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Towards Dynamic Contrast Specific 
Ultrasound Tomography
Libertario Demi1, Ruud J. G. Van Sloun1, Hessel Wijkstra1,2 & Massimo Mischi1

We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, 
ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and 
quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which 
exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus 
enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST  
will lead to a more practical, faster, and less operator-dependent imaging procedure compared to 
standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear 
relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of 
determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer 
localization, adding important features to multi-parametric ultrasound tomography of the breast.

Nowadays, there is growing interest in the development of imaging techniques which are capable of detecting 
and localizing angiogenesis and neovascularization. These processes induce specific changes in the microvas-
cular structure, represent an established marker for tumours, and also provide indications of tumour aggres-
siveness1. In particular, dynamic contrast-enhanced ultrasound (DCE-US) imaging shows promise, with many 
novel approaches focusing on the direct and/or indirect characterization of the microvasculature. However, when 
considering the various imaging options, several challenges emerge for imaging the breast.

Typical ultrasound contrast agents (UCAs) are gas-filled microbubbles with diameters ranging between 1 and 
10 μ​m; they are therefore suitable for intravenous injection and can flow through the smallest microvessels. This 
phenomenon is exploited by super-localization ultrasound techniques which overcome the diffraction limit and 
are capable of imaging the microvasculature with a spatial-resolution as small as 8–12 μ​m 2,3. Additionally, these 
techniques provide access to accurate velocity maps, thus offering a powerful tool for the study of microvascu-
lar blood flow. However, the relatively long imaging time needed (e.g., >​2 minutes per plane2), the influence of 
motion, and the difficulties in imaging and localizing single microbubbles in deep tissue, pose limitations to the 
use of these modalities in large organs.

Another recently-developed imaging method is acoustic angiography4. With this technique, high 
spatial-resolution images (in the order of 100 μ​m) are obtained using tenfold higher frequencies than with nor-
mal DCE-US echo-imaging. Once again, the key lies in the UCAs peculiar response to ultrasound. Because of 
their highly nonlinear behaviour, UCAs can backscatter high-frequency broadband echo signals (15–35 MHz), 
which can be used to achieve improved spatial-resolution5. However, frequency-dependent attenuation practi-
cally constrains the applicability of this technique to relatively small depths, such as those required for imaging 
the peripheral zone of the prostate (1–2 cm).

Other techniques chose a different path rather than targeting high spatial-resolution.
Standard DCE-US imaging (i.e., Harmonic Imaging, Pulse Inversion, and Amplitude Modulation) is an echo 

graphic technique, which in essence exploits variations in the second harmonic amplitude to generate real-time 
images of UCA kinetics when flowing through the vasculature6,7. In particular, the analysis of microbubble 
flow-dynamics through the vessels can be used to reveal changes in the vasculature itself. To this end, several 
techniques which are based on the quantification of parameters related to UCA perfusion and dispersion have 
been proposed8–12. Although the typical DCE-US spatial resolution is in the order of 1 mm, hence unsuitable for 
imaging microvascular changes, these techniques are still able to infer relevant information in relation to the 
‘angiogenetic switch’ (the transition from a pre-vascular to a vascularized tumour phenotype) required for cancer 
to grow beyond 1–2 mm in diameter13,14.
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However, performing a handheld DCE-US is particularly challenging for the breast, and makes imaging 
highly dependent on the skills of the operator. The development of dynamic contrast-specific ultrasound tomog-
raphy may represent a breakthrough in breast cancer diagnostics, allowing for a more-practical, faster, and less 
operator-dependent imaging procedure15,16. Moreover, imaging artefacts affect standard DCE-US and limit UCA 
quantification and localization accuracy17,18.

