

Architecture design of the HORSE hybrid manufacturing
process control system
Citation for published version (APA):
Grefen, P. W. P. J., Vanderfeesten, I. T. P., & Boultadakis, G. (Eds.) (2016). Architecture design of the HORSE
hybrid manufacturing process control system. (BETA publicatie : working papers; Vol. 518). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/11/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/acd911e8-549e-4b8b-aa25-52147513f97d

Architecture Design of the HORSE Hybrid Manufacturing Process
Control System

P.W.P.J. Grefen, I.T.P. Vanderfeesten, G. Boultadakis (editors)

Beta Working Paper series 518

BETA publicatie WP 518 (working
paper)

ISBN
ISSN
NUR

Eindhoven November 2016

H2020 – FOF – 09 – 2015

Innovation Action

Smart integrated immersive and symbiotic human-robot collaboration system
controlled by Internet of Things based dynamic manufacturing processes with

emphasis on worker safety

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 680734

D2.2a - Complete System Design - Public Version
Report Identifier: D2.2a

Work-package, Task: WP2, T2.2 Status – Version: Final - V1.0

Distribution Security: Public Deliverable Type:

Editors:

Paul Grefen (Eindhoven University of Technology)

Irene Vanderfeesten (Eindhoven University of Technology)

George Boultadakis (European Dynamics)

Contributors: HORSE Architecture Team (HAT)

Keywords: System Design, Architecture

Project website: www.horse-project.eu

http://www.horse-project.eu/

D2.2

Page 2 of 91

Copyright notice

© Copyright 2015-2020 by the HORSE Consortium

This document contains information that is protected by copyright. The HORSE consortium grants
permission to use this document in its entirety without modifications for innovation and research
activities. For use of parts of this document for any activity or use of this document in entirety for
commercial activities, explicit approval of the HORSE consortium is required.

D2.2

Page 3 of 91

Table of Contents
ABBREVIATIONS .. 9

EXECUTIVE SUMMARY .. 11

1 INTRODUCTION ... 15

1.1 PURPOSE OF THIS DOCUMENT ... 15

1.2 STRUCTURE OF THIS DOCUMENT .. 16

2 ARCHITECTURAL APPROACH TO COMPLETE SYSTEM DESIGN ... 18

2.1 THE ROLE OF ARCHITECTURE ... 18

2.1.1 Architecture of a software system ... 18

2.1.2 Architecture of an (enterprise) information system .. 19

2.1.3 Architecture from a system point of view .. 19

2.2 THE KRUCHTEN 4+1 ARCHITECTURE FRAMEWORK (K4+1) ... 20

2.3 THE UPDATED TRUYENS 5 ASPECT FRAMEWORK (UT5) .. 21

3 THE K4+1 FRAMEWORK APPLIED TO HORSE .. 23

4 USE OF STANDARDS ... 25

4.1 ARCHITECTURE SPECIFICATION TECHNIQUES .. 25

4.2 MANUFACTURING DOMAIN STANDARDS ... 25

5 HIGH-LEVEL HORSE SCENARIO .. 29

5.1 OVERALL HORSE SCENARIO .. 29

5.2 USE CASE DESIGN MANUFACTURING PROCESS .. 30

5.3 USE CASE EXECUTE MANUFACTURING PROCESS ... 31

5.4 USE CASE CONFIGURE MANUFACTURING TASK ... 33

5.5 USE CASE EXECUTE MANUFACTURING TASK ... 34

6 LOGICAL SOFTWARE ARCHITECTURE, AGGREGATION LEVELS 0-3... 35

6.1 LOGICAL SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 0 .. 35

6.2 LOGICAL SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 1 .. 37

6.3 LOGICAL SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 2 .. 38

6.3.1 Architecture refinement .. 38

6.3.2 Database interface topology design .. 39

6.3.3 Execution interface topology design ... 40

6.3.4 Interface data structure and message design .. 41

6.3.5 Confrontation with requirements .. 44

D2.2

Page 4 of 91

6.4 LOGICAL SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 3 .. 44

6.4.1 HORSE Design Global.. 45

6.4.2 HORSE Exec Global .. 45

6.4.3 HORSE Config Local ... 46

6.4.4 HORSE Exec Local ... 47

6.4.5 Integration of subsystems .. 48

6.4.6 Confrontation with requirements .. 49

7 HORSE LOGICAL DATA ARCHITECTURE .. 52

7.1 HORSE AGENT CONCEPT MODEL ... 52

7.2 HORSE ACTIVITY CONCEPT MODEL .. 53

7.3 HORSE EVENT CONCEPT MODEL ... 54

7.4 OVERALL CONCEPT MODEL ... 56

8 HORSE LOGICAL ORGANIZATION ARCHITECTURE .. 57

8.1 ABSTRACT LOGICAL ORGANIZATION ARCHITECTURE .. 57

8.2 MAPPING TO IEC STANDARD .. 57

9 HORSE LOGICAL PROCESS ARCHITECTURE ... 60

9.1 ENTERPRISE PROCESS LEVEL .. 60

9.1.1 Custom-designed production .. 60

9.1.2 Series production ... 61

9.2 MANUFACTURING PROCESS LEVEL .. 62

10 HORSE LOGICAL PLATFORM ARCHITECTURE ... 63

10.1 SOFTWARE PLATFORM ... 63

10.2 HARDWARE PLATFORM ... 63

10.3 PLATFORM OVERVIEW ... 63

11 LOGICAL SOFTWARE ARCHITECTURE HORSE DESIGN GLOBAL .. 67

11.1 PROCESS DESIGN MODULE .. 67

11.2 AGENT DESIGN MODULE .. 67

11.3 HORSE DESIGN GLOBAL OVERVIEW (AGGREGATION LEVEL 4) ... 68

12 LOGICAL SOFTWARE ARCHITECTURE HORSE EXEC GLOBAL .. 70

12.1 GLOBAL EXECUTION MODULE ... 70

12.2 GLOBAL AWARENESS MODULE ... 70

12.3 HORSE EXEC GLOBAL OVERVIEW (AGGREGATION LEVEL 4) ... 71

13 LOGICAL SOFTWARE ARCHITECTURE HORSE CONFIG LOCAL ... 73

D2.2

Page 5 of 91

13.1 TASK DESIGN ... 73

13.2 HUMAN STEP DESIGN .. 73

13.3 AUTOMATED STEP DESIGN ... 74

13.4 WORKCELL DESIGN .. 74

13.5 HORSE CONFIG LOCAL OVERVIEW (AGGREGATION LEVEL 4) .. 74

14 LOGICAL SOFTWARE ARCHITECTURE HORSE EXEC LOCAL ... 76

14.1 LOCAL EXECUTION MODULE ... 76

14.2 LOCAL AWARENESS MODULE .. 77

14.3 HORSE EXEC LOCAL OVERVIEW (AGGREGATION LEVEL 4) .. 78

15 CONCLUSIONS ... 83

16 REFERENCES ... 84

17 APPENDIX A: DATA FLOW ANALYSIS INTERFACES (LEVEL 2) ... 85

18 APPENDIX B: DATABASE REFINEMENT ... 87

18.1 GENERAL DATABASE STRUCTURE ... 87

18.2 HORSE EXEC LOCAL DATABASE STRUCTURE .. 87

19 APPENDIX C: HIERARCHICAL SOFTWARE COMPONENT LIST .. 89

19.1 AGGREGATION LEVELS 2-4, FULL LOGICAL SOFTWARE ARCHITECTURE .. 89

D2.2

Page 6 of 91

List of Figures
FIGURE 1: HORSE SYSTEM ILLUSTRATION FROM DOW .. 15

FIGURE 2: KRUCHTEN 4+1 MODEL (FROM [KRUC95]) ... 21

FIGURE 3: UPDATED TRUYENS ASPECT FRAMEWORK (FROM [GREF15]) ... 21

FIGURE 4: K4+1 RELATED TO HORSE WORK PACKAGES ... 24

FIGURE 5: IEC MANUFACTURING HIERARCHY STANDARD [IEC13] .. 26

FIGURE 6: OVERALL HORSE SCENARIO .. 30

FIGURE 7: DESIGN MANUFACTURING PROCESS SCENARIO .. 31

FIGURE 8: EXECUTE MANUFACTURING PROCESS SCENARIO .. 32

FIGURE 9: CONFIGURE MANUFACTURING TASK SCENARIO .. 33

FIGURE 10: ELABORATION OF EXECUTE MANUFACTURING TASK USE CASE ... 34

FIGURE 11: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 0 .. 36

FIGURE 12: IEC MANUFACTURING HIERARCHY MAPPED TO HORSE SOFTWARE ARCHITECTURE LEVEL 0 36

FIGURE 13: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 1 .. 37

FIGURE 14: IEC MANUFACTURING HIERARCHY MAPPED TO HORSE GLOBAL AND LOCAL LEVELS...................................... 38

FIGURE 15: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 2 .. 39

FIGURE 16: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 2 WITH SEPARATED DATABASES 40

FIGURE 17: HORSE EXEC GLOBAL AND HORSE EXEC LOCAL .. 41

FIGURE 18: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 2 WITH INTERFACE IDS .. 42

FIGURE 19: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 3, SUBSYSTEM 1 .. 45

FIGURE 20: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 3, SUBSYSTEM 2 .. 46

FIGURE 21: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 3, SUBSYSTEM 3 .. 47

FIGURE 22: LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 3, SUBSYSTEM 4 .. 48

FIGURE 23: OVERALL LOGICAL SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 3 (PRODUCT DEFS. DB AND INTERFACES TO

PLATFORM/OPERATORS OMITTED) .. 49

FIGURE 24: HORSE AGENT CONCEPT MODEL ... 53

FIGURE 25: HORSE ACTIVITY CONCEPT MODEL .. 54

FIGURE 26: HORSE ALERT CONCEPT MODEL .. 55

FIGURE 27: PROJECTION OF OVERALL CONCEPT MODEL .. 56

D2.2

Page 7 of 91

FIGURE 28: HORSE ORGANIZATION ARCHITECTURE .. 57

FIGURE 29: HORSE ORGANIZATION ARCHITECTURE EXTENDED TO MATCH IEC HIERARCHY ... 58

FIGURE 30: PROJECTION OF EXTENDED HORSE ORGANIZATION ARCHITECTURE MAPPED TO IEC HIERARCHY 59

FIGURE 31: EXAMPLE ENTERPRISE PROCESS FOR CUSTOM-DESIGNED PRODUCTION .. 61

FIGURE 32: EXAMPLE ENTERPRISE PROCESS FOR SERIES PRODUCTION ... 62

FIGURE 33: EXAMPLE MANUFACTURING PROCESS WITH TASKS AND HIERARCHIC STEPS .. 62

FIGURE 34: HORSE PLATFORM ARCHITECTURE (WITH HORSE FOCUS INDICATED) .. 64

FIGURE 35: PROCESS DESIGN MODULE SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 4 .. 67

FIGURE 36: AGENT DESIGN MODULE SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 4 ... 68

FIGURE 37: HORSE DESIGN GLOBAL LOGICAL ARCHITECTURE, AGGREGATION LEVEL 4 .. 69

FIGURE 38: GLOBAL EXECUTION MODULE SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 4... 70

FIGURE 39: GLOBAL AWARENESS MODULE SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 4 71

FIGURE 40: HORSE EXEC GLOBAL LOGICAL ARCHITECTURE, AGGREGATION LEVEL 4.. 72

FIGURE 41: TASK DESIGN MODULE SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 4 .. 73

FIGURE 42: HUMAN STEP DESIGN MODULE SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 4 73

FIGURE 43: AUTOMATED STEP DESIGN MODULE SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 4 74

