY

A. HEMS Model for Smart Household Operation

The HEMS model that is employed in this study is a vari-
ant of the model that has been presented in [22]. First, the
HEMS model is presented in order to explain how the training
pairs required for the forecasting approach are obtained. The
HEMS regulates the operation of the smart household consid-
ering prices and other signals from the LSE, load consumption
of smart appliances, etc., together with different consumer pref-
erences. It should be noted that for the sake of simplicity, the
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possibility of selling energy back to the grid is not considered
in this study.

The objective is to minimize the total daily cost of electricity
consumption. The price variables given in (1) are time depen-
dent, a fact that implies time varying prices for bought energy,
where the optimization variable is the total power bought from
the grid at time t (P grid

t ):

Minimize TC =
∑

t

P grid
t · ΔT · λbuy

t . (1)

The constraints presented hereafter comprise the basic body
of the HEMS operation. Any time granularity can be used simply
by selecting the appropriate ΔT . For instance, for a 15-min
interval ΔT = 0.25 h.

1) Power Balance: Equation (2) states that the total load
consisting of the inelastic residential load (P other

t ), the charging
needs of the EV (PEV ,ch

t ), and the smart appliances (PA
m,t) is

either satisfied by the grid (P grid
t ) or by the procurement of

energy from the EV (PEV ,used
t ):

P grid
t + PEV ,used

t = P other
t + PEV ,ch

t +
∑

PA
m,t ∀t. (2)

2) EV Modeling: Equation (3) enforces the fact that the ac-
tual power provided by the EV discharge (PEV ,dis

t · DEEV ) is
equal to the power to be used to cover a portion of the household
needs (PEV ,used

t ). Constraints (4) and (5) impose a limit on the
charging (PEV ,ch

t ) and discharging (PEV ,dis
t ) power of the EV.

The idle state of the EV can be described by any of these con-
straints by the time the respective power variable is allowed to
have zero value. Equations (6)–(10) describe the state-of-energy
(SOE) of the EV. Constraint (6) forces the SOE at every interval
(SOEEV

t ) to have the value that it had at the previous interval
(SOEEV

t−1), plus the actual amount of energy that is transferred
to the EV battery if it is charging at that interval, minus the
energy that is subtracted if the EV battery is discharging during
that interval. At the arrival time of the EV to the household,
the SOE of the EV coincides with the initial SOE of the EV
(SOEEV ,ini), as described by (7). Constraint (8) limits the SOE
of the EV battery to be less than its capacity (SOEEV ,max ).
Similarly, constraint (9) prevents the deep discharge of the EV
battery by imposing a least SOE limit (SOEEV ,min ). Equations
(10) and (11) represent the option of having the EV battery fully
charged or discharged at the least SOE at preselected time in-
tervals. Finally, (12) ensures that all the variables related to EV
modeling are zero apart from the time interval between arrival
time of the EV to the household (Ta ) and departure time of the
EV from the household (Td ).

PEV ,used
t = PEV ,dis

t · DEEV ∀t ∈
[
Ta, T d

]
(3)

PEV ,ch
t ≤ CREV · uEV

t ∀t ∈
[
Ta, T d

]
(4)

PEV ,dis
t ≤ DREV ·

(
1 − uEV

t

)
∀t ∈

[
Ta, T d

]
(5)

SOEEV
t = SOEEV

t−1 + CEEV · PEV ,ch
t ΔT − PEV ,dis

t ΔT

∀t ∈
[
Ta, T d

]
(6)

SOEEV
t = SOEEV ,ini, if t = Ta (7)

SOEEV
t ≤ SOEEV ,max ∀t ∈

[
Ta, T d

]
(8)

SOEEV
t ≥ SOEEV ,min ∀t ∈

[
Ta , T d

]
(9)

SOEEV
t = SOEEV ,max ∀ t ≥ T f,c ∈

[
Ta, T d

]
(10)

SOEEV
t = SOEEV ,min , if t = T f,d ∈

[
Ta , T d

]
(11)

SOEEV
t = PEV ,used

t = PEV ,dis
t = PEV ,ch

t = 0

∀t /∈
[
Ta, T d

]
. (12)

3) Smart Appliances: In this paper, smart appliances are
considered to be supplied with a fixed power for a specific
amount of time. The total operation is considered flexible by
means of shifting the time at which they start their operation.
Constraints (13)–(19) hold only if the smart appliances partic-
ipate in the coordination scheme; else, they are treated as in-
elastic load. The presented formulation can be easily extended
to include also appliances that can interrupt their operation and
continue at a later time.

