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Analysis of vibration exercise at varying
frequencies by different fatigue estimators

Lin Xu, Student Member, IEEE, Chiara Rabotti, Member, IEEE, and Massimo Mischi, Senior Member, IEEE

Abstract—Vibration exercise (VE) has been suggested to im-
prove muscle strength and power performance, due to enhanced
neuromuscular demand. However, understanding of the most
appropriate VE protocols is lacking, limiting the optimal use
of VE in rehabilitation programs. In this study, the fatiguing
effect of vibration at different frequencies was investigated by
employing a force-modulation VE system. Twenty volunteers
performed 12-s isometric contractions of the biceps brachii with
a load consisting of a baseline force of 80% of their maximum
voluntary contraction (MVC) and a superimposed sinusoidal
force at 0 (control condition with no vibration), 20, 30, and 40
Hz. Mechanical fatigue was estimated by assessment of MVC
decay after each task while myoelectric fatigue was estimated by
analysis of multichannel EMG signals recorded during VE. EMG
conduction velocity, spectral compression, power, and fractal
dimension were estimated as indicators of myoelectric fatigue.
Our results suggest vibration, in particular at 30 Hz, to produce a
larger degree of fatigue as compared to control condition. These
results motivate further research aiming at introducing VE in
rehabilitation programs with improved training protocols.

Index Terms—Electromyography, Vibration exercise, Muscle
fatigue, Conduction velocity, Fractal dimension.

I. INTRODUCTION

V Ibration exercise (VE) has been reported to provide
several important advantages over conventional strength

training and has therefore been suggested as an alternative
training modality to improve muscle strength and power
performance [1], [2], [3]. Whole body vibration platforms
have been suggested to be an effective modality to exercise
the lower limbs and have become the most widely adopted
vibration platforms [4], [5], [6], [7]. Alternative devices, such
as vibrating dumbbells [1], vibrating barbells [8], and force-
modulated vibration devices [9], [10], have also been proposed
for the upper limbs.

The beneficial effects of VE in relation to muscle activation,
strength, and power performance [1], [5], [9] have been
associated with increased electromyography (EMG) activity
observed during VE [1], [9], [11], which seems partly to be
ascribed to a specific reflex mechanism named tonic vibration
reflex (TVR) [12], [13], [14]. TVR is derived from the stim-
ulation of Ia-afferents when a sinusoidal vibration is directly
applied to a muscle or a tendon [13], [15], [16] and com-
posed of motor unit activity synchronized and unsynchronized
with the vibration cycle [17], [18]. Through TVR, muscles
try to achieve vibration dampening and joint stiffening by
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preferential recruitment of faster motor units [13], [19]. In
addition, TVR is also reported to be modulated by alterations
in spindle sensitivity through γ feedback [13], [20]. However,
studies have also suggested that TVR may contribute to muscle
fatigue and/or increase the risk of cumulative trauma disorders
observed after repetitive exposure of the hand to vibration [21].

Furthermore, it is reported that muscle response and adap-
tation to vibrating loads seem to be influenced by muscle
contraction level [9], [14], [22]. Mischi and Cardinale [9]
investigated how vibration affects muscle activation when su-
perimposed to various levels of muscle tension and suggested
that the effectiveness of such a modulation is clearly muscle-
tension dependent. In addition, the vibration-induced increase
in EMG activity and the degree of motor-unit synchronization
seem also to be influenced by the characteristics of the input
vibrating load, i.e., frequency and amplitude [5], [14], [23].
The VE frequencies adopted in previous studies were in the
15-60 Hz range [9], [23], [24]. However, the effect of different
VE frequencies may differ for different muscles together with
the optimal frequency to determine the best training stimulus.