FIGURE 44: WORKCELL DESIGN MODULE SOFTWARE ARCHITECTURE, AGGREGATION LEVEL 4 ... 74

FIGURE 45: HORSE CONFIG LOCAL LOGICAL ARCHITECTURE, AGGREGATION LEVEL 4 .. 75

FIGURE 46: CONNECTING SOFTWARE AND DATA ASPECTS ... 76

FIGURE 47: LOGICAL SOFTWARE ARCHITECTURE OF LOCAL EXECUTION MODULE .. 77

FIGURE 48: LOGICAL SOFTWARE ARCHITECTURE OF LOCAL AWARENESS MODULE .. 77

FIGURE 49: HORSE EXEC LOCAL LOGICAL ARCHITECTURE, AGGREGATION LEVEL 4 .. 78

FIGURE 50: DATA FLOW ANALYSIS INTERFACES SOFTWARE ARCHITECTURE AGGREGATION LEVEL 2 (PART 1) 85

FIGURE 51: DATA FLOW ANALYSIS INTERFACES SOFTWARE ARCHITECTURE AGGREGATION LEVEL 2 (PART 2) 86

FIGURE 52: REFINEMENT OF DATABASES BASED ON WFM REFERENCE ARCHITECTURE ... 87

FIGURE 53: MAPPING BETWEEN GENERAL HORSE DATABASES AND HEL DATABASES .. 88

D2.2

Page 8 of 91

List of Tables
TABLE 1: INTERFACES IN LOGICAL SOFTWARE ARCHITECTURE AGGREGATION LEVEL 2 .. 43

TABLE 2: CONFRONTATION WITH TOP-DOWN REQUIREMENTS LEVEL 2 .. 44

TABLE 3: CONFRONTATION WITH TOP-DOWN REQUIREMENTS LEVEL 3 .. 51

TABLE 4: HIERACHICAL COMPONENT LIST LOGICAL SOFTWARE ARCHITECTURE LEVELS 2-4 ... 91

D2.2

Page 9 of 91

Abbreviations

BPMS Business Process Management System

DoW Description of Work

ERP Enterprise Resource Planning System

EU European Union

HAT Horse Architecture Team

IEC International Electrotechnical Commission

K4+1 Kruchten 4+1 Views Framework

MES Manufacturing Execution System

MPMS Manufacturing Process Management System

UML Unified Modelling Language

UT5 Updated Truyens 5 Aspects Framework

WFM Workflow management

D2.2

Page 10 of 91

D2.2

Page 11 of 91

Executive Summary
This document presents the complete system design of the HORSE project, concentrating on the
logical architecture (as defined in the Kruchten 4+1 view framework) and providing a separation of
concerns into software, data, process, organization and platform aspects (as defined in the Updated
Truyens 5 aspect framework). The system design is based on the work in the HORSE requirements
analysis task. Explicit confrontations with the HORSE system requirements specification are
included.

This document starts with outlining the architectural approach to complete system design as used in
the HORSE project and choosing the frameworks used in this approach. This is complemented with a
choice of standards used. Next, we present the high-level HORSE scenario that specifies the
functionality that the HORSE system should offer in an abstract, application context-independent
way. This scenario specification follows from the HORSE system requirements specification. The
functionality is next elaborated in a hierarchical logical software architecture, which in total
contains five levels (including the context architecture for the HORSE system) This logical software
architecture at the most detailed levels is the basis for software development for the HORSE system.
The logical software architecture is complemented with data, process, organization and platform
architectures.

D2.2

Page 12 of 91

D2.2

Page 13 of 91

HORSE
Complete System Design

Part 1:

Approach of
Complete System Design

D2.2

Page 14 of 91

D2.2

Page 15 of 91

1 Introduction
This section explains the purpose of this document (Section 1.1) and the structure of this document
(Section 1.2).

1.1 Purpose of this document
In the Description of Work (DoW) of the HORSE project proposal, an illustration of the targeted
HORSE system is included. This illustration is shown in Figure 1. The figure is a proper indication of
where the project will be heading, but is not a proper specification that can serve as the basis for
technology development. Put in informal terms, the figure can be considered an ‘artist impression’
of the projected HORSE system, but not an ‘engineering blueprint’. The purpose of this document is
to design and define such an engineering blueprint of the HORSE system that can be a solid basis for
system development (and later deployment).

Figure 1: HORSE system illustration from DoW

The HORSE Architecture Team (HAT) is the body within the HORSE project responsible for
designing the HORSE architecture and thus establishing the HORSE complete system design. The
HAT takes architectural decisions with a project-wide scope.

D2.2

Page 16 of 91

1.2 Structure of this document
This document is organized in four parts, each containing a number of sections, as outlined below.

Part 1: Approach of complete system design

Section 1 contains this introduction.

Section 2 of this document explains the architectural approach to complete system design taken in
the HORSE project, including the selection of two frameworks to achieve the required separation of
concerns.

Section 3 explains how the work packages of the HORSE project are projected onto the K4+1
framework selected and explained in Section 2 to obtain a clear phasing in system development in
the project.

Section 4 discusses the use of standards (both specification standards and manufacturing industry
standards) in Complete System Design.

Part 2: High-level complete system design

Section 5 contains the abstract (i.e., not specific for a pilot case), high-level specification of the
HORSE scenario, following from the HORSE requirements analysis [HOR16].

Section 6 contains levels 0-3 of the structural decomposition of the HORSE software architecture
(following the UT5 aspect framework selected and explained in Section 2). The functionality
specification resulting from the decomposition is checked at two levels against the top-down system
requirements [HOR16].

Section 7 presents the HORSE logical data architecture by defining the high-level concept model.
This concept model is required for the further decomposition of the logical software architecture to
aggregation level 4.

Section 8 contains the design of the organization aspect of the HORSE logical architecture,
explaining how the HORSE structure can be mapped to the organization of a manufacturing
company.

Section 9 contains the design of the process aspect of the HORSE logical architecture. It discussed
how enterprise-level business processes and manufacturing processes are related to HORSE
concepts and structures.

Section 10 contains the design of the platform aspect of the HORSE logical architecture, i.e. the
structure of the software and hardware required as the technical context for the HORSE system.

Part 3: Medium-level design of the software aspect

Sections 11 to 14 contain the logical software architectures at aggregation level 4 of the four main
subsystems of the HORSE logical software architecture. These sections continue the design in
Section 6, using the additional aspect architectures covered in Sections 7 to 10.

Section 11 covers the further elaboration of the HORSE Design Global subsystem at aggregation
level 4.

Section 12 covers the further elaboration of the HORSE Exec Global subsystem at aggregation
level 4.

D2.2

Page 17 of 91

Section 13 covers the further elaboration of the HORSE Config Local subsystem at aggregation
level 4.

Section 14 covers the further elaboration of the HORSE Exec Local subsystem at aggregation levels 4
and 5.

Part 4: Conclusion, bibliography and appendices

Section 15 concludes the main body of this document.

The last sections of this document contain the bibliography and appendices that present additional
details referenced in the main body of the document.

Appendix A contains a data flow analysis of the interface design of the logical software architecture
at aggregation level 2.

Appendix B discusses a refinement of the database structure for the logical software architecture.

Appendix C contains a hierarchical overview of all software modules in the logical architecture with
module identifiers.

D2.2

Page 18 of 91

2 Architectural approach to complete system design
In this section, we present the concepts and frameworks that form the basis for the approach that is
taken in the HORSE project for complete system design. We take some space for this to ensure that
all stakeholders involved in complete system design share the same background.

First we explain why we take architecture as a basis of this approach. Next, we discuss the
architecture frameworks that have been selected by the AT: the Kruchten 4+1 View Framework
(K4+1 for short) and the Updated Truyens 5 Aspect Framework (UT5 for short). Both frameworks
have been chosen by the HORSE Architecture Team.

Given the complexity of the HORSE project and consequently of the HORSE system, a proper
separation of concerns is required to be able to limit attention of the system design process in the
right context to the right elements and aspects. In other words, separation of concerns avoids taking
everything into consideration at every step of the way.

2.1 The role of architecture
An architecture of a software system or an information system can be seen as the high-level
blueprint of that system that serves to understand its internal structure to aid in its design, redesign,
configuration and maintenance – not so much different from the (technical) architecture of a
complex building or a subway system. We now define the concept of architecture, starting with
software architectures and then moving on to information system architectures.

2.1.1 Architecture of a software system
The concept of architecture of software systems originates from the domain of software
engineering, i.e., the fields in which the detailed structuring of computer programs is the focus. The
following is a definition of the term architecture from a well-known book in this domain [Shaw96]:

The architecture of a software system defines that system in terms of computational
components and interactions between those components.

The computational components form the functional units of a system, i.e., the parts that each
provides something of the overall functionality. The term computational refers to the computations
that a computer must make to realize the functionality. The interactions between the components
allow them to operate as a whole to achieve the desired functionality of the software system.

The IEEE defines architecture as follows in its 1471 standard [Hill07], including the environment of
a system and the design principles used to obtain and maintain the structure of a system:

Architecture is the fundamental organization of a system embodied in its components,
their relationships to each other and to the environment and the principles guiding its
design and evolution.

The relationships between the components and to the environment are the connectors or interfaces,
which describe how the functional units interact (as stated in the first definition above) to achieve
the overall behavior of the system, for example by exchanging information.

In HORSE, the environment is of great importance, as the HORSE system will interact with humans,
robots and other systems that are not part of the HORSE system.

D2.2

Page 19 of 91

2.1.2 Architecture of an (enterprise) information system
The HORSE system can be seen as a complex software system in the software engineering tradition,
but it can also be seen as an essential part of the enterprise information system of a manufacturing
organization in the information system tradition. These two traditions are not mutually exclusive or
contradictory, but put the emphasis on different points.

Viewing the HORSE system as part of an enterprise information system means that we don’t look at
small details of computer programs, but at larger structures of complex information systems. The
complexity implies that we may have to focus on specific aspects of the system, that we have to
distinguish between multiple levels and that we need structuring principles to understand the
complexity (like the principles in the IEEE definition). Hence, we use the following definition of the
term architecture in this document1:

The architecture of a (corporate) information system defines that system in terms of
functional components and relations between those components, from the viewpoint
of specific aspects of that system, possibly organized into multiple levels, and based
on specific structuring principles.

The concepts of aspects and levels are elaborated later in this document – here we will see that there
are multiple aspects and multiple dimensions that can be used to define levels in an architecture
specification. Depending on the chosen aspect(s), functional components can be of different natures:
for example, they can be components that perform business functions (software components),
components that hold business data (data storage components), or (parts of) business processes.
Likewise, relations between components can be of different natures too: for example, they can be
interfaces between software components or references between data storage components.

2.1.3 Architecture from a system point of view
From a system theory point of view, an architecture is a specification of a system. This system can be
composed of subsystems and aspect systems.

Subsystems form a structure decomposition of a system: a set of sub-systems together form the
super-system. Subsystems form a partition of a system: every element of the super-system is part of
exactly one subsystem (this means that nothing is forgotten or replicated). To illustrate the concept,
one can think of partitioning a house into multiple rooms: the house is the super-system formed by
the combination of the rooms which are the subsystems. We will see later in this document that
decomposition into sub-systems is a powerful way to deal with the complexity of the HORSE
architecture. In designing a stepwise structural decomposition of an architecture, we traverse
aggregation levels of that architecture [Gref15]: we move from a highly aggregated specification to a
highly detailed specification.

Aspect systems form a characteristics decomposition of a system: a set of aspect systems together
describe the structure and behavior of a system. The set of aspects provides a separation of
concerns: we can look at each aspect of a system individually. To illustrate this concept, one can

1 Note that the term ‘architecture’ is in general overloaded, as it can refer to a set of design principles (a set of norms
or rules), to the process of applying these design principles (a process), and to the result of the application of design
principles (a product). In our definition of the term ‘architecture’ and hence in the sequel of this document, we focus
on the product interpretation, with proper attention for the relevance of the rules and process aspects. Other authors
may take different positions, e.g. [Diet08] focuses on the rules interpretation.

D2.2

Page 20 of 91

think of the exterior design of a house versus the interior design: they are two aspects that describe
characteristics of the same house, yet different aspects. We will see later in this document that
working with aspects is also a powerful way to deal with the complexity of architectures.

Apart from structural decomposition and characteristics decomposition, we may also need several
levels of abstraction [Gref15]. A highly abstract architecture is specified in general terms, such that it
can be applied in multiple contexts (few context-specific parameters have been filled in, such as
specific technology characteristics). A highly concrete architecture is specified in very specific terms,
such that it matches one specific context (application scenario). In HORSE, we may need abstract
architecture specifications that are applicable to multiple contexts, which are made specific to fit a
specific pilot case.

2.2 The Kruchten 4+1 architecture framework (K4+1)
Kruchten has defined an architecture framework [Kruc95] that has become one of the most
important standards in thinking about structuring software architectures. The main idea of the
framework is to have a separation of concerns with respect to phases of the architecture
specification and software realization process.

