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Chapter 1 

Introduction 

Abstract 

The aim of the thesis is to study, using molecular-dynamics simulations, the 

mechanical properties of polymer nanocomposites — materials in which 

inorganic nanoparticles, commonly referred to as fillers, are added to rubbery 

polymers so as to increase their rigidity at low strain amplitudes: a 

phenomenon called “reinforcement.” However, the addition of colloidal 

particles to any polymer matrix leads to the creation of a highly complicated 

system, and as a result, the precise mechanism of the reinforcement, and in 

general of the mechanical properties, is still not entirely understood. Although 

a variety of different interpretations have already been given on the subject, 

those interpretations are often inconsistent with one another. The main 

problem to be solved, besides the elucidation of the precise mechanism of the 

reinforcement, is the so-called Payne effect, exemplified by a loss of the 

gained rigidity at larger strain amplitudes. This loss of rigidity is the main 

obstacle that restrains the performance of this family of materials, and 

consequently, the furthering of their technological applications. The goal is to 

relate, using dynamic computer modeling, the viscoelastic properties of 

polymer nanocomposites to the motion of their constituent molecules, and 

those — in turn — to the molecular-level interactions, the final goal being the 

development of a method for the design of advanced materials with tailor-

made mechanical properties, realized through the manipulation of the 

molecular interactions. The goal of this Chapter is to present a general 

overview of the research field, with more detailed descriptions given in 

Chapters 3-6. 
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1.1 The technological relevance of polymer 

nanocomposites  

The subject of the thesis concerns the mechanical properties of polymer-based 

nanocomposites, i.e., materials consisting of a polymer matrix in which solid 

nanoparticles are added so as to increase the rigidity of the matrix at small 

deformation amplitudes. Until recently, the most commonly utilized type of 

filler particles (especially by the tire industry) has been Carbon Black (CB) 

which is produced from the incomplete combustion of coal tar and ethylene. 

Its addition to rubbers results in the manufacturing of tires with a smaller 

rolling resistance. At the moment, the rolling resistance of car tires accounts 

for about 4% of the worldwide CO2 emissions from fossil fuels [1, 2], and a 

decrease in the rolling resistance of about 10% is anticipated to decrease their 

overall fuel consumption by about 2–3% [3] — the reason being that a vehicle 

with tires of a smaller rolling resistance requires less energy to thrust forward. 

However, a smaller rolling resistance leads to a lower wet grip performance: 

an undesirable side effect as regards passenger’s safety. The problem can be 

partially solved by adding silica to the tire, instead of CB, which enables 

manufacturers to produce “green tires” [4] that display both improved wet grip 

properties as well as a smaller rolling resistance [5]. 

 

 

 

 

 

 

 

Figure 1.1: Carbon black (left) and silica powder (right). 

 

An important difference among CB and silica fillers is that the former is 

hydrophobic whereas the latter is hydrophilic. In order to increase the 

compatibility among the silica fillers and the polymer matrix, the fillers are 

functionalized with coupling agents [23-25]. By tuning the interactions among 

the silica particles and the polymer matrix, nanocomposites with specific 

properties can be produced. Despite their obvious importance, though, filler-

polymer interactions have remained poorly understood, owing to a lack of 
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suitable theoretical and experimental approaches. The key issue that remains 

unresolved is the exact mechanism of the rubber reinforcement itself and of 

the so-called Payne effect, both of which will be described forthwith.  

 

 

 

 

 

 

 

 

 

Figure 1.2: Schematic representation of the different length-scales involved in 

the thesis: the aim is to elucidate the relations between the 

molecular-scale interactions at the nanoparticle surface, the 

microscopic structure of the composite that results from these 

interactions, and the resulting viscoelastic properties of the 

material. Relevant experimental techniques according to the 

probed length-scales are also denoted in the bottom of the figure 

(TEM = transmission electron microscopy; TERS = tip-enhanced 

Raman spectroscopy; SFG = sum frequency generation 

spectroscopy). 

 

The main question (whose elucidation is of paramount importance for 

industries developing or utilizing polymer composites) is how to relate the 

filler-matrix adhesion interactions to the microstructure of the composite, and 

that to its macroscopic, non-linear elastic behavior (Fig. 1.2). The thesis aims 

to contribute to that goal by performing molecular-dynamics simulations of 

polymer nanocomposites in close collaboration with experimental groups 

performing rheological measurements. Two different simulation models have 

been used, each representing a different length-scale of the system — namely, 

we simulated polymers confined between solid walls, and polymers filled with 

nanoparticles, as depicted in Fig. 1.3. 
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Figure 1.3: Illustration of the different length-scales which are relevant to the 

study of the mechanical properties in polymer nanocomposites. 

The figure depicts a car tire, its microstructure, consisting of the 

grey nanoparticles and the green polymer matrix, and a polymer 

film representing the volume between two nanoparticles. 

1.2 The mechanical properties of polymer 

nanocomposites 

The distinctive characteristics of the mechanical properties of polymer 

nanocomposites are the so-called reinforcement and the Payne effect, which 

are seemingly interlinked to each other, and are discussed in the 2
nd

 Chapter of 

the thesis. In relation to the mechanical properties of the unfilled polymer, the 

reinforcement denotes an increase in the rigidity of the material at low strain 

amplitudes after the addition of the filler particles. Depending on the 

application, it is a desirable aspect of the nanocomposite. However, when the 

strain amplitude is further increased, the gained rigidity is abruptly lost; and 

although it still remains higher than that of the pure polymer, it brings about 

the consequence that current composites cannot be used in applications where 

high rigidity at large strain amplitudes is required. The loss of rigidity, in the 

case of polymer nanocomposites, is colloquially referred to as “the Payne 

effect” by the name of the scientist who first noticed the phenomenon [6, 7]. 
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Figure 1.4: Strain-dependence of the storage and viscous moduli obtained by 

oscillatory strain sweeps of NBR rubber with silica nanoparticles. 

The data were provided by our experimental partners at SKF. 

 

A great amount of literature has been devoted to the subject [9-31]. 

However — and despite the strenuous effort on behalf of both the 

experimental and the computational scientific community — a consensus has 

not yet been established. Overall, there are two distinct opinions regarding the 

molecular origins of the excess reinforcement, in addition to the reinforcement 

induced by the mere presence of rigid nanoparticles: one attributes it 

exclusively to the aggregation of the nanoparticles, whereas the other to the 

formation of filler-polymer interphases. Seemingly, at high particle loadings, 

the reinforcement occurs due to particle jamming, whereas at low particle 

loadings the main contributor seems to be the strong filler-polymer 

interactions which might lead to the densification of the polymer matrix near 

the nanoparticles as well as to the formation of a sturdy filler-polymer-filler 

network with approximately infinite relaxation times [15-17]. In order to 

clarify the relative contribution of those two reinforcing mechanisms, an 

extensive molecular-dynamics study of amorphous polymers filled with solid 

nanoparticles was performed, under equilibrium conditions [18]. The 

conclusion of the study was that the experimentally observed mechanical 

reinforcement may result from either one of the proposed mechanisms (either 
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from particle agglomeration or from a polymer-induced filler network) with 

their relative contribution depending strongly on the filler-polymer interaction 

energy and range as well as on the dispersion and volume fraction of the filler 

particles.  

The thesis focuses on the study of the filler-polymer interfaces, rather 

than of the agglomeration of the filler particles, under both equilibrium and 

non-equilibrium conditions. In this regard, the study of the glass-transition 

temperature of the polymer matrix is essential, since it is well known that the 

mechanical properties of a polymeric material are contingent on its glass-

transition temperature, Tg, as well as on the underlining local segmental 

mobility of the polymer chains. Those properties are, at least locally, altered 

by the interfaces which are developed after the addition of the filler particles 

to the polymer matrix.  

 

l
d

r

 
 

Figure 1.5: Schematic representation of two neighboring particles which are 

surrounded by a glassy layer of thickness d. The particles are 

connected by a glassy bridge of diameter l.  

 

An approach to understand the reinforcement mechanisms in silica-

filled model systems, based on the concept of the glass-transition temperature, 

was taken by Lequeux, Long et al. [12, 13, 19-21]. In those papers, the authors 

have proposed the existence of a gradient in the polymer glass-transition 

temperature near the silica interface, which was successfully related to the 

temperature- and frequency-dependent mechanical behavior of the composite. 

Then, the strain-induced softening of the percolating glassy bridges 

connecting the filler particles was held responsible for the observed nonlinear 

mechanical behavior (Fig. 1.5). However, the effect of adsorbing and non-

adsorbing interfaces and of the confinement on the glass-transition 
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temperature of the polymer matrix is still heavily debated, and no consensus 

exists about their relevance to the reinforcement [22, 23]. 

Since the focus in industry has been redirected towards the development 

of “green tires” in which the CB particles are replaced by silica particles, an 

important issue is related to the compatibility among the silica particles and 

the polymer matrix. The use of coupling agents [24-26], which leads to the 

well-controlled interaction between the non-polar polymer chains and the 

polar silica surface, may alleviate the problem. The importance of the filler 

surface energy has been examined by Gauthier et al. [26] on silica-filled SBR 

rubbers, by modifying the silica surface using different silanes. Their results 

showed that the presence of chemical links at the silica surface reduces the 

amplitude of the Payne effect. Based on that result, the authors attempted to 

provide a theoretical explanation of the Payne effect: the polymer chains are 

initially bound to the filler surface, but under the applied stress, they de-bond, 

thus causing the nonlinear mechanical behavior. The de-bonding effect has 

also been used in a recently proposed model for the explanation of the non-

linear, large-strain mechanical behavior of nano-filled elastomers [27].  

The majority of the above-mentioned studies have attempted to explain 

the Payne effect by focusing on the importance of the polymer-filler 

interactions and the development of glass bridges between the nanoparticles. 

Indeed, the behavior of a polymer under conditions of strong confinement is 

different than that in the bulk of the material. However, the assumed increase 

of rigidity due to overlapping glassy layers at high filler volume fractions, and 

its consequent drop under deformation, has not been verified experimentally. 

The difficulty arises due to the minuscule length-scales that are involved: the 

approaching surfaces of neighboring filler particles may result in a geometric 

confinement with a size on the scale of only a few nanometers, which is 

difficult to probe experimentally. Therefore, in order to provide insight on the 

nanoscopic mechanisms which might affect the mechanical properties of 

polymer nanocomposites, it is important to understand the dynamical and 

mechanical behavior of polymer films [28].  

1.3 Polymers under Confinement 

Various attempts to study the influence of the degree of confinement on the 

mechanical properties of polymer nanocomposites have deployed a film 

polymer model, aiming to establish a quantitative equivalence between the 
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thermomechanical properties of the two systems [312-345]. Indeed, the 

properties of both systems are strongly influenced by adhesion interactions 

and by confinement effects, and, depending on the volume fraction of fillers in 

the nanocomposite, similarities have been undoubtedly identified. In highly 

filled polymer nanocomposites (40 wt%), it has been shown [32] that the 

changes in the glass-transition temperature with decreasing inter-particle 

spacing are quantitatively equivalent to the corresponding thin-film data. On 

the other hand, in materials with low filler concentration (less than 1.0 wt%), 

only a qualitative equivalence has been established [32,35].  

The glass transition of thin polymer films has been also widely 

examined experimentally [36-53]. The general conclusion thus far is that the 

glass-transition of a polymer film (and by extension its dynamic response to 

external perturbations) depends mainly on the degree of confinement, the 

presence of free interfaces, and the polymer-wall interactions. However, due 

to the fact that the measured properties seem to be influenced by the employed 

experimental technique as well as by the preparation procedure of the samples, 

the reported results have shown disagreement among different laboratories and 

among different experimental methods [54-61]. Dynamic fragility (a measure 

of the glass transition abruptness of glass-forming materials) has also been 

employed in order to explain why different polymers, under the same 

conditions, are subjected to diversified confinement effects. Seemingly, under 

conditions of varying film thickness, correlations do exist among fragility and 

the amplitude of the Tg change [62].  

Alongside the experimental studies, simulations of polymers under 

confinement have shown that a free interface, or the usage of repulsive 

interactions among the polymer and the solid walls, induces acceleration in the 

dynamical response of the polymer [63-65], whereas the use of attractive 

polymer-wall interactions has the opposite effect [66, 67]. Essentially, it has 

been confirmed that the glass-transition temperature in films is significantly 

different than that of the bulk, and mostly depends on interfacial phenomena 

[68, 69]. On the other hand, despite having closely attended to the effect of the 

degree of confinement and the adhesion interactions on the glass-transition 

temperature and the segmental dynamics in thin polymer films, the effect of 

crosslinks on the properties of confined polymers is much less investigated — 

especially with molecular-dynamics simulations [70].  
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1.4 Outline of the Thesis 

In our effort to understand the mechanisms which give rise to the 

reinforcement and the Payne effect, in close collaboration with experimental 

groups, we performed molecular-dynamics simulations of polymer 

nanocomposites on two different length-scales; namely, we studied polymer 

films (Chapters 3 and 4) in which the polymer was capped between two solid 

walls, and particulate polymer systems (Chapters 5 and 6) in which 

nanoparticles were added to the bulk polymer. Thus, our effort was focused on 

molecular-level phenomena which are difficult to probe in experiments. The 

main goal of the thesis is to study the influence of the nanoparticles on the 

structural, dynamical, and mechanical properties of the polymer matrix. The 

most important questions the thesis aims to answer are:  

 How do confinement and crosslinking effects affect the structural and 

dynamical properties of the confined polymer?” 

 What is the effect of the filler surface structure on the microscopic and 

elastic properties of the composite? 

 To what extent the amount of fillers, the size of the nanoparticles, as 

well as the interactions among the nanoparticles, affect the 

reinforcement and the Payne effect in polymer nanocomposites? 

 The models used for the simulations are presented in Chapter 2. In that 

chapter we also describe the simulation protocols that were used so as to 

extract the microscopic properties of the systems that were to be correlated 

with their macroscopic mechanical properties.  

Chapter 3 aims to analyze the equilibrium structure of the polymer 

films. Specifically we studied how the glass-transition temperature and the 

polymer density distribution are affected by the degree of confinement and the 

crosslink density of the confined polymer.   

Chapter 4 aims to analyze the equilibrium multi-scale dynamics of the 

same polymer films presented in the previous chapter. Specifically we studied 

how the mobility of the polymer segments, on multiple length-scales along the 

backbone of a polymer chain, is affected by the structure of the solid walls, the 

degree of confinement, and the polymer crosslink density. In addition, we 

undertook to correlate those varying parameters to the underlying dynamical 

heterogeneity as well as the structural inhomogeneity induced to the polymer 

by the presence of the solid walls. 
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Chapter 5 aims to analyze the reinforcement in the particulate systems 

(which consisted of a polymer matrix and dispersed nanoparticles) which were 

uniaxially and linearly deformed. A comparison with experimental results, 

performed by our collaborators of the Soft Matter group at the Institute of 

Physics at the University of Amsterdam, is also included, as well as a 

comparison with shear-distortion models of the reinforcement which are 

commonly used in industry for the design of polymer nanocomposites. The 

volume fraction of the fillers, the radius of the nanoparticles, as well as the 

interaction strength among the nanoparticles, were varied, and their effect on 

the reinforcement was compared with experimental results conducted on 

industrial composites. 

Chapter 6 aims to analyze the Payne effect in the particulate systems, by 

exposing them to large-scale oscillatory shear (LAOS) deformation. 

Specifically we studied how the Payne effect and the microscopic dynamics 

are affected by the nature of the direct interactions among the nanoparticles, 

thus providing a connection among the two. Furthermore, we explained 

microscopically the strain softening/hardening observed in polymer 

nanocomposites during LAOS deformations. 

Finally, the main results and conclusions of the thesis are given in 

Chapter 7, along with suggestions of further research. 
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Chapter 2 

Models and Methods 

Abstract 

The current chapter is devoted to the explanation of the computational models 

and of the simulation methods which were employed so as to study those 

models. It begins with an elementary review of the molecular-dynamics 

simulation method, and continues with a detailed description of the models 

which were simulated so as to calculate specific properties of polymer films 

and nanocomposites. The chapter concludes with a description of the 

simulation protocols through which those properties were extracted. 
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2.1 Molecular-dynamics simulations: basic principles 

A simulation may be defined as the representation of the behavior or 

characteristics of a system through the use of a simpler one — especially of a 

computational model designed for the purpose. The molecular-dynamics (MD) 

simulation method, invented in the 1950’s [1, 2], makes use of Newton’s laws 

of classical mechanics so as to numerically draw the temporal evolution of 

molecular systems pertaining to a variety of materials such as liquids, glasses, 

solids, as well as polymers [3, 5]. The rapid increase of computational power 

as well as the development of highly efficient algorithms [6, 7] has culminated 

in the wide usage of the method which, as a result, has become greatly 

important in the field of materials science. According to the MD simulation 

method, the simulated system is represented by a collection of interacting 

particles the trajectories of which are calculated through the numerical 

solution of Newton's equations of motion, and the forces acting on them 

through the usage of interatomic potential functions.  

The classical Newtonian equations of motion may be written as 

𝑭𝑗(𝑡) = 𝑚𝑗

𝑑2𝒓𝑗

𝑑𝑡2 = −𝑚𝑗

𝜕𝑈𝑡𝑜𝑡(𝒓)

𝜕𝒓𝑗
                                                                      (2.1) 

where 𝑭𝑗(𝑡) is the force acting on the j
th

 particle at time t, and mj and rj are the 

mass and position of the particle. The acting force 𝑭𝑗(𝑡) is also equal to the 

gradient of the potential function 𝑈𝑡𝑜𝑡. In order to calculate the trajectory of a 

large number of particles, such as the one employed in the present study, Eq. 

2.1 should be numerically integrated. The Verlet algorithm is the most 

frequently used numerical method employed for this purpose [8]. In this thesis 

we used a variant of the Verlet method, called velocity Verlet, which consists 

of three steps. First, the coordinates ri are calculated at the next time step t +δt, 

using Eq. 2.2. 

𝒓𝑗(𝑡 + 𝛿𝑡) = 𝒓𝑗(𝑡) + 𝛿𝑡 𝐯𝑗(𝑡) +
𝛿𝑡2

2𝑚𝑗
𝑭𝑗(𝑡)                                                      (2.2) 

Next the force 𝑭𝑗(𝑡 + 𝛿𝑡) is derived from the gradient of the interaction 

potential 𝑈𝑡𝑜𝑡[𝒓(𝑡 + 𝛿𝑡)], as depicted in Eq. 2.1, and finally the velocity 

𝐯𝑗(𝑡 + 𝛿𝑡) is calculated using Eq. 2.3. 
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𝐯𝑗(𝑡 + 𝛿𝑡) = 𝐯𝑗(𝑡) +
𝛿𝑡

2𝑚𝑗
[𝑭𝑗(𝑡) + 𝑭𝑗(𝑡 + 𝛿𝑡)]                                               (2.3) 

The main ingredient of an MD simulation is the potential function 𝑈𝑡𝑜𝑡 that is 

used to model the interactions among the constituents of the system. If both 

non-bonded and covalently bonded interactions are required for the simulation 

of the chosen system, the chosen potential function may consist of two 

corresponding parts, as depicted in Eq. 2.4.  

𝑈𝑡𝑜𝑡(𝒓) = 𝑈𝑛𝑏(𝒓) + 𝑈𝑏(𝒓)                                                                                   (2.4) 

The simplest choice for the non-bonded interaction potential 𝑈𝑛𝑏 would be a 

summation of pairwise interactions, as depicted in Eq. 2.5. 

𝑈𝑛𝑏(𝒓) = ∑ ∑ 𝑉(|𝒓𝑗 − 𝒓𝑘|)

𝑘>𝑗𝑗

                                                                            (2.5) 

In this study we used the Lennard-Jones (LJ) 12/6 pair potential function for 

the modeling of the non-bonded interactions, which is the most commonly 

applied choice in MD simulations of polymeric systems:  

𝑉𝐿𝐽(𝑟𝑗𝑘) = 4휀𝑗𝑘 [(
𝜎𝑗𝑘

𝑟𝑗𝑘
)

12

−   (
𝜎𝑗𝑘

𝑟𝑗𝑘
)

6

] ;  𝑟𝑗𝑘 < 𝑟𝑐𝑢𝑡                                             (2.6)

  

The term 𝑟𝑗𝑘 = |𝒓𝑗 − 𝒓𝑘| is the distance among the interacting particles j and 

k, 휀𝑗𝑘 is the minimum interaction energy of the two particles, and 𝜎𝑗𝑘 is the 

characteristic size of the particles, for which 𝑉𝐿𝐽(𝜎𝑗𝑘) = 0. As depicted in Eq. 

2.6, the LJ potential function is characterized by a strong repulsive part 

(∝ 𝑟−12) and a weak attractive part (∝ 𝑟−6). Commonly, the LJ potential 

function is truncated at a specified distance 𝑟𝑐𝑢𝑡 so as to avoid a prohibitively 

long duration of the simulation. The truncation, though, introduces a 

discontinuity, which can be remedied by shifting the potential function to 

higher values so that it will become equal to zero at the truncation point.  

For the modelling of covalent bonds, a combination of the attractive 

Finite Extensible Non-Linear Elastic (FENE) potential and the LJ potential 

function was used, as depicted in Eq. 2.7 [9]. 

𝑈𝑏(𝑟) = −0.5𝑘𝐹𝐸𝑁𝐸𝑟𝑚𝑎𝑥
2 ln [1 − (

𝑟

𝑟𝑚𝑎𝑥
)

2

] + 4휀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] + 휀       (2.7) 
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Besides the LJ parameters, which have already been defined, the bonded 

potential function used in this study consisted of the parameters 𝑘FENE 

and 𝑟max, which represented, respectively, the stiffness and the maximum 

elongation of the bond. The FENE bond has the form of a simple harmonic 

potential for small extensions, and limits the spring extensibility to 𝑟max. The 

superposition of the FENE and LJ potentials, under specific parameter values, 

yields an anharmonic spring interaction between the connected particles (Fig. 

2.1). 

 
Figure 2.1: Illustration of the potential functions that were used during the 

simulations so as to model the interactions among the constituents 

of the systems. 

2.1.1 Chosen statistical ensembles 

A concept of great importance in the MD simulation method is the concept of 

the “thermodynamic ensemble” which is drawn from the field of statistical 

mechanics [10]. The latter sprang from the realization that the macroscopic 

properties of a system do not depend strongly on the motion of each individual 

particle but rather on the average motion of all the particles in the system. An 

ensemble refers to a collection of systems that have the same macroscopic but 

different microscopic properties, and the method to calculate the required 

macroscopic properties is through averaging over an ensemble of such 

systems. The ensembles that are relevant to this study are the microcanonical 

(NVE) ensemble in which the total energy and the number of particles in the 

system are each fixed to specific values, the canonical (NVT) ensemble, in 
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which the temperature and the number of particles is fixed, and the 

isothermal–isobaric (NPT) ensemble, in which the temperature, the pressure 

and the number of particles are fixed. In an MD simulation the temperature 

and the pressure can be controlled by the application of a thermostat and a 

barostat. In this study, the Berendsen and Nose-Hoover thermostats and 

barostats were used. The Berendsen thermostat and barostat control the 

temperature and the pressure of the system by rescaling the velocities and the 

volume of the simulated system at each integration timestep. The Nose-

Hoover thermostat and barostat control the temperature and the pressure of the 

system by adding extra terms in the equations of motion. The extra term 

introduced by the thermostat acts as a thermal reservoir, whereas the one 

added by the barostat controls the volume of the system [11-14]. The 

equations for the additional degrees of freedom are integrated along with 

Newton’s equations of motion, and as a result the system’s temperature and 

pressure fluctuates around the specified value, thus yielding the required 

ensemble. 

2.2 Simulated polymer models 

All the results that are presented in this study were obtained from coarse-

grained (CG) MD simulations so as to overcome the requirement of knowing 

exhaustively the interaction potentials among the atoms of the simulated 

systems as well as the corresponding computational power that is stipulated by 

the utilization of such precise interatomic potentials. The use of CG models 

(Fig. 2.2), in place of atomistic ones, is justified by the nature of polymeric 

materials: polymers exhibit a clear time and length scaling of their static [15] 

and dynamic properties [16], while polymers with very different structure 

react universally to modifications in temperature [17]. Consequently, chemical 

details were ignored, and the polymer was represented by bead-spring chains 

[18], in which the chains were reduced to strings of beads, with each bead 

representing a small number of monomer units. The beads along a polymer 

chain were connected by a quasiharmonic potential (which herein was the 

FENE potential), and the repulsive part of the LJ potential was used to 

reproduce the excluded volume among the monomer beads (Eq. 2.7).  

The scope of the simulations herein was to investigate the mechanical 

properties of filled elastomers. To this aim two different models have been 

simulated, with each of them representing a different scale of a generalized 
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polymer filled with nanoparticles (Fig. 1.3). Chapters 3 and 4 present results 

that were obtained from simulations of polymer films capped in between two 

solid walls (Fig. 2.3), and Chapters 5 and 6 from simulations of systems 

composed by a polymer matrix and a number of nanoparticles, henceforth 

denoted as the particulate model (Fig. 2.5). 

