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ABSTRACT
The size and complexity of Simulink models is constantly
increasing, just as the systems which they represent. There-
fore, it is beneficial to control them already at the design
phase. In this paper we establish a set of complexity metrics
for Simulink models to capture diverse aspects of complexity
by proposing new and redefining existing metrics. To evalu-
ate the applicability of our metrics, we compare them with
the closed-source metric proposed by Mathworks. Moreover,
through a case study from the automotive domain, we re-
late such metrics to quality attributes as determined by do-
main experts, and correlate them to known faults. Prelimi-
nary assessment suggests that complexity is closely related
to analysability, understandability, and testability.

Keywords
Simulink, complexity, metrics, software quality, automotive
domain, expert evaluation

1. INTRODUCTION
Since 90% of the innovation in the automotive industry

is driven by electronics and software [5], ensuring software
quality has become a necessity. In automotive software engi-
neering, MATLAB/Simulink [17] is one of the most popular
graphical languages and an integrated environment for mod-
elling and simulating automotive controller software sys-
tems. Since control models are organised using hierarchical
structure Simulink models conform to this architecture and
are represented as hierarchical data flow diagrams. The ar-
chitecture can be decomposed into layers (top, trigger, struc-
ture and data layer) to facilitate workflow. Scalability of an
architecture is supported by componentisation. Simulink
models can be used for simulation and code generation, e.g
to C language.
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Since 85% of the bugs are introduced in the early develop-
ment phase, it is crucial to develop techniques to detect bugs
early instead of causing costly field recalls [12]. Automated
source code analysis methods and tools [19, 28, 7] have been
developed to perform quality analysis at the early develop-
ment phase. Since these tools are commercial, the metrics
defined for the source code and Simulink models are not
publicly available. Therefore, it is difficult to reproduce the
complexity evaluation. In consequence, there is a need for
well-defined and publicly available complexity metrics for
Simulink models, regardless if they are reengineered from
existing commercial tools or originate from metrics meant
for other applications. To evaluate software complexity, dif-
ferent metrics have been defined. The cyclomatic complexity
metric designed by McCabe [27] to indicate system’s testa-
bility and understandability is one of the most popular com-
plexity metrics. Mathworks Verification and Validation soft-
ware tool approximates the resulting McCabe complexity of
generated code out of Simulink models [24]. Scheible ap-
plies Halstead mapping out of the M-XRAY tool to measure
average local complexity and global complexity to manage
testability and maintainability respectively [32]. However,
the Halstead mapping is not described due to the commer-
cial nature of the tool. Furthermore, Olszewska (Pl ↪aska) [30,
31] defined structural and data flow complexity metrics in-
spired by Card and Glass metrics [6], as well as instability
and abstractness metrics [29] based on the object-oriented
concepts [20].

As Curtis states [8], the design of methods has an influ-
ence on the ability of developers to understand a program.
If a complexity metric can show which parts of Simulink
models are too complex, the model can be redesigned and
refactored, therefore complexity metrics can be fundamen-
tal. Since early 2000, a number of automotive Architecture
Description Languages (ADLs) has been defined in the au-
tomotive industry. However, there is still a lack of quality
evaluation of the models represented in these ADLs [10].

In this paper we first present the existing complexity def-
initions and metrics, as well as the ones used for Simulink
(Section 2). Then we define and implement a Complexity
Metrics Suite for Simulink models (Section 3). It is empir-
ically evaluated in Section 4, where we analyse the results
and cross-reference the complexity measurements with the
defect data we have for the case study. Finally, in Section 5
we discuss the threats to validity and give a concise descrip-
tion of our results.
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2. COMPLEXITY DEFINITION
There has been a lack of consensus on the definition of

complexity [2]. A plethora of definitions has been discussed
in [9], where the complexity is described as a characteris-
tic addressing many concepts and embracing computational,
cognitive and structural perspectives. There is no explicit
definition of complexity in the ISO 25010 international stan-
dard also known as SQuARE model. Complexity is, how-
ever, still used as a sub-characteristic of other quality char-
acteristics e.g. testability [26]. In this paper we investigate
complexity in the context of models (and eventually code).