Although several studies have been carried out, it is evi-
dent that a thorough understanding of the mechanisms and
the neuromuscular responses involved in VE is still lacking,
hampering the identification of the most appropriate vibration
training protocols for rehabilitation programs. To better under-
stand the neuromuscular responses to VE, the present study
investigates the fatiguing effect of VE at different frequencies
during sustained contraction, including mechanical fatigue
and myoelectrical fatigue. To this end, a dedicated prototype
realized in our previous study [25] was adopted that can
apply a vibrating force to the muscle. Such a system has
been shown to provide full control of the generated force,
and vibration consists in a sinusoidal force modulation applied
to the muscle. Twenty healthy volunteers were instructed to
perform 12-s sustained isometric contractions of the biceps
brachii. The adopted vibrating force was a superimposition of a
baseline load corresponding to 80% of the maximum voluntary
contraction (MVC) and a vibrating load with frequencies
ranging from 0 (no vibration) to 40 Hz.

Mechanical fatigue was identified with the decay in force-
production capability and assessed by MVC tests prior to
and after each task. Myoelectric fatigue was assessed by
analysing the EMG signals recorded during the 12-s isomet-
ric contraction. It is well reported that the power spectral
density of the EMG signals undergoes compression towards
lower frequencies during sustained contraction, resulting in
a decrease in the MF [26], [27]. An increase in fatigue is
also associated with an decrease in the motor unit conduction
velocity (CV) along the muscle-fiber [26], [27]. The EMG root
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mean square (RMS) value, being related to the mean power
of the signal, is also found to increase with increasing fatigue
during sustained contraction [28]. Recent studies indicated
that the fractal dimension (FD) of the EMG signal decrease
during fatiguing isometric contraction [29]. An estimate of
the fatiguing effect of exercise can be derived as the angular
coefficient of the linear fit of the MF, CV, RMS, and FD
evolutions over time [26], [27], [29].

Several methods have been proposed for CV estimation in
the literature, including calculation of the phase difference
[30], [31], detection of spectral dips [32], [33], maximization
of cross-correlation function [34], and estimation of the max-
imum likelihood (ML) [35], [36], [37]. The phase difference
method is very sensitive to additive noise with respect to other
techniques that use the same information [38]. For the use of
the spectral dips method, one of the main issue is the large
variance in the dip detection, which may be due to the variance
of the estimated power spectrum [38]. The ML method, unlike
the cross-correlation method, is implemented in the frequency
domain, enabling CV estimation without resolution limitation
due to the time-sampling rate [38]. Furthermore, the ML
method, compared to the phase difference method, permits
a complete exploitation of our multichannel measurements
because it allows using all the available channels, leading to
an increased robustness to a low signal to noise ratio. The ML
method has, therefore, been adopted for the CV estimation in
the present study.

In general, the EMG spectrum recorded during VE shows
sharp peaks at the vibration frequency (SPVF). In some
studies, these SPVF were considered as motion artifacts and
excluded from the EMG analysis [2], [9], [39]. However, some
other studies suggested those SPVF to be vibration-induced
muscle activity [14], [40], [41]. In the present study, in order to
fairly examine the fatigue effect introduced by VE at different
frequencies, estimation for the four fatigue indicators was
performed under two conditions: with and without removing
the SPVF.

II. METHOD

A. Measurement setup

1) Actuator: The adopted actuator, whose scheme is shown
in Fig. 1, has been described in detail elsewhere [25]. Briefly,
an electrical motor generates a force consisting of a baseline
force with superimposed sinusoidal force modulation. An
example of such vibration force is given in Fig. 2. A planetary
gearbox is connected to the motor, increasing the torque
by a factor of 10 at the output shaft. A aluminium bar is
connected to this shaft to apply the generated force vertically
to the subject via a strap and a handle. The position of
the bar is monitored by a rotary encoder embedded in the
motor, providing a visual feedback to the training subject. The
input voltage to the motor driver is controlled by dedicated
software implemented in LabViewr (National Instruments,
Austin, TX).

The relationship between the driving voltage to the motor
and the generated force was calibrated by means of a load
cell LCAE-35kg (Omega Engineering Inc., Stamford, CT,

Fig. 1. Scheme of the measurement setup.

USA), which uses resistance-based force sensors in full bridge
configuration and is embedded in the aluminium bar [42]. The
dedicated force calibration permitted applying to the muscle a
well determined force, the same for all vibration frequencies.
This step is essential to assess the fatiguing effects of different
vibration frequencies.