 

 

Figure 2.2: Schematic illustration of a coarse-grained procedure. The 

repetitive atomistic portions of the molecule are coarse-grained 

into larger beads which are connected by springs. 

 

The film model was used so as to probe the structural and dynamical 

properties of the polymer matrix when it is confined between two 

nanoparticles whose size is orders of magnitude larger than the size of the 

polymer chains, while disregarding additional complexities arising from the 

presence of the filler network (such as its structure as well the size of the 

nanoparticles). The particulate model was studied so as to draw parallels 

among simulational and experimental results in regards to the reinforcement 

and the Payne effect, since its parameters are the same as those of the 

experimental protocols that are commonly used to study the mechanical 

properties of polymer nanocomposites, such as the volume fraction of fillers 

and the radius of the nanoparticles. 
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2.2.1 Film model 

Concerning the film model (Fig. 2.3), each wall may be assumed to represent 

the surface of a nanoparticle, which, at the nanometer scale of the simulations, 

may be considered as flat. Since a larger volume fraction of fillers, or a 

smaller particle size, generally results in a shorter distance between 

neighboring nanoparticles, the effect of different filler volume fractions, or 

different particle sizes, at the nanometer scale of the film model has been 

studied by simulating three films of different thickness (henceforth referred to 

as thick, thin, and ultrathin film). The polymer chains had different 

compositions — i.e., they were composed of two different types of monomer 

beads with different size — and this choice was made so as to mimic as 

faithfully as possible the different components of the random copolymers most 

commonly used in industrial applications of filled elastomers, i.e., styrene-

butadiene (SBR), which is mainly used in the manufacturing of car tires, and 

the nitrile-butadiene (NBR) rubber, which is mostly used in sealing 

applications [19]. 

 

 

Figure 2.3: Typical snapshots of the simulated trajectory of the film model. 

The simulated films consisted of polymer chains confined between 

two solid walls (crystalline or rough). Three different values of the 

film thickness were used in the simulations herein. For thinner films 

larger lateral dimensions were used so as to retain the same 

statistical accuracy of the simulations in all the three different films. 

We used the film model to study the effect of the film thickness and of the 

number of crosslink bonds among the monomers on the structural and 

dynamical properties of the confined polymer. Furthermore, simulations of 

films with different wall structure were also performed, so as to study the 
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effects of the surface roughness on the structural, dynamical, and mechanical 

properties of the confined polymer. Three types of walls were used, which had 

a crystalline, rough, and amorphous structure, as illustrated in Fig. 2.4. 

 

 
 

Figure 2.4: Illustration of the three types of walls that were used in this study. 

From left to right: crystalline, rough, and amorphous walls. 

 

2.2.1 Particulate model 

Concerning the particulate model (Fig. 2.5), each nanoparticle consisted of a 

specified number of beads which were randomly packed inside a sphere of a 

given radius. Due to the random packing of the filler beads, though, each 

nanoparticle was only approximately spherical. The polymer matrix was 

composed of homopolymer chains with the same length as those in the film 

model. The varying parameters in the simulations of the particulate model 

were the filler volume fraction and the radius of the nanoparticles. 

 

 

Figure 2.5: The particulate model of the nanocomposite. The filler beads are 

shown in red, and the polymer chains in green. Four 

nanoparticles, each consisting of 250 filler beads, of average 
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diameter about 10 times the diameter of the monomer beads are 

shown. For clarity, only a fraction of the polymer chains is 

shown.  

2.3 System Creation and Equilibration 

Unless stated otherwise, all quantities presented in this thesis are expressed in 

LJ units, i.e., m, the mass of the smallest monomer bead in the polymer chains, 

was used as the unit of mass, ε, the minimum interaction energy between two 

monomer beads of mass m, was used as the unit of energy, σ, the diameter of a 

monomer bead of mass m, was used as the unit of length, and 𝜏 = 𝜎√𝑚/휀 was 

the unit of time. The stiffness and maximum elongation of the FENE bonds 

were, then, set equal to 𝑘FENE = 30 휀/𝜎2 and 𝑟max = 1.5𝜎 respectively. 

Newton’s equations of motion were integrated using the velocity-Verlet 

algorithm with a time step of δt = 0.001τ.  

2.3.1 Film model 

The initial dimensions of the simulation box were calculated according to the 

chosen polymer mass density of  𝜌film
 = 1.0 𝑚/𝜎3. We studied three films of 

different thickness, i.e., at T = 1.5 ε/kΒ, the thickness of the films were D = 

22.5σ (thick film), D = 12.0σ (thin film), and D = 5.1σ (ultrathin film), which 

correspond approximately to 6.2, 3.3, and 1.4 times the radius of gyration of 

the chains in the bulk, respectively. Films of different thickness had different 

lateral dimensions so that the simulation results would possess the same 

statistical accuracy by retaining at constant value the number of monomer 

beads regardless of the thickness of the film. Due to the crystallinity of the 

walls, the lateral dimensions of the box were only approximately equal, but in 

all cases the difference was kept smaller than 0.5σ. 

The crosslinking procedure was based on the equilibrated uncured 

system. Crosslinks were created between monomers belonging to different 

chains, until the number of crosslinks had reached the desired value. 

The initial configuration of the chains was created using a simple 

random walk algorithm. No overlap checking was done, so the initial 

structures displayed a finite number of overlaps. The first step was to refold all 

chains that were completely outside the periodic box. This was done in order 

to increase the number of beads whose distance was smaller than the specified 

crosslinking radius. The next step was to identify all candidate monomer pairs 
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whose distance was smaller than the crosslinking cut-off radius. Crosslink 

bonds were then created between a randomly chosen candidate pair of 

monomers until the desired value of the crosslinking number density was 

reached. Using this method, crosslinked clusters were created with only a 

small fraction of free (non-crosslinked) chains. The spatial distribution of 

crosslinks along the direction perpendicular to the substrates was 

approximately uniform for all systems except for the ultra-thin film where a 

higher concentration of crosslinks was produced near the substrates rather than 

in the middle of the film. 

For the equilibration runs, we used the default LAMMPS values for the 

applied thermostat and barostat [7]. During the equilibration, the two phases of 

the system (polymer and walls) displayed a tendency to move laterally. To 

prevent this, the center-of-mass linear velocity of the wall and polymer phases 

were set individually equal to zero, at each timestep. In order to minimize the 

wall-polymer interactions during the first stages of the equilibration, we set 

their interaction cut-off radius equal to the collision diameter between a wall- 

and monomer-bead (the distance for which their interaction energy was zero). 

In this way, monomer- and wall-beads repelled each other only when they 

collided. 

To diminish the initial overlaps among the monomers, a short MD run 

was performed, for about 100-500τ in the microcanonical (NVE) ensemble 

while a limit was imposed on the maximum distance a bead can move in one 

timestep. After the pressure had stabilized, the substrate and monomer beads 

were assigned random velocities drawn from a Gaussian distribution. The 

velocities were set such that each subsystem had an initial high temperature of 

1.5 ε/kB so as to speed up the equilibration of the system. 

Next, we performed constant density-temperature (NVT) simulations 

using the Berendsen thermostat, initially with repulsive wall-polymer 

interactions for about 30,000τ, depending on the film thickness, and 

afterwards using the full LJ potential (Eq. 2.6) for another 30,000τ. The 

combination of a single thermostat with repulsive wall-polymer interactions 

resulted in a considerable amount of heat transfer taking place from the 

substrates to the polymer, while the average temperature of the whole system 

remained constant and equal to the target value. To overcome this problem, 

we used two separate thermostats for the walls and the polymer while the 

wall-polymer interactions were repulsive. During the final equilibration NPT 

stage, we allowed the system to relax in an unstressed state for about 30,000τ, 
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using the Nose-Hoover thermostat and barostat, and setting the normal 

components of the external pressure tensor equal to 𝑃𝑖𝑖 = 0 휀/𝜎3, where 

𝑖 = {𝑥, 𝑦, 𝑧}.  

One of the simulation variables was the number of crosslink bonds of 

the polymer. The crosslinking procedure was based on the equilibrated 

uncured system, during which FENE bonds were being created between 

monomer beads that belonged to different chains until the system had reached 

the desired crosslinking number density 

 

𝜌cl =
total number of crosslinks

number of chains
                                                                       (2.8) 

 

The equilibration procedure of the crosslinked systems involved only the last 

NPT stage. All systems (as regards both to the film and to the particulate 

models) were assumed to be fully equilibrated once the autocorrelation 

function of the end-to-end vectors of the polymer chains 

𝜑ee(𝑡) =
〈 𝑹ee(𝑡0)  ∙ 𝑹ee(𝑡0 + 𝑡) 〉 − 〈𝑹ee〉2 

〈𝑹ee
2 〉 − 〈𝑹ee〉2                                                   (2.9) 

had decayed to zero [20], where Ree is the end-to-end vector of a chain. In 

practice, we allowed each system to equilibrate for a longer time than the 

relaxation time of φee, so as to ensure that a thoroughly equilibrated 

configuration was attained. 

2.3.2 Particulate model 

To create the particulate systems, the box containing the equilibrated pure 

polymer was expanded so that the density would be low enough in order for 

the nanoparticles not to overlap with the polymer chains. Each nanoparticle 

consisted of a specified number of beads, which were placed randomly inside 

a sphere of predefined radius. Three different filler volume fractions were 

employed: 9%, 16.7%, and 28.5%, and the average filler particle radius 

extended from 3.25 to 6.5σ (with σ denoting the diameter of a monomer bead). 

We allowed the systems to equilibrate under NPT conditions. During the 

equilibration simulations we used the values recommended in the LAMMPS 

manual for the thermostat and barostat parameters, i.e., the temperature and 
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the pressure were allowed to relax to the specified average value over a time 

interval of 0.5τ and 5.0τ, respectively [7].
 
 

2.4 Calculated Properties 

2.4.1 Structural Properties 

In scattering experiments, the structure of a material at intermediate and large 

length-scales can be characterized by the static structure factor 𝑆(𝒒). From the 

static structure factor we can derive the radial distribution function 𝐺(𝑟), 

which characterizes the local structure of the material, and expresses the 

probability of the distance  𝑟 = |𝒓| = |𝒓𝑗𝑘| = |𝒓𝑘 − 𝒓𝑗| between two particles 

of the system. It is commonly normalized by the average density, so as to 

converge to unity at very long distances. Values larger than unity indicate that 

the probability of finding a neighbouring particle at that distance is larger than 

what it would be if the particles were distributed randomly. 

𝐺𝑎𝑏(𝑟) =
𝑁

𝜌𝑁𝑎𝑁𝑏
∑ ∑〈 𝛿(𝑟 − 𝑟𝑗𝑘) 〉

𝑁𝑏

𝑘=1

𝑁𝑎

𝑗=1

                                                            (2.10) 

The term 𝑁 represents the total number of particles in the system, 𝑁𝑎 is the 

number of particles of type 𝑎, and 𝜌 is the density of the system. 

Experimentally the radial distribution function of small colloidal systems can 

be measured by confocal microscopy experiments. 

The static structure factor is derived from the Fourier transform of the 

radial distribution function, and it is the quantity that is actually measured in 

scattering experiments. 

𝑆𝑎𝑏(𝒒) =
𝑓𝑎𝑏

𝑁
∑ ∑〈 exp(−𝑖𝒒 ∙ 𝒓𝑗𝑘) 〉

𝑁𝑏

𝑘=1

𝑁𝑎

𝑗=1

                                                         (2.11)  

In Eq. 2.11 𝑓𝑎𝑏 = 1 for 𝑎 = 𝑏 and 𝑓𝑎𝑏 = 1/2 for 𝑎 ≠ 𝑏. The static structure 

factor is measured in neutron and X-ray scattering experiments, since it is 

proportional to the scattering intensity of the “particles” that have been 

scattered by a wave-vector 𝒒 = 𝒒𝑖𝑛𝑖𝑡𝑎𝑙– 𝒒𝑓𝑖𝑛𝑎𝑙.  
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2.4.2 Glass-Transition Temperature 

If a crystal-forming fluid is cooled at its melting temperature, it will become 

solid. However, glass-forming liquids do not undergo the transition from 

liquid to crystalline solid when they are cooled further below their melting 

temperature. Instead of crystallizing, they become supercooled, retaining their 

liquidity, until they become glassy at the glass-transition temperature. 

 

Figure 2.6: Volume as a function of temperature during a cooling simulation 

under constant pressure. 

In general, while the temperature is decreased, the specific volume
1
 of a liquid 

also decreases (Fig. 2.6). For a glass-forming liquid, as the temperature is 

decreased towards the glass-transition temperature, Tg < T < Tm, the specific 

volume Vsp decreases at a rate which is typical for a liquid. As a result, particle 

movement slows down, thus causing an increase in the viscosity, as well as in 

the relaxation time of the particles. If the cooling rate is high enough, the 

material falls out of equilibrium and the volume-temperature dependence 

deviates from the expected value. The temperature where this deviation occurs 

is referred to as the glass-transition temperature, Tg.  

It follows from the above that the disordered structure of liquids and 

glasses is not noticeably different. Hence, at the glass-transition temperature 

there is no large structural change that may be used to predict the large 

difference in viscosity between a liquid and a glass. Still, liquids and glasses 

differ significantly in their dynamical response. A widely accepted 

explanation for the dramatic decrease in the dynamical response of glass 

forming materials is the Adam-Gibbs hypothesis [21-23]. It suggests that 

when the temperature decreases, the density increases but not homogeneously; 

                                                             
1
 Specific volume: volume per unit of mass. 
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hence the particles’ motion becomes co-operative — i.e., particles rearrange in 

groups rather than individually. The increase in the relaxation time is, then, a 

direct consequence of the growing rearranging regions of cooperative motion. 

Overall, the different dynamic response of each region causes heterogeneous 

dynamics in the whole system. This dynamic heterogeneity is connected to the 

so-called dynamic fragility of glass-forming materials [24]. The narrower is 

the glass-transition temperature range, the more dynamically fragile the 

material is considered to be (e.g., at Fig.2.6, glass is more dynamically fragile 

than glass 2).  

2.4.3 Dynamical Properties 

To study the relaxation of single ‘particle’ motions, we calculated the 

incoherent intermediate scattering function 

𝑆𝑖𝑛𝑐(𝒒, 𝑡) =
1

𝑁
⟨ ∑ exp{−𝑖𝒒 ∙ [𝒓𝑗(𝑡) − 𝒓𝑗(0)]}

𝑁

𝑗=1

 ⟩                                        (2.12) 

which is measured in neutron-scattering experiments so as to probe the various 

relaxation modes in macromolecular systems [25].
 
In Eq. 2.12, the term N 

denotes the total number of monomers in the system (which, in our 

simulations, were individual bead segments), 𝒓𝑗(𝑡) is the position of the j
th

 

monomer at time t, and q is the scattering vector that defines the length scale lq 

= 2π/q with the dominant contributions to the relaxation process. Thus, 

relaxation times on different length scales can be calculated by varying the 

magnitude q of the scattering vector [26]. Sinc(q,t) for a given magnitude q was 

computed by calculating the average value of three wave vectors q with the 

same magnitude but different directions along the primary Cartesian axes. In 

Chapter 4 we present our simulation results of the incoherent relaxation in the 

region between q = 7.0 σ
-1

, which corresponded approximately to the first peak 

in the overall static structure factor [27], and q = 1.0 σ
-1

, which corresponded 

to a length scale between the end-to-end distance and the gyration radius of 

the chains.  

2.4.4 Mechanical Properties 

In order to extract the mechanical properties of the simulated composites, and 

study their non-linear response (in particular, the Payne effect) we performed 

dynamic oscillatory shear simulations, by subjecting the systems to a 
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sinusoidal deformation and measuring the resulting mechanical response as a 

function of time. Oscillatory shear tests can be divided into two regimes. One 

regime induces a linear viscoelastic response (small amplitude oscillatory 

shear, SAOS), whereas in the other regime the material response becomes 

non-linear (large amplitude oscillatory shear, LAOS). LAOS tests are useful 

for a broad class of complex fluids and soft matter because strain amplitude 

and frequency can be varied independently allowing a broad spectrum of 

conditions to be attained [28]. Our model composites were specifically 

subjected to LAOS simulations so that we could extract their non-linear 

response and thus correlate the Payne effect with the volume fraction and the 

radius of the filler nanoparticles, as well as with the microstructure and the 

microscopic dynamics of the simulated systems. As the strain amplitude is 

increased under a fixed frequency, a transition between the linear and 

nonlinear regimes can appear. Fig. 2.7 illustrates the elastic and viscous 

moduli obtained from an oscillatory strain-sweep test in which the frequency 

was fixed and the applied strain amplitude was varied. In Fig. 2.7 the 

viscoelastic response is quantified by two properties, namely the elastic 

(storage) modulus G’ and the viscous (loss) modulus G’’. 

In the linear regime the strain amplitude is sufficiently small so that 

both viscoelastic moduli are independent of it, and the oscillatory stress 

response is sinusoidal. The strain amplitudes used in linear oscillatory shear 

tests are generally very small, often on the order of  γmax ≈ 10
−2

 to 10
−1

 for 

homopolymer melts, or even smaller (γmax < 10
−2

) for many dispersed systems 

[29]. 

 

Figure 2.7: Schematic illustration of the stress-strain behavior of an 

elastomer-based nanocomposite, during a strain sweep test at a 

fixed frequency. A specific behavior of the elastic and the viscous 

modulus is shown, the Payne effect, which is distinguished by a 
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high G’ at low strain amplitudes with a subsequent drop, and by 

the presence of a maximum in the G’’. The depicted data were 

retrieved from one of our simulations. 

In the nonlinear regime, though, the moduli are a function of the strain 

amplitude, and the resulting periodic stress waveform becomes distorted, and 

deviates from the sinusoidal waveform. At such large strain values — when 

the stress is no longer perfectly sinusoidal — the storage and the loss modulus 

lose their precise physical meaning, their calculation is not unique, and 

different methods result in different values of the moduli [29]. The different 

methods of calculating the moduli in the non-linear regime of the stress 

response, as well as the precise deformation protocol used in the simulations, 

are described with details in Chapter 6. 
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Chapter 3 
Molecular-dynamics simulations of 

crosslinked polymer films: equilibrium 
structure and glass-transition temperature 

Abstract 

In this chapter we present our results from constant temperature-pressure 

(NPT) molecular dynamics (MD) simulations of a bead-spring copolymer 

model, in which the polymer was confined between two crystalline walls. Our 

goal was to study the combined effect of the polymer crosslink density and of 

the degree of confinement on the glass-transition temperature and the 

equilibrium structure of the films. The simulations showed that, in the 

direction perpendicular to the walls, the polymer chains were ordered in layers 

of increasing density towards the walls for all values of the crosslink density 

and degree of confinement. On the other hand, in the direction parallel to the 

walls, the confined polymer displayed an amorphous structure similar to that 

of the bulk polymer. Lastly, the glass-transition temperature increased with 

both confinement and crosslink density, with the former having had a large 

effect in comparison to the latter. * 

 

 

 

 

 

 

 

 

 

 

 

 

∗The contents of this chapter have been published in: Polym. Composite., 

2015, 36, 1012–1019. 
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3.1 Introduction 

Filled elastomers, realized by mixing pure rubber with filler particles of sub-

micron or nanometer size, are a class of materials of high technological 

importance, being used in car tires, sealing solutions for bearing applications, 

and other types of plastic and rubber. The addition of particles to the polymer 

matrix results in a composite material that exhibits much higher stiffness and 

extreme resistance to both fracture and abrasion while remaining highly elastic 

(the so-called reinforcement of rubber) [1]. At a fundamental level, rubber-

reinforcement is a complex function of the interfacial interactions, the 

interfacial area, and the distribution of inter-filler distances [1,2]. The latter 

two factors depend on the nano-filler dispersion, making it difficult to develop 

a fundamental understanding of their effects on the properties of the 

nanocomposite.  

Various attempts to study the influence of the degree of confinement on 

the mechanical properties of polymer nanocomposites have deployed a film 

polymer model, where the authors have tried to establish a quantitative 

equivalence between the thermomechanical properties of the two systems [2-

5]. The main argument is that the properties of both systems are strongly 

influenced by polymer-surface interactions and by confinement effects, and 

that a connection exists in cases where the average diameter of the filler 

particles is orders of magnitude larger than the size of the chains.  

Bansal et al. [2] have shown that the experimental thermo-mechanical 

properties of highly filled (40 wt%) polymer nanocomposites are 

quantitatively equivalent to the well documented case of planar polymer films. 

They quantified this equivalence by drawing a direct analogy between film 

thickness and inter-particle spacing. They showed that the changes in the 

glass-transition temperature with decreasing inter-particle spacing for two 

filler surfaces are quantitatively equivalent to the corresponding thin-film data. 

Similar experiments with materials of a lower filler concentration (less 

than 1.0 wt%) showed only a qualitative equivalence between nanocomposites 

and thin films [2,5]. Kropka and coworkers examined the changes in the glass-

transition temperature of polymer nanocomposites and their equivalence to 

those of thin films, in terms of a percolation model. While the qualitative 

behavior of both systems was similar, clear quantitative differences were 

discerned. However, a phenomenological model was suggested that could use 
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results from thin film simulations to quantitatively predict the properties of 

polymer nanocomposites. 

Other authors have used the film model as a representative system in 

order to study structural, dynamical, and mechanical properties of polymer 

nanocomposites [6-10]. Batistakis and coworkers [6,7] studied the 

confinement-induced creation of glassy layers in capped polymer films, 

employing a model similar to ours. Here, we have extended these studies by 

modeling the structural changes which are induced by the combination of 

confinement effects and the crosslink density of the polymer. 

A number of simulation data are already present in the literature 

concerning the effect of crosslinking on the structural, dynamical, and 

mechanical properties of polymer systems [11-15]. Liu et al [11] performed 

molecular dynamics (MD) simulations to study the effect of the crosslink 

density on the structural and dynamical properties of a bead-spring bulk 

homopolymer system. They observed that the radial distribution function of 

the monomer segments was not affected by the presence of the crosslink 

bonds. However, the glass-transition temperature displayed a positive linear 

variation with the crosslink density, whereas the self-diffusion coefficient 

displayed a stronger (exponential) negative dependence.  

The glass transition in thin polymer films has also been widely 

examined experimentally. The reported results have shown disagreement 

among different laboratories and among different experimental methods as 

regards the Tg of polymer films in relation to that of the bulk. The generally 

accepted opinion is that the behavior of Tg in films depends on the polymer-

wall interactions and, in addition, it is particularly affected when the thickness 

of the film becomes smaller than a specified length scale [15, 16]. 

This chapter deals with how the structural properties and the glass-

transition temperature of the polymer are influenced when the chains are 

crosslinked and confined between two solid walls. Besides identifying the 

transition using only a single number Tg, we have also determined the 

differences in thermal expansivities between the rubbery and glassy states. 

3.2. Models and Methods 

3.2.1 Model Description 

We performed molecular-dynamics simulations of polymer chains confined 

between two crystalline walls using the LAMMPS software package [17]. We 
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used a coarse-grained representation of a polymer film consisting of 100 linear 

copolymer chains with a fixed size of 50 monomer segments per chain [18]. 

Eighty percent of the monomers of each chain were of type A, and we denote 

the rest as type B monomers. We use the letter W to denote the wall segments, 

all of which were of the same type. Moreover, we compared the film data with 

results produced by simulations performed in the bulk polymer. Note also that 

we assume the polymer chains were non-entangled, because the microscopic 

topological constraints we identified, were short-lived and thus unable to 

sustain stress [19]. 

We placed the system in a three-dimensional periodic box. Each wall 

was composed of three lateral layers of equally sized non-bonded beads 

arranged in a hexagonal closed packed (HCP) regular lattice. They were 

periodically infinite along the lateral dimensions, and they confined the 

polymer along the perpendicular direction, as depicted in Fig. 3.1. When we 

chose the thickness of the walls, we made sure not to violate the minimum 

image criterion, also taking into account their periodic images along the 

perpendicular direction.  

 

 
Figure 3.1: A snapshot of the simulated copolymer that is confined between 

two crystalline substrates. Different colors are used to represent 

different bead types. The red rectangle depicts the periodic 

simulation box. We created the illustration using the molecular 

visualization software VMD [20].  

