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Abstract Consider the graph with all permutations of a symbol sequence as vertices, where
two permutations are connected by an edge when they differ by an interchange of two distinct
adjacent symbols. In 1965, D. H. Lehmer conjectured that all vertices in this graph can be
visited by a Hamiltonian path that is possibly imperfect, in the sense of having spurs. Such a
spur visits a vertex twice, with a single vertex in-between. We prove Lehmer’s conjecture for
binary permutations that involve only two distinct symbols. For general symbol sequences,
we identify the stutter permutations as candidate spur tips, and prove that the non-stutter
permutations admit a disjoint cycle cover. We also provide new (simpler) proofs for some
known results.

Keywords Permutation · Minimal-change generation · Hamiltonian path

Mathematics Subject Classification 05C38 · 05C45

1 Introduction

Consider a finite bag (multiset) of n (n ≥ 1) natural numbers, serving as symbols, where the
symbol i occurs ki times; thus, n = ∑∞

i=0 ki . We denote this bag by B(k0, k1, . . .), and call
the tuple (k0, k1, . . .) its signature. We omit trailing ki = 0. The number of non-zero ki is
called the arity. An example for n = 4 is B(1, 2, 1) = [ 0, 1, 1, 2 ]; it is ternary.A permutation
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Fig. 1 Neighbor-swap graph for B(1, 2, 1) = [ 0, 1, 1, 2 ] (12 vertices, 15 edges)
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Fig. 2 Neighbor-swap graph for B(2, 1, 2) = [ 0, 0, 1, 2, 2 ] (30 vertices, 48 edges)

of such a bag is a way of putting the symbols in a sequence. The twelve permutations of
B(1, 2, 1) are the vertices of the graph in Fig. 1.

Two permutations are related by a neighbor swap when they can be obtained from each
other by swapping (interchanging) two distinct adjacent symbols. We denote this relation
by ∼. The neighbor-swap graph of B(k0, k1, . . .) has all permutations of B(k0, k1, . . .) as
vertices,where twopermutations are connectedby an edgewhen they are related by aneighbor
swap. Figure 1 shows the neighbor-swap graph for B(1, 2, 1), and Fig. 2 for B(2, 1, 2). Note
that neighbor-swap graphs whose signatures are a permutation of each other are isomorphic.

We are interested in finding a path along the edges of the neighbor-swap graph visiting
each vertex exactly once. Such a path is known as a Hamiltonian path. If the start and end
vertex of the path are also connected by a graph edge (not appearing in the path), then we
speak of a Hamiltonian cycle.

Generation of permutations in such a minimum-change order is relevant, because it min-
imizes energy consumption in hardware and maximizes the ability to reuse results cached
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The spurs of D. H. Lehmer 297

A B C

Fig. 3 Path with four spurs; at A and C there are single spurs, at B a double spur

while processing previously generated permutations [6, §7.2]. This has for instance applica-
tions in cryptology. In [13], we explain how we encountered this problem in the context of
choreographing a line dance, where each symbol corresponds to the color of an outfit.

If no Hamiltonian path exists, then we can relax the constraints somewhat. One such
relaxation is a maximal path (or cycle) without duplicates, that is, a path that visits a maximal
number of vertices exactly once, such that the unvisited vertices are at minimum distance
from the path. An unvisited vertex u at distance 1 can be visited by sidestepping from a
vertex v on the path to u and then immediately back again to v. In the resulting path, v occurs
twice, with only u in-between. In [8], Lehmer calls such a sidestep to an unvisited vertex
at distance 1 a spur (see Fig. 3), and a Hamiltonian path extended with spurs that visits all
vertices he called an imperfect Hamiltonian path. We will call it a Lehmer path:

Definition 1 A Lehmer path (cycle) in a graph is a path (cycle), possibly with single spurs,
that visits the spur bases twice and all other vertices once.

Lehmer conjectured in [8] (also see [6, Exercise 53 of §7.2.1.3]):

Conjecture 2 Every neighbor-swap graph admits a Lehmer path.

Another relevant relaxation is to find a (vertex-)disjoint cycle cover, that is, a set of vertex-
disjoint simple cycles that visit all permutations exactly once.

In Sect. 2, we review the known results. The condition for existence of a Hamiltonian path
(i.e., without spurs) is presented in Sect. 3, together with a new proof of its necessity, based on
stutter permutations. In Sect. 4, we prove Lehmer’s conjecture for the binary case, including
a new proof for the known case where a Hamiltonian path exists. Finally, Sect. 5 addresses
the general case, proving the existence of a disjoint cycle cover, and Sect. 6 concludes the
article.

