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An adaptive training procedure is developed for a network of electronic neurons, which controls a
mobile robot driving around in an unknown environment while avoiding obstacles. The neuronal
network controls the angular velocity of the wheels of the robot based on the sensor readings.
The nodes in the neuronal network controller are clusters of neurons rather than single neurons.
The adaptive training procedure ensures that the input–output behavior of the clusters is iden-
tical, even though the constituting neurons are nonidentical and have, in isolation, nonidentical
responses to the same input. In particular, we let the neurons interact via a diffusive coupling,
and the proposed training procedure modifies the diffusion interaction weights such that the
neurons behave synchronously with a predefined response. The working principle of the training
procedure is experimentally validated and results of an experiment with a mobile robot that is
completely autonomously driving in an unknown environment with obstacles are presented.

Keywords : Diffusive neuronal cell network; adaptive training procedure; practical synchroniza-
tion; autonomous mobile robot control.

1. Introduction

Autonomous navigation of robots has a large num-
ber of application areas such as automatic driving,
transporting objects in factory or office environ-
ments, and unmanned exploration of dangerous
regions, see e.g. [Antonelo et al., 2006; Zhang et al.,
1997; Guivant et al., 2000]. Roughly speaking,

autonomous navigation of mobile robots can be
based on prior path planning or as a direct map-
ping of sensory input to actions [Antonelo et al.,
2008]. The methods based on prior path planning
prove the existence of an optimal path, but require
complete knowledge about the location, orientation
and movements of the obstacles in the environment
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[Floreano & Mondada, 1998]. Such detailed infor-
mation is not available in many real world appli-
cations. Furthermore, these methods assume the
environment not to change in time, whereas real
world environments are prone to changes, which
limits the applicability of prior path planning meth-
ods in such applications [Chatterjee & Matsuno,
2001].

On the contrary, neuro/biological networks are
able to learn from previous experiences and search
for an optimal solution in unknown situations. Such
networks are thus a natural candidate to use for
control of autonomous robots that have to operate
in unknown real world environments. An addi-
tional advantage of such controllers over conven-
tional digital processing using a microcontroller is
the improved robustness with respect to possible
faults; biologically-inspired controllers may work
correctly if parts of the hardware are damaged,
which is in contrast to a digital computer, where
a small error may lead to catastrophic results [Wil-
amowski, 2003].

Multiple examples of neuro/biological networks
used for control purposes can be found in litera-
ture. Before we discuss some examples, we make a
clear distinction between what we call neural net-
works and neuronal networks. A neural network is
understood as a network where the nodes are static
input–output maps that are connected via weighted
couplings, whereas the nodes in neuronal networks,
like spiking neural networks, are dynamical systems.
Some approaches using neur(on)al networks for con-
trol purposes are discussed here. For example, in
[Manoonpong et al., 2005] a four-legged walking
machine is controlled by a neural network, which
enables the robot to walk around and avoid obsta-
cles. This modular controller consists of different
smaller networks to carry out different tasks like,
input processing and velocity control. Another neu-
ral controller is proposed in [Massa et al., 2006] and
is used to control a unicycle-type mobile robot, such
that it can avoid obstacles and find a light source.
The two subtasks (obstacle avoidance and localiza-
tion of the light source) are solved by their own part
of the network.

Examples of neuronal networks for control of
mobile robots are found in, for example, [Pearson
et al., 2007; Floreano et al., 2006; Wang et al., 2008;
Johnston et al., 2010]. In particular, in [Pearson
et al., 2007] a controller has been designed to be
employed on mobile robot vehicles using an FPGA

approach, allowing bio-inspired neuronal process-
ing models to be integrated directly into control
environments. To reduce computational cost, rel-
atively simple leaky-integrate-and-fire neurons are
used. The neuronal network proposed in [Flore-
ano et al., 2006] uses integrate-and-fire neurons as
its constituting units as well. The angular veloc-
ities of the motors are determined by the motor
neurons, which receive input from excitatory and
inhibitory neurons whose response depends on the
signals received from sensor neurons. A similar spik-
ing neural network for control of a mobile robot can
also be found in [Wang et al., 2008], which proposes
a network with three different layers. In the input
layer, the membrane potential of the sensor neurons
is influenced by the sensor readings. Furthermore,
the turning neurons and approximate neuron judge
whether an opposite obstacle is too close. These
neurons are coupled to the hidden neurons which
determine to turn left or right. The hidden neurons
are then coupled to the motor neurons in the out-
put layer, whereas the sensor neurons are directly
coupled to the motor neurons, which determine the
angular velocities of the driving wheels of the mobile
robot.

We present a network with coupled electronic
neurons for control of a mobile robot with a network
architecture that is inspired by the three-layer spik-
ing neural network proposed in [Wang et al., 2008].
Proper functioning of the network of electronic neu-
rons, which we will refer to as the robot’s electronic
brain or simply electronic brain, requires the consti-
tuting nodes to produce identical responses to the
same input. However, in any hardware implementa-
tion, the manufacturing tolerances (of components)
and noise make the neurons behave nonidentically.
We propose to use clusters of neurons instead of
single neurons as nodes in the neuronal network
controller and we train the clusters such that (1) the
outputs of the neurons in a cluster are synchro-
nized, and even more importantly, (2) the syn-
chronized outputs of the clusters are (practically)
indistinguishable when the same input is applied.
More precisely, we propose a procedure to con-
struct and train clusters by (re)defining the network
structure (interaction weights) of a cluster. Thus
we may say that our training procedure yields a
robustly synchronized cluster. For a recent survey
on (robust) synchronization and its applications we
refer to [Tang et al., 2014]. An additional advantage
of this approach is that in the extreme case that
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a neuron of the electronic brain fails, or, expressed
dramatically, dies, a brief period of retraining (reha-
bilitation) makes the electronic brain function prop-
erly again.

