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A LEAST-SQUARES METHOD FOR THE INVERSE REFLECTOR
PROBLEM IN ARBITRARY ORTHOGONAL COORDINATE

SYSTEMS

R. BELTMAN∗, J. H. M. TEN THIJE BOONKKAMP∗, AND W. L. IJZERMAN∗†

Abstract. In this article we solve the inverse reflector problem for a light source emitting a
parallel light bundle and a target in the far-field of the reflector by use of a least-squares method. We
derive the Monge-Ampère equation, expressing conservation of energy, while assuming an arbitrary
coordinate system. We generalize a Cartesian coordinate least-squares method presented earlier by
C.R. Prins et al. [13] to arbitrary orthogonal coordinate systems. This generalized least-squares
method provides us the freedom to choose a coordinate system suitable for the shape of the light
source. This results in significantly increased numerical accuracy. Decrease of errors by factors up to
104 is reported. We present the generalized least-squares method and compare its numerical results
with the Cartesian version for a disk-shaped light source.

1. Introduction. In the last decades LED lighting technology rapidly devel-
oped. The costs of LED lighting constantly decrease, as is expressed by Haitz’ law
which states that the cost per lumen (power perceived by the human eye) falls by a
factor of 10 every decade [1]. Furthermore, LED lighting surpasses traditional light-
ing in efficacy (lumen per Watt) [2]. As a result, LED lighting systems are used in
illumination optics ever more frequently. LED lighting systems are LEDs integrated
in an optical system consisting of lenses, reflectors, diffusers and absorbers.

Two classes of methods are used to design these optical systems: forward methods
and inverse methods. In forward methods the optimal optical system is determined
through a process of trial and error. A given optical system is tested, the light
output of the system is determined by Monte-Carlo ray tracing [4] and subsequent
adjustments are made to improve the system. This process then iterates to a more
or less satisfactory solution, of which the quality depends to a large extent on the
skill of the designer. This method is widely applicable and straightforward, but time
consuming. By contrast, in inverse methods the light output of the optical system is
related to the geometry of the optical elements by a partial differential equation, the
solution of which directly gives the shape of the optical elements. Inverse methods
are less straightforward to apply but lead to far more accurate results and are time
efficient. Moreover, with inverse methods a diversity of new designs are possible that,
due to their complexity, are completely unattainable by direct methods.

The rise of LED lighting has increased the interest in inverse methods because
LED lighting operates at much lower temperatures than conventional lighting. This
clears the path for the use of easy to mold transparent plastics instead of glass. The
optimal shape of these plastic elements can be exactly determined by the inverse
method. Moreover, due to active development in diamond turning techniques the
arbitrarily shaped elements can be fabricated with increasingly high precision [3].

In this paper we consider an optical system consisting of an incoming parallel
bundle of light and a reflecting surface. Parallel bundles occur frequently in LED
lighting systems as the result of a converging lens placed on top of divergently emitting
LEDs. Given the intensity distribution of the incoming parallel bundle and a desired
output distribution, a partial differential equation can be derived for the reflector
surface. This partial differential equation turns out to be an equation of the Monge-
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Ampère type.

Monge-Ampère type equations also arises in the context of optimal mass transport
(OMT). The inverse reflector problem and OMT problem are closely related [5]. OMT
concerns, roughly speaking, the problem of filling a hole with a heap of sand from
another location. The goal is to do this while minimizing the transportation cost. In
inverse optical problems we do not consider a hole and heap of sand, but instead a
light source with an emittance and a target with a desired light intensity distribution.
It was shown that this problem can be viewed as an OMT problem [6].

Numerical methods for solving OMT problems have been scarce until recently.
Benamou and Brenier introduced an augmented Lagrangian method to solve the OMT
problem [7]. This approach was further developed by Haber et al. [8]. A numerical
method for the Monge-Ampère equation using finite differences was introduced by
Froese et al. [9, 10]. This method is robust, but requires a convex target set. Brix et
al. [11] solved the inverse reflector problem for a point source by using a collocation
method with a tensor-product B-spline basis. For a comprehensive overview of the
literature on numerical methods for the inverse reflector problem we refer to the thesis
of C.R. Prins [12] and the aforementioned article by Brix et al.

In a recent publication, C. R. Prins et al. [13] introduced a least-squares method
(LS method) to solve the OMT problem related to the inverse reflector problem.
The LS method solves the inverse reflector problem, i.e., the problem of finding the
reflector surface that reflects a parallel bundle of light such that a prescribed luminous
intensity pattern is achieved on a projection screen in the far-field of the reflector. The
method can handle very complicated source and target intensities. The LS method
was used, for example, to determine the reflector surface that reflects a parallel bundle
of light to form the luminous intensity pattern corresponding to a gray-scale image of
a famous painting by Vermeer.

The LS method determines the shape of the reflector surface by covering the light
source with a rectangular grid and computing the height of the reflector in each grid
point. This works fine for rectangular light sources, however, for differently shaped
light sources the rectangular grid also contains grid points outside of the light source.
For these grid points the emittance of the light source is taken to be zero. This
approach to non-rectangular light sources is far from optimal and gives results much
less satisfying than obtained for rectangular light sources. Most importantly, the
boundary condition, which states that the boundary of the source must be mapped
to the boundary of the target, is at places very badly satisfied and this makes the
method inapplicable for non-rectangular sources. This poses a severe restriction on the
applicability of the method in illumination optics. The parallel bundles encountered
in illumination optics often result from a converging lens and frequently have disk-
shaped cross sections, therefore a numerical method that can handle disk-shaped light
sources in a satisfactory way is highly desirable.

The goal of this paper is to present an improved generalized version of the LS
method (GLS method) that is applicable to arbitrarily shaped light sources emit-
ting a parallel bundle. We use some concepts from tensor calculus to formulate the
inverse reflector problem in coordinate-free form, derive the corresponding coordinate-
independent Monge-Ampère equation and generalize the LS method to arbitrary or-
thogonal coordinate systems. In one of the minimization steps of the GLS method a
pair of boundary value problems is solved. In Cartesian coordinates these problems
are decoupled, however, in general they are coupled. We present how to deal with
this issue. Furthermore, we compare the LS method from [13] with the GLS method
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presented in this paper. We show that for disk-shaped light sources the GLS method
in polar coordinates outperforms the LS method significantly.

This paper is structured as follows. In Section 2 we derive the Monge-Ampère
equation describing the reflector surface and formulate the reflector problem for an
arbitrary coordinate system. In Section 3 we introduce the GLS method by generaliz-
ing the LS method to arbitrary orthogonal coordinate systems. We shed light on the
different minimization steps in this method and show how they are different from the
Cartesian version of the method. In Section 4 we compare the LS and GLS methods.
We will consider two test cases. In both cases we will take a disk-shaped light source
and therefore choose polar coordinates as the orthogonal coordinate system for the
GLS method. In the first test case the light source is mapped to a square gradient
set and in the second test case we consider a target distribution corresponding to a
lithograph by the artist M.C. Escher (Figure 1.1). In Section 5 we summarize and dis-
cuss the results. This paper contains some appendices. In Appendix A we introduce
some concepts from Tensor calculus needed in this paper, and give accurate pointers
to classical literature on these matters. In Appendix B and Appendix C one can find
some proofs of results given in the main text. The reading of these proofs should not
be necessary for understanding the rest of the paper.

Figure 1.1: Lithograph Relativity (1953) by the Dutch artist M.C. Escher who was
frequently inspired by mathematics [14]. This lithograph, with its great detail, will
serve as the ultimate test.

2. Monge-Ampère equation and inverse reflector problem. Let us con-
sider the optical system of interest. The system consists of a light source and a
reflector surface. We embed our optical system in three dimensional Euclidean space.
We describe the light source by a set E ⊂ R2 × {−a}, a subset of a plane below and
parallel to the x-y plane at a distance a > 0. We assume an arbitrary coordinate
system on E with at each point x ∈ E corresponding basis vectors e1(x) and e2(x).
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We denote by e1(x) and e2(x) the dual basis vectors defined by ei(ej) = δij . Let

(·, ·) denote the Euclidean inner product on the ambient space R3 and let ‖ · ‖ be the
corresponding norm. We denote by eij = (ei, ej) the metric on E and by e = det(eij)
the determinant of the metric (Appendix A). We assume that the light source emits
a parallel bundle of light along the z-axis. The emittance of the light source at a
point x ∈ E is given by E(x) [lm/m2], where E : E → (0,∞) is the emittance func-
tion, which we assume to be continuous. E(x)

√
e(x)e1(x)∧e2(x) expresses the light

flux through the infinitesimal area element
√
e(x)e1(x) ∧ e2(x) (Appendix A) on E

centered around x. For details on photometric quantities, see for example [15]. The
light rays leaving the source will all hit upon the reflector surface. We describe the
reflector surface by a function u : E → (−a,∞). A ray leaving from the point x ∈ E
will travel a distance a + u(x) in the z-direction before hitting upon the reflector
surface. The function u : E → (−a,∞) is the Monge parameterization of the reflector
surface [16]. Note that by definition u > −a, because the reflector surface is situated
above the source and not allowed to intersect with the source. In what follows we
need the function u to be strictly convex and twice continuously differentiable. We
will see that strict convexity of u implies that a pair of rays leaving E from different
points will be reflected in different directions. We assume the target to be positioned
in the far-field of the reflector. Thus, we assume the rays after reflection to be all
originating from one point and we discard the size of the reflector in this respect. In
our embedding of the reflector system we let this point coincide with the origin of R3.

The direction of reflection is given by the law of reflection, which in vector form
is given by

r = i− 2(i,n)n, (2.1)

where i is the direction of the incoming ray, n is the direction of the normal on the
reflector surface and r is the direction of the ray after reflection. These vectors all
have unit length. The direction of an incoming ray will not depend on the point
x ∈ E at which it leaves the source, however, the normal n on the reflector surface
does depend on x. The vector i is the unit vector normal to the light source directed
at the reflector. We denote this vector by the unit vector e3 as it will complement the
local two-dimensional bases on E to a three-dimensional basis for R3. The unit normal
on the reflector surface pointing down towards the light source can be expressed in
terms of the gradient of u and e3 and when we substitute this in (2.1), we obtain

r(x) = e3 + 2
∇u(x)− e3
‖∇u(x)− e3‖2

. (2.2)

The gradient ∇u(x) is a vector lying in the plane of E and we interpret it here as a
vector in R3 orthogonal to e3. For all x ∈ E the vector r(x) is of unit length and
by the far-field approximation we may furthermore assume it to have its initial point
at the origin. This implies that the vectors r(x) lie on the unit sphere, S2. We can
therefore interpret the map given by x 7→ r(x) to be mapping a point on the light
source to a point on the unit sphere. We will denote this mapping by r : E → S2.