The framework organizes the description of an architecture around four main views with their
respective main stakeholders:

1. The logical view specifies the object/module models of the design, i.e., the structure of the
application logic in abstract terms. This view mainly specifies the functionality of a system
under design, so what the system should do. The main stakeholders are the end users of the
system.

2. The development view specifies the organization of the software in a development
environment, i.e., the way the software development is supported to arrive at good software
management. This view is concerned with getting good software, so how the system should be
realized. The main stakeholders are the software engineers (programmers).

3. The process view specifies the concurrency and synchronization aspects of the software
design, i.e., the way objects or modules in the logical view dynamically collaborate in
parallel. This view mainly specifies the dynamic mechanisms and performance/scalability of
a system under design, so how it dynamically behaves. The main stakeholders are the
integrators of the system (those who connect modules).

4. The physical view describes the mapping(s) of software onto hardware, thereby reflecting
the distribution aspect. This view mainly specifies the operational deployment of a system,
so what runs where? The main stakeholders are the system engineers: those responsible for
installing and maintaining the system.

As discussed above, each of the four views has its prime stake holders and its major concerns. This
may lead to a content-wise divergence of ideas. To avoid this, the four basic views are illustrated by
a fifth element:

5. The scenarios describe a few selected use cases that illustrate the four basic views. The
scenarios make things concrete and provide a clear and practical basis for discussions
between the various groups of stake holders (associated with the basic four views) in the
architecture design or analysis. As such, the scenarios are the ‘content glue’ that provides
convergence of ideas.

D2.2

Page 21 of 91

The five elements lead to the well-known Kruchten 4+1 model [Kruc95], shown in Figure 2. In this
document, we abbreviate the name of this framework to K4+1.

Figure 2: Kruchten 4+1 model (from [Kruc95])

2.3 The Updated Truyens 5 aspect framework (UT5)
The K4+1 framework provides a separation of concerns in terms of software development phases,
but does not separate various aspects of the description of a complex software system or
information system. For this purpose, we adopt an updated version of the 5 aspect framework of
Truyens (abbreviated in this document as UT5). This framework was originally developed for
information system development in the ‘90s [Truy90] and thereafter updated for information
system developed in a modern, networked context [Gref15].

The UT5 framework is illustrated in Figure 3. It consists of five interconnected aspects, which we
describe below.

Figure 3: updated Truyens aspect framework (from [Gref15])

data

organi-
zation

process

platform software

D2.2

Page 22 of 91

We distinguish between five interrelated architecture aspects in the design of the HORSE system:

Software: the software aspect describes the structure of the HORSE software under development; it
is described for instance in UML component diagrams.

Process: the process aspect describes the structure of business/manufacturing processes that the
HORSE system supports; it is described for instance in BPMN diagrams or UML activity
diagrams.

Data: the data aspect describes the structure of data manipulated by the HORSE system, as well as
the structure of the concepts that underlie data definitions (concept model); it is described for
instance in UML class diagrams.

Organization: the organization aspect describes the structure of stakeholders in the HORSE context,
such as operators of the HORSE system and designers of applications supported by the HORSE
system; it is described by organigrams and/or actor models.

Platform: the platform aspect describes the structure of the existing technology that is required to
run the HORSE system under design in its operating context; this includes both hardware
(such as computer systems and robots) and software (such as existing enterprise information
systems, middleware and hardware control software).

The five aspects provide a separation of concerns, but are interrelated as shown by the arrows in
Figure 3. For example: if a data structure is changed (in the data aspect), it may be that the software
that manipulates this data (in the software aspect) needs to be changed too.

D2.2

Page 23 of 91

3 The K4+1 framework applied to HORSE
In the HORSE project, several work packages (WPs) are devoted to system design, system
realization, system deployment and system evaluation. To arrive at a well-structured overall
development process, it is important that it is explicitly clear what is done in each work package -
and likewise, what is not done in each work package. In other words, the development process
needs to be clearly phased. For this purpose, the K4+1 framework is used as follows.

WP2 (Task 2.1) develops the scenarios of the K4+1 framework. We use three scenarios, which are
based on the three HORSE pilot cases.

WP2 (Task 2.2) develops the logical view of the HORSE architecture, focusing on the end-user
functionality of the system, its decomposition into functional modules and non-functional
characteristics that are important to end users of the HORSE system. WP2 is also responsible for the
hand-over of the logical view of the architecture to WP3 and WP4, including high-level decisions
w.r.t. software development and software integration that explicitly follow from end-user
requirements.

WP3 covers the development view of the HORSE architecture, focusing on the development of the
software realization of the logical view. WP3 is also responsible for the hand-over of the
development view to WP4, WP5, WP6 and WP8.

WP4 covers the process view of the HORSE architecture, focusing on integration of modules from
WP3 and paying attention to performance and scalability constraints. WP4 is also responsible for
the hand-over of the process view to WP5, WP6 and WP8. Note that this adds a dependency from
the development view to the process view that is not part of the original K4+1 framework (which
puts these two views in parallel).

WP5, WP6 and WP8 cover the physical view of the HORSE architecture, deploying the software
developed in the development view using the integration developed in the process view. This will
actually lead to running systems in the three pilots (WP5) and the selected open call cases (WP6 and
WP8).

This leads to the situation illustrated in Figure 4. The additional dependency between WP3 and WP4
mentioned above is shown by the dotted arrow.

D2.2

Page 24 of 91

Figure 4: K4+1 related to HORSE work packages

WP3 results in the software of the HORSE system for physical deployment in WP5, WP6 and WP8.
WP4 results in a description of how to deploy the software such that the right operational qualities
(such as performance and scalability) are met in physical deployments. Thus, WP3 and WP4
together set the ‘technical scene’ for the other work packages.

WP3

2

WP4

WP2

WP

D2.2

Page 25 of 91

4 Use of standards
In this section, we discuss the use of standards used in HORSE logical architecture design and
specification. We cover both standards for architecture specification and application domain
standards (i.e., manufacturing domain standards).

This section does not discuss technology standards used for embodiment of the designed
architecture or software engineering standards used for realization of the HORSE software. These
are part of the other architecture views according to the K4+1 framework, and hence will be dealt
with in HORSE deliverables of other work packages - as discussed in Section 3.

4.1 Architecture specification techniques
It is important to choose a widely recognized standard for the specification techniques used in
HORSE architecture design. The most used standard in software design is UML [Fowl03], which
includes a number of important specification techniques. Hence, we adopt this standard in HORSE.

This includes the following specification techniques:

• For scenarios:

o UML Use Case Diagrams.

• For software architectures:

o UML Component Diagrams (static structure).
o UML Sequence Diagrams (dynamic interaction).

• For data architectures:

o UML Class Diagrams.

• For process architectures:

o UML Activity Diagrams.
The choice for the UML standard should be pragmatic: we should not try to be perfect in adhering to
technique standards, but use standards consciously such that they fit best. Using different standards
than UML is permitted if good reasons for doing so exist (these should be explicitly stated).

4.2 Manufacturing domain standards
This standard is shown in Figure 5. In HORSE, we focus on discrete production, as indicated by the
red dotted box in the figure.

D2.2

Page 26 of 91

Figure 5: IEC manufacturing hierarchy standard [IEC13]

D2.2

Page 27 of 91

HORSE
Complete System Design

Part 2:

High-level Complete
System Design

D2.2

Page 28 of 91

D2.2

Page 29 of 91

5 High-level HORSE scenario
In this section, we specify the high-level HORSE scenario (as in the K4+1 framework described in
Section 2.2). This scenario is abstract, as it is not based on a specific HORSE pilot case, but on
general requirements following from the HORSE requirements analysis [HOR16].

We use an abstract scenario to ensure that the HORSE system will be applicable to a wide range of
application cases, including those of the three HORSE pilot cases and the open call cases projected in
HORSE WP6 and WP8.

The scenario specifications can be seen as a kind of functional summary of the HORSE system
requirements [HOR16].

5.1 Overall HORSE scenario
In Figure 6, we see the high-level use case view of the abstract HORSE scenario. The scenario is
specified in a UML use case diagram [Heyw16]. A use case is a way in which a system can be used - it
does not specify the internal working of a system.

This scenario includes four use cases:

• Design Manufacturing Process: functionality for the design of a manufacturing process
across multiple work cells (and possibly across multiple production lines).

• Execute Manufacturing Process: functionality for the execution of a manufacturing process
across multiple work cells (and possibly across multiple production lines).

• Configure Manufacturing Task: functionality for the configuration of a manufacturing task
within a single work cell (possibly consisting of multiple manufacturing steps).

• Execute Manufacturing Task: functionality for the execution of a manufacturing task within a
single work cell (possibly consisting of multiple manufacturing steps).

D2.2

Page 30 of 91

Production
Planner

Factory
Owner
(+ MIS)

Factory
Supervisor

Factory
Engineer

Product
Designer
(+ PLMS)

MES
ERP
MRP

Automated
Agent

Factory

Operator

Sensor

Figure 6: overall HORSE scenario

Each of the four use cases of Figure 6 can be further elaborated to show more detailed functionality.
This is done in the next four subsections.

5.2 Use case Design Manufacturing Process
Figure 7 shows the elaboration of the Design Manufacturing Process use case of Figure 6. This sub-
scenario shows the use of functionality for the design of a manufacturing process (at ‘site’ or ‘area’
level of the IEC hierarchy picture, as shown in Figure 5).

HORSE

UC1:
Design

Manufact.
Process

precedes

UC2:
Execute

Manufact.
Process

UC3:
Configure
Manufact.

Task

precedes

UC4:
Execute

Manufact.
Task

D2.2

Page 31 of 91

Product
Designer

ERP /
MRP

Factory

Engineer

Factory

Supervisor

Figure 7: design manufacturing process scenario

5.3 Use case Execute Manufacturing Process
Figure 8 shows the elaboration of the Execute Manufacturing Process use case of Figure 6. This sub-
scenario shows the use of functionality for the execution of a manufacturing process (at ‘site’ or
‘area’ level of the IEC hierarchy picture, as shown in Figure 5).

Part of HORSE
UC1.1.1:
Specify

Task
Requirms.

uses

UC1.1.2:
Select

Possible
Agents

UC1.1:
Determine
Productn.

uses Tasks

precedes

uses

UC1.2:
Decide

Order of
Tasks uses

UC1.3:
Analyse
Impact
Design

uses

UC1:
Design

Manufact.
Process

uses

UC1.4:
Specify
Agent
Skills

D2.2

Page 32 of 91

Production
Planner

Factory
Owner

Factory
Supervisor

Factory
Engineer

Factory
Operator

Figure 8: execute manufacturing process scenario

Note that there are no automated agents in the Execute Manufacturing Process scenario, as the
automated agents are only active within the context of work cells, and hence only appear at the task
level (see Section 5.5).

UC2.1:
Decide

Mach/Ord
Schedule

UC2.2:
Allocate

Agents to
Tasks

UC2.3:
View

Process
Perform.

UC2.4.1:
View

Process
Progress

UC2.4.2:
View

Process
Safety

UC2.5
Control

Task
Execution

UC2.6.1:
Receive

Exception
Notificats.

Part of HORSE

uses
uses

uses

uses

uses

UC2.4:
Observe

Process
Execution

uses

uses

UC2:
Execute

Manufact.
Process

uses
uses

UC2.6.2:
Reallocate uses
Resources

uses

UC2.6
Handle

Exceptions
UC2.6.3:

Start Out-
of-Control
Process uses

UC2.6.4:
Indicate

Exceptions

D2.2

Page 33 of 91

5.4 Use case Configure Manufacturing Task
Figure 9 contains the elaboration of the Configure Manufacturing Task use case of Figure 6. This
sub-scenario specifies the use of functionality for the configuration of a single manufacturing task.
This takes place in the context of a work cell (at the bottom level of the IEC hierarchy picture, as
shown in Figure 5).

Automated
Agent

Factory
Engineer

Factory
Operator

Figure 9: configure manufacturing task scenario

We place the following remarks with the Configure Manufacturing Tasks scenario:

• It is possible to configure a task in a hybrid way, i.e., use ‘Program Robot by Script’ and
‘Program Robot by Demo’ in a combined way.

• The use case ‘Program Robot by Script’ should cover graphical specification of an execution
script for a robot.

• An execution script is a piece of data that is sent to a robot - it can result from various ways
of specification (textual, graphical).