In this paper the focus is on the training proce-
dure of the clusters. We develop and illustrate this
training procedure using clusters of neurons of the
Hindmarsh–Rose type [Hindmarsh & Rose, 1984]
and we verify our results of training using exper-
iments. The experimental setup consists of an e-
puck mobile robot [Mondada et al., 2009], equipped
with the neuronal controller presented in [Wang
et al., 2008] with electronic circuit realizations of the
Hindmarsh–Rose neuron [Steur et al., 2008; Neefs,
2009; Neefs et al., 2010] as nodes of the neuronal
network. We have chosen to use Hindmarsh–Rose
model neurons as constituting units as electronic
circuit realizations of this model are available to
us. We remark that our results will not be limited
to the use of this particular model neuron; previ-
ously obtained theoretical results on synchroniza-
tion of neurons reported in [Steur et al., 2009] imply
that the training procedure will also work when
the Hindmarsh–Rose model neurons are replaced by
FitzHugh–Nagumo model neurons, Morris–Lecar
model neurons or even Hodgkin–Huxley model
neurons.

This paper is organized as follows. In Sec. 2,
we introduce the mobile robot and the neu-
ronal controller. Section 3 presents the electronic
Hindmarsh–Rose neuron. Next, in Sec. 4, we intro-
duce some theoretical results on (practical) synchro-
nization of asymmetrically coupled, nonidentical
Hindmarsh–Rose neurons. These theoretical results
justify the training procedure that we describe next.
The results of the experiments of the training pro-
cedure and the mobile robot controlled by the neu-
ronal network are presented in Sec. 5. Finally, in
Sec. 6 conclusions are drawn.

2. Neuronal Controller for a Mobile
Robot

2.1. Mobile robot

The mobile robot used in the experiments is the e-
puck mobile robot [Mondada et al., 2009], which is
shown in Fig. 1. The position and orientation of the
robot are defined in a two-dimensional Cartesian
space (x, y) with origin O, see Fig. 2. The position
of the robot in the Cartesian coordinate system is
given by the following equations

Fig. 1. The e-puck mobile robot.

ẋ(t) = v(t) cos(θ(t)),

ẏ(t) = v(t) sin(θ(t)),

θ̇(t) = ω(t),

(1)

where v(t) and ω(t) are the translational and rota-
tional velocities of the robot, respectively. The for-
ward velocity v(t) and rotational velocity ω(t) of
the robot satisfy the relations

v(t) =
r

2
(ωr(t) + ωl(t)),

ω(t) =
r

2b
(ωr(t) − ωl(t)),

(2)

vy′

Sg2

Sg3

Sg1

O x

y

M1

M2

θ

s11

s12

s13

s14

s21

s31
s32s33

s34

Fig. 2. Illustration of the mobile robot and the sensor lay-
out. The dashed rectangles represent the wheels of the robot.
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where ωl and ωr are the angular velocities of the
left, and right wheel, respectively, r is the radius of
the wheels and b is half the distance between the
wheels. The angular velocities ωr(t) and ωl(t) can
be changed independently, which allows the robot
to move to every position in the (x, y) plane. Note,
however that the robot cannot move sideways, i.e.
perpendicular to the forward motion, because of
a nonslip condition (nonholonomic constraint, cf.
[Bloch, 2003]) on the wheels; an arbitrary position
in the (x, y) plane is reached by the robot by moving
back and forth and turning around its center.

The mobile robot is equipped with nine sensors
for detection of obstacles and to compute the dis-
tance of the robot to obstacles, as shown in Fig. 2.
The sensors are divided in three sensor groups Sgj ,
with j = 1, 2, 3, where sensors in groups 1 and 3
detect obstacles to the left and right of the robot
respectively, and the sensor in Sg2 finds obstacles
in front of the robot. The distance to an object
measured by sensor k in group j is denoted by sjk.
The minimal and maximal distances that can be
detected by a sensor are denoted by xmin and xmax,
respectively. The distance to an object detected by
sensor group j is given by

dgj = min
k

(sjk). (3)

These distances dgj are available to the controller.
The control inputs of the mobile robot are the angu-
lar velocities ωl and ωr of the two driving wheels.

2.2. Neuronal controller

The task of the robot is relatively simple; it has to
maneuver in an (unknown) environment and avoid
collisions with all objects in the environment. In
addition, when the object is right in front of the
robot, it has to come to a standstill. We remark
that we used this application as a proof of principle,
therefore we assumed that the angular velocities of
the wheels can only be positive, i.e. ωl, ωr ≥ 0. If
one would allow the wheels to have negative angu-
lar velocities the robot would be able to turn on its
axis to turn around instead of making a complete
stop when an object is right in front of the robot.

The mobile robot will achieve these tasks using
a neuronal controller with network structure as
shown in Fig. 3, which is based on the neuronal con-
troller presented in [Wang et al., 2008]. The nodes
in the input layer, which we call sensor neurons,
receive external inputs Igj, j = 1, 2, 3. For a con-
stant input Igj the sensor neurons fire periodically

Input layer

Output layer

Sn3 Sn2 Sn1

Mn1 Mn2

Ig3 Ig2 Ig1

ωl ωr

0.8 0.8
1 -11-1

Fig. 3. Network structure of the neuronal controller.

and the larger Igj, the higher the firing rate. The
inputs Igj are chosen to be (exponentially) propor-
tional to the distances dgj measured by the sensor
group, according to the (saturated) function

Igj =




Imin if dgj ≤ xmin

Imin

(
Imax

Imin

) dgj−xmin
xmax−xmin

if xmin<dgj <xmax

Imax if dgj ≥ xmax

(4)

with Imin and Imax the minimum and maximum
input voltages, respectively.