2 Known results

The special case where symbols occur just once, corresponds to permutations of a set. Its
neighbor-swap graph is also known as a permutohedron. In this case, there exists a Hamil-
tonian path for every n, and even a Hamiltonian cycle if n ≥ 3 [3,5,10]. Apparently,
17th-century change ringers were already aware of this [1] and [6, §7.2.1.2].

The special case of arity two (n = k0 + k1) corresponds to combinations, or permutations
of a bit string, or k0-subsets of an n-element set. In [2], this problem is partly solved: a
Hamiltonian path exists precisely when either it is trivial (a ki equals 0 or 1), or n is even and
both ki are odd. A more efficient algorithm to construct a Hamiltonian path, when it exists,
is given in [4]. An alternative construction is presented in [12].

The general case (ternary or larger arity) was partly solved in [7,9]. In [7] it was shown
that for a Hamiltonian path to exist it is necessary that the signature has at least two odd ki .
And in [9], a construction for a Hamiltonian path is presented when the signature has at least
two odd ki . This is summarized in
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298 T. Verhoeff

Theorem 3 There exists a Hamiltonian path in the neighbor-swap graph of B(k0, k1, . . .)
precisely when either it is linear (consists of one path), or when at least two ki are odd.

In fact, [9] even presents a Hamiltonian cycle for all those cases, except for signatures of the
form (2k, 1, 1) or a permutation thereof, which are shown not to admit a Hamiltonian cycle.

That leaves the case where the signature has fewer than two odd ki , and no Hamiltonian
path exists. In Sect. 4, we prove this for the binary case, and in Sect. 5 we prove the existence
of a disjoint cycle cover.

3 Condition for Hamiltonian path and its necessity

In this section, we provide a new elementary proof that the condition in Theorem 3 is nec-
essary. To that end, we will partition the vertices of the neighbor-swap graph into even
and odd vertices, such that edges only connect an even vertex with an odd vertex (i.e., the
neighbor-swap graph is bipartite). Hence, on every path, even and odd vertices alternate. If
the difference between the number of even and odd vertices exceeds one, then there cannot
exist a Hamiltonian path. In fact, we give a closed formula for that difference in Theorem 4
below (it is the proof of this theorem that is new).

Let M(k0, k1, . . .) be the number of permutations of B(k0, k1, . . .), then

M(k0, k1, . . .) =
(

n

k0 k1 . . .

)

(1)

where the right-hand side is the multinomial coefficient defined by
(

n

k0 k1 . . .

)

= n!
k0!k1! . . . (2)

Thus, the neighbor-swap graph consists of a single vertex, precisely when all except at most
one ki are zero. Also observe that the neighbor-swap graph is linear exactly when its signature
is binary and at least one ki = 1.

An inversion in a permutation of B(k0, k1, . . .) is defined as a pair of (not necessarily
adjacent) symbols in the permutation occurring out of order, that is, where the symbol occur-
ring on the left exceeds (in value) the symbol occurring on the right. Thus, the number of
inversions in the permutation 2 1 1 0 is five, because out of the six pairs all except the pair 1 1
are out of order.

The parity of a permutation is defined as the parity of its number of inversions. The number
of inversions of a permutation changes by exactly one, when two distinct adjacent elements
are swapped. Thus, neighboring permutations differ in parity. Observe that the graphs in
Figs. 1 and 2 are organized such that the vertices appear in columns, where the number of
inversions increases from left to right. In the first graph, there are six even and six odd vertices,
while the second graph has 16 even and 14 odd vertices (also see Fig. 4, where the vertices
are colored by parity). Hence, the second graph definitely does not admit a Hamiltonian path.

Let D(k0, k1, . . .) be the number of even permutations minus the number of odd permu-
tations of B(k0, k1, . . .). Below, we give a new proof for

Theorem 4

D(k0, k1, . . .) =
{
M(k0 ÷ 2, k1 ÷ 2, . . .) if at most one ki is odd
0 if at least two ki are odd

(3)

where ÷ denotes division without remainder.
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The spurs of D. H. Lehmer 299

Fig. 4 Neighbor-swap graph for B(2, 1, 2)with parity, stutter permutations, and even-odd pairs of non-stutter
permutations marked

To conclude the proof of necessity in Theorem 3, note that D(k0, k1, . . .) equals 1 when at
most one ki is odd and M(k0 ÷ 2, k1 ÷ 2, . . .) = 1. This boils down to either (i) a singleton
graph (all except at most one ki equal 0), or (ii) one ki = 1, another ki is even and positive,
and all others equal 0. In the latter case, the graph is linear. ��
Proof of Theorem 4 Let Π(k0, k1, . . .) be the set of all permutations of B(k0, k1, . . .). First,
we define a subset S(k0, k1, . . .) of the even permutations in Π(k0, k1, . . .). Next, we exhibit
a 1–1 correspondence between all the odd permutations and all those even permutations not
occurring in S(k0, k1, . . .), establishing that the size of S(k0, k1, . . .) equals the left-hand side
of (3). Finally, we show that the size of S(k0, k1, . . .) equals the right-hand side of (3).