Fm∑

t=Sm

PA
m,t = AEm ∀t (13)

PA
m,t = RPm · um,t ∀t (14)

ym,t = zm,(t+T d u r
m ) ∀t (15)

∑

t∈T

ym,t = 1 ∀t (16)

∑

t∈T

zm,t = 1 ∀t (17)

ym,t + zm,t ≤ 1 ∀t (18)

ym,t − zm,t = um,t − um,(t−1) ∀t. (19)

4) Power Transaction Restrictions: Equation (20) imple-
ments the logic of power exchange. N is a positive integer value
that imposes a limitation on the power that can be drawn from
the grid. This limitation may represent a restriction imposed by
the aggregator or the responsible entity for the end-user electri-
fication in order to face the situation where in its control area
exist multiple households that own HEMS. The implementation
of a time-varying peak power drawn from the grid limit as a
different DR strategy can be easily adapted on this formulation,
by replacing the N by a time-dependent parameter.

P grid
t ≤ N ∀t. (20)

Different consumer options and behavioral details can be
expressed by fixing the charging and discharging variables of
the EV to be zero in the appropriate time intervals.

B. Forecasting Model

1) Proposed Structure: The uncertainty in the generation
and consumption values in power systems brings about severe
problems in maintaining the reliability of system operations,
such as frequency regulation and scheduling. In order to alle-
viate these impacts, forecasting systems are presented as the
most realistic and cost-effective strategy among the other possi-
ble solutions. The efficiency of the forecasting systems depends
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mainly on the accuracy of the predictions. In the literature, par-
ticular interest has been demonstrated in addressing the chal-
lenging question of how to produce better forecasts required to
maintaining the reliability of the system operations. Conven-
tional statistical models have been widely used in the literature,
but ANN-based approaches have dominated the studies in the
last decades due to their capability of identifying the relation
between the input and output data in time series. The main in-
terest has recently been focused on advanced combined models,
which exploit the unique advantages of single models in order to
decrease the prediction error [23]. For this purpose, a combined
forecasting model based on WT and ANN is employed in this
study.

Most of the statistical forecasting methods presented in the
literature have a similar structure in terms of their use of input
data, i.e., 1) they use a large amount of historic data; and 2)
they update the datasets with recent measurements. These ap-
proaches generally follow a recursive approach in the prediction
process. The input dataset is completely updated once the real
measurements are obtained. Then, the recursive process contin-
ues for another given time step. However, this method causes
the final prediction error to increase gradually, aggregating the
error value obtained at each step.

In contrast with the mentioned conventional methods used
for updating the input dataset, a totally different approach that
is based on “one-time training” is employed in this study. Thus,
the time-consuming training stage repeated for each new data
is avoided in the model. This feature is of great importance for
the approaches including a data decomposition method, since
these methods have a slow response to new data. Furthermore,
to reduce the duration of the training stage, a data refinement
process is implemented in this study. With this objective, all the
available training data are applied to a data selection model that
basically performs a partial correlation analysis between the test
set and input set, and selects only the most informative data to
be used in training stage. The mentioned process facilitates and
speeds up the training phase considerably without causing any
accuracy decrease in the test set.

In order for this tool to be practically adopted by an LSE,
the required data should be readily accessible. The proposed
approach requires the daily price and load variation during the
training phase, while during the deployment phase only the
daily price variations are required. Regarding the electricity
prices, the day-ahead hourly varying prices are announced sev-
eral hours before the beginning of the settlement day. An LSE or
an aggregator is a market participant and as a result is de facto
aware of the market prices.