The sensor neurons couple to the neurons in
the output layer, which we refer to as motor neu-
rons, as the outputs of these neurons directly affect
the angular velocities of the wheels of the robot.
In particular, the firing rate of motor neuron Mn1

(Mn2) is proportional to the angular velocity of
the left (right) wheel. Motor neuron Mn1 receives
an excitatory input from sensor neurons Sn1 and
Sn2, and an inhibitory input from sensor neuron
Sn3. Similarly, motor neuron Mn2 receives an exci-
tatory input from sensor neurons Sn3 and Sn2, and
an inhibitory input from sensor neuron Sn1. The
weights of the inhibitory and excitatory inputs from
Sn3 and Sn1 are identical whereas the weight of the
excitatory input from Sn2 is a little less. In more
detail, the activating potential Ui(t), i = 1, 2, of the
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motor neurons is defined by the relation

Ui(t) =
3∑

j=1

∑
Nf

j

WSn(i, j)ψ
(
t− tfj

)
. (5)

Here tfj is the spike emitting time of the jth sen-

sor neuron in a predefined time window and Nf
j

denotes the number of spikes of that neuron in that
time window. The coupling gain matrix WSn from
the sensor neurons to the motor neurons which is,
in accordance to Fig. 3, is given by

WSn =
(

1 0.8 −1
−1 0.8 1

)
. (6)

The function ψ(·) is given by

ψ(s) =
s

τs
exp
(
− s

τs

)
, (7)

with τs a time constant. This function ψ introduces
“exponential forgetting” such that recent spikes
result in a larger increase of the activating potential
than previous spikes in the time window. The gen-
eration of a spike for the motor neuron can now be
determined by the membrane potential depending
on the activating potential. The membrane poten-
tial Vi(t) of the ith motor neuron is given by

Vi(t) =




2, if Ui(t) ≥ VM ,

Ui(t), if Ui(t) ≥ Vrest and t− tfi ≥ δt,

Vrest, otherwise,

(8)

where Vrest is the resting potential, tfi is the spike
emitting time of motor neuron i and δt is the refrac-
tory period. A spike is emitted if Vi = 2 and the
number of spikes ni in a predefined time window is
proportional to the angular velocities of the driving
wheels, hence the forward and angular velocities of
the robot. Note that the number of spikes in the
time window is limited by the refractory period, i.e.
the minimum time between two successive spikes.
The angular velocities of the left and right wheels
are given by ωl = n1p and ωr = n2p respectively,
with p a constant determining the angular velocity
per outputting pulse in radians per second. The val-
ues of the parameters as well as the lengths of the
time-windows will be provided in Sec. 5.

It follows that this particular neuronal con-
troller has the desired features:

(1) if an obstacle is detected on the left, or if an
obstacle on the left is closer to the robot than an
obstacle on the right, then the input to motor
neuron Mn1 is larger than the input to Mn2 and
the robot makes a turn to the right;

(2) the robot will move forward at almost maxi-
mal speed in case that there are no obstacles
detected by any sensor neuron or in case both
Sn1 and Sn3 detect an obstacle at the same
distance, e.g. when the robot moves straight
through a channel;

(3) if the robot is moving perpendicular to a wall,
then it comes to a standstill.

3. Electronic Hindmarsh–Rose
Neuron

As mentioned in the introduction, the nodes
in our neuronal controller consists of clusters
of Hindmarsh–Rose (HR) model neurons. The
Hindmarsh–Rose model neuron is described by the
following system of coupled nonlinear differential
equations

ẏ = −y3 + 3y + 5z1 − z2 − 8 + I,

ż1 = −y2 − 2y − z1,

ż2 = 0.005(4y + 4.472 − z2),

(9)

where ˙ := d
dt∗ , t

∗ = 1000t with t the time in sec-
onds, y denotes the membrane potential of a neuron,
which also serves as the natural output of the neu-
ron, z1, z2 are internal variables and I is the input.
The time scaling factor t∗

t = 1000 is in accordance
with the electronic realization of the HR model as

Fig. 4. Electronic HR model neuron.
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−2

−1

0

1

Time [s]

y
[V

]

Fig. 5. Response of three different electronic HR-cells, each driven by the input I = 4.5 [V].

presented in Fig. 4. However, from the analysis
point of view any positive time-scaling factor may
be chosen. (Of course, one may need to determine
different parameter values for the neuronal con-
troller.) Depending on the value of the synaptic
current I, the HR model is able to produce several
dynamical spiking patterns like (chaotic) bursting
and tonic spiking, cf. [Hindmarsh & Rose, 1984].
As for our purpose we rely on the existence of a
well-defined firing rate,1 hence we let the HR neu-
rons operate in the tonic spiking regime, which is
the case for synaptic inputs in the range 4 < I < 12.

An electronic circuit board realization of the
HR model neuron, shown in Fig. 4, is available for
experiments. This electronic HR model neuron con-
sists of three integrating circuits, which integrate
the three states of the HR model (9) and two mul-
tiplier circuits that generate the squared and cubic
terms of the y-state. For a detailed description of
the electronic neurons, the reader is referred to
[Neefs, 2009; Neefs et al., 2010].

The responses of the electronic cells are very
similar to the signals obtained by numerical inte-
gration of the system equations. This means that
the shape of the spikes, timing and range of the
signals qualitatively agree. Total similarity cannot
be expected since slight imperfections in the real-
ization and measurement noise are present. Due to
the small differences in the off-the-shelf components
of the electronic circuits, the measured responses
do not only differ from the numerical simulations,
but the electronic cells also show mutual differences.
Measured responses for three neurons with equal
input I are shown in Fig. 5. It can be seen that
the time between two consecutive spikes differs for

all three neurons. This becomes more evident from
Fig. 6, which shows the difference in period time,
i.e. the time between consecutive spikes, of these
three electronic neurons as function of the synaptic
input. It is shown in [Neefs, 2009] that the non-
identical behavior of the electronic HR neurons is
explained, to a very large extent, by the mismatches
in the constant parameters. Thus a careful selec-
tion of components or even some tuning of the cir-
cuits might decrease these problems, but one cannot
expect that the circuits will become identical.

