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Summary

Understanding fractures in porous materials is important in a variety of
fields, from medical treatment of intervertebral disc herniation and design
optimization of diapers to applications in geo-mechanics. This thesis is fo-
cused on the last topic and specifically aims at the application of hydraulic
fracturing. Hydraulic fracturing is the technique in which a fracture prop-
agates due to hydraulic loading, i.e., by applying a fluid pressure inside the
fracture. In geo-mechanics, the technique is applied to stimulate oil and
gas reservoirs by injecting a viscous fluid into the underground formation.
The induced fracture remains open under high confining stress after pres-
sure release due to a proppant that is added to the fracturing fluid. The
opened fractures enhance the permeability of the reservoir increasing oil
and gas production rates. Optimizing a hydraulic fracture treatment will
benefit from the ability to predict the rock failure process. In this thesis
a numerical tool is developed for the simulation of the hydraulic fracture
process.

The numerical tool is based on the eXtended Finite Element Method
(X-FEM). A fracture is incorporated as a discontinuity in the finite element
mesh by an additional discontinuous displacement field. This displacement
field is only present at nodes surrounding the fracture. An advantage of
this approach is the possibility to simulate crack propagation in arbitrary
directions irrespective of the underlying mesh. Furthermore the implemen-
tation is computationally efficient since no topology changes are required
in the mesh and the size of the stiffness matrix only increases proportional
to the degrees of freedom that are added to nodes surrounding the fracture.
The poro-elasticity is included in the model by using Biot’s theory. Fluid
through the porous material is governed by Darcy’s law. The fracture pro-
cess is described by the cohesive zone approach in which the growth and
coalescence of small micro-separations in front of the crack tip are lumped
into a single surface. The growth of the micro-separations into a complete
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fracture is described by a traction-separation law. The direction of fracture
propagation is based on an average stress criterion around the tip of the
fracture.

Chapter 2 investigates fracture propagation and nucleation in a porous
material using the extended finite element method. Isotropic and orthotropic
material descriptions are considered. The average stress criterion is adapted
to the orthotropic material by considering the directional stiffness of the
material. A good consistency between the analytical Mandal-Cryer Bench-
mark and the numerical model is demonstrated for both isotropic and or-
thotropic materials. It is demonstrated that the fracture path is affected
by the orthotropic material. Fracture propagation and nucleation are also
found to depend on the intrinsic permeability. The same model is applied
to study shear failure in Chapter 3. The limitation of fracture growth
through only one element within one time increment is removed in order
to investigate the effect of fracture propagation on different levels of mesh
refinement. The fluid flow across the fracture shows alternating behavior
corresponding to phases of fracture propagation and relaxation. The be-
havior becomes less prominent and vanishes in the refined meshes while the
fracture path is identical for all levels of mesh refinement.

In Chapter 4 the model specifically designed for hydraulic fracturing
in low permeable rocks is introduced. The model is referred to as the En-
hanced Local Pressure (ELP) model since the pressure within the fracture
is included as an additional degree of freedom. The pressure exhibits a
jump from the formation to the fracture on the adjacent sides of the frac-
ture surface. In low permeable rocks the discontinuous pressure is justified.
By this approach the necessity to resolve steep pressure gradients near the
fracture surface is avoided. Fluid injection goes exclusively into the frac-
ture, unlike earlier approaches. The model is compared successfully with
the KGD hydraulic fracture problem. The fracture path is observed to
be consistent with experimental data from literature. The enhanced local
pressure model proves to be an efficient tool for the simulation of hydraulic
fracturing.

The ELP model is augmented to also analyze fracture interaction of
a hydraulic fracture with an existing natural fracture network in Chapter
5. For each discontinuity an additional enrichment field is added. When
two fractures are in the vicinity of each other, nodes may possess more
than one enrichment field. Interaction behavior is characterized by two
criteria describing whether a hydraulic fracture crosses a natural fracture
and whether fluid will divert into the natural fracture or not. Simulated
fracture behavior is found to agree with to available experimental data from
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literature.
In order to consider larger meshes with more degrees of freedom, a par-

allel implementation of the extended finite element model as well as the
enhanced pressure model is introduced in Chapter 6. Parallel computing
is carried out by subdividing the mesh in sub-domains and solving each
domain on a single computational core. An efficient bookkeeping between
sub-domains is necessary when the fracture propagates across sub-domain
boundaries. On 192 computational cores a 100-fold speed-up is obtained.
Beside the decrease in computational time there is also more memory avail-
able as the number of computational cores increase. The feature of par-
allel computing with the ELP model in combination with the interaction
modeling contributes to the possibility to simulate more realistic hydraulic
fracturing scenarios.

Finally the model is extended to 3D. Planar and non-planar fracture
propagation are demonstrated in an elastic material. The 3D model is also
applied to a planar hydraulic fracture.
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1
Introduction

The Dutch industry benefited enormously by the availability of natural gas
in the Netherlands and it has boosted the economy for decades (Correljé
et al., 2003). The first natural gas resources in the Netherlands were dis-
covered in Groningen in 1948. All Dutch municipalities were connected to
the gas grid in 1968 which meant that Dutch households were able to enjoy
gas related benefits such as cooking and central heating. Natural gas is a
reliable, clean and relatively cheap source of energy (Correljé et al., 2003).

However, the production of natural gas from conventional resources is
rapidly declining while the demand is still high. Statistics Netherlands
(CBS) reported that since May 2015 gas import exceeds gas export as
shown in Figure 1.1.

Apart from the conventional gas resources, the Netherlands, and many
other EU countries, also possess unconventional resources located in shale
formations and tight sandstones. The difference between these unconven-
tional formations compared to the conventional fields is that the former
have very low permeability. This makes unconventional resources unfit for
production without additional stimulation.

With the recent advancement of a novel drilling technology (horizon-
tal drilling) these resources have become accessible, as was demonstrated
by the massive exploitation of shale gas the in United States (Howarth
et al., 2011). Improving the exploitation of the unconventional resources
would benefit from the ability to predict and optimize the creation of frac-
ture networks in the subsurface and from further knowledge of fluid-rock
interactions.

In this thesis a numerical tool is developed to simulate hydraulic frac-
turing in low permeable rocks. The ability to predict the failure process in
permeable rocks is beneficial for optimizing the hydraulic fracture process.



2 Chapter 1

import
export

import - export

-1

0

1

2

3

4

5

6

7

8

1985 1990 1995 2000 2005 2010 2015

V
ol
um

e
of

ga
s

[1
09
m

3
]

Year [-]

Figure 1.1: Import and export graph of natural gas in the Netherlands. Due to
lower gas production, the export declines while the import amount grows. Data
from Statistics Netherlands (CBS).

The model presented in this thesis is designed such that it can be applied to
a fractured medium irrespective of if the material is elastic or poro-elastic
(porous). Special attention is given to failure of low permeable rocks due to
hydraulic fracturing. Many of the results in this thesis are therefore related
to failure of porous materials but also applications in solid mechanics are
presented.

In this first chapter a short introduction to porous media is given and
the basic background of the mechanics of hydraulic fracturing is described.
The failure process in relation to permeable materials is presented and
numerical techniques are discussed. Finally the scope and the layout of the
remainder of this thesis are given.

1.1 Hydraulic fracturing
The process of hydraulic fracturing became well known due to the massive
extraction of shale gas in the United States. The increase in natural gas
and crude oil production due to hydraulic fracturing in the United States
is shown in Figure 1.2 indicating the importance of the technique. In 2015
hydraulic fracturing was used in two third of the natural gas production
and in half of the produced crude oil. Remarkably the technique is not
new. It has been applied already for decades since the introduction in 1947
by Stanolind Oil (Smith and Montgomery, 2015). Hydraulic fracturing is a
technique to greatly improve the production rates of a well. This is mainly
achieved by creating a conductivity channel near the well to further increase
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(a) natural gas production

(b) crude oil production

Figure 1.2: Overview for the natural gas and crude oil production in the United
States from 2000 until 2015. Approximately two third of the gas production and
half the oil production is accounted for due to hydraulic fracturing. Source: U.S.
Energy Information Administration, IHS Global Insight and DrillingInfo Inc.

the productivity (Figure 1.3). The first hydraulic fracturing operations were
performed on vertical wells. With horizontal drilling it became possible to
drill parallel to an oil or gas bearing layer. The typical horizontal well
is 600 to 900 meters long resulting in a large contact area. Compared to
vertical wells the production rates of horizontal wells are thus sufficient to
be applied at unconventional reservoirs due to the installation of multiple
separate fracturing stages (King, 2010). In the hydraulic fracturing process
fluid is being injected into the well at high flow rate. Typical injection
rates are around 0.05 m3/s with fluid pressures of 30 MPa (Smith and
Montgomery, 2015). When the flow rate exceeds the amount of fluid that
can leak into the formation the pressure in the well increases. There is
a pressure increase in the well if the flow rate is higher than the amount
of fluid that can leak into the formation. This leads to the failure of the
formation and the creation of hydraulic fractures. When the injection stops,
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the injected fluid continues to leak into the formation and the pressure
drops, leading to closure of the fracture. To prevent this from happening
and to keep the fractured area available for production, a proppant agent
is added to the fracturing fluid. The proppant is usually sand or a granular
substitute for sand. After the injecting is halted the proppant stays in
place leading to increased conductivity in the fractured area (Smith and
Montgomery, 2015; Economides and Nolte, 2000).

Figure 1.3: Schematic representation of the hydraulic fracturing process. Hori-
zontal drilling along the gas rich layer followed by fluid injection creates the hy-
draulic fractures. The fractures remain open after fluid injection due to proppants
creating a high conductivity path for the gas.1

Apart from the extraction of the traditional fossil fuels hydraulic frac-
turing is also an important component in the development of Enhanced
Geothermal Systems (EGS). With EGS heat is extracted from the subsur-
face by injecting a fluid or gas at an injection well. However, there is no or

1Image from: http://breakingenergy.com
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very limited conductivity in most rocks to obtain an efficient flow rate. Hy-
draulic fracturing is used to increase the conductivity, making EGS more
efficient. Due to a pressure gradient between the injection well and the
production well the cold fluid or gas will heat up by flowing through the
warmer reservoir. (Pruess, 2006).

Predicting the hydraulic fracture process is important to optimize pro-
duction rates. It is a challenging task since three different phenomena have
to be taken into account: the fluid exchange between the fracture and the
rock formation, the fluid flow in the fracture, and the changing in spatial
configuration due to fracture propagation. Theoretical models were de-
veloped to predict single hydraulic fractures by Geertsma and De Klerk
(1969); Khristianovic and Zheltov (1955) and Perkins and Kern (1961).
These models were the starting point for more advanced models result-
ing in asymptotic solutions for various conditions. Adachi and Detournay
(2008) present an overview of these solutions. Numerical models for com-
plex geometries were developed for the cases in which theoretical models fall
short. The first numerical model for hydraulic fracturing was introduced
by Boone and Ingraffea (1990). Existing numerical methods for fracturing
in poro-elastic materials are described later in this chapter.

1.2 Fracture process

The onset of a fracture2 can be interpreted as the growth of small micro-
separations in a process zone around an existing flaw or notch in a material
(Figure 1.4a). Increasing damage leads to growing and merging of the
micro-separations in the process zone until one dominant fracture arises.
These micro-separations can be considered as cracks at the macro scale.
The growth of micro-separations leads to energy dissipation in the form of
friction and heat generation making the process irreversible and leading to
reduction of strength and stiffness of the material (Remmers, 2006).

Without going into detail about the micro-structure of a material, the
growth of a fracture can be summarized by the nucleation, growth and
subsequent coalescence of the small micro-separations. The common ap-
proach in modelling this process is by lumping these effects into a single

2The naming of a fracture may give the reader of this thesis some confusion. In a
numerical context a fracture is referred to as a discontinuity since it does not represents
something physical but merely a step in the displacement field. A crack is another name
of the same thing. In principle one may call a crack the result of a fracture process.
In geomechanics it is common again to refer to fracture networks. Therefore, the three
terms, a fracture, a crack and a discontinuity are used interchangeable where the latter
is mainly used in the numerical context and the former two are physically oriented.
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model. Griffith (1921) assumed that a fracture is allowed to grow if the
surface energy required to create a new fracture surface is at least equal to
the decrease in elastic energy due the fracture propagation. Linear Elastic
Fracture Mechanics (LEFM) is a powerful theory to model fracture growth
based on Griffith’s work. Despite many successful applications it lacks ac-
curacy if the process zone is not small compared to the size of the fracture.
The theory is also based on the existence of a flaw which means that nu-
cleation of fractures is not considered. Quasi brittle rocks such as shales
and sandstones show a large area of softening and thus LEFM may not
be the best candidate to describe the fracture process (de Pater, 2015; Yao
et al., 2015). It may also be necessary to take the length of the process zone
into account because the porosity may change when the micro-separations
grow. The process zone can have much larger conductivity compared to
intact material. The cohesive zone approach, developed independently by
Dugdale (1960) and Barenblatt (1962), is an alternative approach where
the process zone is explicitly modelled by lumping it along a plane (in 3D)
or a line (in 2D as shown in Figure 1.4b) . The work needed to open
and propagate the cohesive zone over a unit length is equal to the fracture
energy. Constitutive relations describe the decay of energy thus it is not
necessary to determine the length of the cohesive zone a priori.

A distinction is made between the tip of the crack and the tip of the
cohesive zone in Figure 1.4b. The former represents the location along the
crack where there is no bonding strength left and the latter the location
where there still is perfect bonding. When referring to the fracture tip
within this thesis the cohesive tip is meant and the cohesive zone length
is included in the fracture length when given. This is the most convenient
convention due to the numerical framework used. A distinction between
the two tips or the fracture length and the cohesive zone length is explicitly
made when required.

1.3 The eXtended Finite Element Method

The modelling of a fracture involves solving a discontinuity in the displace-
ment field. Traditional polynomial approximation methods such as Finite
Elements (FE) require that the mesh is conforming to the discontinuity and
fine enough near the discontinuity. Modelling of evolving discontinuities of-
ten require remeshing techniques to maintain conformity between the mesh
and the growing discontinuity. An alternative approach is to enrich the
polynomial approximation by exploiting the partition of unity property of
finite element shape functions (Melenk and Babuška, 1996). Here the dis-
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(a)

t

debonding perfect bondtraction free

[u]

Real crack tip

Cohesive zone tip

(b)

Figure 1.4: (a) Schematic representation of the process zone (shaded area) with
micro-separations (thick solid lines in the process zone) in a granular material.
(b) Representation of the cohesive zone. Interface tractions t describe the perfect
bonding and damaging process. The opening of the fracture is denoted as [u].
The location of the tip of the crack and the tip of the cohesive zone are shown
(Remmers, 2006).

continuity is resolved independently of the underlying mesh. Belytschko
and Black (1999) were the first to model a discontinuity by applying a lo-
cal partition of unity based on tip enrichment functions. Small deviations
from a straight discontinuity were solved by a mapping algorithm. The
method was called eXtended Finite Element Method (X-FEM) by Moës
et al. (1999) and Dolbow et al. (2000), who also introduced a combination
of Heaviside enrichment and near-tip enrichment.

The X-FEM proved to be a very elegant way to incorporate a discon-
tinuity in the displacement field irrespective of the location and structure
of the underlying mesh. The method was further improved by Daux et al.
(2000) by including multiple discontinuities. Wells and Sluys (2001) ap-
plied the technique to cohesive fracture growth. The extension to 3D was
made by Sukumar et al. (2000). A good overview of the X-FEM can be
found in Belytschko et al. (2009) and in Fries and Belytschko (2010).

1.4 Porous media

Hydrocarbon reservoirs consist of a solid matrix structure and pores in
between. These pores can have huge variations of interconnectivity. In
crystalline rocks, fluid inclusions may account for a large fraction of the
total porosity, but in general disconnected porosity is small. The fact that
most pores are interconnected opens the possibility to move fluids (liq-
uids and gasses) out of the formation (hydrocarbon production). In shales
hydraulic fracturing is always needed to obtain sufficient flow rates. The
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easiness in which this transportation takes places is associated with the
so-called permeability of the porous formation. Typical subsurface fluid
velocities are small, say around a foot per day. A simplified representa-
tion of a porous medium is given in Figure 1.5 where both the matrix and
the fluid are separate interconnected phases. Note that the reality is 3D
which cannot truly be represented in this 2D plot. A Scanning Electron
Microscope (SEM) image of shale rock is shown in Figure 1.6. The low
permeable rock is characterized by a low porosity, 1-7% measured with a a
Helium porosimetry, and the majority of the pores show a diameter smaller
than 300 nm (Houben et al., 2016).

The possibility of a fluid to freely move through the material repre-
sents a significant difference with elastic materials. A mechanically induced
deformation is accompanied by movement of fluids and/or pore pressure
changes. The velocity of fluid movement through the interconnected pores
induces time dependent behaviour to the mechanical properties of rocks
(Detournay and Cheng, 1993). The phenomenon of consolidation is caused
by mechanically loading a porous material. The resulting compression rate
is dependent on how fast the fluid can flow through the pores. Terzaghi
(1923) introduced this theory describing the influence of the pore fluid on
the deformation of soils in 1923. In a one-dimensional case Terzaghi de-
scribed consolidation satisfying a diffusion type of equation and using the
theory of effective stress, i.e. splitting the stress in a contribution depending
directly on deformation of the solid skeleton (effective stress) and a contri-
bution which does not directly depend on deformation (the pressure). Biot
developed his theory of poroelasticity that coupled the solid deformation to
changes in fluid content between 1935 and 1941 (Biot, 1935, 1941). Solu-
tions to coupled problems, e.g. the Mandel-Cryer problem (Mandel, 1953;
Cryer, 1963) and the Noordbergum problem (Verruijt, 1969), could only be
solved based on Biot’s theory.

Fractures in a porous material are different from those in solids because
the of fluid solid interactions. In solid materials fractures propagate because
of external loads on the structure whereas in porous materials the fracture
can also be induced by fluid injection in the pores. This is the quintessence
of the hydraulic fracturing process.

Various methods exist for describing fractured porous media. Boone
and Ingraffea (1990) were the first to simulate fracture propagation in-
cluding coupled poro-elastic effects. The model was applied for hydraulic
fracturing and was based on the finite element method (FEM) for the poro-
elastic material with a cohesive zone description for the fracture process.
The fluid flow in the fracture was solved using a finite difference method. In
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Figure 1.5: Schematic representation of a porous material saturated with a fluid.
The solid grains are visualised in brown and the fluid in blue.

this context an adaptive remeshing scheme was developed by Schrefler et al.
(2006) and Secchi et al. (2007). Extensions to 3D remeshing were made by
Secchi and Schrefler (2012). Hydraulic fracturing was investigated in a per-
meable material by Sarris and Papanastasiou (2011) with a finite element
analysis including cohesive zone elements. Segura and Carol (2004, 2008)
introduced a hydro-mechanical coupling formulation using zero-thickness
interface elements with double nodes based on FEM analysis. This ap-
proach was also applied in fracture in porous materials by Khoei et al.
(2010) and Carrier and Granet (2012). Discrete methods such as the dis-
crete element method (Nagel et al., 2013) and lattice models (Grassl et al.,
2015; Milanese et al., 2016) were also used for fracture propagation in poro-
elastic materials.

Significant advancements were recently made in fracture modelling us-
ing the phase-field approach (Bourdin et al., 2008; Miehe et al., 2010).
The phase field approach is a fixed-mesh method purely based on energy
minimization. The major advantage of this approach is that the main possi-
bilities in fracture behaviour, such as propagation, nucleation, and multiple
interacting and branching fractures, are automatically determined due to
the energy minimisation requirement. The sharp interface of a fracture is
regularized by a smeared damage parameter (the phase-field) avoiding the
need to track the fracture surface. The phase-field method was recently ap-
plied to fluid-driven fracture propagation by Wheeler et al. (2014), Miehe
et al. (2015) and Yoshioka and Bourdin (2016). However, the the regu-
larization of the fracture requires a fine mesh to be resolved on and thus
causes a restriction on computational time. In situations with a single frac-
ture or known fracture locations this presents no difficulties. However, the
computational costs increase severely when considering larger domains with
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5 µm

BSE SE

Figure 1.6: Scanning Electron Microscope (SEM) images of a shale rock, courtesy
of M. Houben. On the left a Back Scattered Electron (BSE) image where different
shades of grey represent different minerals. Organic matter is shown in black. On
the right a Secondary Electron (SE) image. Pores that were almost invisible in
the BSE image are visible here in black. Details about the mineralogy,porosity
and the microstructure of this shale rock can be found in Houben et al. (2016).

many fractures. Extending to 3D is even more challenging. This is also
acknowledged by Lee et al. (2016) where 3D hydraulic fracturing using the
phase-field method is described. An adaptive remeshing scheme, based on
the work by Heister et al. (2015) was proposed to limit the computational
times.

The X-FEM approach was applied to fractures in porous media by
de Borst et al. (2006) investigating shear banding. Both fluid and solid
phases were described as being discontinuous across the fracture. Fluid
flow was described by Darcy’s law with a constant permeability. A con-
tinuous pressure description over the fracture was presented in Réthoré
et al. (2007). In their work the fluid flow is related to crack opening and a
viscous Couette flow profile is used in the crack. However, no crack propa-
gation was considered. Kraaijeveld and Huyghe (2011) extended this work
towards ionized porous materials and also considered propagating cracks.
Pure mode-I and mode-II fractures were described with a continuous and
discontinuous pressure across the fracture, respectively. Irzal et al. (2013)
extended the concept into the finite deformation range. Mohammadnejad
and Khoei (2012) developed an X-FEM model for cohesive crack growth
in multiphase porous materials. They successfully applied their model
for hydraulic fracturing simulations (Mohammadnejad and Khoei, 2013).
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Meschke and Leonhart (2015) described the pressure across the fracture
continuously by applying an enrichment scheme for the pressure based on
a 1D analytical consolidation equation. Steep pressure gradients near the
fracture surface were modelled successfully by this enrichment scheme. The
phantom node method was applied by Sobhaniaragh et al. (2016). Recent
advancements in poro-elastic partition of unity based models are described
in Mohammadnejad and Andrade (2016).

Note that there also exists abundant research on hydraulic fracturing
into non-porous materials. X-FEM in combination with hydraulic fractur-
ing was introduced by Lecampion (2009). 3D X-FEM models were intro-
duced by Gupta et al. (Gupta and Duarte, 2014, 2015). Cohesive zone
models were applied in Chen et al. (2009) and Chen (2012) and bound-
ary element based methods in Dong and de Pater (2001) and Kresse et al.
(2013).

In this thesis the extended finite element method is used for hydraulic
fracturing simulations. The main reasons are, broad applicability, rea-
sonable simulation times, and good interaction handling of propagating
fractures with existing fracture networks. The method can also extend
fractures through material interfaces and is applicable in 3D. However, the
major advantage of X-FEM, compared to all methods with the exception of
the boundary element method, is that the coarsening of the mesh and the
absence of remeshing limits the computational time. Inhomogeneities such
as material interfaces require additional measures in the boundary element
method but can be incorporated more easily in the finite element based
X-FEM.

1.5 Objective and thesis outline

The objective of this thesis is to bring the numerical model introduced by
Kraaijeveld (2009) and Irzal et al. (2013) closer to realistic situations where
we primarily focus on hydraulic fracturing. In Chapter 2, the standard X-
FEM model for fracturing in poro-elastic materials is presented. The gov-
erning equations are derived based on momentum and mass balance. An
orthotropic material is considered and the influence of the permeability on
the fracture process is shown. The same model for isotropic materials is ap-
plied to shear failure in the third chapter. The coupling between fluid flow
across the fracture is further investigated by using a very fine numerical
discretization. The poro-elastic fracture model is extended specifically for
the simulation of hydraulic fracturing in low permeable rocks in Chapter
4. In the fifth chapter the model is improved to exploit the X-FEM possi-
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bility of having multiple interacting fractures. A fracture crossing criterion
and fluid diversion criterion are introduced in order to study the interac-
tion behaviour of a hydraulic fracture with a natural fracture network. In
Chapter 6, a computational implementation of parallel computing applied
to the fracture model is presented. Scalability analysis and the possibility
to use large domains that are computationally expensive are shown. A 3D
implementation of the model is presented in Chapter 7. Conclusions are
given in Chapter 8.



2
A Partition of unity based model for
crack nucleation and propagation in
porous media

Abstract
In this chapter, we present a general partition of unity based cohesive zone
model for fracture propagation and nucleation in saturated porous mate-
rials. We consider both two-dimensional isotropic and orthotropic media
based on the general Biot theory. Fluid flow from the bulk formation into
the fracture is accounted for. The fracture propagation is based on a aver-
age stress approach. This approach is adjusted to be directionally depended
for orthotropic materials. The accuracy of the continuous part of the model
is addressed by performing Mandel’s problem for isotropic and orthotropic
materials. The performance of the model is investigated with a propagating
fracture in an orthotropic material and by considering fracture nucleation
and propagation in an isotropic mixed-mode fracture problem. In the latter
example we also investigated the influence of the bulk permeability on the
numerical results.

Reproduced from: E.W. Remij, J.J.C. Remmers, F. Pizzocolo, D.M.J. Smeulders and J.M. Huyghe. A partition
of unity-based model for crack nucleation and propagation in porous media, including orthotropic materials.
Transport in Porous Media, 1-18, 2014.
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The necessity of a hydraulic fracturing model is evident based on the pre-
vious chapter. In this chapter we take one step back and will not con-
sider hydraulic fracturing yet but focus on mechanically induced fractures
in porous media. Additional attention is given to the response of an or-
thotropic material considering the special case of transverse isotropy. This
is also relevant in hydraulic fracturing since layered rocks often possess this
type of anisotropy but also to obtain insight in fracture in human tissues.
Biological materials, such as cortical bone, with long parallel fibbers and
a random distribution in the cross section can be considered as transverse
isotropic.

An isotropic poro-elastic numerical model, using the using the Finite
Element Method (FEM), was developed by Boone and Ingraffea (1990) to
simulate hydraulic fracturing. A cohesive zone description was used for the
fracture process and the fluid flow in the fracture was solved using a finite
difference method. In their work, the cohesive zone elements that model the
crack were inserted in the finite element mesh beforehand, which requires
an a priori knowledge of the fracture path. Secchi et al. (2007) used the
finite element method to model a cohesive fracture as well, but included
an adaptive remeshing method in order to accommodate for fracture prop-
agation in arbitrary directions. This method was successfully applied to
simulate a propagating crack in arbitrary directions and was even extended
to three-dimensional situations (Secchi and Schrefler, 2012). Unfortunately,
the remeshing algorithm is computationally inefficient and may give rise to
incorrect results in the case of non-linear behaviour of the bulk material.

An alternative technique to model arbitrary crack growth, irrespective
of the structure of the underlying finite element mesh is the use the partition
of unity property of finite element shape functions (Melenk and Babuška,
1996). Belytschko and co-workers (Belytschko and Black, 1999; Dolbow
et al., 2000) used this property to model a propagating crack in a solid
material following linear elastic fracture mechanics. The crack is modelled
as a discontinuity which is incorporated in the finite element method by
enhancing existing nodes by additional degrees of freedom and is commonly
referred to as the eXtended Finite Element Method (X-FEM). Wells and
Sluys (2001) incorporated a cohesive zone model in X-FEM to model frac-
ture propagation in arbitrary directions in a solid. The strength of X-FEM
is that a fracture can grow in any direction and at any time without the
need of remeshing.

Recently, the partition of unity method has also been used to model
fracture propagation in porous materials. De Borst et al. (2006) investi-
gated shear banding in a porous material. A discontinuous description was
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used for both solid and fluid phase. Fluid flow is described by Darcy’s law
with a constant permeability and a pressure gradient defined by the pres-
sure difference on both sides of the crack. A continuous pressure description
over the fracture was presented in (Réthoré et al., 2007). In this work the
fluid flow is related to crack opening and a viscous Couette flow profile in
the crack. However, no crack propagation was considered. Kraaijeveld and
Huyghe (2011) extended this work towards ionized porous materials and
considered propagating cracks. Pure mode-I and mode-II fractures were
described with a continuous and discontinuous pressure, respectively.

In this chapter we enhance the aforementioned models to accommodate
for crack nucleation similar to (Remmers et al., 2003), mixed-mode crack
growth and propagation in an orthotropic material. We use the model
to study the effect of the direction of crack growth in saturated porous
media as a function of permeability. The porous material is described by
the standard Biot equations and the fluid flow in the material is included
by Darcy’s law. The partition of unity method in combination with the
cohesive zone approach is used to introduce a crack. The crack is described
by a strong discontinuity in the displacement field while the pressure field is
considered to be continuous across the fracture. Fluid flow from the crack
into the formation is accounted for. The tangential fluid flow is described
with lubrication theory.

In the next paragraph the kinematic relations are described. We then
present the momentum and mass balance equations in Section 2.2 and
describe the discretization and numerical implementation in Section 2.3.
The constitutive equations are given in Section 2.4. Finally we show the
performance of the numerical model in Section 2.5 and give some concluding
remarks in Section 2.6.

2.1 Kinematic relations

Consider a body Ω that is crossed by a discontinuity Γd, as shown in Fig-
ure 2.1. The discontinuity divides the body in two domains, Ω+ and Ω−.
The vector nd is defined as the normal of the discontinuity surface Γd
pointing into domain Ω+. The total displacement field of the solid skeleton
can, at any time t, be described by a regular displacement field û(x, t) and
an additional displacement field ũ(x, t) (Belytschko and Black, 1999; Moës
et al., 1999; Remmers et al., 2008)

u(x, t) = û(x, t) +HΓd(x)ũ(x, t) , (2.1)

where x is the position of a material point in the domain Ω and HΓd is the
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Figure 2.1: The body Ω crossed by discontinuity Γd. The body is completed
with the boundary conditions.