In order to address these shortcomings, and thanks to a newly discovered UCA marker, a contrast-specific 
imaging modality named cumulative phase delay imaging (CPDI) has recently been proposed for 
contrast-enhanced ultrasound tomography19,20. CPDI is based on the fact that the diverse physical phenom-
ena behind nonlinear propagation in tissue and UCA are producing a different delay accumulation between 
the second harmonic (2H) and fundamental (F0) component of the ultrasound field. In particular, a positive 
delay between 2H and F0 is a marker which is specific to UCAs as opposed to variations in harmonic amplitude 
(exploited for echo imaging), speed of sound, and attenuation (exploited for ultrasound tomography). CPDI has 
already proved to be capable of detecting and imaging UCA concentrations when working at pressure regimes 
(0.05 ≤​ MI ≤​ 0.2) and frequencies (2.5–3 MHz) of interest for clinical applications. However, although these initial 
studies demonstrated the feasibility of CPDI, its ability to capture UCA kinetics has never been demonstrated20.

As the achievable spatial resolution for ultrasound tomography is not expected to be comparable with that 
achievable with acoustic angiography and super-localization techniques, the ability of CPDI to image UCA kinet-
ics is crucial to demonstrate its clinical significance.

Results
This paper reports on the first study to investigate the ability of CPDI to image UCA kinetics. To this end, the 
passage of repeated UCA boluses through a dedicated gelatin flow-phantom was imaged (see Fig. 1). CPDI and 
Harmonic Imaging (HI) were simultaneously applied to each bolus passage (in tomography and echo mode, 
respectively) in order to perform a comparison between the two methods and to analyze the relation between 
CPD values and harmonic intensity. In this paper, HI specifically refers to the pulse-echo imaging technique 
which relies on band-pass filters for the extraction of the second harmonic component.

Each bolus resulted from a 5-mL injection with a 240-μ​L/L UCA dilution. A clinically approved agent, 
SonoVue®​ (Bracco, Milan, Italy), was used for this study. To generate and store the ultrasound fields, a ULA-OP21 

Figure 1.  Illustrative picture, and schematics of the side and front view of the set-up are shown. 
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ultrasound open research platform was employed together with a LA332 linear array probe (Esaote, Firenze, Italy). 
Insonating frequency, mechanical index (MI), and frame rate were set at 2.5 MHz, 0.07, and 8 Hz, respectively.

The ability of CPDI to capture UCA kinetics and qualitative comparison with HI.  Figure 2 shows, 
for both CPDI and HI, an example of a time intensity curve (TIC), together with the corresponding images 
obtained at different time instances. Processed curves (red lines) are obtained using a 0.75-s moving average filter. 
Various TIC features which are commonly used to quantify UCA kinetics9 are also marked: arrival time (AT), 
peak time (PT), wash-in time (WIT), and full width half maximum (FWHM). For both imaging modalities, each 
TIC was obtained by averaging the image values over the surface corresponding to the location of the channel 
cross-section (indicated by white dashed lines). Qualitatively, the two imaging methods provided similar results.

Reported linear relation between CPD values and 2H intensity and quantitative analysis.  
Figure 3a shows the relation between CPD values and second harmonic intensity as a scatterplot of the data-points 
of all TICs. The blue points refer to the values obtained before the arrival time. A linear relation is observed with 
a coefficient of determination equal to 0.87. Figure 3b shows a box-plot analysis of the absolute error values cal-
culated for different TIC features when comparing CPDI and HI data. The feature that shows the highest absolute 
error is FWHM, with a median absolute error value equal to 0.625 s. As for the other features, the median absolute 
error was 0.25 s, 0.25 s, and 0.0625 s for AT, WIT, and PT, respectively.

The relative standard deviation of the area under the dilution curves, a feature which can be used for perfusion 
assessment, was also calculated across all the measurements and was found to be equal to 0.18 and 0.17 for CPDI 
and HI, respectively. Moreover, the mean and standard deviation of the Pearson’s correlation coefficient between 

Figure 2.  The ability of CPDI to capture UCA kinetics and qualitative comparison with HI. At the top left, 
time-intensity curves (TICs) obtained from cumulative phase delay (top) and harmonic imaging (bottom). 
Raw (blue dots) and processed (red lines) curves are shown. At the bottom, cumulative phase delay (A–D) and 
harmonic (E–H) images of an ultrasound contrast agent bolus passage are shown at different time instants.
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TICs extracted by CPDI and HI were equal to 0.91 and 0.04, respectively. Overall, the quantitative analysis of TICs 
obtained with both imaging methods provides equivalent results.