To illustrate the problems that can arise if non-
identical neurons are used in the neuronal network,
a simple experiment is performed. In this experi-
ment we use single electronic neurons as nodes in
our neuronal controller. Recall that the input Igj for

4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

Input I [V]

P
er

io
d

ti
m

e
[s

]

Fig. 6. Period time of three electronic HR-cells as function
of the neuron input I .

1The firing rate of a HR neuron is determined by the number of spikes it produces in a predefined time window; the more
spikes appearing in the time window, the larger the firing rate. Here a spike is defined by the rapid rise and fall of the neuron’s
membrane potential, and the spike emitting time is defined as the time at which, during a spike, the membrane potential
exceeds the firing threshold the first time.
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Fig. 7. Experimental result, the robot does not detect any
obstacles and should drive in a straight line, but due to differ-
ences between the sensor neurons it has a preferred direction.

each electronic neuron Snj , j = 1, 2, 3, is monoton-
ically increasing with the measured distance (dgj)
between the robot and an obstacle. If, for example,
the left and right sensors both measure an equal dis-
tance to an obstacle, the input for sensor neurons
1 and 3 is the same and the robot should drive in
a straight line. However, due to (small) differences
in the neurons, the spiking frequency of different
neurons will not be equal for this equal input and
therefore the robot will make a turn rather than
moving straight ahead. An experiment result show-
ing this behavior is shown in Fig. 7. The differences
between neurons will be present in every practical
problem, e.g. also in nature, two cells with the same
function will respond slightly differently. We pro-
pose to use a small network (or cluster) of electronic
neurons instead of single neurons as a solution to
the problem discussed above, therewith improving
the robustness of the neuronal controller. A training
procedure, presented in the next section, will ensure
that the responses of the clusters of neurons will be
identical when stimulated by the same input Igj.

4. Training of Clusters of HR
Neurons

Recall that the training procedure should ensure
that, for every input I supplied to all neurons,

(1) the outputs of the electronic neurons within a
cluster need all to be practically synchronized,
i.e. the difference between the output of all neu-
rons in a cluster should be small;

(2) the firing rate of the practically synchronized
neurons within a cluster should be practically
identical among the clusters.

Because the dynamics of the electronic HR neu-
rons cannot be changed (because that would require
replacing some of the components of the circuit),
we couple the neurons and modify the interaction
weights to achieve the desired behavior. Before we
introduce our procedure for tuning of the interac-
tion weights we have to introduce some notation
and give a result on practical synchronization. It
will become clear later in this section that it suf-
fices to consider the practical synchronization prob-
lem of only two coupled neurons. Implementation
of the training procedure and quantification of the
practical synchronization error in the output ε are
presented in Sec. 5.

We let the ith electronic HR neuron be
described by the equations



ẏi = −αi,1y
3
i + αi,2yi + αi,3zi,1

−αi,4zi,2 − αi,5 + αi,6I + αi,7ui,

żi,1 = −αi,8y
2
i − αi,9yi − αi,10zi,1,

żi,2 = αi,11yi + αi,12 − αi,13zi,2,

(10)

with positive parameters αi,j that deviate from the
nominal parameters αj by an amount δi,j , j =
1, . . . , 13. Here the nominal parameters are

α1 = 1, α2 = 3, α3 = 5, α4 = 1,

α5 = 8, α6 = 1, α7 = 1, α8 = 1,

α9 = 2, α10 = 1, α11 = 0.02,

α12 = 0.005 · 4.472, α13 = 0.005.

In the Appendix it is shown that two of these non-
identical HR neurons, which interact via

u1 = γσ(y2 − y1), (11)

u2 = γ(1 − σ)(y1 − y2), (12)

with coupling strength γ > 0 and any parame-
ter σ ∈ (0, 1), practically output-synchronize when
γ is sufficiently large. That is, for γ sufficiently
large there is a ε = ε(γ) sufficiently small, for each
ε∗ > ε there exists a T = T (ε∗) > 0 such that
‖y1(t) − y2(t)‖ < ε∗ for all t ≥ t0 + T . In addi-
tion, ε(γ) is a monotonically decreasing function of
γ with ε→ 0 as γ → ∞.
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4.1. Training algorithm for
neuronal clusters

To explain the training procedure, consider a net-
work of two coupled HR neurons coupled as given
in (11) and (12). As shown in the previous sec-
tion we know that the two coupled nonidentical
HR neurons practically output-synchronize for suf-
ficiently strong coupling. Let us first explain the role
of parameter σ. Consider the network of two cou-
pled HR neurons as schematically shown in Fig. 8.
For σ = 1

2 the neurons are symmetrically coupled,
that is neuron 1 influences neuron 2 just as much as
neuron 2 influences neuron 1. But as σ → 1, neu-
ron 2 couples to neuron 1 while neuron 1 does not
couple to neuron 2 (u2 ≈ 0). In other words, for
σ → 1 the coupling configuration is of the master-
slave type where neuron 1 is enslaved to neuron 2.
That implies that for sufficiently strong coupling
the output of neuron 1 practically synchronizes to
the output of neuron 2, hence the period time of
neuron 1 will adapt to the period time of neuron 2.
Of course, if σ → 0 and the coupling is sufficiently
strong, neuron 2 is enslaved to neuron 1 and the
period time of the practically synchronized neurons
will equal the period time of neuron 1. A simulation
result that illustrates this concept is shown in Fig. 9.

These results imply that the parameter σ is an
interpolation parameter that allows the period time
of the two practically output-synchronized HR neu-
rons to be anywhere between the period times of
the uncoupled neurons. This interpolation is shown
in Fig. 10, which indeed indicates that the period
time of the cluster of two neurons can be anywhere
between the period times of the two uncoupled cou-
pled neurons.

The key idea of the training procedure is to
choose a reference neuron and train the clusters of
neurons by varying the coupling strength γ and σ in
such a way that for every input I the period time of
the cluster of practically output-synchronized neu-
rons matches the period time of the reference neu-
ron. However, in case we consider a cluster consist-
ing of only two neurons, it is not unlikely that the

N1 N2

σγ

(1 − σ)γ

Fig. 8. Two neurons coupled with asymmetrical coupling.