To define S(k0, k1, . . .), we consider the elements of a permutation to be indexed from
the left, starting at index 1. There are two kinds of adjacent element pairs, depending on the
parity of the index of the left element. Here, we focus on adjacent pairs whose left index is
odd, in short, referred to as lio pairs. Lio pairs do not overlap, and look like this:

e1 e2 | e3 e4 | . . . | e2 j−i e2 j | . . .

Definition 5 We call a permutation a stutter permutation when all lio pairs consist of two
equal elements, that is, when the element at index 2 j equals the element at index 2 j − 1, for
all relevant j .

Hence, a stutter permutation has the form a a b b . . . y y, possibly with a trailing single z.
For example, 2 2 1 1 0 is a stutter permutation, but 2 1 1 0 is not.

Now define S(k0, k1, . . .) as the set of stutter permutations in Π(k0, k1, . . .), and
N (k0, k1, . . .) as the set of non-stutter permutations in Π(k0, k1, . . .):

Π(k0, k1, . . .) = S(k0, k1, . . .) � N (k0, k1, . . .) (4)
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300 T. Verhoeff

Observe that a stutter permutation is even, since all out-of-order pairs occur in even bunches
due to the stuttering.

Next, we define a 1–1 correspondence between the even and odd permutations in
N (k0, k1, . . .). Note that all permutations with n < 2 are stutter permutations; so,
N (k0, k1, . . .) = ∅. Consider a non-stutter permutation, hence n ≥ 2. Because it is a non-
stutter permutation, there is a lio pair whose elements differ. This permutation is now coupled
to the one obtained by swapping the elements in, say, the leftmost lio pair whose elements dif-
fer. That new permutation is also a non-stutter permutation and it has the opposite parity. See
Fig. 4 for an example of this correspondence. Conclusion: D(k0, k1, . . .) = #S(k0, k1, . . .).

Finally, in a stutter permutation, all symbols, except at most one, occur an even number
of times. Therefore, when two or more ki are odd, there are no stutter permutations, and
thus S(k0, k1, . . .) is empty. When at most one ki is odd, S(k0, k1, . . .) is non-empty. To
determine its size, coalesce each lio pair into a single element, and drop a possibly trailing
single element (which always is the same symbol). You now see that the size of S(k0, k1, . . .)
equals the size of Π(k0 ÷ 2, k1 ÷ 2, . . .), which by definition equals M(k0 ÷ 2, k1 ÷ 2, . . .).
Conclusion: the right-hand side of (3) equals #S(k0, k1, . . .).

This completes the proof of Theorem 4. ��
For later use, we present some properties related to stutter permutations in the following

lemma.

Lemma 6 1. The number of odd permutations never exceeds the number of even permuta-
tions.

2. The number of non-stutter permutations is even.
3. There are no stutter permutations when the signature has two or more odd ki .
4. There is exactly one stutter permutation when the signature is unary, or when it is binary

and one ki = 1 and the other is even, that is, when the graph is linear.
5. A stutter permutation of arity two or more is at distance 1 (in the neighbor-swap graph)

from a non-stutter permutation.
6. The distance (in the neighbor-swap graph) between two distinct stutter permutations is

a multiple of 4.

Theorem 7 To prove Conjecture 2, it suffices to prove the existence of a Hamiltonian path
(or cycle) on all non-stutter permutations.

Proof of Theorem 7 Assume we have a Hamiltonian path (cycle) on all non-stutter permuta-
tions. The stutter permutations, being at distance 1 from that path (Lemma 6.5), can serve as
spur tips in a Lehmer path (cycle). These spurs are single, since their tips are a multiple of 4
apart (Lemma 6.6), and the distance between the tips of higher-order spurs is only 2 (also
see Fig. 3). ��

We now strengthen Conjecture 2 and generalize Theorem 3:

Conjecture 8 For every neighbor-swap graph, the subgraph consisting of its non-stutter
permutations admits a Hamiltonian path. Furthermore, there even exists a Hamiltonian
cycle on the non-stutter permutations, except when

1. the signature arity is zero or one, or
2. the signature is binary, and at least one of the ki is odd, or
3. the signature is a permutation of (2k, 1, 1).