Comparison with speed of sound changes and attenuation due to UCA.  Currently, no contrast-specific  
modality exists for ultrasound tomography. In fact, speed-of-sound variations and attenuation (normally used to 
perform ultrasound tomography15,16) due to UCAs can be confused (same range) with those caused by different 
tissue types20,22–24. Conversely, CPDI is based on a marker specific for UCAs, thus opening the way to dynamic 
contrast-specific ultrasound tomography.

Figure 4 shows the histograms of (a) speed of sound, (b) attenuation (measured at 2.5 MHz), and (c) CPD 
values (expressed in cycles per m) obtained from our experiment. These histograms were generated by analyzing 
all the data over the area corresponding to the location of the channel cross-section. Each figure also shows the 
range of values typically found in breast tissue for each parameter. The data for attenuation and speed of sound 
in breast tissue were obtained from22 and23, respectively. The tissue range shown in Fig. 4(c) was calculated con-
sidering blood, fat, and breast tissue, and based on frequency dispersion as derived from the models described 
in refs 25,26.

When considering speed of sound and attenuation variations, TICs can also be obtained by subtracting the 
baseline image, i.e., the tomographic image obtained in the absence of contrast, from all subsequent images. For 
illustrative purposes, Fig. 5 shows TICs obtained from speed of sound and attenuation variations correspond-
ing to those shown in Fig. 2. Such an approach would however suffer from motion artefacts; in the presence of 
motion, the actual baseline image will differ from that measured before contrast enhancement.

Discussion
In this paper the ability of CPDI to image UCA kinetics was investigated for the first time. A qualitative and quan-
titative comparison with HI was also performed.

Results show that CPDI can be successfully applied to image and quantify UCA kinetics. In particular, when 
compared to HI, equivalent results were obtained. Variations in speed of sound and attenuation due to UCA were 
also evaluated, and it was confirmed that they fall within tissue range.

Overall, the speed of sound and attenuation curves are very similar to the curves generated with HI and CPDI. 
The presence of UCA does in fact alter the speed of the ultrasound wave as well as the attenuation it experiences, 
the level of the second harmonic amplitude, and the time delay between the second harmonic and fundamental 
component. However, among all these phenomena, only the accumulation of a positive time delay between the 
second harmonic and fundamental component is specific to UCA.

When comparing the curves obtained with the different approaches, those based on variations in the attenu-
ation appear to be less affected by amplitude fluctuations. However, as attenuation is not specific to contrast, and 
attenuation due to contrast is comparable to that exhibited by different tissue types, subtraction techniques will 
be required in order to exploit attenuation variations to image contrast kinetics. Such an approach is however 
prone to motion artefacts. Similar problems are encountered in, e.g., diffusion Magnetic Resonance Imaging31, 
especially with multi-shot acquisition, where several strategies have been developed for motion compensation. 
However, these strategies add an additional computational layer to the image formation process and are not error 
free.

CPD values measured during the passage of the UCA boluses were confirmed to be positive. This allows full 
tissue separation, since CPD values in tissue are inherently negative. The fact that a positive CPD value represents 
a marker specific to UCA is of particular importance. In principle HI could also be implemented on tomography 

Figure 3.  Reported linear relation between CPD values and 2H intensity and quantitative analysis. (a) Scatterplot 
of the cumulative phase delay values compared to the harmonic intensity values as obtained for the measured TICs. 
Blue points refer to values obtained before the arrival time. The red points refer to values measured during the passage 
of the bolus. (b) Box-plot showing the absolute error in seconds in comparison with quantitative analysis of multiple 
TICs features: wash-in time (WIT), arrival time (AT), peak time (PT), and full width half maximum (FWHM).
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systems which are capable of reflection tomography. However, this will not avoid typical artefacts common to 
HI17,18, which limit UCA quantification and localization accuracy by HI.