2) EMG recording: Surface EMG was recorded from the
biceps during each experimental trial using a high-density
electrode grid, which consists of 8× 8 contact Ag-AgCl elec-
trodes with diameter of 2 mm and inter-electrode distance of
4 mm. The electrode grid was placed between the tendon at the
elbow side and the muscle belly, with its columns aligned with
the muscle fibers, as shown in Fig. 3. This position, distant
from the muscle fiber innervation zone, enabled the EMG CV
estimation by detecting a single propagation direction of the
action potentials. The detected EMG signals were acquired by
a 64-channel Refar amplifier (TMS International, Enschede,
the Netherlands) with a sampling frequency of 2048 Hz.
Active shielding and grounding of the cables were used for
reduction of the electromagnetic interference (50 Hz). The
ground electrode was placed on top of the right clavicle.
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Fig. 2. Example of VE loading function: baseline with superimposed
sinusoidal vibration.
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Fig. 3. High-density electrode grid showing the muscle fiber orientation and
the two sets of electrodes adopted for MF, RMS, and FD estimation.

B. Subjects

Twenty male subjects (age = 28± 5 years) volunteered for
the experiment. All the subjects were right handed. They were
healthy with no previous neurological disorder or injuries of
the upper limbs. Written informed consent was obtained from
every subject prior to participation in the study, and the test
procedures were approved by the board of the Student Sport
Centre of the Eindhoven University of Technology.

C. Measurement protocol

As shown in Fig. 1, subjects were seated on a bench
above the actuator and hold the handle with their elbow at
90◦. Their back was supported in order to avoid shoulder
movements which could influence the contraction of the biceps
brachii. To maintain this gesture, the shaft position of the
motor was monitored by the rotary encoder embedded in
the actuator and was provided to the subject using a visual
feedback displayed on a monitor. The MVC for each subject
was then derived according to the following protocol. The
subjects were instructed to pull the handle with 3-s maximal
isometric contraction three times with a 1-min rest interval
between each test. Preliminary dedicated measurements for
the protocol design indicated this time interval to be adequate
for the maximum force recovery. For each 3-s contraction, the
maximum force was estimated based on the load cell output
and the maximum of the three estimates was considered as the
MVC.

After establishing the MVC, the subjects maintained the
same position and performed 12-s isometric contractions. The
force, applied by the actuator during the entire 12-s contrac-
tion, was the combination of a steady baseline force at 80%
of the MVC and a superimposed sinusoidal force modulation
with amplitude equal to 60% of the baseline (Fig. 2). Four
trials were performed using a randomized cross-over design:
with no vibration (control), and vibration at 20, 30, and 40 Hz.
Each trial was followed by a recovery period of 12 minutes.
Our dedicated measurements for the protocol design suggested
12-min to be adequate for muscle recovery while limiting the
duration of the whole protocol. Multi-channel surface EMG
were recorded during each 12-s trial. The MVC was also

measured after each trial in order to estimate mechanical
fatigue.

D. Signal processing

1) Data preprocessing: For the MF, RMS, and FD analysis,
one single bipolar signal was extracted by taking the difference
of the average EMG in two subsets of two electrodes, as shown
in Fig. 3. For the CV estimation, all the EMG signals were
first normalized to obtain zero mean and unit variance and then
bipolarized along the muscle fiber by subtracting the adjacent
electrodes signals in the same column, leading to 8 parallel
columns of 7 bipolar signals. Fig. 4 shows an example of the
bipolar signals recorded by one column of the electrode grid.

The derived EMG signals were first band-pass filtered
between 20-450 Hz using a fourth-order Butterworth filter and
then divided into adjacent 1-s, no-overlapping epochs for a
total number of 12 epochs [43]. MF, CV, RMS, and FD were
estimated for each epoch both with and without removing the
SPVF. For the estimation of MF, CV, and RMS, which can
be calculated in the frequency domain, SPVF removal was
obtained by nulling the spectral components at the vibration
frequency and its harmonics [9]. For the FD calculated in the
time domain, the SPVF were removed by notch filtering [2].