A Hamiltonian cycle is impossible in the indicated cases, because
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1. the graph is a singleton;
2. at least one of the permutations 0k01k1 and 1k10k0 is a non-stutter permutation, and it has

only one neighbor;
3. the edges 0i120 j ∼ 0i210 j , for 0 ≤ i, j and i + j = k0, form a disconnecting set,

and there is an odd number of them (a Hamiltonian cycle would need to cross over an
even number of times between the two components connected by these edges; in one
component 1 precedes 2 in all its permutations, and in the other 2 precedes 1).

Note that if there is only one stutter permutation (Lemma 6.2). then the graph is linear and
the stutter permutation can in fact be incorporated into the path.

4 Proof of the binary case

Weprove the binary case of Conjecture 8 (see Theorem9 below for a precise formulation).We
could focus on the missing part only, where at least one ki is even. However, it turns out that
the odd-odd case can be incorporated into the induction nicely, thanks to the generalization.

We distinguish three cases: odd-even (Sect. 4.2), even-even (Sect. 4.3), and odd-
odd (Sect. 4.4). Before diving into the details, it helps the induction to strengthen the theorem
a bit further, as follows.

Theorem 9 The neighbor-swap graph of binary (i.e., of arity 2) non-stutter permutations
admits a Hamiltonian path. If k0 and k1 are both even, then there exists a Hamiltonian cycle.
Moreover, we have:

1. The path for the odd-even case (k0, k1) can run between

0k01k1
∗∼ 1k1−10k01 (5)

Note that this path cannot avoid the edge

0k01k1 ∼ 0k0−1101k1−1 (6)

2. The cycle for the even-even case (k0, k1) can include these two specific edges (the under-
lined bits in the middle are swapped):

0k0−2101k1−10 ∼ 0k0−11k10 (7)

1k1−2010k0−11 ∼ 1k1−10k01 (8)

Observe that the involved vertices are indeed in N (k0, k1).
We prove Theorem 9 by strong induction on n = k0 + k1 (the length of the permutations)

with k0, k1 ≥ 1. The induction hypothesis is that the theorem holds for all smaller values
of n. There is no need for a separate base case (in a way, the cases (1, k1) act as base case,
because their reduction involves another argument than just the induction hypothesis; they
are trivial anyway because these graphs are linear).

4.1 Preliminary definition and lemma

We recall a definition and lemma (without proof) from [9].

Definition 10 Given four distinct vertices a, b, c, and d in a graph, edge a ∼ b is said to be
parallel to edge c ∼ d when also edges a ∼ c and b ∼ d exist. The latter edges are called
cross edges. We call two isomorphic subgraphs parallel when all the corresponding edges
are parallel.
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302 T. Verhoeff

Fig. 5 How the odd-even case
splits, based on the trailing bit,
with a path H , cycle C , and five
special vertices a1, b1, c1, d0,
and e0, all defined in the text

odd-odd  

   e
ven-even

__1 __0

H

C

a1

b1
c1

d0

e0

Lemma 11 If a path (cycle) and a cycle are vertex disjoint and have a pair of parallel edges,
then they can be glued into a single path (cycle) on the union of their vertices.

4.2 The odd-even case

Without loss of generality, we may assume that k0 ≥ 1 is odd and k1 ≥ 2 even. Split the
graph into two parts, based on the trailing bit of each permutation:

Π(k0, k1) = Π(k0, k1 − 1) · 1 ∪ Π(k0 − 1, k1) · 0 (9)

where V · w denotes the set { vw | v ∈ V } (Fig. 5). Observe that Π(k0, k1 − 1) is now an
odd-odd case without stutter permutations, and Π(k0 − 1, k1) an even-even case. Hence, for
the (non-)stutter permutations of Π(k0, k1) we have

S(k0, k1) = S(k0 − 1, k1) · 0 (10)

N (k0, k1) = Π(k0, k1 − 1) · 1 ∪ N (k0 − 1, k1) · 0 (11)

The induction hypothesis gives us aHamiltonian path H forΠ(k0, k1−1), from a = 0k01k1−1

to c = 1k1−10k0 , including the edge b ∼ c with b = 1k1−2010k0−1, since k0, k1 − 1 ≥ 1. If
k0 = 1, then N (k0 − 1, k1) = ∅, and H · 1 is already a Hamiltonian path for N (k0, k1). Now
assume k0 ≥ 3; hence, k0 −1, k1 ≥ 2. Then the induction hypothesis gives us a Hamiltonian
cycle C for N (k0 − 1, k1) that includes the edge (8) between d = 1k1−2010k0−21 ∼ e =
1k1−10k0−11.