Heaviside step function, which is defined as

HΓd =
{

1 if x ∈ Ω+

0 if x ∈ Ω− . (2.2)

The strain field ε results from differentiating the displacement field (2.1)
with respect to material point x with the assumption of small strain theory

ε(x, t) = ∇sû(x, t) +HΓd∇
sũ(x, t) , x /∈ Γd . (2.3)

Here, ∇s is the symmetric part of the differential operator

∇su = 1
2(∇u + (∇u)T ) . (2.4)

The strain is undefined at the discontinuity surface Γd. Here, the open-
ing of the discontinuity is the governing kinematic quantity, which is equal
to the jump in the displacement field

[u(x, t)] = ũ(x, t), x ∈ Γd . (2.5)

The pressure field contains a weak discontinuity over the fracture. The
gradient of this pressure difference quantifies the interaction of fluid flow
between the fracture and the formation. By enhancing the pressure field
with a signed distance function, as was used by Réthoré et al. (2007), the
gradient near a discontinuity is taken into account in a natural way

p(x, t) = p̂(x, t) +DΓd(x)p̃(x, t) , (2.6)
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where the distance function DΓd(x) is defined as

DΓd(x) = |(x− xΓd) · nd| x ∈ Ω . (2.7)

Here, xΓd is the coordinate of the nearest point on the discontinuity and
nd is the corresponding normal vector. The pressure gradient follows from
the spatial derivative of the pressure field (2.6)

∇p(x) = ∇p̂(x) +DΓd(x)∇p̃(x) +∇DΓd(x)p̃(x) , (2.8)

where the gradient of the distance function DΓd

∇DΓd(x) =
{

nd if x ∈ Ω+

−nd if x ∈ Ω−. (2.9)

2.2 Balance equations
The system is described by two balance equation: the balance of linear
momentum and the mass balance. In the following, the weak form of both
balance equations will be derived for both the bulk material and the inter-
face.

The porous solid skeleton is considered to be fully saturated with a fluid.
We assume that there is no mass transfer between the two constituents.
The process is isothermal and gravity, inertia and convection are neglected.
With these assumptions the linear momentum balance reads

∇ · σ = 0 , (2.10)

where σ is the total stress which is decomposed in Terzaghi’s effective stress
σe and the hydrostatic pressure p (Terzaghi, 1943)

σ = σe − pI . (2.11)

In this equation I is the unit matrix. The effective stress σe is related to
the strains ε which have been defined in (2.3) by means of the constitutive
law. In rate form, this reads

σ̇e = Cε̇ . (2.12)

The momentum balance is completed with the following boundary condi-
tions, see Figure 2.1.

σ · nΓ = tp(x, t), x ∈ Γt ,
u(x, t) = up(x, t), x ∈ Γu ,

(2.13)
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with Γt ∪ Γu = Γ,Γt ∩ Γu = ∅.
Under equal assumptions as made for the momentum balance, and as-

suming the fluid to be incompressible, the mass balance is written as

∇ · vs +∇ · q = 0 , (2.14)

where vs is the deformation velocity of the solid skeleton and q is the
seepage flux, which is related to the pressure gradient by means of Darcy’s
law: Darcy’s relation is assumed to hold for the fluid flow in the bulk
material (Biot, 1941)

q = −k · ∇p , (2.15)

where k is the permeability tensor, which is assumed to be constant in
time and space (Kraaijeveld and Huyghe, 2011). In the case of an isotropic
material, the permeability is equal to:

k = kI = kint
µ
I, (2.16)

where kint is the intrinsic permeability and µ is the dynamic viscosity (De-
tournay and Cheng, 1993). The mass balance is completed with the follow-
ing boundary conditions, see Figure 2.1.

q(x, t) · nΓ = ff , x ∈ Γf ,
p(x, t) = pp, x ∈ Γp,

(2.17)

with Γq ∪ Γp = Γ,Γf ∩ Γp = ∅.
In accordance with the cohesive zone approach, the softening of the

material is governed by a traction acting on the discontinuity surface. This
traction is coupled to the hydrostatic pressure in the crack. Assuming
continuity of stress from the formation to the fracture we can write the
local momentum balance as

σ · nd = td − pdnd , (2.18)

where pd is the hydrostatic pressure in the discontinuity

pd = p(x ∈ Γd) (2.19)

Mass balance is described by an equilibrium of fluid exchange between
the formation and the fracture, the opening rate of the fracture, and the
tangential fluid flow in the fracture. This is written as

q+
Γd
· nd − q−Γd

· nd = −u̇n + un
∂

∂s
(kd

∂pd
∂s

) , (2.20)
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with q+
Γd

and q−Γd
being the fluid flow from the fracture into formation for

the fracture lip of the Ω+ and the Ω− domain, respectively, u̇n denotes
the time derivative of the normal opening of the fracture and kd being the
permeability in the fracture. The latter is given by Witherspoon et al.
(1980):

kd = u2
n

12µ , (2.21)

where µ is the viscosity of the fluid. For the derivation of this equilibrium
equation, we refer to Irzal et al. (2013). In Equation (2.20) we used, under
the assumption of small deformations, that the normal vector of the two
fracture lips is in opposite direction.

The weak form of the balance equation is obtained by multiplying
Eqs.(2.10) and (2.14) with an admissible displacement and pressure field,
η and ζ, respectively. These admissible fields have the same form as the
original fields

η = η̂ +HΓd η̃, ζ = ζ̂ +DΓd ζ̃ . (2.22)

Substituting the variations into Eqs. (2.10) and (2.14), Applying Gauss’s
theorem, using the symmetry of the Cauchy stress tensor, introducing the
internal boundary Γd and the corresponding admissible displacement jump
and using the boundary conditions at the external boundaries Γt and Γf
gives ∫

Ω
∇η̂ : σdΩ +

∫
Ω
HΓd∇η̃ : σdΩ = (2.23)∫

Γt
η̂ · tpdΓt +

∫
Γt
HΓd η̃ · tpdΓt −

∫
Γd
η̃ · (σ · nd)dΓd

−
∫

Ω
ζ̂∇ · vsdΩ−

∫
Ω
DΓd ζ̃∇ · vsdΩ +

∫
Ω
∇(ζ̂) · qdΩ (2.24)

+
∫

Ω
∇(DΓd ζ̃) · qdΩ =∫

Γf
ζ̂ffdΓq +

∫
Γf
DΓd ζ̃ffdΓq −

∫
Γd
ζ̂q+

Γd
· nddΓ +

∫
Γd
ζ̂q−Γd

· nddΓ.

In these equations, tp and ff are the prescribed traction and prescribed fluid
outflow boundary conditions, respectively (Figure 2.1) and Γd represents
the integral over the internal boundary of the discontinuity. The terms
σ · nd , q+

Γd
· nd and q−Γd

· qd are given by the balance Equations at the
discontinuity (2.18) and (2.20). By taking one of the admissible variations
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Enhanced node
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Ω−

Figure 2.2: A two dimensional finite element mesh crossed by a discontinuity
represented by the black line. The black nodes surrounding the discontinuity are
enhanced with additional degrees of freedom. The grey elements therefore contain
additional terms in the stiffness matrix and the force vector.

δη̂, δη̃, δζ̂ and δζ̃ at the time, the weak form of equilibrium can be separated
into four sets of equations. A detailed description is given in (Réthoré et al.,
2007; Wells and Sluys, 2001).

2.3 Discretization and numerical implementation
The spatial discretization of the system of equations is based on the par-
tition of unity property of finite element shape functions (Melenk and
Babuška, 1996). Using this property, the fracture is included in the FEM
by adding a additional degrees of freedom to the finite element nodes sur-
rounding the fracture (Figure 2.2). These additional degrees of freedom
have the form of the additional terms in the field Equations (2.1) and (2.6)
for the displacement and the pressure, respectively. The time discretization
is performed using an implicit Euler time scheme. The resulting system is
non-linear and is therefore solved with a Newton-Raphson iterative proce-
dure. A detailed derivation and description is given in (Irzal et al., 2013;
Kraaijeveld and Huyghe, 2011; Réthoré et al., 2007).

The numerical implementation is based on and described in detail in the
work of (Remmers, 2006; Remmers et al., 2008). The most import aspects
will be recaptured in this section. In addition, the new implementations
of the nucleation of cracks and the propagation of cracks in transverse
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Figure 2.3: Numerical integration of a quadrilateral element crossed by a dis-
continuity.

isotropic materials are introduced.
Consider a finite element domain crossed by a discontinuity as shown in

Figure 2.2. A structured mesh containing four nodal elements is used in this
chapter. Additional degrees of freedom are added to the black nodes which
are crossed by the discontinuity. It is assumed that the discontinuity within
an element is a straight line, always ends at an element edge, and is referred
to as a cohesive segment. The numerical integration is performed by the
standard Gauss integration. However, only using the original integration
points is not sufficient any more since the discontinuity can cross an element
at an arbitrary location. To acquire sufficient integration points at each side
of the discontinuity, an integration method (Figure 2.3) introduced by Wells
and Sluys (2001), is used. Two integration points per element are located
at the discontinuity to integrate the discretized local balance equations.

To govern the propagation of a fracture, a fracture criterion is needed to
determine the moment and the direction of propagation. The stress state
at the crack tip is estimated based on the average stress in the vicinity
of the tip. The averaging is calculated with a Gaussian weighting function
(Jirásek, 1998). The average stress σav at the crack tip is then the weighted
sum of the stress in the integration points near the crack tip

σav =
nint∑
i=1

wi
wtot

σe,i with wtot =
nint∑
j=1

wj . (2.25)

Here nint is the number of integration points in the domain, σe,i is the
current effective stress state in integration point i which has a weight factor
wi defined as

wi = (2π)−
3
2

l3a
e
−r2
i

2l2a , (2.26)

with ri being the distance between the crack tip and the integration point
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Figure 2.4: Schematic representation of a material with at the crack tip the
global x-y coordinate system and the local coordinate system, described with a
normal unit vector n and a tangential unit vector s.

ni, and la being a length scale parameter defining how fast the weight factor
decays as a function of the distance between the integration points and the
crack tip. As was proposed by Remmers et al. (2008), the average stress
surrounding the crack tip is used to determine both the moment and the
direction of propagation. From this average stress, an equivalent traction
teq at the crack tip is calculated (Camacho and Ortiz, 1996)

teq(θ) =
√
< tn >2 + 1

β
t2s with < tn >=

{
0 if tn ≤ 0
tn if tn > 0 , (2.27)

where β is a scaling factor for the shear stress, tn and ts are the normal
and shear traction, respectively

tn = nTσavn ts = sTσavn. (2.28)

Here n is the normal vector and s is the tangent vector to an axis η which
is rotated by an angle θ with respect to the x-axis (Figure 2.4). If the max-
imum equivalent traction exceeds the ultimate strength τult of the material
the fracture is extended in the direction of angle θ through one element.

The disadvantage of using an average stress in the fracture criterion
is that the crack propagation can be slightly delayed due to the averag-
ing of the stress. The advantage is that the direction of propagation is
more reliable since it is based on a global stress state. However, the initial
traction in the discontinuity will also be underestimated (Remmers et al.,
2008). To avoid this two different length scale parameters la are used,
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see Equation (2.26). The moment and direction of fracture propagation
are determined by a length scale parameter which is typically three times
the element length (Wells and Sluys, 2001), while the initial tractions are
calculated with one forth of this length scale.

The average stress criterion based on the equivalent traction in Equa-
tion (2.27) is also used to determine the moment of fracture nucleation.
Instead of calculating this criterion in each integration, which would be
computationally inefficient, an additional checkpoint is added in the cen-
tre of each element (Figure 2.5). Once the equivalent traction in one of
the checkpoints exceeds the nucleation criterion a discontinuity is added.
The cohesive segment is assumed to be straight and crosses the checkpoint
under the angle θ with respect to the x-axis. The cohesive zone of the
nucleated crack must have a length of at least one element. The numerical
implementation of this restriction is illustrated in Figure 2.5 with three
examples. If the nucleation criterion is exceeded in multiple checkpoints
at the same time, nucleations occurs in the checkpoint with the highest
equivalent traction.

Nucleation checkpoint

Violated nucleation checkpoint

Normal node

Enhanced node

Cohesive zone

B CA

Crack tip

Figure 2.5: Three different locations of nucleation checkpoints with correspond-
ing cohesive zones.

2.3.1 Fracture propagation in an orthotropic material

The structure of an orthotropic material induces anisotropic fracture prop-
erties. We assume the strongest direction of the orthotropic material as
a fibre direction. Following Yu et al. (2002) we can define a directional
depended ultimate strength as

τult(α) = τmin + (τmax − τmin) cos(α)2, (2.29)

here α is the angle between the fibres and normal n of the fracture, τmax
is the ultimate strength in the fibre direction, and τmin is the ultimate
strength perpendicular to the fibre direction (Figure 2.6). To determine if
the equivalent traction (2.27) at angle θ exceeds the fracture criterion it is
necessary to express Equation (2.29) in terms of θ
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Figure 2.6: Schematic representation of a fracture under an angle θ in an or-
thotropic isotropic material. The strength of the material defined by a fibre direc-
tion θf . The angle α is the angle between the fibre direction and the normal n of
the fracture.

τult(θ) = τmin + (τmax − τmin) cos(θ + 1
2π − θf)2. (2.30)

In the orthotropic material a fracture propagates or initiates if

teq(θ)
τult(θ)

> 1. (2.31)

2.4 Constitutive equations

The mathematical formulation of the balance equations are completed by
constitutive behaviour for the bulk material and the fracture. The consti-
tutive relation for an orthotropic bulk material is also given.

2.4.1 Mechanical behaviour of the orthotropic bulk

In this paragraph we describe the constitutive behaviour of a special or-
thotropic material; a transverse isotropic material. Transverse isotropy is
a common form of anisotropy in rock formations but is also present in
many biological materials (Abousleiman et al., 1996; Weiss et al., 1996).
A transverse isotropic material is an orthotropic material with one axis of
material rotational symmetry. We assume that the strength of the trans-
verse isotropic material is highest in the direction of the axis of rotational
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symmetry. Defining this direction again as the fibre direction, the isotropic
relationships for the effective stress are replace byσ11

σ22
σ12

 = C

ε11
ε22
γ12

 , (2.32)

where the stress components σ and the strain components ε are defined in
a local coordinate system (1, 2), as shown in Figure 2.6. The [3x3] stiffness
matrix C is defined as

C =


E2

11(1−ν23)
E11(1−ν23)−2E22ν2

12

E11E22ν12
E11(1−ν23)−2E22ν2

12
0

E11E22ν12
E11(1−ν23)−2E22ν2

12

E22(E11−E22ν2
12)

(1+ν23)[E11(1−ν23)−2E22ν2
12] 0

0 0 G12

 . (2.33)

In this equation, E11 and E22 are Young’s moduli, ν12 and ν23 are the
Poisson’s ratios representing the compressive strain in the direction of the
second subscript due to a tensile stress in the direction of the first subscript,
and G12 is the shear modulus in the 1-2 plane. Here, based on symmetry,
the following identity was used

ν12
E11

= ν21
E22

. (2.34)

The permeability is also a parameter depending on direction in an or-
thotropic material (Abousleiman et al., 1996). We also describe the fluid
flow in an orthotropic material by Darcy’s law Eq. (2.15), with the perme-
ability tensor k being defined as

k =
(
k1 0
0 k2

)
(2.35)

where k1 and k2 are the permeabilities in the direction of the subscript.

2.4.2 Mechanical behaviour in the fracture

The constitutive mechanical behaviour at the discontinuity is given by a
relation between the traction at the interface and the displacement jump
ud across the discontinuity (Irzal et al., 2013)

td = td(ud, κ). (2.36)
Here κ is a history parameter that is equal to the largest displacement jump
reached. The relation between the traction td and the displacement jump
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ud can be any phenomenological relation, see e.g. (Shet and Chandra,
2002), and is referred to as a cohesive law.

The initial normal and shear tractions, respectively written as tn0 and
ts0 , are taken to be equal to the normal and shear traction at the moment of
propagation (2.28) in order to avoid sudden jumps in the stress. Based on
the work of Camacho and Ortiz (1996) a distinction is made between normal
and shear softening behaviour. If the initial normal traction is positive the
discontinuity is assumed to open as a cleavage crack. The normal and shear
tractions than decay linearly to zero from their initial values as a function
of the normal opening of the crack (Figure 2.7)

tn = tn0

(
1− un

uncr

)
ts = ts0

(
1− un

uncr

)
sgn(us). (2.37)

Here un and us are respectively the normal and sliding the displacement,
sgn(·) is the signum function.
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Figure 2.7: The normalised tractions across the discontinuity as a function of
the displacement jump in: (a) a cleavage crack and (b) a shear crack.
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The parameter uncr is the length of the fully developed traction-free crack.
This parameter depends on the fracture toughness Gc, which is the area
under the softening curve, and the initial normal traction tn0

uncr = 2Gc
tn0

. (2.38)

The traction separation relations for unloading and shear opening are de-
scribed in detail in (Camacho and Ortiz, 1996). Self-contact of the fracture
is simulated by using a penalty stiffness method.

It is necessary to perform a linearisation on Eq.(2.36) in order to use
the tangential stiffness matrix in an incremental iterative solution

∆td = T∆ud. (2.39)

F

qp=0

qp=0

p=0 p=0
a

5a

F

Figure 2.8: Scheme and result of the Mandel Cryer benchmark

2.5 Examples

In the first two examples the accuracy of the model for an isotropic and
a transverse isotropic material is analysed in an unconfined compression
test. An analytical solution is available for both problems. In the last
two examples the performance of the numerical model is investigated by
simulating fracture propagation in a transverse isotropic material and by a
mixed mode fracture problem. All examples are two dimensional in a plane
strain setting. The mesh consists of quadrilateral elements with bilinear
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Figure 2.9: Normalised pressure 5a
F p over the sample in x-direction, where x = 0

is in the centre. The numbers drawn in the line indicate the time in seconds.
Analytical solution from Mandel (1953).

shape functions for both the displacement and the pressure. This interpo-
lation order means we violate the Babuška-Brezzi condition (Brezzi, 1974).
However, no adverse effects of the violation have been observed in the nu-
merical results.

2.5.1 Unconfined compression

The accuracy of the poro-elastic model is tested by considering the Mandel-
Cryer benchmark (Cryer, 1963; Mandel, 1953). In the Mandel-Cryer prob-
lem an infinitesimal long plate, considered under plane strain conditions,
is rigged compressed by a force of F = 0.1 N. (Figure 2.8). The specimen
dimension is taken as a = 1mm. The material parameters are given in table
2.1. The squared elements have a size of 0.05 mm and the time step is 150
s. Free drainage is assumed at the lateral sides of the specimen. Due to the
drainage a pore pressure decrease occurs, leading to a loss of stiffness at the
sides. To compensate for this loss, the pore pressure rises in the undrained
centre of the specimen. This non-monotonic pressure response character-
izes the Mandel-Cryer problem. The normalised pore pressure across the
specimen in the x-direction is shown in Figure 2.9. The numerical pore
pressure is consistent with the analytical solution.

E = 1.5 [Mpa] ν = 0.2 [-]
k = 2.8e-4 [mm4/Ns]

Table 2.1: Model Parameters used in the isotropic Mandel-Cryer benchmark
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The isotropic solution for the Mandel-Cryer problem was extended to
transverse isotropic materials by Abousleiman et al. (1996). This analytical
solutions is used to determine the accuracy of the numerical model for a
transverse isotropic material. The benchmark problem is similar than that
in the isotropic case (Figure 2.8). The transverse isotropic material has a
higher stiffness in the vertical direction (θf = 90◦). The material parameters
are given in table 2.2. The anisotropic permeability has no influence on the
analytical solution. Therefore, we consider the permeability also isotropic
in this example. The numerical result for the anisotropic Mandel-Cryer
problem is also consistent with the analytical solution (Figure 2.10).

E11 = 15.0 [Mpa] ν12 = 0.30 [-] θf = 90◦ [-]
E22 = 1.5 [Mpa] ν23 = 0.18 [-] k = 2.0e-5 [mm4/Ns]

Table 2.2: Model Parameters used in the anisotropic Mandel-Cryer benchmark
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Figure 2.10: Normalised pressure 5a
F p over the sample in x-direction, where

x = 0 is in the centre. The numbers drawn in the line indicate the time in seconds.
Analytical solution from Abousleiman et al. (1996).

2.5.2 Fracture propagation in a transverse isotropic mate-
rial

To illustrate the performance of the numerical model for a fracture prop-
agating in a transverse isotropic material a mode I fracture is considered
(Figure 2.11). Free drainage (p = 0) is assumed at the sides of the speci-
men. An initial fracture with a length of 5.0 mm is created in the centre
and the anisotropic stiffness taken as θf = 70◦. The top and bottom surface
are pulled with a constant velocity v = 5.0e−6 mm/s in vertical direction
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while the displacement in horizontal direction is constrained. The element
length is 0.20 mm and a time step of 50 s is used. The average stress is
scaled by parameter la = 0.6 mm. An overview of the material parameters
are given in table 2.3.

A small influence of the transversal permeability can be seen in the pres-
sure distribution before propagation occurs (Figure 2.12a). The pressure
gradient is aligned with the direction of the low permeability. Using the
adapted propagation criterion (2.30) for anisotropic materials, the crack
grows parallel to the anisotropic stiffness (Figure 2.12b). This is a result
of the values for τmax and τmin but does represent the propagation of a
fracture in a transverse isotropic material.

p=0

V

V

40 mm

10 mmθf

x

p=0
y

5 mm
p=0

p=0

Figure 2.11: A rectangular plate of porous material with an initial crack. The
material is transverse isotropic with θf = 70◦.

E11 = 90.0 [MPa] θf = 70 [◦] τmin = 0.004 [MPa]
E22 = 15.0 [MPa] k1 = 7.5e-3 [mm4/Ns] Gc = 0.00001 [N/mm]
ν12 = 0.30 [-] k2 = 7.5e-4 [mm4/Ns] β = 2.3 [-]
ν23 = 0.18 [-] τmax = 0.40 [MPa] µ = 1.0e-4 [Pa · s]

Table 2.3: Model Parameters used in the anisotropic Mode 1 fracture simulation.
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(a) Pressure distribution at t = 500 s

(b) Pressure distribution at t = 2000 s

Figure 2.12: Visualization of the pressure distribution. The displacements are
amplified by a factor 10.

2.5.3 Mixed mode fracture

The performance of the numerical model is analysed considering a mixed
mode fracture in a L-shaped porous material (Figure 2.13). This type
of problem has been investigated experimentally by Winkler (2001) in a
concrete material and was successfully reproduced using solid mechanics
X-FEM (Dumstorff and Meschke, 2007; Unger et al., 2007). In this example
we consider a soft porous material with a Young’s modulus of 90.0 MPa
and a permeability of 7.5e−3 mm4/Ns. The time step is 300 s and the
element length is 10.0 mm. The average stress parameter is taken as la =
30.0 mm. Further material parameters are given in table 2.4. The specimen
is constrained in both directions at the bottom surface. At the right surface
free drainage is prescribed while the other surfaces are impervious. There
is no initial crack present in the material so the nucleation point will be
determined numerically. A velocity U = 2.5e−4 mm/s is prescribed at a
distance of 30 mm of the boundary at the middle surface.

The early pressure distribution can be seen in Figure 2.14a. The pre-
scribed displacement induces a positive pressure near the loading point. At
the middle surface a negative pressure arises due to extension. This leads
to fluid flow towards this region (Figure 2.15). Fracture nucleation takes
place, as expected, at the central corner and results in a negative pressure
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Figure 2.13: Schematic representation of the L-shaped fracture problem

E = 90 [Mpa] β = 2.3 [-]
ν = 0.18 [-] τult = 0.2 [MPa]
k = 7.5e−3 [ mm4/Ns] Gc = 0.15 [N/mm]
µ = 1.0e-4 [Pa · s]

Table 2.4: Material properties L-shaped mixed mode test.

surrounding the fracture (Figure 2.14b). The negative pressure is gener-
ated by the triaxial stress state near the fracture tip (Anderson, 2005). This
stress is first taken up by the fluid resulting in negative pore pressure. The
pressure profiles at two later time points can be seen in Figures 2.14c and
2.14d. The low pressure surrounding the fracture leads to fluid flow from
the formation into the fracture (Figure 2.16). Immediately after fracture
nucleation occurred, closing of the fracture took place. This is a result of
the initial traction present in the nucleated fracture. To prevent this, the
initial traction in the element at the mesh border is neglected.

To further investigate the performance of numerical model the same
simulation is repeated with two different permeabilities. Permeability val-
ues of 7.5e−2 mm4/Ns and 7.5 mm4/Ns are used. The permeability has
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(a) t = 17100 s (b) t = 29700 s

(c) t = 54000 s (d) t = 150000 s

Figure 2.14: Pressure distribution of the L-shaped mixed mode fracture

an influence on the moment of fracture nucleation, on the fracture propa-
gation velocity and on the fracture pattern (Figure 2.17). The higher the
permeability, the earlier a fracture nucleates. This phenomenon is a con-
solidation effect. The tensile stress near the nucleation point is initially
carried by the fluid pressure. This results in a negative pressure and a fluid
flow towards this point (Figures 2.14a and 2.15). There is a stress transfer
from the fluid towards the solid skeleton as fluid flow progresses. Since the
fluid flow is linearly depended on the permeability there is a faster stress
transfer in a more permeable material. The fracture criterion is therefore
exceeded earlier. For the same reason the fracture propagates faster in a
highly permeable material.

We hypothesize that the bending of the crack is also correlated with
the consolidation theory. The right part of the sample is in compression
and fluid is squeezed out of this area resulting a slower tensile stress trans-
fer. This effect is strengthened in case of a lower permeability. Therefore
the fracture propagates downwards because the right side of the material
compressed.
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(a) Flow in x-direction. (b) Flow in y-direction.

Figure 2.15: Flow (mm/s) distribution of the L-shaped mixed mode fracture at
t = 17100 s

(a) Flow in x-direction. (b) Flow in y-direction.

Figure 2.16: Flow (mm/s) distribution of the L-shaped mixed mode fracture at
t = 42300 s.

2.6 Conclusions

We have extended two-dimensional numerical formulation for fracture prop-
agation in porous materials to model nucleation in orthotropic materials.
A fracture can grow in arbitrary directions by exploiting the partition of
unity property of finite element shape functions. The direction of propaga-
tion is based on an average stress criterion surrounding the crack tip. This
criterion is adapted for a orthotropic material by considering the directional
stiffness of the material. The exchange of fluid between the formation and
the fracture is accounted for. The tangential fluid flow in the fracture is
included by the lubrication theory. The accuracy of the numerical model
is investigated using the Mandel-Cryer Benchmark for both isotropic and
transverse isotropic materials. The results show good consistency with the
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Figure 2.17: Crack path for 3 different permeability values at t = 60000 s. The
graph is zoomed in at the grey box shown in Figure 2.13.

analytical solution.
In the transverse isotropic mode I fracture problem we successfully

showed a propagating fracture in an anisotropic material. The pressure
distribution is depending on the anisotropic permeability and the fracture
direction is aligned with the highest strength direction of the material. The
L-shaped problem demonstrates the possibility to use a poro-elastic parti-
tion of unity based cohesive zone model to simulate crack nucleation and
subsequent mixed-mode growth in porous materials. The fracture path and
propagation velocity are found to depend on the permeability of the bulk
material. It shows the capability of our numerical model to respond to a
change in a material parameter.

Simulations in this chapter are configured such that multiple time steps
were necessary to propagate the crack through one element. This is required
because the crack is restricted to grow through only one element within one
time increment. In the next chapter the capability of the model to simulate
fracture in a poro-elastic material is exploited again for shear failure but
the crack growth is allowed to go through several elements in one time
increment.
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3
Investigation of step-wise
propagation of a mode-II fracture
in a poro-elastic medium

Abstract
In this chapter we use an extended finite element method based model for
the simulation of shear fracture in fully saturated porous materials. The
fracture is incorporated as a strong discontinuity in the displacement field
by exploiting the partition of unity property of finite element shape func-
tions. The pressure is assumed to be continuous across the fracture. How-
ever, the pressure gradient, i.e. the fluid flow, can be discontinuous. The
failure process is described by the cohesive zone approach and a Tresca frac-
ture condition without dilatancy. We investigate the propagation of a shear
fracture under compression asking the question whether or not a Tresca cri-
terion can result in stepwise propagation in a poro-elastic medium. In order
to evaluate possible numerical artefacts, we also look at the influence of the
element size and the magnitude of a time increment. The performance of
the X-FEM model and the influence of the pore pressure on the fracture
propagation are addressed. Our simulations do not show evidence for step
wise progression in mode II failure.

Reproduced from: E.W. Remij, J.J.C. Remmers, J.M. Huyghe and D.M.J. Smeulders. An investigation of the
step-wise propagation of a mode-II fracture in a poro-elastic medium. Mechanics Research Communications, in
press, 2016.
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In the previous chapter the basic framework for an eXtended Finite Element
Method (X-FEM) based poro-elastic fracture model was derived. It was
demonstrated that fracture path and propagation velocity are depended on
the on the intrinsic permeability. In this chapter the model is applied to
simulate shear failure which is the controlling mechanism in earthquakes.
A major improvement to the model compared to the previous chapter lies
in the numerical implementation where we now also have the possibility to
cut multiple elements within one time increment. Due to this improvement
the influence of mesh refinement near the fracture surface can be better
addressed.

Earthquakes are generally attributed to stick-slip phenomena between
sliding tectonic plates. As pointed out by Beroza and Ide (2009), the role
of pore fluids in tremors and slow earthquakes observed e.g. in Cascadia
(Rogers and Dragert, 2003) and Japan (Obara et al., 2004) is still to be
worked out. Faulkner et al. (2006) suggest that fluid pressurisation may
facilitate slipping of tectonic plates over each other. In the literature there
is a vast body of research available on the experimental observation and
numerical simulation of the initiation and propagation of cracks in solids
(Xu and Needleman, 1994; Schlangen and van Mier, 1992; de Borst et al.,
2004). The equations governing the coupling between fluid flow and defor-
mation in fluid saturated media are also well known Lewis and Schrefler
(1987). Nevertheless, literature on crack propagation through fluid satu-
rated porous media is much scarcer.

In the past decades numerical models for fracture in porous materials,
mainly developed for hydraulic fracturing, did arise. Most of these models
are based on the Finite Element Method (FEM) either in combination with
remeshing (Schrefler et al., 2006), with zero thickness interface elements
(Carrier and Granet, 2012), or using partition of unity based approaches
(Mohammadnejad and Khoei, 2013). Other type of models make use of
the phase field approach (Wheeler et al., 2014) or are lattice based mod-
els (Grassl et al., 2015). These models differ in physics with earthquake
models due to (i.) there is fluid being injected in the fracture and (ii.) the
failure criterion is usually based on mode I failure while earthquakes are
predominated by mode II failure.

In this chapter we will focus on shear failure in a poro-elastic material.
The propagation of a shear band was shown by de Borst et al. (2006) using
the eXtended Finite Element Method (X-FEM). A similar model, including
osmotic effects, was used by Kraaijeveld and Huyghe (2011). It is shown in
these papers that there exists an interaction between the propagation of a
fracture and the pore pressure. In the latter work a serious deficiency arose
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because the discontinuity could only propagate through one element per
time increment. This has implications on the choice of the time increment
and the mesh size. Compared to the numerical implementation of the pre-
vious chapter, the possibility to have the discontinuity propagate through
multiple elements within one time increment is now included. We use this
model to reconsider the work of Kraaijveld et al. in this chapter.