2) MF estimation: The MF was estimated as the first
statistical moment of the Short-time Fourier Transform (STFT)
amplitude spectrum,

MF =

∑450
f=20 f · Sf∑450
f=20 Sf

, (1)

where f is the frequency [Hz] and Sf the amplitude spectrum
at frequency f .

3) CV estimation: The progression of CV was estimated
using the ML method described in [35], [37]. For the 8
(columns) × 7 (rows) bipolar EMG signals derived for CV
estimation, we assume that signal xrc from the rth row and
cth column is delayed by a number, θ, of samples relative to
the previous row and embedded in additive, white, Gaussian

Fig. 4. Example of the EMG signals recorded by one column of the electrode
grid with 30 Hz vibration.
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noise vrc(n) with variance σ2
rc. The multichannel signal model

is then defined by

xrc(n) = sc[n− (r − 1)θ] + vrc(n),

n = 1, ..., N ; r = 1, ..., Nr; c = 1, ..., Nc (2)

where r is the indicator of rows, Nr the number of rows,
c the indicator of columns, Nc the number of columns, N
the number of samples, and sc(n) is the noise-free signal at
column c. The CV was calculated by: CV = d ·fs/θ, where d
is the inter-electrode distance and fs the sampling frequency.

The CV calculation requires the estimation of θ, which can
be obtained by the maximization of p(θ|x11, ..., xNrNc

, sc),
where xrc and sc are the vector representation of xrc(n)
and sc(n), respectively. Using Bayesian inference and as-
suming p(θ) uniform, maximization of p(θ|x11, ..., xNrNc

, sc)
corresponds to the maximization of the multivariate Gaussian
Probability Density Function (PDF) p(x11, ..., xNrNc

|θ, sc) of
the available observations. The ML estimation of θ is then
given by (see appendix)

θ̂ = argmax
θ

( Nc∑
c=1

Nr∑
r=1

Nr∑
m=1

1

2π

∫ π

−π
Xrc(e

jω)X∗
mc(e

jω)ej(r−m)θωdω
)
, (3)

where ∗ indicates the complex conjugate and Xrc(e
jω) and

Xmc(e
jω) denote the STFT of xrc(n) and xmc(n), respec-

tively, which are continuous-valued function of the angular
frequency ω. In (3), θ no longer needs to be constrained to
integer values but can be treated as continuous-valued.

To find the optimum value for θ, two search steps were
performed. A first rough estimation of θ, θ̂1, was obtained
by finding the maximum value of the integral in (3) with θ
ranging from 0.5 to 10 samples in steps of 0.5 sample. With
the given inter-electrode distance of 4 mm and a sampling
frequency of 2048 Hz, this search range of θ corresponds to
CV ranging from 0.82 to 16.4 m/s, which fully covers the CV
range reported in the literature for the biceps brachii [44], [45].
More accurate search of the maximum value of the integral in
(3) was then performed in a small range (θ̂1± 0.5) in steps of
0.01. Given the adopted sampling frequency (2048 Hz), this
step length leads to a resolution of 0.005 ms for the estimated
delay.

4) RMS estimation: In order to perform fatigue estimation
with SPVF removal in the frequency domain, the RMS esti-
mation was performed by using of Parseval’s equality, as given
by

EMGRMS =

√√√√ 1

K

K∑
k=1

|x[k]|2 =
1

K

√√√√ K∑
k=1

|X[k]|2, (4)

where X[k] is the Fourier Transform of x[k] and K the number
of samples.

5) FD estimation: FD gives a quantitative indication of
the chaotic behaviour of the signal. The box-counting method
described in [46] was employed to estimate FD in this study.
Fractals show an inverse power law relationship between the
number of boxes required to cover the signal N and the box
size L, as given by

N = L−FD. (5)

To estimate FD, a set of square boxes with different sizes
are used to cover the signal. The number of boxes required
to cover the signal will increase exponentially as the box
size decreases. An approximately linear relationship can be
obtained by plotting the log of the number of boxes (log N)
versus the log of the inverse of the box size (log l/L). The
slope of the regression line is then the FD.

However, for nature fractal structures, this linear relation-
ship exits only over a limited range of box sizes over which
self similarity exits in the waveform. Therefore, the log N vs.
log 1/L plots were first made in a wide range of box sizes
(2-512) and the correct range of box sizes was then chosen to
incorporate the region over which a linear relationship existed
between log N and log 1/L.