Thus, H · 1 and C · 0 together visit all vertices of N (k0, k1) exactly once. Note that edge
b1 ∼ c1 is parallel to edge d0 ∼ e0, in the sense that edges b1 ∼ d0 and c1 ∼ e0 exist
(swap the trailing two bits):

b1 c1
1k1−2010k0−11 ∼ 1k1−10k01

� �
1k1−2010k0−210 ∼ 1k1−10k0−110

d0 e0

Using Lemma 11, the path H · 1 and cycle C · 0 can now be combined as a1
∗∼ b1 ∼ d0

∗∼
e0 ∼ c1 to obtain a Hamiltonian path for N (k0, k1) from 0k01k1 to 1k1−10k01.

This completes the proof for the odd-even case.

4.3 The even-even case

Assuming that both ki ≥ 2 are even, split the graph into two parts, based on the trailing bit
of each permutation (Fig. 6):

Π(k0, k1) = Π(k0, k1 − 1) · 1 ∪ Π(k0 − 1, k1) · 0 (12)
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Fig. 6 How the even-even case
splits, based on the trailing bit,
with two paths H and H ′, and six
special vertices a1, b1, c1, d0,
e0, and f 0, all defined in the text

odd-even

even-odd

__1 __0a1b1

c1
d0 e0

f0

H
H'

Observe that Π(k0, k1 − 1) is now an even-odd case and Π(k0 − 1, k1) an odd-even case,
and for the (non-)stutter permutations of Π(k0, k1) we have

S(k0, k1) = S(k0, k1 − 1) · 1 ∪ S(k0 − 1, k1) · 0 (13)

N (k0, k1) = N (k0, k1 − 1) · 1 ∪ N (k0 − 1, k1) · 0 (14)

The induction hypothesis gives us

– a Hamiltonian path H for N (k0, k1 − 1), from a = 1k1−10k0 to c = 0k0−11k1−10,
including the unavoidable edge (6) a ∼ b with b = 1k1−2010k0−1 (remember that we
need to interchange the role of 0 and 1 to get an odd-even case), and

– a Hamiltonian path H ′ for N (k0 − 1, k1), from d = 0k0−11k1 to f = 1k1−10k0−11,
including the unavoidable edge (6) d ∼ e with e = 0k0−2101k1−1.

Thus, H · 1 and H ′ · 0 visit all vertices of N (k0, k1) exactly once. Because of the edges
c1 ∼ d0 and f 0 ∼ a1 (swap the trailing two bits):

c1 = 0k0−11k1−101 ∼ 0k0−11k10 = d0

f 0 = 1k1−10k0−110 ∼ 1k1−10k01 = a1

we can combine H ·1 and H ′ ·0 into a singleHamiltonian cycle for N (k0, k1), whichmoreover
includes the required specific edges (7) and (8):

e0 = 0k0−2101k1−10 ∼ 0k0−11k10 = d0

b1 = 1k1−2010k0−11 ∼ 1k1−10k01 = a1

This completes the proof for the even-even case.

4.4 The odd-odd case

Let both ki be odd. Since the cases where one of the ki = 1 are trivial (linear graph), we
assume ki ≥ 3. We split the graph into four parts, based on the trailing two bits of each
permutation (Fig. 7):

Π(k0, k1) = Π(k0, k1 − 2) · 11 ∪
Π(k0 − 1, k1 − 1) · { 01, 10 } ∪
Π(k0 − 2, k1) · 00

(15)

Observe that Π(k0, k1 − 2) and Π(k0 − 2, k1) are now odd-odd cases and Π(k0 − 1, k1 − 1)
is an even-even case. There are no stutter permutations in Π(k0, k1), but there are in Π(k0 −
1, k1−1). So, we have to incorporate those somehow. For that we need to look in more detail
at Π(k0 − 1, k1 − 1).

First, let us deal with the easier parts. The induction hypothesis gives us

– a Hamiltonian path H for Π(k0, k1 − 2), from a = 0k01k1−2 to b = 1k1−20k0 ,
– a Hamiltonian cycle C for N (k0 − 1, k1 − 1), visiting the (non-stutter) permutations

c = 1k1−20k0−11 and d = 0k0−21k1−10, and
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even-even

odd-odd

odd-odd

__11 __01 __10 __00

a11

b11 c01

d10
e00

f00
H

H'

C
C

Fig. 7 How the odd-odd case splits, based on the trailing two bits; the two even-even parts are isomorphic
and parallel (by swapping the trailing two bits), with two paths H and H ′, two cycles C , and six special
vertices a11, b11, c01, d10, e00, and f 00, all defined in the text

Fig. 8 Parallel even-length cycles with single spurs (left); combined into one cycle (right)

– a Hamiltonian path H ′ for Π(k0 − 2, k1), from e = 0k0−21k1 to f = 1k10k0−2.