In contrast to the work of Kraaijeveld et al. we assume a continuous
pressure over the fracture. This means that we need finer meshes to cor-
rectly resolve pressure gradients near the fracture. The complete coupling
between the solid and the fluid is described by Biot’s theory. As an example
we consider the same compression test as was performed by Kraaijeveld et
al. We will investigate whether or not the step wise progression observed
by Kraaijeveld et al. was physical or a numerical artefact.

3.1 Model background

We employ a partition of unity based model for the failure of fully satu-
rated rocks (Kraaijeveld and Huyghe, 2011). The extended finite element
method incorporates a discontinuity in a finite element mesh by exploiting
the partition of unity property of finite element shape functions. Consider
the domain as shown in Figure 3.1. The displacement field is enriched by a
Heaviside step function giving rise to the discontinuous nature of a fracture

u(x, t) = û(x, t) +HΓd(x)ũ(x, t). (3.1)

The pressure field is not discontinuous but may have significant gradients
near a fracture surface. Enriching the pressure with a signed distance func-
tions, as was used by Réthoré et al. (2007), the gradient near a discontinuity
is taken into account in a natural way

p(x, t) = p̂(x, t) +DΓd(x)p̃(x, t) , (3.2)

where the distance function DΓd(x) is defined as

DΓd(x) = |(x− xΓd) · nd| x ∈ Ω . (3.3)

Here, xΓd is the coordinate of the nearest point on the discontinuity and
nd is the corresponding normal vector (Figure 3.1). It is noted here that
the choice for the distance function as enrichment is not based on physical
insights but is merely a practical decision. The pressure near a fracture
will not be linear. However, by using a fine mesh we can approximate the
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Figure 3.1: The body Ω crossed by discontinuity Γd. The body is completed
with the boundary conditions.

pressure gradient based on the linear enrichment. The pressure gradient
follows from the spatial derivative of the pressure field (3.2)

∇p(x) = ∇p̂(x) +DΓd(x)∇p̃(x) +∇DΓd(x)p̃(x) , (3.4)

where the gradient of the distance function DΓd

∇DΓd(x) =
{

nd if x ∈ Ω+

−nd if x ∈ Ω−. (3.5)

Linear momentum balance and mass balance are prescribed to define
a complete coupled system based on Biot’s theory. We consider a porous
solid skeleton that is completely saturated with fluid. Neglecting the con-
tribution of gravity, inertia, and convection on the momentum balance, we
can write the latter as

∇ · σ = 0, (3.6)

where σ is the total stress, which is decomposed in Terzaghi’s effective
stress σe and the hydrostatic pressure p (Terzaghi, 1943)

σ = σe − pI, (3.7)

with I being the unit matrix. Here we assume that the fluid and solid
constituents are incompressible. Neglecting mass transfer between both
constituent, the mass balance equation can be written as (de Borst et al.,
2006)

∇ · vs +∇ · q = 0, (3.8)
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where q is the seepage flux and vs is the deformation velocity of the solid
skeleton. Constitutive behaviour for the momentum balance is described
by a linear reversible stress-strain relation. Darcy’s equation is used as
constitutive relation in the mass balance equation.

The softening of the material is governed by a traction acting on the
fracture surface based on the cohesive zone approach. Assuming continuity
of stress across the discontinuity, we can write the local momentum balance
as:

σ · nd = td − pdnd, (3.9)

where td is the traction and pd is the pressure in the fracture that is also
acting on the fracture surface. We use a pure mode II cohesive law (shown
in Figure 3.2) based on the work of Kraaijeveld and Huyghe (2011). The
shear traction is a function of the opening us as:

ts = τ2
ult
Gc

us exp
(
−
(
usτult
Gc

)2
)
, (3.10)

where τult is the ultimate strength of the material, Gc is the fracture tough-
ness and ts and us are the shear traction and the shear displacement, respec-
tively. In mode I we only apply a penalty condition to prevent penetration
of the two fracture surfaces. The model has no dilatancy.
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Figure 3.2: Traction separation law for the mode II fracture.

The local mass balance is based on conservation of mass between the
bulk and volume of fluid in the fracture. This can be written as

(
q+

Γd
− q−Γd

)
· nd + u̇n + un〈

∂u̇s
∂s
〉 − un

∂

∂s
(kd

∂pd
∂s

) + un
Kf

ṗd = 0, (3.11)

with q+
Γd

and q−Γd
being the fluid flow from the discontinuity in the bulk for

both sides for the fracture, u̇n denoting the time derivative of the normal
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opening of the discontinuity, us being the shear opening of the discontinuity,
〈·〉 = ·++·−

2 describing the average across the discontinuity, and kd being
the permeability in the discontinuity. The latter is given by (Witherspoon
et al., 1980):

kd = u2
n

12µ , (3.12)

with µ being the dynamic viscosity of the fluid. For the derivation of these
equilibrium equations, we refer to Irzal et al. (2013).

The spatial discretization of the balance equations is based on the par-
tition of unity property of finite element shape functions as described in
the work of Melenk and Babuška (1996). The variational forms of the
displacement field and the pressure field are discretized similarly follow-
ing the Bubnov-Galerkin approach. Time integration is performed with
the implicit Euler scheme. The final system of equations in non linear
and therefore solved using a Newton-Raphson iterative procedure. For a
detailed description and derivation we refer to (Kraaijeveld and Huyghe,
2011; Réthoré et al., 2007; Irzal et al., 2013).

3.2 Numerical implementation

The propagation of the cohesive zone is based on an averaged stress at the
crack tip. This stress is calculated based on a Gaussian weighting function
that depends on a length scale parameter la (see Section 2.3). Within an
element, the cohesive zone always propagates in a straight line and always
ends on an element edge. It is possible to cut multiple elements within
one time increment. Once a converged solution is obtained, the averaged
stress at the crack tip is evaluated to determine whether or not the crack
propagates. If a crack propagates, the discontinuity is extended into the
next element by enhancing the corresponding nodes with new degrees of
freedom. Instead of propagating to the next time increment, the current in-
crement is recalculated with the extended discontinuity. Once a converged
solution is obtained for which no propagation is observed, the analysis is
continued with the next time increment.

By enriching the nodes with the additional degrees of freedom we in-
corporate the discontinuity in the original finite element mesh. We use
an adopted integration scheme introduced by Wells and Sluys (2001) to
numerically integrate elements that are crossed by a discontinuity. The
discontinuity is prohibited to cut to close to a finite element node in order
to prevent the integration of zero surface elements that may occur on one
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side of the discontinuity. The balance equations over the discontinuity are
integrated by two integration points per element (Remmers et al., 2003).

p = 01mm

2mm

0.3mm

Figure 3.3: Scheme for the compression example.
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Figure 3.4: Piston displacement versus the tip displacement.

3.3 Example
We consider a sample made of a porous material with a fracture of length
0.30 mm (Figure 3.3). The sample is completely boxed and free drainage
is assumed on the right hand side. A load is applied below the initial
fracture, leading to shear stress around the tip of the fracture. The ma-
terial has a Young’s modulus of E = 90 MPa and a Poisson’s ratio of
ν = 0.20. The propagation direction is based on Tresca’s failure crite-
rion. The ultimate strength of the sample is τult = 0.4 MPa and the
fracture toughness is Gc = 0.2 N/m. The intrinsic permeability of the
material is kint = 0.28e−18 m2 and the fluid has a dynamic viscosity of
µ = 1.0e−3 Pa · s.The following condition has to be satisfied for stable time
integration (Vermeer and Verruijt, 1981):
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Figure 3.5: Piston displacement versus the location of the beginning of the
cohesive zone. The colours in the graph are identical to those used in Figure 3.4.

∆tcrit >
∆x2µ

EKint
(3.13)

Since we are interested in the fundamental behaviour of the pore pressure
we satisfy this condition with all our meshes. In the work of Kraaijeveld et
al. evidence was found of discontinuous behaviour of fracture propagation
due to time effects in the pore pressure. By satisfying the condition on
the time increment we ensure that we can accurately describe these time
effects. An overview of the different meshes can be seen in Table 3.1. All
the meshes are made of squared quadrilateral elements and with an element
length le. The critical time increment with the material parameters for the
coarsest mesh is ∆tcrit = 0.025 s. We use this time increment in al the
simulations.

le(µm) ∆tcrit(s) Number of nodes
25.0 0.025 3200
3.60 0.00051 156800
2.50 0.00025 320000

Table 3.1: Mesh Overview

We first investigate the global response in the sample in Figures 3.4-
3.7. In Figure 3.4 it can be seen that there is a slight difference in the
tip displacement comparing the coarsest and finest meshes. In the coarsest
mesh (le = 25.0 µm) the tip propagates in a step wise fashion. This effect
becomes less prominent for finer meshes and therefore can be attributed
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to the discretization since the fracture must propagate from element edge
to element edge. The influence of this restriction to the numerical results
is most significant in the coarser mesh. Instead of looking at the location
of the fracture tip, we can also show the location of the beginning of the
cohesive zone, i.e. the location where the traction of the cohesive law is
less then 1% of τult. We show this graph in Figure 3.5. In this case the
location of the tip is not restricted to the element edge, leading to smoother
fracture growth. Similar behaviour is observed for the load necessary to
push the piston forward (Figure 3.6). The fracture path is shown in Figure
3.7. The beginning of the fracture path is directed along the x-axis. As
the fracture propagates the direction slightly turns into the negative y-
direction. This decreases the surface area below the fracture tip eventually
leading to complete failure of the material. In the simulations we observe
that the fracture completely breaks the material within one time increment
as complete failure occurs. This is a significant difference with the work
of Kraaijeveld and Huyghe (2011). There, the fracture was prohibited to
grow through more than one element per time increment. The fracture was
therefore delayed in propagation and complete failure of the material was
not observed.
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Figure 3.6: Piston displacement versus the applied load.

The fluid flow across the fracture, in the initial fracture at x = 0.25 mm,
is shown in Figure 3.8. Before fracture propagation, fluid is being pushed
out of the region below the initial fracture due to the increasing load of
the piston. Consolidation effects are observed behind the fracture tip once
propagation starts. The compressive stress behind the tip decreases im-
mediately after fracture propagation. This leads to relaxation of the fluid
phase, decreasing the normal flow across the fracture. In the coarse mesh
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Figure 3.7: The final fracture path.

the region where relaxation occurs is so large that fluid is being retracted
from the upper side of the fracture. A similar effect is observed for a point
not in the initial fracture but at x = 0.34 mm.
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Figure 3.8: The normal flow across the fracture at point x = 0.25 mm is plotted
against the piston displacement.

The difference in the normal flow between the various meshes can be
distinguished more accurately in Figure 3.10. In the coarse mesh the fluid
flow relaxes, and even changes sign again, after the fracture has propagated.
This effect repeats it self once the fracture propagates through the next
element. In the finer meshes this effect is less obvious (to observe). The
mesh is finer, hence decreasing the area where relaxation of pore pressure
occurs, leading to lower values for the normal fluid flow. In the finest mesh
(le = 2.50 µm) we even observe a continuous fluid flow ( between piston
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Figure 3.9: The normal flow across the fracture at point x = 0.34 mm is plotted
against the piston displacement.

displacement d = 0.0082−0.0085 mm). This effect is caused by continuous
fracture propagation.
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Figure 3.10: Zoom of the normal flow across the fracture at point x = 0.25 mm.

From these results we conclude that fracture propagation in a porous
material in our model is affected by the element size. To obtain better
understanding in the time effects we reproduce the same simulation, using
the finest mesh, with two different time increments; ∆t = 0.0125 s and ∆t =
0.00625 s. Using a smaller time increment will lower the load increment
per possible propagation step. The propagation of the fracture through
multiple elements that we observed with a larger time increment may vanish
using smaller time increments. We indeed see this effect in Figure 3.11:
decreasing the increment size leads to crack arrest in one time step followed
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by crack propagation in the next. This also has effect on the fluid flow across
the fracture as we see in Figure 3.12.
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Figure 3.11: Zoom of the tip displacement versus the piston displacement for
the same mesh (le = 2.50 µm) using 3 different time increments.
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Figure 3.12: Zoom of the normal flow across the fracture at point x = 0.25 mm
considering the same mesh (le = 2.50 µm) using 3 different time increments.

A final parameter that may influence fracture propagation in a porous
material is the intrinsic permeability. In this last example we decrease
the intrinsic permeability with two orders to kint = 0.28e−20 m2. Using
the finest mesh with the original time increment size of ∆t = 0.025 s
we still satisfy the critical time increment restriction. The effect of the
permeability on the applied load is clear from Figure 3.13. The material
behaves more stiff because consolidation effects are much slower. This
leads to the increased load necessary to push the piston down. In Figure
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3.14 we see that fracture propagation occurs earlier in the lower permeable
material. This is counter intuitive since we expected the load transfer to be
slower in the material with a lower permeability. However, the area where
consolidation takes place is smaller, leading to a higher concentration of
stress near the fracture tip. Furthermore, the pore pressure only effects the
hydrostatic component of the stress. The increase of shear stress is thus
unaffected by the stress transfer and leads to earlier fracture propagation
in the materials with a lower permeability. The intrinsic permeability also
influences the fracture path (Figure 3.15).
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Figure 3.13: The influence of the intrinsic permeability on the piston displace-
ment versus the applied load.
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Figure 3.14: Tip displacement versus the piston displacement where we consid-
ered 2 different permeabilities.
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Figure 3.15: Final crack path in the simulation with 2 different permeabilities.

3.4 Conclusions

Stepwise progression was observed experimentally by Pizzocolo et al. (2013)
in mode I . Evidence was also found in numerical results by Schrefler et al.
(2006). The phenomenon of step wise propagation in mode I is also dis-
cussed in (Coa et al., 2016,in press). We do observe step wise fracture
growth in our mode II simulations but we attribute it to a numerical arte-
fact, generated by the element edge to element edge growth of the fracture.
Step wise growth disappeared upon mesh refinement for mode II fractures
but appeared again upon refinement of the magnitude of the time incre-
ment ∆t. Step wise propagation of the beginning of the cohesive zone is
less distinct since this location is not bound to the element edges. Thus,
we can conclude that our simulations do not point at a physical origin of
the step wise progression in mode II.

No dilatancy is included in our mode II model for reasons of simplic-
ity. We are aware that dilatancy may be a major factor affecting mode II
propagation. Mode II failure in fully saturated materials - and particularly
the question whether or not step wise propagation takes place - may be
strongly affected by this physical phenomenon.

We also investigated the effect of discretization on a propagating shear
fracture in a poro-elastic material. The global response of the material is
independent of the mesh size as long as the critical time increment, Eq.
(3.13) is satisfied. Decreasing the material permeability has an effect on
the material response due to slower stress transfer. Changes in fracture
path and load necessary to push the piston down are observed. Whereas
the global pattern of crack propagation is mesh independent, the local
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interaction between pore pressure, local flow across the crack and crack
propagation was highly dependent on the discretization in space and time.
Compared to the work of Kraaijeveld and Huyghe (2011), we made a signif-
icant improvement by allowing to propagate the fracture through multiple
elements within one time step. However, this improvement is insufficient
to eliminate mesh dependence entirely.

In order to eliminate all mesh dependence of the XFEM model, the ele-
ment edge to element edge growth should be abandoned and crack growth
though part of an element should be made possible. This is, however,
beyond the scope of this study.

Solving a problem with poro-elasticity in a finite element based model
usually leads to assumptions on the time discretization. With our results we
showed that the choice of the time increment and the mesh size should be
carefully picked. If the interest is understanding the physics of the fracture
propagation behaviour, a mesh satisfying the critical time criterion is not
sufficient any more and results should be interpreted carefully. However,
when the main goal is looking at the fracture behaviour on a larger scale
the restriction on the mesh are less strict and the X-FEM model is very
suitable.

The signed distance function to enrich the pressure field across the
fracture is not physically based. It is demonstrated that the approximation
of the pressure gradient near the fracture surface is dependent on the mesh
size. In the next chapter an alternative method to model the pressure
across the fracture is presented and compared to the signed distance based
model used in this chapter and in Chapter 2.
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4
The Enhanced Local Pressure
model

Abstract
In this chapter, an extension to the extended finite element method based
models as discussed in the previous chapters is presented. Using the par-
tition of unity property of finite element shape functions, the displacement
and pressure field across the fracture are described as a strong disconti-
nuity. The pressure in the fracture is included by an additional degree
of freedom. The pressure gradient due to fluid leakage near the fracture
surface is reconstructed based on Terzaghi’s consolidation solution. With
this numerical formulation, it is ensured that all fluid flow goes exclusively
into the fracture and that it is not necessary to use a dense mesh near the
fracture to capture the pressure gradient. Fluid flow in the rock formation
is described by Darcy’s law. The fracture process is governed by a cohe-
sive traction separation law. The performance of the numerical model for
fluid-driven fractures is shown in three numerical examples.

Reproduced from: E.W. Remij, J.J.C. Remmers, J.M. Huyghe and D.M.J. Smeulders. The enhanced local
pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Computer Methods
in Applied Mechanics and Engineering, 286, 293-312, 2015.
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In Chapter 2 an eXtended Finite Element Method (X-FEM) model is used
to simulate fracture in poro-elastic materials. It is demonstrated that there
is an influence of intrinsic permeability on the fracture behaviour. In Chap-
ter 3 an assessment of the effect of mesh refinement on fluid leakage was
given. Mesh refinement led to different responses in fluid leakage. The
signed distance function, used in approximating the pressure gradient near
the fracture surface, requires sufficient fine numerical discretization to re-
solve the gradient. In applications of hydraulic fracturing, applied in low
permeable rocks such as shales, this effect is even more severe. In this
chapter a different method is proposed where the pressure is included in
the fracture as separate degree of freedom.

A model to predict the hydraulic fracturing process can be used to op-
timize the generation of a fracture network and eventually may increase
production rates. However, the correct modelling of the hydraulic fractur-
ing process is complex since three different phenomena have to be taken into
account: (i) the fluid exchange between the fracture and the rock formation
(ii) the fluid flow in the fracture and (iii) the changing spatial configuration
due to fracture propagation (Adachi et al., 2007).

The first theoretical hydraulic fracture models that took these require-
ments in consideration were developed in the 1950s (Adachi and Detournay,
2008). Perkins and Kern (1961) developed a theoretical model based on the
classic Sneddon plane strain crack propagation. Fluid loss was included in
this model by Nordgren (1972) and is now referred to as the PKN model.
Similar models with slightly different geometrical assumptions were inde-
pendently developed by Geertsma and De Klerk (1969) and Khristianovic
and Zheltov (1955). These models have been used for analysing several
parameters that control hydraulic fracturing. This research has shown that
hydraulic fracturing can be categorized in a parametric space based on
hydraulic fractures that are dominated by fluid leak-off, toughness, or vis-
cosity. Several asymptotic solutions are derived in this parametric space.
An overview of these solutions is given by Adachi and Detournay (2008).

Various numerical models have been developed for complex geometries
where the analytical solutions fail. Boone and Ingraffea (1990) developed a
numerical model based on the Finite Element Method (FEM) for a poroe-
lastic material where a cohesive zone description was used for the fracture.
The fluid flow in the crack was solved using a finite difference method.
Schrefler and co-workers (Schrefler et al., 2006; Secchi et al., 2007; Secchi
and Schrefler, 2012) modelled a cohesive fracture using the FEM but in-
cluded a mesh adaptation scheme so that propagating fractures in arbitrary
directions can be modelled in two- and three-dimensional situations. Hy-
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draulic fracturing was investigated in a permeable material by Sarris and
Papanastasiou (2011) with a finite element analysis including cohesive zone
elements. Segura and Carol (2004, 2008) introduced a hydro-mechanical
coupling formulation using zero-thickness interface elements with double
nodes based on the finite element method. Carrier and Granet (2012) also
used interface elements but included an additional degree of freedom for the
pressure in the fracture. Recently, also advancements were made in con-
tinuum based hydraulic fracturing simulations using a phase-field approach
(Wheeler et al., 2014).

The extended finite element method is a proven technology in solid me-
chanics and has as an important advantage compared to the previously
mentioned fracture models; a fracture can grow in arbitrary directions
without the need to remesh (Remmers et al., 2003). In X-FEM a frac-
ture is modelled as a discontinuity in the displacement field by exploiting
the partition of unity property of finite element shape functions (Melenk
and Babuška, 1996). Belytschko and Black (1999) and Moës et al. (1999)
were the first to implement this in the FEM by adding additional degrees of
freedom to the existing nodes in the finite element mesh. A cohesive zone
description for the fracture process was included by Wells and Sluys (2001).
The X-FEM was successfully applied to fracturing in porous materials, see
e.g. (Irzal et al., 2013; de Borst et al., 2006; Kraaijeveld et al., 2013).
Recently, Mohammadnejad and Khoei (2012) developed an extended fi-
nite element method model for cohesive crack growth in multiphase porous
materials. They successfully applied their model for hydraulic fracturing
simulations (Mohammadnejad and Khoei, 2013). In these works, similar
as to the model presented in Chapter 2 and Chapter 3, the pressure field
across the fracture is enriched with a linear distance function. This leads to
a continuous pressure description across the fracture while the fluid flow is
discontinuous. The model described in the previous two chapters is used for
benchmarking purposes in this chapter and is referred to as the continuous
pressure X-FEM model.

A drawback of a continuous pressure description is that an inflow, as
present in hydraulic fracturing, must be prescribed as a boundary condition
of the continuous external fluid flow. Therefore, a mesh dependent part of
the fluid flow goes directly in the formation instead of into the fracture.
This effect decreases in an opened fracture due to the high permeability in
the fracture compared with the rock formation. However, the effect may be
significant in an initial closed fracture, particularly when the mesh is coarse.
A second drawback, the necessity to use a fine mesh near the fracture to
capture the pressure gradient, is demonstrated in Chapter 3.
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To quantify these effects, we develop a model with an additional, sep-
arate, degree of freedom for the fluid pressure in the fracture. By doing
this, we ensure that the inflow goes exclusively into the fracture. The fluid
leaks off into the formation only from the fracture itself. We enrich the
pressure, as we do for the displacement field, with a Heaviside function,
making the pressure discontinuous over the fracture. Hence, the pressure
exhibits a jump for the fracture to the formation on the left and another
jump for the fracture to the formation on the right as in Figure 4.1. The
steep pressure gradients along the boundaries of the fracture are therefore
not resolved. The steep gradients along the boundaries of the fracture are
reconstructed assuming a scale separation between on the one hand the
consolidation phenomenon around the fracture, and on the other hand the
macroscopic fluid flow in the formation. The consolidation phenomenon
itself is reconstructed from an one-dimensional analytical solution based on
Terzaghi’s consolidation equation (Terzaghi, 1943). The numerical model
is only valid when the characteristic distance of consolidation around the
fracture is small relative to the mesh-size of the formation. We will refer
to this model as the Enhanced Local Pressure (ELP) model. The pres-
sure near the fracture can be compared to an one-dimensional analytical
solution. By comparing the ELP model and the continuous X-FEM formu-
lation with the analytical solution we investigate if indeed the ELP better
approximates the pressure in the fracture at small distance-scales.

In the remainder of this chapter we first describe the kinematic relations.
In Section 4.2 we present the balance equations and in Section 4.3 the
governing equations are introduced. The weak form is given in Section 4.4
and the discritization and numerical implementation are given in Section
4.5. In Section 4.7 we illustrate the performance of the model with three
examples. Finally, conclusions are drawn in Section 4.8.

4.1 Kinematic relations

Consider a body Ω crossed by a discontinuity Γd, as shown in Figure 4.2a.
The discontinuity divides the body in two domains, Ω+ and Ω−. The vector
nd is defined as the normal of the discontinuity surface Γd pointing into
domain Ω+. The total displacement field of the solid skeleton can, at any
time t, be described by a regular displacement field û(x, t) and an additional
displacement field ũ(x, t) (Belytschko and Black, 1999; Moës et al., 1999;
Remmers et al., 2008)

u(x, t) = û(x, t) +HΓd(x)ũ(x, t), (4.1)
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Ω+

Ω−

Pressure magnitude

p+
f

p−f

pd

Figure 4.1: Schematic representation of the pressure magnitude over an open
discontinuity in grey. The discontinuity separates the formation into two bodies,
Ω+ and Ω−, with a pressure p+

f and p−
f , respectively. The pressure in the disconti-

nuity is given by pd. The striped line indicates the physical pressure gradient over
the discontinuity. The solid line represents the discontinuous pressure profile.

where x is the position of a material point and HΓd is the Heaviside step
function. Across the discontinuity, this is defined as

HΓd =
{

1 if x ∈ Ω+

0 if x ∈ Ω− (4.2)

The strain field results from differentiating the displacement field (4.1) with
respect to material point x with the assumption of small strain theory

ε(x, t) = ∇sû(x, t) +HΓd∇
sũ(x, t), x /∈ Γd. (4.3)

Here ∇s is the symmetric part of the differential operator

∇su = 1
2(∇u + (∇u)T ). (4.4)

At the discontinuity Γd, the strain field is undefined and the kinematic
quantity is defined by a jump in the displacement field

[u(x, t)] = ũ(x, t), x ∈ Γd. (4.5)
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Figure 4.2: Schematic representation of body Ω and of a discontinuity.

The pressure inside an opening fracture is different from the pressure inside
the surrounding formation. The gradient of this pressure difference quan-
tifies the interaction of fluid flow between the fracture and the formation.
We assume the pressure to be discontinuous across the fracture:

p(x, t) = p̂(x, t) +HΓd(x)p̃(x, t). (4.6)

In the discontinuity, the pressure is equal to an independent variable pd
(Figure 4.2b).

pd = p x ∈ Γd. (4.7)

4.2 Balance equations

The balance equations consist of two parts, namely balance equations in
the bulk material and on a more local scale inside the fracture. These two
types are identified separately in this section.

4.2.1 Bulk behaviour

The porous solid skeleton is considered to be fully saturated with a fluid.
The process is isothermal and gravity, inertia,body forces, and convection
are neglected. With these assumptions the momentum balance reads
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∇ · σ = 0, (4.8)

where σ is the total stress which is decomposed in Terzaghi’s effective stress
σe and the hydrostatic pressure p (Terzaghi, 1943)

σ = σe − αpI, (4.9)

with I being the unit matrix and α being the Biot coefficient

α = 1− K

Ks
. (4.10)

Here, K and Ks are the bulk moduli of the porous material and the solid
constituent, respectively. The momentum balance is completed with the
following boundary conditions (Figure 4.2a)

σ · nΓ = tp(x, t) x ∈ Γt,
u(x, t) = up(x, t) x ∈ Γu,

(4.11)

with Γt ∪ Γu = Γ,Γt ∩ Γu = ∅.
We neglect mass transfer between the two constituents. The mass bal-

ance is written as (de Borst et al., 2006)

α∇ · vs +∇ · q + 1
M
ṗ = 0, (4.12)

where vs is the deformation velocity of the solid skeleton, q is the seepage
flux, and M is the compressibility modulus defined as

1
M

= φ

Kf
+ 1− φ

Ks
. (4.13)

Here φ is the porosity of the porous material and Kf is the bulk modulus
of the fluid. The mass balance is completed with the following boundary
conditions (Figure 4.2a)

q(x, t) · nΓ = ff x ∈ Γf ,
p(x, t) = pp x ∈ Γp,

(4.14)

with Γf ∪ Γp = Γ,Γf ∩ Γp = ∅.
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4.2.2 Microscopic model

Following a cohesive zone approach, the softening of the material is gov-
erned by a traction acting on the discontinuity surface. This traction is
coupled to the hydrostatic pressure in the discontinuity. Assuming conti-
nuity of stress from the continuum into the discontinuity, we can write the
local momentum balance as

σ · nd = td − pdnd. (4.15)

The local mass balance in the discontinuity can be found by integrating
the continuous mass balance across the discontinuity.

(
q+

Γd
− q−Γd

)
· nd + u̇n + un〈

∂u̇s
∂s
〉 − un

∂

∂s
(kd

∂pd
∂s

) + un
Kf

ṗd = 0, (4.16)

with q+
Γd

and q−Γd
being the fluid flow from the discontinuity into formation

for the discontinuity lip of the Ω+ and the Ω− domain, respectively, u̇n
denoting the time derivative of the normal opening of the discontinuity,
us being the shear opening of the discontinuity, 〈·〉 = ·++·−

2 describing
the average across the discontinuity, and kd being the permeability in the
discontinuity. The latter is given by (Witherspoon et al., 1980):

kd = u2
n

12µ , (4.17)

where µ is the viscosity of the fluid. For the derivation of this equilibrium
equation, we refer to Irzal et al. (2013).

4.3 Constitutive equations
The mathematical formulation of the balance equations are completed by
constitutive behaviour for the bulk material and the discontinuity.

4.3.1 Mechanical behaviour of the bulk

The effective stress in the bulk material is related to the strain with a linear
reversible stress-strain relation:

σe = 2µε+ λtr(ε)I, (4.18)

where µ and λ are respectively the first and second Lamé constants given
in an isotropic material by
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µ = E

2(1 + ν) λ = νE

(1 + ν)(1− 2ν) , (4.19)

with E and ν being the Young’s modulus and the Poisson’s ratio, respec-
tively.

The fluid flow in the bulk material can be described by Darcy’s relation
(Biot, 1941)

q = −k∇p, (4.20)
where k is the permeability, which is assumed to be isotropic and constant
in time and space, and is defined as

k = kint
µ

. (4.21)

Here kint is the intrinsic permeability and µ is the dynamic viscosity (De-
tournay and Cheng, 1993).

4.3.2 Mechanical behaviour in the discontinuity

The constitutive mechanical behaviour at the discontinuity is given by a
relationship between the traction at the interface and the displacement
jump ud across the discontinuity (Irzal et al., 2013):

td = td(ud, κ). (4.22)
Here κ is a history parameter that is equal to the largest displacement jump
reached. It is necessary to perform a linearisation on Eq.(4.22) in order to
use the tangential stiffness matrix in an incremental iterative solution:

∆td = T∆ud. (4.23)
The relation between the traction td and the displacement jump ud can be
any traction-separation relation and is referred to as the cohesive law. We
assume that the fluid pressure inside the hydraulic fractures only causes
fracture opening in normal direction. Therefore, shear tractions are ne-
glected and we use an exponential cohesive law that is only a function of
normal opening un (Figure 4.3)

tn = τult exp
(
−unτult
Gc

)
. (4.24)

Here is τult the ultimate strength of the material and Gc the fracture tough-
ness.
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t n

τult

Gc

un

Figure 4.3: Exponential traction-separation law.