0 0.05 0.1 0.15 0.2
−2

−1

0

1

y
[V

]

N1
N2

0 0.05 0.1 0.15 0.2
−2

−1

0

1

y
[V

]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

y
[V

]

Time [s]

Fig. 9. Top plot: Simulation result of a slow neuron and
a fast neuron, bottom plots: master-slave configurations of
these neurons.

period times of both neurons are larger/lower than
that of the reference neuron; increasing the num-
ber of neurons per cluster increases the probability
that the period time of the reference neuron is in
between the period time of the uncoupled neurons
in that cluster such that, by defining appropriate
coupling between the neurons, the period time of
the reference can be matched.

The following example with a cluster consisting
of three neurons illustrates the training procedure
we propose:

• Pick two neurons in the cluster and couple them
according to (11) and (12);

0 0.2 0.4 0.6 0.8 1
0.0149

0.015

0.015

0.0151

0.0151

0.0152

0.0152

Adaptation parameter σ

P
er

io
d

ti
m

e
[s

]

Period time cluster
Period time neuron N1
Period time neuron N2

Fig. 10. Numerically determined period time of the cluster
as function of the adaptation parameter σ.
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• Fix σ = σ1 = 1
2 and increase γ = γ1 until the two

coupled neurons practically output-synchronize
with a given bound ε;

• Change the value of σ1 in such a way that the
period time of the cluster of practically output-
synchronized neurons is as close as possible to the
period time of the reference neuron;

• Fix σ1 and γ1 and couple a third neuron to the
two coupled neurons according to


u1

u2

u3


 = −Γ3(σ1, σ2, γ1, γ2)



y1

y2

y3




with matrix

Γ3(σ1, σ2, γ1, γ2)

=




γ1Γ2(σ1)+σ2γ2I −γ2σ2

−γ2σ2

−γ2(1− σ2)− γ2(1− σ2) 2γ2(1−σ2)


;

• Fix σ2 = 1
2 and increase γ2 until the three cou-

pled HR neurons practically output-synchronize
within the bound ε;

• Change the value of σ2 in such a way that the
period time of the cluster of three practically
output-synchronized neurons is as close as pos-
sible to the period time of the reference neuron.

An illustration of adding the third neuron to the
cluster of two practically output-synchronized neu-
rons is given in Fig. 11. Of course this procedure
can be repeated to create a cluster with p > 3 prac-
tically synchronized neurons whose period time is
as close to the period time of the reference neuron
as possible; our training procedure is summarized
in the flowchart in Fig. 12.

N1 N2

σ1γ1

(1 − σ1)γ1

N3

σ2γ2

(1 − σ2)γ2

Network
synchronized
N1 and N2

N3

(a) (b)

Fig. 11. Cluster of three neurons: (a) Output-synchronized
cluster of two neurons asymmetrically coupled with neuron
N3 and (b) illustrating the same structure as for two neurons.

Start with one
neuron

Add neuron
to cluster

Synchronize
neurons

changing γ

Change period
time

changing σ

Fig. 12. Flowchart of the steps in the training algorithm.

Formally: starting with a cluster of two neu-
rons, the coupling between the neurons is modified
such that they become practically output-synchro-
nized. Then the practically output-synchronized
cluster of two neurons can be considered as a sin-
gle neuron whose period time is compared with the
period time of the reference neuron. The next step is
to change the coupling weights between the output-
synchronized neurons within the cluster such that
the period time of the cluster, Tcluster, becomes
equal to Tref , the period time of the reference neu-
ron. Once the training procedure for the cluster of
two neurons is finished, that is, (14) is fulfilled, the
coupling weights of that cluster are fixed such that
the cluster can now be considered as a single neuron.
Then another neuron is added and the procedure is
repeated.

The training procedure starts with the choice
of the reference neuron. As mentioned before, the
period time of the trained clusters needs to be equal
to the period time of this reference neuron whenever
the input I is the same. As discussed above, the pro-
posed training procedure produces a period time
of the cluster that is an interpolate of the period
times of the individual neurons within that cluster,
hence the period time of the reference neuron has
to be somewhere in between the period times of the
uncoupled neurons. We choose the reference neuron
to have the period time as close as possible to the
mean of the period times of the uncoupled neurons.

The next step in the training procedure is to
determine the coupling strength between two neu-
rons, or an output-synchronized cluster with multi-
ple neurons and the neuron to be added, for which
there is practical output-synchronization. There-
fore we start at t = t0 with a symmetric network
(σ = 1

2 ) and initial coupling strength γ = 0, which
is increased with an increment ∆γ that depends
on the maximal output-synchronization error on a
nonempty interval [t1, t2],

∆γ =




0 if sup
τ∈[t1,t2]

|yi(τ) − yj(τ)| < ε

α

m− 1
sup

τ∈[t1,t2]
|yi(τ) − yj(τ)| otherwise

(13)
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Determine period
time error

∆τ = Tref − Tcluster

if |∆τ | < ετ Period time
converged

if |∆τ | ≥ ετ

Check adaptation
direction

if |∆τold| − |∆τ | ≤ ετ

and k ≥ 2

∆σ = ±ατ
γ

|∆τ |
σ = σold + ∆σ

No convergence but
best possible

Switch sign
k = 0

if |∆τold| − |∆τ | ≤ ετ

and k < 2

Continue with next time window

k = k + 1

if |∆τold| − |∆τ | > ετ

Fig. 13. Flowchart of the procedure to change the period
time of the cluster.

where α > 0 is a parameter that controls the max-
imum of ∆γ and m ≥ 2 denotes the current num-
ber of neurons in the cluster. The interval [t1, t2] is
chosen in such a way that all transients have died
out. We set γ = γ + ∆γ and repeat the process
until the neurons practically output-synchronize.
Recall that we can always get practical output-
synchronization for γ sufficiently large.