The reflected light will shine in a set of directions G ⊂ S2. We assume a local
coordinate system on G with basis vectors g1, g2, dual basis vectors g1, g2, corre-
sponding metric gij and let g = det(gij). Here a logical choice for g1 and g2 would be
the pushforward [26, p.89] of e1 and e2 by r. Let us describe the luminous intensity
in the directions G by a continuous function G : G → (0,∞). The luminous intensity
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√
gg1 ∧ g2

√
ff1 ∧ f2

Figure 2.1: The inverse stereographic projection maps the surface element
√
ff1∧f2

on R2 × {0} to the surface element
√
gg1 ∧ g2 on S2\e3.

is the light intensity per steradian [lm/sr]. The light flux through an infinitesimal sur-
face area element on G centered around z ∈ G is given by G(z)

√
g(z)g1(z)∧g2(z). In

practice the couple G and G will be such that a desired intensity pattern is projected
on a screen in the far-field of the reflector. As long as G is confined to one half of
S2 there is one-to-one correspondence between the couple G and G and the intensity
pattern in the far-field. Details can be found in [12]. We call G the target set.

The problem we want to solve is informally stated as follows. Given a light
source E with emittance function E, determine the shape of the reflector such that,
after reflection, the intensity pattern in the far-field is given by the target set G with
luminous intensity function G. This problem is known as the inverse reflector problem.
Before we will state this problem more formally, we will first, under the assumption
u ∈ C2(E), derive a partial differential equation from the principle of conservation of
luminous flux. The luminous flux through U ⊂ E results in a luminous flux through
the set r(U) ⊂ S2. By conservation of luminous flux these two fluxes must be equal
and therefore we have ∫

U

E
√
ee1 ∧ e2 =

∫
r(U)

G
√
gg1 ∧ g2, (2.3)

for every Lebesgue measurable set U ⊂ E . We can use (2.3) to derive the partial
differential equation. To see this we must closely examine the map r : E → S2. From
(2.2) it can be seen that r(x) only depends on the gradient of u in the point x. We
can therefore interpret r as the composition s ◦ ∇u, i.e., the composition of ∇u and
another map which we will denote by s. By the far-field approximation r has its initial
point at the origin. This implies that we should interpret ∇u also as a vector with its
initial point at the origin. The vector ∇u is by definition parallel to E and because
it has its initial point in the origin it lies in the plane R2 × {0}. From equation (2.2)
we see that s maps a vector v in this plane to the unit sphere according to

v 7→ e3 + 2
v − e3
‖v − e3‖2

.

Closer inspection reveals that this map is the inverse of the stereographic projection
pictured in Figure 2.1 [17, p.26]. It is the bijection between S2\e3, i.e., the unit-sphere
without its north pole, and R2 × {0}, the plane intersecting its equator.
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E F G∇u s

r

Figure 2.2: The mappings and sets involved in the Inverse reflector problem.

We proceed with examining the map r : E → S2 in order to derive the sought
partial differential equation. The vector ∇u(x) lies in the plane R2 × {0} and has
its initial point at the origin, therefore, when we identify the vector ∇u(x) with its
endpoint, we can interpret ∇u(E) as a subset of R2 × {0}. We will present some
features of ∇u in the following lemma.

Lemma 2.1. Let u ∈ C2(E) be strictly convex. The map ∇u : E → ∇u(E) is a
continuously differentiable bijection, satisfying the equation

|D∇u(x)| = det(Hij(u(x)))

e(x)
, (2.4)

where D∇u(x) is the Jacobian of ∇u in x ∈ E. Furthermore, Hij(u(x))ei⊗ ej is the
Hessian tensor (Appendix A) of u in the point x ∈ E.
The proof of this lemma can be found in Appendix B. We have a similar result for
the stereographic projection.

Lemma 2.2. The inverse of the stereographic projection s : R2 × {0} → S2\e3
is continuously differentiable and hence s : ∇u(E) → s(∇u(E)) is a continuously
differentiable bijection. Moreover, for the Jacobian of s in y ∈ ∇u(E) we have

|Ds(y)| = 4

(1 + ‖y‖2)2
.

The proof of this lemma can also be found in Appendix B. We can use the results of
the preceding two lemmas to derive the differential equation expressing conservation
of energy. This is stated in the following theorem.

Theorem 2.3. Assume E ⊂ R2 × {−a} is convex, closed and bounded, u ∈
C2(E) strictly convex and r = s ◦ ∇u, where s is the inverse of the stereographic
projection. Let E ∈ C(E) and G ∈ C(r(E)) be strictly positive and bounded functions.
Furthermore, assume we have a coordinate system on E with metric eij. Then the
function u satisfies the differential equation

E(x)

G(r(x))
=

4 det(Hij(u))

e(1 + ‖∇u‖2)2
, (2.5)

for every x ∈ E. This equation is a Monge-Ampère type equation.
Proof. We first remark that (2.5) is independent of the choice of coordinate

system. The left hand side of (2.5) and ∇u are clearly independent of the coordinate
system in use. Moreover, in the proof of Lemma 2.1 we saw that det(Hij(u))/e is
an invariant, hence the right hand side of (2.5) is also independent of the coordinate
system in use.

Both s and ∇u are continuously differentiable injections, therefore we can apply
integration by substitution [20, Thm. 7.26]. For every Lebesgue measurable open
subset U ⊂ E we have∫

r(U)

G
√
gg1 ∧ g2 =

∫
U

(G ◦ r)|Ds||D∇u|
√
ee1 ∧ e2.
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Using equation (2.3) we find∫
U

E
√
ee1 ∧ e2 =

∫
U

(G ◦ r)|Ds||D∇u|
√
ee1 ∧ e2,

for every Lebesgue measurable U ⊂ E . The continuity of the functions E, G, r, |Ds|
and |D∇u| and Lemma 2.1 and Lemma 2.2 imply that equation (2.5) holds in all of
E .

We are now in the position to state the inverse reflector problem in more formal
terms. Given a convex, closed and bounded light source E with strictly positive and
bounded emittance E ∈ C(E) and a closed target set G ⊂ S2 with desired strictly
positive and bounded luminous intensity G ∈ C(G) such that∫

E
E
√
ee1 ∧ e2 =

∫
G
G
√
gg1 ∧ g2, (2.6)

find a function u ∈ C2(E) that satisfies r(E) = G and the Monge-Ampère type equation
(2.5). The condition r(E) = G needs to be satisfied for equation (2.5) to have meaning.
We can use the continuously differentiable map s to reformulate the problem in terms
of a gradient set F and function F on this set instead of the target set G and the
luminous intensity G. Using the fact that s−1 exists, we define F := s−1(G), and,
using the differentiability of s, we define F ∈ C(F) by

F (y) = (G ◦ s)(y)|Ds(y)| = 4G(s(y))

(1 + ‖y‖2)2
,

for all y ∈ F . Furthermore, suppose that we have a local coordinate system on F
with basis vectors f1 and f2, dual basis vectors f1 and f2, corresponding metric fij
and f = det(fij). Using integration by substitution we see that (2.6) implies∫

E
E
√
ee1 ∧ e2 =

∫
F
F
√
ff1 ∧ f2. (2.7)

The conditions r(E) = G translates in the condition ∇u(E) = F . These definitions
allow us to reformulate the inverse reflector problem.

Inverse reflector problem. Given a convex, closed and bounded light source
E with strictly positive and bounded emittance E ∈ C(E) and a closed gradient set F
with strictly positive, bounded and bounded away from zero, function F ∈ C(F) that
satisfy (2.7), find a function u ∈ C2(E) that satisfies ∇u(∂E) = ∂F , eijHij(u) > 0
and the Monge-Ampère type equation

E(x)

F (∇u(x))
=

det(Hij(u))

e
. (2.8)

Note that we replaced the implicit boundary condition ∇u(E) = F with the more
explicit boundary condition ∇u(∂E) = ∂F . The explicit boundary condition is better
manageable numerically. We will show in Appendix C that for strictly convex u these
two conditions are equivalent. The reason that we demand F to be bounded away
from zero, is to be able to show this equivalence. Furthermore, we added the earlier
absent constraint eijHij(u) > 0 demanding the trace of the Hessian to be strictly
positive. The fraction E/F is by definition strictly positive, hence the determinant
of the Hessian is strictly positive too. From this it follows that the Hessian matrix is

7



strictly positive definite or strictly negative definite, corresponding to either a convex
or concave solution, respectively. By demanding the trace of the Hessian to be positive
we make sure that only a convex reflector surface is admitted. In this paper we restrict
ourselves to this convex solution, however, the algorithm can be easily adapted to
find the concave solution instead. In [12, p.96] it is described how one can easily
find the concave solution from the convex solution and vice versa. A theorem by
Brenier [5, p.66] states that a weak formulation of the Inverse reflector problem admits
a unique convex solution. As we earlier argued, the Hessian is strictly positive definite,
therefore u is strictly convex [25]. Thus, we conclude that a solution to the Inverse
reflector problem as stated above and the same problem but with ∇u(∂E) = ∂F
replaced by ∇u(E) = F are truly equivalent as they both only admit strictly convex
solutions. It is, however, not clear that, for all pairs (E , E) and (F , F ), the unique
weak solution of Brenier’s theorem is twice continuously differentiable.

3. Least-squares method in arbitrary coordinates. In [13] Prins et al. pro-
posed the LS method to solve the Inverse reflector problem. We will in this section
introduce the GLS method, i.e., the generalization of the LS method to arbitrary
orthogonal coordinate systems.

We assume an arbitrary coordinate system on the source E with orthogonal co-
ordinates x1, x2, local orthogonal basis vectors e1, e2 and a metric eij = (ei, ej). The
orthogonality of the basis vectors imply eij = 0 for i 6= j. We will not try to solve the
Inverse reflector problem directly for u, but instead look for a mapping m : E → F
representing ∇u such that:

(i) m solves the following boundary value problem

det(∇m̂(x))

e(x)
=

E(x)

F (m(x))
, x ∈ E ,

m(∂E) = ∂F ,

where m̂ = mie
i = eijm

iej and m = miei,
(ii) m should be such that there exists a strictly convex u ∈ C2(E) such that

m = ∇u.
From this mapping we will eventually find u. If m satisfies (ii), then m̂ = du and
hence the tensor

∇m̂ = ∇ej
(m̂)⊗ ej = (∇ej

mi − Γkijmk)ei ⊗ ej

must be, by definition (Appendix A), the Hessian of some function and therefore needs
to be symmetric (Appendix A). This condition is actually enough to ensure that m
equals the gradient of some function. The symmetry of ∇m̂ implies ∇×m = 0. To
see this let us interpret m as a vector in R3. The component m3 = 0 and hence the
curl is given by [26, p.96]

∇×m =
1√
e

(
(∇e2

m1 − Γi12mi)− (∇e1
m2 − Γi21mi)

)
e3.

From this we see that ∇ ×m vanishes if and only if ∇m̂ is symmetric. A vector
field with zero curl is called conservative. A conservative field on a simply connected
domain always equals the gradient of some function, see for example [24, p.551]. Thus
we conclude that m equals the gradient of some function u ∈ C2(E) if and only if
∇m̂ is symmetric.
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However, this condition alone will not suffice for our goals, because we also need
u to be strictly convex. The function u ∈ C2(E) is convex if and only if E is convex
and the Hessian tensor H(u) is positive semi-definite, see for example [25, p.71]. The
Hessian tensor is positive semi-definite if and only if for every x = xiei we have
H(u)(x,x) ≥ 0, where

H(u)(x,x) = Hijx
ixj = xke

kiHijx
j = xT (ekiHij)x.