Nowadays, in several markets there are entities that offer the
opportunity to residential consumers to enroll to time-varying
pricing programs. In current practice, there are two ways of
pricing the consumer under such programs: 1) the end-user is
aware the “previous” day of the day-ahead prices and is priced
according to them, e.g., in MISO; and 2) the end-user is aware
of the day-ahead prices but is priced based on the real-time
prices that are not known a priori, e.g., in PJM. The proposed
approach addresses the first case. Furthermore, because of the
fact that these programs have been commercialized and aim

Fig. 1. Flowchart of the proposed DR-based load pattern forecasting
strategy.

to stimulate end-user awareness, the relevant pricing data are
easily accessible and as a result this study utilizes real pricing
data. Practical evidence, i.e., the increasing adoption of smart
meters, also suggests that aggregators will be able to access data
concerning both prices (since they are market participants) and
individual power consumption profiles directly through the ad-
vanced metering infrastructure installed at residential-end user
premises. However, despite the availability of relevant enabling
technologies, for a series of reasons that were previously dis-
cussed, the so-called “smart households” that employ automated
decision making systems (HEMS) to control loads such as EVs
and “smart” appliances are not yet popular [9]. As a result, rel-
evant data are scarce. For this reason, the load profile for the
residential consumer is generated employing the HEMS that
was presented in Section III-A, assuming that the end-user is
rational (i.e., aims to minimize the electricity procurement cost).
Thus, it should be clearly stated that the HEMS model is not
a key element of the proposed approach; it is a tool to provide
the relevant training and testing pairs to analyze the proposed
methodology.

The proposed power prediction model consists of four stages,
as shown in Fig. 1. In the first stage, price values are normalized
for the purpose of deriving time-independent values. The most
relevant data are selected by a correlation analysis to increase
prediction accuracy, as well as to decrease computational time.
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Afterward, WT is employed to decompose the power series into
a number of more regular subseries in the training stage, the
future values of which are separately forecasted using an ANN
model. Finally, the predictions of the subseries are aggregated
to reach the power forecasts of the original values.

It is rendered clear that the approaches including a decomposi-
tion method are more appropriate to reveal the relation between
two datasets in comparison with the single prediction models.
Another important point is that the decomposition process en-
ables to predict each subset, i.e., approximation and detail levels,
with a different configuration of an ANN model. In other words,
the numbers of layers and neurons, type of activation functions,
and size of training datasets can be determined separately with
respect to the data and the results obtained in the training stage.
The different stages are explained in the following sections.

2) Normalization: The input signal for the normalization
stage is the daily 24-h price series in cents per kilowatthour.
The normalization stage consists of three parallel operations
that include normalization by division to minimum, average,
and maximum values of the mentioned 24-h daily price series.
The main aim of the normalization is first to merge the prices of
different days in the same logic as the HEMS structure mainly
decides the household operation considering the value of the
price of an hour relevant to other prices in different hours. For
example, 4 cents/kWh can be the average value of a sample day,
while the same value can be the maximum price in another day.
Thus, the price series are considered directly without normal-
ization, then the forecasting strategy will try to allocate the same
output to these 4 cents/kWh input despite the fact that an HEMS
would generally allocate more power in the case of being the
average rather than the maximum price. The reason for normal-
izing by division to all minimum, average, and maximum is to
further capture the position of the data considering all major
aspects of a 24-h data series. Therefore, three normalized time
series are used as an input in the correlation analysis-based data
selection stage.

3) Data Selection: The performance is generally propor-
tional to the amount of training data in forecasting methods.
However, a large set of ineffective data might cause a highly
complex input–output mapping function in the training stage,
which results in prediction of performance degradation and com-
putational burden increase in the forecasting stage. Therefore,
an input data selection method is used in this paper to filter out
the irrelevant data before training. In order to determine the most
informative inputs, a correlation analysis between the normal-
ized price values for the target days and candidate price inputs
in the training set is applied. When the correlation value of an
input candidate day is greater than a certain threshold, which
means that it has a more similar profile with the price values of
the target day than most of the other candidates, the data of this
day are considered as a relevant feature. Otherwise, these daily
data are filtered out.