When the neurons in the cluster are practi-
cally output-synchronized the period time adapta-
tion can start. The period times of the reference
neuron Tref and the cluster of neurons Tcluster are
determined by counting the number of spikes in a
predefined time-window. Then we check if the dif-
ference in period time of the cluster and the period
time of the reference neuron, ∆τ = Tcluster −Tref , is
sufficiently small, that is

|∆τ | < ετ , (14)

with ετ > 0 a sufficiently small, predefined bound.
If this is not the case, the period time of the cluster
is adapted by changing the adaptation parameter σ.
The adaptation is obtained according to a stepwise
change ∆σ of the adaptation parameter, given by

∆σ = ±ατ

γ
|∆τ | (15)

with ατ > 0 and ∆τ = Tref − Tcluster the difference
in period time between the reference neuron and
the cluster. Since it is not known beforehand which
neuron is “fast” and which neuron is “slow”, the
correct sign of ∆σ is initially undetermined. There-
fore we start with a positive sign, and we change
sign if the period time of the cluster starts to devi-
ate more from that of the reference neuron. If the
period time is converged, i.e. |∆τ | < ετ , a new neu-
ron can be added to the cluster according to Fig. 12.

However, it is possible that the sign of adaptation
direction is correct but the reference period cannot
be reached because both the cluster and the added
neuron are “faster” or “slower” than the reference
neuron. In that case, if after k steps the period time
of the cluster is not converged within ετ bound of
the reference neuron, the σ adaptation procedure
is stopped and new neuron is added to the cluster.
The adaptation procedure of σ is summarized in the
flowchart in Fig. 13.

5. Results of Experiments

5.1. Experimental setup

The experimental setup, shown in Fig. 14, consists
of a personal computer, a data acquisition device, a
coupling interface and the electronic neurons which
are placed in three different stacks representing the
clusters in the input layer of the neuronal controller.
Each stack contains an input port for the external
input I and a power connection. For each neuron the
y-state can directly be measured and the coupling
signal ui can be supplied. The neurons interact via
the coupling interface in which any desirable cou-
pling structure can be specified. More information
about the coupling interface can be found in [Neefs
et al., 2010]. The PC and data acquisition device
(DAQ) are used to log, display and process the
measured data. Moreover, the neuron inputs and
coupling strengths are sent to the electronic neu-
rons and the coupling interface, respectively. For
this setup, a National InstrumentsTM PCIe-6363
multifunction data acquisition device is used, which
consists of a PCI Express card and two connector
blocks that can measure up to 32 analog signals
and has four analog outputs. The signals are mea-
sured sequentially, but due to the high sample rate
compared to the timescales of the system, the effect

Stacks with neurons

Coupling interface

DAQ

PC

Fig. 14. Photograph of the experimental setup.
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of sequential sampling is negligible. The program
to send and receive data from the neurons, as well
as the training algorithm are written in LabviewTM.
Furthermore, a VGA-camera is used to make images
of the mobile robot and the operating environment.
These images are analyzed using image processing
software, to detect the robot and to determine its
position and orientation in the environment. Several
detection lines, simulating the sensors, are defined.
These detection lines are used to detect an obsta-
cle in the specified directions based on the cam-
era image. In addition, the distance to a possible
obstacle can be measured. The robot is controlled
by the angular velocity of the two driving wheels,
the current velocities, determined by the neuronal
controller, are sent to the mobile robot via a blue-
tooth connection.

5.2. Training procedure results

As mentioned before, we need to specify some
time windows to compute spike rates, output-
synchronization errors and period time errors. The
length of these time windows is chosen to be 500 ms.
For the training procedure, the first 100 ms of each
time window are used to send and receive the (new)
coupling gains from the PC to the coupling inter-
face. The next period (275 ms) within the time win-
dow is used to adapt to the new settings and only
the last part (125 ms) is used for measurements.
These measurements include the determination of
the synchronization error for the synchronization
procedure and the error in the period time for the
period time adaptation. The parameter values for
the training algorithm used during the experiments
are presented in Table 1.

An experimental result of a cluster with two
electronic HR neurons is shown in Fig. 15. The
uncertainty of the period time can already be recog-
nized for the uncoupled neurons at the start of the
experiment (the first 7 sec the neurons are uncou-
pled). One would expect the neurons to have a
fixed period time in this interval, but as can be
seen there are small deviations in the period time,
caused by the uncertainties present in the setup.

Table 1. Parameter values for the training
algorithm and motor neuron parameters.

ε 0.2 [V] ετ 7e−6 [s]

α 0.3125 ατ 2500

1 2 3 4 5 6 7 8 9 10 11
0.014

0.0142

0.0144

0.0146

0.0148

0.015

0.0152

0.0154

0.0156

0.0158

0.016

Time [s]

P
er

io
d

ti
m

e
[s

]

N1
N2
Nref

Fig. 15. Experimental result of the adaptation mechanism
for a cluster of two neurons.

The adaptation is started at t = 7 sec with the
synchronization part. During the synchronization
procedure the coupling strength between the neu-
rons is increased, which means that they influence
each other, but are not synchronized yet. Due to
the extra input term for the coupling signal it is
possible that the neurons act in a different dynam-
ical mode and therefore do not have a well-defined
period time. This explains the large peak in the
period time of neuron 1 during the synchronization
procedure. At t = 8 sec, the synchronization proce-
dure is completed and the cluster can be interpreted
as a single neuron with one period time. The period
time of the cluster is already relatively close to the
reference period. The period time adaptation pro-
cedure is started and the period time of the cluster
converges within the predefined bound of the refer-
ence period.