Part of HORSE

UC3.1:
Program
Robot by

Script

UC3.2:
Program
Robot by
Demo

uses

uses

UC3.3:
Receive

Execution
Script

uses

UC3:
Config

Manufact.
Task

uses

UC3.4:
Create

Operator
Script

D2.2

Page 34 of 91

• We do not include a separate use case for testing/validating scripts. Physical

testing/validating is seen as an iteration of configuration and execution of a task. Analytical
testing/validating is seen as part of programming a script.

5.5 Use case Execute Manufacturing Task
Figure 10 shows the elaboration of the Execute Manufacturing Task use case of Figure 6. This sub-
scenario specifies the use of functionality for the execution of a manufacturing step within a
manufacturing work cell.

MES

Factory

Operator

Automated
Agent

Sensor

Figure 10: elaboration of Execute Manufacturing Task use case

We place the following remarks with the Execute Manufacturing Tasks scenario:

• We explicitly exclude the regulator as a role. He uses the same interface as the factory
operator/factory engineer.

• The use case ‘execute Safe Manual Step’ includes Virtual Reality (VR) support. We don’t
include a specialization of the use case here as we don’t aim at designing a safety certified
VR/AR system.

Part of HORSE

UC4.1:
Set Task

Exec. Para-
meters

UC4.2.1:
Execute

Safe Man.
Step

uses

extends precedes

UC4.2:
Execute

Stafe Step uses

UC4.2.2:
Execute

Safe Aut.
Step

UC4:
Execute

Manufact.
Task

extends

uses

UC4.3:
Observe

Execution

D2.2

Page 35 of 91

6 Logical software architecture, aggregation levels 0-3
In this section, we start with the design of the logical architecture in the software aspect (as in the
UT5 framework). We start with the software aspect, as this is leading in a system development
project like HORSE. We follow a strict structural system decomposition approach (as explained in
Section 2.1.3) to arrive at a well-defined architecture.

6.1 Logical software architecture, aggregation level 0
In the HORSE project, we develop a system for support of advanced manufacturing processes. These
manufacturing processes take place as part of end-to-end business processes, i.e., processes starting
at customer orders and ending in after-sales service. As such, various enterprise-level functions are
linked, as modelled for instance in Porter’s value chain model [Port85].

This means that the HORSE system will run in the context of other enterprise information systems
supporting these processes, such as:

• enterprise-level business process management system (BPMS), which contains functionality
to manage business processes across the various enterprise information systems;

• enterprise resource planning system (ERP), which contains functionality for the
management/planning of customer orders, organizational resources, etc.;

• manufacturing execution system (MES), which contains functionality for the management of
manufacturing resources;

• product lifecycle management system (PLMS), which contains functionality for the
specification of products to be manufactured.

Consequently, it is a good idea to architecturally embed the HORSE system in an enterprise
architecture context. As the exact enterprise information system context is dependent on a specific
organization, we remain with a high-level, abstract software architecture here. This is shown in
Figure 11.

D2.2

Page 36 of 91

Figure 11: logical software architecture aggregation level 0

The Enterprise BPMS supports end-to-end business processes. This system is in the context of
HORSE but not in the scope of the HORSE system design. The HORSE system supports the
manufacturing processes. The relation between these two kinds of processes is further elaborated in
the process aspect of the logical architecture, which is described in Section 9 of this document.

When mapped to the IEC manufacturing hierarchy standard [IEC13] (focused on discrete
production), we get the situation shown in Figure 12.

Figure 12: IEC manufacturing hierarchy mapped to HORSE software architecture level 0

End-to-end business processes can run at the site level (i.e., at a specific manufacturing site).
Manufacturing processes can link multiple manufacturing areas, so they can be at the site level too.
Consequently, these two kinds of process can both be at this level. In this situation, manufacturing
processes (supported by the HORSE system) are part of end-to-end business processes (supported
by the enterprise BPMS).

ERP

Enterprise System Architecture [Software Aspect Level 0]

Enterprise BPMS
(end-to-end business processes)

HORSE
(manufacturing

process)
MES PLMS

Enterprise BPMS
(end-to-end business processes)

ERP

HORSE

(manufacturing
process)

MES

PLMS

Enterprise System Architecture [Software Aspect Level 0]

D2.2

Page 37 of 91

In the following, we concentrate on the HORSE system software architecture, refining (structurally
decomposing) it into more detail.

6.2 Logical software architecture, aggregation level 1
The HORSE system must support both manufacturing processes across manufacturing cells and
manufacturing steps within manufacturing cells. Typically, one manufacturing process uses a
number of manufacturing cells - the process coordinates, the cells perform the actual work. This
means that there are manufacturing activities at two distinct levels with different characteristics.
Consequently, the HORSE software architecture has two levels as well, which we call HORSE Global
and HORSE Local. We use these two levels to decompose the HORSE software architecture at
aggregation level 0 (projected onto the HORSE system only) into the software architecture at
aggregation level 1 - shown in Figure 13.

Figure 13: logical software architecture aggregation level 1

We can map the HORSE Global and HORSE Local levels again to the IEC manufacturing hierarchy
[IEC13] (focused on discrete production). This is shown in Figure 14. Here we see that HORSE
Global covers the site, area and production line levels of the hierarchy (as all these levels require
coordination between work cells). HORSE Local covers the work cell level.

HORSE Global

HORSE Local

HORSE Architecture [Software Aspect Level 1]

D2.2

Page 38 of 91

Figure 14: IEC manufacturing hierarchy mapped to HORSE Global and Local levels

6.3 Logical software architecture, aggregation level 2
In this section, we elaborate the logical software architecture at level 1, as shown in Figure 13. We
first refine the architecture design. Then, we look at the interfaces. Finally, we check the resulting
architecture against the HORSE system requirements [HOR16].

6.3.1 Architecture refinement
Manufacturing activities need to be designed or configured (to parameterize systems for specific
production) and to be executed (to actually manufacture products). This means that the HORSE
architecture needs to include modules for design/configuration and modules for execution. This
holds both at the HORSE Global and HORSE Local levels.

This leads to a software architecture with four modules, as shown in Figure 15: two levels with each
two modules. Note that we have not numbered modules in the logical software architecture
diagrams in order not to clutter the diagrams. A hierarchical list of all modules in the logical
software architecture with hierarchical module IDs is included in Appendix C of this document.

HORSE Global

HORSE Local

HORSE Architecture

D2.2

Page 39 of 91

Figure 15: logical software architecture aggregation level 2

In the context of these four modules, we have placed a product definitions database (at the right
hand side of Figure 15), as product characteristics partly determine design and execution of
manufacturing processes, tasks and steps. This database is only read by the HORSE modules - it is
maintained by the PLMS and/or ERP systems (as shown in Figure 11).

6.3.2 Database interface topology design
The design and execution modules at both the global and local levels are linked via databases at the
respective levels - as shown in Figure 15. At the global level, we have a database containing
definitions of manufacturing processes and manufacturing agents plus process execution data. At
the local level, we have a database containing definitions of manufacturing tasks and steps plus
execution data of tasks and steps.

The interface between design modules and databases is bi-directional, as the design modules read
and write/update definitions. The interface between execution modules and databases is also bi-
directional, as the execution modules read definitions and produce execution data.

Note that we keep the definition databases and execution databases combined in the architecture
diagrams (also in the further refinement in this document) to not clutter these diagrams. Many
modules use both databases, so separating them in the diagrams would lead to many additional
interfaces. To illustrate this point, we show the architecture of Figure 15 with separated definition
and execution databases in Figure 16.

Process /
Agent Data

Task / Step
/ Cell Data

Product
Defs.

HORSE Architecture [Software Aspect Level 2]

HORSE Global

HORSE Design
Global

HORSE Exec
Global

HORSE Config
Local

HORSE Exec
Local

HORSE Local

D2.2

Page 40 of 91

Figure 16: logical software architecture aggregation level 2 with separated databases

The same transformation can be performed for more refined architectures that follow in this
document (with greater complexity because of greater numbers of software modules) - we omit
them for reasons of clarity and brevity. Note also that the databases can even be further split into
more specific databases (as defined for example in the Mercurius reference architecture for
workflow management systems [Gref98]). A possible logical refinement of databases is discussed in
Appendix B of this document. We leave a final design as an implementation issue for the
development view of the architecture.

On the design/configuration side, the two levels are linked. The global process definitions are also
input to the HORSE Config Local module, as process definitions form the context of task definitions.
Likewise, the local task definitions are input to the HORSE Design Global module, as task definitions
are ‘sequenced’ in process definitions. This leads to the inter-level database interfaces in Figure 15.

6.3.3 Execution interface topology design
On the execution side, the two levels are linked by a bi-directional connection between both
execution modules. Downwards, this link is used to communicate execution commands. Upwards,
this link is used to communicate execution statuses. We take the explicit decision that there is one

Process /
Agent Exec.

Task / Step
/ Cell Def.

Task / Step
/ Cell. Exec.

Product
Defs.

Process /
Agent Def.

HORSE Architecture [Software Aspect Level 2]

HORSE Global

HORSE Design
Global

HORSE Exec
Global

HORSE Config
Local

HORSE Exec
Local

HORSE Local

D2.2

Page 41 of 91

generic interface between HORSE Global and HORSE Local. This interface covers all type of work
cells: human-only work cells, fully robotic work cells, hybrid work cells and even work cells that
consist of sensors only.

In a practical situation, the HORSE Exec Local module is replicated (one logical module instance per
work cell as in Figure 14). This is illustrated in Figure 17 for a situation of a factory with three
manufacturing cells. In the logical software architecture, all communication between HORSE Exec
Local module instances takes place through the HORSE Exec Global module, i.e., logically HORSE
uses a centralized orchestration paradigm to coordinate manufacturing cells.

Figure 17: HORSE Exec Global and HORSE Exec Local

In the development/process architecture views, timing and availability constraints in real-time
situations (i.e., non-functional requirements) may give rise to the necessity of a direct peer-to-peer
connection between instances of HORSE Exec local modules. This is captured in an architecture
advice in the hand-over to WP3 and WP4 (see Figure 4).

6.3.4 Interface data structure and message design
In Figure 18, we repeat the logical software architecture aggregation at level 2 of Figure 15, without
the product database, but with interface IDs between the HORSE modules.

HORSE Exec
Global

HORSE Exec
Local 1

HORSE Exec
Local 2

HORSE Exec
Local 3

D2.2

Page 42 of 91

Figure 18: logical software architecture aggregation level 2 with interface IDs

The interfaces shown in Figure 18 carry data structures (possibly in messages) between
subsystems. These data structures need to be specified.

HORSE Design
Global

HORSE Exec
Global

HORSE Config
Local

HORSE Exec
Local

Task / Step
/ Cell Data

HORSE Architecture [Software Aspect Level 2]

HORSE Global

① Process /
Agent Data

②

⑤ ⑥ ⑦

③ ④

HORSE Local

Page 43 of 91

D2.2

Interface Direction Data Remarks

① HDG → PD Process models (sequencing of tasks)
Agent models (incl. capabilities)
Allocation models (role models)

 PD → HDG Process models (sequencing of tasks)
Agent models (incl. capabilities)
Allocation models (role models)
Process performance data

② PD → HEG Process models (sequencing of tasks)
Agent models (incl. capabilities)
Allocation models (role models)
Process performance data (exec. log)

 HEG → PD Process performance data

③ HCL → TSD Task and step model definitions

 TSD → HCL Task and step model definitions
Task and step performance data

④ TSD → HEL Contents of task (work instructions /
scripts)

 HEL → TSD Task and step performance data /
statistics

⑤ TSD → HDG Black box characteristics of task
definitions

⑥ PD → HCL Capability models (incl. capabilities)

⑦ HEG → HEL Task control commands (see
additional remarks)
Product definitions (references)

Synchronous interface

 HEL → HEG Alerts
Measurements
Task control confirmations
Task statuses

Table 1: interfaces in logical software architecture aggregation level 2

Additional remarks with respect to interfaces in the logical software architecture aggregation at
level 2:

• Task control commands passed from HEG to HEL do not include work lists (to-do lists for
agents) for now, since manufacturing shop floor does not seem to leave enough
freedom/autonomy for human agents.

Page 44 of 91

D2.2

To check the completeness and consistency of the interface topology listing in Table 1, a data flow
analysis has been performed. This analysis is presented in Appendix A of this document.