From this we see that H(u) is positive semi-definite if and only if the matrix (ekiHij)
is positive semi-definite. For our orthogonal basis the metric is diagonal and therefore

(ekiHij) =

(
e11H11 e11H12

e22H21 e22H22

)
.

Unfortunately, we can not demand positive definiteness, because, although every u ∈
C2(E) with positive definite Hessian tensor is strictly convex, not every strictly convex
u ∈ C2(E) has a positive definite Hessian tensor.1 Thus asking for more than ∇m̂ to
be positive semi-definite would be too restrictive. The numerical method that we will
introduce solves the following boundary value problem (BVP):

Transport BVP. Find a continuously differentiable m that satisfies

det(∇m̂(x))

e(x)
=

E(x)

F (m(x))
, x ∈ E , (3.1a)

m(∂E) = ∂F , (3.1b)

and for which ∇m̂ is a symmetric positive semi-definite tensor. In this problem the
functions E and F are strictly positive and bounded on E and F , respectively, such
that (2.7) is satisfied and F is bounded away from zero. If u is a solution to the
Inverse reflector problem, then m = ∇u will be a solution to Transport BVP. The
reverse statement is not true because a solution m of Transport BVP may be such
that the u in m = ∇u is convex but not strictly convex. Transport BVP thus allows
also for convex solutions which are not strictly convex.

We will numerically solve Transport BVP by starting with an initial guess m0

and improving this initial guess in an iterative manner. We will try to approximate
m satisfying equation (3.1a) by minimizing the functional

JI(m,P ) :=
1

2

∫
E
‖∇m̂− P ‖2

√
ee1 ∧ e2, (3.2a)

over the space

P(m) :=

{
P ∈ T 0

2(E)C1 | [det(pij(x)) =
e(x)E(x)

F (m(x))
, P (x) is spsd

}
, (3.2b)

where “spsd” stands for symmetric positive semi-definite and P = pije
i ⊗ ej . Fur-

thermore, we use T 0
2(E)C1 to denote the space of continuously differentiable tensor

fields of contravariant rank 0 and covariant rank 2, which assign to each point x ∈ E a
tensor in the tangent space at x to E , which we denote by T 0

2(TxE). It seems as if we
demand more smoothness than necessary, because Transport BVP and (3.2a) suggest

1Consider for example the strictly convex function f(x) = x4 on the real line. Although f is
strictly convex, the Hessian tensor, i.e. f ′′, is zero for x = 0 and hence not positive definite.
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that P only needs to be continuous for continuous E and F . However, in one of the
minimization procedures we need ∇m̂ to be continuously differentiable and therefore
we also need P to be continuously differentiable.

The norm in equation (3.2a) is defined in the following way. Let A,B ∈ T 0
2(TxE),

where A = aije
i ⊗ ej and B = bije

i ⊗ ej , then

A : B := eikejlaijbkl, (3.3)

defines an inner product on T 0
2(TxE). This inner product on T 0

2(TxE) is induced by
the metric. The fact that this is indeed an inner product follows from the symmetry,
linearity and positivity of the metric e. Let ‖ · ‖ be the norm associated with this
inner product.2 It is clear that if JI = 0, m will satisfy equation (3.1a) and ∇m̂ will
be symmetric positive semi-definite.

To satisfy the boundary condition (3.1b) we will minimize another functional
simultaneously. The functional we will minimize is given by

JB(m, b) :=
1

2

∮
∂E
‖m− b‖2ds, (3.4a)

and will be minimized over the space

B :=
{
b ∈ T 1

0(∂E)C | b(x) ∈ ∂F
}
, (3.4b)

for an arc-length parameterization of the boundary and with T 1
0(E)C the space of

continuous vector fields on E . Analogously to the functional JI we notice that if
JB = 0, m satisfies equation (3.1b).

Our goal is to minimize JI and JB simultaneously. In order to do this we define
a third functional:

J(m,P , b) := αJI(m,P ) + (1− α)JB(m, b) (3.5)

with α ∈ (0, 1). This functional we will minimize form over the spaceM := T 0
2(E)C2 .

One iteration of the numerical method consists of three steps. Assume that mn is
given. In order to determine mn+1 three steps are performed subsequently:

bn+1 = argmin
b∈B

JB(mn, b), (3.6a)

P n+1 = argmin
P∈P(mn)

JI(m
n,P ), (3.6b)

mn+1 = argmin
m∈M

J(m,P n+1, bn+1). (3.6c)

To solve these minimization problems we will cover our light source with a grid. The
grid will be an orthogonal curvilinear grid with as grid lines a finite set of the coor-
dinate lines of the coordinate system in use. The continuous minimization problems
(3.6) will then be translate to discontinuous problems on this grid.

The first minimization step, step (3.6a), can be performed in an efficient point-
wise way as discussed in [13]. No changes are made to this minimization step and
therefore we do not further discuss it here. The minimization step (3.6b) is discussed

2We use the same notation as for the vector norm, but this is not very likely to cause confusion
because it will be clear from the argument which norm we mean.
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quite extensively. A new geometrical interpretation of this minimization is presented,
which provides increased insight and clarifies the intricate expressions of [13]. This
allows us to algebraically determine the minimizer for this problem. Also minimiza-
tion problem (3.6c) is covered in great detail, because this minimization problem
becomes substantially more involved for arbitrary coordinate systems. We start with
minimization problem (3.6b).

3.1. Minimization of JI. The integrand of JI does not contain derivatives of
P , therefore we can carry out the minimization for each grid point x ∈ E individually.
For each grid point x ∈ E we want to minimize ‖∇m̂(x)− P (x)‖2/2. Let us denote
by δeimj the central difference approximation of ∇eimj . The tensor ∇m̂ will then
be approximated by D = dije

i ⊗ ej , where dij := δej
mi − Γkijmk. Assuming this

approximation of ∇m̂, we will minimize

1

2
‖D − P ‖2

=
1

2

(
dij − pij

)(
dkl − pkl

)
eikejl

=
1

2e

(
e11e22(d11 − p11)2 + (d12 − p12)2 + (d21 − p21)2 + e22e11(d22 − p22)2

)
,

where we used the fact that the basis {e1, e2} is orthogonal and hence (eij) is diagonal.
The tensor P (x) is positive semi-definite if and only if the matrix (eijpjk) is positive
semi-definite. Recall that symmetric 2 × 2 matrices are positive semi-definite if and
only if their trace and determinant are both positive. However, the matrix is not
symmetric, because

(eijpjk) =

(
e11p11 e11p12
e22p12 e22p22

)
, (3.7)

where we used that p21 = p12. Let a transformation matrix be given by T =
diag

(√
e11,
√
e22
)
. We use this transformation to make (eijpjk) symmetric:

T (eijpjk)T−1 =

(
e11p11 p12/

√
e

p12/
√
e e22p22

)
. (3.8)

A quick calculation shows that the eigenvalues of the matrix (eijpjk), and hence also
of the matrix T (eijpjk)T−1, are given by

µ± =
1

2e

(
e22p11 + e11p22 ±

√
(e22p11 + e11p22)2 − 4edet(pij)

)
, (3.9)

which are both real since the matrix T (eijpjk)T−1 is symmetric. It is a familiar result
that a matrix is positive semi-definite if and only if its eigenvalues are nonnegative.
This implies that (eijpjk) is positive semi-definite if and only if the matrix in (3.8) is
positive semi-definite. The matrix in (3.8) is symmetric, hence we can conclude that
P (x) is positive semi-definite if and only if the trace and determinant of the matrix in
(3.8) are nonnegative, i.e., if and only if e11p11 + e22p22 ≥ 0 and (p11p22− p212)/e ≥ 0.
The metric eij is derived from an ordinary Pythagorean inner product hence we have
e > 0 and we can simplify the last requirement to det(pij) ≥ 0.

The determinant of (pij) needs to equal eE/F . This quotient is positive by
definition and hence det(pij) > 0 is always satisfied. Let us now, to get rid of the
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metric altogether, introduce the variables

p̄11 := e11p11, p̄12 := p12/
√
e, p̄22 := e22p22, (3.10)

d̄11 := e11d11, d̄22 := e22d22, d̄12 := (d12 + d21)/(2
√
e). (3.11)

In these new variables we can give a more convenient reformulation of the minimization
problem. To do this we also drop a constant term (d12−d21)2/(4e) from the function
to minimize. We may do this as it does not effect the minimizers. The reformulated
problem is given as follows.

Minimization Problem. Given the symmetric matrix

D̄ =

(
d̄11 d̄12
d̄12 d̄22

)
,

with d̄11, d̄12 and d̄22 as defined in (3.11), find the symmetric matrix

P̄ =

(
p̄11 p̄12
p̄12 p̄22

)
,

that minimizes the function

H(P̄ ) :=
1

2
‖D̄ − P̄‖2, (3.12)

under the constraints det(P̄ ) = E/F and tr(P̄ ) ≥ 0, where the norm used in (3.12) is

the Frobenius norm for matrices, defined as ‖A‖ =
√∑

i,j a
2
ij for a matrix A = (aij).

From the relations (3.10) the minimizer (p11, p12, p22) can be found once the
minimizer (p̄11, p̄12, p̄22) of Minimization Problem has been found. Furthermore, we
have H(P̄ ) = ‖D − P ‖2/2 − (d12 − d21)2/(4e). We solve Minimization Problem
algebraically by using the method of Lagrange multipliers. Besides this we give a
graphical representation of this problem. This serves to get more intuition for the
problem and also provides a convenient way to verify the algebraically found solutions.

3.1.1. Lagrange minimizers and their geometric representation. We find
the minimizers of Minimization Problem with the help of the Lagrange function

Λ(P̄ ;λ) = H(P̄ ) + λ

(
det P̄ − E

F

)
. (3.13)

In a local minimum of this function all the partial derivatives have to equal zero,
hence we find the following set of equations,

p̄11 + λp̄22 = d̄11, (3.14a)

λp̄11 + p̄22 = d̄22, (3.14b)

(1− λ)p̄12 = d̄12, (3.14c)

p̄11p̄22 − p̄212 = E/F. (3.14d)

In the Lagrange function (3.13) the condition tr(P̄ ) ≥ 0 has not been taken into
account, hence a solution of (3.14a)-(3.14d) might have tr(P̄ ) < 0. In what follows,
we will show that there always exists a solution to (3.14a)-(3.14d) such that tr(P̄ ) ≥ 0.