4) WT Model: Among the various data decomposition
methods (WT, empirical model decomposition, blind source
separation techniques, etc.), WT is considered to be the most
widely accepted model for forecasting applications due to its
ability of time–frequency analysis. WT decomposes time series

into a set of subseries at different frequency levels, as displayed
in Fig. 1. These subseries present a relatively more station-
ary behavior than the original series. These series can then
be forecasted with a lower error. In this study, a three-level
wavelet decomposition, which generates one approximation,
A3 , and three detail components, D1 ,D2 , and D3 at the end,
is used with Daubechies wavelet of order 4 by carrying out a
detailed analysis on the effects of these parameters on the model
performance.

5) ANN Model: In this paper, the future values of the sub-
series obtained by the means of WT are predicted with a mul-
tilayer feedforward back propagation (FFBP) network. Several
tests on the training data are conducted to select the number
of layers and neurons for each case. Finally, the total power
prediction is calculated by aggregating the predicted values of
the subseries. It should be noted that the periods of the day are
also applied to the ANN models as an input in addition to the
normalized and refined price values. High correlation between
the power consumption values and time during a day helps to
improve prediction performance.

C. Benchmark Models

In order to evaluate the accuracy of the realized predictions,
three benchmark methods are also used in this study, namely,
a linear model, an ANN model, and a combination of these
two models. In the first model, a linear equation is obtained by
relating normalized price values and power data in the train-
ing set, which is also the underlying idea of all conventional
time series models such as AR and autoregressive moving av-
erage (ARMA). Price test data are then used to calculate target
power values. The second model has been widely implemented
in the literature of load forecasting providing reasonable accu-
racy. Among the different network types, a multilayer FFBP
network is employed in the study because of its relatively sim-
ple structure. In order to improve the model performance, the
network specifications such as the type of training algorithm,
number of layers and hidden neurons, and type of transfer func-
tion are determined with a preliminary study in the training set.
Briefly, a three-layer network, i.e., one input layer, one hid-
den layer and one output layer is adopted, and the number of
input and output layers is chosen as that of input vector (i.e.,
four) and that of the next power forecast (i.e., one), respectively.
Regarding the number of hidden layer neurons, an analysis is
carried out considering model complexity and results obtained
in the training stage, resulting in a different value for each model
configuration.

It has been seen from the results of both benchmark models
that linear model is more effective for the forecast of the periods
in which the input–output mapping function exhibits a relatively
more stable behavior. Similarly, the nonuniform periods are
modeled with a higher precision using the ANN model. Based
on these conclusions, the linear model and ANN model are
combined by assigning a weight coefficient to each model for
the hours of the day using (21):

P (x) =
T∑

i=1

βipi (x) (21)
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TABLE I
HOUSEHOLD APPLIANCE DATA

Appliance Power [kW] Appliance Power [kW]

Oven 2.4 TV 0.083
Cooker hood 0.225 Desktop computer 0.15
Microwave 1.2 Air conditioner 1.14
Refrigerator 1.666 Hair straightener 0.055
Iron 2.4 Printer 0.011
Toaster 0.8 Lighting 0.1
Kettle 2 Other (Fixed) 0.05
Hairdryer 1.8 Washing machine 1.4
Telephone 0.005 Dishwasher 1.32

Fig. 2. Inflexible load variations for Consumer 1 and Consumer 2.

where P(x) is the final prediction, pi(x) is an hourly prediction,
and βi is the weight of ith model, respectively.

In this study, a random set of days is chosen for the model
training and weights are calculated using the minimum square
error pseudoinverse technique, so that a coefficient is assigned
to models depending on prior knowledge of prediction accuracy
in the given period.

IV. TESTS AND RESULTS

To test the proposed methodology, the dynamic pricing-load
demand training pairs are first obtained for the load forecast-
ing strategy using an MILP model of HEMS coded in GAMS
v.24.1.3 and the solver CPLEX v.12. The household load de-
mand is provided considering power values of real household
appliances obtained from [24]. The relevant appliance data are
presented in Table I. It should be noted that the washing machine
and the dishwasher are considered to be optimally operated by
the HEMS based on user preferences.