In this example, the period time of the cluster of
two neurons can successfully converge to the period
time of the reference neuron. However, when the
period time of the reference neuron is not between
the period times of the neurons in the cluster, the
reference period cannot be reached and at least
one extra neuron is needed to make a cluster with
a period time equal to the reference period. This
motivates the assumption that the cluster should
have as many neurons as possible. But from exper-
iments with the electronic neurons it turned out
that if we have a cluster with more than seven
neurons, the difference in period time between the
cluster and the reference neurons starts to increase
again, even outside the specified bound. This is a
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result of the all-to-all coupling structure, with the
increase of the number of neurons in a cluster, the
total coupling gain increases. On the experimental
setup, this means that besides the synchronization
error measurement noise is also amplified. Thus for
a large cluster, the presence of noise influences the
synchronized state and the uncertainty in the period
time increases. Therefore, the adaptation mecha-
nism also reacts on fluctuations mainly caused by
noise and it is unable to converge within the bounds.
We found experimentally that the optimal number
of neurons in a cluster is five, hence we use clusters
with five neurons in the remainder of this work.

5.3. Robot experiments

In this subsection we will present results of experi-
ments of the robot controlled by the neuronal net-
work. We have replaced the sensor neurons Snj of
the neuronal controller discussed in Sec. 2.2 by the
trained clusters of electronic Hindmarsh–Rose neu-
rons, while keeping the motor neurons as described
in Sec. 2.2. The parameters of the motor neurons
used during the experiments are given in Table 2.

In Fig. 7 it was shown that the robot was unable
to drive in a straight line if single, nonidentical neu-
rons are used as sensor neurons. To show that the
training procedure is able to solve this problem, the
experiment is repeated, but now using trained clus-
ters of neurons as sensor neurons. Because the clus-
ters are trained by the procedure presented in the
previous section, the sensor neurons now have an
equal response for equal input voltages. Figure 16
shows the result of the repeated experiment with
trained clusters as sensor neurons, from which we
see that the robot is now able to drive in a straight
line.

Driving in a straight line is of course not the
goal of the neuronal controller. The experiment
shown in Fig. 17 shows the mobile robot driving
around in an unknown environment with different
obstacles. The trajectory of the robot shows that it
is able to drive around and avoid the obstacles. A
movie of an experiment showing the mobile robot
driving around, including the response of the three

Table 2. Motor neurons parameters.

p 10 Vrest 0
τs 0.014 VM 1.5
δt 0.02

Fig. 16. Comparison between two experiments, the first
using three nonidentical neurons (blue line) and the other
with three trained clusters each containing five nonidentical
neurons (red line).

Fig. 17. Experimental result of the robot driving around,
the initial robot position is shown and the black areas indi-
cate obstacles.

clusters of neurons in the sensor layer, can be
found online: http://www.youtube.com/watch?v=
sGg7JWWYsqY.

6. Conclusions

Due to its ability to learn from previous experiences
neuro/biological networks are a natural candidate
to use for control of autonomous robots that have
to operate in unknown real world environments.
In addition, these networks have an improved
robustness with respect to possible faults compared
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to using a microcontroller. On the other hand,
robustness of these types of networks is still an
important issue in the area of synchronization.
In this work we have presented a procedure to
construct and train clusters of neurons. It allows
to (re)define the network structure (interaction
weights) of a cluster, in such a way that all neurons
in a cluster are synchronized and the input–output
properties of all clusters are practically identical.
This practically identical input–output response is
essential for proper functioning of the neuronal net-
work controller. An additional advantage is that in
case a few neurons of the brain (i.e. in a cluster) fail,
a brief period of retraining (rehabilitation) ensures
that the electronic brain is working properly again.
The working principle of the proposed training pro-
cedure is demonstrated by controlling a real mobile
robot using a neuronal controller using electronic
neurons.

A cluster is a small network of synchronized
neurons that can be interpreted as an average neu-
ron. This means that the neurons in the cluster
are synchronized by a sufficiently large coupling
strength and the weighting of this coupling is
adapted to change the period time of the cluster.
Using this approach a cluster can obtain a period
time in between the period times of the individual
neurons in the cluster. Because our strategy requires
all neurons in a cluster to respond as identical as
possible to the same input, the neurons in the clus-
ter need to be practically synchronized. Theoretical
results on practical synchronization of asymmetri-
cally coupled nonidentical neurons are presented.

The electronic neurons are electronic circuit
realizations of Hindmarsh–Rose neural oscillators,
which do not show identical behavior due to para-
metric mismatches. Experimental results demon-
strate that the effects of mutual differences between
the single cells are canceled out by the trained clus-
ters of neurons. Moreover, we have shown that if
we combine the neuronal controller and the training
procedure we are able to make an electronic brain
to control a mobile robot. The experiments confirm
that training makes the neuronal network controller
function properly.
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Appendix A

Practical Synchronization of Two
Nonidentical HR Neurons

A.1. Bounded solutions

We start with finding an ultimate bound on the
solutions of the coupled HR neurons. It is conve-
nient to denote

xi =



yi

zi,1

zi,2


.

As shown in [Steur et al., 2009] the HR neuron with
nominal parameters is strictly semi-passive with a
quadratic storage function. That is, there exists a
positive definite storage function S : R

3 → [0,∞),

s1‖xi‖2 ≤ S(xi) ≤ s2‖xi‖2,

that is such that

Ṡ(xi) = yiui −H(xi),

where continuous function H : R
3 → R is positive

for all ‖xi‖ ≥ R for some R > 0. In particular, for
the HR neuron the function H satisfies

H(xi) > h‖xi‖2 −M

for some positive constants h and M such that
R2 = M

h . It is straightforward to show that each
HR neuron (10) is also strictly semi-passive with a
quadratic positive definite storage function Si and
a quadratic function Hi.

Let s1‖xi‖2 ≤ Si(xi) ≤ s2‖xi‖2 and Hi(xi) >
h‖xi‖2 −M for i = 1, 2 and consider the function

V (x) = (1 − σ)S1(x1) + σS2(x2),

x = (x�1 x�2 )�.