Let us now give a geometric interpretation of the Lagrange minimizers. The
Lagrange minimizers correspond to a joint tangent plane of a hyperboloid and an
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ellipsoid. We introduce the function value H(P̄ ) = CH . By definition CH ≥ 0. Every
value of CH corresponds to an iso-surface of the function H. By definition of H we
have (

p̄11 − d̄11√
2CH

)2

+

(
p̄12 − d̄12√

CH

)2

+

(
p̄22 − d̄22√

2CH

)2

= 1. (3.15)

Equation (3.15) describes an ellipsoid in R3 with center (d̄11, d̄12, d̄22) and semi-axes√
2CH ,

√
CH and

√
2CH . Thus the iso-surfaces of H can be interpreted as ellipsoids

in R3.
The constraint det(P̄ ) = E/F describes an hyperboloid in R3 with symmetry

axes given by p̄11 = p̄22 and p̄12 = 0. To see this we will rotate our coordinate system
to align the symmetry axes with our coordinate axes. We perform the rotation given
by

p1 := (p̄11 − p̄22)/
√

2, p2 := tr(P̄ )/
√

2, p3 := p̄12,

d1 := (d̄11 − d̄22)/
√

2, d2 := tr(D̄)/
√

2, d3 := d̄12.

Using this transformation, the constraint det(P̄ ) = E/F can be rewritten as(
p1√

2E/F

)2

−

(
p2√

2E/F

)2

+

(
p3√
E/F

)2

= −1. (3.16)

This equation describes a hyperboloid of two separate sheets. One sheet is located
in the half-space p2 > 0 and the other one is located in the half-space p2 < 0.
The distance from the origin to the extremum of the sheet with tr(P̄ ) > 0 and the
extremum of the sheet with tr(P̄ ) < 0 is both

√
2E/F .

Equation (3.15) transforms to(
p1 − d1√

2CH

)2

+

(
p2 − d2√

2CH

)2

+

(
p3 − d3√
CH

)2

= 1.

We see (Figure 3.1) that the principal axes of both the ellipsoids and the hyper-
boloids are such that the p1- and p2-principal axis are equally long and

√
2 times the

length of the p3-principal axis. This fact will play a role in the minimization problem.
The local minimizers of the Lagrange function (3.13) are exactly the points where

an iso-surface of H is tangent to the hyperboloid. This can be seen from the equations
(3.14) in the following way. Equation (3.14d) implies that a local minimizer of the
Lagrange function is a point on the hyperboloid. A minimizer of the Lagrange function
Λ is a local minimum of H when confined to the hyperboloid. Now, a local minimum
of H restricted to the surface of the hyperboloid is exactly a point where an iso-
surface of H is tangent to the hyperboloid, because this iso-surface corresponds to
the smallest value of H on the hyperboloid. The plane p2 = tr(P̄ )/

√
2 = 0 lies

precisely between the two sheets of the hyperboloid. Thus, only the points where an
iso-surface of H is tangent to the sheet of the hyperboloid with tr(P̄ ) > 0 are actual
minimizers of Minimization Problem. In Figure 3.2 this is illustrated. The global
minimizer corresponds to the smallest ellipsoid that is tangent to the upper sheet of
the hyperboloid.

In the remaining part of this section we will algebraically solve the system of
equations (3.14). We will verify the algebraic solutions that we find by these graphical
representations. This allows us to get more intuition for the problem and visualize
symmetries that are not directly apparent from the equations (3.14a) - (3.14d).
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Figure 3.1: In this figure an example of an ellipsoidal iso-surface of H and a hyper-
boloid are shown from two different perspectives. We see that the principal p1- and
p3-axis have the same proportion for the hyperboloid and the ellipsoid.
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Figure 3.2: On the left side the two sheets of the hyperboloid and the dividing plane
p2 = tr(P̄ )/

√
2 = 0 are shown. On the right side an example of an ellipsoid which is

tangent to the hyperboloid with tr(P̄ ) > 0 is shown. Some red of the ellipsoid can be
seen through the hyperboloid. This point is the minimizer.

3.1.2. Determining the minimizers. We will show that for each given D̄ we
can find P̄ that is the solution of Minimization Problem. If λ 6= ±1, we can invert
equations (3.14a) - (3.14b). Doing this we obtain

p̄11 =
λd̄22 − d̄11
λ2 − 1

, p̄12 =
d̄12

1− λ
, p̄22 =

λd̄11 − d̄22
λ2 − 1

. (3.17)
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However, these equations only hold if λ 6= ±1. From equations (3.14a) - (3.14b) we
have the following immediate logical implications:

λ = 1 =⇒ (d̄11 = d̄22 ∧ d̄12 = 0), λ = −1 =⇒ (d̄11 = −d̄22).

From these implications we see there are only two situations that have to be dealt
with separately, namely the cases (d̄11 = d̄22 ∧ d̄12 = 0) and (d̄11 = −d̄22). When we
are not in one of these two cases, the solution (3.17) holds. We will now treat the
three different cases in turn, starting out with the general case.

Lemma 3.1. If (d̄11 6= d̄22 ∨ d̄12 6= 0) and (d̄11 6= −d̄22), the global minimizer to
Minimization Problem is given by equations (3.17). In these expressions λ is given
by one of the following four expressions:

λi = −
√
y

2
+ (−1)i

√
−y

2
− a2

2a4
+

a1
2a4
√

2y
, i = 1, 2,

λi =

√
y

2
+ (−1)i

√
−y

2
− a2

2a4
− a1

2a4
√

2y
, i = 3, 4.

(3.18)

In (3.18) y is given by the following two sets of equations:

y = A+
Q

A
− b2

3
, A = − sgn(R)

(
|A|+

√
R2 −Q3

)1/3
,

R =
2b32 − 9b1b2 + 27b0

54
, Q =

b32 − 3b1
9

,

(3.19)

and

a4 =
E

F
, a2 = −2a4 − det(D̄), a1 = ‖D̄‖2, a0 = a4 − det(D̄),

b0 = − a21
8a24

, b1 =
a22 − 4a0a4

4a24
, b2 =

a2
a4
.

(3.20)

At least one of the four choices for λ is such that the requirement tr(P̄ ) > 0 is satisfied
by (3.17).

Proof. Substituting the expressions (3.17) in (3.14d) we obtain the following
quartic polynomial Π(λ) := a4λ

4 + a2λ
2 + a1λ + a0 = 0, where the coefficients are

as given in (3.20). In [13] it is shown that this polynomial admits the four solutions
(3.18). Since a4 = E/F > 0 we have limλ→±∞Π(λ) = ∞. Furthermore, we can
rewrite Π(λ) as

Π(λ) = a4(λ2 − 1)2 − (a0 − a4)(λ2 + 1) + a1λ.

From this we see that Π(−1) = −(d̄11 + d̄22)2. By assumption d̄11 6= −d̄22, hence
Π(−1) < 0. From this inequality combined with the fact that Π(λ) → +∞ for
λ→ ±∞ it follows by the Intermediate Value Theorem that Π must have at least two
real roots, one smaller than −1 and one larger than −1. From (3.14) it follows that
tr(P̄ ) = tr(D̄)/(1 + λ). This shows that for one of the two real roots it holds that
tr(P̄ ) > 0, while for the other real root it holds that tr(P̄ ) < 0.

We now have established the fact that one of the four λ in (3.18) is such that
(3.17) is a minimum of the Lagrange function such that tr(P̄ ) > 0, thereby it follows
that a global minimizer exists. Moreover, the minimizer is given by (3.17), with λ
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given by one of the real roots of (3.18). The global minimizer will be found by checking
for which of the four λi (i = 1, . . . , 4) the function H is minimal.

Now that we have dealt with the general case we will turn our attention to the
cases (d̄11 = d̄22 ∧ d̄12 = 0) and (d̄11 = −d̄22). We first handle (d̄11 = −d̄22).

Lemma 3.2. When d̄11 = −d̄22, the global minimizer to Minimization Problem
is given by

p̄11 =
1

2

(
d̄11 +

√
d̄211 + 4E/F + d̄212

)
, p̄12 =

d̄12
2
, p̄22 = p̄11 − d̄11. (3.21)

Proof. When d̄11 = −d̄22, the Lagrange conditions (3.14a) and (3.14b) imply that
(λ+1)(p̄11 + p̄22) = 0. From this it follows that we have either λ = −1 or p̄11 = −p̄22,
or both. When p̄11 = −p̄22, it follows from (3.14d) that −p̄211− p̄212 = E/F . However,
this situation cannot occur because E/F > 0. We conclude that λ = −1 must hold.
The Lagrange conditions (3.14a) - (3.14d) now simplify to

p̄11 − p̄22 = d̄11, 2p̄12 = d̄12, p̄11p̄22 =
E

F
+
d̄212
4
.

Combining the first and third of these equations gives us

p̄211 − d̄11p̄11 −
E

F
− d̄212

4
= 0.

This polynomial has for any d̄11 and d̄12 always two real solutions, which are given
by p̄11 = (d̄11±

√
d̄211 + 4E/F + d̄212)/2. However, if the minus sign holds we see that

tr(P̄ ) = −
√
d̄211 + 4E/F + d̄212 < 0. Thus, when d̄11 = −d̄22, the global minimizer to

Minimization Problem is given by (3.21). In Figure 3.3 these findings are illustrated.

Now we only have to deal with the case (d̄11 = d̄22 ∧ d̄12 = 0).
Lemma 3.3. Suppose d̄11 = d̄22 and d̄12 = 0. When d̄11 < 2

√
E/F , the solution

to Minimization Problem is the global minimum given by

p̄11 =
√
E/F , p̄12 = 0, p̄22 =

√
E/F , (3.22)

otherwise, when d̄11 ≥ 2
√
E/F , the solution is a continuum of global minimizers

given by

p̄11 ∈
[
d̄11 − a

2
,
d̄11 + a

2

]
, p̄12 = ±

√
d̄11p̄11 − p̄211 −

E

F
, p̄22 = d̄11 − p̄11, (3.23)

where a =
√
d̄211 − 4E/F .

Proof. In the case that d̄11 = d̄22 and d̄12 = 0, Lagrange conditions (3.14a) and
(3.14b) imply that (1 − λ)(p̄11 − p̄22) = 0. From this it follows that we must either
have λ = 1 or λ 6= 1 and then p̄11 = p̄22. Let us first deal with the case λ 6= 1. When
λ 6= 1, the Lagrange conditions (3.14c) and (3.14d) read

(1− λ)p̄12 = d̄12 = 0, p̄211 − p̄212 = E/F.

As λ 6= 1, the first of these equations implies that p̄12 = 0. This fact combined with
the second equation implies that p̄11 = p̄22 = ±

√
E/F . The condition tr(P̄ ) > 0
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Figure 3.3: These figures corresponds to Lemma 3.2. The ellipsoid is centered around
the same point (d1 = (d̄11 − d̄22)/

√
2 =
√

2d̄11, d2 = (d̄11 + d̄22)/
√

2 = 0, d3 = d̄12) in
both figures. This results in two local minima with the same function value for H. In
the figure on the left we see the minimum on the hyperboloid sheet with tr(P̄ ) < 0
and in the figure on the right we see the minimum on the sheet with tr(P̄ ) > 0. These
are the two minima that have been found in the proof of Lemma 3.2, the minimum
in the figure on the left was discarded as it did not satisfy tr(P̄ ) > 0.

is only satisfied when the plus sign holds, hence we find one minimizer. This is the
minimizer given by equation (3.22).