4.3.3 Small scale pressure coupling

Due to the discontinuous pressure formulation, the pressure gradient be-
tween the discontinuity and the formation is undetermined. If the consoli-
dation distance is small compared to the dimensions of the finite elements
near the discontinuity, we approximate the pressure gradient using the 1D
analytical solution for a semi-infinite formation, given by Eq. (A.7) in Ap-
pendix A. In this analytical solution, the value p represents the pressure
difference between the boundary surface and the initial pressure due to the
loading of the formation. In the case of a discontinuity, there is a pressure
gradient between the discontinuity and the formation, see Figure 4.2b. We
therefore substitute p with this pressure difference. The fluid leakage is
then taken from the analytical solution and thus given by

q · n = Qin = k

2
pd − pf√

cvt
π exp −η2

4cvt −
η
2erfc

(
η

2
√
cvt

) . (4.25)

At the boundary of discontinuity, defined by η = 0, the fluid flow simplifies
into

q · n = k

2
pd − pf√

cvt
π

. (4.26)

Here pf is the pressure in the formation at the edge of the fracture (Figure
4.2b) and t is the time that expired after the discontinuity was inserted.
The diffusion coefficient cv is given by

cv = kM
K + 4

3µ

Ku + 4
3µ

, (4.27)

with Ku being the undrained bulk modulus
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Ku = K + α2M . (4.28)

Taking the side of the discontinuity into consideration, we can write this
equation as (

q+
Γd
− q−Γd

)
· nd = Ca

(
2pd − p+

f − p
−
f

)
, (4.29)

where the Ca is an analytical constant define by

Ca = k

2
√

cvt
π

. (4.30)

4.4 Weak form
The weak form of the previously derived equilibrium equations can be ex-
pressed by multiplying them with admissible test functions for each field
variable. The test functions for the momentum balance and the mass bal-
ance have the same form as the displacement field u and the pressure field
p, respectively:

η = η̂ +HΓd η̃ ζ = ζ̂ +HΓd ζ̃. (4.31)

The pressure in the fracture pd is continuous along the discontinuity and
therefore multiplied by the test function ψ.

Multiplying the momentum balance (4.8) with the test function η, us-
ing Gauss’s theorem and incorporating the boundary conditions, the weak
momentum balance can be written as

∫
Ω
∇(η̂ +HΓd η̃) : σdΩ =

∫
Γt
∇(η̂ +HΓd η̃)tpdΓt (4.32)

−
∫

Γ+
d

∇(η̂ +HΓd η̃) · (σ · nd)dΓ+
d +

∫
Γ−d
∇(η̂ +HΓd η̃) · (σ · nd)dΓ−d .

Multiplying the mass balance (4.12) with the test function ζ results in:

− α
∫

Ω
(ζ̂ +HΓd ζ̃)∇ · vsdΩ +

∫
Ω
∇(ζ̂ +HΓd ζ̃) · qdΩ (4.33)

−
∫

Ω
(ζ̂ +HΓd ζ̃) 1

M

∂p

∂t
dΩ =

∫
Γf

(ζ̂ +HΓd ζ̃)ffdΓ.



64 Chapter 4

Here we do not consider the fluid leakage. This term is included in the
microscopic pressure coupling. The mass balance for the fluid flow in the
fracture (4.16) is multiplied by test function ψ:

∫
Γ+
d

ψq+
Γd
· nddΓ−

∫
Γ−d
ψq−Γd

· nddΓ +
∫

Γd
ψu̇ndΓ +

∫
Γd
ψun〈

∂u̇s
∂s
〉dΓ

(4.34)

+
∫

Γd
ψ
un
Kf
ṗddΓ−

∫
Γd
ψun

∂

∂s
kd
∂pd
∂s

dΓ = 0.

These two weak equations must hold for all variations of test functions
and can therefore be solved separately for (η̃ = 0, ζ̃ = 0) and for (η̂ =
0, ζ̂ = 0). This results in the following four equations

∫
Ω

(∇η̂) : σdΩ =
∫

Γt
η̂ · tpdΓ, (4.35)∫

Ω
HΓd∇η̃ : σdΩ +

∫
Γd
η̃ · (td − pdnd)dΓ =

∫
Γt

(HΓd η̃) · tpdΓ, (4.36)

− α
∫

Ω
ζ̂∇ · vsdΩ +

∫
Ω
∇ζ̂ · qdΩ−

∫
Ω
ζ̂

1
M

∂p

∂t
dΩ =

∫
Γf
ζ̂ffdΓ, (4.37)

− α
∫

Ω
HΓd ζ̃∇ · vsdΩ +

∫
Ω
HΓd∇ζ̃ · qdΩ−

∫
Ω
HΓd ζ̃

1
M

∂p

∂t
dΩ = (4.38)∫

Γf
HΓd ζ̃ffdΓ.

Here we assumed stress continuity over the discontinuity (σ·nd = td−pdnd)
and used the definition of the Heaviside function Eq. (4.2).

The fifth equilibrium equation, the mass balance for the fluid flow in
the fracture (4.34), can be rewritten by using the divergence theorem in:

∫
Γd
ψun

∂

∂s
kd
∂pd
∂s

dΓ = ψ
1

12µu
3
n

∂pd
∂s
|Sd −

∫
Γd

1
12µu

3
n

∂ψ

∂s
· ∂pd
∂s

dΓ. (4.39)

The term 1
12µu

3
n
∂pd
∂s |Sd represents the fluid inflow at the end of the fracture

and is rewritten as

1
12µu

3
n

∂pd
∂s
|Sd = Qin|Sd . (4.40)

This gives the following relation for the mass balance in the discontinuity
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∫
Γd
ψq+

Γd
· nddΓ−

∫
Γd
ψq−Γd

· nddΓ +
∫

Γd
ψu̇ndΓ +

∫
Γd
ψun〈

∂u̇s
∂s
〉dΓ

(4.41)

+
∫

Γd
ψ
un
Kf
ṗddΓ +

∫
Γd

1
12µu

3
n

∂ψ

∂s
· ∂pd
∂s

dΓ = ψQin|Sd .

4.5 Discretization
The spatial discretization of the balance equations is based on the partition
of unity property of finite element shape functions as described in the work
of Melenk and Babuška (1996). The variational forms, the displacement
field, the pressure field, and the pressure in the fracture are discretized
similarly following the Bubnov-Galerkin approach for a single element by:

η = Nη̂ +HΓdNη̃, u = Nû +HΓdNũ,
ζ = Hζ̂ +HΓdHζ̃, p = Hp̂ +HΓdHp̃, (4.42)
ψ = Vψ, pd = Vpd,

where N, H, and V are matrices containing the standard shape functions
for respectively, the nodal displacement,the pressure, and the pressure in
the fracture for all nodes that support the element. Note that the shape
functions for the nodal displacement and the pressure are two-dimensional
functions while the pressure in fracture is described in an one-dimensional
domain (Figure 4.4). The columns û and p̂ contain the continuous nodal
values of respectively, the displacement and the pressure while ũ and p̃
contain the values of the enhanced nodes. The column pd contains the
nodal values of the pressure in the fracture. The discretized strain in the
bulk can be derived by differentiation as

ε = Bû +HΓdBũ, (4.43)

where B = LNT contains the spatial derivative of the standard shape
functions. The differential matrix operator L is in the two-dimensional
case defined as

L =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 . (4.44)
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u, p

u, p

u, p

u, p

pd

pd

Figure 4.4: Four nodal element with crossed by a discontinuity (dashed line).

The discretized gradient of the pressure is defined as follows:

∇p = ∇Hp̂ +HΓd∇Hp̃ (4.45)

Inserting Equation (4.42) into the weak form of the momentum balance
and the mass balance yields in the following relations

∫
Ωe

BTσdΩe =
∫

Γt
NT tpdΓ, (4.46)∫

Ωe
HΓdBTσdΩe +

∫
Γd

NT (td − pdnd)dΓ =
∫

Γt
HΓdNT tpdΓ, (4.47)

−
∫

Ω
αHTmT∇u̇dΩ +

∫
Ω
∇HTqdΩ−

∫
Ω

HT 1
M
ṗdΩ =

∫
Γf

HT ffdΓ,

(4.48)

−
∫

Ω
αHΓdHTmT∇u̇dΩ +

∫
Ω
∇HΓdHT · qdΩ−

∫
Ω

1
M
HΓdHT ∂p

∂t
dΩ =

(4.49)∫
Γf
HΓdHT ffdΓ,

and for the mass balance in the fracture (4.41):

∫
Γ+
d

VT
(
q+

Γd
− q−Γd

)
· nddΓ +

∫
Γd

VT u̇ndΓ +
∫

Γd
VTun〈

∂u̇s
∂s
〉dΓ (4.50)

+
∫

Γd
VT un

Kf
ṗddΓ +

∫
Γd

1
12µu

3
n

∂VT

∂s
· ∂pd
∂s

dΓ = VTQin|Sd ,



The enhanced local pressure model 67

with the vector m in the two-dimensional situations being defined as m =
( 1, 1, 0 )T .

To solve these equations the time depended terms are approximated
linearly as the difference between the current time step and the previous
time step

∂(·)
∂t

= (·)t+∆t − (·)t

∆t , (4.51)

where (·)t+∆t is the unknown solution at the next time step, (·)t is the
known solution from the previous time step, and ∆t is the length of the
time step. The time independent terms are approximated by the weighted
result of the current time step and the new time step:

(·) = θ̄(·)t+∆t + (1− θ̄)(·)t , θ̄ ∈ [0, 1]. (4.52)

Stabilization is reached if θ̄ ≥ 1
2 . The Euler implicit time scheme is re-

trieved when θ̄ = 1, while for θ̄ = 0 the explicit Euler scheme is retrieved.
Taking a short time step leads to initial oscillations. To have a stable time
integration, the following criterion needs to be satisfied (Kraaijeveld, 2009)

∆t > ∆x2

cK
. (4.53)

Here ∆x is the element length and c is defined as c = 2u+ λ.
The resulting system of equations is solved using a Newton-Raphson

iterative method. Linearising the aforementioned balance equations (Eqs.
4.46 - 4.50), filling in the the constitutive laws of Terzaghi effective stress
(4.18), Darcy’s law (4.20), and the leakage law (4.29), and including the
spatial discretization (Eq. 4.42) and time discretization (Eqs. 4.51 and
4.52) we can write the final system


Kûû Kûũ Cûp̂ Cûp̃ 0
Kûũ Kũũ Cũp̂ Cũp̃ Qũpd

Cp̂û Cp̂ũ Dp̂p̂ Dp̂p̃ 0
Cp̃û Cp̃ũ Dp̃p̂ Dp̃p̃ 0
Qpdû Fpdũ θ̄∆tQpdp̂ θ̄∆tQpdp̃ Fpdpd



∂û
∂ũ
∂p̂
∂p̃
∂pd

 =


f ext
û

f ext
ũ

∆tf ext
p̂

∆tf ext
p̃

∆tf ext
pd

−


f int
û

f int
ũ

f int
p̂

f int
p̃

f int
pd


(4.54)

The separate terms of the stiffness matrix are given in Appendix B. The
external and internal force are defined as
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f extû =
∫

Γt
NT tt+∆t

p dΓ

f intû =
∫

Ωe
BTσj−1dΩe

f extũ =
∫

Γt
HΓdNT tt+∆t

p dΓ

f intũ =
∫

Ωe
HΓdBTσj−1dΩe +

∫
Γ+
d

hNT {htdj−1 − pdj−1nd}dΓ

f extp̂ =
∫

Γf
∆tHT (θ̄f t+∆t

f + (1− θ̄)f tf )dΓ

f intp̂ = Cp̂û · (ût+∆t
j−1 − ût) + Cp̂ũ · (ũt+∆t

j−1 − ũt) + ∆tKp̂p̂ · (θ̄p̂t+∆t
j−1 + (1− θ̄)p̂t)

+ ∆tKp̂p̃ · (θ̄p̃t+∆t
j−1 + (1− θ̄)p̃t) + Mp̂p̂ · (p̂t+∆t

j−1 − p̂t) + Mp̂p̃ · (p̃t+∆t
j−1 − p̃t)

f extp̃ =
∫

Γf
∆tHΓdHT (θ̄f t+∆t

f + (1− θ̄)f tf )dΓ

f intp̃ = Cp̃û · (ût+∆t
j−1 − ût) + Cp̃ũ · (ũt+∆t

j−1 − ũt)

+ ∆tKp̃p̂ · (θ̄p̂t+∆t
j−1 + (1− θ̄)p̂t) + ∆t(Kp̃p̃ + Qp̃p̃) · (θ̄p̃t+∆t

j−1 + (1− θ̄)p̃t)

+ Mp̃p̂ · (p̂t+∆t
j−1 − p̂t) + Mp̃p̃ · (p̃t+∆t

j−1 − p̃t)

f extpd = HQin|Sd
f intpd = Qpdû · (û

t+∆t
j−1 − ût) + (Q(1)

pdũ
+ Q(3)

pdũ
) · (ũt+∆t

j−1 − ũt)

+ ∆tQpdp̂ · (θ̄p̂
t+∆t
j−1 + (1− θ̄)p̂t) + ∆tQpdp̃ · (θ̄p̃t+∆t

j−1 + (1− θ̄)p̃t)

+ Q(2)
pdpd · (p

t+∆t
dj−1

− ptd) + ∆tQ(3)
pdpd · (θ̄p

t+∆t
dj−1

+ (1− θ̄)ptd)

+ ∆tθ̄ δH
δs
qt+∆t
tj−1 + ∆t(1− θ̄)δH

δs
qtt

with qt being the tangential fluid flow:

qt = 1
12µu

3
n

∂HT

∂s
pd. (4.55)
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4.6 Numerical implemenation

The most important aspects of the numerical implementation and the ELP
implementation are summarized in this section. The numerical implemen-
tation and description is similar to the work of Remmers et al. (Remmers
et al., 2008; Remmers, 2006) and is also summarized in more detail in
Paragraph 2.3.

Nucleation and propagation of cohesive zones are based on the Camacho-
Ortiz average stress criterion (Camacho and Ortiz, 1996). The averages
stress is calculated by a Gaussian weighting function that is depended on
a length scale parameter la. The nodes surrounding a discontinuity are
enhanced the additional degrees of freedom. It is assumed that de discon-
tinuity trough an element is a straight line and always ends at the edge of
the element. The fracture can grow trough multiple elements in one time
step. Numerical integration is performed with the standard Gaussian in-
tegration. Due to the arbitrary locations of the discontinuity the original
integration points are not sufficient any more to. Therefore, the adopted in-
tegration scheme introduced by Wells and Sluys (2001) is used for elements
that are crossed by a discontinuity. The balance equation over the discon-
tinuity are integrated by two integration points per element.The additional
degree of freedom for the ELP model is carried by new nodes placed on
the cross-points of the discontinuity and the element edge. These nodes
only contribute to the one-dimensional pressure field in the discontinuity,
see Figure 4.4.

4.7 Examples

In this section three examples are considered. In the first two examples the
enhanced local pressure model is used but also an extended finite element
method based model with a continuous pressure profile across the fracture.
In the third example we only use the ELP model. The X-FEM model
is similar to the model used in Chapters 2 and 3 but does include the
possibility to simulate hydraulic fracturing. More details about the model
can thus be find in those two chapters but also in the work of Kraaijeveld
et al. (2013).

In the first example, we inject a constant volume in an opened fracture.
With this example we illustrate the differences between the ELP and X-
FEMmodel for the pressure in the fracture and the pressure profile at either
sides of the fracture. In the second example, both models are compared
with an analytical solution for hydraulic fracture propagation. In the third
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example we consider fracture nucleation and propagation from a circular
hole. An implicit time scheme (θ = 1) is used in both examples under two
dimensional plane strain settings.
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(b) Pressure in the discontinuity for the ELP
model and the X-FEM model.

Figure 4.5: Schematic representation of the consolidation of a soil column due to
flow through a discontinuity (a) and the result for the pressure in the discontinuity
over the time (b).

4.7.1 Fluid leakage from an opened fracture

In this example we benchmark the analytical leakage approximation (Eq.
4.29) with the numerical models. Consider a column of rock formation
with a horizontal traction free initial fracture in the middle of the column
(Figure 4.5a). The top and bottom surfaces of the column are both moved
0.01 mm away from the fracture creating a highly permeable fracture. The
top and bottom fracture surfaces are then fixed in displacement and fluid is
being injected with a constant rate Qin = 2.0e−5 m2/s at the left fracture
entrance and the time step is taken as ∆t = 0.01 s. We assume that
the opened fracture is filled with fluid so that all injected fluid must leak
into the rock formation. The rock formation has an intrinsic permeability
kint = 1.0e−20 m2 and a fluid viscosity µ = 1.0e−4 Pa · s. The Young’s
modulus equals E = 17.0 GPa with a Poisson’s ratio of v = 0.2. Both solid
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Figure 4.6: Pressure for various times for the X-FEM model due to a constant
fluid flow in the discontinuity.

and fluid constituents are considered to be compressible with Ks = 36.0
GPa and Kf = 3.0 GPa.

The consolidation distance of one time step can be approximated by
∆xcrit =

√
(∆tEk) = 0.13 mm (Vermeer and Verruijt, 1981). To resolve

the pressure gradient it is necessary to use elements with an height smaller
than this consolidation distance. We violate this criterion deliberately by
using elements with a height of 3.5 mm. In Figure 4.5b we show that we can
still predict the pressure in the fracture with the ELP model while the X-
FEM model underestimates that fluid pressure. The pressure profile across
the fracture for the X-FEM model at various times is shown in Figure 4.6.
It is clear that the pressure profile is not resolved in the X-FEM model,
at early times (Figure 4.6a), due to the large mesh size. This may lead to
inaccurate results or numerical instabilities. At t = 2.0 s the consolidation
distance is ∆xcrit = 1.8 mm. Since the element at the fracture surface is
divided in half, the consolidation distance is larger than the length over
which the numerical integration takes place. In Figure 4.6b it can be seen
that indeed the X-FEM model can now resolve the pressure gradient on
both sides of the fracture.
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Figure 4.7: Scheme of the KGD fracture problem

4.7.2 KGD fracture problem

In this example, we analyse the KGD fracture problem as shown in Figure
4.7 (Geertsma and De Klerk, 1969). We consider a material with intrinsic
permeability kint = 1.0e−18 m2 and a fluid viscosity of µ = 1.0e−5 Pa · s.
The fracture toughness of the solid skeleton is taken as Gc = 120.0 N/m
with an ultimate strength of τult = 3.75 Mpa. The fluid injection rate
Qin = 0.0005 m2/s is assumed to be constant. The remainder of material
properties and time discretization properties are equal to the previous ex-
ample. The mesh near the fracture path is made of squared, 50.0 × 50.0
mm, elements.

Figure 4.8 shows the pressure across the fracture with a single point
indicating the pressure in fracture for the ELP model. It is not needed
to resolve the pressure gradient caused by fluid leakage in the ELP model
due to the analytical approximation of the pressure gradient. There are
pressure oscillations near the fracture surface for the X-FEM model. Also,
the pressure in the fracture simulated by X-FEM, is lower than in the rock
formation. This leads to fluid being attacked into the fracture instead of
fluid leakage to rock formation.

Bunger et al. (2005) derived an analytical solution for this type of frac-
ture problem including fluid leak-off but neglecting any poroelastic effects
in the bulk material. With the material properties the hydraulic fracture
propagates in the storage dominated regime. The analytical solution ap-
proximates the fluid leak-off based with Carter’s law (Howard and Fast,
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Figure 4.8: Pressure distribution across the fracture for the ELP model and
the X-FEM model. The black dot indicates pressure in the fracture for the ELP
model.

1957):

Qleakage = 2CL√
t− t0(x)

, (4.56)

where CL is the leak-off coefficient, t is the current time, and t0 is the
time when the fracture arrived at position x. The leakage coefficient is
an input parameter for the analytical solution and is therefore calculated
by fitting equation (4.56) to the numerical leakage using the least squares
method. The analytical solution is calculated with a leakage coefficient of
Cl = 5.6e−6 m/

√
s obtained by fitting with the ELP results. The leakage

in the X-FEM model could not be fitted by Carter’s law. The compar-
ison between the analytical solution and the numerical models is shown
in Figure 4.9. There is some discrepancy between the numerical models
and the analytical solution. We attribute this to the differences between
the numerical formation and the analytical solution. Namely, we describe
the fracture process with a cohesive zone while the analytical solution is
based on linear elastic fracture mechanics. Another significant difference
is that the rock is linear elastic in the analytical solution but we include
poro-elastic effects in the rock formation.

To illustrate the difference between the ELP and the X-FEM model we
repeat the KGD fracture example with 4 different meshes. These meshes
have a constant element size of `x = 20.0 mm in the fracture direction.



74 Chapter 4

ELP solution
X-FEM solution

Analytical solution
0
1
2
3
4
5
6
7

0 1 2 3 4 5

Fr
ac
tu
re

le
ng

th
[m

]

Time [s]

(a) Fracture length.

ELP solution
X-FEM solution

Analytical solution
0

100
200
300
400
500
600

0 1 2 3 4 5C
ra
ck

m
ou

th
op

en
in
g

[µ
m

]

Time [s]

(b) Crack mouth opening.

Figure 4.9: The results of the numerical models and the analytical solution
plotted against the time.
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Figure 4.10: Absolute error in the fracture length for the ELP and X-FEM
models.

The mesh is refined in the y-direction, with a smallest element size of
`y = 78.94 mm. We validated that the numerical solution did not converge
further using smaller elements. Therefore, we use this mesh as a reference
solution. The reference solution is compared with 3 different meshes, having
element sizes of `y = 100.0 mm , `y = 166.6 mm and `y = 300.0 mm referred
to as respectively, mesh 1, mesh 2 and mesh 3. The absolute error in the
fracture length with respect to the reference solution for these 3 meshes is
shown for the ELP model and the X-FEM model in respectively, Figure
4.10a and Figure 4.10b. It is clear from these graphs that the error in
the X-FEM models is larger and does not converge as fast to the reference
solution as the ELP model.
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Figure 4.11: Scheme of the borehole fracture problem.

4.7.3 Fracture from a circular hole

In the final example the ELP model is used to model a propagating frac-
ture growing from a two-dimensional circular hole (Figure 4.11). It as-
sume that the confining stress σ0 = 1.25 MPa in the y-direction is the
half of the stress in the x-direction. We create two initial fractures, one
perpendicular and one parallel to the highest confining stress. The fluid
inflow Qin = 10.0 mm2/s is constant and is distributed between the two
fractures. Therefore, we assume that the fluid pressure is constant and
equal in both fractures. The pressure at the fracture inlet is applied as a
load on the circular wall to allow for deformations. The rock formation
has an intrinsic permeability of kint = 1.0e−18 m2 and a fluid viscosity of
µ = 1.0e−4 Pa · s. The fracture toughness is taken as Gc = 120.0 N/m and
the ultimate strength as τult = 1.25 Mpa. A time step of ∆t = 6.0 s is
used. The remainder of material properties are again the same as the first
example.

The initial stress concentration has been validated with Kirsch’s an-
alytical solution (Kirsch, 1898). From experimental measurements it is
known that the preferred propagation direction of a hydraulic fracture is
perpendicular to the minimum confining stress (Rahman et al., 2002). To
illustrate this we also perform the simulation with only the initial fracture
in the y-direction. The results of these two simulations can be seen Figure
4.12. In the left column it is shown that the fracture indeed turns in the
direction of minimum confining stress. In the situation of two fractures
(right column), only the fracture that is initially already perpendicular to
the minimum confining stress propagates. This is expected as it costs less
energy to grow the fracture in this direction. At the left side of the circular
hole stress is being generated due to the loading of the circular wall.
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In the next simulation we do consider the possibility of fracture nucle-
ation. We start the simulation with only the initial fracture perpendicular
to the highest confining stress (Figure 4.13a). The stress generated at both
sides of the circular hole leads to the nucleation of two new fractures (Figure
4.13b).

(a) t = 60 s

(b) t = 600 s

Figure 4.12: Contour plots effective stress for the circular hole fracture problem.
The deformed configuration is magnified 100 times. The results of the simulation
with only one fracture in the y-direction are shown in the left column. The right
column contains the results of the simulation with two fractures.



The enhanced local pressure model 77

(a) t = 12 s (b) t = 282 s

Figure 4.13: Contour plots of the effective stress for the circular hole. The
deformed configuration is magnified 100 times. In the left figure, the situation
before fracture nucleation is shown. In the right figure, the two nucleated fractures
in preferential fracture direction are shown.

4.8 Conclusion

In this chapter, the enhanced local pressure model is presented. By ex-
ploiting the partition of unity property of finite element shape functions
the method captures the discontinuous fracture. The fracture process is
modelled by means of a cohesive zone description. The local, additional,
degree of freedom for the pressure ensures that fluid flow goes exclusively in
the fracture. The steep pressure gradient that may occur locally near the
fracture surface is reconstructed based on Terzaghi’s analytical solution.

We have illustrated this effect with an example where fluid is being
injected in an opened fracture. Using an X-FEM model with a continuous
pressure approach the pressure gradient can not be resolved at low time
scales. The pressure in the fracture calculated with the ELP model is
consistent with the analytical solution. We also have shown that at higher
time scales the continuous X-FEM does describe the pressure gradient near
the fracture surface. This indicates that the ELP model is better capable
to model hydraulic fracturing at early stages while at later stages a switch
to the continuous X-FEM should be considered.

In the second example we have compared the propagation of an hy-
draulic fracture under an constant fluid injection with an analytical so-
lution in the storage dominated regime. The trend of the ELP model is
comparable to the analytical solution. We attribute this due to the fact
that the analytical solution is based on different assumptions such as linear
elastic fracture mechanics and that poro-elastic effect in the rock formation
are neglected. We also have demonstrated with a mesh refinement study
that ELP model converges the reference solution faster than the X-FEM
model.
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In the last example we have considered fracture propagation from a cir-
cular hole that can deform depending on the pressure in fracture. Here we
have shown that the fracture can grow in arbitrary propagation angles. The
fracture propagates in the direction parallel to the highest confining stress.
This behaviour is energetically favourable and is also in agreement with ex-
perimental data. In this example we have also included fracture nucleation.
As expected the fractures nucleates in the plane of lowest confining stress.

Based on our results we conclude that the ELP model has significant
advantages compared to the continuous X-FEM model in hydraulic fractur-
ing of low permeable rock formations such as shales. Fluid can be injected
exclusively in the fractures and it is not necessary to have a dense mesh to
resolve the pressure gradient near the fracture.

Natural fracture networks exist in reservoirs and may interact with hy-
draulic fractures. The natural fracture may open upon the encounter with
a hydraulic fracture providing a connected network to the well (Gale et al.,
2007). Determining whether or not natural fractures open is important
to optimize the fracture treatment. In the following chapter the enhanced
local pressure model is improved to also include fracture interaction. With
this model interaction behaviour between a hydraulic fracture and an ex-
isting fracture network can be studied.



5
Simulation of crack interaction

Abstract
In this chapter, the Enhanced Local Pressure (ELP) model is used to study
crack interaction in hydraulic fracturing. The method is based on the
eXtended Finite Element Method (X-FEM) where the pressure and the
displacement fields are assumed to be discontinuous over the fracture ex-
ploiting the partition of unity property of finite element shape functions.
The material is fully saturated and Darcy’s law describes the fluid flow
in the material. The fracture process is described by a cohesive traction-
separation law, whereas the pressure in the fracture is included by an addi-
tional degree of freedom. Interaction of a hydraulic fracture with a natural
fracture is considered by assuming multiple discontinuities in the domain.
The model is able to capture several processes, such as fracture arrest on
the natural fracture, or hydraulic fractures that cross the natural fracture.
Fluid is able to flow from the hydraulic fracture into the natural fracture
is taken into account as well. Two numerical criteria are implemented to
determine whether or not the fracture is crossing or if fluid diversion oc-
curs. Computational results showing the performance of the model and
the effectiveness of the two criteria are presented. The influence of the an-
gle between a hydraulic fracture and a natural fracture on the interaction
behaviour is compared with experimental results and theoretical data.

Reproduced from: E.W. Remij, J.J.C. Remmers, J.M. Huyghe and D.M.J. Smeulders. On the numerical simu-
lation of crack interaction in hydraulic fracturing. Computational Geosciences, submitted, 2017.
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The Enhanced Local Pressure (ELP) model was introduced in Chapter 4
for the simulation of hydraulic fracturing. The model is consistent with an
analytical solution and fracture path dependency on the in situ stress con-
ditions was observed. The simulations were limited to one or two hydraulic
fractures and no fracture interaction was considered. However, interaction
of a hydraulic fracture with a pre-existing fracture network is an import
aspect in correctly predicting a hydraulic fracture network. Tectonic stress
rotations tilt the natural fracture network at the time of the fracture for-
mation which may result in tilt fractures that are not aligned with the
maximum horizontal stress. Natural fractures may therefore intersect with
hydraulic fractures, altering the propagation path leading to complex frac-
ture geometries (Maxwell et al., 2002).

Lee et al. (2015) demonstrated experimentally the influence of calcite
filled natural fractures on the propagation path of a mechanically induced
fracture in shale rocks. Blanton (1982) showed by means of experiments
that an induced hydraulic fracture may either cross a natural fracture, ar-
rest onto the fracture, divert into the natural fracture or cross the natural
fracture. These different hydraulic pathways interacting with a natural
fracture are shown in Figure 5.1. The experiments show that the incli-
nation angle between the natural fracture and the hydraulic fracture in
relation to the in situ stress differences is important in determining which
of the phenomena occurs. Zhou et al. (2008) performed similar experiments
and investigated and demonstrated the influence the friction in the natural
fracture.

In a theoretical study, Renshaw and Pollard (1995) studied a propa-
gating fracture across an orthogonal interface and derived an analytical
criterion, which was validated by experiments. The criterion is based on
Linear Elastic Fracture Mechanics (LEFM) under the assumption that no
slip occurs along the interface before the two fractures merge. The possi-
bility of the fracture to divert into the natural fracture is not considered
in this study. The criterion has been validated and extended by means of
experiments for non-orthogonal angles by Gu et al. (2012) by solving the
criterion numerically.

Another mechanism that causes crack tip branching occurs when the
fracture propagation speed exceeds the Rayleigh wave speed of the material
Freund (1998); Xu and Needleman (1994). Valko and Economides (1995)
showed that hydraulic fractures propagate more slowly than the Rayleigh
wave speed criterion. Therefore, branching of a single hydraulic fracture
does not appear and does not have to be considered.