Figure 4.  Comparison with speed of sound changes and attenuation due to UCA. Histograms of (a) speed 
of sound, (b) attenuation (measured at 2.5 MHz), and (c) CPD values (expressed in cycles per mm) as obtained 
from our experiment. Histograms are obtained by analyzing all the data over the area which corresponds to the 
location of the channel cross-section during the bolus passage. Each figure also shows the range (red box) of 
values representative for breast tissue for each parameter: 1480–1548 m/s for speed of sound, 0.74–4.575 dB/cm 
for attenuation, and −​22.5 to −​3.56 cycles/m for CPD.

Figure 5.  Time intensity curves displaying variations in attenuation (top) and speed of sound (bottom) 
with respect to baseline. 
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Unlike standard DCE-US in echo-mode, CPDI does not require any particular multi-pulse scheme. In fact, 
the information required for imaging is contained in the time delay between 2H and F0, which can be extracted 
from each single pulse19,20. Moreover, with a tomographic approach, only one-way time of flight constrains 
the pulse repetition frequency. Overall, these aspects allow for a higher time resolution, or faster acquisition 
time. Furthermore, as opposed to standard uncoded pulse-echo imaging, the pulse-length does not limit the 
axial-resolution. This allows for the use of longer pulses to enhance penetration and the signal to noise ratio. 
Moreover, the implementation of CPDI could benefit from existing speed-of-sound reconstruction algorithms 
which have already been developed for volumetric breast ultrasound scanners27,28; the time-of-flight could simply 
be replaced with CPD variations. These results are encouraging, and open the way to the development of dynamic 
contrast-specific ultrasound tomography, which could add important features to the multi-parametric ultrasound 
tomography of the breast, and improve breast cancer detection.

This paper reports on in-vitro results obtained by imaging the passage of UCA boluses through a cylindrical 
cavity surrounded by a homogeneous medium. In addition, the symmetry of the target was exploited for the 
tomographic reconstruction, i.e., CPD projections were assumed to be independent on the imaging angle. In real 
applications these two conditions do not apply and consequently impact on the image quality.

For this reason our future work, thanks to the promising results obtained, will focus on taking new meas-
urements with a breast ultrasound computed tomography scanner on heterogeneous and more complex 
flow-phantoms, with the ultimate aim of transferring our technology to patients.

Methods
Flow phantom.  A dedicated flow phantom was used to perform the experiment. A tissue-mimicking gelatin 
phantom (as reported in ref. 20) containing a cylindrical cavity with a 6-mm diameter was employed. A solenoid 
pump E410 (CEME) was used to generate the flow. A calibrated flow value equal to 0.26 L/s was employed. A fixed 
volume (5 mL) of SonoVue®​ contrast agent with a concentration equal to 240 μ​L/L was repeatedly injected (man-
ually) throughout the cavity. The cavity lay at a depth of 5 cm from the location of the probe, and perpendicular 
to the imaging plane. Further down, at 8 cm, a PVC plate was positioned. The echoes which backscattered from 
the plate could therefore be recorded by the probe and used to form a tomographic image. At the same time, it 
was possible to measure the backscattered echoes from the microbubbles and use them to form harmonic images 
in echo graphic mode. This approach allowed us to compare the two imaging techniques, CPDI and HI, when 
(simultaneously) imaging the same bolus passage.

Data collection.  An active sub-aperture of 64 elements was used to transmit and receive the ultrasound 
fields, and linearly shifted over the 192-elements linear array to form a 128-line data set. The field of view was 
20 mm wide and 90 mm deep. No focusing was applied in transmission and dynamic receive beamforming was 
used.