Two types of consumers and two case studies for each of them
are considered. The first type of consumer Consumer 1 repre-
sents a four-member family house where there is a nonworking
person that consumes energy during the day. The second type
of consumer Consumer 2 represents a single-person household
that is working during the daytime. It should be noted that both
types of consumers are assumed to possess an EV. The case stud-
ies for both consumers are divided according to the possibility
of V2H operation. The considered inflexible load variations for
Consumer 1 and Consumer 2, apart from the washing machine,
dishwasher and EV loads, are presented in Fig. 2. In order to ob-
tain the mentioned price-load pattern pairs, 1096 days of pricing

Fig. 3. Price variations for both randomly selected test days.

Fig. 4. Real and forecasted values (Consumer 1—Case 1, April 10,
2014).

data (starting from January 1, 2011) acquired from [25] are fed
into the HEMS model and four cases are discerned:

1) Consumer 1-Case 1: Consumer 1 with EV just as a load.
2) Consumer 1-Case 2: Consumer 1 with EV capable of

V2H.
3) Consumer 2-Case 1: Consumer 2 with EV just as a load.
4) Consumer 2-Case 2: Consumer 2 with EV capable of

V2H.
For each case, 1096 price-load pattern pairs are used as train-

ing data for the proposed load forecasting strategy. The predic-
tion model performance is tested under different conditions of
randomly selected days and the relevant results are discussed
below. The mentioned randomly selected days are April 10 and
July 4 of 2014 and the relevant pricing data [25] that will be
given as input to the trained combined load forecasting model
is given in Fig. 3.

Initially, the normalized data are refined according to their
information values. After the feature selection process, the de-
composed series are extracted by the WT method. The WT
method decomposes the power series that correspond to the
price data determined, considering the relevant threshold, into
four subsets. Then, the predictions of each subset are carried
out with the proposed ANN structure for the different consumer
types and cases. The results for the four different case studies
during two different randomly selected test days are presented
in Figs. 4–11. As seen, for each consumer, case and price vari-
ation, the WT-ANN strategy ensures quite reasonable results,
capturing the main dynamics of DR driven load pattern, even
extreme variations within the load shape.
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Fig. 5. Real and forecasted values (Consumer 1—Case 1, July 4,
2014).

Fig. 6. Real and forecasted values (Consumer 1—Case 2, April 10,
2014).

Fig. 7. Real and forecasted values (Consumer 1—Case 2, July 4,
2014).

Fig. 8. Real and forecasted values (Consumer 2—Case 1, April 10,
2014).

Fig. 9. Real and forecasted values (Consumer 2—Case 1, July 4,
2014).

Fig. 10. Real and forecasted values (Consumer 2—Case 2, April 10,
2014).

Fig. 11. Real and forecasted values (Consumer 2—Case 2, July 4,
2014).

In order to investigate how uncertainty associated with dif-
ferent parameters (e.g., charging requirement and maximum
charging horizon of EV related to EV arrival time and initial
SOE) affect the prediction results, six subcases are also pro-
vided for each case study and for every consumer type defined
previously, as presented in Table II. It should be noted that, for
the sake of simplicity, it is assumed that the departure time of
the EV is 6 A.M. in all scenarios.

The associated mean absolute error (MAE) and root-mean-
squared error (RMSE) values are listed in Table III for the
proposed and benchmark models and for all the cases related to
each consumer type defined in this study. Note that the average of
four error values (i.e., two consumers and two cases) is provided
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TABLE II
SUBCASES TO INVESTIGATE THE EFFECTS OF UNCERTAINTY RELATED TO

DIFFERENT MODEL PARAMETERS ON FORECASTING ACCURACY

Subcase notation EV arrival time Initial SOE

a 10 P.M. 8 kWh
b 5 P.M. 8 kWh
c 3 P.M. 8 kWh
d 10 P.M. 5 kWh
e 5 P.M. 5 kWh
f 3 P.M. 5 kWh

for each day and each error metric in order to decrease data
complexity. The MAE gives the mean deviation between the
real and predicted data, while the RMSE is dominated by larger
error terms due to the squares of differences. In addition to
these negatively oriented error metrics, the normalized RMSE
(NRMSE), which is the RMSE normalized by the range of real
data, is computed to provide a scale-independent error metric.
Here, it should be noted that “base” notation in Table III refers to
the initial cases depicted in Figs. 4–11, while notations from “a”
to “f” refer to the subcases defined in Table II. Besides, it should
also be stated that forecasting accuracy results presented for
subcases “a” to “f” are obtained through replacing the relevant
new training pairs related to each case conditions in the training
set with the base case data.