 

The non-bonded interactions were modelled using the Lennard-Jones (LJ) 12-

6 potential, which included a switching function, 𝑆𝑓(𝑟), that ramped the 

energy and the force smoothly to zero between 𝑟𝑐𝑢𝑡
𝑖𝑛 = 3.25𝜎 and 𝑟𝑐𝑢𝑡

𝑜𝑢𝑡 =

3.50𝜎 [21]. 
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𝑈𝑛𝑏(𝑟) = 4휀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] + 𝑆𝑓(𝑟)      (𝑟 < 𝑟𝑐𝑢𝑡
𝑜𝑢𝑡)                                       (3.1) 

The Lennard-Jones (LJ) units of measurements are used throughout the 

chapter, i.e. m is the unit of mass, ε is the unit of energy, σ is the unit of length 

and τ is the unit of time, where 𝜏 = 𝜎√𝑚/휀. We have chosen the following 

values for the LJ parameters: σAA = σ, εAA = ε, mA = m, σBB = 1.2σ, mB = 

(σB)
3
m,  εBB = ε, σWW = 0.85σ, and εWW >> ε. The LJ parameters between beads 

of different types were calculated according to the Lorentz-Berthelot rule, 

𝜎𝑖𝑗 = (𝜎𝑖𝑖 + 𝜎𝑗𝑗)/2, but the energy parameters were fixed and predefined, i.e., 

εAB = εAW = εBW = ε. The interaction strength between the wall beads, εWW, was 

chosen high enough so as to ensure that the crystallinity of the walls was never 

broken. The size of the wall beads, σWW, was chosen smaller than the smallest 

monomer type so as to avoid the adsorption of monomers on the internal 

surface of the substrates, due to geometric constraints [6]. We did not account 

for electrostatic Coulomb interactions or for long-range energy corrections. 

Covalently bonded beads interacted through a combination of an 

attractive Finite-Extensible-Nonlinear-Elastic (FENE) potential and a 

repulsive and truncated LJ 12-6 potential (Chapter 2, 2.7) [22]. The stiffness 

and the maximum elongation of the spring were set equal to 𝑘FENE = 30 휀/𝜎2 

and 𝑟max = 1.5 𝜎. The LJ parameters ε and σ had the same values with their 

non-bonded counterparts. This particular choice of bonded and non-bonded 

interactions has been shown to prevent chain crossing [18] and crystallization 

[22-24]. An additional consequence of this model is that chains do not become 

stiffer with decreasing temperature. Newton’s equations of motion were 

integrated by the velocity Verlet algorithm, using a time step of δt = 0.001τ. 

3.2.2 System Preparation and Equilibration 

The initial dimensions of the simulation box were calculated according to the 

chosen polymer mass density of  𝜌𝑓𝑖𝑙𝑚
 = 1.0 𝑚/𝜎3. We studied three films of 

different thickness, i.e., at T = 1.5 ε/kΒ, the thickness of the films were D = 

22.5σ (thick film), D = 12.0σ (thin film), and D = 5.1σ (ultrathin film), which 

corresponded approximately to 6.2, 3.3, and 1.4 times the average radius of 

gyration of the chains in the bulk, respectively. Films of different thickness 

had different lateral dimensions, so that the mass density would be the same in 

all of them under constant number of monomer beads, so as to retain the same 
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statistical quality in all our simulations. Due to the crystallinity of the walls, 

the lateral dimensions of the box were only approximately equal, but in all 

cases the difference was kept smaller than 0.5σ. 

The initial configuration of the chains was created using a simple 

random walk algorithm. No overlap checking was conducted, and as a 

consequence, the initial structures displayed a finite number of overlaps. The 

crosslinking procedure was based on the equilibrated uncured systems. 

Crosslinks were created between monomers belonging to different chains until 

the system had reached the desired crosslinking number density (Chapter 2, 

Eq. 2.8). The first step was to refold all chains that were completely outside 

the periodic box. This was done in order to increase the number of beads 

whose distance was smaller than the specified crosslink radius. The next step 

was to identify all candidate monomer-pairs whose distance was smaller than 

the crosslink cut-off radius. Crosslink bonds were, then, created between a 

randomly chosen candidate pair of monomers, until the desired value of the 

crosslink number density was reached. Using this method, crosslinked clusters 

were created with only a small fraction of free (non-crosslinked) chains. The 

spatial distribution of crosslinks along the direction perpendicular to the walls 

was approximately uniform for all systems except for the ultra-thin film where 

a higher concentration of crosslinks was produced near the substrates rather 

than in the middle of the film. 

For both equilibration and production runs, we used the default 

LAMMPS values for the applied thermostat and barostat [17]. During the 

equilibration, the two phases of the system (polymer and walls) displayed a 

tendency to move laterally. To prevent this, the center-of-mass linear velocity 

of the wall- and polymer-phases were set individually, at each timestep, equal 

to zero. In order to minimize the wall-polymer interactions during the first 

stages of the equilibration, we set their interaction cut-off radius equal to the 

collision diameter (the distance for which the interaction energy is zero) 

between a wall and a polymer bead. In this way, monomer- and wall-beads 

repelled each other only when they collided. 

To diminish the initial overlaps among the monomers, a short MD run 

was performed, for about 100-500τ in the microcanonical (NVE) ensemble, 

while a limit was imposed on the maximum distance a bead could move in a 

single timestep. After the pressure had stabilized, the wall- and monomer-

beads were assigned random velocities which were drawn from a Gaussian 

distribution. The velocities were set such that each subsystem had an initial 
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high temperature of 1.5 ε/kB, so as to accelerate the equilibration of the 

system. 

Next, we performed constant density-temperature simulations, using the 

Berendsen thermostat, initially with repulsive adhesion interactions, for about 

30,000τ (depending on the film thickness), and afterwards, using the full LJ 

potential (Eq. 1) for another 30,000τ. The combination of a single thermostat 

with repulsive adhesion interactions resulted in a considerable amount of heat 

transfer taking place from the walls to the polymer, while the average 

temperature of the whole system remained constant and equal to the target 

value. To overcome this problem, we used two separate thermostats for the 

walls and for the polymer, during the equilibration stages when the wall-

polymer interactions were repulsive. During the final equilibration step, we 

allowed the system to relax in an unstressed state for about 30,000 τ, using the 

Nose-Hoover thermostat and barostat and by setting the normal components of 

the external pressure tensor equal to 𝑃𝑖𝑖 = 0 휀/𝜎3, where 𝑖 = {𝑥, 𝑦, 𝑧}.  

The equilibration procedure of the crosslinked systems involved only 

the last NPT stage. All  crosslink bonds were unbreakable. We regarded the 

systems as fully equilibrated after the autocorrelation function of the end-to-

end vectors (Chapter 2, Eq. 2.9) had decayed to zero [25]. In practice, we 

allowed the systems to equilibrate for longer times than the relaxation time of 

φee, to ensure a thoroughly equilibrated configuration. 

3.3 Results 

3.3.1 Effect of Cut-off Radius on the Density-Temperature 

Profile 

We studied the effect of the LJ cut-off radius on the mass density - 

temperature profiles of the non-crosslinked systems [21]. We compared two 

different cut-off schemes: in the first case, the potential was abruptly truncated 

and shifted,  

𝑈(𝑟) = 4휀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] − 𝑈(𝑟𝑐𝑢𝑡)      (𝑟 < 𝑟𝑐𝑢𝑡
 )                                           (3.2) 

whereas in the second case, a switched truncation was used (Eq. 3.1). For the 

abrupt truncation (ΑΤ), we tested two different cut-off radii of 2.5σ and 3.5σ, 

and for the switched truncation (ST), we used an inner and outer cut-off radius 

of 2.25σ and 2.5σ, respectively.  
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The equilibration procedure consisted of two stages. First, we 

performed NVT simulations at constant temperature T = 1.5 ε/kB and mass 

density ρm = 1.0 m/σ
3
. Second, we performed NPT simulations in which the 

pressure component perpendicular to the walls was set equal to 1.0 ε/σ
3
. We 

did not keep track of the lateral components of the pressure tensor. During the 

production stage of the simulations, we decreased the temperature step-wise, 

from 1.5 to 0.05 ε/kB, with a cooling rate of 0.0003 (ε/kB)/τ. The results are 

presented in Fig. 3.2. 

  

Figure 3.2: Effect of the cut-off radius on the polymer mass density (ρm) – 

temperature (T) profile for the bulk (a) and thin film (b). Using a 

larger cut-off radius results in a higher mass density. 

Apparently, the cut-off scheme, i.e., AT vs. ST, did not have a noticable 

impact on the density-temperature profile. However, that was not the case with 

the magnitide of the cut-off radius: a larger cut-off radius results in a positive 

vertical shift of the density curve. Finally, we decided to use a ST potential 

with a cutoff distance of 3.5σ for the subsequent simulations. We decided not 

to use a longer cut-off distance, aiming to avoid additional computational 

costs, and because a larger cut-off radius could interfere with the minimum 

image criterion during the simulations of the ultrathin films. 

3.3.2 Glass-Transition Temperature 

We allowed the systems to relax at T = 0.8 ε/kB and P = 0.0 ε/σ
3
, until 𝜑ee had 

decayed to zero. We performed the simulations for the calculation of the glass-

transition temperature in the NPT ensemble, lowering the temperature of the 

system by 0.2 ε/kB per 10
2
 τ in a step-wise fashion from 0.8 to 0.1 ε/kB. This 
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procedure resulted in a cooling rate of 0.2∙10
-7

 (ε/kB)/τ. The glass-transition 

temperature was determined from the change in the slope of the polymer mass 

density with the temperature, above and below the transition region [6]. It is 

evident from Fig. 3.3, that the slope change within the transition region (i.e., 

the difference in the thermal expansivity below and above the Tg), was larger 

in the films than in the bulk polymer.  

 
Figure 3.3: Density – temperature dependence for the bulk and the ultrathin 

film. Two different crosslinking densities (ρcl) are displayed. The 

average pressure was held constant and equal to zero for all 

systems. 

 

This difference is also apparent in Fig 3.4, in which the thermal expansion 

coefficient is shown for temperatures above and below the glass-transition 

temperature. The thermal expansion coefficient (CTE) is defined as 

𝛼T =
1

𝜌0
(

𝑑𝜌

𝑑𝑇
)

P
                                                                                                        (3.3) 

where ρ0 is the mass density of the polymer at T = 0.8 ε/kB.  
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Figure 3.4: Thermal expansion coefficients as a function of the polymer 

crosslinking density (see Eq. 3.3). Left: Above the Tg (rubber). 

Right: Below the Tg (glass).  

 

Fig. 3.4 shows that the CTE of the films in the rubbery state was weakly 

dependent on the degree of confinement for the two thickest films, whereas it 

was slightly smaller in the ultrathin film. This could indicate that the degree of 

confinement affected the CTE only when the average film thickness 

approached the bulk radius of gyration of the chains. In the glassy state, the 

CTE decreased when the polymer was confined and, while it was independent 

on the degree of confinement for the thick and thin films, it displayed a strong 

decrease in the ultrathin film where the film thickness was very close to the 

gyration radius of the chains in the bulk polymer. 

Apparently, the crosslinks inhibited any volume expansion in response 

to any temperature increase, for T > Tg. We attribute this decrease in CTE to 

the decreased chain flexibility in systems with a higher number of crosslinks. 

As can be seen in Fig. 3.3, the calculated CTE above the Tg decreased with 

increasing crosslink density, whereas it remained approximately constant for 

temperatures lower than the Tg. The low values of CTE below the Tg were due 

to a higher polymer density, and due to the reduced molecular mobility which 

decreases the volumetric response of the material to temperature changes.  
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Figure 3.5: Glass-transition temperature as a function of crosslinking density 

and film thickness. The average pressure is constant and equal to 

zero for all systems. 

 

The dependence of the glass-transition temperature on the crosslink density, 

and on the degree of confinement, is displayed in Fig. 3.5. It is evident that the 

Tg was only weakly affected by the crosslink density, increasing linearly with 

increasing ρcl, whereas it was strongly affected by the degree of confinement: 

a higher degree of confinement resulted in a higher glass-transition 

temperature.  

3.3.3 Local Structure and Density 

The spatial density profiles of the crosslinked and non-crosslinked systems in 

the direction perpendicular to the substrates were similar (Fig. 3.6), and 

therefore, we conclude that the adopted crosslinking method did not affect the 

conformation of the chains.  

Confining the polymer between two crystalline walls created layers of 

different densities whose relative size was independent of the degree of 

confinement. The polymer density displayed a maximum value near the walls, 

and decreased towards the middle of the film, where it became equal to the 

density of the bulk polymer. This result is in agreement with similar 

simulation results found in the literature [6]. In addition, the density layers 

became increasingly more homogeneous as we increased the temperature (not 

shown).  
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Figure 3.6: Spatial mass density profile of the monomer segments for the 

three films at Τ = 0.8 ε/kΒ. In all films, the density oscillates 

around the bulk average value. Since the profiles are symmetric 

with respect to the middle of the film, only half of the film 

thickness is shown. The vertical dashed lines indicate the middle 

of each film along the direction perpendicular to the substrates. 

 

Despite the strong structuration of the polymer in the direction 

perpendicular to the walls, neither the degree of confinement nor the crosslink 

density perturbed the lateral structure of the polymer [11]. As shown in Fig. 

3.7, the overall static structure factor displayed a sequence of peaks whose 

amplitude rapidly decreases toward unity. This is an indication of the short-

range order of the monomers, which is typically observed in amorphous 

materials.  

The location of the first sharp diffraction peak was found approximately 

at q = 7.0 σ
-1

. The overall static structure factor of the crosslinked systems 

displayed a local maximum at low magnitudes of the wavevector q, which is 

indicative of the existence of large-scale correlations (this correlation length is 

probably associated with the average distance between the crosslink 

junctions). 
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Figure 3.7: Overall static structure factor for various systems, at T = 1.2 ε/kB. 

For the film data, we have used wavevectors q parallel to the 

substrates. 

 

In Fig. 3.8, we compare the form factor for systems with different 

crosslinking density and degree of confinement: 

𝑆sc(𝑞) =
1

𝑁𝑐
⟨  ∑ ∑ exp{𝑖𝒒 ∙ (𝒓𝑗

𝑐 − 𝒓k
𝑐 )}

𝑁𝑚𝑐

k=1

𝑁𝑚𝑐

𝑗=1

  ⟩                                                 (3.4) 

where 𝑁c is the number of polymer chains,  𝑁𝑚𝑐 is the number of monomers 

per chain, and 𝒓𝑗
𝑐 is the position of the j

th
 monomer of the c

th
 chain. The solid 

line within the figure represents the Debye formula for Gaussian coils [26]: 

𝑆Debye
sc (𝑡) =

2 𝑁𝑚𝑐

(𝑞𝑅g)
4  {exp [−(𝑞𝑅g)

2
] + (𝑞𝑅g)

2
− 1}                                   (3.5) 

where the radius of gyration of the chains, Rg, was calculated from the 

simulations. It is evident that the form factor in all of the systems agreed well 

with the Debye function, which implies a Gaussian conformation of the chains 

on all length scales. 
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Figure 3.8: Form factor for various systems, at T = 1.2 ε/kB. For the film data, 

we have used wavevectors q parallel to the substrates. The slope 

in the scaling regime was calculated equal to -2 and -1.9 for the 

bulk and films, respectively, which indicates that the chains adopt 

random coil conformations. The Debye function is also plotted 

(Eq. 3.8). 

3.4 Conclusions 

We employed a coarse-grained copolymer model to study the thermal-

volumetric and structural properties of capped polymer films. We calculated 

the dependence of the mentioned properties on the polymer crosslink density 

and on the degree of confinement (film thickness), using molecular-dynamics 

simulations. We characterized the thermal and volumetric properties by 

computing the density, the thermal expansion coefficient, as well as the glass-

transition temperature.  

We computed the structural properties of the mentioned systems by 

calculating the overall static structure factor of the monomers, and the form 

factor of the polymer chains. We saw that the degree of confinement did not 

influence the equilibrium structure of the polymer along the direction parallel 

to the walls. In this direction, the chains adopted Gaussian conformations, and 

the structure resembled that of an amorphous liquid. However, confining the 

polymer between the two walls led to the development of density layers along 

the perpendicular direction. 

Last, we found that the glass-transition temperature increased linearly 

with an increase in the crosslink density, while it displayed a stronger 
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dependence on the degree of confinement (increasing with a decreasing film 

thickness). We attribute this increase in Tg to the decreased mobility of the 

monomer segments when both the crosslinking density and the degree of 

confinement were increased. To assert this assumption, we analyzed the 

dynamic response of the systems in Chapter 4 of the present thesis. 
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Chapter 4 

A coarse-grained molecular-dynamics study 
of segmental structure and mobility in 

capped crosslinked copolymer films 

Abstract 

In this chapter we present results from molecular-dynamics simulations of a 

generic bead-spring model of copolymer chains confined between solid walls 

and report on the segmental dynamics as a function of film thickness and mesh 

size (the end-to-end distance of the subchains in the crosslinked polymer 

networks). Apparently, the glass-transition temperature displayed a steep 

increase for mesh-size values much smaller than the radius of gyration of the 

bulk chains; otherwise it remained invariant to mesh-size variations. The rise 

in the glass-transition temperature with decreasing mesh size and film 

thickness was accompanied by a monotonic slowing-down of segmental 

dynamics on all studied length scales. This observation is attributed to the 

correspondingly decreased width of the bulk density layer that was obtained in 

films whose thickness was larger than the end-to-end distance of the bulk 

polymer chains. To test this hypothesis additional simulations were performed 

in which the crystalline walls were replaced with amorphous or rough walls. 

In the amorphous case, the high polymer density close to the walls vanished, 

but the dynamic response of the film was not affected. The rough walls, on the 

other hand, only slightly decreased the density close to the walls, and led to a 

minor slowing-down in the dynamics at large length-scales. 

 

 

 

 

 

∗The contents of this chapter have been published in: J. Chem. Phys. 2015, 

143, 074906. 
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4.1 Introduction  

It is well established that polymer properties change when the material is 

supported on a substrate or confined between walls whose distance approaches 

nanoscopic length scales. Thin polymer films are important for the 

microelectronics industry [1,2], and confined polymers in general have been 

frequently used as a simplified model of composite materials in which 

confinement effects play an important role in affecting macromechanics, 

friction, and wear resistance [3-6].  

Polymer nanocomposites, especially, comprise a family of materials 

with abundant industrial applications, e.g., in the manufacturing of car tires. 

The mechanical properties of elastomer-based nanocomposites, consisting of 

inorganic nanoparticles dispersed in the polymer matrix, depend drastically on 

the interactions between the polymer matrix and the nanofillers [7,8]. 

Different dynamic moduli can be obtained by tuning these interactions, which 

leads to the desired increase of mechanical reinforcement at low strain 

magnitudes. However, a significant loss of the composite’s rigidity appears at 

higher strain magnitudes. This loss of rigidity is colloquially called the ‘Payne 

effect’ [9]. It is believed [10] that the Payne effect arises from the interrelation 

of the material’s viscoelastic properties with its microstructure, the polymer’s 

segmental mobility (especially in the interfacial layers), and the chemistry-

specific polymer-filler interactions [11]. Rigorous control of molecular-scale 

phenomena may therefore lead to the design of improved nanocomposites 

with tailor-made mechanical properties. Contemporary computer simulations, 

complementary to experimental investigations, constitute an exemplary 

approach for providing additional insight into the essential physical 

mechanisms that are responsible for the modified mechanics of filled 

elastomers in relation to the mechanical properties of bulk polymers. In such 

composite materials additional interfaces are created once the filler volume 

fraction is increased, which may result in a situation where the polymer chains 

will be effectively confined among the filler particles [12,13].  

To study these confinement effects we performed molecular-dynamics 

(MD) simulations of bead-spring polymer films confined between two solid 

(crystalline and amorphous) walls. Simulations of the corresponding bulk 

polymer were also performed to provide with necessary comparisons. In 

Chapter 3 [13] we discussed the influence of confinement and crosslink 

density on the structural properties of the polymer melt, whereas presently we 
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focused our attention on segmental dynamics. The influence of the walls’ 

structure on the density distribution and mobility of the confined polymer is 

also discussed. Note that we did not intend to provide a thorough review of the 

research efforts devoted to confinement effects, which is a formidable task in 

itself, but instead mentioned below only a few, and from our point of view, 

important studies.  

The dynamics in thin polymer films have been studied extensively with 

a variety of experimental methods [14-22]. The consensus is that the dynamic 

response of a polymer film is highly dependent on the degree of confinement, 

the presence of free interfaces, and the polymer-wall interactions. The results, 

though, seem rather influenced by the employed experimental technique and 

the preparation procedure of the samples, as contradictory results have often 

been reported. For instance, a number of ellipsometry [23,24] and fluorescence 

[25] results indicate a large suppression in the Tg, whereas incoherent neutron 

scattering experiments suggest both enhancement and suppression in the Tg, as 

inferred by mobility measurements [26 – 30]. The effect of the polymer-wall 

interactions becomes important when the thickness of the film becomes 

smaller than a specified length scale [22,31]. Dynamic fragility, a measure of 

the glass transition abruptness of glass-forming materials, has been employed 

to explain why certain polymers display different confinement effects from 

others. For example, recent results of Evans et al. [32], obtained by differential 

scanning calorimetry experiments with single-layered polymer films supported 

on silicon substrates (systems with no substantial polymer-substrate 

interactions), showed a one-to-one correlation between higher fragility and the 

amplitude of the Tg shift upon changing the film thickness.  

Simulations of polymer chains confined between structureless, 

attractive walls, have shown an acceleration in the dynamics compared to the 

bulk polymer [33]. A similar behavior has been observed in films with 

structured walls and high polymer density[12], whereas the opposite has been 

reported in films of lower density [34]. Binder et al. [33] performed 

molecular-dynamics and Monte Carlo simulations of short polymer chains 

confined between structureless walls, and reported an acceleration of the 

overall segmental dynamics upon increasing the degree of confinement. A 

higher segmental mobility in the interfacial layers than in the middle layers of 

the films was observed as well. The authors argued in favor of the lubricating 

effect of the walls: presumably the smooth surface did not exert any friction 

on nearby monomers and therefore caused an overall acceleration of the 
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segmental relaxation process. Simulations of freely-standing atactic-

polypropylene films, performed by Mansfield and Theodorou [35], suggested 

that the role played by a free interface is to increase the mobility of the nearest 

polymer segments, and therefore to reduce the overall glass-transition 

temperature of the films. Essentially, it has been confirmed that the glass-

transition temperature in films is significantly different than that of the bulk, 

depending on the strength of the wall-polymer interactions [36,37]. In 

addition, molecular-dynamics simulations of a filler particle surrounded by 

polymer chains showed that for attractive polymer-filler interactions the glass-

transition temperature was higher than in the pure polymer melt, whereas the 

opposite was observed when unfavorable adhesion interactions were 

employed [38]. 

Despite the high attention that has been given to the effect of 

confinement and adhesion interactions on the glass-transition temperature and 

segmental dynamics in thin polymer films, the combined effect of crosslinking 

and confinement is much less investigated, especially with molecular-

dynamics simulations [39]. Lin and Khare [40] used a single-step 

polymerization algorithm to generate a crosslinked epoxy-based composite 

and concluded that the incorporation of filler particles (which essentially 

confined the polymer matrix in between) decreased the volumetric thermal-

expansion coefficient but did not change the glass-transition temperature. Liu 

et al. [41,42] performed molecular-dynamics simulations of model elastomers 

to study the effect of temperature, pressure, and crosslink density variations on 

structure and dynamics. They reported an increased glass-transition 

temperature Tg with increased pressure or degree of crosslinking, and showed 

that the time-pressure superposition principle was valid at the chain length 

scale but failed at smaller scales, seemingly due to the increased heterogeneity 

in the relaxation of the incoherent scattering function, whereas the opposite 

was observed for the time-temperatrure superposition. Fan and Yuen [43] 

simulated the glass-transition temperature, the linear thermal-expansion 

coefficients, and Young’s modulus of cured epoxies, and showed that the 

simulated thermomechanical properties were in close agreement with 

experimental results. Bandyopadhyay et al. [44,45] studied the distribution of 

crosslinks in epoxy polymers and found that the coefficient of thermal 

expansion (CTE) decreased with increasing the degree of crosslinking, and 

attributed their observations to the (crosslink induced) inhibition of the 

polymer-network volume expansion upon heating. Yang et al. [46] employed 
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MD simulations to calculate a collection of thermomechanical properties in 

crosslinked epoxy networks: upon crosslinking the Tg increased whereas the 

CTE in the rubbery state decreased. They also showed that the CTE in the 

glassy state did not depend on the curing degree, in good agreement with 

existing simulations.  

The purpose of the present study is to provide with rather general 

insights on the effects that the surface structure (crystalline vs amorphous), 

crosslink density ρcl and film thickness Lfilm may exert on the glass-transition 

temperature and segmental relaxation of the bead-spring copolymer model. 

Further, we aim to produce a basis for future studies which will attempt to 

connect the macroscopic mechanical properties to the microscopic dynamics 

that are observed in similarly confined polymer models. Therefore, no effort 

was made to provide a one-to-one correspondence with experimental results 

since we are interested in the generalized “universal” behavior of confined 

polymers and not in properties that may depend on chemical details. 

Implications concerning the development of heterogeneous dynamics in 

polymer films are also discussed.  

The employed model is described in Section 4.2. In Section 4.3 we 

present our findings on the influence of variations in crosslink density and 

confinement on the glass-transition temperature in films with crystalline walls. 