Now suppose that λ = 1. Lagrange condition (3.14a) implies p̄22 = d̄11 − p̄11 and
from Lagrange condition (3.14d) we obtain p̄12 = ±

√
p̄11p̄22 − E/F . Substituting the

former expression in the latter gives us p̄12 = ±
√
d̄11p̄11 − p̄211 − E/F , which is only

real if p̄211 − d̄11p̄11 + E/F ≤ 0, that is, when p̄11 ∈ [(d̄11 − a)/2, (d̄11 + a)/2], where

a =
√
d̄211 − 4E/F . This gives us the continuum of minimizers (3.23). However, p̄11

is only real if d̄11 /∈ (−2
√
E/F , 2

√
E/F ). Moreover, because tr(P̄ ) = d̄11, we see that

tr(P̄ ) > 0 is only satisfied when d̄11 > 0. From this it follows that the continuum
of minimizers can only be a solution to Minimization Problem when d̄11 ≥ 2

√
E/F .

Thus, when d̄11 < 2
√
E/F , the global minimizer is given by (3.22). To decide for

d̄11 ≥ 2
√
E/F whether the global minimizer is given by (3.22) or by an element of

the continuum (3.23), we must compare the values of the function being minimized,
i.e. H, for the local minimizers.

H(P̄ ) has the same value for every element of the continuum of minimizers, be-
cause otherwise not all the elements of the continuum would have been local minima.
For the value of H(P̄ ) in the continuum we have

Hcont =
1

2

∥∥∥∥( d̄11 − p̄11 −
√
d̄211/4− E/F

−
√
d̄211/4− E/F p̄11

)∥∥∥∥2
=

1

2

(
2

(
d̄11p̄11 − p̄211 −

E

F

)
+ (d̄211 − p̄211)2 + p211

)
=
d̄211
2
− E

F
.
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For the local minimizer at the extremum of the hyperboloid, given by (3.22), we have

Hext =
1

2

∥∥∥∥( d̄11 −
√
E/F 0

0 d̄11 −
√
E/F

)∥∥∥∥2 = d211 − 2d11

√
E

F
+
E

F
.

This implies that Hcont−Hext = −d̄211/2+2d11
√
E/F−2E/F . This polynomial in d̄11

has its maximal value in d11 = 2
√
E/F where it equals 0, therefore it is negative for

every d̄11 > 2
√
E/F . This implies that if d̄11 ≥ 2

√
E/F , the solution to Minimization

Problem is given by the continuum of minimizers (3.23).

In Figure 3.4 examples of the results from Lemma 3.3 are geometrically shown.
Recall that the extrema of the two sheets of the hyperboloid are located at

(p1, p2, p3) = ((p̄11 − p̄22)/
√

2, (p̄11 + p̄22)/
√

2, p̄12) = ±(0,
√

2E/F , 0).

Thus Lemma 3.3 implies that the global minimizer is at (0,
√

2E/F , 0) if

d̄2 < 2
√

2E/F , d̄11 = d̄22 and d̄12 = 0, i.e., when the center of the ellipsoid is located

in (0, p2, 0), where p̄2 =
√

2d̄11 < 2
√

2E/F . Or to put it in words, in the case that
d̄11 = d̄22 and d̄12 = 0, if the distance from the center of the ellipsoid to the origin
is less that two times the distance to the extremum of the sheet with tr(P̄ ) > 0
of the hyperboloid, or if the center of the ellipsoid is situated beneath the plane
p2 = tr(P̄ )/

√
2 = 0, then the global minimizer is given by the extremum of the upper

sheet of the hyperboloid. If d̄11 = d̄22, d̄12 = 0, the center of the ellipsoid is located
above the plane p2 = tr(P̄ )/

√
2 = 0 and its distance to the origin is more than twice

the distance from the extremum to the origin, then we have the continuum of global
minimizers. This case is depicted in the graph on the right in Figure 3.4. In the graph
on the left in Figure 3.4, the center of the ellipsoid is farther away from the origin
than the extremum of the sheet with tr(P̄ ) > 0 of the hyperboloid, but it is closer
than two times the distance between this extremum and the origin. This results in
the extremum as single global minimizer, as can be seen in this figure.

Summarizing, we have proven the following theorem.

Theorem 3.4. Minimization Problem, can be solved algebraically. In the general
case, when (d̄11 6= d̄22 ∨ d̄12 6= 0) and (d̄11 6= −d̄22), the solution to Minimization
Problem is given by (3.17), with λ given by one of the four possibilities in (3.18). At
least two of the λ’s in (3.18) are real. Explicit calculation of the function value H(P̄ )
shows which of the real λ’s gives the global minimizer. In the case that (d̄11 = −d̄22),
there is a unique solution to Minimization Problem. This global minimizer is given
by (3.21). Finally, in the case that (d̄11 = d̄22 ∧ d̄12 = 0), there is unique solution to
Minimization Problem if d̄11 < 2

√
E/F and it is given by (3.22). If d̄11 ≥ 2

√
E/F ,

there is a whole continuum of solutions to Minimization Problem, which is given by
(3.23).

3.2. Minimization of J . In this section we focus on the last step of the least-
squares method, i.e. (3.6c). We will minimize the functional J , defined in equation
(3.5), for m ∈M, while keeping P and b constant. Again we do this for an arbitrary
coordinate system on E with basis vectors e1, e2 and corresponding metric e = eije

i⊗
ej . We derive a coordinate-independent boundary value problem for the mapping m
and subsequently derive from this the boundary value problem in Cartesian and polar
coordinates. We will see that in the Cartesian case we end up with the same boundary
value problem for m as derived in [12, p.142-144].
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Figure 3.4: These figures corresponds to the minimizers in Lemma 3.3. The
ellipsoid is located behind the hyperboloid. We see the sheet of the hyper-
boloid with tr(P̄ ) > 0 on the left. The ellipsoid is centered around a point
(d1 = (d̄11 − d̄22)/

√
2 = 0, d2 = (d̄11 + d̄22)/

√
2 =
√

2d̄11, d3 = d̄12 = 0). In the figure
on the left d2 < 2

√
2E/F and we find the extremum of the hyperboloid as mini-

mizer. In the figure on the right d2 ≥ 2
√

2E/F and we find an elliptical continuum
of minimizers.

3.2.1. Derivation of a boundary value problem for the mapping. We
will use Calculus of Variations to determine the minimizer m for J . For a minimum
to be attained the Gâteaux derivative of the J must be 0 in every direction, i.e.

δJ(m,P , b;η) := lim
ε→0

1

ε
(J(m+ εη,P , b)− J(m,P , b)) = 0,

for every direction η ∈ M. δJI and δJB are defined analogously. By linearity of the
Gâteaux derivative we have

δJ(m,P , b;η) = αδJI(m,P , b;η) + (1− α)δJB(m,P , b;η).

We first determine δJI(m,P , b;η). By linearity of the covariant derivative we find

δJI(m,P , b;η) = lim
ε→0

1

2ε

∫
E

(
‖ε∇η̂ +∇m̂− P ‖2 − ‖∇m̂− P ‖2

)√
ee1 ∧ e2.

We will now need the following convenient property of inner product on T 2
0(TxE) as

defined on page 10. Let A,B ∈ T 2
0(TxE), then we have

‖A+B‖2 = (Aij +Bij)(A
ij +Bij) = ‖A‖2 + 2A : B + ‖B‖2.

Using this property on ‖ε∇η̂ +∇m̂− P ‖2, with A = ε∇η̂ and B = ∇m̂− P , gives

δJI(m,P , b;η) = lim
ε→0

1

2ε

∫
E

(
ε2‖∇η̂‖2 + 2ε∇η̂ : (∇m̂− P )

)√
ee1 ∧ e2

=

∫
E
∇η̂ : (∇m̂− P )

√
ee1 ∧ e2.
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In the same fashion, using the fact that

‖m+ εη − b‖2 − ‖m− b‖2 = ε2‖η‖2 + 2ε(η,m− b), (3.24)

we find the Gâteaux derivative of JB to be

δJB(m,P , b;η) =

∮
∂E

(η,m− b) ds.

Combining the results for JI and JB we find that

∀η ∈M : α

∫
E
∇η̂ : (∇m̂− P )

√
ee1 ∧ e2 + (1− α)

∮
∂E

(η,m− b) ds = 0. (3.25)

In order to proceed we will rewrite the integrands in terms of their components. For
the first integral in (3.25) we have∫

E
∇η̂ : (∇m̂− P )

√
ee1 ∧ e2 =

∫
E
Djηi(D

jmi − pij)
√
ee1 ∧ e2,

where Djηi are the components of the covariant derivative of η̂ (Appendix A) and
Dj = eijDi. The product rule implies

Djηi(D
jmi − pij) = Dj(ηi(D

jmi − pij))− ηiDj(D
jmi − pij).

If we integrate the first term and apply Green’s theorem [26, p.134] we find∫
E
Dj(ηi(D

jmi − pij))
√
ee1 ∧ e2 =

∮
∂E

(Djmi − pij)ηinj ds,

where nj are the covariant components of the outward unit normal vector on the
boundary ∂E and the orientation on ∂E is the one induced by E [26, p.119]. It follows
that ∫

E
∇η̂ : (∇m̂− P )

√
ee1 ∧ e2 =

∮
∂E

(Djmi − pij)ηinj ds

−
∫
E
Dj(D

jmi − pij)ηi
√
ee1 ∧ e2.

Combining this result with equation (3.25) we obtain

0 =

∮
∂E

[
α(Djmi − pij)nj + (1− α)(mi − bi)

]
ηi ds

− α
∫
E
Dj(D

jmi − pij)ηi
√
ee1 ∧ e2,

for all η ∈M. Invoking the Fundamental Lemma of Calculus of Variations [29, p.185]
we find from this the boundary value problem

DjD
jmi = Djp

ij in E , (3.26a)

α(Djmi)nj + (1− α)mi = αpijnj + (1− α)bi on ∂E . (3.26b)

The solution of boundary value problem (3.26) will minimize J for constant P
and b. Note that (3.26) are vector equations. The term DjD

jmi is the so-called
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vector Laplacian [28, p.91]. In Cartesian coordinates DjD
jmi = ∂j∂

jmi, thus, in
Cartesian coordinates the Laplacian of a vector amounts to just taking the Laplacian
component-wise. However, in different coordinate systems this is not true, because
nonzero Christoffel symbols imply that [DjD

jmi]i=1,2 depend both on both m1 and
m2. This results for an arbitrary coordinate system in two coupled equations, while
for a Cartesian coordinate system these two decouple. This will become more appar-
ent when we derive the coordinate specific boundary value problem for Cartesian and
polar coordinates.

3.2.2. The boundary value problem in specific coordinate systems. In
Cartesian coordinates the partial differential equations in (3.26) decouple. Let us
denote the standard Cartesian basis vectors by ex and ey, define

px =

(
pxx

pxy

)
=

(
p11

p12

)
and py =

(
pyx

pyy

)
=

(
p12

p22

)
,

and writem = mxex+myey. With the use of this definition we can rewrite (Djp
ij)i=1

as div px and (Djp
ij)i=2 as div py. From this we see that in Cartesian coordinates

(3.26) reduces to the decoupled set of equations

∆mx = divpx in E ,
α(∇mx,n) + (1− α)mx = α(px,n) + (1− α)bx on ∂E ,

(3.27a)

∆my = divpy in E ,
α(∇my,n) + (1− α)my = α(py,n) + (1− α)by on ∂E .