As it can be seen in Table III, the ANN method outperforms
the linear model in both days, while the combined Linear-ANN
model gives the best predictions among the benchmark models.

The reported error measures indicate that the performance of
the WT-ANN approach is superior with respect to the benchmark
methods. Thus, it can be stated that data decomposition signif-
icantly enhances the prediction accuracy of the ANN model. It
should be noted that the data decomposition enables forecast-
ing each decomposed level with different model specifications
depending on the characteristics of the data. For instance, it has
been seen from the simulation studies that WT helps to predict
the high up and down ramps in the load demand by removing
them from the original signal and predicting the decomposed
time series separately with different ANN parameters. Thus, an
improved performance is accomplished, especially for the ap-
proximation component that constitutes the largest part of the
load characteristics.

Compared to the approximation level, the forecasting accu-
racy of three detail levels is relatively lower due to the high fre-
quency of these components that represent the sudden changes
in residential load demands. Nevertheless, the aggregation of the
forecasts of all the levels results in improved accuracy since the
magnitude of the detail levels and, thereof, the errors obtained
for these components are too small to affect the amount of total
load forecasts. Relatively to the NRMSE value of linear, ANN,
and Linear-ANN models, the WT-ANN approach provides an
average reduction of 60.15%, 48.01%, and 44.46% for all cases,
respectively.

Note that the improvements in the predictions of the WT-
ANN model also stem from the benefits of optimum information
and data decomposition. In order to investigate the effectiveness

TABLE III
COMPARISON OF AVERAGE ERROR MEASURES OF DIFFERENT APPROACHES

FOR DIFFERENT CASES FOR TWO REPRESENTATIVE DAYS

Model Case Day MAE [kW] RMSE [kW] NRMSE [%]