6.3.5 Confrontation with requirements
To check the logical software architecture at level 2 (as shown in Figure 15), we confront it with the
set of top-down functional requirements at level 2 [HOR16]. The purpose of this confrontation is to
check:

• whether each functional requirement is covered by at least one module in the architecture
(completeness);

• whether each architectural module is required by at least functional requirement
(minimality).

The result of the confrontation is shown in Table 2, with the requirements in the rows and the
architectural modules in the columns. As all rows and columns are filled, the confrontation has a
positive outcome. We repeat this analysis in a refined form at aggregation 3 of the logical software
architecture (see Section 6.4.6).

 HORSE

Design
Global

HORSE
Exec

Global

HORSE
Config
Local

HORSE
Exec
Local

AF-01: Situation awareness

X

X

AF-02: Synchronization of
robotics and human activities X X X X

AF-03: Robotics task instructions

X X

AF-04: Human task instructions

X X

PF-01: Horizontal Business
Process Management X X

PF-02: Resource management X X

PF-03: Actor Control

X

X

Table 2: confrontation with top-down requirements Level 2

6.4 Logical software architecture, aggregation level 3
At aggregation level 3 of the logical software architecture, we elaborate each of the four functional
modules identified at level 2 (see Figure 15).

Page 45 of 91

D2.2

6.4.1 HORSE Design Global
The HORSE Design Global subsystem contains functionality to design manufacturing activities at the
global level, i.e., at the site, area and production line levels (see Figure 14). This design involves two
aspects:

• design of the manufacturing processes, i.e., what needs to happen in which order and with
what requirements to the agents involved (role specifications);

• design of manufacturing agents, i.e., the humans and machines (robots and other relevant
automated machines) with their characteristics.

The two aspects are mapped to two logical software modules at this aggregation level. These
software modules interact through the Process Definitions database (i.e., this subsystem has a data-
centered architecture).

The resulting architecture is shown in Figure 19. The architecture also shows the contextual
connections following from the software architecture at Level 2 (see Figure 15).

HORSE
Exec
Global

Figure 19: logical software architecture aggregation level 3, subsystem 1

6.4.2 HORSE Exec Global
The HORSE Exec Global subsystem is responsible for manufacturing activities across work cells, i.e.,
at the site, area and production line levels (see Figure 14). This involves two main functions:

• supporting execution of manufacturing processes, i.e., making things happen;

• supporting awareness about the global state of execution, i.e., observe things that happen
and processing this into relevant signals for controlling execution.

Both main functions are allocated to logical software modules at this aggregation level. We label the
execution module Manufacturing Process Management System (MPMS), as a variation of a standard
Business Process Management System (BPMS, mostly applied in the administrative domain).

Process
Design

Agent
Design

Task / Step
/ Cell Data

Process /
Agent Data

Product
Defs.

HORSE Design Global

HORSE
Config
Local

Page 46 of 91

D2.2

It is important that design decisions w.r.t. the internals of the HORSE Exec Global module (either in
the logical architecture or later in the development and process architectures) are as much as
possible isolated from design decisions in the HORSE Exec Local module. For this reason, we include
an abstraction layer (Exec Global Abstraction layer) in the interface to the HORSE Exec Local
subsystem.

The above decisions lead to the logical HORSE Exec Global architecture shown in Figure 20. The
architecture also shows the contextual connections following from the software architecture at
Level 2 (see Figure 15).

HORSE
Design
Global

HORSE Exec Local

Figure 20: logical software architecture aggregation level 3, subsystem 2

6.4.3 HORSE Config Local
The HORSE Config Local subsystem contains functionality to design manufacturing activities at the
local level, i.e., at the work cell level (see Figure 14). This design involves three main aspects:

• configuration of manufacturing tasks, i.e., the high-level activity spanning a work cell; note
that this may require multiple agents of different kinds that each execute manufacturing
steps (e.g. a human and a cobot);

• configuration of manufacturing steps, i.e., the low-level procedures performed by humans
and machines (robots and other relevant automated machines);

• design of workcells.

The three aspects are mapped to four logical software modules at this aggregation level (by
distinguishing between human step design and automated step design, as these require different
functionalities). These software modules interact through the Task/Step/Cell Definitions database
(i.e., this subsystem has a data-centered architecture).

Product
Defs.

Exec Global Abstraction Layer

Process /
Agent Data

HORSE Exec Global

Global Execution
(MPMS)

Global
Awareness

Page 47 of 91

D2.2

The resulting architecture is shown in Figure 21. The architecture also shows the contextual
connections following from the software architecture at Level 2 (see Figure 15). Note that the
Process Definitions database is only connected to the Task Design module, as tasks are embedded in
processes (and steps are embedded in tasks).

HORSE
Exec

Local

Figure 21: logical software architecture aggregation level 3, subsystem 3

6.4.4 HORSE Exec Local
The HORSE Exec Local subsystem is responsible for manufacturing activities within individual work
cells, i.e., at the work cell level (see Figure 14). This involves two main functions:

• supporting execution of manufacturing tasks and steps, i.e., making things happen;

• supporting awareness about the state of execution, i.e., observe things that happen and
processing this into relevant signals for controlling execution.

Both main functions are allocated to logical software modules at this aggregation level. Note that
this design decision is isomorphic to the one for the HORSE Exec Global subsystem (see
Section 6.4.2).

It is important that design decisions w.r.t. the internals of the HORSE Exec Local module (either in
the logical architecture or later in the development and process architectures) are as much as
possible isolated from design decisions in the HORSE Exec Global module. For this reason, we
include an abstraction layer (Exec Local Abstraction layer) in the interface to the HORSE Exec Global

Task

Design

Step

Design

Automated
Step

Design

Workcell
Design

Product
Defs. Task / Step

/ Cell Data

HORSE Config Local
Process /

Agent Data
HORSE
Design
Global

Page 48 of 91

D2.2

subsystem. Note that this decision is symmetric w.r.t. the design of the HORSE Exec Global
subsystem (see Section 6.4.2).

The above decisions lead to the logical HORSE Exec Local architecture shown in Figure 22. The
architecture also shows the contextual connections following from the software architecture at
Level 2 (see Figure 15).

HORSE Exec Global

HORSE
Config

Local

Figure 22: logical software architecture aggregation level 3, subsystem 4

6.4.5 Integration of subsystems
In Figure 23, we show the integration of the architectures of the four subsystems as developed in the
previous four subsections, which is the overall logical software architecture at aggregation level 3.
To not overcomplicate the figure, we have omitted the Product Definitions database and
connections to it. For the same reason, we have also omitted interfaces to the hardware platform
(robots, sensors) and human operators - these interfaces are shown when we refine this
architecture to aggregation level 4 (in Sections 11 to 14 in this document).

Task / Step
/ Cell Data

Product
Defs.

r Exec Local Abstraction Lay

Local Execution Local
Awareness

HORSE Exec Local

Page 49 of 91

D2.2

Figure 23: overall logical software architecture, aggregation level 3 (Product Defs. DB and interfaces to

platform/operators omitted)

6.4.6 Confrontation with requirements
To check the architecture of Figure 23, we confront this logical software architecture with the
HORSE system requirements [HOR16]. Given the level of detail of the architecture, we confront it
with the top-down functional requirements at level 3. We check again for completeness and
minimality, as explained before. The result of the confrontation is shown in Table 3.

Process Design

Agent
Design

Exec Global Abstraction Layer

Task
Design

Human
Step Design

Automated
Step Design

Workcell
Design

HORSE Design Global HORSE Exec Global

Process /
Agent Data

Global Execution
(MPMS)

Global
Awareness

HORSE Config Local

Exec Local Abstraction Layer

Task / Step
/ Cell Data

Local Execution
Local

Awareness

HORSE Exec Local

D2.2

Page 50 of 91

 HORSE
Design
Global

HORSE Exec

Global

HORSE Config Local

HORSE Exec

Local

Pr
oc

es
s

de
si

gn

Ag
en

t
de

si
gn

Gl
ob

al

ex
ec

ut
io

n

Gl
ob

al

aw
ar

en
es

s

Ta
sk

de

si
gn

H
um

an

st
ep

 d
es

ig
n

Au
to

m
at

ed

st
ep

 d
es

ig
n

W
or

kc
el

l
de

si
gn

Lo
ca

l
ex

ec
ut

io
n

Lo
ca

l
aw

ar
en

es
s

AF

-0
1:

Si

tu
at

io
n

aw
ar

en
es

s SF01: Work cell situation
awareness

X

X

X

SF02: Visual detection of
item, intrusion, obstacle

X

AF

-0
2:

Sy

nc
hr

on
iz

at
io

n
of

 ro
bo

tic
s

an
d

hu
m

an
 a

ct
iv

iti
es

 SF03: Grip, lift, handle,
manipulate and release
items (…)

X

X

SF04: Task allocation
between human and
automated actors (…)

X

X

X

X

X

X

SF05: Ergonomic work
station supporting user
friendly interaction

X

X

X

SF06: Force control
enabling low inertia
systems

X

SF07: Monitoring and
intention estimation of
human actions

X

X

X

AF

-0
3:

Ro

bo
tic

s
ta

sk

in
st

r. SF08: Robot
programming by
demonstration

X

X

AF

-0
4:

H

um
an

 ta
sk

in

st
ru

ct
io

ns
 SF09: Augmented reality

for manufacturing tasks

X

X

X

X

SF10: Augmented reality
to assist visual
inspection

X

X

X

X

PF

-0
1:

Ho

riz
on

ta
l

BP
M

 SF11: Manufacturing
process management
and monitoring

X

X

SF12: Structured
manufacturing process
exception handling

X

X

PF

-0
2:

Re

so
ur

ce

m
gm

t. SF13: Task allocation
based on resource
characteristics

X

X

D2.2

Page 51 of 91

PF

-0
3:

Ac

to
r

Co
nt

ro
l SF14: Monitoring and

control of work progress
(…)

X

Table 3: confrontation with top-down requirements Level 3

Table 3 shows that:

a) All Level 3 system requirements [HOR16] are covered by the logical software architecture at
aggregation Level 3; thus the architecture is complete at this level.

b) All modules in the logical software architecture at aggregation Level 3 have a functionality
linked to a Level 3 requirement; thus the architecture contains no superfluous modules.

Consequently, we observe that the confrontation of the architecture at Level 3 with the
requirements at level 3 is successful.

D2.2

Page 52 of 91

7 HORSE logical data architecture
Before we can continue the further structural decomposition of the logical architecture, we must pay
attention to the logical data architecture used in HORSE. The reason for this is that the concepts
defined in the logical data architecture determine part of the logical software structure at the
detailed level.

To specify logical data architectures, we use UML class diagrams [Wik16a].

Below, we develop a set of HORSE concept models:

• an agent concept model, which specifies the concepts and relations between concepts that
describe actors in a manufacturing context, i.e., entities that can perform manufacturing
activities;

• an activity concept model, which specifies the concepts and relations between concepts that
describe the activities to be performed in a manufacturing context by agents;

• an event concept model, which specifies the concepts and relations between concepts that
describe events that require reactions in a manufacturing context; this concept model is
included because monitoring and safety are important aspects in HORSE.

We describe each concept model in the three following subsections. In Section 7.4, we show how the
concept models can be integrated into the HORSE overall concept model.

The terminology used in the concept models is HORSE-specific. Linking to broadly accepted
terminologies (like those of IEC [IEC13], Industrie 4.0 [GTI14] and OMG) is desired, however.

7.1 HORSE agent concept model
The HORSE agent concept model is shown in Figure 24 and explained in the following. Note the UML
class diagram notation:

• Lines without heads denote general relationships (with indicated cardinalities).

• Lines with a diamond head denote part-of relationships (with indicated cardinalities, the
part at the diamond head side).

• Lines with an arrow head denote subtyping relationships (the supertype is at the arrow
head side).

D2.2

Page 53 of 91

1

Figure 24: HORSE agent concept model

The central concept is Agent, which represents anything that can perform a step in manufacturing.
An Agent can be part of one or more Teams.

The Agent concept is subtyped into Human Agent and Automated Agent. The Automated Agent is
further subtyped into Configurable Automated Agent (programmable robot) and NonConfigurable
Automated Agent (other non-programmable active manufacturing equipment). The Configurable
Automated Agent concept is again subtyped into Static Robot (fixed at one position in a work cell)
and Mobile Robot (able to move around in a manufacturing location).