2.1 Complexity Metrics for Code
Kan [18] related the design and code implementation met-

rics to software quality. He identified the Lines of Code
(LOC), Halstead’s software science metrics [14], and Mc-
Cabe’s cyclomatic complexity [27] as key metrics for code
implementation. He presents structure metrics for captur-
ing interactions between modules in a software system. In
our work we choose the Kan’s metrics that are available for
source code.

There are also several complexity metrics related to in-
put/output of the system (sometimes referred as fan-in and
fan-out), as well as its structure. For instance, Henry-Kafura
defined complexity as a function of fan-in and fan-out to
determine the information flow between different modules.
There are also some hybrid versions of this metric described
in the literature, see e.g. [33] and [16]. Card and Glass, on
the other hand, defined structural, data, and total complex-
ity metrics, which can be computed on a module and sys-
tem level. We find the concepts of these metrics particularly
valuable for systems of layered architecture and comprised
of subsystems.

Indicators of a good design, where “goodness” is inversely
proportional to complexity, were defined by Martin [21]. The
dependency metrics of instability, abstractness, and distance
indicate how easily the (sub)system can be changed in terms
of its dependency and abstractness. These metrics could
aid in assessment of Simulink models in relation to their
maintainability.

2.2 Complexity Metrics for Simulink
There are several measurement tools built into Simulink,

one of them being sldiagnostics [23]. It displays diagnostic
information associated with the model or subsystem, provid-
ing measurements on number of each type of block, number
of each type of Stateflow object, number of states, outputs,
inputs, and sample times of the root model, names of li-
braries referenced and instances of the referenced blocks, as
well as time and additional memory used for each compila-
tion phase of the root model [23]. Furthermore, a metric of
cyclomatic complexity, defined as a measure of the complex-
ity of a software module based on the number of nodes, edges
and components within a diagram [24], is implemented in
the Simulink Verification and Validation toolbox. Finally, as
one of the mechanisms for reducing the complexity of mod-
els, Mathworks provided the MAAB guidelines [25], which
can be interpreted as modelling patterns and contribute to
creating an aesthetically pleasing design, rather than serve
evaluation purposes.

Scheible’s instability metric [32] calculates the average sta-
bility of the blocks of a Simulink model and is based on the
concepts of blocks and their fan-in and fan-out. It is indi-

cated that a block with more fan-in blocks as fan-out blocks
has a higher probability of change [32].

3. SIMULINK COMPLEXITY METRICS
It is essential to clearly define the attribute or property

that is to be measured, since the design of a measurement
method and metric heavily depends on it. In our work we
define the complexity of a Simulink model as the property of
a system showing the degree to which the (sub)system or its
part(s) has a design that is difficult to create, understand,
learn, analyse and test the system on a model level, as well
as it is numerically challenging to simulate. Therefore, our
definition encapsulates the human and machine aspects of
complexity of Simulink models, respectively. Our goal is
not only to include the structure of the system and data
flow view, but also the interrelations between (sub)systems,
i.e. subsystems and signals, as well as human perception.

In the following sub-sections we present Simulink-specific
metrics we established. Although McCabe and Halstead-
based complexity metrics are mentioned by other researchers,
the mapping to Simulink model is not publicly provided in
the literature (in English). The Halstead mapping is not de-
scribed in detail due to the commercial nature of the tool [7].
We include the structural and data flow complexity metrics
by Olszewska (Pl ↪aska) [30, 31], which were inspired by Card
and Glass metrics [6], and the instability and abstractness
metrics based on object-oriented concepts [20]. The large-
scale evaluation of these metrics has not been carried out be-
fore, therefore the thresholds for the acceptable values can-
not be provided. However, we apply absolute comparators
(e.g. ranges specified for abstractness and distance metrics)
and relative comparators (lowest and highest values of other
metrics e.g. complexity metrics for the projects under the
evaluation) to interpret the metrics.

3.1 Cyclomatic Complexity
Cyclomatic complexity for Simulink is defined based

on McCabe’s design complexity calculation. We extend the
mapping between the C statements and Simulink control
logic blocks [22] as shown in the Table 1. Note that the
choice of C language is caused by the possibility code gen-
eration from Simulink models to C code and it is one of
the widely used programming languages in the automotive
software development [4].