Subsequently, we consider the segmental relaxation by means of the 

incoherent intermediate scattering function, which can be probed by neutron 

scattering experiments and allows the examination of the dynamic response of 

the films on different length scales. This section culminates in a discussion 

concerning the influence that was exerted by the geometrical properties of the 

walls on the structure and dynamics of the confined polymer, which was 

modeled by means of the spatial distribution of monomers upon replacing the 

crystalline walls with amorphous ones. The Chapter is finalized in Section 4.4 

with conclusions. 

4.2 Simulated models and methods 

We performed molecular-dynamics constant temperature – constant 

pressure (NPT) simulations of coarse-grained, amorphous polymer systems 

consisting of non-entangled polymer chains, confined between two crystalline 

or amorphous walls. The simulations were performed using the LAMMPS 

MD software package [47]. Newton’s equations of motion were integrated 
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using the velocity-Verlet algorithm with a time step of δt = 0.001τ. Periodic 

boundary conditions were implemented in all three dimensions of the 

simulation box. The polymer melt consisted of 100 linear random copolymer 

chains of 50 monomers per chain. 40 of the monomer units in each chain (type 

A) were of different type than the rest (type B). Each crystalline wall was 

composed of three lateral layers of equally sized non-bonded beads arranged 

in a hexagonal closed packed regular lattice. They were periodically infinite 

along the lateral dimensions and confined the polymer melt along the 

perpendicular direction (Chapter 2, Fig. 2.1). We used three layers, which 

along with their periodic images amounted to six layers for each of the two 

walls, to avoid interactions among the polymer chains and their periodic 

images. The thickness of the six crystalline wall layers was calculated equal to 

4.64𝜎 regardless of temperature or pressure (for the units of measurement, 

refer to Chapter 2.3).  

Non-bonded interactions were modelled with a modified Lennard-Jones 

(LJ) 12-6 potential, 

𝑈𝑛𝑏(𝑟) = 4휀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] + 𝑆𝑓(𝑟)  (𝑟 < 𝑟𝑐𝑢𝑡
𝑜𝑢𝑡)                                           (4.1) 

In Eq. 4.1, 𝑆𝑓(𝑟) denotes a switching function that ramped the energy (and 

force) smoothly to zero between 𝑟𝑐𝑢𝑡
𝑖𝑛 = 3.25𝜎 and 𝑟𝑐𝑢𝑡

𝑜𝑢𝑡 = 3.50𝜎 [23].The LJ 

parameters for the monomer units were σAA = σ, εAA = ε, mA = m, σBB = 1.2σ, 

mB = (σB)
3
m, εBB = ε, and for the beads of the crystalline walls σSS = 0.85σ and 

εSS = 100ε. The LJ parameters between beads of different types were 

calculated according to Lorentz-Berthelot rule, 𝜎𝑖𝑗 = (𝜎𝑖𝑖 + 𝜎𝑗𝑗)/2, but the LJ 

energy parameters were predefined, i.e., εAB = εAW = εBW = ε. The interaction 

strength between wall beads, εWW, was chosen high enough to ensure the 

crystallinity of the walls was never broken. This high value of εWW was the 

reason of the relatively small timestep magnitude that was chosen. The size of 

the wall beads, σWW, was smaller than the smallest monomer type to avoid the 

adsorption of the monomer units on the internal wall layers [14]. The chosen 

parameters were based on previous studies of similar model systems [12]. The 

amorphous walls were created by increasing the diameter of a random number 

of wall-beads from its original value of 0.85𝜎 to 1.10𝜎 whereupon the whole 

system was relaxed to a new state of equilibrium. 
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Covalently bonded beads interacted through a combination of an 

attractive Finite-Extensible-Nonlinear-Elastic (FENE) potential and a 

repulsive and truncated LJ 12-6 potential (Chapter 2, 2.7) [15]. The stiffness 

and maximum elongation of the bonded potential were set equal to 𝑘FENE =

30 휀/𝜎2 and 𝑟max = 1.5𝜎 respectively. The LJ parameters ε and σ had the 

same values as their non-bonded counterparts. This particular choice of 

bonded and non-bonded interactions prevents chain crossings [16] and full 

crystallization [17,18,43],
 
and allows the system to undergo a transition to a 

supercooled state, allowing thus the study of the glass-transition temperature 

in a generalized context (i.e., disregarding material-specific properties).
 

Further, bead-spring polymer chains do not become stiffer with decreasing 

temperature. The effect of these characteristics of the employed model on the 

conformational behavior of the chains, especially at low temperatures, was not 

included in the present investigation. Last, we note that the smaller length 

scale accessible to these kinds of models is related to the typical Kuhn-length 

values of rubbers (about 1𝑛𝑚) [48]. 

 

 
Figure 4.1: Simulated film thickness as a function of temperature in the films 

with crystalline walls. The thickness of the film was decreasing 

with decreasing temperature, while the average lateral dimensions 

of the periodic box remained constant owing to the crystallinity of 

the walls. In each case, an average isotropic pressure 𝑃 = 0휀/𝜎3 

was imposed on the whole system. The error bars were smaller 

than the size of the data points. 

 

Three polymer films with different thickness were simulated. At fixed 

temperature T = 0.8 ε/kΒ and isotropic pressure 𝑃 = 0 휀/𝜎3 the thicknesses of 
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the films with crystalline walls were 18.8σ (thick film), 10.1σ (thin film), and 

4.3σ (ultrathin film), which approximately corresponded to 5.2, 2.8, and 1.2 

times, respectively, larger than the average radius of gyration of the chains in 

the non-crosslinked bulk. Films with different thickness had different lateral 

dimensions so that, under constant number of monomer beads, they would 

have the same film-averaged mass density at fixed temperature and pressure, 

thus retaining the same statistical quality of the simulation results. Due to the 

crystallinity of the walls the lateral dimensions of each film were only 

approximately equal, but in all cases the difference was smaller than 0.5σ. The 

thickness of the films decreased with decreasing temperature, with a larger 

absolute decrease observed in thicker films (Fig. 4.1).  

 During both the equilibration and production runs we used the values 

recommended in the LAMMPS manual for the thermostat and barostat 

parameters, i.e., the temperature and pressure were allowed to relax to the 

specified value over a time-span of 0.1τ and 1.0τ, respectively [47]. We 

regarded the simulated systems as equilibrated after the autocorrelation 

function 𝜑ee(𝑡) of the end-to-end vector Ree of the chains (Chapter 2, Eq. 2.8) 

had decayed to zero. In reality, we allowed the systems to equilibrate for 

longer times (Δ𝑡 ≈ 90,000𝜏) than the relaxation time of φee to ensure that a 

thorough equilibration was established. The equilibration procedure was 

described in more detail in Chapter 3 [13]. 

We simulated both crosslinked and non crosslinked polymer systems, 

using a static method of crosslinking to produce the polymer networks. 

Namely, the last snapshot of the equilibration trajectory of each system was 

used to create crosslink bonds between randomly chosen pairs of monomer 

units (regardless of their type) until the desired value of the crosslink (number) 

density (Chapter 2, Eq. 2.8) was achieved. The following crosslinking 

protocol was employed: First, all the monomer pairs belonging to different 

polymer chains lying at a distance shorter than 1.4𝜎 (smaller than the 

maximum elongation length of the FENE springs) were identified. 

Subsequently, the order of the chosen pairs was “shuffled” using a pseudo 

random number generator. Last, a number of those pairs were linked by the 

same FENE springs, starting from the first one in the shuffled sequence, until 

the target crosslink density was reached. Using this method, crosslinked 

clusters were created with only a small fraction of free (non-crosslinked) 

chains. We used the following crosslink density values of 𝜌𝑐𝑙 = {1, 2, 3, 4, 8} 

crosslinks per chain, which corresponded to a variable mesh size (the end-to-
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end distance of the subchains) 𝐿mesh = {4.7, 3.0, 2.3, 2.2, 1.7}𝜎. The 𝐿mesh 

values were calculated directly from the simulation trajectories. The standard 

deviation of the average mesh-size values was approximately 0.8 − 1.7𝜎 

(higher average value of the mesh size corresponded to a higher standard 

deviation). Thus, the polydisperisty of the end-to-end distance of the sub-

chains of the crosslinked mesh was rather high, since the standard deviation 

was comparable to the average mesh size value. We also note, that a number 

of free chains was always present in the crosslinked systems. 

The end-to-end distance of the polymer chains was calculated equal to 

𝑅𝑒𝑒 = 8.9 ± 0.1𝜎, by averaging over all studied systems at T = 0.8 ε/kB 

including all different crosslink densities and degrees of confinement, and the 

radius of gyration was 𝑅𝑔 = 3.6 ± 0.1𝜎. The latter was found not much 

different than the radius of gyration of the bulk polymer chains at the same 

temperature, 𝑅𝑔
0 = 3.7 ± 0.1𝜎. The spatial distribution of crosslinks along the 

direction perpendicular to the walls displayed some deviations from 

uniformity, as a higher concentration of crosslinks was produced closer to the 

walls. This was probably due to a higher polymer density in the polymer-wall 

interfacial layers than in the middle of the films [13].
 

The effect of film thickness and mesh-size on segmental mobility was 

studied at temperatures above Tg(Lfilm, Lmesh), i.e., above the glass-transition 

temperature of a specific film of thickness Lfilm and mesh size Lmesh. All 

simulated systems can be safely regarded as well-equilibrated in this high-

temperature range. To further study the relaxation of single ‘particle’ motions 

we calculated the incoherent intermediate scattering function Sinc(q,t) (Chapter 

2, Eq. 2.10), which is measured in neutron-scattering experiments to probe the 

various relaxation modes in macromolecular systems on different length scales 

[19, 20].
 
In Section 4.3 we present our simulation results of the incoherent 

relaxation in the region between q = 7.0 σ
-1

, which corresponded 

approximately to the first peak in the overall static structure factor [13], and q 

= 1.0 σ
-1

, which corresponded to a length scale between the end-to-end 

distance and the gyration radius of the chains. The Sinc(q,t) for a given q was 

computed by calculating the average value of three wave vectors q with the 

same magnitude but different directions along the primary Cartesian axes, 

unless otherwise stated.  
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4.3  Results and Discussion 

4.3.1 Glass-transition temperature 

Simulations of coarse-grained polymers can only access dynamical processes 

on scales larger than the effective bead size; local (intra-monomer) scale 

dynamics are inaccessible. Nevertheless, these large scale dynamics are those 

which are mainly responsible for controlling the rheological properties of a 

glass-forming material [49]. These properties depend considerably on how 

larger or smaller is the working temperature from the Tg, and therefore we 

devoted a part of our research for the computation of the glass-transition 

temperature of the studied films.  

We followed a volumetric method to calculate the Tg (Fig. 4.1), which is 

similar to the experimental determination of the Tg using ellipsometry. The 

procedure was the same as the one followed in Chapter 3. Namely, after the 

simulated systems were equilibrated at T = 1.5 ε/kB and P = 0 ε/σ
3
, we 

performed NPT simulations during which we kept lowering the temperature 

by 0.02ε/kB per 10
3 
τ in a stepwise fashion from 1.5 ε/kB to 0.1ε/kB. The Tg was 

determined from the change in slope of the film-averaged density-temperature 

curves above and below the glass-transition region [13, 14].  

 

         

Figure 4.2: The dependence of the glass-transition temperature (a) and the 

ratio of the glass-transition temperatures among the films and the 

bulk polymer (b) on the mesh size, for films of different 

thickness.  

 

The simulations showed that the Tg values were affected by variations in both 

crosslink density (or equivalently, the mesh size Lmesh) and film thickness, but 

(a) 
(b) 
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to a different extent. The calculated Tg in the films was higher than the Tg in 

the bulk under the same constant mesh size value (Fig. 4.2). A smaller film 

thickness resulted in a higher Tg. The size of the crosslinked mesh was found 

to affect the Tg only when 𝐿𝑚𝑒𝑠ℎ ≪ 𝑅𝑔, where 𝑅𝑔 is the radius of gyration of 

the non-crosslinked chains. Confinement led to a strong increase of the glass-

transition temperature compared to the corresponding bulk values. The 

𝑇𝑔
𝑓𝑖𝑙𝑚

/ 𝑇𝑔
𝑏𝑢𝑙𝑘 ratio, however, was not affected by the mesh size, and was equal 

to 1.1, 1.15, and 1.5, for the thick, thin, and ultrathin film, respectively (Fig. 

4.2b). A gradual alignment of the intra-chain bonds parallel to the crystalline 

walls was observed near the polymer-wall interface as the temperature was 

approaching the glass-transition value (not shown). 

4.3.2 Segmental dynamics 

Overall, a smaller film thickness or a smaller mesh size resulted in a slower 

relaxation of single-bead motions. It should be noted, though, that these two 

parameters were not decoupled: a change in the mesh size induced also a small 

change in the film thickness. The change in thickness among the non-

crosslinked and the highest crosslinked films (Lmesh = 1.7σ) was 3%, 2%, and 

4% for the thick, thin and ultrathin films, respectively, at T = 0.8 ε/kB. At the 

same temperature, the large-scale long-time decay of the film-averaged 

𝑆𝑖𝑛𝑐(𝑞, 𝑡) culminated in non-zero plateaus whose magnitude depended on q, 

when large-scales motion were probed [21]. 

Since no plateaus were detected in the relaxation of the film averaged 

𝑆inc(𝑞, 𝑡) in the non-crosslinked polymer bulk, their appearance in the non-

crosslinked films can be reasonably attributed to the confinement effect of the 

walls, i.e., to the induced maximum attainable displacement of the polymer 

segments along the direction perpendicular to the walls. In those systems, 

plateaus were observed on large length-scales, i.e., length-scales comparable 

to the size of the polymer chains, Figure 4a. As the film thickness decreased, 

and larger length-scales were probed, the magnitude of the plateaus increased. 

In the thick (𝐿film ≈ 18.8𝜎) and thin (𝐿film ≈ 10.1𝜎) films, at T = 0.8 ε/kB, 

the film averaged relaxation displayed a pronounced plateau only at 𝑞 =

1.0𝜎−1 (𝑙1 = 6.3𝜎) and, presumably, at larger length-scales. In the ultrathin 

film, however, we observed plateaus already for 𝑞 < 3.0𝜎−1, i.e., for 

scattering lengths 𝑙q > 2.1𝜎. The film thickness in this case, 𝐿film ≈ 4.3𝜎, 

was smaller than the largest probed length-scale, 𝑙1 = 6.3𝜎. In contrast, the 
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relaxation of 𝑆inc
||

(𝑞𝑥𝑦, 𝑡), when only dimensions parallel to the walls were 

taken into account, always decayed to zero, Figure 4b. In general, at T = 0.8 

ε/kB, plateaus in the relaxation of the film averaged 𝑆inc(𝑞, 𝑡) were observed 

on length-scales that were at least half the film thickness.  

 

  

Figure 4.3: Relaxation of 𝑆inc(𝑞, 𝑡) in the non crosslinked thick and ultrathin 

film at 𝑇 = 0.8 휀 𝑘B⁄  and 𝑃 = 0.0 휀 𝜎3⁄ . Only large scale 

relaxations are shown, i.e., 𝑞 = {1, 2, 3}𝜎−1 or 𝑙q =

{6.3, 3.1, 2.1}𝜎. The values of q were calculated by averaging 

over q vectors with the same magnitude q along the three 

principal Cartesian axes (a) and the two Cartesian axes parallel to 

the walls (b).  

  

The appearance of non-zero plateaus in the relaxation of 𝑆inc(𝑞, 𝑡) was more 

noticeable in the crosslinked systems, which indicates the extra hindrance to 

large-scale flow upon crosslinking (Fig. 4.4). The influence of the mesh size 

on the magnitude of the plateaus was stronger than the influence of the film 

thickness. The decay of 𝑆inc(𝑞, 𝑡) at q = 1.0σ
-1

 was significantly slower in the 

strongly crosslinked systems, due to the considerable constraints that were 

imposed by the crosslinks on large scale motions. On the other hand, on 

shorter scales, where the mesh size was comparable or even larger than the 

probed length scale of relaxation lq, the mesh size had a much weaker effect 

on the decay of 𝑆inc(𝑞, 𝑡). For instance, the mesh size in the highest 

crosslinked systems, 𝐿𝑚𝑒𝑠ℎ = 1.7𝜎, was noticeably larger than the shortest 

(a) (b) 
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length scale of relaxation, 𝑙7 = 0.9𝜎, and therefore could not have affected the 

mobility of such small segments. 

 

  

Figure 4.4: Decay of Sinc(q,t) at (a) the chain scale defined by 𝑞 = 1.0𝜎−1 and 

(b) the monomer scale defined by 𝑞 = 7.0𝜎−1. For illustrative 

purposes, only the relaxation in the thick film and the bulk polymer 

are shown. The decay of Sinc(q,t) in the rest of the films was 

qualitatively similar. The temperature was T = 0.8 ε/kB, and the 

average pressure was held equal to zero. Results are shown for 

non-crosslinked systems and for ρcl = 2, 8 crosslinks per chain. 

  

To account for the non-zero plateau values in the decay of 𝑆inc(𝑞, 𝑡) we 

extracted the relaxation times of 𝑆inc(𝑞, 𝑡) by fitting it with a modified form of 

the KWW stretched exponential function [43], 

𝑆𝑖𝑛𝑐(𝑞, 𝑡) = (1 − 𝛼) exp [− (𝑡
𝜏𝑞⁄ )

𝛽

] + 𝛼                                                       (4.2) 

In Eq. 4.2, α is the magnitude of the plateau, and 𝜏𝑞 is the characteristic time 

of relaxation on a length scale defined by the magnitude q. The exponent β is 

used to quantify the deviation from the exponential decay. Values of β that are 

smaller than unity can be attributed either to the development of 

heterogeneous dynamics or to a single homogeneous (but non exponential) 

relaxation mechanism [43].  

The obtained characteristic relaxation times displayed a dependence on 

film thickness and mesh size that was similar to the dependence of the glass-

transition temperature on the same parameters (compare Figures 4.2 and 4.5). 

(a) (b) 
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The 𝜏𝑞
𝑓𝑖𝑙𝑚

/𝜏𝑞
𝑏𝑢𝑙𝑘 ratio displayed a similar behavior, whereas (as we have 

already mentioned) the 𝑇𝑔
𝑓𝑖𝑙𝑚

/𝑇𝑔
𝑏𝑢𝑙𝑘 ratio was not affected by the size of the 

crosslinked mesh. The Kuhn-length of the polymer chains was calculated 

equal to 𝐿𝐾 = 1.55𝜎, based on the end-to-end distance of the chains, averaged 

over all the simulated systems. The onset of the increase in the relaxation 

times can be distinguished at a length-scale in-between the radius of gyration 

and the Kuhn-length of the polymer chains, which may indicate the 

characteristic alpha-relaxation scale. 

 

 

 Figure 4.5: Evolution of characteristic relaxation times τq with mesh size for 

different values of the film thickness. Results are shown at two 

different length-scales: the chain scale, defined by q = 1.0σ
-1

 (left 

panel), and the segmental scale, defined by q = 7.0σ
-1

 (right 

panel). 

 

For Rouse segmental dynamics [50], the dependence of the relaxation time 𝜏𝑞 

on the probed length scale is expected to follow the power law 𝜏𝑞~𝑞−4, 

though in polymer melts approaching the glass-transition, a crossover to a 

time scaling of 𝜏𝑞~𝑞−2 can be observed, signifying a departure from dynamic 
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homogeneity
51

. In any case, in thin polymer films a departure from 

homogeneity should be anticipated even when temperature is larger than Tg. 

To examine the power law scaling 𝜏𝑞~𝑞−𝑚, we fitted the calculated 

relaxation times at 𝑇 =  0.8 휀/𝑘B in the interval 𝑞 ∈ [1.0, 7.0]𝜎−1 (Fig. 4.6a) 

[13]. The value of the scaling exponent m displayed a non-monotonic 

dependence on confinement. Concerning its dependence on the mesh-size, m 

values were fluctuating around 3.2 in the non- and weakly-crosslinked 

systems, depending on film thickness (Fig. 4.6b). For mesh-size values 

smaller than the radius of gyration of the bulk polymer chains, the value of m 

decreased rapidly. This decrease might have been induced by increased 

heterogeneity caused by the presence of the crystalline walls.  

 

  

Figure 4.6:  (a) Dependence of the characteristic relaxation times τq on the 

magnitude of the scattering vector q for the bulk polymer and the 

ultrathin film at different values of the crosslinked mesh size. The 

temperature is T = 0.8 ε/kB. (b) Dependence of the scaling 

exponent m on the mesh size. 

 

Higher dynamic heterogeneity in thinner films with higher crosslink density 

was also implied by the KWW β exponent, which displayed a similar 

qualitative behavior upon changing the film thickness or mesh size, as smaller 

values of β imply a broader distribution of relaxation times which is in turn 

related to the higher dynamic fragility of glass-forming polymer melts [43]. 

The exponent β decreased linearly with a decreasing mesh size for 𝐿mesh >

𝑅g, after which a rather steep decrease was observed for mesh-size values 

smaller than 𝑅g (Fig. 4.7).  

(a) (b) 
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Figure 4.7:  The KWW β coefficient at 𝑞 = 1.0𝜎−1 and 𝑞 = 7.0𝜎−1as a 

function of the mesh size for different values of film thickness at 

temperature T = 0.8 ε/kB. Smaller values of β imply a broader 

distribution of relaxation times. Evidently, shortening the mesh 

size resulted in a similarly weak decreasing of β on all studied 

length-scales, whereas the effect of film thickness was more 

significant on smaller length-scales rather than larger ones. The 

solid line represents the mean value of the data points averaged 

over all values of the film thickness.  

 

This behaviour was detected for all simulated length scales (0.9σ to 6.3σ). On 

the other hand, the effect of confinement on β was more pronounced when 

small size segments were probed, i.e., 𝑙q < 2.1𝜎, whereas it was gradually 

damped on larger length-scales. On these scales, thinner films displayed lower 

β values. This is illustrated in Fig. 4.8 where a higher deviation from the 

Arrhenius temperature dependence of the characteristic relaxation time can be 

seen in more crosslinked and thinner films. The monotonic decrease of the β 

coefficient with decreasing mesh size is in agreement with previously 

published simulation results [43], while similar results have also been obtained 

experimentally in bulk polymer networks [52–54]. We assume the spatial 

distribution of crosslink bonds deviated from the homogeneous case, and since 

the mobility of a monomer bead depends on the mobility of its neighboring 

beads, distinct monomer beads were exposed to different dynamic 

environments.  

(a) (b) 
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 Figure 4.8:  Temperature dependence of local (segmental) relaxation times. 

A larger deviation from the Arrhenius dependence was observed 

upon decreasing the mesh size or the film thickness. The dashed 

line illustrates the Arrhenius dependence. 

4.3.3 Effect of wall structure 

Thinner films, as well as any film in relation to the bulk polymer, displayed a 

larger deviation from the Rouse dynamics, lower values of the film averaged 

KWW β exponent, and a larger deviation from the Arrhenius temperature 

dependence of the characteristic relaxation times. These results may be 

attributed to the increased number of oscillations in the density distribution of 

the monomer beads along the direction perpendicular to the walls [13].
 
At a 

distance 𝑧 < 4𝜎 from the walls the monomer units were distributed in 

oscillating density layers of gradually decreasing amplitude (Fig. 4.9), which 

has already been reported by previous simulation results in films [12], as well 

as in nanocomposites [55]. The average density farther away from the walls in 

the thick and thin films was constant and equal to the bulk value, whereas in 

the ultrathin film (𝐿film < 𝑅g) no bulk density layer was observed. Overall, the 

bulk density layer was smaller in thinner films. The density distribution along 

the direction perpendicular to the walls was therefore more inhomogeneous in 

thinner films, which might have induced the development of distinct dynamic 

environments, thus leading to a wider spectrum of relaxation processes.  
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Figure 4.9: Spatial distribution of the polymer mass density as a function of 

the distance from the crystalline walls along the perpendicular 

direction (in the thick film). Only half of the film is shown. (a): 

Density distribution in the thick film at different temperatures. 

(b): Density distribution in the thick film with different mesh size 

values at T = 0.8 ε/kΒ. The width and position of the density layers 

were not affected by either mesh size or temperature. 

 

The structure of the films perpendicular to the walls was not affected 

noticeably by the mesh size (Fig. 4.9b), whereas a higher temperature resulted 

in a decreased amplitude of peaks in the density profile (Fig. 4.10a). This 

effect was damped for the density layers farther away. This observation is 

attributed to entropic effects resulting in a less ordered packing of the 

monomer units at higher temperatures, which led to a decreased film-averaged 

polymer density. Note also that although the film-averaged density was 

smaller at lower temperatures, the density layers appeared at the exact same 

distance from the wall. The fact that the positions of the oscillating density 

layers fell on top of each other in the three films implies a constant thickness 

of the wall-polymer interphase independent of the thickness of the film.  