The eXtended Finite Element Method (X-FEM) is a proven concept
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HF approaching NF diversion

crossing NF remains closed

diversion after crossing

arrest/slip

Figure 5.1: Possible pathways due to a hydraulic fracture (HF) interacting with
a natural fracture (NF).

in numerical modelling of crack propagation and has the advantage that
there is no need to remesh the domain (Belytschko and Black, 1999), i.e.
the topology of the original mesh does not need to be modified as the crack
evolves. By exploiting the partition of unity property of finite element shape
functions, a crack is represented as a discontinuity in the displacement field
(Melenk and Babuška, 1996). The discontinuity can simply be placed in
arbitrary locations in the finite element mesh by adding additional degrees
of freedom to existing nodes (Moës et al., 1999). Daux et al. (2000) showed
that multiple discontinuities can be included in a similar manner by stacking
up one additional set of degrees of freedom per discontinuity.

Dahi-Taleghani and Olson (2011) developed an X-FEM based model for
the interaction between hydraulic and natural fractures. The influence of
a diverted hydraulic fracture was compared to the fracture wing that did
not interact. Khoei et al. (2016) used a similar approach but included fric-
tional contact based on plasticity theory of friction using a penalty method.
Similar to Dahi-Taleghani and Olson (2011), fracture crossing was not con-
sidered yet in their work. In addition, these X-FEMmodels did not consider
the porosity of the bulk material. Nevertheless, the method was applied
successfully for fracturing in porous materials, see e.g. (de Borst et al.,
2006; Mohammadnejad and Khoei, 2012), also in combination with a sin-
gle hydraulic fracture (Mohammadnejad and Khoei, 2013). Other methods
that considered hydraulic fracturing in porous media are e.g. based on in-
terface elements with a cohesive zone Carrier and Granet (2012), remeshing
techniques (Secchi and Schrefler, 2012) and phase field approaches (Mikelić
et al., 2015).
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The ELP model, described in Chapter 4, was specifically developed for
hydraulic fracturing in very low permeable rocks. The pressure is assumed
to be discontinuous over the fracture to prevent the necessity to resolve
the very steep pressure gradient near the fracture surface. By including an
additional degree of freedom to account for the pressure in the fracture it
is ensured that all the injected fluid goes into the fracture. Fluid leakage
is included by an analytical solution based on Terzaghi’s 1D consolidation
equation.

In this chapter we extend the ELP model to account for multiple, inter-
acting fractures. These fractures are included by adding a set of additional
degrees of freedom for each fracture. Upon interaction of a hydraulic frac-
ture with a natural fracture, the hydraulic fracture can either cross the
natural fracture or fluid can divert into the natural fracture. The former
is based on an average stress criterion and the latter on the opening dis-
placement of the natural fracture. Both can happen simultaneously and
are based on the numerical results so no additional theoretical criterion is
needed. Compared to previously mentioned methods we include fracture
crossing and fluid diversion simultaneously. The advantage of X-FEM,
i.e. fracture growth irrespective of the underlying finite element mesh, is
exploited with the ELP model. With the proposed model it is possible
to predict the interaction mechanics between a hydraulic fracture and a
natural fracture network in a poro-elastic material. We demonstrate the
performance of the model by investigating four numerical examples.

5.1 Model background

5.1.1 Kinematic relations

The kinematic relations as described in Section 4.1 are followed in this
section. Consider the body Ω, which contains m discontinuities, see Figure
5.2a. Each discontinuity Γi separates the domain in a two parts, Ω+

i and
Ω−i . We can write the total displacement field at any time t, following
the traditional X-FEM approach (Belytschko and Black, 1999; Moës et al.,
1999; Remmers et al., 2008), as a continuous displacement field û(x, t) and
m additional displacement fields ũi(x, t). The total displacement field can
be written as (Daux et al., 2000)

u(x, t) = û(x, t) +
m∑
i=1
HΓdi

(x)ũi(x, t), (5.1)

where x is the position of a material point and HΓdi
is the Heaviside step
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Figure 5.2: (a) Schematic representation of body Ω crossed by two discontinu-
ities (dashed lines). The discontinuities, represented by a normal vector, divide
the body in a positive and a negative part. (b) Schematic representation of a
discontinuity including the local coordinate system.

function defined across discontinuity i as

HΓdi
=
{

1 if x ∈ Ω+
i

0 if x ∈ Ω−i .
(5.2)

The pressure field is decomposed in a similar fashion in a continuous field
p̂(x, t) and m discontinuous pressure fields p̃i(x, t)

p(x, t) = p̂(x, t) +
m∑
i=1
HΓdi

(x)p̃i(x, t). (5.3)

At the discontinuity, inside the crack, the pressure is equal to an indepen-
dent variable pd (Figure 5.2b).

pd = p x ∈ Γd. (5.4)

The displacement jump across discontinuity i is written as

[u]i = [u]+i − [u]−i =
m∑
j=1

[
HΓdj

(x+
i )−HΓdj

(x−i )
]

ũj(xi, t), (5.5)
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Figure 5.3: Representation of the opening of body Ω due to two discontinuities.
The colours indicate the positive and negative domains used in the definition of
the Heaviside function, Eq. (5.2). The points x+

i and x−
i indicate the locations at

the positive and negative side of discontinuity i , respectively.

where the notations + and − are used for the same location but located
compared to the positive and the negative side of discontinuity, respectively,
see Figure 5.3. This can be rewritten as

[u]i = ũi(xi, t) +
m∑

j=1,j 6=i

[
HΓdj

(x+
i )−HΓdj

(x−i )
]

ũj(xi, t). (5.6)

The first term in this equation is the jump caused by discontinuity i The
second term the jump caused by other discontinuities in the domain.

5.1.2 Weak form

The weak form for multiple discontinuities can be derived by multiplying
the balance equation in Section 4.2 with admissible test functions in the
same form as the displacement field and the pressure field as

η = η̂ +
m∑
k=1
HΓdk

η̃k ζ = ζ̂ +
m∑
k=1
HΓdk

ζ̃k. (5.7)

where η and ζ are the admissible displacement and pressure fields, respec-
tively.

Multiplying the momentum balance with test function η, including
boundary conditions and using Gauss’s theorem, gives the weak form of
the momentum balance:
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∫
Ω
∇η̂ : σdΩ +

m∑
k=1

∫
Ω
HΓdk

∇η̃k : σdΩ =

∫
Γt

(η̂ +
m∑
k=1

HΓdk
η̃k) · tpdΓt

−
m∑
j=1

∫
Γdj

η̂ ·
[
σ+
j n

+
j

]
dΓdj −

m∑
k=1

m∑
j=1

∫
Γdj

η̃k ·
[
HΓdk

(Γ+
dj

)σ+
j n

+
j

]
dΓdj

−
m∑
j=1

∫
Γdj

η̂ ·
[
σ−j n

−
j

]
dΓdj −

m∑
k=1

m∑
j=1

∫
Γdj

η̃k ·
[
HΓdk

(Γdj )σ
−
j n
−
j

]
dΓdj .

(5.8)

Here, we use the notations HΓdk
(Γ+
dj

) and HΓdk
(Γ−dj ) for the Heaviside

function of variational field k integrated over discontinuity j for the positive
and negative side, respectively. The traction at the interface is equal to
tj = σ+

j n
+
j = −σ−j n

−
j where we used nd

j = n+
j = −n−j . Separation of the

tractions into one part where the variational displacement η̃k is acting on
discontinuity dΓdk and into one part for the remainder of discontinuities,
i.e. j 6= k gives

∫
Ω
∇η̂ : σdΩ+

m∑
k=1

∫
Ω
HΓdk

∇η̃k : σdΩ =

∫
Γt

η̂ · tpdΓt +
m∑
k=1

∫
Γt

HΓdk
η̃k · tpdΓt −

m∑
k=1

∫
Γdk

η̃k · tkdΓdk

−
m∑
k=1

η̃k ·

(
m∑

j=1,j 6=k

∫
Γdj

[
HΓdk

(Γ+
dj

)−HΓdk
(Γ−dj )

]
tjdΓdj

)
.

(5.9)

Multiplying the mass balance with test function ζ gives

−
∫

Ω
α(ζ̂ +

m∑
k=1

HΓdk
ζ̃k)∇ · vsdΩ

+
∫

Ω
∇(ζ̂ +

m∑
k=1

HΓdk
ζ̃k) · qdΩ−

∫
Ω

1
M

(ζ̂ +
m∑
k=1

HΓdk
ζ̃k)∂p

∂t
dΩ =

(5.10)∫
Γf

(ζ̂ +
m∑
k=1

HΓdk
ζ̃k)ffdΓf.

These equation must be satisfied for all the variations of η and ζ. Sepa-
rating the balance equations in a continuous part (η̃k = 0 ∀ k = 1..m and
ζ̃k = 0 ∀ k = 1..m):
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∫
Ω

(∇η̂) : σdΩ =
∫

Γt
η̂ · tpdΓt, (5.11)

−
∫

Ω
αζ̂∇ · vsdΩ +

∫
Ω
∇ζ̂ · qdΩ−

∫
Ω

1
M
ζ̂
∂p

∂t
dΩ =

∫
Γf
ζ̂ffdΓf. (5.12)

The same can be done for the m discontinuous equations, with (η̂ = 0 and
ζ̂ = 0), gives

∫
Ω
HΓdk

∇η̃k : σdΩ =∫
Γt

HΓdk
η̃k · tpdΓt −

∫
Γdk

η̃k · tkdΓdk (5.13)

−η̃k ·

(
m∑

j=1,j 6=k

∫
Γdj

[
HΓdk

(Γ+
dj

)−HΓdk
(Γ−dj )

]
tjdΓdj

)
,

−
∫

Ω
αHΓdk

ζ̃∇ · vsdΩ +
∫

Ω
HΓdk

∇ζ̃ · qdΩ−
∫

Ω

1
M
HΓdk

ζ̃
∂p

∂t
dΩ =∫

Γf

HΓdk
ζ̃ffdΓ. (5.14)

which must hold for k = 1...m. The last balance equation is conservation of
mass for the fluid flow in the discontinuity. In a weak form this is written
as

m∑
j=1

∫
Γdj

ψq+
Γd
· nd

jdΓdj −
m∑
j=1

∫
Γdj

ψq−Γd
· nd

jdΓ

+
m∑
j=1

∫
Γdj

1
12µ ([u]j · nd

j )3 ∂ψ

∂s
· ∂pd
∂s

dΓdj +
m∑
j=1

∫
Γdj

ψ ˙[u]j · n
d
jdΓdj

+
m∑
j=1

∫
Γdj

ψ[u]j · nd
j 〈
∂ ˙[u]j · s

d
j

∂s
〉dΓdj +

m∑
j=1

∫
Γdj

ψ
[u]j · nd

j

Kf
ṗddΓdj =

m∑
j=1

ψQjin|Sd . (5.15)

The first two terms represents the analytical calculated fluid leakage. The
third term is the tangential fluid flow based on lubrication theory. Term
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four and five are representing the opening rate terms in normal and shear
direction, respectively, the sixth term is the compressibility of the fluid
within the fracture, and the last term is the fluid injection within the frac-
ture. The vector sdj represents the tangential vector at discontinuity surface
j. In the remainder of this chapter we neglect the fifth term representing
the volume change due to elongation of the discontinuity surface in tangen-
tial direction. We assume that this contribution is small compared to the
volume of the opening of the fracture in mode I.

5.1.3 Discretization

u, p

u, p

u, p

u, p

pd

pd

Figure 5.4: Four nodal element with crossed by a discontinuity (dashed line).

The spatial discretization of the balance equations is based on the par-
tition of unity property of finite element shape functions as described in the
work of Melenk and Babuška (1996). The displacement field, the pressure
field, the pressure in the fracture and the variational forms are discretized
similarly following the Bubnov-Galerkin approach for a single element by:

η = Nη̂ +
m∑
k=1
HΓdk

Nη̃
k
, u = Nû +

m∑
k=1
HΓdk

Nũk,

ζ = Hζ̂ +
m∑
k=1
HΓdk

Hζ̃
k
, p = Hp̂ +

m∑
k=1
HΓdk

Hp̃
k
, (5.16)

ψ = Vψ, pd = Vpd,

where N, H, and V are matrices containing the standard shape functions
for respectively, the nodal displacement, the pressure, and the pressure in
the fracture for all nodes that support the element. Note that the shape
functions for the nodal displacement and the pressure are two-dimensional
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functions while the pressure in the fracture is described in a one-dimensional
domain (Figure 5.4). The terms û and p̂ contain the degrees of freedom
of the continuous displacement and pressure fields, respectively. While ũ
and p̃ contain the values of the enhanced nodes. The term pd contains the
nodal values of the pressure in the discontinuity. The discretized strain in
the bulk can be derived by differentiation

ε = Bû +
m∑
i=1
HΓdi

Bũ, (5.17)

where B contains the spatial derivative of the standard shape functions.
Filling in the discretized form in the balance Equations (5.11)-(5.14) give
the continuous equations as

∫
Ω

BTσdΩ =
∫

Γt
NT tpdΓ,

(5.18)

−
∫

Ω
αHTmT∇u̇dΩ +

∫
Ω
∇HTqdΩ−

∫
Ω

1
M

HT ṗdΩ =
∫

Γf
HT ffdΓf,

(5.19)

and k = 1...m discontinuous equations
∫

Ω
HΓdk

BTσdΩ =∫
Γt

HΓdk
NT tpdΓt −

∫
Γdk

NT tkdΓdk (5.20)

−NT

(
m∑

j=1,j 6=k

∫
Γdj

[
HΓdk

(Γ+
dj

)−HΓdk
(Γ−dj )

]
tjdΓdj

)

−
∫

Ω
αHΓdk

HTmT∇u̇dΩ +
∫

Ω
HΓdk

∇HT · qdΩ −
∫

Ω

1
M
HΓdk

HT ∂p

∂t
dΩ =∫

Γf

HΓdk
HT ffdΓf, (5.21)

with the vector m in the two-dimensional situations being defined as m =
( 1, 1, 0 )T . Finally the discretized form of the mass balance in the
discontinuity is given as
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Connecting Tip
Crossing checkpoint
Connection path

Figure 5.5: Situation when two discontinuities are in the vicinity of each other.
The connecting tip is stopped from propagating after connecting. The average
stress in the crossing checkpoint determines if the discontinuity crosses.

m∑
j=1

∫
Γdj

VT
(
q+

Γd
+ q−Γd

)
· nd

jdΓdj +
m∑
j=1

∫
Γdj

VT [u]j · nd
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These final equations can be linearized in a standard way and solved using
a Newton-Raphson iterative method. More details about the constitutive
equations, linearization and time integration can be found in Section 4.5.

5.1.4 Numerical implementation

Each discontinuity is able to propagate. The position and the direction of
propagation are governed by two unique level sets (Stolarska et al., 2001).
The propagation is based on on the Camacho-Ortiz average stress criterion
(Camacho and Ortiz, 1996). Depending on a length scale parameter la
an average stress is calculated by a Gaussian weighting function (see also
Section 2.3). A discontinuity is assumed to propagate in a straight line
through an element and always ends on the element boundary at another
discontinuity. The discontinuity can propagate through multiple elements
within one single time step. Upon the interaction of two discontinuities
there are two requirements on the numerical implementation i.e. i) two
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Double enriched node

Cut off region

Figure 5.6: A finite element mesh containing two discontinuities. Integration
points lying in the cut off region have a Heaviside value of zero for the green
discontinuity. Nodes with a double enrichment, due to the two discontinuities, are
shown in green.

discontinuities must be connected once a tip is in the vicinity of another
discontinuity and ii) the connecting tip must be stopped from further prop-
agating. We determine the event of connecting the two discontinuities by
counting the number of elements between a tip and the nearest disconti-
nuity. The number of elements is an input parameter of the simulation in
which zero means that two discontinuities connect when the tip propagates
into an element that already contains a discontinuity. This is often an un-
desirable situation since a small distance between a tip and a discontinuity
may lead to numerical instabilities. In our simulations we therefore chose
to connect two discontinuities if there is one element in between (Figure
5.5).

An additional crossing checkpoint is added at the opposite side of the
interacting discontinuity. An average stress is calculated in the checkpoint
and is used to determine whether the discontinuity crosses the existing
crack (Figure 5.5). Note that the stress is only averaged at the side of
the checkpoint. A new discontinuity nucleates, and thus crosses, when the
average stress violates the same criterion as was used for the determination
of crack propagation. The new discontinuity is given an initial length of
three elements to prevent instantaneous interaction with the neighbouring
discontinuity.

In the case of interacting fractures, the Heaviside enrichment given in
Eq. (5.2) is no longer valid when there are two or more enrichments present
in one element (Daux et al., 2000). The common way to solve this problem
is by introducing a special junction enrichment function present in the
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ELP degree of freedom pd
Integration point with diversion criterion

Figure 5.7: Schematic representation of a hydraulic fracture interacting with
a natural fracture. From left to right, the hydraulic fracture interacts with the
natural fracture and the ELP degree of freedom pd is added to the interacting
elements. The diversion criterion is evaluated in the integration points. In the
right image the criterion is violated in the right element. Therefore the ELP
degree of freedom is extended to the right.

multiple enriched elements. This would lead to additional terms in the
kinematic relations in Eq. (5.1),(5.3) and (5.6). To avoid this we implement
a modified Heaviside enrichment by evaluating whether an integration point
belonging to multiple discontinuities is cut-off by one of the discontinuities
(Figure 5.6). Integration points that lie in the shaded purple region do
not have a contribution to the displacement field of green discontinuity. In
these integration points the values for the Heaviside of this discontinuity
are therefore set to zero. Hence, the kinematic relations do not have to be
modified.

In the model we distinguish between two types of discontinuities. Dis-
continuities that possess the ELP degree of freedom are hydraulic fractures.
The second type are discontinuities that do not possess this degree of free-
dom and can therefore be considered as a closed natural fracture. When
two hydraulic fractures interact the mass balance in Eq. (5.22) is com-
bined. The possibility of fluid diversion occurs when a hydraulic fracture
interacts with a natural fracture. The ELP degree of freedom pd is added
to the interacting element but not in the remainder of the natural fracture
(Figure 5.7). Fluid can divert into the natural fractures if a diversion cri-
terion is violated. We propose that the criterion is violated if the opening
displacement in all integration points in an element is positive, as shown in
Figure 5.7.

5.1.5 Constitutive law at the fracture and the interface

The constitutive mechanical behaviour at a fracture is described by a rela-
tionship between the traction at the interface and the displacement jump
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ud across the fracture (Irzal et al., 2013):

td = td(ud, κ). (5.23)

where κ is a history parameter that is equal to the largest displacement
jump reached. It is necessary to perform a linearisation on Eq.(5.23) in
order to use the tangential stiffness matrix in an incremental iterative so-
lution:

∆td = T∆ud. (5.24)

The relation between the traction td and the displacement jump ud can be
any traction-separation relation and is referred to as the cohesive law. We
assume that hydraulic fractures open in mode-I due to the internal pres-
surization. The shear tractions are therefore neglected and an exponential
cohesive law is used that is only a function of the normal opening un (Wells
and Sluys, 2001)

tn = τult exp
(
−unτult
Gc

)
. (5.25)

Here is τult the ultimate strength of the material and Gc the fracture tough-
ness.

In contact we assume a penalty constraint in both normal and shear
direction. The linear relation between the traction and the opening dis-
placement is defined by a stiffness parameter Dn and Ds for the normal
and shear direction, respectively. In contact this gives the following penalty
relations

tn = −Dnun if un < 0 (5.26)
ts = Dsus if un < 0 (5.27)

In the remainder of this study natural fractures are described by these
contact relations. We do not consider additional cohesion in the natural
fractures due to filling materials. However, the framework allows this to be
added later.

5.2 Results

The performance of the model is demonstrated in four examples. Pore
pressure is not considered in the first three examples in order to focus on
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Figure 5.8: Scheme of a hydraulic fracture, indicated with the solid line, propa-
gating from a circular hole into the direction of a natural fracture.

(a) with the crossing criterion (b) without crossing criterion

Figure 5.9: Contour plots of the pressure in the fracture after 300 seconds of fluid
injection. The deformed mesh is magnified 10 times. The black line in Figure (a)
indicates the location of the closed natural fracture. Note that the hydraulic
fracture with crossing propagated further than shown in the image.

the interaction behaviour and the performance of the crossing and diver-
sion criterion. In the first example we illustrate the performance of the
criterion and we investigate the influence of the shear stiffness parameter
in the second example. The third example consists of a comparison with an
experiment and a theoretical crossing criterion. In the fourth example we
do include pore pressure and show a propagating hydraulic fracture coming
in contact with a small fracture network.

5.2.1 Performance of the crossing and diversion criterion

To illustrate the performance of the crossing and diversion criterion we
consider a hydraulic fracture growing perpendicular into a natural fracture
(Figure 5.8). The hydraulic fracture is propagating from a circular hole
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Figure 5.10: Injection pressure over time shown for the simulations with and
without the fracture crossing criterion. The fluid is forced to divert into the natural
fracture leading to higher injection pressures.

with a radius of 7 mm. The squared specimen has a width and height of
300 mm, Young’s modulus of 30 GPa and a Poisson’s ration of 0.25. The
in situ stresses are σv = −20 MPa and σh = −12 MPa. The hydraulic
fracture is characterized by τult = 5 MPa and a fracture toughness Gc =
0.01125 Pa m. The behaviour of the natural fracture is described by the
penalty relation with stiffness parameters Dn = 103 Mpa and Ds = 5 ·
103 Mpa. Fluid is injected in the natural fracture with constant inflow rate
of Qin = 0.0075 mm2/s and the fluid has a dynamic viscosity of 0.001 Pa s.
An implicit time stepping scheme is used with a time step of one second.

We demonstrate the effect of the crossing and diversion implementation
by comparing two simulations. In the first simulation we include both
criteria. In the second, we prohibit crossing and fracture growth after the
hydraulic fracture merged with the natural fracture. Thus, the only path
for fluid to distribute is to divert into the natural fracture. In Figure 5.9
the deformed mesh after 300 seconds of fluid injection is shown with the
pressure in the fracture as contour. It is evident that with the crossing
criterion the fracture propagated through the natural fracture as expected
(Fig. 5.9a). Without the crossing criterion the fluid diverted into the
natural fracture (Fig. 5.9b). The pressure in the fracture with crossing
included is lower than the pressure when the fluid is forced to go into
the natural fracture. This is a consequence of the natural fracture being
perpendicular to σv.

Injection pressure over time shows similar behaviour, as shown in Figure
5.10. In the case without the crossing mechanism, this leads to improbable
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magnitudes of injection pressure since fracture crossing would be energeti-
cally more favourable. The first drop in pressure (after ± 90 seconds) in the
case without crossing is caused by fluid diverting mainly in the left wing
of the natural fracture. Once the left wing is filled with fluid the pressure
has to slightly build up again, after which the right wing is also completely
filled with fluid (after ± 180 seconds). The preference of which wing will
fill first is in this case a numerical artefact. Even though the problem is
symmetric, the FE mesh is unstructured. As a result, one of the two sides
opens first.

5.2.2 Influence of the shear stiffness

The magnitude of the shear stiffness is one of the key parameters in trans-
ferring stress from the hydraulic fracture across the natural fracture which
can lead to fracture crossing. The magnitude of stress that is transferred
is finite when described by the Coulomb friction law. We use a simplified
penalty stiffness law to describe the friction, as explained in Section 5.1.5.
The penalty law leads to an infinite friction which increases linearly with
the shear displacement according to stiffness parameterDs. In this example
we show the effect of this shear stiffness on the fracture propagation. We
consider the same specimen and material properties as in Example 5.2.1.
The only parameters that are varied are stiffness values of the natural frac-
ture. Also the natural fracture is placed further away from the hydraulic
fracture at distance of five centimetre in y-direction measured from the
centre of the circle.

To determine the effect of the shear stress transfer the shear stiffness
is varied between 0.0 GPa and 20.0 GPa. A penalty stiffness of 10.0 GPa
is used. The length of the hydraulic fracture, including the cohesive zone,
is plotted against the time in Figure 5.11a. We observe almost identical
fracture growth during the first stage of hydraulic fracturing. The natural
fracture is too far away to influence the propagation. In the vicinity of the
natural fracture, approximately 10.0 mm, there is a minor influence (Figure
5.11b). There is some strength loss due to the imperfect natural fracture,
leading to accelerated fracture propagation with lower shear stiffness.

There are two possibilities for the fracture to grow further after the
merging with the natural fracture. The fluid can divert into the natural
fracture and eventually grow the natural fracture or the hydraulic fracture
must cross the natural fracture. We did not observe fluid diverting into
the natural fracture. Fluid diversion is unfavourable since the maximum
confining stress must be overcome to open the natural fracture. In Figure
5.11c it is shown that after merging, the pressure is building up in the
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by fracture crossing.

Figure 5.11: Various numerical results for different stiffness parameter Ds. The
influence of the stiffness parameter is demonstrated and crossing is observed at an
earlier time requiring less injection pressure.

hydraulic fracture. This leads to stress transfer across the natural fracture
and eventually to fracture nucleation. The speed of stress transfer depends
on the magnitude of the shear stiffness (Figure 5.11d). Only with zero shear
stiffness we did not observe fracture crossing.

5.2.3 Influence of the interaction angle and the in situ stress

It is know that the ratio between in situ stresses and the angle between a
hydraulic fracture and a natural fracture are important to predict whether
the hydraulic fracture crosses, diverts or arrests on the natural fracture.
This relation is shown in experimental results (Blanton, 1982; Zhou et al.,
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Figure 5.12: Scheme for the interaction example. Fluid is injected in the centre
of the hydraulic fracture. The centre of the natural fracture is, independent of the
interaction angle, located 45 mm above the hydraulic fracture.

2008) and is described with a crossing criterion by Gu et al. (2012). In this
example we compare our numerical results with the crossing criterion. We
vary the in situ stress by varying σh while keeping σv equal to -20 MPa.
The orientation of the natural fracture is also varied between θi = 90◦ and
θi = 15◦ (see Figure 5.12). The remainder of the material properties are
identical to those used in example 5.2.1.

To interpret the results we distinguish between 4 different length mea-
surements, i.e. the length of the hydraulic fracture, the length the natural
fracture, the part of the hydraulic fracture that has crossed the natural
fracture, and the part of the natural fracture that is filled with fluid. These
results are shown for each interaction angle measured in Figure 5.14. It can
be seen that high interaction angles show mainly crossing of the hydraulic
fracture. In some cases the length of the crossed hydraulic fracture (shown
in the blue bar) is small. We attribute this to the loss of friction due to
the crossed fracture, which leads to relaxation of strain tangential to the
natural fracture. Since a penalty friction law is used there is a lower stress
transfer across the natural fracture. The bottom part of the hydraulic frac-
ture then becomes the favourable growth direction.The results of the low
interaction angles show diversion of fluid in the natural fracture. Only the
right wing of the natural fracture, which is not feeling pressure exerted by
the hydraulic fracture, is filled with fluid (Figure 5.13). In none of our
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Figure 5.13: Contour plot for fracture diversion with ∆σ = 6 MPa and θi = 30◦.

results the natural fracture propagated. The bottom part of the hydraulic
fracture propagates as soon as the right wing is filled with fluid. Interaction
angles varying between θi = 50◦ and θi = 60◦ show crack arrest.

In Figure 5.15 we have extracted from Figure 5.14 whether fracture
crossing, arrest or diversion occurred for the various interaction angles and
stress differences simulated. Apart from one outlier we see a trend from
fracture crossing to arrest and finally diversion with decreasing interaction
angle. This tendency is also observed in the experiments. The influence of
the stress difference is less pronounced. This is attributed to the friction
law which does not possess the same properties as a Coulomb friction,
which would better represent friction in rocks. There is no explicit relation
between the magnitude of the friction and the normal stress to the natural
fracture in our penalty friction law.

The tendency of crossing or diversion for various friction coefficients
based on the crossing criterion from Gu et al. (2012) is also shown in Figure
5.15. The region right to the curve represents crossing. The left region
indicated diversion except close to the line, where crack arrest is expected.
The criterion does not distinguish between diversion or arrest. Our results
are in the proximity of µ = 2.0 and µ = 1.5. Rocks typically do not
possess such a high friction coefficient (Gu et al., 2012). It is likely that
we overestimate the magnitude of the friction due to our penalty friction
law. However, the trend from diversion to crack arrest and finally crossing
as the interaction increases is visible in our numerical results.
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Figure 5.14: Overview of the different simulation results. The height of the bars
indicate the length of respectively the hydraulic fracture, the natural fracture, the
crossed fracture and the length of the natural fracture filled with diverted fluid.
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Figure 5.15: The numerical results whether fluid diversion, crack arrest or frac-
ture crossing occurs due to varying interaction angles and stress differences are
shown with the point markers. The crossing criterion from Gu et al. (2012) for
various friction coefficients is shown with the lines. The region right of a line
indicates crossing.
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Figure 5.16: Scheme for the interaction with a small fracture network.
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5.2.4 Interaction with a fracture network

In this final example we consider a hydraulic fracture propagating towards
a small network consisting of three natural fractures that are in contact
(Figure 5.16). The two larger natural fractures have a length of 40 mm
and make an angle of 30◦ with the x-axis. The smaller natural fracture
is perpendicular to both of the larger fractures. The specimen is now
considered to be a low permeable rock with an intrinsic permeability of
kint = 10−21 m2. The solid grains have a compressibility of Ks = 30 GPa
and the fluid compressibility is taken as Kf = 3.6 GPa. The remainder of
the material properties and boundary conditions are identical to those used
in example 5.2.1. The initial pore pressure is set as zero.

(a) t = 3 s (b) t = 8 s

(c) t = 10 s (d) t = 20 s

Figure 5.17: Contour plot of the pore pressure in the bulk at four different time
instances. The solid black lines indicate the locations of the natural fractures. The
deformed mesh is magnified 50 times.

The contour plot of the pore pressure in the bulk for four different
time steps is shown in Figure 5.17. In Figure 5.17a the hydraulic fracture
propagated and a low pressure in front of the cohesive zone can be seen.
This is a result of tension due the pressurization of the hydraulic fracture
and leads to fluid being attracted towards the region under tension. After 8
seconds of fluid injection the hydraulic fracture crossed the bottom natural
fracture (Figure 5.17b). The angle between the middle natural fracture and
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Figure 5.18: Injection pressure for various times in the simulation of a hydraulic
fracture interacting with a natural fracture network.

the direction of σv is such that crossing is not likely to occur. This is also
observed in Figure 5.17c. Fluid diverted from the hydraulic fracture into
the natural fracture network. Fluid diversion stops when the fluid front
reaches the top natural fracture. Tension is being generated at the top
surface due to the friction law. This can also be seen at the low pressure
in Figure 5.17c. Finally a new cohesive zone nucleates and the hydraulic
fracture propagates away from the natural fracture network (Figure 5.17d).