(3.27b)

The boundary value problems (3.27a) and (3.27b) are exactly the same as in [12,
p.143].

In polar coordinates the equations do not decouple. Notice that the coordinate
specific boundary value problem that we deduce from (3.26) does depend on the choice
of basis for polar coordinates, because (3.26) is a vector equation. Thus, we find for
an anholonomic basis (Appendix A) different expressions than for a holonomic basis.

To derive the boundary value problem in polar coordinates, let us first write out
the components of the covariant derivatives appearing in (3.26) in terms of Christoffel
symbols and derivatives. We start out with the vector Laplacian. By the definition of
Dj (Appendix A) it follows that DjD

jmi = ejk(∇ej
(Dkm

i) − ΓlkjDlm
i + ΓiljDkm

l)

and Dkm
i = ∇ek

mi + Γilkm
l, hence

DjD
jmi = ejk

(
∇ej
∇ek

mi +∇ej
(Γilk)ml + Γilk∇ej

ml − Γlkj∇el
mi

− ΓlkjΓ
i
slm

s + Γilj∇ek
ml + ΓiljΓ

l
skm

s
)
.

(3.28)

Doing the same derivation for the divergence of P we obtain3

Djp
ij = ∇ej

pij + Γiljp
lj + Γjljp

il. (3.29)

Similarly, we find for the normal derivative of m in equation (3.26b)

(Djmi)nj = ejk(Dkm
i)nj = ejk

(
∇ek

mi + Γilkm
l
)
nj . (3.30)

3Note, that due to the symmetry of P it is clear what we mean when we speak of the divergence
of P . It does not matter if we contract Dk with the first or second index of pij , the result is the
same.
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We use (3.28) - (3.30) to determine the boundary value problem (3.26) in polar coordi-
nates. We first consider the anholonomic basis, because this is the basis we used in the
implementation. The Christoffel symbols in the anholonomic basis are Γrθθ = −r−1
and Γθrθ = r−1 [18, p.218]. After doing the tedious calculations of determining the
coordinate system specific expressions of the various terms in (3.28) we find

(DjD
jmi)i=r =

∂2mr

∂r2
+

1

r2
∂2mr

∂θ2
− 2

r2
∂mθ

∂θ
+

1

r

∂mr

∂r
− mr

r2
,

(DjD
jmi)i=θ =

∂2mθ

∂r2
+

1

r2
∂2mθ

∂θ2
+

1

r

∂mθ

∂r
+

2

r2
∂mr

∂θ
− mθ

r2
.

In the same way we calculate the expressions for the divergence of P and obtain

(Djp
ij)i=r =

∂prr

∂r
+

1

r

∂prθ

∂θ
+
prr − pθθ

r
,

(Djp
ij)i=θ =

∂prθ

∂r
+

1

r

∂pθθ

∂θ
+

2prθ

r
.

Finally, we determine the expression for the normal derivative of m from (3.30) and
find

((Djmi)nj)i=r =
∂mr

∂r
nr +

∂mr

∂θ

nθ

r
− mθnθ

r
,

((Djmi)nj)i=θ =
∂mr

∂r
nr +

∂mr

∂θ

nθ

r
+
mrnθ

r
.

We define

pr =

(
prr

prθ

)
and pθ =

(
prθ

pθθ

)
, (3.31)

and collect all the different terms and find that the polar coordinate with anholonomic
basis variant of (3.26) is given by

∆mr − 1

r2

(
mr + 2

∂mθ

∂θ

)
= divpr −

pθθ

r
in E ,

(3.32)

α(∇mr,n)− αm
θnθ

r
+ (1− α)mr = α(pr,n) + (1− α)br on ∂E ,

and

∆mθ − 1

r2

(
mθ − 2

∂mr

∂θ

)
= divpθ +

prθ

r
in E ,

(3.33)

α(∇mθ,n) + α
mrnθ

r
+ (1− α)mθ = α(pθ,n) + (1− α)bθ on ∂E ,

where ∆, div and ∇ are the familiar Laplace, divergence and gradient operator in
polar coordinates with anholonomic basis [24, p.542-543]. The equations (3.32) and
(3.33) are coupled.

In the implementation of the GLS method we solve this boundary value problem
by using a standard second order central finite difference method. This provides us
with a linear system of the form Ax = b, where A does not change between time-steps.

22



We use this fact by determining an LU-decomposition, before the first iteration and
we use this to solve linear system for each time-step. To deal with the fact that, in for
example polar coordinates, (3.32) and (3.33) are two coupled equations, we will solve
them by iterating between the two. Starting with (3.32) we keep mθ fixed and solve
for mr. Next we keep mr fixed and solve (3.33) for mθ. In this way we iterate between
(3.32) and (3.33). We stop this iterative procedure when J (n+1,i) < cJ (n), where n
is the outer iteration count of (3.6) and i is the inner iteration count, or, when the
number of inner iteration is larger than a specified value d, i.e., i > d. The optimal
choice for these values are problem specific and if the number of inner iterations is
increased by demanding more precision in (3.6c), the outer iterative procedure might
converge faster. However, demanding far more precision in (3.6c) than is achieved by
the outer iterative procedure up to that point is a waste of time. A maximum on the
number of iterations is introduced to make sure that the method does not stall when
J (n+1,i) < cJ (n) is a too severe requirement. This will come in to play in the final
iterations. We found that only few inner iterations in (3.6c) are sufficient, because
the mapping mn provides a very good initial guess for (3.6c). In practice we took
c = 0.9 and d = 5 and these values seem to be a good choice for the problems tested
so far.

In the next section we will present the results for polar coordinates with anholo-
nomic basis. However, before proceeding to the next section, we first have to clear up
how to determine function u : E → (0,∞) once we have found a mapping m ∈ TEC2

that is a solution to Transport BVP.

3.3. Determining the reflector surface from the mapping. To determine
the reflector surface from the mapping m we generalize the derivation given by C.
Prins et al. [12, p.144] to arbitrary coordinate systems. We earlier remarked that m
equals the gradient of u if and only if ∇m̂ is symmetric. However, in the GLS method
JI is minimized in the L2-norm and hence ∇m̂ is not exactly symmetric. We can
therefore only search for a function u : E → (0,∞) with gradient equal to m in an
L2-sense, hence we will search for u that minimizes

I(u) :=

∫
E
‖∇u−m‖2

√
ee1 ∧ e2.

After a derivation very similar to the one by which we arrived at boundary value
problem (3.26), which we leave out for brevity, we obtain the Poisson problem

DiD
iu = Dim

i in E ,
Di(u)ni = mini on ∂E ,

where ni are again the covariant components of the normal covector. In Cartesian
coordinates this problem is the one previously given in [13]. For polar coordinates
with an anholonomic basis it is given by

∆u = divm in E ,
(∇u,n) = (m,n) on ∂E ,

where ∆, div and ∇ are again the familiar polar coordinate differentiation operators.
It is this problem that we solve to find the reflector surface for the problems presented
in next section. We then discretize this Poisson problem by using second order central
differences, giving us a linear system. The solution of this linear system gives us the
reflector surface.
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4. Numerical results. We show the performance of the least-squares method
in polar coordinates on the basis of two test cases. In the first test case we compare the
method in polar coordinates with the method in Cartesian coordinates as presented
in [13] and in the second test case we investigate the performance of the method in
polar coordinates for a complex problem with a discontinuous desired light output.

For both test cases we take for the source pair (E , E) a unit disk with uniform
emittance. We choose this source, because it frequently occurs in lighting systems and
is the natural environment to apply the polar-coordinate least-squares method. For
the first test case we take as the target F1 = [−1, 1]× [−1, 1] with a uniform intensity
function F1. For the second test case we have determined the pair (F2, F2) such
that an intensity pattern corresponding to the sketch by M. C. Escher (Figure 1.1) is
projected on a screen in the far-field. We take the projection screen at a distance 100
times the radius of the source and we take (F2, F2) such that width and height of the
projection are 4.3 times the radius of the source. We will normalize F1 and F2 such
that (2.7) holds.
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Figure 4.1: The resulting mapping is shown: on the left for Cartesian coordinates and
on the right for polar coordinates. For both a 500× 500 grid is used and α = 0.2. We
see the grid as it is mapped on F1. Grid points that initially had the same distance
to the center of E have the same colour. Bright yellow corresponds to points in the
center of E and dark blue corresponds to points on ∂E .

4.1. From a circle to a square. In Figure 4.1 we see that near the boundary
∂F1 the method in Cartesian coordinates has great difficulties. This results from the
implementation where as actual source the smallest bounding box of E is used with
emittence zero in the points outside E ; see [13] for details. In the polar coordinate
method the grid perfectly aligns with ∂E . In Figure 4.1 it can be seen that now all
the difficulties at ∂F1 are resolved.

Figure 4.2 shows the convergence history of the method for different values of α.
The value of α determines approximately the ratio between JI and JB. In general, for
values of α close to 1 the method finds a reflector that closely satisfies (2.8), but might
possibly be less accurate concerning the boundary condition of the Inverse reflector
problem, and vice versa for α close to 0. For smoother (E , E) and (F , F ) the solution
found by the method seems less dependable on the choice of α. However, in cases
where for example ∂F is not differentiable, as in the current test case, there seems to
be a pay-off. For such problems the boundary condition and (2.8) cannot be satisfied
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Figure 4.2: For the first test case the interior error JI and the boundary error JB
are shown as function of the number of iterations for different α’s, on the left for the
method in Cartesian coordinates and on the right for the method in polar coordinates.
In both cases a 100× 100 grid was used.

exactly and simultaneously. In order to clarify this alleged pay-off further study has
to be done. Nonetheless, the freedom in α provides the user of the GLS method with
an opportunity to select the most fitting pay-off between interior and boundary for
the specific application at hand. Moreover, it can be seen that due to better handling
of the boundary ∂E the gap between JI and JB is far smaller for the method in polar
coordinates for all choice of α.
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Figure 4.3: The convergence history for Cartesian and polar coordinates is compared
for the first test case. In the left plot a 500× 500 grid is used and the different error
components are shown. An improvement by a factor 104 is observed when using polar
instead of Cartesian coordinates. On the right J is shown for different grids. For both
plots we used α = 0.2

Figure 4.3 shows that the method in polar coordinates significantly outperforms
its Cartesian counterpart. In the figure on the left it is seen that for a 500 × 500
grid the convergence of the Cartesian method stalls after approximately 75 iterations.
The convergence of the polar method proceeds for another 300 iterations and this
eventually leads to a value for JI that is 104 times as small is the JI found with the
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Cartesian method. In the figure on the right it is seen that the use of increasingly
finer grids has more effect for the polar method. However, even for the polar method
final value for JI seems not to convergence to zero when ever finer grids are used.
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Figure 4.4: The mapping and corresponding reflector are shown for the second test
case.