Several Static Robots can be combined into one Multibot. A Multibot is programmed as one entity,
i.e., a Multibot is a Configurable Automated Agent and not a Team.

A Cobot is a specific kind of Robot and can be either a Static Cobot or a Mobile Cobot. A Cobot is
associated to a Human Agent.

The HORSE agent concept model includes the following constraint:

• A team includes at least one agent (empty teams are not permitted).

7.2 HORSE activity concept model
The HORSE activity concept model is shown in Figure 25 and explained in the following.

Agent

Static
Cobot

Mobile
Robot

Mobile
Cobot

NonConf.
Aut.Ag.

AGV

Conveyor

Turn-
table

Cobot
Human
Agent

Multibot

Team

0..n

is a

0..n

Autom.
Agent

0..n

Configur.
Aut.Ag. 1..n

1
Static
Robot

1..m 1..m

D2.2

Page 54 of 91

Admin.
Process

Manuf.
Task

Autom.
Step

Human
Step

E2E
Process

Manuf.
Process

Manuf.
Step

1

0..n 1 1 1
2..n

1
1..n

n

1
1..n

1

2..n

Manuf.
Work List

1..
0..n

Figure 25: HORSE activity concept model

A Manufacturing Process can exist of two or more sub processes.

Within a Manufacturing Process we have Manufacturing Tasks that coincide with work cells.

Within a Manufacturing Task, Manufacturing Steps are performed. Manufacturing Steps may have
sub steps as well. Because we have human and automated agents we also have Human Steps and
Automated Steps.

The Manufacturing Process is part of an End‐to‐End Process. An End‐to‐End Process consists of zero
or more Administrative Processes and one Manufacturing Process. The concept of End-to-End Process
is outside the strict scope of the HORSE system, but scope-wise coincides with the system context
architecture as shown in Figure 11.

7.3 HORSE event concept model
The HORSE event concept model is shown in Figure 26 and explained in the following. Note that the
event concept model contains only one general relationship (between Use and Event), all other links
represent subtyping relations.

D2.2

Page 55 of 91

Decision

Log

Alert Measure
ment

Activity
Alert

Agent
Alert

Safety
Alert

Activity
Measm.

Agent
Measm.

Process
Alert

Global
Saft.Alrt

Process
Measm.

Task
Alert

Local
Saft.Alrt

Task
Measm.

Step
Alert

Step
Measm.

Use 0..n 1..m Event

Figure 26: HORSE alert concept model

The HORSE event concept model is built around the central concept of event. The concept event is
specialized into the concepts of alert and measurement. An alert is an event generated in an
exceptional, unplanned situation. A measurement is a planned, periodic event that generates data.
An event is coupled to its use. In the use, it is processed, e.g. to make a decision or to store data in a
log.

The concept alert is specialized into three subtypes:

• activity alert: an alert generated by a system module that executes an activity at the level of
process, task or step as defined in the HORSE activity concept model, irrespective of the
agent(s) involved in the activity; an example is a manufacturing step exceeding its maximum
execution time;

• agent alert: an alert generated by an agent as defined in the HORSE agent model, irrespective
of the activity the agent is performing at that moment; an example is a mobile robot
predicting a collision;

• safety alert: an alert generated by an observed safety breach at the global level (site, area or
production line as defined by the IEC standard of Figure 5) or local level (work cell level),
irrespective of the activities or agents involved; an example is the manufacturing hall
temperature exceeding a threshold value.

D2.2

Page 56 of 91

7.4 Overall concept model
The connection between the HORSE agent concept model (Figure 24), the HORSE activity concept
model (Figure 25) and the HORSE event concept model (Figure 26) is shown in Figure 27. This
figure shows part (a projection) of the HORSE overall concept model - details not relevant for the
mentioned connection have been omitted for reasons of clarity.

Figure 27: projection of overall concept model

HORSE activity concept model HORSE event concept model

Manuf.
Process

1

n n
m Use

m
1..n Event

1 n
Manuf.

Task
1

n

1..n
HORSE agent concept model

m

Manuf.
Step

n
Agent

Autom.
Step

1

Human
Step

1 1 Human
Agent

0..n

1 Autom.
Agent

0..n

1..m
Team

1
1..m

D2.2

Page 57 of 91

8 HORSE logical organization architecture
The organization aspect of the HORSE logical architecture contains the structure of the
organizational functions involved in the management, operation and use of a HORSE system. It is
meant to be a descriptive architecture, not a prescriptive architecture (in concrete cases, the
organization may be different). It can be used as a sanity check to see whether a pilot scenario
design corresponds to the manufacturing organisation’s organogram.

8.1 Abstract logical organization architecture
Figure 28 shows the HORSE organization architecture. Grey elements denote departments, white
elements denote roles. The roles coincide with those in the high-level HORSE scenario elaborated in
Section 5.

Figure 28: HORSE organization architecture

8.2 Mapping to IEC standard
To make a clear mapping of the organization architecture to the IEC standard hierarchy (as
discussed in Section 4.2), we have to bring the levels of the IEC standard into the Manufacturing
Execution part of the organization architecture. We can do this by specializing the Factory
Supervisor role as shown in Figure 29 into three levels: site supervisor, area supervisor, and line
supervisor. For reasons of brevity, we do not include these roles in the abstract scenarios as
specified in Section 5. They can be used in concrete, case-specific scenarios, however, if so required.

Factory
Owner

Factory
Management

Product
Design

Manu-
facturing
Design

Production
Planning

Manu-
facturing
Execution

Manu-
facturing
Support

Product
Designer

Factory
Engineer

Production
Planner

Factory
Supervisor

Factory
Operator

D2.2

Page 58 of 91

Figure 29: HORSE organization architecture extended to match IEC hierarchy

With this extended organization architecture, we can make the mapping as shown in Figure 30. To
not overcomplicate the figure, we project on the relevant part of the architecture (leaving out four of
the five branches of Figure 29).

Site
Supervisor

Area
Supervisor

Line
Supervisor

Factory
Owner

Factory
Management

Product
Design

Manu-
facturing
Design

Production
Planning

Manu-
facturing
Execution

Manu-
facturing
Support

Product
Designer

Factory
Engineer

Production
Planner

Factory
Supervisor

Factory
Operator

D2.2

Page 59 of 91

Figure 30: projection of extended HORSE organization architecture mapped to IEC hierarchy

The mapping of Figure 30 can be used to map the organization architectures of the three pilot cases
via the IEC hierarchy to the logical HORSE organization architecture in Figure 29.

Site
Supervisor

Area
Supervisor

Line
Supervisor

Factory
Owner

Factory
Management

Manu-
facturing
Execution

Factory
Supervisor

Factory
Operator

D2.2

Page 60 of 91

9 HORSE logical process architecture
This section describes the process aspect of the HORSE logical architecture, i.e., the structure of
manufacturing processes supported by the HORSE system.

The conceptual basis for the process architecture is established in the data architecture, as this
architecture contains the HORSE activity concept model (see Section 7.2). In this section, we make
this activity concept more concrete. We do this at two levels: the level of enterprise processes to
make the positioning of manufacturing processes clear, and at the level of manufacturing processes
to make the internal structure of these processes clear.

9.1 Enterprise process level
At the enterprise process level, we show two cases: one for custom-designed production and one for
series production.

9.1.1 Custom-designed production
In Figure 31, we see a simplified example end-to-end enterprise process for delivering a custom-
designed product.

At level 1, we have the top level that shows the sequencing of the main enterprise activities (which
may be related to a value chain model like Porter’s [Port85]). Note that we have incorporated two
options: (1) a product specification is designed from scratch; (2) a product specification is retrieved
from a catalog (and possibly modified).

At level 2, we see the subprocesses, which are refinements of the steps at level 1. The sub-process to
the left is an administrative process, the one to the right a manufacturing process (as part of the
conceptual activity model of Figure 25). The manufacturing process is the core scope of HORSE (as
discussed in Section 6.1).

The manufacturing process contains a step to (re)design the manufacturing process, a step to
configure one or more work cells, and two actual manufacturing steps.

D2.2

Page 61 of 91

Figure 31: example enterprise process for custom-designed production

9.1.2 Series production
In Figure 32, we see a variation of the enterprise process for series products. In the beginning of the
process, a design step is included at Level 1. In its sub-process at Level 2, we see a product design
step (not in the core scope of HORSE) and a manufacturing process design step (in the core scope of
HORSE). The other steps at Level 1 are included in an iteration, which represents the handling of a
batch of products. The Make Product step has again a sub-process at Level 2. This sub-process
includes a configuration step for one or more work cells, such that batches of various product types
can be interleaved in production.

Manuf.
Process
Design

Manuf.
Local

Config. 1

Manuf.
Exec.
Task 1

Manuf.
Local

Config. 2

Manuf.
Exec.
Task 2

Design
Product

Sell
Product X

Retrieve
Product
Specs.

X Buy
Material

Make
Product

Deliver
Product

Make
Offer

Establish
Contract

HO
RS

E
Co

re
 S

co
pe

le
ve

l 2

le
ve

l 1

D2.2

Page 62 of 91

Figure 32: example enterprise process for series production

9.2 Manufacturing process level
In Figure 33, we see a refinement of the manufacturing process of Figure 31. Conforming to the
activity concept model of Figure 25, the tasks consist of steps, which can consist of sub-steps again.
Note that at the highest level, design time and execution time steps can be interleaved.

Figure 33: example manufacturing process with tasks and hierarchic steps

Process models like the one in Figure 33 have been practically elaborated for the three HORSE pilot
cases in the HORSE requirements analysis [HOR16].

Manuf.
Process
Design

Manuf.
Local

Config. 1

Manuf.
Exec.
Task 1

Manuf.
Local

Config. 2

Manuf.
Exec.
Task 2

Manuf.
Step 1.1

Manuf.
Step 1.2

Manuf.
Step 1.3

Manuf.
Step 2.1

Manuf.
Step 2.2

Manuf.
Step
1.2.1

Manuf.
Step
1.2.2

X

Design X Sell
Product

Buy
Material

Make
Product

Deliver
Product

Design
Product

Manuf.
Process
Design

Manuf.
Local

Config.

Manuf.
Exec.
Task 1

Manuf.
Exec.
Task 2

HORSE Core Scope

le
ve

l 2

le
ve

l 1

le
ve

l 3

le
ve

l 2

le
ve

l 1

D2.2

Page 63 of 91

10 HORSE logical platform architecture
This section describes the platform aspect of the HORSE logical architecture, i.e., the structure of the
software and hardware systems that form the basis for the operation of the HORSE system.

10.1 Software platform
The software platform includes:

• Standard business process management software.

• Database management software.

• Middleware to connect the above systems and HORSE modules.

• Middleware to connect HORSE modules to hardware interface software.

• Hardware interface software.

10.2 Hardware platform
The hardware platform includes:

• Robots.

• Other automated agents, such as conveyors.

• Sensors, including cameras.

• Computers.

10.3 Platform overview
The platform architecture is shown in overview in Figure 34.

D2.2

Page 64 of 91

Figure 34: HORSE platform architecture (with HORSE focus indicated)

EIS (ERP, MES, PLMS)

HORSE Software System

BPMS

Enter-
prise

Middle-
ware

DBMS

Cyber-Physical Middleware

Configurable
Automated

Agents

Non-Config.
Automated

Agents

Sensors
(incl.

cameras)

Cyber-
Physical

Workstations

Ent
S

prise
ervers

ha
rd

w
ar

e
so

ft
w

ar
e

D2.2

Page 65 of 91

HORSE
Complete System Design

Part 3:

Medium-Level Design of the
Software Aspect

D2.2

Page 66 of 91

D2.2

Page 67 of 91

11 Logical software architecture HORSE Design Global
This section describes the logical software architecture at aggregation level 4 of the HORSE Design
Global module, i.e., it refines the logical software architecture design of Section 6.4.1 (as shown in
Figure 19). First, we elaborate the individual sub-modules of the HORSE Design Global module. Then
we integrate these elaborations to get an overview of the HORSE Design Global module at
aggregation level 4. A hierarchical list of all modules in the logical software architecture with
hierarchical module IDs is included in Appendix C of this document.

11.1 Process Design module
The Process Design module contains the functionality to (re-)design manufacturing processes.
Results of design activities are stored in the Process/Agent Definitions database. In case of redesign,
the input is retrieved from this database.

Figure 35: Process Design module software architecture, aggregation level 4

As shown in Figure 35, the module consists of five sub-modules.