A discontinuous injection pressure development over time is shown in
Figure 5.18. On the one hand this is caused by numerical aspects such
as the size of the time step and mesh resolution. On the other hand, the
pressure decrease at 8 seconds and at 18 seconds is caused by the fracture
propagating away from the natural fractures and after 10 seconds a decrease
is observed due to fluid having the possibility to divert into the middle
natural fracture.

5.3 Conclusions

In this chapter the ELP model is used to investigate the interaction of
multiple cracks in hydraulic fracturing. There is no limit to the amount
of fractures. Interaction and propagation can take place in arbitrary lo-
cations and directions. The criterion whether or not a fracture crosses a
natural fracture is determined by an average stress criterion. Fluid is also
given the possibility to divert into a natural fracture based on a criterion
that examines whether the natural fracture opens. These two criteria are
checked simultaneously and the competition between them determines the
interaction behaviour. The fracture process is modelled by a cohesive zone
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model. With the ELP model the injected fluid flow goes exclusively into
the fracture and steep pressure gradients near the fracture surface are re-
constructed based on Terzaghi’s consolidation solution.

Four examples are presented to illustrate the implementation of the
criteria and to show the performance of the numerical model. The first
example was chosen to show the effect of the crossing and diversion imple-
mentation. A hydraulic fracture propagated perpendicular onto the natural
fracture with the in situ stress taken such that crossing of the natural frac-
ture is preferred. As expected the hydraulic fracture indeed crosses the
natural fracture. The simulation was repeated but now the crossing cri-
terion is not included in the model. This leads to fluid diversion into the
natural fracture and has as a consequence that the required injection pres-
sure in much higher. In the second example the effect of the implemented
friction law is shown. The penalty friction leads to an imperfect natural
fracture. With a higher stiffness the interaction took place earlier and also
the fracture crosses the natural fracture at an earlier time requiring less
injection pressure. The behaviour observed in these two examples is con-
sistent with what would be expected from the chosen geometry and the
boundary conditions. The influence of the interaction angle and the in situ
stress conditions is studied in the third example. These results are com-
pared with experimental data and with a theoretical crossing criterion. A
trend from fracture crossing to arrest and fluid diversion is observed with a
decreasing interaction angle. This is in line with the experiments and the
theoretical criterion. In the last example poro-elasticity is included and a
hydraulic fracture interacting with a small natural fracture network is stud-
ied. Due to tension a low pore pressure is observed in front of the cohesive
zone. Fracture crossing and fluid diversion are both shown depending which
natural fracture was interacting with the hydraulic fracture.

The proposed model is suitable to simulate complex hydraulic fracture
patterns in fully saturated porous media. The simplified friction law leads
to some discrepancy but the global fracture behaviour satisfies expectations
and experimental results. Slip behaviour is not considered but could be
included by replacing the friction law.

The domains of the specimens used in the simulations within this chap-
ter are based on an experiment and therefore have a small size. To consider
hydraulic fracture networks on a larger scale, with the element size used in
this chapter, would result in high computational costs. Parallel computing
is a technique where many calculations are performed simultaneously. In
the next chapter this technique is applied to the ELP model to simulate
larger size meshes with low computational costs.
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6
An efficient parallel X-FEM
computing method

Abstract
This chapters describes how to apply the domain decomposition ap-

proach to obtain a parallel implementation of an eXtended Finite Element
Method (X-FEM) model involving hydraulic fracturing. In particular, it
explains how to handle X-FEM-specific operations that span multiple sub-
domains, including the addition of degrees of freedom and the calculation
of enrichment functions. It shows, by means of examples, that a consistent
model can be constructed by clever data management between sub-domains
in a specific way. The resulting sequence of linear systems of equations are
solved in parallel by means of the GMRES algorithm in combination with a
two-level preconditioner. The chapter ends by describing the performance
results that have been obtained for three different models including the
enhanced local pressure model.

Reproduced from: E.W. Remij, F.J. Lingen, J.M. Huyghe, D.M.J. Smeulders and J.J.C. Remmers. An efficient
parallel X-FEM computing method. Finite Elements in Analysis and Design, submitted, 2017.
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Scientific computing and numerical modelling have provided a major con-
tribution in the fields of research and development. As problems get more
complex the computational demands increase until the point that simula-
tions become so large that their solution simply costs too much time or the
memory resources are too limited to store the model. Parallel computing,
where many computations are performed simultaneous is therefore a neces-
sity (Asanovic et al., 2009). In this chapter we investigate the possibility to
apply parallel computing power for the simulation of hydraulic fracturing
based on the Enhanced Local Pressure (ELP) model. Typical hydraulic
fracturing simulations cover various length scales. On the one hand, the
fracture pattern is a complex network of fractures that exists on a relatively
small length scale (see Chapter 5). On the other hand, a complete frac-
ture network may span multiple meters up to hundreds of meters (King,
2010). Spanning this scale using a fixed discretization technique results
in large meshes with many degrees of freedom (DOFS). Parallel comput-
ing may greatly decrease computation times and memory requirements per
computational core in these simulations.

A finite element simulation can be divided into three different stages i.e.
(1) assembly of the matrices and of the force vectors, (2) solving the system
of equations, and (3) IO operations such as reading the mesh and post-
processing results. First efforts in parallelizing the finite element method
were purely focussed on parallelization of the solver step. Direct solutions
techniques such as Gaussian elimination have been parallelized but may re-
quire large amounts of memory to solve large scale systems. Iterative meth-
ods have less severe storage requirements and can be faster when combined
with a suitable preconditioner. Moreover, they can be implemented effi-
ciently on parallel computers. An important drawback of only parallelizing
the solver is that the efficiency is limited to the relative time needed for the
solver step. If the solver step covers 80 % of the entire analysis time, the
simulations can only be reduced by a factor 5, since the remaining 20 % is
not parallelized (Graham et al., 2005; Heroux et al., 2006).

Domain decomposition (DD) methods refer to a collections of tech-
niques based on the principle of divide and conquer (Smith et al., 2004).
The method originated with the purpose to solve partial differential equa-
tions over regions in two or three dimensions. The domain decomposition
method attempts to solve a problem in an entire domain by using solutions
obtained in sub-domains. The motivation to apply this method in parallel
computing, occurs when the entire global domain is too large to fit in the
available memory of a single computing core. Partitioning in sub-domains
that fit into the memory is a solution to this problem (Saad, 2003). The
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structure of domain decomposition aligns very naturally with the concept
of parallel computing since each sub-domain can be processed by one com-
puter core leading to minimal communication between the sub-domains. In
this chapter we seek to effectively apply iterative solvers combined with the
DD method to the eXtended Finite Element Method (X-FEM).

The enhanced local pressure model for the simulation of hydraulic frac-
turing was introduced in Chapter 4. The ELP model applies the concept of
the extended finite element method to simulate fracture propagation. The
X-FEM is an advanced numerical technique to model boundaries, such as
inclusions, propagating cracks and holes, irrespectively of the underlying
mesh. The method is based on the partition of unity property of finite ele-
ment shape functions (Melenk and Babuška, 1996). Belytschko and Black
were the first to exploit this property to model crack growth (Belytschko
and Black, 1999). The method was improved by Dolbow et al. (2000) and
Moës et al. (1999) by using two enrichment functions for the discontinu-
ous crack and for the singular tip, respectively. Wells and Sluys (2001)
incorporated a cohesive process zone within the extended finite element
framework. Branched and merged cracks were included by Daux et al.
(2000) by superimposing multiple enrichment functions. The X-FEM has
many successful modelling applications see e.g. for, inclusions (Sukumar
et al., 2001), hydraulic fracturing (Lecampion, 2009; Mohammadnejad and
Khoei, 2013), porous media (de Borst et al., 2006; Kraaijeveld et al., 2013),
large deformations (Legrain et al., 2005) and 3D cracks (Sukumar et al.,
2000).

The X-FEM is an elegant tool to model cracks but solving the system of
equations can be complex. Conditioning of the matrix can become problem-
atic if elements are cut into a large area and a small area (Loehnert, 2014).
To use iterative solution methods robust preconditioners are necessary to
obtain solutions within an acceptable time frame. Obtaining such precon-
ditioners is challenging. Rannou et al. (2007) investigated the efficiency of
the multigrid method applied to an X-FEM problem. Multigrid methods
make use of the fact that iterative solvers are efficient in solving the high
frequency part of a solution but less to calculate the low frequency part.
By considering grids with different spatial dimensions an iterative solver
can be used much more effectively (Saad, 2003). The multigrid method
was applied by Rannou et al. in localized regions of cracks to achieve fast
and accurate convergence.

Berger-Vergiat et al. (2012) pursued a different approach using the alge-
braic multigrid method (AMG). AMG is a more general multigrid method
that does not rely on geometrical information but just constructs coarse
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grids directly from the system matrix. Berger-Veriat et al. applied the
domain decomposition approach to split the the mesh in such a way that
fractures are isolated in separate domains. The algebraic multigrid method
could then be a applied to approximate a solution on the large non-fractured
domain while not being influenced by the discretization of the fracture. The
fractured domains were solved concurrently on direct solvers followed by
a complete solve in a GMRES solver. The possibility to include multiple
propagating fractures is described in Waisman and Berger-Vergiat (2013).
Related to this approach, Gerstenberger and Tuminaro (2012) transformed
the X-FEM formulation into a phantom node description and applied AMG
directly to this system.

The aforementioned publications involving X-FEM have in common
that they seek to obtain optimal convergence rates with iterative solvers.
Good results were presented but none of them truly addresses the implica-
tions of using multiple, concurrent processors. This work, in contrast, does
not exclusively focus on the positive effect of a preconditioner on the conver-
gence rate, but aims to improve computation times and decrease memory
requirements by using parallel processors. We investigate the possibility
to use the DD approach in combination with X-FEM and also apply it to
our ELP model. Vigueras et al. (2015) used a similar approach to investi-
gate composite fractures using cohesive zones in combination with X-FEM.
They discuss mainly the X-FEM and cohesive zone implementation while
the implementation on the parallel processors is only discussed briefly. By
using a shifted Heaviside enrichment in their work, there is no necessity to
inform neighbouring elements about the enrichment (Fries, 2008). Crack
propagation is governed by a principal stress criterion where the element
stress is extrapolated to the nodes. If nodes are shared by more than one
sub-process this data is exchanged. However, more information must be
exchanged between sub-domains if e.g. the shifted enrichment is not used
or if the fracture propagation is based on an average stress or on stress
intensity factors that involve a region around a fracture tip.

6.1 Model background

In this section the background of the model is discussed. The concept the
extended finite element method is first explained followed by a description
of the used solver and preconditioner. In the remainder of the section the
domain decomposition method is introduced and consequences of including
X-FEM within the DD framework are discussed.
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6.1.1 A review of the extended finite element method
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Figure 6.1: (a) Schematic representation of body Ω crossed by two discontinu-
ities (dashed lines). The discontinuities, represented by a normal vector, divide
the body in a positive and a negative part. (b) Schematic representation of a
discontinuity including the local coordinate system.

The general framework of the kinematic relations for the hydraulic frac-
turing model is explained in Section 4.1. Suppose that a body Ω is crossed
by m discontinuities (Figure 6.1a). At any time t and at location x, an
arbitrary displacement field in body Ω can be computed as the the sum
of a continuous displacement field û(x, t) and m additional displacement
fields ũi(x, t) as in (Belytschko and Black, 1999; Moës et al., 1999; Remmers
et al., 2008)

u(x, t) = û(x, t) +
m∑
i=1
HΓdi

(x)ũi(x, t), (6.1)

where HΓdi
is the Heaviside function that gives rise to a discontinuous

displacement field due to discontinuity Γi given by

HΓdi
=
{

1 if x ∈ Ω+
i

0 if x ∈ Ω−i
(6.2)

The pressure in the discontinuity is defined by an independent variable pd
(Figure 6.1b(Section 4.1))

pd = p x ∈ Γd. (6.3)
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The spatial discretization of the kinematic relations is based on the
partition of unity property of finite element shape functions as described
in the work of Melenk and Babuška (1996). The variational forms, the
displacement field and the pressure in the fracture are discretized similarly
following the Bubnov-Galerkin approach as

u = Nû +
m∑
i=1
HΓdi

Nũi (6.4)

and

pd = Vpd (6.5)

where N and V are the matrices containing the standard shape functions for
the nodal displacements and the pressure in the discontinuity, respectively.
The term û contains the continuous nodal values of the displacement fields
and the term ũ contains the displacement field associated with the enhanced
nodes. The enhanced displacement is only present in nodes bordering a
discontinuity and is given by pd (Figure 6.2). In this chapter poro-elasticity
in the bulk is not considered. Details about the constitutive relations and
the derivation of the momentum and mass balance equations are given in
Sections 4.2-4.5.

Enhanced node

Regular node

Ω+
Ω−

Figure 6.2: Domain crossed by one discontinuity.
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6.1.2 Solver and preconditioner

Including the kinematic relations given in Equations (6.1) and (6.3) into
balance equations and into constitutive relations (see Section 5.1.3) , results
in a non-linear system of equations. This system is solved using a Newton-
Raphson scheme after applying linearization (see Section 4.5). Each New-
ton iteration requires the solution of a system of equations that is in the
form of

Kδa = fext − fint. (6.6)
The matrix K is the stiffness matrix, δa is a vector containing the incremen-
tal degrees of freedom (DOF) of the displacement field and of the pressure
in the discontinuity, and fext and fint are the vectors containing the external
and internal terms of the momentum and the mass balance, respectively.
K is a n × n non-singular matrix where n is equal to the total degrees
of freedom in the system. Direct solution methods for this system exist
based on the factorization of matrix K in an upper and lower triangular
matrix. However, the factorization is expensive process in computations
with many degrees of freedom (Saad, 2003). Iterative methods generate
a solution based on a sequence of approximate solutions and only involve
matrix-vector multiplications. As a result, they require less computational
power and are more straightforward to implement on parallel computers. In
this work we use a GMRES iterative solver to find the solution of Eq. (6.6).
The effectiveness of the GMRES solver can be improved by transforming
Equation (6.6) into a system that has more favourable properties for the
iterative solver. This can be achieved by finding a suitable preconditioner
M that transforms the equation in

M−1Ka = M−1f . (6.7)
In this chapter we use a two-level preconditioner consisting of a restricted
additive Schwarz (RAS) preconditioner that acts on the sudomain level,
and a coarse grid preconditioner that acts on the global level. The RAS
preconditioner is based on an incomplete Cholesky decomposition. The
coarse grid preconditioner is based on the rigid body modes of the sub-
domains. A brief description of the preconditioner follows; more details
about the preconditioners and the GMRES solver can be found in (Lingen
et al., 2014).

The RAS preconditioner and the coarse grid preconditioner are com-
bined in a multiplicative way. This means that:

M−1 = P−1
0

(
I −KP−1

)
(6.8)
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where P−1
0 denotes the coarse grid preconditioner and P−1 denotes the

RAS preconditioner. The latter can be written as a sum of sub-domain
preconditioners:

P−1 =
ns∑
i=1
P−1
i (6.9)

in which ns denotes the number of sub-domains.
The coarse preconditioner P−1

0 is obtained by projecting the stiffness
matrix onto a vector space that forms the algebraic coarse grid. If this
vector space is spanned by the columns of the matrix V , then

P−1
0 = V A−1V T = V

(
V TKV

)−1
V T (6.10)

with A the projected stiffness matrix, also called the coarse matrix. The
effectiveness of the coarse preconditioner is determined by the construction
of the matrix V . A good choice has proven to be:

V =
[
N1 · · · Nn

]
(6.11)

in which the rectangular matrices Ni represent the coarse grid modes per
sub-domain. That is, each matrix Ni only contains non-zero values on the
rows associated with sub-domain i. It has as many rows as the total number
of degrees of freedom and as many columns as the number of coarse grid
modes associated with sub-domain i.

The coarse preconditioner is most effective when it removes problem-
atic eigenvalues from the stiffness matrix that can not be removed by the
RAS preconditioner. In the context of this chapter these eigenvalues are
related to the rigid body modes of the sub-domains. This implies that each
matrix Ni contains three columns representing two rigid translations and
one (linearized) rotation of the i-th sub-domain. The three column vectors
can be viewed as a series of pairs, one for each node in the sub-domain,
representing the two displacements along the global coordinate axes. These
pairs are given by:

translation along the x-axis : [1, 0]
translation along the y-axis : [0, 1]
rotation about the z-axis : [−y, x]

where x and y are the coordinates of the node with which the pair is
associated.
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Send element
Receive element

Send node
Receive node

Internal node

Sub-domain border

Figure 6.3: Domain decomposition applied at a general finite element mesh. The
mesh is divided into three sub-domains indicated by the blue line. The colours
illustrate whether the nodes are internal quantities or are part of the overlapping
region between the sub-domains. Note that a send quantity can have multiple
receive counterparts on other sub-domains.

6.1.3 Domain decomposition

The domain decomposition approach can be used to parallelize iterative
solvers. The idea behind this approach is to divide a global problem in
many sub-problems that can be solved almost independently on different
processors. Some data exchange between the sub-problems is needed since
the solution within one sub-domain is not completely independent of other
sub-domains. The finite element mesh is first partitioned into ns non-
overlapping groups of elements that we name blocks. The blocks are slightly
extended by adding elements from neighbour blocks. Strictly speaking this
overlap is not necessary in the domain decomposition approach but it im-
proves the convergence rate of the iterative solver. Also the parallel X-FEM
implementation becomes more simple because element-related data, includ-
ing information about crack growth, is more easily exchanged between pro-
cesses. The elements and nodes that are only part of a sub-domain are
referred to as internal elements and internal nodes respectively (see Figure
6.3). The elements and nodes that are shared are named overlap elements
and overlap nodes. Each overlapping node and element is always an internal



114 Chapter 6

quantity in one sub-process. These unique elements and nodes are referred
to as send elements and send nodes. The corresponding overlap nodes in
the other sub-process are named receive elements and receive nodes. Note
that, as seen in Figure 6.3, one send quantity may have more than one
receive quantity.

To obtain the best achievable speed-up, the entire finite element model
is divided among the sub-processes defined by the domain decomposition.
This means that besides solving Equation (6.6) also the assembly of matrix
K is performed in parallel. In a regular finite element model this requires
pre-proccessing the mesh but further modifications are not required since
the solver and the preconditioner can handle all communication between
the sub-domains.

6.1.4 Tracking the fracture location

An important aspect in applying domain decomposition to an extended
finite element model is the manner in which the fracture surface is tracked.
In this work we use the level set method, which is a common technique
to track moving interfaces (Sethian, 1999). The interface is represented by
the zero level set of a function φ(x, t), that is one dimension higher than
the interface. The movement of the interface can be described by a velocity
vector resulting in a hyperbolic propagation equation.

The level set method is compatible with the X-FEM since the values
of the level set may be stored as a nodal quantity. Sukumar et al. (2001)
used one level set to describe a planar crack. Propagation of the crack was
governed by solving the level set equation with the fast marching method.
Moës et al. introduced a second level set to solve non planar crack growth
(Moës et al., 2002; Gravouil et al., 2002). The surface and front of the
crack are represented by a separate level set. They solved the movement
of the level set on an unstructured triangular finite element mesh based on
a method introduced by Barth and Sethian (1998). We chose not to adopt
this approach because i) the crack propagation goes from element edge
to element edge and is therefore not smooth which is in conflict with the
level set evolution equation and ii) using the method introduces overhead
in computation time that increases with large meshes or when multiple
fracture are considered. Instead we use the idea to represent the fracture
location by two level sets but update the values based on the propagation
direction of the crack. Representing a fracture with two level sets is also
an ideal method in parallel computing, as will be discussed next, because
it is stored as a nodal quantity.
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6.1.5 Numerical implementation of DD with X-FEM

Additional modifications have to be made to our extended finite element
model due to applying the domain decomposition also to the element as-
sembly. As the fracture grows, additional degrees of freedom are added to
the system, thus changing the dimension of the stiffness matrix and force
vectors. This requires updating the preconditioners when these degrees of
freedom are added. However, the main modifications are related to the part
of the model involved with the fracture propagation. The general flow chart
of our X-FEM model is shown in Figure 6.4. The part of the code that per-
forms the X-FEM routines is subdivided in three subroutines on the right.
Each subroutine needs, depending on the fracture location, data exchange
between sub-domains. This additional communication is only necessary
when a fracture is propagating towards the boundaries of a sub-domain. It
would therefore be possible to define the sub-domains in such a way that
a fracture never leaves a sub-domain. This approach was e.g. adopted by
Berger-Vergiat et al. (2012). However, this leads to elongated sub-domains
and/or sub-domains that differ significantly in size. This, in turn, results
in more data to be exchanged between processes and/or imbalances in the
work load per process. We therefore want to apply the DD irrespectively
of when and where a fracture propagates.

The decision whether a fracture tip propagates is always made on one
sub-domain. Also any other consequences of a propagating fracture, rel-
evant to other sub-domains, are signalled by this sub-domain. We define
the signalling sub-domain based on the location of the tip. The tip ele-
ment is the element which will be cut next by the fracture. This element
is always uniquely defined and therefore a perfect marker for the singalling
sub-domain. A tip is said to lie in sub-domain i if the tip element is either
an internal element or a send element of that sub-domain (see also Figure
6.6). A fracture can only cross one element per propagation step. The
newton iteration is restarted until no fracture propagation occurs (see also
Section 3.2). Implementation wise we therefore only consider situations
where one element is cut per propagating fracture tip within one converged
Newton iteration.

In the following we explain what additional requirements are needed
per subroutine, as shown in Figure 6.4, to apply domain decomposition on
the extended finite element method. Note that the initial placed fractures
do not need additional data exchange because their location is known in all
of the sub-domains. Within the numerical implementation the open source
Jem/Jive parallel FEM libraries were used (Lingen, 2016).

The initial mesh is divided in ns partitions using the Jem/Jive partition-
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Figure 6.4: General flowchart of an X-FEM code. Applying domain decomposi-
tion requires modification in the X-FEM routines shown on the right.

ing procedures. These apply multi-level graph partitioning algorithms, sim-
ilar to those implemented in Metis (Karypis and Kumar, 1998). Nodes and
elements are numbered locally but communication between them is based
on unique global IDs assigned during the partitioning process. After the
partitioning, further calculations are performed on one computational core
per sub-domain. Post-processing is also fully parallel. Each sub-process
writes output files for the sub-domain only. These can be coupled together
for the entire domain by using Paraview.

Messaging is only possible between neighbouring sub-domains. The
message is a vector with a certain length that contains a data type such as
integers or floats. The procedure for sending a message around is as follows:
each sub-process first sends out a request to all neighbouring domains.
The purpose of this request is to determine if other sub-processes want
to send information and if so what the length of the message (vector) is.
The request is thus followed by also sending a message to all neighbouring
domains that is either empty if no information is going to be communicated
or contains the length of the message that it is going to receive. All the sub-
processes are put on wait until all messages are exchanged. This procedure
is repeated a second time but now the actual message is exchanged to
neighbouring domains and messages with a known length are received. A
pseudo-code of this procedure is shown in algorithm 1.
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Algorithm 1 A vector SendMessage is send to all other sub-processes
and a vector ReceiveMessage is received.
for i← 1, ns do . ns neighbouring sub-processes

Ri = RequestMessage(i)
Li = SendMessage.size()
SendMessage(i, Li)

end for
waitAll()
for i← 1, ns do

ReceiveMessage.resize(Ri)
ReceiveMessage = RequestMessage(i)
SendMessage(i, SendMessage)

end for
waitAll()

The start of the X-FEM subroutines is the determination whether a
fracture is propagating. The propagation criterion used in this chapter is
based on an averages stress calculated with a Gaussian weighting function
depending on length scale parameter la (Section 2.3). As a fracture tip
propagates towards the sub-domain boundaries the length scale may span
also other sub-domains (see Figure 6.5). It is therefore necessary that
the neighbouring sub-domains know the tip location and can be called to
exchange the average stress. This exchange is performed in the first X-FEM
subroutine before the propagation criterion is evaluated. The stresses are
exchanged with the correct sub-process by linking the latter to the local
tip ID. Algorithm 2 shows the pseudo-code for the communication of tip
stresses. Note that contributions to the average stress are only accounted
for in internal elements since receive elements can be defined on multiple
sub-domains.

An important aspect of any X-FEM model is the bookkeeping of the
location of a propagating fracture. This bookkeeping is performed in the
second X-FEM subroutine (Figure 6.4). We use two level sets, interpolated
at finite element nodes, to describe a fracture surface. Communication be-
tween sub-domains within the iterative solver is based on the nodes. The
advantage of storing the fracture as a nodal quantity is thus that these com-
munication libraries can also be used to communicate the fracture location
between sub-domains. This exchange is facilitated by a database structure
in which the finite element nodes are stored. A synchronizing command can
be executed on this database which exchanges all nodal quantities of a send
node to to all corresponding receive nodes. However, there are scenarios in
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Algorithm 2 Subroutine 1) evaluate tip stresses.
Collect tip stresses to send
Exchange the stresses using Algorithm 1
for iT ip← 1, nT ip do

if exchangeTip(iT ip) = True then
Add received stresses to the local stress

end if
if violation(iT ip) = True then

Propagate the tip
end if

end for

Domain 1
Domain 2
Send element of domain 1
Receive element of domain 1

Tip

Figure 6.5: Data exchange due to the average stress propagation criterion. Ele-
ments lying within the dashed circle have contribution to the average stress.

which the level set values in a receive node are modified due to crack prop-
agation. The database exchange will overwrite these values by the values
of the send node residing on a different sub-domain. Thus, before perform-
ing the exchange we first modify the value of this send node by using the
communication Algorithm 1. Once all level set values are changed within
the sub-domains of the tip elements, the database is exchanged synchroniz-
ing the fracture as a unique quantity to all sub-domains. We realize that
communicating all level sets over all the sub-domains is excessive since the
modification takes only place in certain sub-domains. However, the com-
munication routines must be started in all sub-processes since it is unknown
which sub-domains are effected by fracture propagation. Exchanging the
actual values is therefore not giving much overhead. The process of updat-
ing the level set is shown in Algorithm 3.

Once the level set values are updated in all sub-domains it is possible
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Algorithm 3 Subroutine 2) propagate the fracture.
for iT ip← 1, nT ip do

if violation(iT ip) = True then
Propagate the level set within the sub-domain
Store modified nodes in modNodes

end if
end for
Exchange values of modNodes with Algorithm 1
Synchronize the database with level set values

to enrich nodes and update integration schemes in elements effected by a
propagating fracture. The updated integration schemes are necessary in
elements crossed by the fracture but also the neighbouring elements re-
quire a modified integration due to the nodal enrichment (Wells and Sluys,
2001). Since the enrichment is based on the geometrical location of the
fracture it is not possible to exchange the data as nodal interpolations as is
often done in domain decomposition methods, see e.g. Lingen and Tijssens
(2001). Additional data exchange procedures based on Algorithm 1 were
therefore used. We distinguish between three different situations of fracture
propagation that require additional data exchange which are also shown in
Figure 6.6

• The most simple and straight forward situation occurs when the frac-
ture is crossing a send element. In this case it is sufficient to transfer
only the element ID that got crossed to all sub-domains where this
element exist. Based on the level set values further enrichment and
modifications to the integration scheme can be performed (Figure
6.6b and 6.6c).

• Another situation occurs when a fracture propagates neighbouring
to send elements. The send element, belonging also to other sub-
domains, receives a nodal enrichment. These additional DOFS need
to be added in each sub-domain. A consequence of the enrichment
is that the element contributes to the enriched part of the system of
equations and therefore needs additional numerical integration in the
element assembly (Figure 6.6a).

• The additional displacement field in nodes that form the edge at
which the tip is located must be constrained to prevent the opening
of the fracture tip. Similar to the previous situation this implies
that a fracture propagating along send elements also need to signal
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neighbouring sub-domains to release the correct degree of freedom
(Figure 6.6a).

A Newton iteration is started until no fracture propagation occurs. Im-
plementation wise we therefore did not consider situations where updates
were necessary in an iterative way due to cutting multiple elements.

Enrich tip node
Update integration scheme elements

Enrich discontinuous element

Release old tip node

Enrich discontinuous element

Initial situation

Normal node
Enriched node
Constrained enriched node
Old tip location
New tip location

a

b

c

Figure 6.6: Schematic representation of three possible propagation steps that
require data exchange between two sub-domains. The initial situation without
domain decomposition is shown at the top. We refer to the two domains as domain
1 and domain 2 being the right and the left sub-domain, respectively. The three
different situations, going from top to bottom, are a) when a fracture propagates
neighbouring to a send element b) fracture propagation in a send element of domain
1 and c) fracture propagation in domain 2. Note that the fracture behaviour is
controlled by domain 2 in the last step compared to the first two steps where
domain 1 controlled the propagation.

6.2 Results
In this section we consider three examples to demonstrate the parallel X-
FEM implementation and to address the performance. The performance is
given as speed-up which is defined as the ratio between the computation
time of one core compared to the time on multiple cores. The computations
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Figure 6.7: Scheme of the mixed mode and two simulation results.

were run on the Dutch HPC Cartesius system owned by the SURF Coop-
erative. This system is equipped with Haswell E5-2690 v3 Intel processors
having 24 cores and 64 GB memory per compute node. In the first example
we have used the regular X-FEM model without the additional pd degree
of freedom. The last two examples are performed with the ELP model and
thus are about hydraulic fracturing. All the FE meshes consist of linear
triangular elements.

6.2.1 Mixed mode fracture propagation

In this first example a squared double notched experiment in mortar is
considered. The experiment was performed by Nooru-Mohamed (1992)
and was used as a benchmark example for X-FEM models by Dumstorff
and Meschke (2007). The geometry and the loading conditions of the spec-
imen are shown in Figure 6.7a. The shear load Fs = 10 kN is applied
instantaneous. The top and bottom surface are being pulled by a pre-
scribed displacement of 1 µm/s. A small initial fracture with a length of
2 mm is created at both notches. The specimen has a Young’s modulus
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Figure 6.8: Speed-up graph for the mixed mode X-FEM simulation. The total
speed-up of the simulation is shown in red. A separate speed-up is also shown
for the element assembly phase, the X-FEM part of the code where the fracture
propagation is being determined, and for the iterative GMRES solver.

of E = 30 MPa and a Poisson’s ratio of ν = 0.20. The ultimate strength
is τult = 3 MPa with a fracture toughness of Gc = 0.11 N/mm. The finite
element mesh is made of 5.6 million elements with 2.8 million nodes, i.e.
5.6 million degrees of freedom. The crack path and the force displacement
curve for a reference solution obtained without domain decomposition is
compared with the result of using 192 cores in Figure 6.7. The path and
force displacement curve are not influenced by the DD which illustrates
the correct implementation of parallel X-FEM. The results are also in the
range reported by the numerical study of Dumstorff and Meschke (2007).