Linear model Base April 10 1.3278 1.7928 25.02
July 4 1.3224 1.7611 27.02

a April 10 1.3405 1.7959 25.18
July 4 1.3334 1.7494 27.34

b April 10 1.3368 1.7953 25.18
July 4 1.3300 1.7486 27.32

c April 10 1.3366 1.7953 25.18
July 4 1.3302 1.7486 27.32

d April 10 1.3790 1.8064 25.33
July 4 1.3765 1.7629 27.55

e April 10 1.3772 1.8058 25.32
July 4 1.3750 1.7623 27.54

f April 10 1.3761 1.8054 25.32
July 4 1.3743 1.7620 27.53

ANN model Base April 10 0.7876 1.1623 16.22
July 4 0.7585 1.1341 17.42

a April 10 0.9934 1.2719 18.05
July 4 0.9961 1.2736 19.95

b April 10 0.9928 1.2963 18.43
July 4 1.0707 1.4086 22.15

c April 10 0.9623 1.2866 18.28
July 4 1.1016 1.4143 22.30

d April 10 1.1271 1.4514 20.69
July 4 1.0277 1.2929 20.38

e April 10 1.0588 1.3842 19.69
July 4 1.0333 1.3167 20.77

f April 10 1.3219 1.4042 20.03
July 4 1.0660 1.3684 21.57

Linear-ANN model Base April 10 0.7782 1.1462 15.99
July 4 0.7517 1.1211 17.21

a April 10 0.8280 1.1882 16.66
July 4 0.8291 1.2273 19.18

b April 10 0.8441 1.1906 16.84
July 4 0.8489 1.2795 20.11

c April 10 0.9410 1.2813 18.22
July 4 0.8430 1.2359 19.33

d April 10 0.9343 1.3599 19.26
July 4 0.9293 1.2447 19.58

e April 10 0.9832 1.3400 19.13
July 4 0.9248 1.2478 19.64

f April 10 1.1893 1.3628 19.41
July 4 1.1250 1.2751 20.07

Proposed model Base April 10 0.3994 0.6419 8.96
July 4 0.3588 0.6158 9.47

a April 10 0.4903 0.6657 9.35
July 4 0.4697 0.6250 9.88

b April 10 0.5575 0.7291 10.92
July 4 0.4942 0.6296 9.92

c April 10 0.6721 0.8426 12.09
July 4 0.5704 0.7768 12.40

d April 10 0.5469 0.7041 9.94
July 4 0.4692 0.6229 9.76

e April 10 0.6158 0.7445 10.58
July 4 0.4959 0.6350 9.93

f April 10 0.6186 0.7756 11.08
July 4 0.4807 0.6374 10.11

of the proposed approach over a much larger dataset, forecasts
are also carried out for 30 random days and the error metrics
calculated are listed in Table IV. Similar to the results given
in Table III, the WT-ANN method clearly outperforms the
benchmark methods, a fact that further confirms the contri-
bution of the ideas presented in this paper to improving the
accuracy of residential demand forecasting.
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TABLE IV
COMPARISON OF AVERAGE ERROR MEASURES OF DIFFERENT APPROACHES

FOR DIFFERENT CASES FOR 30 RANDOM DAYS

Model Case MAE [kW] RMSE [kW] NRMSE [%]

Linear model Base 1.3880 1.8992 28.58
a 1.3150 1.8155 28.53
b 1.4092 1.9238 28.64
c 1.4494 1.9623 28.71
d 1.3932 1.8725 30.61
e 1.4717 1.9641 30.36
f 1.5184 2.0074 30.18

ANN model Base 0.9185 1.1271 17.08
a 0.9245 1.1242 17.88
b 0.9376 1.1594 17.32
c 0.9705 1.1948 17.53
d 0.9191 1.1100 18.40
e 0.9690 1.1980 18.52
f 0.9996 1.2326 18.48

Linear-ANN model Base 0.8680 1.0903 16.55
a 0.8712 1.0857 17.26
b 0.8879 1.1230 16.81
c 0.9222 1.1592 17.03
d 0.8688 1.0726 17.76
e 0.9215 1.1624 18.12
f 0.9535 1.1977 18.04

Proposed model Base 0.5361 0.6522 9.90
a 0.5391 0.6508 10.35
b 0.5457 0.6683 10.00
c 0.5621 0.6861 10.08
d 0.5364 0.6436 10.66
e 0.5614 0.6876 10.72
f 0.5767 0.7049 10.62

Regarding the runtime efficiency of the proposed model, it
can be roughly said that the computational time of the WT-ANN
method is relatively higher than the benchmark methods, since
including a data decomposition method generally improves fore-
casts at the expense of increasing the runtime. In order to de-
crease the runtime of the WT-ANN model, as mentioned before,
one-time training and data selection are used in the study. These
two features facilitate and considerably speed up the training
phase without causing any accuracy decrease in the test set.
Thanks to the mentioned advantages of the proposed method, a
reasonable computational time compared to the average time of
the other short-term forecasting models in the literature, which
is about 14 s in the MATLAB environment on a standard com-
puter, has been achieved for 24-h-ahead forecasts.

V. CONCLUSION

In this study, a combined WT-ANN-based load forecasting
strategy to provide assessment of DR-driven load pattern elas-
ticity of smart households was proposed.

The presented approach is new compared to other load fore-
casting approaches using historical data to forecast hour or day-
ahead variations, as the employed methodology considered daily
data as a whole package and was capable of providing fore-
casts for any future data instead of just steps ahead. Moreover,
consideration of the impacts of pricing-based DR on load pat-
tern variation of smart end-user premises is a new contribution
to the literature and can be extended as a new tool for system

operators to analyze the results of their DR strategies during
planning phase, in order to decide if further revisions or actions
are required.

The performance of the proposed methodology was compared
with different approaches and the superiority of the developed
structure was demonstrated through performance metrics. The
uncertainty in the end-users’ behavior and the development of
appropriate methods in order to handle it will be the direction
of future studies to be pursued by the authors.
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