11.2 Agent Design module
The Agent Design module contains the functionality to design manufacturing agents, i.e., describe
their relevant characteristics.

Product
Defs.

Process Flow Modelling

Syntax
Violation

Detec-
tion

Process
Ani-

mation

Task
Identi-
fication

Agent
Class
Allo-
cation

Process /
Agent Data

Task / Step
/ Cell Data

Process Design

Agent
Design

D2.2

Page 68 of 91

Figure 36: Agent Design module software architecture, aggregation level 4

11.3 HORSE Design Global overview (aggregation level 4)
In Figure 37, we see the integration of the architectures of Figure 35 and Figure 36, i.e., the overview
of the HORSE Design Global software architecture at aggregation level 4.

Human
Agent
Design

Autom.
Agent
Design

Process /
Agent Data

Process
Design

Agent Design

D2.2

Page 69 of 91

Figure 37: HORSE Design Global logical architecture, aggregation level 4

Product
Defs.

Syntax
Violation

Detec-
tion

Process
Ani-

mation

Task
Identi-
fication

Task / Step
/ Cell Data

Process /
Agent Data

Process Design Agent Design

Process Flow Modelling

Agent
Class

Allo-
cation

Human
Agent
Design

Autom.
Agent
Design

D2.2

Page 70 of 91

12 Logical software architecture HORSE Exec Global
This section describes the logical software architecture at aggregation level 4 of the HORSE Exec
Global module, i.e., it refines the logical software architecture design of Section 6.4.2 (as shown in
Figure 20). First, we elaborate the individual sub-modules of the HORSE Exec Global module. Then
we integrate these elaborations to get an overview of the HORSE Exec Global module at aggregation
level 4. A hierarchical list of all modules in the logical software architecture with hierarchical
module IDs is included in Appendix C of this document.

12.1 Global Execution module
The software architecture at aggregation level 4 of the Global Execution module is shown in Figure
38.

Global Execution

Exec Global
Abstraction

Layer

Global

Awareness

Figure 38: Global Execution module software architecture, aggregation level 4

The Worklist Delivery module supports push mode task delivery. Work Lists consist of a single task
in the current system design for reasons of simplicity (but may contain multiple tasks in a future
design - as shown in the HORSE activity concept model of Figure 25).

Production Execution Monitoring module supports real-time monitoring of manufacturing
execution in terms of processes, orders, and agents (human and automated).

12.2 Global Awareness module
The aggregation level 4 software architecture of the Global Awareness module is shown in Figure
39.

Global
Perfor-
mance
Tracking

Structur.
Excep-

tion
Handling

Worklist
Delivery

Agent

Selection

Next Task
Selection

Production Execution
Monitoring Production Execution Control

Process /
Agent Data

D2.2

Page 71 of 91

Global
Execution

Exec Global
Abstraction

Layer

Figure 39: Global Awareness module software architecture, aggregation level 4

12.3 HORSE Exec Global overview (aggregation level 4)
Figure 40 shows the logical software architecture of the HORSE Exec Global subsystem at
aggregation level 4. It is the integration of the architectures of Figure 38 and Figure 39.

Global Safety
Guard

Event
Processing

Process /
Agent Data

Global Awareness

D2.2

Page 72 of 91

Global Execution

Production Execution
Monitoring

Global Awareness

Global Safety
Guard

Next Task
Selection

Agent
Selection

Worklist
Delivery

Structur.
Excep-

tion
Handling

Global
Perfor-
mance
Tracking

Event
Processing

Exec Global
Abstraction

Layer

Figure 40: HORSE Exec Global logical architecture, aggregation level 4

Process /
Agent Data

Production Execution Control

D2.2

Page 73 of 91

13 Logical software architecture HORSE Config Local
This section describes the logical software architecture at aggregation level 4 of the HORSE Config
Local module, i.e., it refines the logical software architecture design of Section 6.4.3 (as shown in
Figure 21). First, we elaborate the individual sub-modules of the HORSE Config Local module. Then
we integrate these elaborations to get an overview of the HORSE Exec Global module at aggregation
level 4. A hierarchical list of all modules in the logical software architecture with hierarchical
module IDs is included in Appendix C of this document.

Note that design GUIs are not included in the software architecture, as they are considered part of
the platform architecture.

13.1 Task Design
Figure 41 shows the software architecture of the Task Design module.

Figure 41: Task Design module software architecture, aggregation level 4

13.2 Human Step Design
Figure 42 shows the software architecture of the Human Step Design module.

Human Step Design

Workcell
Simulator

Figure 42: Human Step Design module software architecture, aggregation level 4

Process /
Agent Data

Task Design
Interface

Task Parser Task / Step

/ Cell Data

Task Design

Human Step
Design

Interface

AR
Design

Task / Step
/ Cell Data

D2.2

Page 74 of 91

13.3 Automated Step Design
Figure 43 shows the software architecture of the Automated Step Design module.

AUTAGENT

Autom. Step Design

Workcell
Simulator

Figure 43: Automated Step Design module software architecture, aggregation level 4

As the module supports robot programming by demonstration, it contains an interface to an
automated agent.

13.4 Workcell Design
Figure 44 shows the software architecture of the Workcell Design module.

Human Step

Design
Workcell Design

Autom. Step
Design

Task / Step
/ Cell Data

Figure 44: Workcell Design module software architecture, aggregation level 4

13.5 HORSE Config Local overview (aggregation level 4)
Figure 45 shows the logical software architecture at aggregation level 4 of the HORSE Config Local
subsystem. This architecture is obtained by integrating the architectures of Figure 41, Figure 42,
Figure 43 and Figure 44.

Autom. Step
Design

Interface

Autom. Step
Planner

Task / Step
/ Cell Data

Workcell
Simulator

Workcell
Configuration

D2.2

Page 75 of 91

Figure 45: HORSE Config Local logical architecture, aggregation level 4

Task / Step
/ Cell Data

Process /
Agent Data

Task Design

Task Design
Interface Task Parser

Human Step Design

Human Step
Design

Interface

Autom. Step Design

Autom. Step
Design

Interface

AUTAGENT

AR
Design

Autom. Step
Planner

Workcell Design

Workcell Simulator

Workcell Configuration

D2.2

Page 76 of 91

14 Logical software architecture HORSE Exec Local
This section describes the logical software architecture at aggregation levels 4 and 5 of the HORSE
Exec Local module, i.e., it refines the logical software architecture design of Section 6.4.4 (as shown
in Figure 22). A hierarchical list of all modules in the logical software architecture with hierarchical
module IDs is included in Appendix C of this document.

Different from the other three main subsystems (as at aggregation level 2), the HORSE Exec Local
subsystem is elaborated to aggregation level 5 because this subsystem contains the most detailed
cyber-physical interfaces, which require specification in the logical architecture view to provide a
solid basis for further elaboration in the development architecture view (in WP3).

14.1 Local Execution module
In refining the Local Execution module, we use the concept model described in Section 7.3 (as
shown in Figure 27). In doing so, we link the software and data aspects of the logical architecture, as
illustrated in Figure 46.

Figure 46: connecting software and data aspects

The decisions made there lead to decisions for the logical software architecture. We include a
module (Hybrid Task Supervisor) that supervises the execution of a manufacturing task by a team of
multiple agents (which can be of different types, such as humans, robots or different automated
agents). We include separate modules for the supervision of execution of human respectively
automated manufacturing steps: HumAgent Step Exec and AutAgent Step Exec.

Synchronization between these two modules is performed by the Hybrid Task Supervisor, as this
module oversees the dependencies between agents in a task. These two modules have interfaces
(abstraction layers) to the physical agents: Human Machine ITF and Automated Agent Execution
ITF. This leads to the architecture of Figure 47.

D2.2

Page 77 of 91

Exec Local Abstraction Layer

HumAgent
Step Exec

AutAgent
Step Exec

Local
Awareness

Human
Machine ITF

AutAgent
Exec ITF

Local Execution

Task / Step /
Cell Data

HUMAGENT AUTAGENT

Figure 47: logical software architecture of local execution module

14.2 Local awareness module
The software architecture of the Local Awareness module is shown in Figure 48.

Exec Local Abstraction Layer

Local
Execution

Local Awareness

Task / Step /
Cell Data

Figure 48: logical software architecture of local awareness module

Deviation
Monitor

Hybrid Task Supervisor

Lo
ca

l S
af

et
y

Gu
ar

d

Se
ns

in
g

Su
pe

rv
iso

r

Au
gm

en
te

d
Re

al
ity

DI
SP

LA
Y

SE
N

SO
R/

CA
M

ER
A

D2.2

Page 78 of 91

14.3 HORSE Exec Local overview (aggregation level 4)
Figure 49 shows the overview of the HORSE Exec Local logical architecture (i.e., the combination of
Figure 47 and Figure 48). To improve readability of the figure, we have dotted the connection
between software modules and the database.

HORSE Exec Global

Figure 49: HORSE Exec Local logical architecture, aggregation level 4

As shown in the figure, the Local Execution module is connected to the Local Awareness module via
several interfaces. The Hybrid Task Supervisor is connected to the Local Safety Guard and Deviation
Monitor, as it has to decide about synchronization of agents in case of security issues (for example, a
robotic agent comes too close to a human agent in the execution of a manufacturing task) and
observed deviations. The Automated Agent Step Execution module is connected to the Local Safety
Guard and Sensing Supervisor to be able to executed manufacturing steps in a reliable and safe way.
The Automated Agent execution Interface module is connected to the deviation monitor to pass
robot movement signals to the Local Awareness module.

The HORSE Exec Local subsystem interacts with a number of physical resource classes: human
agents, automated agents, sensors and cameras, displays. Instances of these classes can be
connected in the physical world (as indicated by the orange dotted lines in Figure 49). For example,

Exec Local Abstraction Layer

Hybrid Task Supervisor

HumAgent
Step Exec

AutAgent
Step Exec

Human
Machine ITF

Local Execution

AutAgent
Exec ITF

Deviation
Monitor

Local Awareness

HORSE Exec Local [Software Aspect Level 4.2]

Task / Step /
Cell Data

HUMAGENT AUTAGENT

Lo
ca

l S
af

et
y

Gu
ar

d

Se
ns

in
g

Su
pe

rv
iso

r

Au
gm

en
te

d
Re

al
ity

DI
SP

LA
Y

SE
N

SO
R/

CA
M

ER
A

D2.2

Page 79 of 91

a display may be worn by a human agent or a camera can be attached to a robotic agent. These
attached-to physical relations are not taken into account in the logical architecture.

D2.2

Page 80 of 91

D2.2

Page 81 of 91

HORSE
Complete System Design

Part 4:

Conclusion, Bibliography
and Appendices

D2.2

Page 82 of 91

D2.2

Page 83 of 91

15 Conclusions
This document presents the complete design of the HORSE system, focusing on the logical
architecture of the K4+1 framework and using the aspects of the UT5 framework.

The design is based on a number of explicit HAT decisions, which are clearly marked in this
document.

The design implies a number of recommendations with respect to the hand-over of the logical
system design to the development system design in WP3. These hand-over recommendations are
clearly marked in this document.

D2.2

Page 84 of 91

16 References
[Fowl03] M. Fowler; UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd

Edition); Addison-Wesley Professional, 2003.

[Gref98] P. Grefen, R. Remmerts de Vries; A Reference Architecture for Workflow Management
Systems; Data & Knowledge Engineering; Vol. 27, No. 1; North Holland - Elsevier; 1998;
pp. 31-57.

[Gref15] P. Grefen; Business Information System Architecture (Version Spring 2015); Eindhoven
University of Technology, 2015.

[GTI14] Industrie 4.0: Smart Manufacturing for the Future; Germany Trade & Invest, 2014.

[Heyw16] R. Heywood (ed.); UML Use Case Diagrams: Tips and FAQ;
https://www.andrew.cmu.edu/course/90-754/umlucdfaq.html; inspected 2016.

[Hill07] R.Hilliard; All About IEEE Std 1471; 2007; available at http://www.iso-
architecture.org/ieee-1471/docs/all-about-ieee-1471.pdf.

[HOR16] System Requirements Specification; HORSE Project Deliverable 2.1; HORSE Consortium,
2016 (restricted availability).

[IEC13] Enterprise-Control System Integration - Part 1: Models and Terminology, 2nd ed.; The
International Electrotechnical Commission (IEC), Geneva, Switzerland, 2013.