To assess the speed-up the simulation is performed for six loading in-
crements. This is sufficient to address the speed-up since the fracture can
propagate through multiple elements within a load increment. A total of
1466 degrees of freedom are added to the system. The fracture grows over
sub-domain boundaries depending on the number of cores used per simula-
tion. As shown in Figure 6.4 the loading is only increased after the fracture
propagation criterion is no longer violated.

Within the six loading increments the GMRES solver was called 766
times, performing 35944 iterations on a single core. The total simulation
took 74 hours. The speed-up is divided for the three main parts of the
X-FEM model, i.e. the matrix assembly, the GMRES solver and precon-
ditioner, and the X-FEM routines. In Figure 6.8 we show these three
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Figure 6.9: Speed-up graph for the GMRES solver shown against the loading
increment. The speed-up decreases with increasing loading increments. This effect
is more pronounced in simulations where the number of cores (Nc) is larger.

components and the total speed-up. The speed-up of the element assembly
scales most optimal compared to the X-FEM part and the GMRES solver.
The element assembly speed-up exceeds ideal behaviour which is caused
by unequal Newton iterations. This also reflects on other speed-up results.
The speed-up of the GMRES solver is the delaying factor in this simulation.
This is caused by a combination of overhead due to data communication
but also due to a decrease in efficiency of the preconditioners as the amount
of sub-domains increase. The propagating fracture also has an effect on the
speed-up of the GMRES solver as shown in Figure 6.9. With increasing
amount of sub-domains the fracture crosses more domain boundaries and is
therefore influencing the convergence rate of the GMRES solver. This leads
to a stronger decrease in speed-up in simulations with a larger number of
sub-domains. The largest total speed-up of 123.3 is achieved on 288 cores
leading to a final simulation time of 37 minutes and 57 seconds.

6.2.2 KGD Hydraulic fracture problem

This mesh is having initially 3.4 million degrees of freedom which is less
than the previous example. We apply the ELP model to simulate the plane
strain KGD problem (see Figure 6.10a). The mesh is refined around the
injection point within a circle of 0.5 m. The rock has a Young’s modulus
of E = 17 MPa and a Poisson’s ratio of ν = 0.20. The ultimate strength
is τult = 15 MPa with a fracture toughness of Gc = 0.12 N/mm. Fluid
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is injected with a rate of Qin = 0.5 mm2/s, the fluid viscosity is µ =
1.0e−5 Pa · s, and an implicit time step of 1 second is used.

The implementation of the DD in combination with the ELP model
is compared with the available analytical solution for the KGD problem
(Geertsma and De Klerk, 1969). In Figure 6.10b the fracture length in a
simulation with 192 cores is shown together with the analytical solution.
There is some discrepancy between the analytical solution and the numeri-
cal solution. We expect this to be attributed to the fact that the analytical
solution is based on different assumptions such as, linear elastic fracture
mechanics. However, the trend of the results is consistent enough to con-
clude that the parallel implementation of the ELP model was successful.
The speed-up of this simulation is shown in Figure 6.11. The speed-up
of the GMRES solver is again the least efficient. Scalability is also lower
compared to the first example which can partly be attributed to the lower
amount of DOFS in this example. However, the addition of the pd DOF
also results in higher number of iterations of the GMRES solver. This ef-
fect deteriorates as the amount of sub-domains increases. The simulation is
performed for two time steps and the duration is 12 hours and 11 minutes
on one core.

45m

60m60m
Qin

(a) Scheme of the KGD
fracture problem

Analytical solution
ELP model

0
20
40
60
80

100
120
140
160
180

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fr
ac
tu
re

le
ng

th
[m

m
]

Time [s]
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Figure 6.10: The schematic representation of the KGD hydraulic fracture prob-
lem is shown on the left. The result of the fracture length versus the time for this
problem using 192 cores is shown on the right.
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Figure 6.11: Speed-up for the KGD hydraulic fracture problem simulated using
the ELP model. The total speed-up of the simulation is shown in red. A separate
speed-up is also shown for the element assembly phase, the X-FEM part of the
code where the fracture propagation is being determined, and for the iterative
GMRES solver.

6.2.3 Two parallel hydraulic fractures

The last example consists of two hydraulic fractures in a 4 by 4 m block
having a Young’s modulus of E = 30 MPa and a Poisson’s ratio of ν =
0.20. Both fractures have a fluid injection point in the middle and are
subjected to a constant fluid inflow of 20 mm2/s with a dynamic viscosity
of µ = 1.0e−3 Pa · s. The ultimate strength is τult = 5 MPa with a fracture
toughness of Gc = 2.0 N/mm. The initial system has 7.4 million degrees of
freedom and calculations are performed on 288 cores. The initial length of
both fractures is 0.6 meter and they are spaced 1 meter apart. Due to the
ratio between the length of the hydraulic fractures and the spacing between
the fractures influence each other propagation direction. The hydraulic
fractures curve away from the initial fractures. This is referred to as the
stress shadowing effect (Bunger and Peirce, 2014; Lee et al., 2016).
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Figure 6.12: Visualization of the mesh with two propagating hydraulic fractures.
The 288 domains are coloured differently illustrating that the fracture crosses
multiple domains. The deformed configuration is magnified 25 times.

The curving away of the hydraulic fractures is also observed in our
results as shown in Figure 6.12. It can be seen that the left fracture prop-
agates more upwards while the right fracture grows farther in downward
direction. In an ideal symmetrical situation this growth would be exactly
the same. However, the used propagation criterion is this chapter is stress
based and therefore subject to some mesh dependency. There is a moment
in the simulation that the top left tip and bottom right tip are slightly
more loaded than the other two tips. They therefore grow, increasing their
loading surface, escaping from the stress shadow effect of the neighbouring
fracture and therefore keep propagating while the other two tips are pre-
vented from growing. In Figure 6.12 the 288 different sub-domains are also
all given a different colour. The fractures are free to propagate through do-
main boundaries and are not influenced by the shape of domains. This ap-
proach leads to almost optimal load balance during assembly of the stiffness
matrix and solving the system in the iterative solver. A small discrepancy
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Figure 6.13: Average iteration count of the GMRES solver in the simulation
with two parallel hydraulic fractures. The iteration count is shown against the
increase in degrees of freedom due to fracture propagation.

of load balancing occurs due to the degrees of freedom that are added when
the fracture propagates. However, the 11850 DOFS that are added are still
a low amount compared to the initial 7.4 million DOFS. The main reason
for non ideal speed-up is the increasing amount of iterations needed in the
GMRES solver. The average amount of the GMRES iterations within one
time step are shown in Figure 6.13. The increase of iterations as the frac-
ture propagates can be attributed to worsening of the condition number of
the stiffness matrix but also to the fracture crossing through multiple sub-
domains. The former is also observed in other X-FEM works that applied
the domain decomposition approach (Berger-Vergiat et al., 2012). The
coarse grid preconditioner, responsible for keeping the number of iterations
stable as the number of sub-domains increase, does not take the additional
displacement DOFS into account nor is the pd DOF considered in it. This
has a large impact on the convergence rates of the GMRES solver as more
domains are crossed.

6.3 Conclusions

In this chapter we have presented a parallel implementation of a our ELP
model, which is based on the extended finite element method, using the
domain decomposition approach. Both matrix assembly and solving the
system of equations with a GMRES solver are performed in parallel. We
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have illustrated the key implementation aspects that should be considered
when applying domain decomposition in an X-FEM model. In three ex-
amples we have shown the successful DD implementation. The model is
consistent irrespective of the chosen sub-domains and is compared with
other numerical data and an analytical solution. The results show that
it is possible to apply the domain decomposition method at any X-FEM
model to benefit from parallel computing power. Enrichment functions are
not restricted to discontinuous elements but can be extended across sub-
domains by using additional data exchange within the X-FEM routines.
We have shown that the scalability of these routines should not be the lim-
iting factor in parallel X-FEM computations. The total speed-up achieved
is not ideal. This can mainly be attributed to the not optimal condition-
ing of the system of equations resulting from the X-FEM model. Despite
this we can still achieve a speed-up above 100 using a moderate amount
of cores decreasing, computational times significantly. This is a necessary
improvement in order to use the ELP model for large scale 2D hydraulic
fracture simulations.

In the following chapter the model is extended to simulate fracture
propagation in 3D. This extension is necessary to simulate tortuous frac-
ture geometries that may occur near deviated wells. The 3D model may
eventually benefit greatly from the parallel implementation due to having
more computational demands than a 2D model.
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A 3D partition of unity based
hydraulic fracture model

Abstract
A 3D model for the simulation of hydraulic fracturing is presented in this
chapter. A fracture is included in the finite element mesh by exploiting the
partition of unity property of finite element shape function. Based on the
concept of the extended finite element method an additional displacement
field is included to nodes surrounding the fracture. The additional field is
multiplied by a Heaviside step function defined across the fracture, leading
to a discontinuity in the displacement field. By representing the fracture
surface with two level sets a framework for tracking the fracture surface
in 3D is introduced. The framework is based on the fact that a fracture
grows from element face to element face. Energy dissipation is controlled
by a cohesive zone formulation. The enhanced local pressure model, which
is based on the extended finite element, includes an additional degree of
freedom to model a fluid pressure within the fracture. The framework
derived for the extended finite element model is used to simulate the 3D
hydraulic fracturing based on the enhanced local pressure model. The
performance of the 3D model is demonstrated with three examples.
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The simulations shown in the previous chapters were performed in a 2D
situation under plane strain assumptions. This is sufficient to obtain insight
in general trends such as length of a single fracture or fracture interaction
behaviour. Hydraulic fracture propagation from a deviated well leads to
the growth of complex fracture patterns. A tortuous fracture surface can
grow due to the initial deviated fracture plane being not orthogonal to
the least horizontal stress. Tortuous fractures hinder fluid flow resulting a
smaller fracture network and thus lower production rates. Modelling such
behaviour is only possible with a 3D model (Hossain and Rahman, 2008).
In this chapter the framework for extending the fracture model used in the
previous chapters to 3D is presented.

The eXtended Finite Element Method (X-FEM) is an elegant tool to
incorporate a discontinuity in the displacement field irrespectively of the
underlying mesh. Based on the partition of unity (Melenk and Babuška,
1996) property of finite element shape function a discontinuity is included
to the displacement field by adding an additional displacement field to
nodes surrounding the discontinuity (Belytschko and Black, 1999; Moës
et al., 1999). The extension of the extended finite element method to
3D is primarily a computational challenge. The kinematic relations and
the balance equations hold both in 2D and in 3D. What changes is the
representation of a fracture as a line and the fracture tip as a point in
2D into being a plane and a line in 3D, respectively. Keeping track of the
fracture location as a plane is more challenging than a line. The propagation
of the fracture in 3D can no longer be controlled by a single point but should
be possible along the entire fracture front. Both tracking the surface as
well as determining where and when the fracture font propagates lead to
additional requirements in a 3D model.

Sukumar et al. (2000) were the first to apply the extended finite ele-
ment method in 3D solids and demonstrated a good accuracy of numeri-
cal stress intensity factors with exact solutions. Planar crack propagation
was included in a later work by using a fast marching algorithm to track
the fracture surface (Sukumar et al., 2003). Non-planar crack growth was
considered by Gravouil et al. (2002) using the model introduced by Moës
et al. (2002). The location of the fracture surface was controlled by two
level sets, one for the fracture surface and one for the fracture front, re-
spectively. Fracture propagation was described by evolving the level set
equation by solving several Hamilton-Jacobi equations. The elegance of
their approach is that these solutions were obtained using the same mesh
as was used for the extended finite element method simulations. This led
to a direct coupling between the crack discretization and the level set.
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However, difficulties in updating the level set equations arise in decou-
pling the update between a fixed part (the already existing fracture surface)
and a propagating part. Ventura et al. (2003) used a tuple representation
of the level set and updated the values using geometric formulas. This
method has in common with the work of Moës et al. (2002) that an effort is
made to maintain the level set as a smooth surface. Our numerical frame-
work allows for element edge to element edge propagation. Thus it is not
a necessity to maintain the smooth property of the level set. In this chap-
ter we introduce a level set update based purely on geometrical formulas.
This approach a many similarities with the 3D partition of unity based ap-
proach by Gasser and Holzapfel (2005, 2006). They define a local tracking
algorithm based on also propagating element by element. The orientation
of the new fracture plane within an element is defined by a normal and a
point on the plane. A smoothing algorithm is included to predict a closed
fracture surface. Information of elements cut by a fracture are stored on
element basis. Becker et al. (2010) adopted the same approach in 3D to
model fracture propagation in concrete which was modelled as a porous
material. Hygro-mechanical interactions in the concrete due to moisture
transport were included.

In the context of hydraulic fracturing a 3D boundary element was devel-
oped by Hossain and Rahman (2008). Li et al. (2012) used a used a finite
element model with a smeared damage approach to simulate 3D fracturing.
Gupta and Duarte (2014) developed an extended finite element method
based model for 3D non planar hydraulic fracture propagation. This model
did not include fluid flow within the fracture but assumed a constant pres-
sure in the fracture. The fracture surface was calculated in explicit manner
i.e. the actual surface within the finite element mesh is not identical to the
geometrical representation. This approach was necessary since kinks in the
fracture surface can be present within an element. Such a representation
caused limitations on the continuity of the mesh giving problems to fluid
flow integration, hence the constant pressure. A mesh approximation was
performed in Gupta and Duarte (2015) to include fluid injection. Fracture
propagation was not yet considered in this work.

The Enhanced Local Pressure (ELP) model is developed for hydraulic
fracturing in low permeable rocks (Chapter 4). Based on the extended finite
element method a fracture is included as a discontinuity in the displacement
field. The model is improved to consider fracture interaction in Chapter 5.
In this chapter we extend the X-FEM model and the ELP model to 3D.
Pore pressure is not included in the formulation. The balance equations
and constitutive equations given in 2D are also applicable in 3D. The main
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Figure 7.1: A body Ω crossed by a dicontinuity.

challenge lies in representing and propagating the fracture surface. Instead
of storing the crack as a geometrical entity as was proposed by Gasser
and Holzapfel (2006) we store the surface and front location with two level
sets as was proposed by Moës et al. (2002). The updating is similar as
proposed in the work of Gasser and Holzapfel (2006). The advantage of this
approach is that continuity of the fracture surface is preserved along element
boundaries by the level set. We first apply the 3D update of the level sets to
the extended finite element method without considering the enhanced local
pressure model. The propagation of the fractures is validated with this
formulation. The enhanced local pressure model is extended additionally
to show the performance of hydraulic fracture propagation in a 3D solid
material without leak-off.

7.1 Model background

The kinematic relations described in 2D (see Sections 4.1 ) can be general-
ized to 3D. Consider a body Ω with a discontinuity (see Figure 7.1 for the
2D representation). A discontinuity divides the body into two part Ω+ and
Ω−. The displacement field becomes discontinuous and can be described
by separating the total field in a continuous field and a discontinuous field
as

u(x, t) = û(x, t) +HΓ(x)ũ(x, t), (7.1)

where x is the position of a material point and HΓ is the Heaviside step
function defined across the discontinuity as
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HΓ =
{

1 if x ∈ Ω
0 if x ∈ Ω (7.2)

At the discontinuity Γd, the strain field is undefined and the kinematic
quantity is defined by a jump in the displacement field

[u(x, t)] = ũ(x, t), x ∈ Γd. (7.3)

The linear quasi-static momentum balance without body forces is

∇ · σ = 0, (7.4)

where σ is the Cauchy stress tensor. The body is subject to the following
boundary conditions

σ · nΓ = tp(x, t) x ∈ Γt,
u(x, t) = up(x, t) x ∈ Γu,

(7.5)

with Γt ∪ Γu = Γ,Γt ∩ Γu = ∅ and Γ is the entire surface of the body.
Multiplying the momentum balance with the test function η which has the
same form as the displacement field

η = η̂ +HΓd η̃, (7.6)

and using Gauss’s theorem with the incorporation of the boundary condi-
tions gives the momentum balance equation in the weak form as

∫
Ω
∇(η̂ +HΓd η̃) : σdΩ =

∫
Γt
∇(η̂ +HΓd η̃)tpdΓt (7.7)

−
∫

Γ+
d

∇(η̂ +HΓd η̃) · (σ · nd)dΓ+
d +

∫
Γ−d
∇(η̂ +HΓd η̃) · (σ · nd)dΓ−d .

For information about constitutive relations we refer to Section 4.3. Further
derivation of the weak form and the discretization is given in Sections 4.4
and 4.5 in 2D. The procedures followed there are identical to the those
required in 3D.

7.2 Numerical implementation
In this section we describe the computational aspects that were imple-
mented to extend the X-FEM model to 3D situations. As will be discussed
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Figure 7.2: Scheme of a propagating fracture in a structured triangular mesh.
The fracture is shown in yellow and the tip element in purple. The spatial location
of the new tip is calculated using geometrical formulas. By using this location the
level set value at the free node is calculated. Green nodes are part of the fracture
surface characterized by ψ < 0. The blue and red nodes are not part of the surface
and are characterized by ψ > 0
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in the section the implementation is designed specifically for tetrahedral el-
ements. It is possible to also consider cubic elements by subdividing them
into tetrahedral elements within the part of the model that tracks the frac-
ture location. Considering this implementation is however not the scope of
this chapter.

7.2.1 Tracking the discontinuity surface

The level set method is a common technique to track evolving discontinu-
ities (Sethian, 1999). A discontinuity is described as a continuous function
in space and time, being one dimension higher than the shape it is rep-
resenting. The zero value of this functions describes the location of the
discontinuity. To track a fracture surface two orthogonal level sets are re-
quired, one describing the surface and one describing the fracture front
(Sukumar et al., 2001; Moës et al., 2002). Evolving the discontinuity is
governed by a velocity field resulting in a partial differential equation that
is often solved by a finite difference scheme or by a fast marching algo-
rithm (Sethian, 1999). Solving this equation can be expensive and may
cause overhead in simulation time. Additional calculations are necessary
to maintain the signed distance property of the level sets and kinks in the
discontinuity need to be smoothed (Gupta and Duarte, 2014). In this chap-
ter, we adopt the idea of storing the location of the discontinuity as nodal
quantity based on the level set method. However, the level set equation is
not solved to determine the location of a propagated discontinuity.

In our 2D model a discontinuity is assumed to be a straight line within
an element and ends at an element edge (see Section 2.3). The tip of
the discontinuity is therefore always located on the edge of an element.
It is intuitive to use this approach in combination with the cohesive zone
description since the latter lumps the fracture process along a line. We
discuss the implementation aspects first in 2D and show that cutting the
entire element is also advantageous in the 3D implementation.

(a) (b)

Figure 7.3: A tetrahedron cut by a discontinuity either forms a triangular surface
(a) or a rectangular surface (b).
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Fracture surface
Fracture front
Average stress location

Figure 7.4: Two tetrahedral elements cut by a discontinuity in grey. The fracture
front, shown in green, contains within each element one point located in the middle
of the front to calculate an average stress used in the fracture propagation criterion.

7.2.2 2D level set propagation

Consider two level set functions , φ (x, t) and ψ (x, t) that describe the
surface of the discontinuity and the front of the discontinuity, respectively.
Elements containing a spatial location x that satisfies φ (x, t) = 0 are part
of the discontinuity if ψ (x, t) < 0 in the entire element. The location of the
crosspoint between the discontinuity and an element edge is determined by
the zero value of level set φ interpolated from the two nodes that form the
edge.

We define a tip element as satisfying the relation φ (x, t) = 0 and having
two nodes with a negative ψ value and one node with a positive value (the
free node) when restricting ourself to only triangular elements. The tip
location after propagation is always located on an edge that has the free
node as a vertex and can be calculated using geometrical formulas (Ericson,
2004). The concept of this approach on a structured triangular mesh is
shown in Figure 7.2. The fracture is extended through the tip element by
modifying the φ level set value of the free node (shown in blue). The free
node becomes part of the surface by setting ψ to a negative value. Kinks
in the surface of the discontinuity occur due the element edge to element
edge propagation as shown in the figure. These kinks would have to be
sufficiently small or smoothed out if the level set equation would have been
solved directly.

7.2.3 3D level set propagation

In 3D a similar approach is followed with tetrahedral elements. The re-
striction of using this type of element is advantageous since a discontinuity
can only cut the element in two different ways (see Figure 7.3). Either a
triangular or a rectangular surface is formed which simplifies the numeri-
cal implementation. The volume of the tetrahedral element is divided in
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either a new tetrahedron and a wedge (in the case of a triangular fracture
surface) or in two wedges (with a rectangular fracture surface). The zero
value of the level set φ defines the crosspoint of the discontinuity with an
element edge. Similar as in 2D the front is located in elements having only
one node with a positive ψ value and satisfying the relation φ (x, t) = 0.
The front is a line located in the triangular face of the tetrahedron spanned
by the three negative ψ nodes. Upon propagation of the discontinuity the
edges enclosed by the positive node are included to the surface. This results
in a unique solution for triangular surfaces (Figure 7.3a). In the case of
a rectangular surface (Figure 7.3b) the solution is non-unique. There are
two new cross-points created by the fracture surface while there is only one
level set value in the free node that can be modified. To obtain a unique
location for both cross-points a third level set value is added. Both cross-
points are stored correctly by liking the third level set value to the ID of
the edge. This is an unique item within in the mesh. Thus it can be used
in neighbouring elements to distinguish to which crosspoint the third level
sets belongs.

Front point A

Front point B

Node part of the surface

The free node

Point A propagated including
the surface of point B to the fracture.
Both surface are correct

In this case also point B propagated but
with a different angle. The surface of
point A is not consistent

A

B

Figure 7.5: Representation of a fracture front (shown in green) that crosses two
neighbouring elements. The top image represents the situation before fracture
propagation. Propagation is checked in the front point based on an average stress
criterion. It is therefore possible that the criterion is only violated in one of the
front points. This situation for propagation of point A only is shown in the left
image. By including the free node in the fracture surface the tip element belonging
to front point B is also included in the surface. A second situation shown in
the right image occurs when both front points propagate within the same time
increment.
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Propagation of the fracture is based on an average stress criterion (Sec-
tion 2.3). Instead of a fracture tip, located in one element, there now is
a fracture front that can span multiple elements. In each element that is
part of the fracture front a point is added to calculate the average stress.
The point is placed in the middle of the line that forms the fracture front
within that element (see Figure 7.4). If the maximum principal stress ex-
ceeds the ultimate tensile strength the fracture is propagated toward the
next element face. The normal of the surface within the element is equal
to the normal of the maximum principal stress and it is assumed that the
plane crosses the front point. In the case of a rectangular fracture surface
this results in an inconsistent fracture plane since it is unlikely that the two
existing cross-points are also on the plane.

The propagation moment and direction may differ amongst neighbour-
ing elements. Two scenarios that can occur due to this are illustrated in
Figure 7.5 by considering two neighbouring front elements, element A and
B respectively. Element B can become part of the fracture surface by frac-
ture propagation in element A (left image). Propagation in both elements
results in two different cross-points at the edge shared by the two elements.
The cross-points are only identical in the rare cases when the propagation
normals are equal and the front spans the same directional vector in both
elements. We decide to take the average of both points as the cross-point.
Despite that averaging is a logical solution it has as a consequence that the
cross-point is not exactly located on the plane and thus results again in an
inconsistent rectangular surface.

Algorithm 4 Fetch all propagating front points
for iT ip← 1, nT ip do

if violation(iT ip) = True then
np = propagation normal
elemID = the element ID
store np and elemID = in propElems

end if
end for

Updating the level set with our proposed method has as a consequence
that the four cross-points forming a rectangular surface are not on the same
plane. This results in an error in the numerical integration of the fracture
plane. We assume however that the cross-points are never far off the actual
plane. The numerical inaccuracy is thus sufficiently small such that the
proposed update scheme can be validated. A solution to this problem
would be to subdivide every rectangular surface in two triangular surfaces.
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This is however not the scope of this chapter.
To summarize, the proposed update scheme of the level is governed

by first checking if the propagation criterion is violated in all front points.
Each violated front point is stored together with the tip element ID and the
propagation normal (see Algorithm 4). The level set can be updated based
on this stored information. By using geometrical formulas the new cross-
points can be calculated and level set values can be updated accordingly
(see Algorithm 5). New front points are calculated after updating all the
level set values. Elements that were not part of the fracture front become
enclosed in the fracture by the update illustrating the major advantage of
the fracture representation as a level set.

Algorithm 5 Propagate level set
oldLvl = curruntLvl . Copy the level sets since the front is lost when some elements

propagate

for iElm in propElems do
elemID = propElems→ elemID
np = propElems→ np
xPoints = calcXpoints (oldLvl,np, elemID) . use old level sets

updateLvlSet(curruntLvl,xPoints, elemID) . update current level sets

end for
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Figure 7.6: Scheme of the three point bending test.
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7.3 Examples 3D X-FEM

In this first example a three point bending test (Figure 7.6) is analysed
and compared to the experimental investigation performed by Petersson
(1981). This benchmark problem was also considered in other numerical
works (Rots et al., 1985; Armero and Kim, 2012; Linder and Zhang, 2013).
The concrete specimen has a Young’s modulus of 30 GPa and a Poisson’s
ratio of 0.2. A small initial fracture with a length of 5 mm is created
and the growth of the fracture is restricted to the initial plane. A mode
I exponential cohesive traction separation law (see Section 5.1.5) is used
with an ultimate strength τult = 3.3 MPa and a fracture toughness of
Gc = 0.124 N/mm. The beam is subjected to a displacement of 0.01 mm
per load increment.

The force reaction curve for the simulation is shown together with the
experimental envelope of Petersson (1981) in Figure 7.7. The numerical
result lies within the failure envelope. The combination of the principal
stress propagation criterion and the cohesive zone description are adequate
enough to describing the experimental result. The discrete fracture surface
is shown in Figure 7.8. The elements have irregular shapes due to the arbi-
trary location of the fracture surface compared to the tetrahedral elements.
The normal opening displacement of the surface is shown in the contour.
As expected the opening decreases from the left (at the notch) to the right
where the front of the cohesive zone is located. Note also that the front is
not perfect line but is also having a irregular shape depending on the shape
of the tetrahedral tip elements. This is not a concern as long as there
are multiple elements within the cohesive zone. The damaging process is
captured and energy dissipation is controlled by the traction separation
law.

In the second example we consider the L-shape fracture test similar
as was performed for a 2D porous material in Section 2.5.3. The initial
planar fracture has a length of 35 mm and is inclined 45 degrees with the
x-axis (Figure 7.9). The material has a Young’s modulus of 28.85 GPa
and a Poisson’s ratio of 0.18. The mode I cohesive zone description is
used with an ultimate strength τult = 3.3 MPa and a fracture toughness of
Gc = 0.124 N/mm. The displacement in all directions at the bottom surface
of the L-shaped specimen are constrained and a load of Fl of 750 N per load
increment is added at the left boundary. Fracture growth is now not re-
stricted within a plane. In Figure 7.10 the propagated fracture is visualized
after 72 load increments. The surface of the fracture viewed from the top
and from the side of the L-shape are shown in Figure 7.11. The surface is ir-
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Figure 7.7: The force displacement curve of the 3 point bending test. The
experimental envelope is given by Petersson (1981).

Figure 7.8: Visualization of the fracture surface in the three point bending test
after 68 load increments. The normal opening displacement is shown as a contour.
The irregular structure of the surface mesh is a result of the arbitrary cutting of
the tetrahedral elements.
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Figure 7.9: Schematic representation of the 3D L-shaped fracture problem. The
initial fracture surface, shown in grey, has a length of 35 mm and is inclined under
an angle of 45 degrees with the x-axis.

regular and non-planar. With this example we have demonstrated that the
method is not confined to only planar fractures. The fracture path should
have been located higher in z-direction based on experimental results by
Winkler (2001). This may be related to inaccurate stress calculations near
the fracture front due to insufficient mesh refinement.

7.4 The 3D ELP model

The additional mass balance equation in the fracture introduced by the
ELP degree of freedom is solved by applying it in a local reference frame.
Assuming incompressible constituents the volume integral over crack vol-
ume Ωd can be written as∫

Ωd
∇ · vs +∇ · qddΩd = 0 (7.8)

Assuming that the elongation of the fracture surface in tangential direction
is negligible in a mode I hydraulic fracture the first term can be rewritten
as a function of the opening of the fracture. Neglecting also the pressure
difference in the normal direction the complete mass balance can be written
as a domain integral

∫
Ω′d

˙[u] · nd + [u] · nd∇d · qd +
(
q+

Γd
− q−Γd

)
· nddΩ′d = 0 (7.9)



3D fracture modeling 143

Figure 7.10: The L-shape specimen after 72 load increments. The deformed
configuration is magnified 100 times. The stress in z-direction is shown in the
contour.

Figure 7.11: The fracture surface visualized from the side (top image) and from
the top (bottom image). The traction in normal direction is shown in the contour.
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Figure 7.12: The fracture surface is rotated from the global reference plane in
3D to a local reference plane.
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Figure 7.13: 2D representation of the 3D validation of the flow model. The
initial fracture surface has the shape of one fourth of a cylinder. A displacement is
prescribed at the top surface to open the fracture. Fluid is injected at a constant
rate and the tip of the fracture is in contact with the bottom surface where a zero
pressure is prescribed.

where Ω′d is the local reference frame of the fracture within an element
and ∇d is the gradient operator within this reference frame (Figure 7.12).
The reference frame is spanned by the normal vector of the 3D plane and
therefore contains the fracture plane as a 2D entity. q+

Γd
and q−Γd

represent
the leakage terms of the positive and negative side of the surface, respec-
tively. In the remainder of this chapter we consider hydraulic fracturing in
an elastic material thus the leakage terms are not present.

The ELP degree of freedom is located at the cross-points of the dis-
continuity with element edges (see Section 4.5 for the 2D scheme). Similar
as in 2D, where a line equation had to be solved, we now need to solve
a planar equation in a 3D space. Numerical integration in the surface is
based on the standard Gaussian quadrature. To demonstrate this imple-
mentation we consider a cubic mesh with a initial fracture surface of one



3D fracture modeling 145

Figure 7.14: Validation of the flow model. An injection pressure of 2.36 is
expected based on Darcy’s law. Note the very irregular element size on the fracture
surface caused by the random element cutting locations.