 Note that the calculated density distributions were identical regardless 

of whether we performed the simulations under the NPT or NPzT ensemble 

(not shown), during the latter of which we only allowed the pressure 

component perpendicular to the walls to fluctuate around  𝑃𝑧𝑧 = 0휀/𝜎3 while 

keeping the lateral pressure components constant. 

To affirm whether the observed ordering of the monomer beads close to 

the walls was induced by the latter’s crystalline structure, we performed 

additional simulations, first, of the thick film at 𝑇 = 1.5 휀/𝑘𝐵, in which the 

(a) (b) 
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crystalline walls were replaced with amorphous walls, and second, of all the 

films (thick, thin, and ultrathin), at 𝑇 = 0.8 휀/𝑘𝐵, in which we replaced the 

crystalline with rough walls (Chapter 2, Fig. 2.2). 

 
Figure 4.10: Spatial distribution of the polymer mass density in the non-

crosslinked thick film as a function of the distance from a wall, 

calculated from an NPT simulation at isotropic pressure 

𝑃 = 0.0 휀/𝜎3and 𝑇 =  1.5 휀/𝑘𝐵. Only half of the film is 

shown. 

 

The amorphous walls were created by increasing the diameter of half of the 

wall beads from their original value of 0.85𝜎 to 1.10𝜎 whereupon we let the 

whole system equilibrate at the same temperature under NPT conditions. We 

subsequently subjected the thick film to NPT simulations, at temperature 

𝑇 = 1.5 휀/𝑘𝐵 and isotropic pressure 𝑃 = 0.0 휀/𝜎3, for Δ𝑡 = 20,000𝜏. During 

the simulations the volume of the simulation box increased from 𝑉𝑏𝑜𝑥 =

7357𝜎3, which was obtained during the NPT simulation of the thick film with 

crystalline walls at the same operating conditions, to 𝑉𝑏𝑜𝑥 = 7741𝜎3. The 

calculated density profiles (Fig. 4.10), indicate that the pronounced density 

layer, which was observed close to the crystalline walls, disappeared when 

amorphous walls were used. At the same time the density profile throughout 

the rest of the film was not affected by the structure of the walls.  
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Figure 4.11:  Spatial distribution of the polymer mass density in the non-

crosslinked films as a function of the distance from one of the 

walls. Only the half part of the films is shown, which is denoted 

by the dashed vertical lines. The density profiles were calculated 

from NPT simulations at isotropic pressure 𝑃 = 0.0 휀/𝜎3 and 

𝑇 =  0.8 휀/𝑘𝐵. (a) A comparison of the three films with rough 

walls. (b) Density distribution in the thick film with crystalline 

and rough walls.  

 

To create the rough walls, we deleted half of the beads in the two internal 

surfaces (that were in contact with the polymer). Since the distance between 

two vertical layers in an HCP crystalline solid is 𝑙𝑧 = 𝜎𝑠𝑠√6/3, the removal of 

the beads resulted in a roughness width of 0.7𝜎 (the diameter of the spheres 

comprising the walls were 𝜎𝑠𝑠 = 0.85𝜎). This can be clearly seen in Fig. 

4.10b. We subsequently performed NPT simulations at constant isotropic 

pressure 𝑃 = 0.0 휀/𝜎3, and 𝑇 =  0.8 휀/𝑘𝐵.  

According to the simulation results the thickness of all three films 

(thick, thin, and ultrathin) attained immediately a smaller value than the 

thickness of the corresponding films with crystalline walls, though presumably 

the free volume available to the polymer chains remained constant in all cases. 

The decrease in film thickness was close to 1.5% for the thick film, and 

smaller for the rest of the films. Additionally, when rough walls were used, the 

density profiles overlapped for all studied values of the film thickness. Thus, 

only the width of the bulk-density layer was affected by the value of the film 

thickness. The same observation was also made in films with crystalline walls 

[6]. The density profiles for films with rough walls are illustrated in Fig. 4.11a 

which illustrates clearly that the bulk-density layer, which was present in the 

(a) (b) 
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middle of the thin film with crystalline walls [13], disappeared when rough 

walls were used; thus, it was present only in the thick film. The average 

thickness of the thin film was 𝐿z = 10.1𝜎 for crystalline walls, and 𝐿z = 9.6𝜎 

for rough walls, with 𝐿z denoting the minimum distance between the internal 

surfaces of the two walls. The average end-to-end distance of the chains in the 

bulk polymer was 𝑅𝑒𝑒 = 8.95 ± 0.08𝜎, which indicates that the bulk-density 

layer may already disappear even when the thickness of the film is larger than 

the end-to-end distance of the bulk polymer chains. In Fig. 4.11b, a 

comparison is offered between the thick film with either crystalline or rough 

walls at 𝑇 =  0.8 휀/𝑘𝐵. After the replacement of crystalline with rough walls, 

the percentage of the bulk-density increased from 35.6% to 41.2% of the film 

thickness. An increased number of peaks was also observed.  

 

Figure 4.12: Comparison of the decay of Sinc(q,t) in the thick film with 

crystalline, amorphous, and rough walls at the chain (a) and 

segmental (b) length scales. Data were obtained at 𝑇 =

 0.8 휀/𝑘𝐵. 

 

Turning our attention to the effect of wall structure on the dynamics, we 

report the following observations. Intuitively, we would expect that the 

combined effects induced by the replacement of the crystalline with 

amorphous walls (i.e., a 5% increase in the volume of the simulation box, and 

increased homogeneity of the density distribution) to induce faster dynamics 

when amorphous instead of crystalline walls were used. However, that was not 

the case, as the decay of Sinc(q,t) in the thick film was identical on all studied 

length scales (Fig. 4.12). This observation is attributed to the enhanced friction 

exerted on the monomers by the amorphous walls. Similarly, the introduction 

of wall roughness resulted in only a slight decrease in the rate of relaxation 

(Fig. 4.12). Lastly, the β-exponent increased by about 10% when the 

(a) (b) 
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crystalline walls were replaced by rough ones, under constant film thickness, 

which implies that the use of rough walls decrease the dynamic heterogeneity 

of the confined polymer. 

4.4 Conclusions 

In this chapter we presented molecular-dynamics results concerning the glass-

transition temperature and segmental dynamics as a function of film thickness 

and mesh size (the end-to-end distance of the subchains in the crosslinked 

polymer networks) of a generic bead-spring model of copolymer chains 

confined between solid walls.  

The glass-transition temperature displayed a steep increase once the 

mesh size became smaller than the radius of gyration of the bulk chains; 

otherwise it remained invariant to mesh-size variations. The rise in the glass-

transition temperature with decreasing mesh size and film thickness was 

accompanied by a monotonic slowing-down of segmental dynamics on all 

studied length-scales, as quantified by the decay of the incoherent scattering 

function. These observations are attributed to the constraints imposed by the 

presence of the walls on the maximum attainable displacement of the 

monomer units and to the decreased width of the bulk density layer that was 

obtained in thinner films. Only films whose thickness was larger than the end-

to-end distance of the bulk polymer chains displayed a middle layer of bulk 

density.  

Confinement and crosslink effects prevented certain length-scale 

dependent relaxation processes from relaxing fully. Higher dynamic fragility 

(as measured by means of the β coefficient, and the deviation from the 

Arrhenius dependence of the relaxation times on temperature) was observed 

when smaller values of film thickness and mesh size were used. More fragile 

glass-forming films displayed larger Tg values. The ratios of relaxation times 

in the films against those in the bulk displayed a steep dependence on the size 

of the crosslinked mesh at length-scales smaller than the bulk radius of 

gyration, reminiscent of the Tg dependence. The threshold from which on this 

behavior was observed, was independent of the film thickness. Longer chains 

should be used in order to elucidate on this observation. 

The high polymer density that was observed close to the crystalline 

walls vanished when we replaced the crystalline with amorphous walls, 

whereas the density throughout the rest of the film remained invariant. The 
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introduction of rough walls resulted in a higher number of oscillations in the 

density profile of the films, and a smaller magnitude of the oscillations in the 

wall-polymer interface due to a fraction of monomers becoming adsorbed 

inside the walls. By comparing the dynamic response amongst films with 

different wall structure, we reported that the wall structure affected the large-

scale dynamics, only to a small degree. A higher degree of roughness could 

lead to slower dynamic response, though additional simulations are required to 

affirm this.   

The next chapter deals with how the film thickness and the roughness of 

the walls affect the reinforcement of the films. A connection among those 

results and the results presented in this chapter is included in Chapter 7 of the 

thesis. 
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Chapter 5 

Filler size effects on reinforcement in elastomer-

based nanocomposites: experimental and 

simulational insights into physical mechanisms 

Abstract 

Nanocomposites consisting of polymers reinforced with filler particles are 

important for a wide variety of industries and processes, but although they 

exhibit unique viscoelastic properties and as such are widely applied in e.g. 

tires, the precise mechanism of their reinforcement is at best incompletely 

understood at present. In order to understand it at a fundamental level, and 

ultimately control it in practice, it is essential to determine the impact of 

interactions between filler particles and polymer matrix on the nanocomposite 

microstructure and its macroscopic dynamic mechanical properties. To this 

end, our collaborators at the University of Amsterdam performed experiments 

on two model systems, and we performed molecular-dynamics simulations, 

aiming to determine to what extent widely used shear-distortion models of the 

reinforcement are applicable, as well as the role played by molecular 

interactions on the enhancement of the mechanical properties. In both 

experiments and simulations a linear dependence of the reinforcement on the 

inverse radius of the nanoparticles was obtained. Deformation simulations of a 

linearly increasing strain showed an overall increase of 50% in the linear 

modulus when fillers were added to the polymer matrix, regardless of the use 

of direct interactions among the nanoparticles. Furthermore, the use of 

attractive nanoparticle interactions resulted in a higher matrix densification at 

the interfaces and to a sharp increase in the reinforcement.* 

 

 

 

 

∗The contents of this chapter have been published in: Macromolecules, 2016, 

49 (18), 7077–7087. 
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5.1 Introduction 

Adding fillers such as silica or carbon black particles to a polymeric matrix 

leads to a nanocomposite material with improved but also complex behavior 

drastically different from that of the pure polymer material. Rigid particles can 

act as stress concentrators owing to their elastic properties differing from those 

of the polymer matrix [1]. As a consequence, the linear storage modulus at 

low strain amplitudes can be greatly increased by the addition of a volume 

fraction of fillers φf. This is the so-called reinforcement [2-9], defined 

as 𝑅 = 𝐺(𝜑𝑓)/𝐺(0) − 1, with G being the shear modulus. On the other hand, 

at a higher (though still a relatively low) strain magnitude, the filled material 

displays a drop in the elastic modulus by about one order of magnitude; this is 

the so-called Payne effect [10-17]. In this study we focus our attention on the 

reinforcement mechanisms, by performing computer simulations as well as 

experiments, both of which are detailed below. 

The reinforcement is not a new issue, and has been already extensively 

tested experimentally, analytically, and computationally [18-20]. The 

microstructure of the material, the polymer’s segmental mobility [21, 22], as 

well as the chemistry-specific polymer-filler interactions, are all considered to 

be key factors affecting the reinforcement. The first mechanical model of 

reinforcement was proposed by Einstein and Smallwood [23].
 
Their model is 

valid in the dilute regime where particles do not interact with each other. The 

volume fraction of fillers, φf, continued to be the only parameter of the 

mechanical models created subsequently, such as the Mori-Tanaka model [23, 

24]
 
or the Christensen-Lo model [25-27]. However, a recent experimental 

study [2] demonstrated that the reinforcement cannot be accounted for only by 

the filler volume fraction when the particles interact through the matrix. In this 

study, the filler particle radius was introduced as another key parameter for the 

reinforcement of composite materials. Another recent experimental study [28] 

revealed how the interaction of polyethylene-glycol matrices with particles 

depends on the choice of the end groups of the polymer. It was also concluded 

that mean-field approaches are not sufficient to describe the systems. 

Beyond the sole effect of the filler volume fraction, a wide range of 

experimental, theoretical, and simulation studies have thus far yielded two 

different opinions in regards to the molecular origins of the mechanical 

reinforcement in polymer nanocomposites: one attributes the excess 

reinforcement exclusively to nanoparticle aggregation or clustering, whereas 



Chapter 5 

77 
 

the other attributes it to the formation of an interphase between the 

nanoparticles (NPs) and the bulk polymer. Seemingly, at high particle 

loadings reinforcement occurs due to particle jamming, whereas at low 

particle loadings it is the filler-polymer reinforcing network that mainly 

contributes to the reinforcement [29].
 
An extensive molecular-dynamics (MD) 

study of amorphous polymers filled with solid NPs [30]
 
led to the conclusion 

that the balance of these two contributions depends strongly on the filler-

polymer interaction energy and range, as well as the dispersion and volume 

fraction of the filler particles.  

With the present study we aim to offer evidence of the shortcomings of 

the standard mechanical models used for predicting the reinforcement of 

polymer nanocomposites. In addition to the experiments, performed by our 

collaborators of the University of Amsterdam (UvA), we perform coarse-

grained molecular-dynamics simulations of filled polymers, aiming to unravel 

the microscopic causes of the experimental observations.  

5.2 Experimental Materials and Methods 

5.2.1 Model systems 

Rheological measurements on two types of systems were performed by our 

collaborators at UvA. They have been included in the present chapter so as to 

better illustrate similarities and differences among the experimental and 

simulation results. The first was Styrene Butadiene Rubber (SBR), an 

industrial rubber filled with NPs of precipitated silica, similar to what is used 

for tires. The second model system was a polyvinyl alcohol (PVA) gel filled 

with micron-sized glass beads. Contrary to filled rubbers, which have a very 

complicated microstructure [1],
 
this model PVA-gel system was filled with 

monodisperse glass beads that do not aggregate. 

5.2.2 Materials 

The SBR, provided by Michelin ® (Molecular weight Mw=140 kDa 

vulcanized), was non-vulcanized and filled with nanoparticles of precipitated 

silica (Zeosil 1165 MP, Rhodia®) with an average aggregate radius of 15nm, 

which formed agglomerates of radius 34μm – 140μm. For the polymer gel, 

PVA was provided as a powder by Acros Organics (hydrolyzed at 99-100% 

and a molecular weight of 86 kDa). The powder was dissolved (4% wt.) in 



Chapter 5 

78 
 

distilled water by mixing with a stirring bar at a temperature of 95°C for 3 

hours. The borate was obtained by dissolving sodium tetraborate (provided by 

Sigma Aldrich) in distilled water using the same procedure of dissolving as 

with PVA. The gel was finally formed by mixing 2g of solution of borate with 

8g of solution of PVA. The glass beads were provided by Swarco and had 

average radii of 34, 75 and 140 microns. With the rheometer gap being 

2.5mm, the radius-to-gap ratio was approximately 75 for the smallest particles 

and 20 for the largest particles. 

5.2.3 Rheological measurements 

Oscillatory measurements were carried out with an Anton Paar Physica MCR 

300 rheometer mounted with a plate/plate geometry. For the filled rubber 

system the diameter of the geometry was 5mm and the samples were disks 

with a thickness about 2.5mm stuck on each side with a Loctite glue [31]. For 

the experiments with the model PVA system the geometry was also plate-plate 

but a diameter of 25mm was used, and both of the surfaces were rough so as to 

avoid any wall slip. 

5.3 Simulation Models and Methods 

We performed constant temperature – constant pressure (NPT) coarse-grained 

molecular-dynamics simulations of non-entangled polymer chains. The 

representation of real polymer molecules by the bead–spring chain model used 

in this study is justified on nanometer length scales where different polymer 

molecules have been shown to behave similarly [32]. Two different simulation 

models were used. The first type of simulations was performed on a 

particulate model of nanocomposites in which the polymer matrix was filled 

with nanoparticles (NPs) of a size comparable to that of the polymer chains 

(Chapter 2, Fig. 2.5) in which each NP consisted of a specific number of 

beads. 

For the second type of simulations, we note that due to restrictions in 

computational power, the size of the NPs in the simulations of the particulate 

systems was modest in comparison to the size of the filler agglomerates of the 

experimental samples [2].
 

Therefore, the large size of the experimental 

agglomerates was approximated in the simulations by using a film model in 

which the polymer matrix was confined between two solid walls (Chapter 2, 

Fig. 2.3). Each solid wall was used as a representation of the surface of an 
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agglomerate with a radius that was orders of magnitude larger than the size of 

the polymer chains (see the Experimental data above). Indeed, it has been 

demonstrated that the thermophysical properties of polymer nanocomposites 

are quantitatively equivalent to the well-documented case of planar polymer 

films [1].
 

Notably, the change in the glass-transition temperature with 

decreasing inter-particle spacing for the nanocomposites was found 

quantitatively equivalent to the corresponding thin film data. Therefore, 

polymer films confined between solid walls may, in specific cases, be 

employed as simplified models of particulate systems, for they allow the study 

of one of the reinforcement mechanisms in isolation (since confinement 

effects are the single cause of the reinforcement). Previous studies [2-4] have 

shown that, in films capped between two attractive solid surfaces, with 

decreasing film thickness the dynamics of the confined polymer become 

slower in comparison to the dynamics of the pure polymer.  

 All simulations were performed using the LAMMPS MD software 

package [34]. The polymer phase was identical in both models and consisted 

of 100 linear polymer chains of 50 monomers each. Periodic boundary 

conditions were always implemented on all three dimensions of the simulation 

box. As a consequence of the coarse-grained nature of the models, only length 

scales larger than the typical Kuhn length values of polymer chains could be 

probed; in general a value close to 1 nm or larger may be assumed [35].
 
 

 The Lennard-Jones (LJ) units of measurement are used throughout the 

text, i.e., m is the unit of mass, ε is the unit of energy, σ is the unit of length, 

and 𝜏 = 𝜎√𝑚/휀 is the unit of time. Newton’s equations of motion were 

integrated using the velocity-Verlet algorithm with a time step of δt = 0.005τ. 

The values of the LJ parameters were chosen in accordance to previous studies 

of similar model systems [37]. Interactions between non-bonded beads were 

modeled with a modified LJ 12-6 potential. 

𝑈𝑛𝑏(𝑟) = 4휀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] + 𝑆𝑓(𝑟) ;  𝑟 < 𝑟𝑐𝑢𝑡
𝑜𝑢𝑡                                            (5.1) 

The term 𝑆𝑓(𝑟) is a switching function that smoothly ramps the energy to zero 

from 𝑟𝑐𝑢𝑡
𝑖𝑛 = 2.5𝜎 to 𝑟𝑐𝑢𝑡

𝑜𝑢𝑡 = 3.5𝜎 [37]. The walls and the NPs consisted of 

smaller beads that were bound together by strongly attractive LJ interactions. 

The LJ parameters for the monomer beads were σm = σ, εmm = ε, mm = m, for 

both the film and the particulate models. In the films, the LJ parameters for the 
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beads comprising the walls were σww = 0.85σ and εww = 50ε. The LJ parameter 

ε between monomer- and wall-beads was set equal to εwm = 2ε. In the 

particulate systems, the diameter of the filler beads comprising the NPs was 

equal to the diameter of the monomer beads, σff = σmm. The LJ parameters for 

the filler beads belonging to the same NP were set equal to εff = 50ε so as the 

NP to retain its consistency during the simulations. For the interaction among 

different NPs, we distinguished two cases by performing the same set of 

simulations with attractive NP-NP interactions (setting εNP-NP = ε) as well as 

with short-range repulsive NP-NP interactions (using only the repulsive part 

of the LJ potential function). Our reasoning for the latter case was that, since 

the thickness of each film was larger than 𝑟𝑐𝑢𝑡
𝑜𝑢𝑡 , the walls were not interacting 

directly with each other. This absence of direct interactions among the two 

walls of the films was reproduced in the particulate systems by using only the 

repulsive part of the LJ potential for the interactions among NPs. The 

aggregation of the NPs in the particulate systems was avoided by setting the 

interaction strength among filler beads and monomer beads equal to 휀𝑓𝑚 = 2휀, 

which was the same value as the one used in the simulations of the film model 

for the interaction among monomer beads and wall beads. The parameters of 

the potential function for each system are presented in Table 5.1. 

 

Table 5.1: Energy parameter values of the LJ potential function among the 

various types of beads comprising the simulated systems. 

Parameter [ε] Description Film model Particulate 

model 

εmm monomer – monomer 1 1 

εwm wall – monomer 2 - 

εfm filler – filler (same NP) - 50 

εNP-NP filler – filler (distinct 

NP) 

- {0, 2} 

 

Covalently bonded beads interacted through a combination of an attractive 

Finite-Extensible-Nonlinear-Elastic (FENE) potential, and a repulsive and 

truncated LJ 12-6 potential [34]: 

𝑈𝑏𝑛(𝑟) = −0.5𝑘FENE𝑟𝑚𝑎𝑥
2 ln [1 − (

𝑟

𝑟𝑚𝑎𝑥
)

2

] + 4휀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] + 휀     (5.2) 



Chapter 5 

81 
 

The parameters 𝑘FENE and 𝑟max denote the stiffness and the maximum 

elongation of the spring, respectively; ε is the LJ energy parameter, and σ the 

collision diameter of the interacting pair of beads. The stiffness and maximum 

elongation of the bonded potential were set equal to 𝑘FENE = 30 휀/𝜎2 and 

𝑟max = 1.5𝜎 respectively. The LJ parameters ε and σ had the same values as 

their non-bonded counterparts (this particular choice of bonded and non-

bonded interactions has been shown to prevent unphysical chain crossings 

[38]).
  

 Two types of wall structures were used in the film model: crystalline 

and rough [2]. Each crystalline wall consisted of three layers of equally sized 

non-bonded beads arranged in a hexagonal closed packed (HCP) regular 

lattice. The walls were periodically infinite along their lateral dimensions, and 

confined the polymer along the perpendicular direction. We used three layers 

— which along with their periodic images amounted to six layers for each of 

the two walls — to avoid spurious interactions among the polymer chains and 

their periodic images. The thickness of the six crystalline layers of each wall 

was about 4.64𝜎, and did not change upon deformation. To create the rough 

walls, we deleted half of the beads in the two internal surfaces (those that were 

in contact with the polymer). The removal of the beads resulted in a roughness 

of 0.7𝜎, since the diameter of the spheres comprising the walls was 𝜎𝑠𝑠 =

0.85𝜎 and the distance between two vertical layers in an HCP crystalline solid 

𝑙𝑧 = 𝜎𝑠𝑠√6/3. Three different values of film thickness were employed: as 

shown in Figure 2, at a fixed temperature of T = 0.6 ε/kΒ and isotropic pressure 

𝑃 = 0 휀/𝜎3, the thickness of each film with crystalline walls was 

approximately 18.0σ (designated as ‘thick film’), 9.8σ (‘thin film’), and 4.0σ 

(‘ultrathin film’), which respectively corresponded to 5.2, 2.8, and 1.2 times 

larger than the average radius of gyration of the chains in the pure polymer 

matrix. Films with a different thickness had different lateral dimensions so 

that they would have the same film-averaged density at the same fixed 

temperature and pressure. Due to the crystallinity of the walls the lateral 

dimensions of each film were only approximately equal, though in all cases 

the difference was smaller than 0.5σ.  
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Table 5.2: Number of filler beads comprising the nanoparticles, and their 

equivalent radius.
a
 

System Number of beads in NP Radius of NP 

1 1000 6.5 

2 500 5 

3 250 4 

4 125 3.25 

a 
The gyration radius of the polymer chains was 𝑅𝑔 = 3.6𝜎 and their end-to-

end distance 𝑅𝑒𝑒 = 8.9𝜎. 

 

To create the particulate systems, the box containing the equilibrated pure 

polymer was expanded so that the density would be low enough so that the 

NPs would not overlap with the polymer chains after their placement inside 

the simulation box. Each NP consisted of a specified number of beads, which 

were placed randomly inside a sphere of predefined radius. Three different 

filler volume fractions were employed: 9%, 16.7%, and 28.5%, and their 

average diameter extended from 6.5 to 13σ, with σ denoting the diameter of a 

monomer bead. For a detailed explanation of the composition of each 

simulated particulate system, please refer to Table 5.2 and 5.3. 

 

Table 5.3: Number and radius of the NPs for each simulated particulate 

system. 

Filler volume fraction (%) Number of NPs Radius of NP [σ] 

 1 5 

9.00 2 4 

 4 3.25 

 1 6.5 

16.7 2 5 

 4 4 

 8 3.25 

 2 6.5 

28.5 4 5 

 8 4 

 16 3.25 
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We allowed the systems to equilibrate under NPT conditions at 𝑇 = 0.6휀/𝑘𝐵 

and 𝑃 = 0휀/𝜎3. At these specific conditions all simulated systems were above 

their glass-transition temperature [33]. The glass-transition temperature of the 

films with crystalline walls is displayed in table 5.4 (for a graphical 

representation of the calculated values of the Tg, please refer to Chapter 4).  