[Kruc95] P. Kruchten; Architectural Blueprints—The “4+1” View Model of Software Architecture;
IEEE Software, Vol. 12, No. 6; IEEE, 1995, pp. 42-50.

[Port85] M. Porter; Competitive Advantage: Creating and Sustaining Superior Performance; Free
Press, 1985.

[Shaw96] M. Shaw, D. Garlan; Software Architecture: Perspectives on an Emerging Discipline;
Prentice Hall, 1996.

[Truy90] J. Truijens, A. Oosterhaven, R. Maes, H. Jägers, F. van Iersel; Informatie-infrastructuur: een
Instrument voor het Management; Kluwer Bedrijfs-wetenschappen, 1990 (in Dutch).

[Wik16a] Class Diagrams; Wikipedia: https://en.wikipedia.org/wiki/Class_diagram; inspected
2016.

https://www.andrew.cmu.edu/course/90-754/umlucdfaq.html
https://en.wikipedia.org/wiki/Class_diagram

D2.2

Page 85 of 91

17 Appendix A: Data flow analysis interfaces (Level 2)
In this appendix, we present the data flow analysis on the interfaces of the software architecture at
aggregation level 2, as shown in Figure 18 and Table 1. The purpose of this data flow analysis is to
check completeness and consistency of the interface listing.

The analysis is presented below in Figure 50 and Figure 51. the interface IDs are those listed in
Table 1.

1a PD

HEG

Use process
2b models

(sequencing of
tasks)

3a TSD

HEL

Contents of
4b tasks (Task and

step model
definitions)

HDG

Re-define
1b process models

(sequencing of
tasks)

HCL

Use Process
3b performance

data to define
new tasks

1a PD

HEG

2b Use Agent
models (incl.
capabilities)

5b HDG
Black box

characteristics
of task

definitions

HDG

1b Re-define Agent
models (incl.
capabilities)

4a TSD

HCL

Use Task and
3b step

performance
data / statistics

6b HCL

Capability
models (incl.
capabilities)

1a PD

HEG

2b Use Allocation
models (role

models)

HDG

Re-define
1b Allocation

models (role
models)

Figure 50: Data flow analysis interfaces software architecture aggregation level 2 (part 1)

HDG
Create process

models
(sequencing of

tasks)

HCL
Create Task and

step model
definitions

HDG
Create Agent
models (incl.
capabilities)

HEL

Create Task and
step

performance
data / statistics

HDG

Create
Allocation

models (role
models)

D2.2

Page 86 of 91

7a

7a

HEG

7b Use task control
confirmations

HEG

7b Use task

statuses

HEG

7b Use
measurements

HEG HEG HDG

7b

Use alert

Create Process 2a PD
performance

data

1b Use Process

performance
data

HEG

Report
2a performance

data (mngmnt
data)

Figure 51: Data flow analysis interfaces software architecture aggregation level 2 (part 2)

HEG

Create product

definitions

HEG

Create Task
command

HEL

Use product
definitions

HEL

Perform task

command

HEL

Create task
control

confirmations

HEL

Create task

statuses

HEL

Create

measurements

HEL

Create alert

D2.2

Page 87 of 91

Process

Definitions

Task

Definitions

18 Appendix B: Database refinement
In this appendix, we discuss a possible refinement of the databases used in the logical software
architecture. We first discuss the general database structure. Next, we discuss how specific
databases used in HORSE Exec Local at aggregation level 5 map to this general structure.

18.1 General database structure
As a basis, we take the five databases shown in Figure 16 (logical software architecture, aggregation
level 2, separated databases. We then apply the distinction made in the Mercurius reference
architecture [Gref98]. This leads to the refinement shown in Figure 52. The databases presented in
blue are external to the HORSE system, i.e., they reside in the systems in the context of the HORSE
system as shown in Figure 11.

+ +

+

+ +

+

Figure 52: refinement of databases based on WFM reference architecture

18.2 HORSE Exec Local database structure
In Section Error! Reference source not found., we have discussed the HORSE Exec Local logical
software architecture. This architecture uses a set of databases from the local execution point of

Product

Defs.

Process /

Agent Def.

Task / Step
/ Cell Def.

Task / Step
/ Cell. Exec.

Process /

Agent Exec.

Agent

Definitions

Data Prod.
Definitions

Global

Execution
Data

Application

Data

Work Cell

Definitions

Step

Definitions

Local

Execution
Data

Application

Data

D2.2

Page 88 of 91

view. These databases can easily be mapped to the general set of databases discussed before in this
appendix. We show this mapping in Figure 53.

mapping to
general
databases

HEL specific
databases

general
databases
used in HEL

Figure 53: mapping between general HORSE databases and HEL databases

The following remarks hold for the mapping:

• The Context Model database describes the context of work cell tasks being executed. This
includes both static data (in the Work Cell Definitions database) and dynamic data (in the
Local Execution Data database).

• The Device Model database describes the devices involved in the execution of manufacturing
tasks. In the context of HORSE, this is a subset of the Work Cell Definitions database.

• The Object Descriptions database describes the objects relevant in the execution of
manufacturing tasks. This includes both objects being manufactured (in the Products
Definitions database) and objects explicitly present in the manufacturing environments
(such as obstacles impairing robot movement, in the Work Cell Definitions database). This
implies that objects not explicitly present in work cells are not considered.

• The Step Defintions database contains Augmented Reality definition data.

Local
Execution

Data

Work Cell
Definitions

Product
Defs.

Context
Model

Device
Model

Object
Descr.

Agent Defs.

Task

Definitions

Step

Definitions

D2.2

Page 89 of 91

19 Appendix C: Hierarchical software component list
This appendix contains a hierarchic component list of the HORSE logical software architecture. For
easy referencing in software development in WP3, all components are given a hierarchical software
module ID.

19.1 Aggregation levels 2-4, full logical software architecture
Table 4 contains a full enumeration of all components at aggregation levels 2 to 4. We omit level 1 as
this level only distinguishes between the global and local levels, which is also implied by level 2.

Aggregation Level 2 Aggregation Level 3 Aggregation Level 4

HORSE Design Global
SM1

Process Design
SM1.1

Process Flow Modelling
SM1.1.1

 Syntax Violation Detection
SM1.1.2

 Process Animation
SM1.1.3

 Task Identification
SM1.1.4

 Agent Class Allocation
SM1.1.5

 Agent Design
SM1.2

Human Agent Design
SM1.2.1

 Automated Agent Design
SM1.2.2

HORSE Exec Global
SM2

Global Execution
SM2.1

Production Execution Control
SM2.1.1

 Next Task Selection
SM2.1.2

 Agent Selection
SM2.1.3

 Worklist Delivery
SM2.1.4

 Production Execution Monitoring
SM2.1.5

 Structured Exception Handling
SM2.1.6

D2.2

Page 90 of 91

 Global Performance Tracking

SM2.1.7
 Global Awareness

SM2.2
Global Safety Guard
SM2.2.1

 Event Processing
SM2.2.2

 Exec Global Abstration Layer
SM2.3

no refinement

HORSE Config Local
SM3

Task Design
SM3.1

Task Design Interface
SM3.1.1

 Task Parser
SM3.1.2

 Human Step Design
SM3.2

Human Step Design Interface
SM3.2.1

 AR Design
SM3.2.2

 Automated Step Design
SM3.3

Automated Step Design Interface
SM3.3.1

 Automated Step Planner
SM3.3.2

 Workcell Design
SM3.4

Workcell Simulator
SM3.4.1

 Workcell Configuration
SM3.4.2

HORSE Exec Local
SM4

Local Execution
SM4.1

Hybrid Task Supervisor
SM4.1.1

 Human Agent Step Execution
SM4.1.2

 Human Machine Interface
SM4.1.3

 Automated Agent Step Execution
SM4.1.4

 Automated Agent Execution
Interface
SM4.1.5

D2.2

Page 91 of 91

 Local Awareness

SM4.2
Local Safety Guard
SM4.2.1

 Sensing Supervisor
SM4.2.2

 Deviation Monitor
SM4.2.3

 Augmented Reality
SM4.2.4

 Exec Local Abstraction Layer
SM4.3

no refinement

Table 4: hierachical component list logical software architecture levels 2-4

	P.W.P.J. Grefen, I.T.P. Vanderfeesten, G. Boultadakis (editors) Beta Working Paper series 518
	Table of Contents
	List of Tables
	Abbreviations
	Executive Summary
	HORSE
	1 Introduction
	1.1 Purpose of this document
	1.2 Structure of this document

	2 Architectural approach to complete system design
	2.1 The role of architecture
	2.1.1 Architecture of a software system
	The architecture of a software system defines that system in terms of computational components and interactions between those components.
	Architecture is the fundamental organization of a system embodied in its components, their relationships to each other and to the environment and the principles guiding its design and evolution.

	2.1.2 Architecture of an (enterprise) information system
	The architecture of a (corporate) information system defines that system in terms of functional components and relations between those components, from the viewpoint of specific aspects of that system, possibly organized into multiple levels, and base...

	2.1.3 Architecture from a system point of view

	2.2 The Kruchten 4+1 architecture framework (K4+1)
	2.3 The Updated Truyens 5 aspect framework (UT5)

	3 The K4+1 framework applied to HORSE
	4 Use of standards
	4.1 Architecture specification techniques
	4.2 Manufacturing domain standards

	HORSE
	5 High-level HORSE scenario
	5.1 Overall HORSE scenario
	5.2 Use case Design Manufacturing Process
	5.3 Use case Execute Manufacturing Process
	5.4 Use case Configure Manufacturing Task
	5.5 Use case Execute Manufacturing Task

	6 Logical software architecture, aggregation levels 0-3
	6.1 Logical software architecture, aggregation level 0
	6.2 Logical software architecture, aggregation level 1
	6.3 Logical software architecture, aggregation level 2
	6.3.1 Architecture refinement
	6.3.2 Database interface topology design
	6.3.3 Execution interface topology design
	6.3.4 Interface data structure and message design
	6.3.5 Confrontation with requirements

	6.4 Logical software architecture, aggregation level 3
	6.4.1 HORSE Design Global
	HORSE

	6.4.2 HORSE Exec Global
	HORSE

	6.4.3 HORSE Config Local
	HORSE

	6.4.4 HORSE Exec Local
	HORSE Exec Global

	6.4.5 Integration of subsystems
	6.4.6 Confrontation with requirements

	7 HORSE logical data architecture
	7.1 HORSE agent concept model
	7.2 HORSE activity concept model
	7.3 HORSE event concept model
	7.4 Overall concept model

	8 HORSE logical organization architecture
	8.1 Abstract logical organization architecture
	8.2 Mapping to IEC standard

	9 HORSE logical process architecture
	9.1 Enterprise process level
	9.1.1 Custom-designed production
	9.1.2 Series production

	9.2 Manufacturing process level

	10 HORSE logical platform architecture
	10.1 Software platform
	10.2 Hardware platform
	10.3 Platform overview

	HORSE
	11 Logical software architecture HORSE Design Global
	11.1 Process Design module
	11.2 Agent Design module
	11.3 HORSE Design Global overview (aggregation level 4)

	12 Logical software architecture HORSE Exec Global
	12.1 Global Execution module
	Exec Global Abstraction Layer

	12.2 Global Awareness module
	12.3 HORSE Exec Global overview (aggregation level 4)
	Production Execution
	Global Safety Guard

	13 Logical software architecture HORSE Config Local
	13.1 Task Design
	13.2 Human Step Design
	Workcell Simulator

	13.3 Automated Step Design
	AUTAGENT
	Workcell Simulator

	13.4 Workcell Design
	Human Step
	Workcell Design

	13.5 HORSE Config Local overview (aggregation level 4)

	14 Logical software architecture HORSE Exec Local
	14.1 Local Execution module
	Exec Local Abstraction Layer
	HUMAGENT AUTAGENT

	14.2 Local awareness module
	Exec Local Abstraction Layer

	14.3 HORSE Exec Local overview (aggregation level 4)

	15 Conclusions
	16 References
	17 Appendix A: Data flow analysis interfaces (Level 2)
	18 Appendix B: Database refinement
	18.1 General database structure

	+ +
	18.2 HORSE Exec Local database structure
	mapping to general databases

	19 Appendix C: Hierarchical software component list
	19.1 Aggregation levels 2-4, full logical software architecture