Note that we have the edges c01 ∼ b11 and d10 ∼ e00 between these parts (swap underlined
bits):

c01 = 1k1−20k0−1101 ∼ 1k1−20k011 = b11 (16)

d10 = 0k0−21k1−1010 ∼ 0k0−21k100 = e00 (17)

The two cycles C · 01 and C · 10 are isomorphic and parallel, and can incorporate the stutter
permutations N (k0−1, k1,−1)·{ 01, 10 } as spurs. These two spurred cycles can be combined
into one cycle, since the length of C is even (Lemma 6.2). The following lemma states this
in general terms.

Lemma 12 Two parallel cycles of even length and parallel single spurs can be combined
into one cycle. Furthermore, we can select a specific edge of a cycle without spurs to appear
in the combined cycle.

Proof See Fig. 8. The two cycles can be combined into one cycle by using all cross edges,
alternating up and down. This works because the cycle has an even length. The spurs are
incorporated by replacing the cross edge at its base with the edge to the neighboring spur tip,
its cross edge, and the edge back to the corresponding neighbor in the other cycle.

Note that of each cycle (without spurs), every other edge is included in the combined
cycle, such that no parallel edges are present. Thus, there are two versions, depending on
which edge is selected at the start. ��
Unfortunately, this cycle for Π(k0 − 1, k1 − 1) · { 01, 10 } cannot be combined easily with
the two paths to form a path for Π(k0, k1). We need to look into the structure of the two
isomorphic even-even parts. They can be split further based on two more trailing bits (see
Fig. 9). This reveals two parallel even-even subparts for (k0 − 1, k1 − 3) on the left, four
doubly parallel odd-odd subparts for (k0 − 2, k1 − 2) in the middle, and two more parallel
even-even subparts for (k0 − 3, k1 − 1).

The stutter permutations are in the even-even subparts. The two cycles for (k0 −1, k1 −3)
can be combined with the stutter permutations as spurs according to Lemma 12. The same
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odd-odd

even-even

odd-odd

even-even     

__1101 __0101 __1001 __0001c01

odd-odd

     
 even-even

odd-odd

even-even

__1110 __0110 __1010 __0010

d10

c'01

d'10

u01

v10

Fig. 9 How the two parallel cycles for the even-even parts in Fig. 7 split, based on two more trailing bits

Fig. 10 Four doubly parallel paths (left) combined into one modular path (right)

applies to the two cycles for (k0 − 3, k1 − 1). Note these permutations u01, c′01, v10,
and d ′10:

u01 = 0k0−21k1−301101 ∼ 0k0−21k1−20101 = c′01
v10 = 1k1−20k0−310010 ∼ 1k1−20k0−21010 = d ′10

Permutations u01 and v10 are on the even-even cycles, and they are not at the base of a
spur. If k1 = 3, then u is a stutter permutation itself. Similarly, if k0 = 3, then v is a stutter
permutation. In those cases, the even-even subpart consists of one permutation only, and will
be incorporated like the double cycle in other cases. According to Lemma 12, we can cover

– Π(k0 − 1, k1 − 3) · { 1101, 1110 } by a Hamiltonian cycle, including the stutter permu-
tations of Π(k0 − 1, k1 − 3) and the edge u01 ∼ u10, and

– Π(k0 − 3, k1 − 1) · { 0001, 0010 } by a Hamiltonian cycle, including the stutter permu-
tations of Π(k0 − 3, k1 − 1) and the edge v10 ∼ v01.

We now focus on the four doubly parallel paths for the odd-odd subparts:

Π(k0 − 2, k1 − 2) · { 0101, 1001, 0110, 1010 }
They can easily be combined into one cycle, but we need a path from c01 to d10, such that
the two Hamiltonian cycles can be combined with it. To achieve this combination, we will
see to it that this path will contain the edges c′01 ∼ c′10 and d ′10 ∼ d ′01, which are parallel
to the edges on the cycles mentioned above.

The four paths have even length (Lemma 6.2). Figure 10 shows how isomorphic modules
of length 2 can be used to walk from c01 to w. This module can be repeated, closing off with
the module fromw to d10. It is also clear that the desired edges c′01 ∼ c′10 and d ′10 ∼ d ′01
are on the combined path.

This completes the proof for the odd-odd case, and of Theorem 9. ��
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5 The general case

Since [9] solved the general case when at least two ki are odd, only the case of arity three or
morewith atmost one odd ki remains. In that case, there are (at least two) stutter permutations.
We will prove a somewhat weaker result that looks like a promising step towards proving
Conjecture 8.