6) Fatigue estimation: Each myoelectric fatigue indicator
was estimated in every 1-s epoch. Linear regression was then
applied to the values obtained from all the epochs during each
task and the slope of the regression line was used as the
estimation for myoelectric muscle fatigue [47], [29]. Similar to
previous studies [47], subject exclusion was performed based
on the regression coefficient of MF and CV since they are
reported to be much higher than that of RMS and FD [29],
[47]. Subjects with MF or CV regression coefficient higher
than 0.6 were included, resulting in 15 subjects for all the four
fatigue indicators. For each indicator, the estimated slopes at
different vibration frequencies for one subject were normalized
with respect to the maximum decay (MF, CV, and FD) or
increase (RMS) in order to reduce the bias caused by the
differences among subjects. All the analysis was implemented
in Matlabr (MathWorks, Natick, MA).

E. Statistical analysis

Statistical analysis was performed on both myoelectric
fatigue and mechanical fatigue. Mechanical fatigue was esti-
mated as the relative drop in MVC after each task. All data are
presented as mean and SD. One sample Kolmogorov-Smirnov
test suggested our data to be normally distributed [48]. There-
fore, for each fatigue indicator, the effect of different vibration
frequencies was examined globally by a one-way ANOVA,
being each group represented by fatigue indicators at a given
vibration frequency, and compared individually between each
two groups by a post hoc test using Tukey’s least significant
difference procedure [49].

III. RESULTS

A. MF estimation

MF was first estimated after removing the SPVF. The initial
MFs for each subjects, estimated at the first epoch of different
trials, are shown in Fig. 5 (a). The average value of all
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(a) (b)

(c) (d)

Fig. 6. Example of MF (a), CV (b), RMS (c), and FD (d) estimates for subsequent epochs at varying vibration frequencies.

Fig. 5. Initial MFs and CVs for each subjects, estimated at the first epoch
of different trials.

estimates were 120±16 Hz, which is in the range reported in
the literature for the biceps brachii [44]. A linear regression
was then applied to the estimates obtained from all the epochs
during each task. Fig. 6 (a) shows a representative example of
such linear regression for one volunteer, in which MF decays
over time with a linear fashion. The slope (negative) of the
regression line was estimated as an indicator of myoelectric
muscle fatigue. The average correlation coefficient of the linear
fit over all the measurements was 0.86±0.14 (p = 0.01±0.05).

The average decays of MF at different vibration frequencies
were −2.0 ± 0.7 Hz/s, −2.3 ± 1.1 Hz/s, −2.5 ± 0.9 Hz/s,
and −2.2 ± 0.9 Hz/s for 0 Hz, 20 Hz, 30 Hz, and 40 Hz,
respectively. Fig. 7 (a, left) shows the normalized results.
Our MF estimation indicates that vibration produces a larger
degree of fatigue as compared to control condition (0 Hz).
In particular, 30 Hz vibration seems to be the most fatiguing
exercise. Our statistical analysis showed significant difference
(p < 0.05) between 30 Hz and control condition.
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(a) (b)

(c) (d)

Fig. 7. Normalized fatigue estimates for varying vibration frequencies: a) MF, b) CV, c) RMS, and d) FD. The asterisk indicates a significant difference (p
< 0.05).

Similar results were found for the MF estimation without
SPVF removal, as shown in Fig. 7 (a, right).

B. CV estimation

CV estimation with SPVF removal revealed an average
value of 3.58 ± 0.56 m/s, which is in line with the literature
[45], [44], [50]. Fig. 5 (b) shows the initial CVs estimated at
the first epoch of each dataset. Fig. 6 (b) shows the CV time
evolution for one volunteer. Similar to the MF, the CV was
found to decay over time with a linear fashion. The average
correlation coefficient of the linear fit was 0.87 ± 0.14 (p =
0.01± 0.05). The average decays of CV at different vibration
frequencies were −0.050±0.018 m/s2, −0.063±0.023 m/s2,
−0.074 ± 0.033 m/s2, and −0.064 ± 0.037 m/s2 for 0 Hz,
20 Hz, 30 Hz, and 40 Hz, respectively. The normalized results
of CV decay are shown in Fig. 7 (b, left), which reveals the
same fatiguing pattern for different vibration frequencies as
observed in the MF estimation. CV estimation without SPVF

removal has a similar trend, as shown in Fig. 7 (b, right).