Table 1: Mapping between C and Simulink concepts.
C statement Simulink blocks
if-else If block, If Action Subsystem
for For Iterator block, For Iterator Sub-

system
while, do-while While Iterator block, While Iterator

Subsystem
switch Switch Case block, Switch Case Ac-

tion Subsystem

In addition, For Each Subsystem, Atomic Subsystem, and
the number of case statements of the MultiPortSwitch block
are also counted as decision statements. Hence the following
equation is defined as:

mcCMX = P + 1

where mcCMX is cyclomatic complexity and P is the total
number of decision nodes (including atomic subsystems).



3.2 Static Syntactical Complexity
Halstead metrics for Simulink are represented in the

same manner as in the original version:

• System vocabulary: n = n1 + n2

• System size: N = N1 +N2

• Volume: hCMX V = N · log2(n)

• Difficulty: hCMX D = (n1
2

) · (N2
n2

)

where Halstead concepts are mapped to Simulink setting
as follows: n1 is the number of distinct Simulink block types,
n2 is the number of distinct input signals, N1 is the total
number of Simulink blocks, N2 is the total number of input
and output signals. In our work hCMX D is an indicator of
complexity. We are aware that the original Halstead metrics
measure code size. Although the validity of these metrics
was criticised [15], we wanted to investigate them in the
Simulink setting.

3.3 Information Flow Complexity
For the Simulink information flow complexity, we

defined the following metrics based on the Henry-Kafura’s
metrics.

hkCMX = size · (fanin · fanout)2

where hkCMX is the information flow complexity of a sub-
system, size is the number of contained blocks (including
subsystem blocks), fanin and fanout represent the number
of afferent and efferent blocks of a subsystem, respectively.

3.4 Structural and Data Complexity
For structural and data complexity of Simulink

models, the Card and Glass metrics are used as originally
given. However, modules are changed into subsystem blocks,
I/O variables are mapped to the signals entering and exiting
the subsystem block for input and output, respectively. The
metrics are reformulated as:

• Structural complexity CMX S =

∑n
i=1 f

2(i)

n
is re-

lated to coupling of a system, and measures the mean
of squared values of fan-out per number of subsystem
blocks, where f(i) is fan-out of subsystem block i and
n is a number of subsystem blocks in the system.

• Data complexity CMX D =
V (i)

(f(i) + 1) · n is related

to cohesion of a system, and is a measure of block’s
interaction with other blocks; it is a function that is
dependent on the sum of I/O variables and inversely
dependent on the number of fan-out in the subsystem
block.

• Total complexity CMX T = CMX S + CMX D is
the sum of the structural and data complexity.

The intuition behind CMX S and CMX D is the following:
both are based on the concepts of fan-outs and I/O variables.
The reasoning is twofold: the complexity increases as the
square of the connections between subsystems, since more
fan-out means that functionality is deferred to subsystems
at lower levels; and the more I/O signals in a subsystem the
more functionality needs to be accomplished by the subsys-
tem, and therefore, the higher complexity.

3.5 Dependency Metrics
The dependency and instability of the Simulink models,

just as in case of software architectures, strongly impacts
their sustainability and resilience to change, as well as qual-
ity in general.

We define the instability metric dCMX I for Simulink
models as the number of efferent couplings between blocks
(CeB) divided by the sum of efferent (CeB) and afferent
couplings between blocks (CaB), which is given by the equa-
tion:

dCMX I = CeB
CeB+CaB

Afferent coupling between blocks (CaB) is measure of the
total number of external blocks linked to a given block due
to incoming signal within one layer. In other words, it is the
number of destination blocks for the block under analysis.
Efferent coupling between blocks (CeB) is defined as the
number of blocks that are linked to a given block due to
outgoing signal within one layer, i.e. it is the number of
source blocks for the given block.

Values range from 0 (no incoming signals), dCMX I = 0
denotes a completely stable (subsystem) block to 1 (only in-
coming signals), dCMX I = 1 signifies a maximally instable
(subsystem) block.

Scheible [32], on the other hand, defined an instability
metric calculated as following:

Sch Inst =

∑
bεblocks

fanin(b)
fanin(b)+fanout(b)

size

where, fanin(b) is the number of fan-in blocks of a block b,
fanout(b) is the number of fan-out blocks of a block b, and
size is the number of contained blocks.