Theorem 13 When the arity is at least 3 and at most one ki is odd, the neighbor-swap graph
of non-stutter permutations admits a disjoint cycle cover, that is, a set of vertex-disjoint
cycles that visit all permutations exactly once.

To prove Conjecture 8, it now suffices to show that these cycles have suitable parallel
edges. Experimental evidence shows an abundance of choices for cycles and such edges.
For instance, our proof below constructs a cover for the 90 permutations of Π(2, 2, 2) with
6 cycles, where these cycles have 16 pairs of parallel edges.

WeproveTheorem13by strong induction onn, distinguishing the cases all-even (Sect. 5.1)
and all-but-one-even (Sect. 5.2), where the latter has one special case: (even, 2, 1), handled
in Sect. 5.3, which in turn involves the cases (even, 1, 1) in Sect. 5.4 and (odd, 2, 1) in Sect. 5.5.
The induction hypothesis is that the theorem holds for all smaller n. Let k be the arity (number
of non-zero ki ).

5.1 The all-even case

Split the graph based on the trailing two symbols x and y of each permutation. There are two
cases, depending on whether the two trailing symbols are equal.

– Case x = y: This gives rise to k subgraphs with an all-even signature of arity k or k − 1.
These have the stutter permutations of the original graph. The induction hypothesis gives
us a disjoint cycle cover for the non-stutter permutations of each of these subgraphs.

– Case x �= y: This gives rise to
(k
2

)
pairs of subgraphs of arity k that have exactly twoodd ki .

They have no stutter permutations. According to [9], each admits at least a Hamiltonian
path (in fact, a cycle, except in the case of (even, 1, 1)). Of each pair, one subgraph
has permutations ending in xy, the other ending in yx . Hence, they are isomorphic and
parallel. Thus, the two paths can be combined into one Hamiltonian cycle for the pair.

All these cycles together form a disjoint cycle cover of the non-stutter permutations. This
completes the proof of the all-even case.

5.2 The all-but-one-even case, not (even, 2, 1)

Split the graph based on the trailing symbol x of each permutation. There are two cases,
depending on the parity of kx (how often x occurs).

– Case kx is odd: This gives rise to one subgraph with all-even signature of arity k or
k − 1. This has the stutter permutations of the original graph. The induction hypothesis
(or Theorem 9 if the arity dropped to 2) gives us a disjoint cycle cover for the non-stutter
permutations of this subgraph.

– Case kx is even: This gives rise to k − 1 subgraphs with arity k and exactly two odd ki .
According to [9], each admits a Hamiltonian cycle, except when its signature is a per-
mutation of (even, 1, 1). This happens when the original graph has a signature that is
a permutation of (even, 2, 1). This actually happens twice in case of (2, 2, 1). We deal
with the case (even, 2, 1) in Sect. 5.3.
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c d

100002 000012

200001210000

120000

021000

Fig. 11 On the left N (4, 2, 1) split according to trailing symbol: N (4, 2) · 2 at the top, Π(4, 1, 1) · 1 at the
back right, Π(3, 2, 1) in the front left; on the right Π(4, 1, 1) with special vertices marked

All these cycles together form a disjoint cycle cover of the non-stutter permutations. This
completes the proof of the all-but-one-even case, except for (even, 2, 1).

5.3 The special case (even, 2, 1)

In [11], a non-inductive construction is given for a Hamiltonian cycle on the non-stutter
permutations of (even, 2, 1). We now present a simpler construction, that uses inductive
constructions of special Hamiltonian paths for (even, 1, 1) and (odd, 2, 1).

As previously in Sect. 5.2, we split the graph based on the trailing symbol x . There are
three cases (also see Fig. 11):

– Case x = 0: This leads to a subgraph with signature (odd, 2, 1), having no stutter
permutations. It may admit a Hamiltonian cycle, but we will show in Sect. 5.5 that there
is also a Hamiltonian path from a = 120k0−11 to b = 0210k0−21.

– Case x = 1: This leads to a subgraph with signature (even, 1, 1), having no stutter
permutations. It admits a Hamiltonian path from c = 120k0 to d = 0210k0−1, which we
will exhibit in Sect. 5.4.

– Case x = 2: This leads to a subgraph with signature (even, 2), contributing all stutter
permutations. It admits a Hamiltonian cycle on the non-stutter permutations according
to Theorem 9.