4.2. From a circle to an Escher-sketch in the far-field. Figure 4.4 shows
the results of applying the method in polar coordinates to the second test case. For
this very demanding test case a 1400 × 1400 grid was used. The elliptic shaped
reflector is globally close to flat but locally contains great detail. Subsequently the
reflector was simulated by using ray trace methods [4]. The result can be seen in
Figure 4.5. The ray trace results closely resemble the original picture, although there
is some decrease in contrast. In the algorithm the reflector surface is in the class
of twice continuously differentiable functions. This naturally results in smoothing of
the, often discontinuous, intensity in the original picture. Nonetheless the resolution
obtained is high enough to carry over all the minute details of the original picture.

5. Summary and final remarks. In Section 2 we derived the Monge-Ampère
equation, describing the reflector surface, for an arbitrary coordinate system. We
found the map r, which maps a point on the source E , from which a light ray leaves,
to the direction of reflection of this ray, to be the composition of the gradient of the
reflector surface, ∇u, and the inverse of the stereographic projection, s. Furthermore,
we formulated the Inverse reflector problem in terms of the source and emittance
(E , E) and the gradient set and intensity function (F , F ).

In Section 3 we introduced the GLS method by generalizing the LS method, earlier
introduced in [13], to general coordinate systems. Moreover, we gave a new geometric
interpretation to the minimization problem for the functional JI and found that the
minimization problem for the total functional J consists of two Poisson problems
which, contrary to the Cartesian case, are coupled in general coordinate systems.

In Section 4 we showed that the GLS method has far wider applicability than the
LS method. We showed that for a disk-shaped source the GLS in polar coordinates
gave a significant improvement over the LS method, decreasing the error by four
orders of magnitude. It was seen that for problems with non-smooth desired output
intensity the final ratio between JI and JB depends on the value of α in equation
(3.5). Further research and literature study into this relation should be done. It
would be for example important to know for which combination of source pair (E , E)
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Figure 4.5: The image projected on the screen by the reflector of Figure 4.4 is deter-
mined by ray tracing about 4 million rays, with uniform fixed spacing, that leave E .
The original is shown on the left and the ray trace result is shown on the right.

and target pair (F , F ) the solution of the method depends on α and to quantify to
what extend.

Lastly, the method was applied to a very challenging problem concerning a de-
tailed piece of art and still the method obtained a high resolution preserving the
details of the original picture. This gives confidence in the wide applicability of the
method in an industrial context.

Appendix A. Tensor Calculus. In this appendix we introduce the concepts
from tensor calculus used in this paper. We will be very brief but make precise
references to the literature where detailed explanations are given.

Let us consider U ⊂ Rn with a coordinate system x = (xi)ni=1 [26, p.111] and a
local basis (ei(x))ni=1 at each point of x ∈ U . The vector space spanned by (ei(x))ni=1

is called the tangent space to U at x and denoted by TxU [26, p.115]. The union
∪x∈UTxU is called the tangent bundle to U and denoted by TU . The linear mappings
on TxU form its dual space T ∗xU and the elements of this are called covectors. Simi-
larly, vectors can be seen as linear mappings on T ∗xU . Let (ei)ni=1 denote the dual basis
to (ei)

n
i=1, i.e. , ei(ej) = δij . Taking the tensor product between vectors and covectors

we can construct general linear mappings on products of TxU and T ∗xU called ten-
sors [26, p.75]. A general linear map from (TxU)k × (T ∗xU)l to R (order of these k+ l
spaces may be different and does matter) is called a tensor of contravariant rank k and
covariant rank l. The space of such tensors we denote by T kl (TxU) [23, p.20]. From
every pair of tensors we can define a third one through the tensor product. Suppose
we have two covectors v1,v2 ∈ T ∗xU then we can define the tensor product v1 ⊗ v2
of v1 and v2 by v1 ⊗ v2(w1,w2) = v1(w1)v2(w2) for every w1,w2 ∈ TxU [26, p.75].
The tensor product is defined analogously for arbitrary pairs of tensors. An example
of a tensor of covariant rank 2 is the metric. The tensors ei1⊗· · ·⊗eik⊗ej1⊗· · ·⊗ejl
with 1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n form a basis for the space T kl (TxU) [23, p.21] and
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hence for every T ∈ T kl (TxU) there exist coefficients T i1...ikj1...jl
such that [23, p.21]

T = T i1...ikj1...jl
ei1 ⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejl ,

where the Einstein summation rule applies. The coefficients T i1...ikj1...jl
are called the

components of T . A tensor T ∈ T k(TxU) is called alternating [26, p.78] when
T (v1, . . . ,vi, . . . ,vj , . . . ,vk) = −T (v1, . . . ,vj , . . . ,vi, . . . ,vk) for all v1, . . . ,vk in

TxU . Every T ∈ T k(TxU) can be made alternating by the operation [26, p.78]

Alt(T )(v1, . . . ,vk) =
1

k!

∑
σ∈Sk

sgn(σ)T (vσ(1), . . . ,vσ(k)),

where Sk is the set of all permutations of 1, . . . , k. The space of alternating T ∈
T k(TxU) is denoted by Λk(TxU). Alt(T ) ∈ Λk(TxU) for every T ∈ T k(TxU) and
Alt(T ) = T for every T ∈ Λk(TxU) [26, p.78]. For S ∈ Λk(TxU) and T ∈ Λl(TxU)
their tensor product S⊗T is usually not alternating, but their wedge product, defined
by [26, p.79]

S ∧ T =
(k + l)!

k!l!
Alt(S ⊗ T )

is alternating, i.e., S ∧ T ∈ Λk+l(TxU). A basis for Λk(TxU) is formed by the set of
all ei1 ∧ · · · ∧ eik with 1 ≤ i1 < i2 < · · · < ik ≤ n [26, p.81]. An example of an n-form
on U ⊂ Rn is the volume form [28, p.105] given by e1 ∧ · · · ∧ en for an orthonormal
(dual) basis e1, . . . , en. In classical notation this volume form is often denoted by dV
or dA, depending on the dimension.

A vector field on U is a function that assigns to each x ∈ U a vector in TxU and
k-form on U is a function that assigns to each x ∈ U a tensor in Λk(TxU). Similarly
we can define arbitrary tensor fields. A tensor field is differentiable if its components
are differentiable. An important tensor field on U is the metric e = eije

i ⊗ ej whose
components are defined as eij = (ei, ej). The symmetry of the inner product implies
that eij is also symmetric. The components of the inverse of the matrix (eij) are
denoted by eij , i.e., we have eijejk = δik. Furthermore, we write e = det(eij). The
metric for example allows us to express the volume form in any basis. It is given by√
ee1 ∧ · · · ∧ en [28, p.105].

In this paper we use two notions of derivatives. We first introduce the covariant
derivative. Suppose v ∈ C1(U), then the directional derivative of v in the direction
ei is denoted by ∇ei

v. If the basis vectors ei are the tangents to the coordinate
lines of xi, i.e., the lines of varying xi while keeping xj (J 6= i) constant, then the
basis is called a coordinate basis or a holonomic basis and we have ∇ei

v = ∂v/∂xi.
However, in general a basis is anholonomic and this does not apply. The differential
of v ∈ C1(U) is given by dv = (∇eiv)ei, which is a 1-form, and the gradient of v is
the corresponding vector ∇v = eij(∇eiv)ej . If we take the directional derivative of a
vector field v = vjej on U we get, applying the product rule,

∇eiv = ∇ei(v
j)ej + vj∇ei(ej).

The derivatives ∇ei
(ej) are nonzero in a general coordinate system, however, as they

are directional derivatives of vectors in U , they are itself vectors in U . As such they
can be written as linear combination of basis vectors as ∇ei(ej) = Γkjiek. Using this
we have

∇eiv = ∇ei(v
j)ej + vjΓkjiek = (∇ei(v

k) + vjΓkji)ek.
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The coefficients Γkji are called the Christoffel symbols. We can equivalently write

∇eiv = Di(v
k)ek, where Di(v

k) = ∇ei(v
k) + vjΓkji are the components of the co-

variant derivative of v with respect to the i-th basis vector. Extending this reasoning
to general tensors one finds that for T ∈ T kl (TxU) the covariant derivative in the
direction ei is given by ∇ei

T = Di

(
T i1...ikj1...jl

)
ei1 ⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejl , with

Di

(
T i1...ikj1...jl

)
= ∇ei

(
T i1...ikj1...jl

)
+ T k...ikj1...jl

Γi1ki + · · ·+ T i1...kj1...jl
Γikki

− T i1...ikk...jl
Γkj1i − · · · − T

i1...ik
j1...k

Γkjli.
(A.1)

In (A.1) we get for every contravariant index a Christoffel symbol with a plus sign
and for every covariant index a Christoffel symbol with a minus sign [18, p.209].

The exterior derivative is an operation that takes a k-form into a (k + 1)-form.
Suppose we have a holonomic basis (ei)

n
i=1 and a differentiable k-form

T = Ti1...ike
i1 ∧ · · · ∧ eik , then the exterior derivative of T is given by [26, p.91]

dT = dTi1...ike
i1 ∧ · · · ∧ eik , (A.2)

where dTi1...ik is the differential of Ti1...ik .
A tensor that will be of special interest in this paper is the Hessian tensor. For a

twice differentiable function v it is given by

H(v) = ∇dv =

(
∇ej

(∇ei
v)− Γkij∇ek

v

)
ei ⊗ ej .

The covariant directional derivative as introduced above can be generalized to Rie-
mannian manifolds and is in that context called a Levi-Civita connection [28, p.160].
For a Levi-Civita connection the Hessian matrix is symmetric [27, p.4], hence the Hes-
sian matrix will always be symmetric in this paper. Note that in Cartesian coordinates
(Hij(v)) is the matrix with second derivatives of v.

Appendix B. Proofs of Lemmas 2.1 and 2.2.
Proof of Lemma 2.1. u ∈ C2(E) implies that ∇u is continuously differentiable. The
bijectivity of ∇u follows from the strict convexity of u. ∇u is surjective by definition.
To show injectivity, we argue by contradiction and will use a reasoning presented
in [12, p.93]. Suppose x,x′ ∈ E , such that x 6= x′ and ∇u(x) = ∇u(x′). Due to
strict convexity u lies above its tangent planes, i.e. u(x′) > u(x) + (∇u(x),x′ − x)
and similarly u(x) > u(x′) + (∇u(x′),x − x′). Adding these two inequalities and
subtracting u(x) + u(x′) from both sides we obtain 0 > (∇u(x′) − ∇u(x),x′ − x),
which is contradicting the assumption ∇u(x′) = ∇u(x). We have shown that ∇u is
a continuously differentiable bijection and now proceed with the Jacobian.

We assume a Cartesian coordinate system on F , with corresponding orthonormal
basis vectors f1 and f2, and an arbitrary coordinate system and holonomic basis on
E . Let for each point in x ∈ E A(x) = (aij(x)) be the matrix that transforms that

basis e1(x), e2(x) into f1,f2, i.e., f i = ajiej . Let B = (bij) be the inverse of A.