The abstractness metric dCMX A for Simulink Mod-
els is defined as a ratio of the number of subsystem blocks
NaB to the total number of blocks NB:

dCMX A = NaB
NB

Values range from 0 (a concrete block) to 1 (a completely
abstract block).

We define the distance metric dCMX D for Simulink
models as the relationship between instability dCMX I and
abstractness dCMX A. It is computed as a normalised sum
of these values decreased by one:

dCMX D = |dCMX A+ dCMX I − 1|

Values range from 0 to 1. 0 is considered desirable, be-
cause blocks are either totally stable and abstract (scenario
dCMX I = 0 and dCMX A = 1). 1 indicates entirely
instable and concrete block (scenario dCMX I = 1 and
dCMX A = 0).

4. EVALUATION
We developed a complexity analysis tool to automatically

measure the complexity metrics defined in Section 3. It is
an extension of the tool that measures modularity metrics
of Simulink models [11]. The complexity analysis tool reads
Simulink MDL files with the standard structural format and
generates the metrics files with the list of subsystems and
the respective complexity metrics.



Figure 1: Fault-Tolerant Fuel Control System [1].

4.1 Mathworks Complexity vs. Complexity
Metrics Suite

We applied the complexity metric suite to the Fault-Tolerant
Fuel Control System (FCS) for a gasoline engine from Math-
works Simulink Example Library [1]. Figure 1 shows the top
level of the FCS system. The subsystem fuel rate control
uses signals from the system’s sensors to determine the fuel
rate. The fuel rate combines with the actual air flow in the
engine gas dynamics model to determine the resulting mix-
ture ratio as sensed at the exhaust [1]. The purpose of the
evaluation of the FCS system is to compare the complexity
metric suite measurement to Mathworks’ complexity evalu-
ation of the FCS system. The FCS system consists of 25
subsystems and the maximum hierarchical depth is 5.

As discussed in Section 2.2, Simulink Verification and Val-
idation toolbox from Mathworks determines cyclomatic com-
plexity metric based on the number of nodes, edges and
components. To elaborate it further, we provide below the
equation used by Mathworks [24]:

CMX M =

N∑
i=1

(oi − 1)

where CMX M is the Mathworks complexity, N is the num-
ber of decision points that the object (such as a block, chart,
or state) represents, and oi is the number of outcomes for
the ith decision point.

The complexity measurement of the FCS is provided in
Table 2. The first column lists all the subsystems contained
in the FCS system. The second column contains the Math-
works complexity metric values (CMX M). The third col-
umn lists the number of contained subsystems (NCS). The
other columns contain the complexity metrics values defined
in Section 3.

We carried out the Kendall’s τ correlation analysis [13]
on the complexity metric suite and Mathworks’ cyclomatic
complexity metric. We accept a common significance level
of 0.05. According to the Mathworks’ complexity analysis,
fuel rate control, control logic, and Engine Gas Dynamics
subsystems are considered the most complex and To Con-
troller, To Plant, and validate sample time subsystems are
considered the least complex subsystems. We identified that
the Mathworks complexity metric (CMX M) is strongly
correlated to the size metric, namely number of contained

subsystems (NCS) (r = 0.734). Complexity metrics for
source code have a strong correlation with the size metrics
as well. However, the graphical modelling representation of
Simulink requires other complexity attributes besides size.

We identified that the other complexity metrics provide
more insight into the complexity analysis. The cyclomatic
complexity (mcCMX) metric identifies that the subsystem
Throttle is the most complex, because of higher values of
Halstead (hCMX V = 114.7 and hCMX D = 4.2), Henry-
Kafura (hkCMX = 14), and instability metrics (Sch Inst =
0.75).

4.2 Complexity vs. Quality Attributes
As a second method for validation of metrics we inter-

viewed domain experts on how they perceive complexity.
Our expert group consisted of five practitioners with a role
of an architect, a developer, and a tester, who evaluated a
number of randomly selected subsystems of an automotive
application using a Likert-like scale of 1 (least complex) to
10 (most complex). Although there are in general no ma-
jor inconsistencies between the experts, the developer and
tester would provide lower complexity score given their fa-
miliarity with the system under review. Prior to the eval-
uation, definitions of the quality characteristics based on
the ISO 25010 international standard were provided to the
experts. The following complexity characteristics were rec-
ognized from the experts’ feedback:

• Complexity vs. Analysability: If difficult blocks (e.g.
flip flop, unit delay, hit crossing) and many feedback
loops are used, then the model is considered complex
and difficult to analyse.