C. RMS estimation

RMS estimation with SPVF removal revealed an average
value of 1.27 ± 0.58 mV. Different from the other three
indicators, the RMS was found to increase over time, as shown
in Fig. 6 (c). The average correlation coefficient of the linear
fit was 0.51±0.25 (p = 0.20±0.26), which is much lower than
that of the MF and CV. The average increases of RMS were
10± 20 µV/s, 29± 25 µV/s, 34± 20 µV/s, and 30± 25 µV/s
for 0 Hz, 20 Hz, 30 Hz, and 40 Hz vibration, respectively. Fig.
7 (c, left) shows the normalized results of RMS increase. The
results suggested that vibration leads to larger RMS increase
and, in particular, 30 Hz seems to produce the largest RMS
increase. The difference between control condition and each
vibration frequency was found to be significant (p < 0.05).
Without SPVF removal, a similar fatiguing effect was found
for different vibration frequencies, as shown in Fig. 7 (c,
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right).

D. FD estimation

After removing the SPVF, an average value of 1.71± 0.03
was found for the FD over all the measurements, which is in
the range reported in the literature [51]. Similar to the MF
and CV, a linear decay of FD over time was also observed,
as shown in Fig. 6 (d). However, the average correlation
coefficient of the linear fit for the FD estimates (0.51± 0.25,
p = 0.20 ± 0.30) was much lower as compared to that of
the MF and CV. The average decays at different vibration
frequencies were −0.0039± 0.0032 /s, −0.0029± 0.0027 /s,
−0.0023±0.0023 /s, and −0.0033±0.0025 /s for 0 Hz, 20 Hz,
30 Hz, and 40 Hz, respectively. The normalized results are
shown in Fig. 7 (d, left). Our results indicate that vibration
produces smaller FD decay as compared to control condition
and, in particular, 30 Hz vibration seems to produce the
smallest FD decay.

A different trend was found when the SPVF was included
in the analysis, as shown in Fig. 7 (d, right). FD decays
obtained during vibration were smaller as compared to control
condition. However, 30 Hz vibration resulted in the largest FD
decay among all the vibration frequencies.

E. Mechanical fatigue

Mechanical fatigue was estimated as the relative drop in
MVC measured after each task. Fig. 8 shows the normalized
results of the fifteen subjects, in which the 30 Hz vibration is
found to produce significantly (p < 0.05) larger MVC decay
as compared to control condition.

IV. DISCUSSION

The effect of VE at different frequencies was investigated by
analyzing mechanical fatigue (MVC decay) and myoelectric
fatigue (MF, CV, RMS, and FD time evolutions) on the
biceps brachii. For the EMG CV estimation, the ML method
described in [36] was reported to have several advantages
[37] and therefore adopted in the present study. All the CV
estimates were between 2 and 6 m/s, in line with the values
reported in the literature for this muscle [44], [45], [50].
Furthermore, in line with a number of authors [27], [47], a
linear decay of CV over time (correlation coefficient > 0.8)
was observed. In addition, for each subject, the CV estimates,
similar to the MF estimates, showed small variations in
their initial values estimated in different trials, suggesting the
adopted 12-min rest interval to be sufficient for neuromuscular
recovery.

It is extensively reported in the literature that sharp spectral
peaks at the vibration frequency, SPVF, can be observed in
the EMG spectrum recorded during VE, whose interpretation
(motion artifacts or muscle activity) remains controversial [2],
[9], [14], [39], [40], [41]. In this study, a more thorough
understanding of the fatiguing effect introduced by VE at
different frequencies was pursued by fatigue estimation per-
formed with and without SPVF removal. The results obtained
in both cases showed the same trend for the MF and CV, while

Fig. 8. Normalized MVC for varying vibration frequencies. The asterisk
indicates a significant difference (p < 0.05).

slight differences were observed for the RMS and especially
FD (Fig. 7).