 Previous simulations [34] have shown that the segmental dynamics of 

polymer films with rough walls are not noticeably different from those in 

films with crystalline walls. Consequently, we expect the glass-transition 

temperature to not be noticeably affected by the structure of the walls since the 

glass-transition temperature and the segmental dynamics are strongly 

correlated [33]. During both the equilibration and production runs we used the 

values recommended in the LAMMPS manual for the thermostat and barostat 

parameters, i.e., temperature and pressure were allowed to relax to the 

specified average value over a time interval of 0.5τ and 5.0τ, respectively [34]. 

 

Table 5.4: Glass-transition temperature (Tg) of the films with crystalline walls 

[33].
 

System Thickness [σ] Tg [ε/kB] 

Bulk polymer - 0.381 

Thick film 18.8 0.426 

Thin film 10.1 0.438 

Ultrathin film 4.3 0.577 

 

5.4 Results 

5.4.1 Experimental results from UvA  

Rheological oscillatory measurements were performed by our collaborators at 

the UvA so as to provide insightful connections among the reinforcement 

measured in experiments and the one calculated from simulations.  

For a given volume fraction of fillers φf the reinforcement is defined as 

the ratio of the modulus G of the filled material at low strain amplitude and the 

modulus of the bare material:  

𝑅 =
𝐺(𝜑𝑓)

𝐺(𝜑𝑓 = 0)
− 1                                                                                                (5.3) 



Chapter 5 

84 
 

The radius of the silica aggregates contained in the SBR rubber, as quantified 

using TEM measurements, was found to be independent of the volume 

fraction of fillers.  

 To account for the dependence of the reinforcement on the filler 

volume fraction, three different shear-distortion models were considered, 

which are commonly used for the calculation of R(φf) in composite materials 

[18]: 

𝑅 = {

 2.5𝜑𝑓                                                      𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 − 𝑆𝑚𝑎𝑙𝑙𝑤𝑜𝑜𝑑 

 2.5𝜑𝑓 + 14.1𝜑𝑓
2                                   𝐺𝑢𝑡ℎ

 [1 + 1.25𝜑𝑓/(1 − 1.35𝜑𝑓)]
2

− 1   𝐸𝑖𝑙𝑒𝑟𝑠

        (5.4) 

The Einstein-Smallwood formula [5] is applicable to materials with a low 

volume fraction of fillers, in which the reinforcement originates from a linear 

superposition of the individual particle contributions (the ‘dilute regime’). 

Guth’s model [8] additionally takes into account contributions from the 

interactions among neighboring particles. The Eilers equation was derived 

from the Einstein-Smallwood formula, and takes into account the large 

increase in the reinforcement that is commonly detected in composites with a 

very high volume fraction of fillers (for which the filler particles attain a 

close-packed structure). 

 Fig. 5.3 shows the dependence of the reinforcement on the volume 

fraction of fillers for two systems: the PVA filled with glass beads, and the 

non-vulcanized filled SBR (see Experimental Materials and Methods section). 

For small volume fractions (𝜑𝑓 < 0.25) the reinforcement of the filled PVA 

followed the Einstein-Smallwood equation, which indicates that the system 

was highly diluted. However, for 𝜑𝑓 > 0.2 (Figure 3a, inset) the reinforcement 

became dependent on the radius of the nanoparticles and deviated from the 

Einstein-Smallwood equation. For  0.2 < 𝜑𝑓 < 0.25, a transitory regime was 

observed in which the Guth and Eilers models could be fitted to the data but 

were unable to describe the dependence of the reinforcement on the filler 

radius. For 𝜑𝑓 > 0.25, none of the formulas was able to accurately predict the 

reinforcement of the model system.  
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Figure 5.3: Reinforcement versus volume fraction for (a) the model system 

(PVA filled with glass beads of three different average radii rNP), 

and (b) the non-vulcanized filled rubber (SBR filled with 

nanoparticles of precipitated silica of an average radius of 15nm), 

obtained from rheological experiments. The solid, dotted, and 

dashed lines correspond to the predictions of Einstein-

Smallwood, Eilers, and Guth models, Eq. 5.4, respectively. 

 

The dilute regime observed in the model system was not observed in the filled 

SBR rubber, in which the shear-distortion models could not predict the 

reinforcement even at very low values of the volume fraction of fillers (Fig. 

5.3b). It is evident that the reinforcement of the filled rubber cannot be reliably 

predicted by taking into account only the filler volume fraction, even when the 

latter is very small. This conclusion holds even if we use a mean field 

approximation in which the particles are surrounded by occluded polymer 

layers, which leads to a larger effective volume fraction of the filler particles 

[2]. Our hypothesis is that since the rubber matrix was three orders of 

magnitude harder as compared to the PVA gel, interactions among fillers in 

the former material become effective at lower volume fractions, and therefore 

should not be neglected.  

 Clearly, a model for composite reinforcement that accounts not only 

for the filler volume fraction but also for the size of the NPs, as well as their 

interactions, is therefore needed. Recently, Mermet-Guyennet et al. [10] 

demonstrated experimentally that the reinforcement cannot be accounted for 

by the sole consideration of the filler volume fraction (as shown in Figure 3a) 

or the surface per unit volume of the fillers (3φf  / rNP, where rNP is the radius of 

the filler particles), as shown in Fig. 5.4. Instead, the scaling law 
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𝑅 = 2.5𝜑𝑓 +
𝑎

𝑟𝑁𝑃
= 2.5𝜑𝑓 +

𝐶𝜑𝑓
3

𝑟𝑁𝑃
                                                                      (5.5) 

should be employed, in which the nonlinear term represents the matrix-

mediated filler interactions. The length scale C corresponds to the maximum 

distance among the center-of-mass of the NPs before the vanishing of the 

interaction term, and depends on the ratio of the moduli of the filler versus that 

of the polymer matrix [2].  

 Figure 5.4a illustrates the dependence of the reinforcement on the 

glassy beads radius rNP of the model system for a given volume fraction of 

fillers. Evidently, under constant filler volume fraction the reinforcement 

exhibited a linear dependence on the inverse radius of the glassy beads. 

Further, a higher reinforcement was obtained with the usage of smaller beads 

or a higher filler volume fraction. The obtained data for 𝑅 − 2.5𝜑𝑓 were 

plotted as a function of 𝜑𝑓
3/𝑟𝑁𝑃 and were linearly fitted, resulting in the value 

𝐶 = 30𝑚𝑚 (Fig. 5.4b).  

 

Figure 5.4: Dependence of the reinforcement of the PVA model system on the 

filler radius and volume fraction: (a) Reinforcement versus the 

inverse of the filler bead radius 1/rNP for various values of the 

filler volume fraction. A larger reinforcement corresponds to a 

larger volume fraction of fillers which varied from 𝜑𝑓 = 0.20 to  

𝜑𝑓 = 0.45 with a step change of 0.05. The slope α of the solid 

lines depends on 𝜑𝑓. (b) Dependence of 𝑅 –  2.5𝜑𝑓 on 𝜑𝑓
3/r𝑁𝑃. 

The solid line was obtained from a linear fit of all the data points, 

and corresponds to the parameter C in Eq. 5. 
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To summarize, the experiments on the two model systems unequivocally 

demonstrate that it is not possible to predict the reinforcement by taking into 

account only the volume fraction of the fillers or their specific surface. The 

results from the PVA model system, where the filler radius could be varied, 

followed the scaling law (Eq. 5.5) introduced in Ref. [10] that reflects the role 

of interactions among the filler particles. We hypothesize that the data on the 

SBR model system confirms the crucial role of the interactions, because the 

rubber matrix, which is much harder than the PVA matrix, could effectively 

amplify these interactions, thus explaining why the experimental data on the 

SBR reinforcement deviate even more from the predictions of Eq. 5.4. The 

data indicate that the polymer matrix-mediated interactions dramatically affect 

the reinforcement, and should be considered in any model of reinforcement in 

nanocomposite polymeric systems. 

5.4.2 Simulations 

5.4.2.1 The simulated reinforcement of the film and particulate models 

We performed coarse-grained molecular-dynamics simulations of non-

entangled polymer chains, as outlined in the Simulation Models and Methods 

section. Both film and particulate models were uniaxially and affinely 

elongated under a constant strain rate �̇� = 0.001𝜏−1
 (i.e. the length of the box-

sides laterally to the direction of deformation was kept constant) at 𝑇 =

0.6휀/𝑘𝐵 (which was above the glass transition temperature of the simulated 

systems), and 𝑃 = 0휀/𝜎3. The deformation was imposed on the whole system 

as if it were homogeneous (i.e., without the walls in the film model, which, 

due to the strongly attractive LJ interactions among the beads comprising the 

walls, did not deform during the elongation simulations). We extracted the 

linear modulus by fitting the stress-strain curves in the regime of linear stress 

response (strain < 1%) where any change in density may safely be neglected. 

Stress-strain curves obtained from the elongation simulations are shown in 

Fig. 5.5 for both the film and the particulate model. 
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Figure 5.5: Stress-strain plots of (a) the film model for all different film 

thicknesses, and (b) the particulate model of the nanocomposite 

for three different volume fractions and a single filler radius rNP = 

3.25σ as well as for the non-filled, pure polymer matrix. The 

yellow, solid line illustrates the strain interval used for the 

extraction of the linear modulus of the systems. All simulations 

were performed at 𝑇 = 0.6휀/𝑘𝐵 and 𝑃 = 0휀/𝜎3.  

 

In Fig. 5.6a we present the simulation results for the reinforcement of the films 

as a function of film thickness. Two competitive effects can be observed: On 

the one hand, a higher degree of confinement (i.e., smaller film thickness) 

resulted in a larger reinforcement. On the other hand, the wall roughness 

decreased the reinforcement. A plausible explanation for the former effect is 

the following. A strong wall attraction may result in the development of a 

glassy layer in the polymer-wall interface (0 < z < 1.3σ) [21], the width of 

which is independent of the film thickness. Therefore, in a thinner film the 

‘glassy’ polymer will occupy a larger volume fraction of the film, thus 

resulting in greatly increased film-averaged relaxation times. Hence, under 

constant temperature, thinner films will lie closer to their glass-transition 

temperature, and therefore their response to the applied strain will be more 

pronounced. Further implications concerning the effect of polymer 

glassification on the reinforcement are considered in the Discussion section of 

this Chapter.  
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Figure 5.6: (a) Reinforcement of the films versus the film thickness. (b) 

Reinforcement of the particulate systems versus the average 

distance between the surfaces of the NPs for attractive and 

repulsive NP-NP interactions. No significant reinforcement was 

observed in the particulate systems with repulsive NP-NP 

interactions.  

 

Furthermore, the reinforcement decreased when the crystalline walls were 

replaced by rough ones. Presumably, this was the result of a less-packed 

interfacial polymer layer near the rough walls than near the crystalline ones, 

which effectively decreased the attraction of the monomers to the walls. 

Consequently, the glassy layer mentioned above was less important in the 

films with rough walls than in those with crystalline ones, which was the 

cause of the smaller reinforcement in the films with rough rather than 

crystalline walls. 

 In our simulations of particulate systems, the reinforcement was 

strongly influenced by the type of NP-NP interaction, as we show in Fig. 5.6b. 

The average NP-NP distance was the same for both types of interactions. The 

calculated reinforcement was relatively small (𝑅 ≤ 1) for the systems with 

short-range repulsive NP-NP interactions, as well as for the systems with 

attractive NP-NP interactions when the surface-distance 𝑑𝑁𝑃 between the NPs 

was larger than the LJ cut-off distance 𝑟𝑐𝑢𝑡
𝑜𝑢𝑡 (in which case the system was 

effectively reduced to a system with short-range repulsive NP-NP 

interactions). On the other hand, for 𝜑𝑓 = 28.5%, 휀𝑁𝑃−𝑁𝑃  =  휀, and 𝑑𝑁𝑃 <

3.5𝜎 (= 𝑟𝑐𝑢𝑡
𝑜𝑢𝑡) the calculated reinforcement increased abruptly with a 

decreasing particle distance, and attained a maximum value of 𝑅 ≈ 2. 
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 With the exception of the ultrathin film, which showed a pronounced 

reinforcement, the values of R obtained in films and particulate systems were 

comparable. We consider this as an indication that confinement effects in the 

polymer films are replaced by another reinforcing factor in the particulate 

systems; for the latter the effective confinement of the polymer chains is 

significantly smaller than in the film model, due to the curvature of the 

spheroidal NPs. As will be discussed later, this could correspond to the 

development of a filler network in particulate systems with attractive NP-NP 

interactions at relatively small NP distances.  

5.4.2.2 Comparison of the reinforcement among the particulate 

simulation model and the experimental samples 

In qualitative agreement with the reinforcement models of Eq. 5.4, as well as 

with the experimental results (see Figure 3), a higher volume fraction of fillers 

resulted in a larger reinforcement of the simulated particulate systems, as 

shown in Fig. 5.7. The same conclusion can be obtained from the film model, 

if we regard the thinner film as a simplified model of a particulate system with 

a higher volume fraction of fillers, since a smaller film thickness also led to a 

higher reinforcement. In the absence of attractive NP-NP interactions the 

Einstein formula, Eq. 5.4, predicted the reinforcement of the particulate 

systems with the highest accuracy. On the other hand, the calculated 

reinforcement values of the particulate systems with attractive NP-NP 

interactions was in between the values predicted by the Guth and Eilers 

formulae.  

 
 

Figure 5.7: Reinforcement versus filler volume fraction 𝜑𝑓 computed from 

simulations with repulsive (a) and attractive (b) NP-NP 

interactions. Data are shown for various values of the NP 
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diameter σNP. The lines offer a comparison to three different 

reinforcement models (Eq. 5.4) that are frequently used for the 

calculation of the reinforcement in polymer composites. The 

width of the error bars was smaller than that the data points. 

 

The agreement with the theoretical predictions (Fig 5.7a) at rather high 

volume fractions (above 25%) is surprising because the Einstein model was 

developed for infinitely dilute systems where the motion of a single particle is 

not disturbed by the other particles; this cannot be the case at such high filler 

concentrations. The agreement with Guth and Eilers formulae (Fig. 5.7b) is 

surprising because in these models the hydrodynamic interactions between 

many particles are taken into account, but in the present simulations the 

systems are different only by the additional Lennard-Jones, excluded-volume 

interactions. It is not immediately obvious why the hydrodynamics is also 

changing in this case. Both observations were unexpected, and are being 

considered in the Discussion and Conclusions section. 

 The reinforcement of the particulate simulation model roughly 

increased linearly with the inverse radius of the NPs (Figure 5.8), which is 

similar to the experimental curves of Fig. 5.4. The slope of R as a function of 

1/rNP depended on the filler volume fraction. Note that at a constant volume 

fraction of fillers, a smaller NP radius resulted in a larger filler-polymer 

interfacial area, a smaller average NP-NP distance (not shown), and a larger 

reinforcement (for both attractive and repulsive NP-NP interactions). In the 

particulate systems with attractive NP-NP interactions, a smaller NP radius 

resulted in a noticeably higher value of R only for volume fractions 𝜑𝑓 > 9%. 

For 𝜑𝑓 = 9% the radius of the NPs did not affect the reinforcement, whereas 

for 𝜑𝑓 = 28.5% the reinforcement attained a maximum value when r𝑁𝑃 ≈ 4𝜎, 

Fig. 5.8. In the particulate systems with repulsive NP-NP interactions, the 

effect of the NP size on R was relatively weak but still present.  
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Figure 5.8: Reinforcement as a function of the inverse radius of the 

nanoparticles rNP, for systems with repulsive (a) and attractive (b) 

NP-NP interactions. The square, circular, and triangular data 

points denote the reinforcement of the particulate system with φf 

= 9.0, 16.7, and 28.5%, respectively. This figure can be compared 

with the experimental results shown in Figure 5.4a. The width of 

the error bars was smaller than that the data points. 

 

When 𝑅 − 2.5𝜑𝑓 was plotted as a function of 𝜑𝑓
3/𝑟𝑁𝑃 (Fig. 5.9) a linear 

scaling was obtained for both types of NP-NP interactions that were used in 

the simulations of the particulate systems. Furthermore, for each type of NP-

NP interactions, the data for all values of the NP diameter fell roughly onto a 

single straight line, in accordance with the experimental results, although the 

quality of the linear fitting was lower in the simulations than in the 

experiments. The slope of the straight line is connected to the experimental 

factor C (from Eq. 5.5) which has been interpreted as the maximum distance 

between the centers-of-mass of the filler particles beyond which they no 

longer interact [2]. The factor C was calculated equal to 70 and 480σ for the 

simulations of the particulate systems with and without attractive NP-NP 

interactions, respectively. As mentioned previously, the average NP-NP 

distance did not depend on the NP-NP interactions. 
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Figure 5.9: Reinforcement of the simulated particulate systems, arising from 

coupled hydrodynamic interactions and surface effects, versus 

𝜑𝑓
3/𝑟𝑁𝑃 for repulsive (a) and attractive (b) NP-NP interactions. 

For each type of the NP-NP interaction, the data for all values of 

the NP radius rNP roughly fell onto a single straight line. This 

figure can be compared with the experimental results shown in 

Fig. 5.4b. The width of the error bars was smaller than that of the 

data points. 

 

5.4.2.3 Microscopic mechanisms of reinforcement 

Our simulation results show that the reinforcement is enhanced by a higher 

filler volume fraction φf, a smaller particle radius rNP, and by employing 

attractive rather than repulsive NP-NP interactions. We will now focus on the 

microscopic structure and dynamics of the simulated particulate systems. To 

this end we calculated the monomer distribution between the NPs (Fig. 5.10) 

and the average mean-square displacements (MSD) of the monomer beads g0
m 

(Fig. 5.11). 

The first observation was that the width of the polymer-filler interface 

(≈ 1𝜎) was unaffected by the volume fraction and the radius of the NPs as 

well as the NP-NP interaction energy (not shown). Furthermore, a higher 

concentration of monomer beads was observed at the polymer-filler interface 

than in the rest of the system. We also found that the density of the monomer 

beads in the polymer-filler interface was higher for a higher φf (Fig. 5.10a) or 

a smaller rNP  (Fig. 5.10b), whereas it was not affected by the NP-NP 

interaction strength, although the latter appeared to be one of the main causes 

of the reinforcement (note that, for the polymer films, the film thickness – or 
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equivalently, the NP-NP distance — has been reported to have no effect on the 

number of interfacial monomers [33]).  

 

 
 

 

Figure 5.10: Number of monomer beads as a function of the distance from the 

surface of a NP, with εmf = 2ε and εmm = 2ε. Results are shown 

for (a) rNP = 4𝜎 and different values of the filler volume 

fraction, and (b) 𝜑𝑓 = 28.5% and two different values of the NP 

radius. The density profiles overlapped for the systems with 

attractive and repulsive NP-NP interactions. (c) The same as 

Figure 10a but with εmf = εmm = ε. 

 

A higher concentration of monomers at the NPs’ surfaces when the filler 

volume fraction was increased under constant NP radius was because a higher 

filler volume fraction resulted in a larger monomer-filler contact area. On the 

other hand, it was not clear whether the high monomer concentration at the 

filler-matrix interfacial area was induced by the monomer-filler interaction 

strength. In order to assert to which degree the monomer concentration was 

induced by the strong monomer-filler LJ attraction (εmf = 2ε εmm = 2ε), we 
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recalculated the density profiles by performing simulations with εmf = εmm = ε 

(Fig. 5.10c). 

It is evident that, even when εmf = εmm, the monomers still displayed a 

tendency to concentrate near the surfaces of the NPs, although to a lesser 

degree than in the case in which εmf = 2εmm. When the monomer-filler 

interaction strength was reduced by half, the number of monomers that were 

concentrated at the interfaces was approximately reduced by half as well. 

Therefore, we may conclude that strong monomer-filler interactions enhance 

monomer concentration near the NPs, but they are not the main cause of it. 

Previously published results [21, 33] from simulations of polymer films with 

solid walls, as the ones studied in the current manuscript, have revealed a 

higher monomer density near the walls than in the middle of the film, even 

when the wall-polymer and monomer-monomer interaction strengths were 

equal. This ordering effect is induced by to the fact that the wall, and 

equivalently the surface of the NP, is more structured than the bulk polymer, 

hence this difference in ordering between the wall and the bulk induces a 

“gradient of ordering” along the direction perpendicular to the wall (or 

equivalently along the radial direction, in the particulate simulations). 

 Shifting the focus to the simulation results on the dynamics, we found 

that the MSD of the chains’ center-of-mass was only weakly affected by the 

NP-NP interaction strength and the filler volume fraction (not shown). On the 

other hand, the MSD of the monomer beads g0
m increased slower with time for 

a higher φf or a smaller rNP (Fig. 5.11a). Systems with attractive NP-NP 

interactions displayed a slower increase in g0
m than systems with repulsive 

interactions (Fig. 5.11b), whereas the NP-NP interactions did not affect the 

density profiles (Fig. 5.10). This indicates that the interactions among the NPs 

affect the properties of the polymer matrix by inducing dynamical changes 

without altering its structure. Further, the effect of rNP on R was weaker than 

the effect of the NP-NP interactions: for instance, Figure 11b illustrates that 

the reinforcement of systems with a larger rNP and attractive NP-NP 

interactions was higher than the reinforcement of systems with a smaller rNP 

and repulsive interactions. 
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Figure 5.11: (a) Dependence of the mean-square displacement of the 

monomer beads g0
mon φf and rNP for the particulate systems with 

repulsive NP-NP interactions. The rNP colors in the legend 

correspond to the colors of the curves. A monotonic dependence 

of R on g0
m was also observed in the particulate systems with 

attractive NP-NP interactions. (b) Dependence of g0
m on the NP-

NP interactions and rNP. The numbers on the right end of each 

curve denote the calculated values of the reinforcement for each 

simulated system. 

 

5.5 Discussion and Conclusions 

It is well established that the addition of particles in a polymer matrix results 

in the reinforcement of its mechanical properties. However, many questions 

concerning the origin of the reinforcement still remain unanswered. In this 

study we present a comparison between experimental and simulation results 

for the reinforcement of filled polymer systems. 

 The experimental results indicate that the polymer mediated NP-NP 

interactions are affected by the filler-matrix interactions, because the latter 

affects the properties of the matrix. In the experimental model (PVA gel) 

system we can safely assume that direct NP-NP interactions are absent 

because of the large size of the fillers, whereas in the filled rubber, which 

matrix had a higher modulus, it is possible that the hardness of the matrix may 

have induced strong NP-NP interactions already at small filler volume 

fractions. The detection of a radius-dependent reinforcement in the 

experimental model system for 𝜑𝑓 < 25% demonstrates that the presence of 
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nanometric glassy layers is inessential in regards to the reinforcement of 

nanoparticle-filled materials, because their presence should make no 

difference in systems with fillers as large as those employed in the PVA model 

system. 

For the experimental model system, the hydrodynamic models 

employed in this study were able to provide with an accurate prediction of the 

mechanical reinforcement only for low filler volume fractions; for larger filler 

volume fractions we observed that the reinforcement was dependent on the 

filler radius. However, in the filled SBR rubber, the hydrodynamic models 

could not predict the experimental data even at very low values of the filler 

volume fraction. A formula was derived in a previous study [2], which was 

also used here, that takes additionally into account the dependence of the 

reinforcement on the radius of the filler particles. 

The Einstein model of the reinforcement was able to predict accurately 

the reinforcement in both the experiments of the PVA model system (only for 

𝜑𝑓 < 20%) as well as the simulations with no direct NP-NP interactions (for 

𝜑𝑓 < 30%). The validity of the model for such high values of the filler 

volume fraction was unexpected. We attribute the agreement among the 

obtained data and the Einstein model’s predictions to the fact that the 

simulation conditions were more complex than those of the simplified 

assumptions of the Einstein model. The derivation of the Einstein model is 

based on the Navier-Stokes hydrodynamic equations which are solved so as to 

determine the flow pattern around a single spherical particle [39]. The main 

assumptions of the model are the following: the inertia of the translational and 

rotational motion of the particle is ignored; the motion of the particle is 

determined solely by the stress to which the particle is exposed at its surface 

(therefore, its motion does not depend on the state of other particles in the 

system); and lastly, the velocity field of the deformation vanishes at the 

surface of the particle (no-slip boundary conditions) [40]. These assumptions, 

however, might break-down in our MD simulations. The simulated NPs were 

non-spherical, they possessed internal structure, and as will be shown in 

Chapter 6, an increasing value of strain led to increasing (i.e., non-zero) 

velocities of the polymer segments lying at the surfaces of the NPs. 

 For larger volume fractions of fillers, the reinforcement of the 

experimental samples and the simulations of the particulate systems with 

direct NP-NP interactions followed the reinforcement models of Guth and 

Eilers, which take into account the matrix-mediated hydrodynamic 
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interactions among the NPs. Peculiarly, it seems that direct NP-NP 

interactions enhanced the hydrodynamic interactions among the NPs. This can 

be explained by that the attractive LJ interactions affected the structure of the 

polymer matrix, which surely affected the hydrodynamics of the systems. To 

affirm that that was indeed the case, we compared the radius of gyration of the 

chains as a function of strain, among the particulate systems with and without 

attractive NP-NP interactions, Fig. 5.12. It is clear that the polymer matrix 

responded differently to the applied strain, depending on whether the NPs 

were interacting directly through LJ forces or not: at the same strain value, the 

component of the radius of gyration of the polymer chains along the strain 

direction was larger in the particulate systems with repulsive LJ interactions 

than in those with attractive ones. As it seems then, the NP-NP interactions 

played indeed a “modifying” role: the polymer matrices in the particulate 

systems with and without direct NP-NP interactions exhibited different 

structural properties, and therefore it highly probable that they induced 

different hydrodynamic interactions.  