• Complexity vs. Understandability: Too many I/O sig-
nals, hierarchical levels, parameters, and unclear nam-
ing of subsystems make it complex and difficult to un-
derstand. Whenever the number of input signals are
high, used algorithms are not complex then the model
is considered not complex.

• Complexity vs. Testability: Too many parameters
make the model complex and difficult to configure cor-
rectly. Many dependencies with other modules make
the model complex as well.

Besides the complexity (‘ExpCmx’), domain experts eval-
uated understandability (‘ExpUnd’), analysability (‘ExpAnz’),



Table 2: Complexity Measurement of Fault Tolerant Fuel Control System.

  

and testability (‘ExpTst’) of the system also using the scale
of 1 to 10. According to the expert’s evaluation as illus-
trated in Figure 2, all three quality attributes are related
to complexity. This leads to the conclusion that the com-
plexity is a sub-sub-characteristic of several maintainability
sub-characteristics, namely analysability, modifiability, and
testability.

4.3 Correlation Analysis
We carried out a correlation analysis on the second au-

tomotive application to detect a relation between complex-
ity metrics and the number of faults. We used the data
collected from the second automotive application consisting
of 40 subsystems, from which half of the subsystems con-
tain defects because of proprietary library subsystems. Since
there are a number of tied values and we aim to establish
if any complexity metric and the number of faults are sta-
tistically correlated rather than measuring the degree of the
linear relationship between variables, we use the Kendall’s
τ correlation test as used in our modularity assessment of
Simulink models [11].

The correlation coefficient infers the strength and direc-
tion of the correlation, i.e., a positive correlation coefficient
indicates a positive relation between the metrics and defects
and vice versa. The significance points to a probability for a
coincidence. We accept a common significance level of 0.05.
According to the correlation analysis, the structural com-
plexity CMX S, data complexity CMX D, total complex-
ity CMX T , abstractness dCMX A and block instability
dCMX I metrics are positively correlated with the number
of faults. This may imply that the subsystems with higher
number of fan-out subsystems and instability can be more
prone to faults.

We released a public available dataset on three automo-

tive projects containing model metrics as presented in this
paper and traditional source code metrics on the generated
code [3]. Early analysis shows a weak correlation between
the complexity metrics, which indicates that they measure
different aspects of the Simulink models.

5. DISCUSSION AND CONCLUSIONS
Complexity of produced software systems can become an

issue regardless of the application domain. In particular, in
automotive domain, where vehicles can be seen essentially
as big computer systems consisting of multiple components
running various software, quality, and thus complexity, is of
utmost importance. There is a need for mechanisms to effi-
ciently evaluate the complexity of such systems, particularly
in the early stages of development, at the modelling stage,
as it is more economical and beneficial.

In our work we defined and implemented a Complexity
Metric Suite for Simulink modelling language based on the
well-known complexity metrics from the software engineer-
ing field. Although the novelty of the definition of some of
our Simulink metrics could be argued, the mapping of the ex-
isting complexity metrics from code to Simulink models was
achieved. So far, it has not been publicly shared due to (i)
the competitive nature of the automotive industry and (ii)
closed description of metrics in commercial tools. Since met-
rics are developed in a proprietary setting, their application
to a generic automotive system needs further investigation.

We identified the relation between complexity character-
istic and understandability, analysability and testability by
involving domain experts in the evaluation. A preliminary
analysis provided a strong correlation between some of the
complexity metrics and the number of faults. Although we
are aware of the limited number of practitioners involved in



CMX vs. Analysability

CMX vs. Understandability

CMX vs. Testability

Figure 2: Expert’s evaluation: Complexity (CMX)
vs. Quality attributes

the evaluation, they very well represent potential users of
the metrics in model engineering tasks.

Our future work continues this research on two levels:
(a) refining the established metrics and (b) linking them to
standards and architectural complexity models. Complex-
ity metrics can be evaluated further in the specific functional

domains of automotive embedded systems. Simulink models
developed in other domains can be also used for the evalua-
tion of application of the complexity metrics suite proposed
in this paper.
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Beispiel von MATLAB Simulink-Modellen in der
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