A recent study has suggested that the CV, MF, and RMS
are more sensitive to peripheral fatigue [29]. Therefore, our
CV, MF, and RMS results suggest VE, especially at 30 Hz, to
produce a larger degree of peripheral fatigue as compared to
control condition. Previous work, directly applying mechanical
vibration to the hand muscles, suggests that muscle peripheral
fatigue develops at a higher rate under vibration, which has
been ascribed to the effects of TVR [14], [21]. TVR results
principally from an increase in motoneuron depolarization
with the firing frequency of Ia-afferents, leading to a re-
cruitment of motor unit of increasing threshold [14]. Motor
unit fatigue resistance seems to decrease with increasing
recruitment threshold [52]; it is therefore reasonable to expect
a higher degree of fatigue under the effect of vibration.

Studies have also suggested that TVR increases with in-
creasing vibration frequency up to 100 Hz [14]. However, in
the present study, 30 Hz vibration was found to be the most
peripherally fatiguing exercise. This may be explained by the
complex vibration transmission chain in the adopted setup. It
should be noted that the experimental setup in the present
study is different from the one employed in [14]. Instead
of applying mechanical vibration (displacement) directly to
the muscle, our device provides force control, and vibration
consists in the sinusoidal force modulation applied to the
muscle. The generated force modulation is transmitted to the
muscle via the bar, strap, handle, wrist, elbow, and muscle-
tendon system, which introduces a mechanical low-pass filter
dampening the transmission of high-frequency vibration to the
muscle spindle, and therefore resulting in a decreased Ia-
afferents driving.

Besides the involuntary reflex mechanism, studies have
suggested that vibration may also have an effect on motor
cortical excitability modulation [53]. Therefore, the vibration-
induced fatiguing effect to the central nervous system should
also be taken into consideration. In this study, the FD was
estimated as an indicator for the central fatigue, as suggested
by a recent study [29]. In ([29]), the FD was found to
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decrease with increasing motor-unit synchronization, in silico,
and during sustained contraction, in in − vivo [29]. Our FD
estimation suggests vibration as a possible option to reduce
central fatigue as compared to control condition.

Different from peripheral fatigue, the FD slopes estimated
with and without SPVF removal showed a different trend
for 30 Hz vibration (Fig. 7 (d)). This may be explained
by assuming the SPVF component to mainly reflect muscle
activity resulting from synchronization of a number of motor
units through TVR. Indeed, our previous study indicated
the SPVF to be caused by vibration-induced stretch reflex
rather than motion artifacts [40]. In this case, the motor-unit
synchronization indicated by FD originates not only from the
central nervous system but also from the TVR; removal of
the SPVF may therefore reduce the contribution of TVR-
induced motor-unit synchronization, leading to a decrease in
FD decay, particularly at 30 Hz. However, the assumption that
FD is indicative of motor-unit synchronization is based on a
simulation study [29], and the relation between FD decay and
motor-unit synchronization increase should be studied more
extensively. Furthermore, it should be noted that in this case,
due to the calculation of the FD in the time domain, the SPVF

removal is performed by notch filtering, which may alter the
spectrum of the signal.

In agreement with the analysis of myoelectric fatigue,
estimation of mechanical fatigue revealed the largest MVC
decay at 30 Hz. Among all the myoelectric fatigue indicators,
the correlation coefficients of the linear fit for the RMSs and
FDs over all epochs are much lower than those of the CVs and
MFs; this result is in line with the literature [29], [47] and may
due to the fact that the RMS and FD time course estimates are
more scattered than both CV and MF. This findings suggest
MF and CV decay to be the most reliable indicators for
myoelectric fatigue. Moreover, the fatiguing effect of different
vibration frequencies estimated by MF decay was in line with
that estimated by CV decay (Fig. 7), further supporting the
reliability of those two fatigue indicators. Indeed, the rate
of change of MF and CV during a sustained contraction as
indicative of muscle fatigue has been clearly established in
the literature [26], [27].