 

Figure 5.12: Squared radius of gyration of the polymer chains as a function of 

the instantaneous strain, as calculated by the simulations of the 

particulate systems with and without attractive NP-NP 

interactions.  

 

The observed similarities among experimental and simulation results 

allows for a more detailed study of the causes of the reinforcement observed in 

the experimental samples through the study of the structural and dynamical 
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properties of the simulated systems. According to the first interpretation of the 

reinforcement [41, 42], it is the interactions among the NPs (e.g., van der 

Waals forces [44]) that produce the main part of the reinforcement. In this 

context, when fillers were added to the polymer matrix, we observed an 

increase of about 50% in the linear modulus (regardless of the NP-NP 

interaction type). In the present simulation results, systems with attractive NP-

NP interactions displayed a reinforcement which increased sharply once the 

average distance between the surfaces of the NPs became smaller than the LJ 

cut-off radius (or, in other words, when the NPs began to interact directly with 

each other and, on average, retained their interaction throughout the duration 

of the simulations). This observation may serve as a further indication that, for 

high enough volume fractions of fillers, the development of an attractive filler 

network, resisting deformation, could indeed be an important source of 

reinforcement. Further simulations, though, utilizing a larger number of filler 

particles, are needed so as to study the sensitivity of the reinforcement on the 

cut-off radius of the NP-NP interaction potential function. On the other hand, 

at low filler volume fractions the reinforcement of the particulate systems was 

similar, whether attractive or repulsive NP-NP interactions were used, 

presumably because indirect (i.e., matrix-mediated) hydrodynamic interactions 

among the NPs are more relevant to the reinforcement than direct NP-NP 

interactions. 

A higher filler volume fraction led to a smaller NP-NP distance, and to 

the densification of the monomer beads at the filler-polymer interfaces. As a 

consequence, a higher filler fraction resulted in a more confined polymer 

matrix and a slower diffusion of the monomer beads. The type of NP-NP 

interactions, though, did not affect the structural properties of the particulate 

systems. We conclude that the increased densification of the polymer matrix 

close to the attractive surfaces of the NPs (owing to an increased volume 

fraction of fillers) was the main cause for the small increase of the 

reinforcement observed in the simulations with repulsive NP-NP interactions, 

as well as in systems with attractive NP-NP interactions and an average NP-

NP surface-distance 𝑑𝑁𝑃 larger than the LJ cut-off radius 𝑟𝑐𝑢𝑡
𝑜𝑢𝑡. For 𝑑𝑁𝑃 <

𝑟𝑐𝑢𝑡
𝑜𝑢𝑡 additional contributions (ostensibly stemming from the development of 

an energetic NP network) induced a further increase of the reinforcement in 

the systems with attractive NP-NP interactions. Additionally, NP-NP 

interactions were evidently more important in increasing the reinforcement 

than the use of a smaller particle size. 
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Comparing the two simulation models (films and particulates) we saw 

that the structural properties of the polymer matrix displayed strong 

similarities among the film and particulate models, which can be clearly seen 

in the comparison among the polymer density profiles observed in the 

particulate model (Fig. 5.10) and from the density profiles of the polymer 

films, which are discussed in Chapter 4 [21, 33]. Also, with the exception of 

the strongly confined, ultrathin films, the values of the reinforcement in both 

models were comparable. This allows us to conclude that the confinement 

effects are replaced by another reinforcing factor in the particulate systems 

with smaller curvature of the NPs. This additional mechanism seemed to be 

the direct, attractive interactions among the NPs, which was absent in the film 

model where the walls did not interact with each other. 

Overall it seems that the simulations were in a different parameter 

regime than the experiments: presumably, in the simulations, a much weaker 

coupling among the polymer matrix and the NPs was present at the interfaces, 

which led to less densification of the polymer matrix as compared to that of 

the experiments. Follow-up work should therefore include a broader variation 

of the filler-matrix interaction strength. The filler particles were much smaller 

than in the experiments in which aggregation of the particles took place. 

Therefore, filler surface effects in simulations are quite important: for the 

same filler volume fraction, the small particle radius in the simulations as 

compared to the radius of the experimental agglomerates, leads to an 

extremely large overall interfacial area.  
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Chapter 6 

Molecular Mechanisms of the Payne Effect in 

Filled Elastomers: Insights from Computer 

Modeling 

Abstract 

Coarse-grained molecular-dynamics computer simulations of a model polymer 

nanocomposite comprised of monodisperse non-entangled, non-crosslinked 

polymer chains, and filler nanoparticles, have been carried out under 

oscillatory shear of varying strain amplitude and frequency of oscillations. Our 

studies showed a strong decrease of the storage modulus with increasing strain 

amplitude, which was accompanied by a maximum in the loss modulus (the 

so-called Payne effect): the onset of the softening was observed in the linear 

regime of deformation, at a strain value of about 1%. Moreover, the 

dependence of G’ on the instantaneous strain exhibited both softening and 

hardening regimes, in agreement with recently reported LAOS experiments. 

The simulations of the mean-squared displacements of the polymer segments 

suggest that the observed hardening was caused by the shear-induced decrease 

of the non-affine segmental diffusion of the monomers of the matrix where the 

filler particles acted as effective crosslinks. The strain softening with 

increasing strain amplitude is connected to the dynamic heterogeneity of the 

polymer matrix. 

 

 

 

 

 

 

 

 

 

 

∗The contents of this chapter are being prepared for publication. 
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6.1 Introduction 

Innovations in the production and usage of polymer-based composites has led 

to a significant global growth of their application areas, such as in automotive, 

rail, naval, transport, construction and infrastructure, defense and aerospace, 

medical and healthcare, electrical and electronics, telecommunication, as well 

as in other industries. [1, 2]. This growth has been driven by new methods of 

synthesis of polymers filled with inorganic materials which impart additional 

properties to them, the most important of which are the combination of light 

weight and high strength [3]. The market size of filled plastic materials could 

easily grow further, provided one can remediate the lack of understanding of 

reliable correlations between the microscopic structure and macroscopic 

properties of particle-filled polymer matrices, particularly under dynamical 

conditions. Such understanding can result in unique, new mechanical 

properties of these materials. 

Polymer nanocomposites are just at their infancy of development, but 

offer huge potential for future applications and energy savings. The 

observation [4-6] that, other things being equal, the effectiveness of the filler 

increases with an increase in the surface-to-volume ratio has provided a large 

impetus to the shift from micro- to nano-sized particles. Therefore, polymer-

based nanocomposites are considered an important branch of the emerging 

field of nanotechnology [7].  

 Rheological experiments [8] show that the mechanical reinforcement 

upon the addition of filler particles is primarily controlled by the inter-particle 

interactions mediated to some extent by the polymer matrix. The more specific 

role of the polymer matrix still remains unclear, in particular, the role or even 

the existence of the glassy adsorbed polymer layer surrounding the filler 

particles [7, 9]. 

Large amplitude oscillatory shear (LAOS) experiments have been 

performed recently by Mermet-Guyennet et al. [10]. They showed that 

although the overall rheology of particle-filled gels and polymers (melts and 

crosslinked networks) exhibited strain softening (i.e., Payne effect, [11]), 

within a single oscillatory cycle the systems exhibited strain hardening. Their 

conclusion was that the experimental deformation rate is the important time 

parameter of the problem, not an intrinsic time scale: the overall softening was 

a consequence of the molecular rearrangements due to the imposed 

deformation. This conclusion is in agreement with the reported strain-rate 
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frequency superposition rheology results of Wyss et al. [12]. As the segmental 

relaxation seems to be responsible for the observed softening, it is important to 

clarify the details of the molecular rearrangements which lead to the Payne 

effect; in this respect, computer simulations look promising. 

The key issue in understanding the molecular origin of the 

reinforcement and its dependence on the applied deformation and the Payne 

effect, which has so far remained unresolved, is the exact molecular 

mechanisms, at a nanometer scale, that induce changes in the properties of the 

polymer matrix (e.g. mechanical reinforcement). These mechanisms are 

crucial; understanding them would allow us to predict how the microstructure 

of a polymer nanocomposite affects its macroscopic properties and, therefore, 

to control the performance of polymer materials by adding rationally designed 

nanostructured fillers [13]. In order to reveal the mechanism, it is necessary to 

couple the interactions of different components of a composite at the 

molecular level with spatial structuring of filler nanoparticles in the polymer 

matrix at the mesoscale. In turn, the spatial structuring is affected by 

macroscopic flow patterns during processing. To deal with these phenomena, 

the computer simulation methods look rather perspective as they enable more 

precise prediction of the nanocomposite's macroscopic properties and 

performance in applications and, ultimately, allow in the future rational, 

molecular-level design of the nanocomposite. Such dynamic simulations on a 

coarse-grained level are carried out in the present chapter. 

Since complex interactions between constituent phases at the atomic 

level ultimately manifest themselves in macroscopic properties, a large range 

of length and time scales must be, in principle, addressed in such simulations, 

and a combination of modelling techniques is therefore required to simulate 

meaningfully the bulk-level behavior of nanocomposites. Raos et al. [14] were 

among the first who studied the effect of the interactions between stiff 

colloidal filler particles and polymer networks by using large scale, coarse-

grained Dissipative Particle Dynamics (DPD) simulations. However, the 

nonlinear viscoelastic results of their simulations were rather different from 

the experimentally observed Payne effect. The authors conclude that its origin 

is not entirely related to the particle-particle interactions. The reasons of the 

observed discrepancies could also be in the specificity of the soft DPD 

potentials used in these simulations. At the same time, recent DPD simulations 

of Gavrilov et al. [15] reproduced nicely the experimental reinforcement in 

elastomer nanocomposites. 
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In elastomer-based nanocomposites the filler nanoparticles play the role 

of the temporal crosslinks. The formation of the temporal networks and the 

role of the polymer nanoparticles interactions have been studied by Kutvonen 

et al. [16, 17] by coarse-grained molecular-dynamics (MD) simulations, where 

filler particles were represented as Lennard-Jones spheres. The authors found 

that the observed reinforcement is correlated with the minimization of the 

relative mobility of the filler particles with respect to the polymer segments. 

Definitely this conclusion should be checked and studied further for different, 

non-spherical filler shapes [18].  

Various molecular mechanisms of the Payne effect and reinforcement 

for polymer nanocomposites filled with model nanofillers (mainly spherical) 

are studied by Chen et al., [19] and in a series of publications from the Liu and 

Lyulin groups [20-22]. The role of direct particle-particle interactions and of 

the segmental orientation at the particle–matrix interface was investigated. 

Still, questions remain about the dominant molecular mechanism, and the 

effects caused by more realistic shapes of the filler particles.  

The main aim of this work has been to further elucidate, using 

molecular-dynamics simulations, the seeming contradiction between usual 

non-linear viscoelastic measurements and the Lissajous analysis of the same 

material, by investigating microscopic phenomena which cannot be readily 

probed in experiments. Namely, from a strain sweep the material appears to 

display strain softening, whereas the Lissajous analysis of a single oscillation 

cycle indicates that the material displays strain hardening. We subsequently 

focus on understanding the strain softening, notably the observation that the 

amplitude depends on the deformation rate. Finally, we probed the effect of 

using attractive or repulsive interactions among the nanoparticles on the 

mechanical properties and the underlying microscopic dynamics of the 

simulated nanocomposite.  

The simulated models and the algorithms are explained in the next 

section. The results of the shear deformation are summarized in Section 3. The 

chapter is finalized with our conclusions.  

6.2 Models and Methods 

Filled rubbers, among numerous other materials, exhibit strain softening at 

high strain amplitudes during a strain sweep in oscillatory rheology: the 

modulus decreases with increasing strain amplitude. On the other hand, when 



Chapter 6 

107 
 

the nonlinear elastic response is analyzed within a single oscillation cycle (i.e., 

at constant strain amplitude) these systems are often reported to exhibit strain 

hardening. We attempted to reproduce that behavior by performing MD 

simulations of a polymer matrix filled with nanoparticles (NPs). Although the 

polymer matrix of the simulated systems consisted of non-crosslinked and 

non-entangled chains, the relatively fast deformation rates accessible to MD 

simulations allow the system to display rubber-like properties. Therefore, the 

results of our simulations can be applicable to rubbers. The particulate system 

with 𝜑𝑓 = 28.5% and rNP = 4𝜎 (Chapter 5) was subjected to sinusoidal 

deformation, and the resulting mechanical response was calculated as a 

function of the deformation time. But whereas the previous chapter was 

dedicated to the study of the reinforcement at low values of the strain 

amplitude, in this Chapter the simulated system is exposed to sinusoidal 

deformation so as to study the drop of the reinforcement as the strain 

amplitude is increased.  

The value of the strain amplitude was varied from 0.01 to 0.45 which 

lies beyond the linear stress-strain regime. Moreover, to perform the non-

equilibrium simulations, the SLLOD equations of motion were used [23]. At 

each strain amplitude, γmax, ten oscillatory cycles were performed. Each cycle 

lasted for 1,000τ, thus resulting in a total oscillation time of 10,000τ for a 

given γmax. The time frequency of oscillations was 𝑣 = 0.001𝜏−1 which 

corresponds to an angular frequency of 𝜔 = 0.0063𝜏−1, unless otherwise 

mentioned (Table 6.1). Lastly, attractive NP-NP interactions were always used 

for the nanocomposite, with the exception of section 6.5 where both attractive 

and repulsive NP-NP interactions are used so as to study the effect of the NP-

NP interactions on the Payne effect. 

 

Table 6.1: Values of the angular frequency, ω, and the ordinary frequency, ν, 

which were used in the simulations. 

ν [τ
-1

] ω[rad τ
-1

] 

0.001 0.0063 

0.005 0.0314 

0.01 0.0628 

0.05 0.3140 

0.1 0.6280 
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6.3 Computing moduli using LAOS simulations 

Polymer nanocomposites exhibit strain softening behavior among subsequent 

oscillation cycles of increasing strain amplitude [11, 14]. This is the so-called 

Payne effect, first discovered in the 1960’s. However, during a single 

oscillation cycle of constant strain amplitude, the same materials exhibit strain 

hardening at high values of strain. In the non-linear regime of stress response, 

though — where the Payne effect is observed — the definition of the moduli 

is not unique. Recent experiments have attempted to elucidate the seemingly 

paradoxical strain softening/hardening behavior [10] and concluded that the 

strain hardening observed in polymer nanocomposites is a local effect, and 

depends on the employed method of calculating the moduli. Here, we 

compared two methods of extracting the moduli of our simulated systems (i.e., 

Eq. 6.1 and 6.4). The first is the usual non-linear viscoelastic measurement; it 

is based on the instantaneous stress response of the material (Eq. 6.1), and will 

be discussed forthwith. The second method is based on the analysis of 

Lissajous curves, i.e., stress-strain plots, and will be discussed subsequently 

(Eq. 6.4).  

The components of the complex modulus as calculated by a rheometer 

[10] — and in most cases by MD simulations as well [21, 22] — are extracted 

by fitting the instantaneous stress response to Eq. 6.1 (using n = 1, 3). We note 

that the terms 𝐺1
′ and 𝐺 

′ will be used interchangeably. 

𝜎(𝑡) = 𝛾𝑚𝑎𝑥 ∑ [𝐺𝑛
′ (𝜔, 𝛾𝑚𝑎𝑥) sin(𝑛𝜔𝑡) + 𝐺′𝑛

′ (𝜔, 𝛾𝑚𝑎𝑥) cos(𝑛𝜔𝑡)]

𝑛,𝑜𝑑𝑑

       (6.1) 

The fitting procedure is illustrated in Fig. 6.1, where the instantaneous stress 

response of the composite system is depicted at γmax = 0.02 and 0.45. As seen 

in Fig 6.1, the fluctuations in the calculated stress were more pronounced for 

smaller values of the strain amplitude (e.g., γmax = 0.02) than for larger ones 

(e.g., γmax = 0.45). Furthermore, the Mullins effect — a phenomenon 

commonly observed in filled elastomers, due to which the elastic modulus of 

the first cycle is higher than that in subsequent ones under cyclic deformation 

conditions — was not reproduced in the simulations: the stress response of the 

simulated nanocomposite was identical during all the oscillatory cycles. This 

implies an absence of irreversibly damaged covalent filler-matrix bonds in the 

simulated nanocomposite.  
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Figure 6.1: Stress versus time at γmax = 0.02 and 0.45. The red lines are the 

fitting curves based on Eq. 6.3. At each strain amplitude, the 

instantaneous stress is depicted during all 10 oscillatory cycles. 

 

Nevertheless, the Payne effect (the drop in 𝐺’ with the accompanied maximum 

of G’’ with increasing strain amplitude) was indeed reproduced by using Eq. 

6.1, at least qualitatively (Fig. 6.2a-b). Note that 𝐺’ and 𝐺 ′′ are identical to 𝐺1
′ 

and 𝐺1
′′ of Eq. 6.1. 

According to the Lissajous curves of Figs. 6.2c-e, non-linear terms, i.e., 

higher order harmonic contributions to the stress (𝐺3
′  and 𝐺3

′′), should be taken 

into account when γmax is relatively high, since the stress-strain curves were 

not perfect ellipsoids. Strangely, although higher harmonics should be zero at 

small strain amplitudes and increase with increasing strain amplitude, the 

opposite was produced by the usage of Eq. 6.1 (Fig. 6.3). To elucidate what 

seems to be a paradox, we attempted to compute the moduli using a different 

method. 

 

 

(a) 
(b) 

 

(a) 
(b) 
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Figure 6.2: Elastic (a) and viscous (b) moduli versus strain amplitude γmax. 

The moduli were extracted with the method described above. The c, 

d, and e panels depict the Lissajous curves for three values of the 

strain amplitude, i.e., γmax = 0.01, 0.12, and 0.45. 

 

 
Figure 6.3: The 3

rd
 elastic (a) and viscous (b) harmonic contributions to the 

stress versus the strain amplitude. The black and red data points 

correspond to the unfilled polymer and the nanocomposite, 

respectively. 

 

(c) 
(d) 

(e) 

(a) (b) 
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In the regime of non-linear stress response, the moduli do not have a unique 

definition [24]. Two of the most commonly used definitions are depicted in 

Eq. 6.2 and 6.3. 

𝐺 ′ =
𝜔

𝜋𝛾𝑚𝑎𝑥
2 ∮ 𝜎(𝑡)𝛾(𝑡)𝑑𝑡                                                                                     (6.2) 

𝐺𝑀
′ = (

𝑑𝜎

𝑑𝛾
)

𝛾=0

                                                                                                        (6.3) 

Eq. 6.2 gives an elastic modulus as calculated by a rheometer’s software 

(based on Eq. 6.1): the term 𝐺′ in Eq. 6.2 is identical to the term  𝐺1
′ in Eq. 

6.1. Eq. 6.3 gives an elastic modulus as the slope of the strain-strain curve at 

zero strain [10]. We plotted the stress-strain curves for the nanocomposite and 

the unfilled polymer (Fig. 6.4) by averaging the stress response over the ten 

oscillation cycles of constant strain amplitude, and extracted the terms 𝐺𝑀
′  and 

𝐺3
′  by fitting the data of Fig. 6.4a to Eq. 6.4 (which can be derived from Eq. 

6.1, taking into account the definition of 𝐺𝑀
′  from Eq. 6.3) [10]. 

𝜎𝑒(𝑡) = 𝐺𝑀
′ 𝛾 + 4𝐺3

′
𝛾3

𝛾𝑚𝑎𝑥
2                                                                                      (6.4) 

 

Figure 6.4: Elastic stress, 𝜎𝑒, versus strain for different strain amplitudes (for 

the system with attractive LJ NP interactions). The two panels: (a) 

raw simulation data, (b) simulation data fitted to Eq. 6.4.  

 

The term 𝜎𝑒 refers to the elastic stress which in the classical, linear 

viscoelastic regime can be obtained from the total stress 𝜎(𝑡) = 𝐺′𝛾(𝑡) +

𝐺′′𝛾(𝑡)/𝜔 = 𝜎𝑒(𝑡) + 𝜎𝑣(𝑡), where 𝜎𝑣 is the viscous stress. This separation of 
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the total stress into elastic and viscous components can be generalized to the 

non-linear regime according to Eq. 6.5 [29]. 

𝜎(𝑡) =
𝜎(𝑡) + 𝜎(−𝑡)

2
+

𝜎(𝑡) − 𝜎(−𝑡)

2
= 𝜎𝑒(𝑡) + 𝜎𝑣(𝑡)                               (6.5) 

The strain softening with increasing strain amplitude is clearly visible as the 

change in the slope at zero strain (i.e., the decrease in 𝐺𝑀
′  with increasing 

strain amplitude). For large strain values, though, a slight upturn of the curves 

was observed. This upturn indicates a strain hardening response. Before 

discussing the strain hardening, though, we will first compare the values of the 

moduli we extracted by using equations 6.1 and 6.4. The results are depicted 

in Fig. 6.5.  

 

Figure 6.5: (a) Elastic moduli and (b) 3
rd

 order elastic harmonic versus the 

strain amplitude. The 𝐺 
′ was calculated by fitting the simulation 

data to equation 6.1, and the 𝐺𝑀
′  by fitting the data in Fig. 6.4a to 

equation 6.4. Equation 6.1 gives seemingly unphysical results for 

the 3
rd

 order elastic harmonics. The problem was solved when Eq. 

6.4 was used to extract the moduli. 

 

Both equations produced similar values for the elastic modulus (i.e., 𝐺′ ≈

𝐺𝑀
′ ). However, only Eq. 6.4 gave physically logical results for the higher 

harmonics, with 𝐺3
′  being equal to zero at the linear regime of stress response 

and increasing when strain-hardening was observed, as was expected. 

Therefore, Eq. 6.4 produced a more reliable prediction for the higher elastic 

harmonic contributions to the stress. 

Turning our attention to the strain hardening that was observed at high 

values of the instantaneous strain, we will attempt to answer the following 

(a) (b) 
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question: is the strain hardening an intrinsic property of the polymer matrix, or 

is it caused by the presence of the NPs? To provide with an answer, we plotted 

a normalized version of the stress-strain curves of Fig. 6.4 for the 

nanocomposite as well as for the unfilled polymer. Specifically, the elastic 

stress was normalized by the stress amplitude, σmax, and the strain was 

normalized by the strain amplitude, γmax (Fig. 6.6). 

 

Figure 6.6: Elastic stress, 𝜎𝑒, normalized by the stress amplitude, σmax, versus 

strain normalized by the strain amplitude, γmax, for (a) the 

nanocomposite and (b) the unfilled polymer. Each curve refers to 

a different value of the strain amplitude.  

 

The strain hardening appeared at γmax > 0.01, in both the nanocomposite and 

the unfilled polymer. However, the unfilled polymer had surpassed its yield 

point at γmax = 0.20, whereupon the unfilled polymer exhibited liquid behavior, 

and the stress became independent of strain. At γmax < 0.20 both the composite 

and the unfilled matrix exhibited strain hardening. The hardening was more 

pronounced in the nanocomposite than in the unfilled polymer. Thus, we 

conclude that the strain hardening produced by the simulations was an 

intrinsic property of the matrix, but it was further enhanced by the presence of 

the NPs. 

6.4 Microscopic mechanisms of the strain hardening 

To elucidate the microscopic causes of the strain hardening observed at large 

strain values, we calculated the non-affine displacement (NAD) of the 

monomer beads for both the nanocomposite and the unfilled polymer. The 

calculations were based on Eq. 6.6. 

(a) (b) 
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g0
𝑎 = 〈|𝒓𝑗(𝑡) − 𝒓𝑗(0)|

2
〉                                                                                         (6.6) 

The term 𝑟𝑗(𝑡) is the coordinate of bead 𝑗 at time 𝑡, 𝑟𝑗(0) the coordinate of the 

same bead at the initial time of the deformation, and 𝑎 denotes the constituent 

of the system; i.e., 𝑎 = 𝑝 for the monomer segments of the matrix, 𝑎 = 𝑃 for 

the center-of-mass (COM) of the polymer chains, and 𝑎 = 𝑁𝑃 for the 

nanoparticles. While calculating the NAD we did not subtract the 

displacement of each constituent due to the convective velocities imposed on 

them by the deformation of the simulation box. In Fig. 6.7 the NAD of the 

monomer beads is depicted at 𝛾𝑚𝑎𝑥  =  0.45 for the nanocomposite (Fig. 6.7a) 

and for the unfilled polymer (Fig. 6.7b). Each data point in the graph denotes 

the NAD of the monomer beads between two consecutive strain values.  