From f i(x)f i = ∇u(x) = ekj∇ek
u(x)ej it follows that f i = bije

kj∇ek
u. The area

form on F is given by
√
ff1 ∧ f2 = df1 ∧ df2 [26, p.85]. By definition we have

df i = d(bije
kj∇ek

u) = ∇el
(bije

kj∇ek
u)el (Appendix A). Applying the product rule

we find

∇el
(bije

kj∇ek
u) = ∇el

(bij)e
kj∇ek

u+ bij∇el
(ekj)∇ek

u+ bije
kj∇el

(∇ek
u). (B.1)
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Note that bij = (ej ,f i) for i, j = 1, 2, hence we find

∇el
(bij) = ∇el

(
ej ,f i

)
=
(
∇el

(ej),f i
)

=
(
Γkjlek,f i

)
= Γkjlb

i
k. (B.2)

The covariant derivatives of the metric tensor and its inverse are zero [18, p.215],
hence

∇ek
(eij) = −Γjlke

il − Γilke
lj . (B.3)

Substituting (B.2) and (B.3) into (B.1) we find

∇el
(bije

kj∇ek
u) = bije

kj
(
∇el

(∇ek
u)− Γmkl∇emu

)
.

Using this and the properties of the wedge product [26, p.79] we obtain

df1 ∧ df2 =
[
b1je

kj
(
∇el

(∇ek
u)− Γmkl∇emu

)
el
]
∧
[
b2qe

rq
(
∇es(∇eru)− Γtrs∇etu

)
es
]

=
[
b1je

kj
(
∇e1

(∇ek
u)− Γmk1∇em

u
)
b2qe

rq
(
∇e2

(∇er
u)− Γtr2∇et

u
)

− b1je
kj
(
∇e2(∇ek

u)− Γmk2∇emu
)
b2qe

rq
(
∇e1(∇eru)− Γtr1∇etu

)]
e1 ∧ e2

= det
(
bije

jkHkl

)
e1 ∧ e2,

where Hij = (∇ei
(∇ej

u)− Γkji∇ek
u) are the components of the Hessian. From

eij =
(
bki fk, b

l
jf l
)

= BBT ,

it follows that det(bij) = det(B) =
√

det(eij) =
√
e. Using this and the multiplicativ-

ity of the determinant we find

df1 ∧ df2 =
det(Hij)

e

√
ee1 ∧ e2.

The area form on E is
√
ee1∧e2 and on F is df1∧df2, hence |D∇u(x)| = |det(Hij)/e|.

By the assumption of the lemma u is strictly convex and hence if we consider a
Cartesian coordinate system det(Hij) > 0 and e = 1, implying det(Hij)/e > 0.
However, det(Hij)/e is independent of the choice of coordinate system, as can be
easily checked by considering a coordinate transformation, and therefore must be
positive independent of the choice of coordinate system. Thus in general we have
|D∇u(x)| = det(Hij)/e.
Proof of Lemma 2.2. We first prove injectivity. Suppose we have two distinct
y1,y2 ∈ R2 × {0} such that s(y1) = s(y2). This implies that

y1 − e3
‖y1 − e3‖2

=
y2 − e3
‖y2 − e3‖2

.

Using the fact that e3 is orthogonal to both y1 and y2 we find that ‖y1 − e3‖2 =
‖y2 − e3‖2 and this on its turn implies that y1 = y2.

The map is also surjective from R2 × {0} to S2\e3. Suppose we have a spherical
coordinate system (g1, g2) on S2\e3 and a Cartesian coordinate system (f1, f2) on
R2×{0}. Suppose we have defined the Cartesian coordinate system on R2×{0} with
basis vectors f1 and f2. Let g1 be the azimuthal angle with respect to f1 and let g2

be the zenithal angle with respect to e3. For (g1, g2) ∈ S2\e3 we have [12, p.77]

f1(g1, g2) =
sin(g2) cos(g1)

1− cos(g1)
, f2(g1, g2) =

sin(g2) sin(g1)

1− cos(g1)
,

30



indicating surjectivity of s. Conversely,

g1(f1, f2) = tan−1
(
f1, f2

)
, g2(f1, f2) = arccos

(
(f1)2 + (f2)2 − 1

(f1)2 + (f2)2 + 1

)
,

where tan−1
(
f1, f2

)
is the four-quadrant variant on arctan(f2/f1) [12, p.77]. In

spherical coordinates the determinant of the metric g = det(gij) = sin2(g2) [18, p.340],
hence the area form on the S2\e3 is given by

√
gg1∧g2 = sin(g2)dg1∧dg2. Using the

definition of the exterior derivative (Appendix A) we find dgi = (∂gi/∂f j)df j and
hence dg1 ∧ dg2 = det(∂gi/∂f j)df1 ∧ df2. By direct calculation we find

det

(
∂gi

∂f j

)
=

1√
(f1)2 + (f2)2

2

(f1)2 + (f2)2 + 1
.

Furthermore, we have

sin(g2) = sin

(
arccos

(
(f1)2 + (f2)2 − 1

(f1)2 + (f2)2 + 1

))
=

2
√

(f1)2 + (f2)2

(f1)2 + (f2)2 + 1
,

where we have used the fact that sin(g2) ≥ 0 and the identity sin(arccos(x)) =√
1− x2. Combining the two we find

√
gdg1 ∧ dg2 =

(
2
√

(f1)2 + (f2)2

(f1)2 + (f2)2 + 1

1√
(f1)2 + (f2)2

2

(f1)2 + (f2)2 + 1

)
df1 ∧ df2

=

(
4

((f1)2 + (f2)2 + 1)2

)
df1 ∧ df2.

The area form on S2\e3 is
√
gdg1∧dg2, the area form R2×{0} in Cartesian coordinates

is
√
ff1 ∧ f2 = df1 ∧ df2. Thus we find that the Jacobian of s is as given in the

statement of the lemma.

Appendix C. Equivalence of boundary conditions for a strictly convex
reflector surface. In this appendix we show that the Inverse reflector problem as
stated on page 7 is equivalent to this same problem but with the boundary condition
∇u(∂E) = ∂F replaced by ∇u(E) = F . When doing this we need to make use of the
fact that ∇u is an open map, i.e. a map that maps open sets to open sets. This we
show in the following lemma.

Lemma C.1. Suppose that u ∈ C2(E) is the strictly convex solution to the Inverse
reflector problem with ∇u(E) = F instead of ∇u(∂E) = ∂F . Then the map ∇u is also
open, i.e., for each open subset A ⊂ E the image ∇u(A) is an open subset of F .

Proof. In Lemma 2.1 we saw that for the strictly convex solution u ∈ C2(E), ∇u is
a bijection. Moreover, because u is twice continuously differentiable, the mapping ∇u
is a continuously differentiable mapping. In Cartesian coordinates, the matrix (Hij)
is also the Jacobian matrix of ∇u. The fact that det(Hij) > 0 therefore implies that
the Jacobian of ∇u is always strictly positive. This implies that the conditions for
the inverse function theorem [21] are satisfied. The inverse function theorem states,
among other things, that for every open subset A of E and x ∈ A, there exists an
open set U in A containing x, and an open set V in F containing ∇u(x) such that
∇u is a bijection from U to V and the inverse (∇u)−1 is continuously differentiable
on V .
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From this it follows that ∇u is open. To see this, suppose A is some open set in
E . By the inverse function theorem there exists for every x ∈ E open sets Ux and Vx
such that x ∈ Ux, ∇u(x) ∈ Vx and Ux ⊂ A. ∇u(Ux) = Vx is open for every x ∈ A.
Notice that ∪x∈EUx = A and that ∇u(A) = ∪x∈A∇u(Ux) = ∪x∈AVx. Thus ∇u is an
open map.

The map∇u is a homeomorphism from E to F , because it is a continuous bijection
which is open and hence also has continuous inverse. We will use this convenient
property of ∇u in the following lemma.

Lemma C.2. Let u ∈ C2(E) be the strictly convex solution to the Inverse reflector
problem with ∇u(E) = F instead of ∇u(∂E) = ∂F . Then also ∇u(∂E) = ∂F .

Proof. The map ∇u is a homeomorphism and therefore it links every open set in
E with an open set in F and vice versa. Let us denote by int(A) the interior of a set
A. Suppose A ⊂ E . We have ∇u(int(A)) ⊂ ∇u(A) and because ∇u is an open map
∇u(int(A)) is also open. The largest open subset of ∇u(A) is the interior int(∇u(A)),
therefore ∇u(int(A)) ⊂ int(∇u(A)). If ∇u : E → F is a homeomorphism, then
(∇u)−1 : F → E is a homeomorphism also, hence (∇u)−1(int(B)) ⊂ int((∇u)−1(B))
for all B ⊂ F . From this it follows that we have both ∇u(int(E)) ⊂ int(∇u(E)) =
int(F) and (∇u)−1(int(F)) ⊂ int(∇u)−1(F)) = int(E). Using this we see that

int(F) = ∇u
(
(∇u)−1(int(F))

)
⊂ ∇u (int(E)) ⊂ int(F).

Thus, we see that ∇u (int(E)) = int(F). Now, because ∇u is a bijection this implies
that we must have ∇u(∂E) = ∂F .

Thus the strictly convex solution of the Inverse reflector problem with boundary
condition ∇u(E) = F is also a solution to the Inverse reflector problem with boundary
condition ∇u(∂E) = ∂F . Now the following lemma states the converse.

Lemma C.3. Let u ∈ C2(E) be a strictly convex solution to Inverse reflector
problem. Then ∇u(E) = F .

Proof. The map ∇u is a homeomorphism from E to ∇u(E) ⊂ R2. The set E is
convex and hence simply connected. The set ∂E is a simple and closed curve, i.e.,
a Jordan curve. The map ∇u is continuous and injective and hence ∇u(∂E) = ∂F
is also a Jordan curve. Now the Jordan curve theorem [22, p.198] states that the
complement R2\∂F has two connected components one of which is bounded and one
of which is not, namely the interior and the exterior of the curve, and the boundary
of both these sets is ∂F . The set E is simply connected, therefore ∇u(E) is simply
connected also. The interior and exterior to the curve ∇u(∂E) = ∂F are the only two
subsets of R2 with ∂F as boundary. The fact that ∇u is a homeomorphism implies
∇u(∂E) = ∂(∇u(E)), because ∇u(int(E)) = int(∇u(E)) as we showed in the proof
of Lemma C.2. The fact that ∂F = ∇u(∂E) = ∂(∇u(E)) implies that int(∇u(E)) is
one of two sets of the Jordan curve theorem. The exterior set is clearly not simply
connected, while ∇u(E) is, therefore int(∇u(E)) is the interior set in the Jordan curve
theorem. The fact that E is bounded, that the functions E and F are strictly positive
and bounded and that F is bounded away from zero implies by (2.7) that the set F
is bounded also. This implies that int(F) needs to be the interior set also and hence
we find that ∇u(E) = F .

We have established that u is a strictly convex solution to the Inverse reflector
problem with boundary conditions ∇u(E) = F if and only if it is a strictly convex
solution to the Inverse reflector problem with boundary condition ∇u(∂E) = ∂F .
Thus the two boundary conditions are equivalent.
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