V. CONCLUSION

In the present study, the relationship between vibration
frequency and muscle fatigue during sustained contraction of
the biceps brachii was investigated by using a fully controlled
force-modulation VE setup. Both mechanical and myoelectric
fatigue were estimated and their correlation was analysed. The
results of our experiment suggest vibration exercise, especially
at 30 Hz, to produce a larger degree of peripheral fatigue and
a smaller degree of central fatigue as compared to control
condition. These results indicates that such force-modulation
VE system may achieve enhanced training effect (peripheral
fatigue) while applying reduced load to the central nervous
system, which may be particularly suited for rehabilitation
programs. The results of this study may contribute to the
analysis of VE and may motivate further research aiming
at improving VE training protocols and introducing VE in
rehabilitation programs.

APPENDIX A
ML METHOD

For the signal model in (2), assuming the noise in a single
channel to be uncorrelated with the noise in the other channels,
the multivariate Gaussian PDF can be expressed as

p(x11, ..., xNrNc
|θ, sc) =

Nc∏
c=1

Nr∏
r=1

p(xrc|θ, sc), (6)

where

p(xrc|θ, sc) =
N∏
n=1

1√
2πσrc

exp
[
−

(
xrc(n)− sc[n− (r − 1)θ]

)2
2σ2

rc

]
.

(7)

Taking the logarithm of p(x11, ..., xNrNc
|θ, sc), we obtain the

following log-likelihood function,

ln p(x11, ..., xNrNc
|θ, sc) = constant−

1

2σ2
rc

Nc∑
c=1

Nr∑
r=1

N∑
n=1

(
xrc(n)− sc[n− (r − 1)θ]

)2
. (8)

Differentiation of the log-likelihood function with respect to
sc(n) yields

∂ln p(x11, ..., xNrNc
|θ, sc)

∂sc
=

1

2σ2
rc

( Nr∑
r=1

2xrc[n+ (r − 1)θ]− 2Nrsc(n)
)
. (9)

By setting (9) to zero, the ML estimation of s(n) is obtained
by the average of the M channels aligned in time,

ŝc(n, θ) =
1

Nr

Nr∑
r=1

xrc[n+ (r − 1)θ]. (10)

Replacing sc(n) in (8) with ŝc(n, θ), the log-likelihood func-
tion can be expressed as

ln p(x11, ..., xNrNc
|θ, sc) = constant−

1

2σ2
rc

Nc∑
c=1

Nr∑
r=1

N∑
n=1

(
xrc(n)−

1

Nr

Nr∑
m=1

xmc[n+ (m− r)θ]
)2
.

(11)

Omitting the factors that do not depend on θ, the multichannel
ML estimator of θ is given by

θ̂ = argmax
θ

( Nc∑
c=1

Nr∑
r=1

N∑
n=1

[ 2

Nr

Nr∑
m=1

xrc(n)xmc[n+ (m− r)θ]

− 1

(Nr)
2

( Nr∑
m=1

xmc[n+ (m− r)θ]
)2])

. (12)
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Note that
Nr∑
r=1

( Nr∑
m=1

xmc[n+ (m− r)θ]
)2

=

Nr∑
i=1

( Nr∑
r=1

Nr∑
m=1

xrc(n)xmc[n+ (m− r)θ]
)

= Nr

( Nr∑
r=1

Nr∑
m=1

xrc(n)xmc[n+ (m− r)θ]
)
. (13)

Inserting (13) into (12) we obtain

θ̂ = argmax
θ

( 1

Nr

Nc∑
c=1

Nr∑
r=1

Nr∑
m=1

N∑
n=1

xrc(n)xmc[n+ (m− r)θ]
)
.

(14)

It turns out that the multichannel estimator averages all
possible combination of pairwise cross-correlation functions
and then finds the location of the maximum of the averaged
function. However, since the signals x(n) are only available
for discrete values of θ, maximization of the averaged function
results in a discrete estimation of the optimum θ, which de-
pends on the sampling frequency. By using Parseval’s equality,
(14) can be transformed in the frequency domain, as given in
(3). In (3), θ no longer needs to be constrained to integer
values, but can be treated as continuous-valued.
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