Note that in the original graph, we have the edges a0 ∼ c1 and b0 ∼ d1:

a0 = 120k0−110 ∼ 120k01 = c1

b0 = 0210k0−210 ∼ 0210k0−11 = d1

So, the paths for x = 0 and x = 1 can be connected into one cycle. In its turn, this new cycle
can be glued with the cycle for x = 2.

This completes the case (even, 2, 1).

5.4 The special case (even, 1, 1)

We need to establish a Hamiltonian path for Π(even, 1, 1) from c = 120k0 to d = 0120k0−1.
The inductive structure of Π(even, 1, 1) is clear from Fig. 11 (right). The entire top line has
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a b

Fig. 12 On the left Π(3, 2, 1) split according to trailing symbols (see text); on the right Π(3, 1, 1) · 1 ∪
Π(3, 1) · 12 with special vertices marked

permutations that end in 2; the top left-hand corner corresponds to 10k02; the top right-hand
corner to 0k012. The right line below the top has permutations ending in 1; the bottom right-
hand corner corresponds to 20k01, and the bottom left-hand corner to 210k0 . Incrementing
k0 by 2 adds two lines at the top, and two lines at the right, which can be connected to the
shown path as an L turned 180◦. This establishes a path from vertex c to d for (even, 1, 1).

5.5 The special case (odd, 2, 1)

Although a Hamiltonian path is known to exist for Π(odd, 2, 1), we want a path from a =
120k01 to b = 0210k0−11, in order to solve (even, 2, 1). We split Π(odd, 2, 1) according to
the trailing one or two symbols (Fig. 12, left):

– Case 00: This yields a subgraphwith signature (odd, 2, 1). By the induction hypothesis,
we have a Hamiltonian path from a′ = 120k0−21 to b = 0210k0−31. It is shown in the
front left of Fig. 12.

– Case 20 and 02: These are two isomorphic and parallel subgraphs with signature
(even, 2). They include stutter permutations. Theorem 9 gives us a Hamiltonian cycle on
the non-stutter permutations, and by Lemma 12 these cycles can be combined with the
stutter permutations, into a single cycle without duplicates. They are shown at the top
front of Fig. 12.

– Case 10: This yields a subgraph with signature (even, 1, 1). From Sect. 5.4 we obtain
a Hamiltonian path from c′ to d ′, that can be connected to Π(odd, 1, 1) · 00 via edges a′
and b′, to yield a cycle. It is shown at the bottom center of Fig. 12.

– Cases 12 and 1: The first is a linear subgraphwith signature (odd, 1). The second con-
cerns a subgraph with signature (odd, 1, 1). For their union, there is a Hamiltonian path
from a to b. The construction is similar to the one for (even, 1, 1) presented in Sect. 5.4.
This path is shown in the back right of Fig. 12, and also to the far right.

The resulting cycles and paths can be combined, through appropriate parallel edges (there
are many choices that work), into the desired path for Π(odd, 2, 1) from a to b.
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This completes the proof of special case (odd, 2, 1), and of Theorem 13. ��

6 Conclusion

Fifty years ago in [8],D.H.Lehmer conjectured that the neighbor-swapgraphonpermutations
of any symbol (number) sequence admits a Lehmer path, that is, it admits an ‘imperfect’
Hamiltonian path possibly involving spurs.

Our main contribution is the insight that the stutter permutations can serve as the spur
tips. This allowed us to reformulate the conjecture in terms of the existence of a Hamiltonian
path on the set of non-stutter permutations (Conjecture 8), since each stutter permutation
is at distance 1 from a non-stutter permutation. These stutter permutations also allowed us
to present a more elegant proof of the necessary condition for the existence of Hamiltonian
paths in the general case.

We have presented a proof for Lehmer’s conjecture in case of binary sequences involving
just two symbols. That is, the set of non-stutter permutations of a binary sequence admits a
Hamiltonian path. For the general case (ternary or higher arity), we proved the existence of
a disjoint cycle cover on the set of non-stutter permutations. The part of our new conjecture
that remains open is that the neighbor-swap graph on the non-stutter permutations of any
sequence of arity at least three with at most one odd frequency ki admits a Hamiltonian cycle.

Our inductive approach to the general case looks promising since there are actually many
choices for disjoint cycle covers and the cycles have many parallel edges. To glue the cycles
of our disjoint cycle cover into a single Hamiltonian cycle, careful attention is needed for
administrative details about the presence of parallel edges among the cycles.

It should be noted that the approach of [9], based on linearizations of posets, does not
work for the set of non-stutter permutations, since in general this set is not equal to the set of
linearizations of some poset. However, another structure than posets might well be the key.
Our approach possibly also opens the door for a new proof of the case with two or more odd
frequencies.

We implemented and tested our constructions in Mathematica [14].
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