Denoting the norm

‖x‖σ =
√

(1 − σ)‖x1‖2 + σ‖x2‖2,

we find

s1‖x‖2
σ ≤ V (x) ≤ s2‖x‖2

σ .

In addition we have

V̇ (x) = (1 − σ)y1u1 + σy2u2 − (1 − σ)H1(x1)

−σH2(x2)

≤ −h‖x‖2
σ +M

because

(1 − σ)y1u1 + σy2u2

= −γσ(1 − σ)(y2
1 − 2y1y2 + y2

2) ≤ 0.

Then by Theorem 4.1.16 of [Burton, 1985] the solu-
tions of the two coupled nonidentical HR neurons
are uniformly bounded and uniformly ultimately
bounded with bound B, which is defined by the
identity s1B2 = s2(R+ 1)2. Of course, this uniform
(ultimate) boundedness of solutions is with respect
to the norm ‖ · ‖σ .

A.2. Practical synchronization

The results on uniform (ultimate) boundedness of
solutions allow us to consider the practical syn-
chronization problem as a practical stabilization
problem of the origin of the error-system x1 − x2.
Without loss of generality we assume σ ∈ (0, 1

2 ] such
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that 1 − σ ≥ 1
2 ≥ σ. Then by the uniform ultimate

boundedness we may assume

(1 − σ)‖x1‖2 ≤ ‖x‖σ ≤ B2 ⇒ ‖x1‖ ≤
√

2B.

Denote

ỹ = y1 − y2, z̃1 = z1,1 − z2,1, z̃2 = z2,1 − z2,2

and consider the following identities:

y2
1 − y2

2 = ỹ(y1 + y2),

y3
1 − y3

2 =
1
4
ỹ(ỹ2 + 3(y1 + y2)2).

We obtain

˙̃y = −α2,1

4
ỹ(ỹ2 + 3(y1 + y2)2) + α2,2ỹ

+α2,3z̃1 − α2,4z̃2 − γ∗ỹ + ∆1,

˙̃z1 = −α2,8ỹ(y1 + y2) − α2,9ỹ − α2,10z̃1 + ∆2,

˙̃z2 = α2,11ỹ − α2,13z̃2 + ∆3,

where, for δj := α1,j −α2,j , γ∗ = γ(α2,7 +(1−σ)δ7)
and

∆1 = −δ1y3
1 + δ2y1 + δ3z1,1 − δ4z1,2 − δ5 + δ6I,

∆2 = −δ8y2
1 − δ9y1 − δ10z1,1,

∆3 = δ11y1 + δ12 − δ13z1,2.

We observe that ∆1,∆2,∆3 are uniformly bounded
as ‖x1‖ ≤ √

2B.
Consider the function

W (ỹ, z̃1, z̃2) =
1
2
ỹ2 +

c1
2
z̃2
1 +

c2
2
z̃2
2

with α2,11c2 = α2,4 and positive constant c1 to be
determined. The derivative of W (with respect to
t) is given below,

with η := y1 + y2. Let us show that there is a γ
such that for γ∗ > γ the matrix Q(γ∗, η) is positive
definite for all η. It is straightforward to see that
γ > α2,2. We have

4 det(Q(γ∗, η))

= c1(3α2,1α2,10 − c1α2,8)η2

− 2c1α2,8(c1α2,9 − α2,3)η

+ 4c1(γ∗ − α2,2) − (c1α2,9 − α2,3)2

=: p2η
2 + p1η + p0(γ∗).

Choose c1 small enough to ensure that p2 > 0.
Note that 4 det(Q(γ∗, η)) attains its minimum at
η = −p1

2p2
. Let γ be such that

p0(γ) = 0, if p1 ≥ 0,

4p2p0(γ) = p2
1, if p1 < 0.

Then for any γ∗ > γ we have det(Q(γ∗, η)) > 0,
hence there exist positive constants κ1, κ2 such
that

Ẇ ≤ −κ1W + κ2

√
W.

Again by Theorem 4.1.16 of [Burton, 1985] (see
also, for instance, Theorem 4.18 of [Khalil, 2002]),
we have that the synchronization errors are uni-
formly bounded and uniformly ultimately bounded.
It is important to note that constant κ2 is propor-
tional to the uncertainties ∆1,∆2,∆3, such that a
decrease in the uncertainties results in a decrease
in the bound on the synchronization errors. In fact,
if ∆1 = ∆2 = ∆3 = 0 the synchronization errors
converge to zero exponentially.

Finally, consider

˙̃y = −α2,1

4
ỹ(ỹ2 + 3(y1 + y2)2) + α2,2ỹ

+α2,3z̃1 − α2,4z̃2 − γ∗ỹ + ∆1

Ẇ (ỹ1, z̃1, z̃2) = ∆1ỹ1 + c1∆2z̃1 + c2∆3z̃3 − α2,1

4
ỹ4

1 − c2α2,13z̃
2
2

−
(
ỹ

z̃1

)�




γ∗ +
3
4
α2,1η

2 − α2,2
1
2
(c1α2,8η + c1α2,9 − α2,3)

1
2
(c1α2,8η + c1α2,9 − α2,3) c1α2,10




︸ ︷︷ ︸
=:Q(γ∗,η)

(
ỹ

z̃1

)
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and recall that y1, y2, z̃1, z̃2,∆1 are all bounded.
Consider the function

W1(ỹ) = ỹ2.

Clearly there exist a positive constant κ4 =
‖α2,3z̃1−α2,4z̃2+∆1‖ and a strictly increasing func-
tion κ3(γ∗) = γ∗ − α2,2, such that

Ẇ1 ≤ −2κ3(γ∗)W1 + 2κ4

√
W1.

Using the arguments provided above we conclude
that for γ∗ > γ the synchronization error ỹ is uni-
formly bounded and uniformly ultimately bounded
with a bound ε = ε(γ∗), ε is strictly decreasing with
γ and limγ∗→∞ ε(γ∗) = 0.
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