Qinx
yz

40 mm
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Figure 7.15: Scheme of the penny shaped hydraulic fracture simulation. The
displacement at the the solid side of the specimen is constrained in displacement.

fourth of a cylinder (Figure 7.13). The mesh is refined at bottom such that
a very thin slice is not part of the fracture surface. A zero pressure is pre-
scribed artificially at the fracture front and fluid is injected with a rate of
Qin = 75.0 mm/s. Instead of using the cubic law for the fluid we implement
a Darcy type of flow according to q = −k∇p. Taking k large enough with
a value of 100 mm4/s results in a linear pressure gradient ranging from zero
at the bottom towards the injection boundary. The cylinder has a radius
r of 2 mm gives an injection pressure of pinj = −πrQin

2k = 2.36 Mpa. The
found value of 2.343 MPa is consistent with the exact value (see Figure
7.14). It can also be seen in the figure that the location of the fracture
is independent of the underlying mesh. The fracture surface consists of
unstructured triangular and rectangular elements depending on where the
fracture cuts the tetrahedral elements.
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Figure 7.16: Result of the 3D hydraulic fracture propagation. In the contour
the z-displacement is shown. The deformed configuration is magnified 200 times.

7.4.1 Example 3D hydraulic fracturing

In this last example a planar propagating hydraulic fracture is considered
(Figure 7.15). Fracture growth is again constrained within the initial frac-
ture plane leading to a penny type of hydraulic fracture. Fluid is injected
as a line boundary condition on the left boundary with an injection rate
of Qin = 0.50 · 10−4 mm2/s along the fracture. This leads to an increased
injection rate as the fracture propagates further along the boundary. An
implicit time step with a magnitude of 50 seconds is used. An exponen-
tial mode I traction separation law with τult = 3.33 MPa and a fracture
toughness of Gc = 0.124 N/mm is applied. There is no fluid leakage. The
displacement of the specimen is completely constrained on the back.

The opening of the hydraulic fracture in the specimen is shown in Figure
7.16. The fracture grows radially and the opening displacement is highest in
z-direction. The fracture surface for three different time instances is shown
in Figure 7.17. The mesh is made such that element topology is mirrored
in the y-axis at the centre of the initial fracture to validate the fracture
growth. In the figure it is shown that the fracture is propagating mirrored
in the y-axis demonstrating no abnormal behaviour in the propagation
algorithm. The front locations are also shown in the figure as red spheres.
As the fracture grows the front expands and the number of front points
increases. The fracture front is not a perfect circle due the the element face
to element face propagation. This is not a restriction with the cohesive
zone implementation. A circular normal opening profile of the fracture can
be seen in Figure 7.17c.
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(a) t = 50s.

(b) t = 500s.

(c) t = 2000s.

Figure 7.17: The fracture surface in the penny shaped hydraulic fracture for
three different time instances. The normal opening displacement is shown in the
contour. The front points are indicated with the red circles.
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7.5 Conclusions and future work
In this chapter the implementation of a 3D fracture model using the ex-
tended finite element method is described. A fracture propagates from
element face to element face with the propagation plane being given by a
normal vector and a point on the existing fracture front. With the restric-
tion of only using tetrahedral elements the fracture surface is spanned by a
triangular or by a rectangular surface within an element. When the latter
occurs the fracture surface is not a correct plane since the four cross-points
do not form a plane. This numerical artefact is accepted for now since the
main goal of this chapter is to illustrate the extension of the model to 3D.
The strength of using a level set implementation for the fracture surface
is that the fracture plane is uniquely defined in the mesh. This makes it
possible to integrate the fluid flow along the fracture surface. In a future
work the rectangular surfaces can be subdivided into two triangles giving
a consistent fracture plane.

A three point bending test is used to benchmark the 3D model with
an experimental result. The force displacement curve is consistent with
experimental data. In this simulation fracture propagation is based on a
principal stress criterion with the propagation direction defined. With a
L-shaped fracture test non-planar fracture growth in 3D is demonstrated.

The ELP model is also extended to 3D. Fluid flow along a non-planar
fracture surface is demonstrated. A planar penny shaped hydraulic fracture
is also studied. These first results indicate the possibility to apply the ELP
model in 3D situations. Hydraulic fracture patterns that are impossible
to model in 2D could be investigated with this model. Combining the
implementation with the parallel computing method introduced in Chapter
6 opens the possibility to use larger meshes. This most-likely improves
convergences rates and gives the possibility to further investigate out of
plane fracture propagation.
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Conclusions and outlook

8.1 Conclusions

The main objective of this thesis is to develop numerical techniques that can
be used to simulate realistic hydraulic fracturing treatments. The model
is based on the extended finite element method and was introduced by
Kraaijeveld (2009) and by Irzal et al. (2013) without considering complex
fracture patterns and fluid-driven propagation. The fracture process is
described by a cohesive traction separation law. Fracture propagation is
considered in both linear elastic materials and in poro-elastic materials by
using Biot’s theory. The fluid flow within the porous material is described
by Darcy’s law.

In Chapter 2 a poro-elastic eXtended Finite Element Method (X-FEM)
model is introduced. Fracture propagation and nucleation in a porous ma-
terial induced by mechanical loading are investigated. Both propagation
and nucleation are evaluated based on an average stress criterion. An or-
thotropic material description is used and the propagation criterion was
modified accordingly. The model is validated using the analytical Mandel-
Cryer solution for isotropic and transverse isotropic materials. The fracture
path and propagation velocity are found to depend on the intrinsic perme-
ability of the material.

In Chapter 3 the model is applied to shear failure. The limitation of
fracture growth through only one element within one time increment is
removed. Crack propagation using different levels of mesh refinement is
investigated. Fluid flow across the fracture is found to depend on the prop-
agation step of the fracture. In coarse meshes the fluid flow shows a large
variation due to alternating phases of crack propagation and relaxation. In
a refined mesh this effect is smaller and even vanishes when the fracture
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propagates continuously. Lowering the time step in the refined mesh again
led to step-wise fracture growth. The fluid behaviour found in the coarse
mesh is retrieved again with the refined mesh using smaller time steps.
These results indicate that the model is not completely free of influence of
the element size and of the time step magnitude. Nevertheless the fracture
path is identical for all simulations.

Hydraulic fracturing is considered in Chapter 4. Specifically for hy-
draulic fracturing situations in low permeable rocks a discontinuous pres-
sure description over the fracture was adopted with an additional pressure
within the fracture (the enhanced local pressure model). Hence, the pres-
sure exhibits a jump from the formation to the fracture on the adjacent
sides of the fracture surface. Physically the pressure profile over the frac-
ture is of course continuous but in low permeable rocks the gradient near
the fracture is so steep that a discontinuous approximation is justified. By
doing so it is not necessary to resolve the steep pressure gradient near
the fracture surface. This leads to a more robust simulation and a better
approximation of the fluid pressure in the fracture. The formulation also
ensures that all injected fluid goes exclusively into the fracture. The model
is compared successfully with the analytical KGD hydraulic fracture prob-
lem. Simulated fracture propagation is parallel to the highest confining
stress, which is consistent with experimental data (Weijers et al., 1994).
Fracture nucleation is also studied. A situation where it is energetically
favourable to nucleate a new fracture instead of propagating an existing
hydraulic fracture is reproduced.

The enhanced local pressure model is improved in Chapter 5 to consider
fracture interaction. An additional enrichment field is included per discon-
tinuity to approximate the correct displacement jump when two or more
discontinuities are in the vicinity of each other. Two criteria are introduced
to determine whether or not a hydraulic fracture crosses a natural fracture
and to determine if fluid will divert into the natural fracture. Fracture
crossing is based on the nucleation of a new fracture at the opposite side
of the natural fracture where the hydraulic fracture has stopped. Fluid
is assumed to divert into the natural fracture only when there is fracture
opening giving the fluid a pathway to flow through. These two criteria
are checked simultaneously and the competition between them determines
the interaction behaviour. Simulated fracture interaction is compared with
experimental data from literature. Good agreement is found.

To consider larger meshes with more degrees of freedom, a parallel
implementation of the extended finite element model as well as the en-
hanced pressure model is introduced in Chapter 6. The mesh is divided
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in sub-domains whereby the problem defined on each subdomain is solved
on one computational core. Implementation aspects are described in de-
tail. New degrees of freedom are identified when fractures propagate across
sub-domain boundaries. Therefore, an efficient bookkeeping scheme in-
cluding communication between the sub-domains is needed. The system
of equations is poorly conditioned due to the X-FEM degrees of freedom.
Nevertheless a 100-fold speed-up is achieved on 192 computational cores.
This 50 % efficiency is mainly caused by overhead in solving the system
of equations. From a practical point of view the reduction of computa-
tional time is advantageous. Also the memory available for the simulation
increases when more computational cores are used.

The model is extended to 3D in Chapter 7. The possibility to prop-
agate from element to element is exploited to track the fracture surface.
Examples of planar and non-planar fracture propagation are shown in an
elastic material. A planar propagating hydraulic fracture is also considered
and the implementation of fluid flow along a curved surface is validated.
Fully curved 3D hydraulic fractures are not yet considered.

We conclude that several model improvements are made towards more
realistic hydraulic fracturing simulations. Additional insight in the con-
tinuous pressure formulation is obtained. Allowing for the possibility to
propagate the fracture through multiple elements within one time step gave
more flexibility within the simulations. The enhanced local pressure model
proves to be an efficient tool for the simulation of hydraulic fracturing.
Interaction modelling allows fracture interaction with natural fracture net-
works. Extending this investigation to the influence of layered rocks on the
propagation path is obvious. There are no longer restrictions to the size
of the model by the use of parallel computing power. 3D simulations are
carried out as well.

8.2 Outlook

The enhanced local pressure model is specifically designed for low per-
meable rocks. The fluid leakage from the fracture into the formation is
approximated with an analytical solution. By applying this approximation
the leaked volume is not coupled to the mass balance in the formation.
Based on a separation of scales this assumption is valid as long as the con-
solidation time of elements near the fracture surface is long compared to
the simulation time. In low permeable rocks such as shales this assumption
holds true longer than in more permeable rocks. When the assumption
is violated the leaked volume is not coupled to the formation but is still
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present in the mass balance of the fracture. The enhanced local pressure
model was found to be more accurate than an extended finite element
model with a continuous pressure description across the fracture (Chapter
4). The model is also more robust since it is no longer necessary to re-
solve the pressure gradients near the fracture. As discussed, Meschke and
Leonhart (2015) pioneered a related approach by applying the analytical
approximation of fluid leakage as an enrichment function for the pressure
across the fracture. This approach is somewhat more elaborate, but holds
also for more permeable rocks. At small consolidation times the difference
between the two methods is small. In the enhanced local pressure model
fluid can be injected exclusively in the fracture due the separate degree
of freedom whereas in Meschke and Leonhart (2015) model it cannot. No
additional numerical integration is needed in the enhanced local pressure
model to resolve the steep pressure gradient.

A careful comparison between the two methods is not performed. Do-
ing a thorough comparison would benefit greatly from experimental bench-
marks. As was observed by Coa et al. (2016,in press) different numerical
models with similar constitutive relations can result in a different fracture
history (propagation velocity) for the same problem. Quantitatively com-
paring different numerical methods such as the phase field approach (Lee
et al., 2016), phantom node models (Sobhaniaragh et al., 2016), boundary
element methods (Dong and de Pater, 2001), the finite element method
with remeshing (Schrefler et al., 2006), and other partition of unity ap-
proaches (Mohammadnejad and Andrade, 2016; Meschke and Leonhart,
2015; Gupta and Duarte, 2015) based on an experiment would give much
insight in numerical accuracy and model possibilities. Finally a comparison
with currently used tools in industry would be of great value.

A common approach in many numerical models is the assumption of the
cubic law to describe the fluid flow along the fracture. Since the permeabil-
ity almost completely goes to zero near the tip of the fracture it is difficult
to correctly represent the pressure gradient towards the tip. The cubic law
has been applied in many different numerical methods, see e.g. the finite
element based works (Boone and Ingraffea, 1990; Carrier and Granet, 2012;
Chen, 2012), the phase field method (Lee et al., 2016), and other partition
of unity based models (Irzal et al., 2013). A correction factor is included
to the law in some works to represent tortuosity of the fracture surface
(Meschke and Leonhart, 2015; Mohammadnejad and Andrade, 2016). In a
process zone this is still too simplified due to the damaged part of the ma-
terial where the micro-separations grow. The permeability in the cohesive
zone is larger than in the porous material due to an enhanced flow path
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through the micro-separations, but much lower than in the fully developed
crack. A different constitutive equation for the fluid flow within the co-
hesive zone is possible. Based on the damage parameter that is also used
in the traction separation law, the constitutive relation could be defined
as a Darcy type of flow near the tip of the cohesive zone which gradually
transforms into the cubic law toward the completely damaged part of the
fracture. Further improving the formulation of the permeability within the
cohesive zone would be possible by using the cohesive band formulation as
proposed by Remmers et al. (2013). In the cohesive band formulation the
cohesive zone also has a thickness. In 2D this means that the process zone
is approximated as an area over which fluid flow can be integrated. Volu-
metric changes within the process zone are better approximated compared
to lumping the flow along a line with the traditional cohesive zone.

In Chapter 3 it is illustrated that even on very fine meshes there is a cor-
relation between the time depended fluid flow and the step size through an
element. The element to element propagation is advantageous from imple-
mentation point of view (see Chapter 7) as tip enrichments are superfluous.
Having the possibility to stop the discontinuity within an element would
require tip enrichments and would give the possibility to completely cancel
out mesh dependency. However, the tip enrichments are based on analytical
solutions that approximate the displacement field near the tip (Moës et al.,
1999). In hydraulic fracturing this field depends on the propagation regime
of the fracture determined by material properties and boundary conditions
(Adachi and Detournay, 2008). Instead of using tip enrichment within the
enhanced local pressure model it would be possible to triangulate tip ele-
ments into smaller elements. No assumptions on the propagation regime are
needed, the proposed level set propagation scheme can than still be used
and the computational cost for this procedure are not that severe. The
triangulation is performed locally in an element and there are no bound-
aries that need to match the triangulation. Simply performing one or more
Delaunay triangulations within the tip elements would be sufficient. A pos-
itive side effect would be that both opening as well as the pressure along
the fracture are discretized on a finer mesh which could lead to a more
accurate integration of the cubic law.

Crack propagation based on an average stress is easily implemented but
in some scenarios not accurate. Sharp angles in crack growth can occur
when the stress state is near biaxial. Also negative values in stress due to
the confining pressures can influence the average stress in an undesired way.
An advantage of using an average stress is that also fracture nucleation can
be considered. A very elegant method to determine the crack propagation
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direction is by an energy minimisation approach. Meschke and Dumstorff
(2007) introduced such a method within the extended finite element frame-
work based on a minimisation of total energy. The problem was formulated
such that the crack propagation angle and the increase in crack surface are
additional unknowns of the system. This method unfortunately requires
severe implementation aspects when extending it to 3D. Moës et al. (2011)
introduced a non-local damage approach, the thick level set method. This
approach has similarities with the phase-field approach since a damage pa-
rameter is included regularizing the damage over a larger surface base on
energy restrictions. The difference with the phase field models is that the
damage parameter is only present in a small zone near the fracture sur-
face. The characteristics of the level set are exploited to both propagate
the surface and to define the zone with a damage parameter. The method is
combined with the concept of the extended finite element method to make
the displacement field discontinuous as damage is completed. Despite the
use of the X-FEM to make the displacement field discontinuous there still
exists a necessity to use a sufficiently fine mesh near the fracture to resolve
the damage parameter (Cazes and Moës, 2015). The major advantage of
extended finite elements, namely to allow for coarse meshes, is mostly lost.
An ideal fracture model would combine the strength of the extended finite
element method, i.e. representing a fracture on a coarse mesh, with the
prediction of the fracture path that follows naturally from energy based
methods such as the phase field approach or the thick level set method.

The main advantages of the enhanced local pressure model, i.e. no
necessity to capture the steep pressure gradient near the surface and exclu-
sively injection fluid in the fracture, would be maintained. The numerical
improvement of considering fracture interaction (Chapter 5) is necessary
to represent complex fracture geometries resulting from the energy based
model. Together with the parallelization possibilities (Chapter 6) the com-
bination of the two methods may lead to an optimal fracture model both in
accuracy but also in computational times which is important for industrial
purposes.
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A
Leakage equation

In this appendix Terzaghi’s one dimensional consolidation equation (Terza-
ghi, 1943) is solved for two different boundary conditions. Fist, we look
at the consolidation of a soil layer under load. Secondly, we look at a soil
column under the injection of a constant fluid flow. This is comparable to
the early stages of hydraulic fracturing. The one dimensional consolidation
equation is given by

∂p

∂t
= cv

∂2p

∂x2 . (A.1)

Where cv is the diffusion coefficient and is given by

cv = kM
K + 4

3µ

Ku + 4
3µ

. (A.2)

Here K and µ are the bulk modulus and the shear modulus, respectively.
The undrained bulk modulus is defined as

Ku = K + α2M . (A.3)

Using separation of variables we can derive the well known 1D consoli-
dation equation:

p(z, t) = 2p0
h

∞∑
i=1

1
µi

e−λicvt sin(µiz). (A.4)

Here is p0 the applied load, h is the height of the soil layer,z is the coordinate
system along the height of the consolidation column, and λi and µi are
summation constants defined by
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λi = µ2
i =

((2i− 1)π
2h

)2
(A.5)

Changing the bottom boundary condition to a constant fluid flow Qin
results in the following equation for the pressure

p(z, t) = −Qin
k
z + Qin

k
h− 2Qin

hk

∞∑
i=1

1
µ2
i

e−λicvt cos(µiz). (A.6)

Since the latter solution is depended on the height of the soil layer we
also give the solution for an semi-infinite soil layer

2Qin
k

(√
cvt

π
exp −η

2

4cvt
− η

2erfc
(

η

2
√
cvt

))
. (A.7)

Here η is the distance form the discontinuity to a point the formation.
This equation was derived for the flux of heat trough a semi-infinite solid
by Carslaw and Jaeger (1959).



B
System of equations in the ELP
model

The matrices, defined in Eq. (4.54), are subdivided in four catogories and
are given below.

The stiffness matrices:

Kûû =

∫
Ωe

BTDBdΩe Kûũ =

∫
Ωe

HΓd BTDBdΩe

Kũũ =

∫
Ωe

H2
Γd

BTDBdΩe +

∫
Γ+

d

h
2NTTNdΓ

Kp̂p̂ = −

∫
Ωe

k∇HT∇HdΩe Kp̂p̃ = −

∫
Ωe

kHs
Γd
∇HT∇HdΩe

Kp̃p̂ = −

∫
Ωe

kHs
Γd
∇HT∇HdΩe Kp̃p̃ = −

∫
Ωe

k(Hs
Γd

)2∇HT∇HdΩe

the mass matrices:

Mp̂p̂ = −

∫
Ωe

1
M

HTHdΩe Mp̂p̃ = −

∫
Ωe

1
M
Hs

Γd
HTHdΩe

Mp̃p̂ = −

∫
Ωe

1
M
Hs

Γd
HTHdΩe Mp̃p̃ = −

∫
Ωe

1
M

(Hs
Γd

)2HTHdΩe
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the coupling matrices:

Cûp̂ = −α

∫
Ωe

BT (mH)dΩe Cûp̃ = −α

∫
Ωe

Hs
Γd

BT (mH)dΩe

Cũp̂ = −α

∫
Ωe

HΓd BT (mH)dΩe Cũp̃ = −α

∫
Ωe

HΓdH
s
Γd

BT (mH)dΩe

Cp̂û = −α

∫
Ωe

HTmTBdΩe Cp̂ũ = −α

∫
Ωe

HΓd HTmTBdΩe

Cp̃û = −α

∫
Ωe

Hs
Γd

HTmTBdΩe Cp̃ũ = −α

∫
Ωe

HΓdH
s
Γd

HTmTBdΩe

and the crack flow terms:

Qũpd = −

∫
Γ+

d

hNTndVdΓ Q(2)
pdũ

=

∫
Γd

3
12µ

∂VT

∂s

∂V
∂s

pdu
2
nhnTd NdΓ

Qpdpd =

∫
Γd

1
12µ

∂VT

∂s
u

3
n

∂V
∂s

dΓ Qpdp̂ = −2Ca

∫
Γd

VTHdΓ

Qpdû =

∫
Γd

unVT tT
∂N
∂s

dΓ Q(3)
pdũ

=

∫
Γd

1
2
unVT tT

∂N
∂s

dΓ

Q(2)
pdpd

=

∫
Γd

un

Kf
VTVdΓ Q(1)

pdũ
=

∫
Γd

hVTndNdΓ

Q(3)
pdpd

= 2Ca

∫
Γd

VVT dΓ Qpdp̃ = −Ca

∫
Γd

VTHdΓ

The additional terms in the stiffness matrix are defined by

Dp̂p̂ = θ̄∆tKp̂p̂ + Mp̂p̂ Dp̂p̃ = θ̄∆tKp̂p̃ + Mp̂p̃

Dp̃p̂ = θ̄∆tKp̃p̂ + Mp̃p̂ Dp̃p̃ = θ̄∆tKp̃p̃

Fpdũ = Q(1)
pdũ

+ θ̄∆tQ(2)
pdũ

+ Q(3)
pdũ

Fpdpd = θ̄∆t(Qpdpd + Q(3)
pdpd

) + Q(2)
pdpd

The derivative of N in the tangential direction of the fracture is calculated
as follows:

tT ∂NT

∂s
= tT∇NTWM, (B.1)

with W being the following support matrix in the case of four nodal ele-
ments
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W =



1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


, (B.2)

and M being a support matrix containing the contributions of the tangent
vector on its diagonal

M = diag [tx, ty, tx, ty, tx, ty, tx, ty] . (B.3)
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C
System of equations in the ELP
model with multiple fractures

The discretized balance equations for the enhanced local pressure model
with multiple fractures are given in Equations (5.18)-(5.22). The discretized
forms of the displacement field and the discretized pressure field, and the
constitutive relations are not included in the balance equations. In this
appendix these are added and the complete system of equations is derived.
Including the discretized displacement and pressure fields (Eq. 5.16), the
constitutive relations defined by Terzaghi effective stress (4.18), and by
Darcy’s law (4.20) into Equations (5.18)-(5.22) gives the continuous mo-
mentum balance

∫
Ω

BTDB

(
û +

m∑
i=1

HΓdi
ũi

)
dΩ−

∫
Ω

αBTmH

(
p̂ +

m∑
i=1

HΓdi
p̃
i

)
dΩ =∫

Γt

NT tpdΓ, (C.1)

the continuous mass balance

−

∫
Ω

αHTmTB

(
˙̂u +

m∑
i=1

HΓdi
˙̃ui

)
dΩ

−

∫
Ω

k∇HT∇H

(
p̂ +

m∑
i=1

HΓdi
p̃
i

)
dΩ−

∫
Ω

1
M

HTH

(
˙̂p +

m∑
i=1

HΓdi
˙̃pi

)
dΩ =∫

Γf

HT
ffdΓ, (C.2)
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k = 1...m discontinuous momentum balance equations

∫
Ω

HΓdk
BTDB

(
û +

m∑
i=1

HΓdi
ũ
i

)
dΩ−

∫
Ω

αHΓdk
BTmH

(
p̂ +

m∑
i=1

HΓdi
p̃
i

)
dΩ =∫

Γt

HΓdk
NT tpdΓt −

∫
Γdk

NT
tkdΓdk

−NT

(
m∑

j=1,j 6=k

∫
Γdj

[
HΓdk

(Γ+
dj

)−HΓdk
(Γ−
dj

)
]
tjdΓdj

)
, (C.3)

k = 1...m discontinuous mass balance equations

−

∫
Ω

αHΓdk
HTmTB

(
˙̂u +

m∑
i=1

HΓdi
˙̃ui

)
dΩ

−

∫
Ω

kHΓdk
∇HT (∇H)

(
p̂ +

m∑
i=1

HΓdi
p̃
i

)
dΩ−

∫
Ω

1
M
HΓdk

HTH

(
˙̂p +

m∑
i=1

HΓdi
˙̃pi

)
dΩ =∫

Γf

HΓdk
HT

ffdΓ, (C.4)

and the mass balance of fluid in the fracture

m∑
j=1

∫
Γdj

VT
(

q+
Γd

+ q−Γd

)
· nd
j dΓdj

+

m∑
j=1

∫
Γdj

1
Kf

VTnd
jN

(
ũ
j

+

m∑
l=1,l 6=j

[
HΓdl

(Γ+
dj

)−HΓdl
(Γ−
dj

)
]

ũ
l

)
Vṗ

d
dΓdj

+

m∑
j=1

∫
Γdj

VTnd
jN

(
ũ
j

+

m∑
l=1,l 6=j

[
HΓdl

(Γ+
dj

)−HΓdl
(Γ−
dj

)
]

ũ
l

)
dΓdj

+

m∑
j=1

∫
Γdj

1
12µ

(
nd
jN

(
ũj +

m∑
l=1,l 6=j

[
HΓdl

(Γ+
dj

)−HΓdl
(Γ−
dj

)
]

ũl

))3

∂VT

∂s
·
∂V
∂s

p
d
dΓdj =

m∑
j=1

ψQ
j
in|Sd . (C.5)

Before linearizing these equations the dependency of the displacement jump
in Equation (5.6) on the cohesive traction in the discontinuous momentum
balance must be taken into account. Using the following notation for the
Heaviside jump:
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(
HΓda (Γ+

db
)−HΓda (Γ−db)

)
= ∆HΓda (Γdb), (C.6)

which represents the value of the Heaviside step function of discontinuity
a at a point on discontinuity b. The k = 1...m discontinuous momentum
balance equation are than rewritten as

∫
Ω

HΓdk
BTDB

(
û +

m∑
i=1

HΓdi
ũi

)
dΩ−

∫
Ω

αHΓdk
BTmH

(
p̂ +

m∑
i=1

HΓdi
p̃
i

)
dΩ =∫

Γt

HΓdk
NT tpdΓt −

∫
Γdk

NTQTTdQNũ
k
dΓdk

−

∫
Γdk

NTQTTdQ

m∑
j=1,j 6=k

(
∆HΓdj

(Γdk )Nũj

)
dΓdk

−

(
m∑

j=1,j 6=k

∫
Γdj

NTQTTdQ∆HΓdk
(Γdj )Nũ

j
dΓdj

)

−

(
m∑

j=1,j 6=k

∫
Γdj

NTQTTdQ∆HΓdk
(Γdj )

m∑
l=1,l 6=j

∆HΓdl
(Γdj )Nũ

l
dΓdj

)
(C.7)

By also filling in the analytical leakage law, given in Equation (4.29), leads
to the final mass balance equation in the fracture.

m∑
j=1

∫
Γdj

2CaVTVp
d
dΓdj

−

m∑
j=1

∫
Γdj

CaVTH

(
2p̂ + p̃

j
+

m∑
l=1,l 6=j

∆HΓdl
(Γdj )p̃

l

)
dΓdj

+

m∑
j=1

∫
Γdj

1
Kf

VTnd
jN

(
ũj +

m∑
l=1,l 6=j

∆HΓdl
(Γdj )ũl

)
Vṗ

d
dΓdj

+

m∑
j=1

∫
Γdj

VTnd
jN

(
ũ
j

+

m∑
l=1,l6=j

∆HΓdl
(Γdj )ũ

l

)
dΓdj

+

m∑
j=1

∫
Γdj

1
12µ

(
nd
jN

(
ũj +

m∑
l=1,l 6=j

∆HΓdl
(Γdj )ũl

))3

∂VT

∂s
·
∂V
∂s

p
d
dΓdj =

m∑
j=1

ψQ
j
in|Sd . (C.8)

The final system of equations is given on the next page:
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ũ

1
p̃

1
··
·

C
ũ
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K
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û
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ũ
k

=
−
α

∫ Ω
e
H

Γ k
H
T

m
T

B
dΩ

e

C
p̃
k
û
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ũ
k
p
d

=
−
∫ Γ k

N
T

nd j
V
dΓ

k
−

m ∑
j=

1,
j6=
k

∫ Γ j
∆
H

Γ k
(Γ
j
)N

T
nd j

V
dΓ

j

Q
p
d
ũ
k

=
∫ Γ k

V
T

nd j
N
dΓ

k
+

m ∑
j=

1,
j6=
k

∫ Γ j
∆
H

Γ k
(Γ
j
)V

T
nd j

N
dΓ

j

Q
(3

)
p
d
p
d

=
m ∑ j=

1

∫ Γ j
2C

aV
T

V
dΓ

j
Q
p
d
p̂

=
−

m ∑ j=
1

∫ Γ j
2C

aV
T

H
dΓ

j

Q
p
d
p̃
k

=
−
∫ Γ k

C
aV

T
H
dΓ

k
−

m ∑
j=

1,
j6=
k

∫ Γ j
∆
H

Γ k
(Γ
j
)C

aV
T

H
dΓ

j

Q
(2

)
p
d
p
d

m ∑ j=
1

∫ Γ i

( [u
] j
·n

d j) VT K
f

V
dΓ

j
Q
p
d
p
d

1 12
µ

m ∑ j=
1

∫ Γ j

( [u
] j
·n

d j) 3 ∂
V
T

∂
s
·∂

V ∂
s
dΓ

j



Appendix C 181

Note that the compressibility and tangential fluid flow in the fracture are
only linearized to the pressure in the fracture and not to the displacement.
It was noticed during this work that convergence rates increased when
adopting this approach. The system is solved using a Newton-Raphson
iterative method with a weighted time integration scheme (see Section 4.5).
To simplify the notation of the terms from the iteration and time integration
scheme we adopt the following notation.

A
t+∆t
kr−1

− At = ∆Ak (C.10)

θ̄A
t+∆t
kr−1

− (1− θ̄)At = ∆Aθ̄k (C.11)

where A can be either an additional displacement field or an additional
pressure field belong to discontinuity k and r is the Newton-Raphson iter-
ation. The force vectors then are defined as

fext
û =

∫
Γt

NT tt+∆t
p dΓ

f int
û =

∫
Ωe

BTσr−1dΩe

fext
ũk

=
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HΓdk
NT tt+∆t

p dΓ

f int
ũk
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∆HΓk (Γj)NT
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+ ∆t
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j=1

Kp̂p̃j
∆p̃θ̄

j
+ Mp̂p̂ · (p̂t+∆t
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j=1

Mp̂p̃j
∆p̃

j
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p̃k
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with qt being the tangential fluid flow:

qt = 1
12µ [u]3n

∂V
∂s

pd. (C.12)
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