The post beam formed data were stored and used for the analysis. A 10-cycle pulse with its centre frequency at 
2.5 MHz, and whose amplitude was modulated by a Hamming envelope, was used as a driving signal. In receive 
mode, a sampling frequency of 50 MHz was used. A total of 80 frames were consecutively acquired for each 
bolus, at a frame rate of 8 Hz. A mechanical index (MI) equal to 0.07, which was measured with a hydrophone  
(HGL-0400 Onda, Sunnyvale, CA) at a depth of 5 cm, was used to minimize bubble disruption. The hydrophone, with a 
bandwidth ranging from 250 kHz to 20 MHz, was connected to a preamplifier (AH-2010-025 Onda, Sunnyvale, CA)  
whose bandwidth ranged from 50 kHz to 25 MHz, which in turn was connected to a 100 MHz A/D converter 
(PCI-5406 National Instruments, Austin, TX). Dedicated Labview®​ software was implemented and used for data 
acquisition. The MI was calculated as the ratio of the peak negative pressure in MPa and the square root of the 
frequency in MHz.

Data analysis.  All data processing and analysis was performed using Matlab®​ R2014a.

Harmonic Imaging.  The second harmonic (2H) component was extracted by band-pass filtering. A −​12 dB 
bandwidth around 5 MHz was selected. Subsequently, a two-dimensional spatial Gaussian filter (spatial standard 
deviation σx =​ 0.5 mm and σz =​ 0.25 mm) was applied to enhance the signal-to-noise ratio. To reconstruct the 
harmonic images, an average speed of sound equal to 1510 m/s was assumed.

Cumulative Phase Delay Imaging.  In order to measure the cumulative phase delay (CPD) between F0 
and 2H, firstly, the pressure fields which had backscattered from the plate were selected by time-windowing 
(window length equal to 5 μ​s). Secondly, the two components, i.e., F0 and 2H, were extracted from the data  
(a −​12 dB bandwidth was selected around 2.5 MHz and 5 MHz, respectively) and the corresponding envelopes 
were obtained by using the Hilbert transform. Thirdly, the time delay between the maxima of the fundamental 
and second harmonic envelopes was obtained for each line, providing a measure of CPD as a function of the lat-
eral direction, i.e., a projection. For this experiment, the symmetry of the target was exploited for the reconstruc-
tion, in other words, CPD projections were assumed to be independent on the imaging angle. Finally, the filtered 
back-projection (filter type: Shepp-Logan) algorithm29 was used to generate 2D-CPD images.

Time Intensity Curve.  To obtain the time intensity curves from the HI and CPDI data, the image intensity 
values were averaged over the region corresponding to the location of the cavity. Following that, a moving average 
filter (window size equal to 0.75 s) was applied, and the baseline removed from the CPDI and HI TICs. The base-
line was calculated as the mean value over the first 0.75 s. The average CPDI baseline was equal to −​0.6 cycles/m.

Quantitative analysis.  The peak time (PT) was calculated as the time when the maximum of a TIC was 
observed. The arrival time (AT) was estimated as the first time the TIC amplitude exceeded 5% of its value 
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at PT. The wash-in time (WIT) was calculated as the time between AT and PT. The full width half maximum 
(FWHM) was calculated as the time interval over which the TIC amplitude stayed above 50% of its value at 
PT. The interval corresponding to the bolus passage is defined as the time between AT and the time showing 
a drop in TIC-amplitude below 5% of the value at PT. The area under the curve was derived as the sum of the 
TIC-amplitude values over the entire time window (10 s long) multiplied by the length of the sampling interval 
(0.125 s).

Speed-of-sound and attenuation estimation.  By using the same filtered back-projection algorithm 
that was applied to perform CPDI, tomographic images based on speed-of-sound and attenuation were obtained 
from the variations in the time-of-flight and amplitude of the peak of the fundamental envelope, respectively. 
Subsequently, histograms were obtained by analysing the image values over the region corresponding to the loca-
tion of the cavity, during the passage of the boluses.

Dispersion evaluation.  Values of CPD in tissue are determined by the combined effect of tissue nonlinear-
ity and frequency dispersion20. Both phenomena result in a negative CPD value. However, the contribution due 
to tissue nonlinearity can be assumed to be negligible as compared to that due to frequency dispersion, especially 
for highly absorbing tissues. In fact, in line with the Kramers-Kronig relationship30, dispersion and absorption 
are interlinked. In conclusion, to evaluate CPD values, absorption measures reported in ref. 26 for blood, fat, and 
breast tissue were used in combination with the theoretical model in ref. 25.
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