In the unfilled polymer, the NAD of the monomer beads was nearly 

unaffected by the imposed strain as well as by the strain amplitude (Fig. 6.7b). 

This seems to correspond well with the constant elastic modulus and the 

absence of a maximum point in the viscous modulus as the strain amplitude 

was increased, as depicted in Fig. 6.2a-b for the unfilled polymer. On the other 

hand, that was not the case for the NAD of the monomer beads in the 

nanocomposite. Under constant strain amplitude, the NAD of the monomer 

beads was higher during the eccentric (from γ = 0 to γ = γmax) than the 

concentric (from γ = γmax to γ = 0) contraction of the nanocomposite. 

Furthermore, as the strain increased from the unstrained state, the NAD of the 

monomer beads increased until the strain attained a value of about 0.15; a 

further increase of the strain led to the decrease of the NAD of the monomer 

beads. This was more prominent at the highest employed strain amplitude 

(γmax = 0.45): at smaller values the resolution was too coarse to affirm whether 

the same behavior was also reproduced. Nevertheless, the same behavior was 

also observed for the NPs and for the COM of the polymer chains, with the 

only differences being a smaller displacement and worse statistical quality.  
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Figure 6.7: Non-affine displacement (NAD) of the monomer beads for the 

nanocomposite (a) and the unfilled polymer (b). The dependence 

of the NAD on strain is depicted for four different values of the 

strain amplitude. Each point on the graph denotes the NAD of 

the monomer beads between two consecutive strain values. 

 

The calculated NAD implies that, at zero strain, increasing γmax led the 

monomer beads to a higher mobility, which seems to correspond to the 

observed strain softening with increasing γmax (i.e., the Payne effect). 

However, when γ = γmax, the NAD of the monomer beads was independent of 

γmax. In particular, the higher the value of γmax, the more abrupt was the drop in 

the NAD of the monomer beads, so that when γ = γmax the mobility of the 

monomer beads was the same for all different values of γmax. The decreased 

mobility of the monomer beads at high values of strain seem to correspond to 

the observed strain hardening.  

Moreover, at γmax = 0.45, the component of the radius of gyration of the 

polymer chains along the deformation direction attained a maximum value of 

𝑅𝑔𝑥
2 = 16𝜎 (Fig. 6.8), in both the nanocomposite and the unfiled polymer; the 

components of the Rg along the lateral directions were not noticeably affected 

by the strain (not shown). At equilibrium conditions we calculated 𝑅𝑔𝑥
2 ≈ 4𝜎. 

Therefore, during the deformation simulations, the chains were highly 

stretched along the strain direction. On average, the radius of gyration of the 

polymer chains in the nanocomposite was smaller than that of the polymer 

chains in the unfilled polymer. This difference implies that the NPs acted as 

weak crosslink junctions which inhibited to a small degree the stretching of 

the polymer chains. Lastly, from a comparison among Figs. 6.6 and 6.8 it can 

be seen that the strain hardening appeared once the 𝑅𝑔𝑥
2  of the nanocomposite 

became larger than the 𝑅𝑔
2 of the Gaussian coil (about 8.33σ) [25].  

(b) (a) 



Chapter 6 

116 
 

 
Figure 6.8: The radius of gyration of the polymer chains in the nanocomposite 

and the unfilled polymer as a function of the applied strain at γmax 

= 0.45. 

 

Since the interaction among monomers and NPs was attractive, we should 

expect that the relaxation times of the monomer beads will be higher in the 

composites than in the unfilled polymer. To this end we calculated the means-

squared displacement for both the monomer beads and the NPs. At very short 

times (0.01τ −0.1τ) a ballistic regime with a slope close to two is commonly 

distinguished in the MSD. The ballistic regime is followed by a plateau, where 

the tagged monomer is trapped in a cage created by its neighboring monomers. 

As soon as the monomer escapes from the cage after some characteristic time 

τα (the α-relaxation time [26, 27]) the diffusive Rouse regime follows, with an 

exponent of 0.5.   
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Figure 6.9: Instantaneous mean squared displacement of the monomer-

beads, g0
m, and of the filler-beads, g0

f , in the pure polymer (PP) and 

in the nanocomposite (NC).  

 

The slope of the mean squared displacement (MSD) of the monomer beads 

(Fig. 6.9) was calculated equal to about 0.68 both in the unfilled polymer and 

in the composite. This is larger than the Rouse exponent normally expected, 

probably due to the small length of the simulated chains. Furthermore, the 

timescale of the cage-escape was apparently less than 10τ; the Rouse time, i.e., 

the time within which linear (not sub-linear) dependence should be expected, 

was surely longer than 10,000τ; and the characteristic deformation time at ω = 

0.0063τ
-1

 was about 300τ. Hence, the relaxation time of the monomer-beads 

was longer than the characteristic deformation time, and therefore we 

conclude that the relaxation time of the polymer chains’ COM was much 

longer than the characteristic time of deformation. This means that the system 

was always out of equilibrium (rather than being close to equilibrium) during 

the deformation. We note that the statistical quality of the curves in Fig. 6.9 is 

worse than what it would have been had we taken into account multiple initial 

times in the calculation of the MSD.  
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Figure 6.10: Elastic and viscous modulus versus (a, b) the angular frequency 

and (c, d) the inverse strain amplitude. Each curve corresponds to 

a specific value of the maximum strain rate.   

 

Since the controlling time of the simulations was the characteristic 

deformation time, and not an intrinsic time of the deformed system, we 

expected to be able to create a master curve for the dependence of the moduli 

on the oscillation frequency, 𝐺∗(𝜔) [12]. Apparently, the maximum shear 

rate, �̇�𝑚𝑎𝑥 = 𝜔𝛾𝑚𝑎𝑥 , emerged as the important variable for the construction of 

the master curve. By plotting the moduli as a function of the angular 

frequency for different values of  �̇�𝑚𝑎𝑥, we observed that the elastic and 

viscous modulus depended on the value of ω (Fig. 6.10a-b). Most importantly, 

though, the curves of Fig. 6.10a seemed to be parallel to each other, which 

implies that a master curve may be created for 𝐺’ under different values of 

�̇�𝑚𝑎𝑥. That was not the case for 𝐺′′ (Fig. 6.10c-d), for which the data points 

were more scattered than those of 𝐺′, although a trend can still be seen if the 

data points at the highest �̇�𝑚𝑎𝑥 are ignored owing to their peculiar behavior of 

decreasing sharply at the maximum ω that was employed in the simulations. 

The shifting factor for creating the master curve was the inverse strain 

amplitude 𝛾𝑚𝑎𝑥
−1 = 𝜔�̇�𝑚𝑎𝑥

−1 . Hence, the dominant time scale in the nonlinear 

(a) 
(b) 

(c) (d) 
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regime of stress response was the one imposed by the time frequency of 

oscillations, i.e., 1/ν = 2π/ω [12].  

6.5 Microscopic mechanisms of the Payne effect 

Following the study of Chapter 5 on the effect of the NP interactions on the 

reinforcement of the simulated polymer nanocomposites, we probed in this 

Chapter the effect of NP interactions on the loss of that reinforcement, 

namely, on the Payne effect [11, 14]. To this end we calculated the elastic and 

viscous moduli as a function of the strain amplitude for the composites with 

attractive and repulsive NP-NP interactions (Fig. 6.11). It is obvious that the 

reinforcement was higher in the nanocomposite with attractive rather than 

repulsive NP-NP interactions, with a higher reinforcement leading to a more 

pronounced drop in the elastic modulus with increasing strain amplitude. The 

maximum value of the viscous modulus was larger when attractive NP-NP 

interactions were used. At the same time, that maximum was observed at a 

higher strain amplitude in the composite with attractive NP-NP interactions 

than in that with repulsive ones. 

 
Figure 6.11: Payne effect for the unfilled polymer and the nanocomposite 

with attractive and repulsive NP interactions.  

 

In Figs. 6.12 and 6.13 we have plotted the spatial profiles of the instantaneous 

MSD (consisting of random and convective motions) of the monomer beads 

for the composite with attractive and repulsive NP interactions, respectively. 

Depending on the values of the strain amplitude, there were four to five 

different dynamical layers of polymer between the NPs. As it has been already 

shown experimentally for glassy polymers, increasing the strain amplitude led 
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to a narrower spatial distribution of relaxation times of the polymer segments 

[28].  

 

Figure 6.12: Spatial profiles of the instantaneous MSD (consisting of random 

and convective motion) of the monomer beads in the composite 

with attractive NP-NP interactions. Only the first and last layers 

are shown so as to better illustrate the effect of the strain 

amplitude on the dynamic heterogeneity of the polymer matrix. 
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Figure 6.13: Spatial profiles of the instantaneous MSD (consisting of random 

and convective motions) of the monomer beads in the composite 

with repulsive NP-NP interactions. Only the first and last layers 

are shown so as to better illustrate the effect of the strain 

amplitude on the dynamic heterogeneity of the polymer matrix. 

 

Apparently, when attractive NP-NP interactions were used, at very low strain 

amplitudes there was an immobile polymer layer (g0
𝑝

≈ 0) surrounding the 

NPs, which broke down (i.e., g0
𝑝

 became larger than zero) as the strain 

amplitude was increased (Fig. 6.14). At γmax = 0.01, this glassy layer had an 

average width of about 2σ. When repulsive interactions were used, no 

immobile polymer layer was detected: the mobility of the monomers nearest to 

the NPs was larger than zero, but the difference in mobility among the layers 

was smaller when repulsive rather than attractive interactions were used 

(albeit to a small degree). As a consequence, while the strain amplitude was 

increased, higher dynamic heterogeneity was observed in the nanocomposite 

with attractive rather than repulsive NP interactions. It seems, then, that the 

NP interactions modified the dynamical properties of the polymer matrix, as 

well as its structural properties (as was affirmed in Chapter 5).  
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6.6 Conclusions 

The main aim of this work has been to elucidate the contradictory behavior of 

polymer nanocomposite to exhibit both strain hardening and strain softening 

behavior under LAOS experiments. To this end we performed Molecular-

Dynamic simulations of a model nanocomposite and concluded that the 

observed strain hardening arose from the decrease in the non-affine 

displacement of the polymer segments of the matrix which were caused by the 

extreme elongation of the polymer chains along the deformation direction. We 

also affirmed that the controlling timescale of the simulations was the 

deformation time, not any intrinsic timescale of the system. Furthermore, we 

studied the effect of using attractive versus repulsive interactions among the 

nanoparticles on the Payne effect. The simulation results showed that the 

reinforcement and its subsequent drop with increasing strain amplitude were 

higher in the nanocomposite with attractive rather with repulsive NP 

interactions. Probing the mean-square displacement of the monomer beads as 

a function of the distance from the NPs’ surface, we saw the presence of a 

glassy polymer layer surrounding the NPs when attractive NP interactions 

were used, but that glassy layer was not observed when repulsive NP 

interactions were used. Lastly, the use of attractive NP interactions enhanced 

the dynamic heterogeneity of the polymer matrix in comparison with that 

when repulsive NP interactions were used, which corresponded to the higher 

reinforcement and Payne effect observed in the former than in the latter 

system. It seems, then, that the NP interactions modified both the structural 

(Chapter 5) and dynamical properties of the polymer matrix. Further studies 

should involve the usage of additional values for the filler volume fraction and 

the radius of the NPs, to further affirm the general applicability of the 

currently presented results presented. 
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Chapter 7 

Conclusions and Outlook 

Abstract 

Various experimental and computational studies have shown that polymers 

under nanoscale confinement or filled with rigid nanoparticles exhibit distinct 

structural, dynamical and mechanical properties from the pure polymer matrix. 

The main goal of the thesis was to study the effect of the film thickness and 

the crosslink density on the dynamical and mechanical properties of polymers 

confined between solid walls, as well as the mechanical properties of filled 

elastomers as they are affected by the volume fraction and size of the filler 

particles and by the nature of the interactions among the nanoparticles; namely 

the enhancement of the rigidity at small strain amplitudes, and its 

corresponding loss with increasing strain amplitude. To this end we performed 

molecular-dynamics simulations using coarse-grained models so as to explain 

universal mechanisms of the probed properties of the simulated systems. In 

this chapter we summarize the main conclusions of the thesis and propose 

perspectives for future studies. 
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Chapter 3: Molecular-dynamics simulations of crosslinked 

polymer films: equilibrium structure and glass-transition 

temperature 

The Chapter deals with the equilibrium structural study of polymer films, 

capped between two crystalline walls. Attractive polymer-wall interactions 

were employed. Three different film thicknesses were used, which were 

larger, smaller, and about the same order of magnitude with the end-to-end 

distance of the chains in the non-confined polymer. Our goal was to 

understand how the film thickness and the polymer crosslink density affect the 

structural properties of the confined polymer. 

 The relative effect of the degree of confinement and the crosslink 

density has been studied. The main conclusion of this chapter is that 

confining the polymer matrix leads to a larger increase of its glass-

transition temperature than the increase which is induced by the 

incorporation of chemical crosslinks. 

 In the direction perpendicular to the walls, the polymer displayed solid-

like structure, whereas in the direction parallel to the walls, it displayed 

an amorphous structure similar to that of the non-confined polymer.  

 

Chapter 4: A coarse-grained molecular-dynamics study of 

segmental structure and mobility in capped crosslinked 

copolymer films 

The Chapter deals with the equilibrium dynamical study of the polymer films 

presented in the previous Chapter, and specifically of the segmental dynamics 

as a function of film thickness and mesh size (the end-to-end distance of the 

sub-chains in the crosslinked polymer networks). Our goal was to see the 

relative effect of both crosslinking and confinement on segmental mobility. 

 

 The main conclusion of this chapter is that the polymer dynamics in 

films with attractive walls (and by extension the mechanical properties 

of the films) are controlled by the concentration of monomers at the 

wall-polymer interface.  

 Increasing the degree of confinement and the crosslink density resulted 

in a monotonic slowing-down of segmental mobility on all studied 
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length-scales (and an increase of the glass-transition temperature), an 

increased concentration of monomers at the wall-polymer interface, and 

in a higher dynamic heterogeneity. 

 The high concentration of monomers close to the crystalline walls 

decreased when the crystalline walls were replaced with non-crystalline 

ones.  

 

Chapter 5: Filler size effects on reinforcement in elastomer-

based nanocomposites: experimental and simulational insights 

into physical mechanisms 

This Chapter deals with the study of the reinforcement in the polymer films of 

the previous Chapters as well as in polymers filled with rigid nanoparticles. 

All simulated systems were elongated under a linearly increased strain. The 

varying parameters for the filled polymer systems were the volume fraction 

and size of the nanoparticles. We also compared the reinforcement which was 

calculated by our simulation results with predictions of shear distortion 

models commonly used in industry. Our goal was to affirm the validity the 

simulation models in predicting the qualitative behavior of polymer 

nanocomposites, and provide a microscopic picture for the observed 

macroscopic mechanical properties of the simulated polymer nanocomposites. 

 

 The main conclusion is that nanoparticle-nanoparticle interactions 

played a “modifying” role in regards to the structural properties of the 

polymer matrices in the particulate systems, and in the case of repulsive 

interactions, they induced different hydrodynamic interactions from 

what was expected by the shear-distortion models. 

 The reinforcement (R) increased with decreasing radius of the 

nanoparticles and attractive nanoparticle interactions, with the latter 

having a larger effect than the former.  

 A higher filler volume fraction led to the densification of the matrix at 

the filler-matrix interfaces, and had a noticeable effect on the R only 

when attractive nanoparticle-nanoparticle interactions were employed. 
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Chapter 6: Molecular Mechanisms of the Payne Effect in Filled 

Elastomers: Insights from Computer Modeling 

The two goals of this Chapter has been, first, to elucidate the microscopic 

mechanisms of the strain hardening and strain softening observed in polymer 

nanocomposite exposed to LAOS experiments, and second, to probe the 

microscopic causes of the Payne effect while varying the type of nanoparticle 

interactions. To this aim we exposed the systems of the previous chapter to 

oscillatory shear deformation. 

 

 The main conclusion is that the controlling timescale of the simulations 

was the deformation time, not an intrinsic timescale of the system, i.e., 

our systems were out of equilibrium and controlled by extrinsic 

conditions. 

 Indiscriminate fit of high-order harmonics in LAOS may lead to 

erroneous conclusions. 

 The strain hardening produced by LAOS simulations is an intrinsic 

property of the polymer matrix, but it is further enhanced by the 

presence of the nanoparticles (NPs). 

 The main conclusion on local mobility was that the strain hardening 

observed in LAOS experiments arose from the decrease in the non-

affine displacement of the polymer segments of the matrix which were 

caused by the extreme elongation of the polymer chains along the 

deformation direction.  

 The reinforcement and the subsequent softening (i.e., the Payne effect) 

with increasing strain amplitude were higher in the nanocomposite with 

attractive rather with repulsive NP-NP interactions. An immobile 

polymer layer surrounded the NPs at low strain amplitudes only when 

attractive NP-NP interactions were used.  

 Attractive NP-NP interactions enhanced the dynamic heterogeneity of 

the polymer matrix in comparison with that when repulsive NP-NP 

interactions were used, which corresponded to the higher reinforcement 

and Payne effect observed in the former than in the latter system.  
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General Conclusions and Outlook  

Overall, a smaller film thickness (which ideally corresponds to a higher 

volume fraction or smaller size of fillers) leads to smaller polymer-density 

variations, higher dynamic fragility, higher dynamic heterogeneity, and a 

larger reinforcement. This might indicate that, besides the effect of using a 

constant number of nanoparticles with larger size-dispersity, inhomogeneity in 

the polymer properties of the matrix might be brought about also by an 

increasing amount of nanoparticles with uniform size. Additionally, when 

crystalline walls were replaced by rough ones, the structural inhomogeneity 

and the dynamic heterogeneity of the polymer decreased. The reinforcement 

followed the same trend.  

The same observations were made in the particulate systems when a 

higher volume fraction of fillers, or attractive — as opposed to repulsive — 

nanoparticle interactions were used. Therefore, there seems to be a one-to-one 

correspondence among the reinforcement and the dynamic heterogeneity of 

the polymer in the simulated films and particulate systems. This observation is 

in agreement with experimental results of our collaborators at the University 

of Amsterdam, according to which a higher polydispersity of the NPs’ — 

which increases the inhomogeneity of the polymer matrix — retained the 

reinforcement and, at the same time, decreased the Payne effect. 

Therefore, the further and more detailed study of the effect of structural 

inhomogeneity and dynamic heterogeneity of the polymer matrix, as well as 

the development of new methods for their control, is deemed to be a 

promising research route on which to focus in future studies of the mechanical 

properties of polymer nanocomposites. To this end, a larger parameter space 

of the filler volume fraction and the radius and dispersity of the nanoparticles 

should be studied, so as to increase the reliability of the conclusions presented 

in this chapter.  

Further studies of the connection between the wall-roughness, the 

corresponding slowing-down of the dynamics, and the final connection of 

these with the mechanical reinforcement and the Payne effect in thin polymer 

films is highly desirable. Our results on the current stage cannot provide 

definite answers to these questions. Therefore a more extended study should 

be performed in this regard. 

The Payne effect is highly important for the rubber industry. Therefore 

the incorporation of chemical crosslinks in the particulate models that were 
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utilized in the simulations, besides enriching the overall knowledge about 

polymer-based composites, would also provide additionally insight 

specifically directed to the rubber industry. 

Lastly, the mechanical properties of polymer nanocomposites pose a 

multiscale problem, for the impact of specific length-scale phenomena is yet 

to be clearly elucidated. A multiscale study should therefore provide us with 

further insight on the mechanisms that give rise to the non-linear viscoelastic 

properties of filled polymers. The models that we used in this thesis were 

simple bead-spring models which allow avoiding chemical details and 

performing large scale computer simulations. Smaller length scales should be 

considered in future studies by simulating chemically specific polymers, 

which would allow an immediate comparison among simulations and 

experimental studies. On the other hand, the insight which was gained by our 

Molecular-Dynamics simulations can be used to determine parameters for 

more coarse-grained simulations so that larger length-scales can be reached.  

 

 

 

 

 

 

 



 

Summary 

Coarse-grained molecular-dynamics simulations of segmental 

motion and mechanical properties in polymer films and 

nanocomposites 

The aim of the project was to study the mechanical properties of polymer 

nanocomposites (PNC), in cooperation with the UvA and the industrial 

partners Michelin (tires) and SKF (rubbery sealants). PNC are materials in 

which inorganic nanoparticles (NP), commonly referred to as fillers, are added 

to a polymer matrix so as to increase their rigidity at low strain amplitudes. 

This enhancement of rigidity is colloquially called reinforcement. However, at 

higher strain amplitudes, an abrupt decrease of the reinforcement is observed, 

which is accompanied by an increase of viscous losses — this is the so-called 

“Payne effect” which restrains the performance of this family of materials as 

well as the development of possible new applications. The goal of the project 

was to connect the viscoelastic properties of the materials with their 

microstructure, and the microstructure with the interactions among the 

polymer and the NPs at the molecular scale. This could lead to the design of 

new materials with tailored specific mechanical properties through the tuning 

of the molecular interactions.  

We performed coarse-grained molecular-dynamics simulations on two 

different types of systems: a polymer film capped between two solid walls, 

and a polymer matrix filled with NPs. Our goal was to investigate the effect of 

the molecular interactions, the degree of polymer confinement, the polymer 

crosslink density, the filler particle size, and the filler volume fraction, on the 

equilibrium and non-equilibrium structure and dynamics, and on the 

mechanical properties of the simulated systems. The most important results 

are briefly mentioned below. 

We observed that the degree of confinement did not influence the 

equilibrium structure of the polymer along the direction parallel to the wall of 

the film, whereas it induced the development of density layers along the 

perpendicular direction. The increased glass-transition temperature (Tg) under 

stronger confinement could be attributed to the slow relaxation of monomers 

that lie close to the crystalline substrates, in comparison with the faster and 

bulk-like relaxation in the middle layers of the film — these slowly relaxing 

further layers gradually enclosed a larger volume fraction of the film as the 



 

 
 

film thickness was decreased. The glass-transition temperature displayed a 

steep increase once the crosslink mesh-size became smaller than the radius of 

gyration of the bulk chains — this was accompanied by a monotonic slowing-

down of segmental dynamics on all studied length-scales, as quantified by the 

decay of the incoherent-scattering function. These observations could be 

attributed to the smaller maximum attainable displacement of the monomer 

units and to the decreased width of the bulk density layer in thinner films. 

Higher dynamic heterogeneity was also observed when smaller values of film 

thickness and mesh-size were used, with more fragile glass-forming films 

displaying larger Tg values. 

Concerning the NP-filled polymer systems, we observed similarities 

among our simulation results and the experimental results of our collaborators, 

which allowed for a more detailed study of the causes of the reinforcement 

observed in experimental samples through the study of the structural and 

dynamical properties of the simulated systems. We observed an increase up to 

50% in the elastic modulus when NPs were added to the polymer matrix. 

Furthermore, in systems with attractive NP interactions, the reinforcement 

sharply increased when attractive NP interactions were employed and the 

average distance between the surfaces of the NPs was smaller than the 

Lennard-Jones cut-off radius: a strong indication that the development of a 

filler network is an important source of reinforcement for large volume 

fractions of fillers. On the other hand, at low filler volume fractions the 

reinforcement of the particulate systems with attractive NP-NP interactions 

was similar to that of systems with repulsive NP-NP interactions. This 

indicates that at low filler volume fractions, indirect (i.e., matrix-mediated) 

interactions among the NPs are more relevant than direct NP-NP interactions. 

A higher filler volume fraction resulted in a smaller distance between the NPs, 

and in a densification of the monomer units at the filler-polymer interface. As 

a consequence, a higher filler fraction resulted in a more confined polymer 

matrix and a slower diffusion of the monomer beads. Last, the development of 

a NP network was evidently more important in increasing the reinforcement 

than the use of a smaller NP radius. 

In order to study the Payne effect, we performed large amplitude 

oscillatory shear (LAOS) simulations. The simulations showed that the 

controlling timescale of the simulations was the deformation time and not an 

intrinsic timescale of the system, i.e., our systems were out of equilibrium and 

controlled by extrinsic conditions. Furthermore, we probed the microscopic 



 

 
 

causes of the observed strain hardening at large strain values: according to the 

simulation results, the strain hardening observed in LAOS experiments arose 

from the decrease in the non-affine displacement of the polymer segments of 

the matrix which were caused by the extreme elongation of the polymer chains 

along the deformation direction. Lastly, we found that attractive NP 

interactions enhanced the dynamic heterogeneity of the polymer matrix in 

comparison with that when repulsive NP interactions were used, which 

corresponded to the higher reinforcement and Payne effect observed in the 

former than in the latter system. 

The main conclusions of this work are that the mechanical properties of 

polymer systems filled with NPs are mostly affected by the direct and 

polymer-mediated NP interactions, and that a higher volume fraction of NPs 

increases both the reinforcement and the dynamic heterogeneity of the 

confined polymer matrix. 
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