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Abstract

In this paper the finite volume-complete flux scheme is proposed to numeri-
cally solve the generalized Burgers-Huxley equation. The scheme is applied
in an iterative manner. Numerical computations are performed for traveling
wave-type problems as a validation of the method. Convection-dominated
problems are used to assess the method on boundary layers. The results are
in good agreement with reference results.
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1. Introduction

The generalized Burgers–Huxley (GBH) equation can be used to model
the interaction between reaction mechanisms, convection and di↵usion [1],
and is widely used in modeling nonlinear wave phenomena [2]. J. Sat-
suma [1] was the first to study this equation in 1987. Exact solutions of
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the Burgers-Huxley equation can be obtained with a Cole-Hopf transforma-
tion [3]. Solitary wave solutions can be obtained by using special nonlinear
transformations, as described in [4]. Similarity reductions (also known as
similarity solutions) of the Burgers’ and Burgers-Huxley equations are ob-
tained by P.G. Estevez [5]. Exact solutions of some special cases are derived
in [6, 7].

The approaches mentioned above consider special cases of the GBH equa-
tion. No general approach of finding analytical solutions of nonlinear advection-
di↵usion-reaction equations exists, therefore numerical methods are of great
importance. Various numerical approaches have been proposed by researchers
to solve the GBH equation. Without trying to be complete, we mention
some. The first one is the spectral collocation method. This method casts
the GBH equation into a set of ordinary di↵erential equations, has been used
by Darvishi et al. [8] and Javidi et al. [9]. The Adomian decomposition
method (ADM), which yields an analytical solution in the form of a rapidly
converging series, is a popular numerical technique for the GBH equation [10–
13]. Another commonly used approach is the variational iteration method
(VIM) [14–16]. This method yields rapidly convergent successive approxi-
mations of the exact solution without any restrictive approximations. The
VIM is very e↵ective and convenient in comparison with the ADM [15]. An-
other class of methods is the homotopy perturbation method, which shows
rapid convergence towards the exact solution [17]. A B-spline second order
scheme is used by R. Mohammadi [18]. Also approaches using the more clas-
sical technique of finite di↵erence methods (FDMs) have been proposed to
numerically solve the GBH equation: An exponential FDM [19], and higher
order methods [20, 21]. Another popular class of methods to solve the GBH
equation are the di↵erential quadrature methods [22, 23]. Here a combi-
nation of a polynomial-based di↵erential quadrature method in space and a
third-order total variation diminishing Runge-Kutta scheme in time has been
used. Lastly, we mention the Haar wavelet method [24] and the di↵erential
transform method [25] that can be used to solve the GBH equation.

In this paper not only the GBH equation, but also the singularly per-
turbed GBH equation is considered. The singularly perturbed GBH which
exhibits boundary layers has been studied by B.V. Kumar et al. [26]. They
have used a three-step Taylor-Galerkin method, which is third-order accurate
in time. Also D. Kamboj et al. [27] have numerically solved this equation
using a VIM.

In this study, we propose to use a finite volume method for solving the
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GBH equation: the so-called finite volume-complete flux (FV-CF) scheme.
The scheme, developed by Ten Thije Boonkkamp et al. [28], deals with
linear advection-di↵usion-reaction equations. It is based on an integral rep-
resentation of the flux from the solution of a local boundary value problem
of the entire equation. This means that the source term is included and,
therefore, the flux consists of a homogeneous and an inhomogeneous part,
corresponding to the homogeneous and particular solution of the boundary
value problem, respectively. The latter part is of great importance when ad-
vection dominates di↵usion. Due to the non-linearity of the GBH equation,
the original scheme is applied in an iterative procedure. Traveling wave-
problems are used to validate the method. The method is assessed for highly
convection dominated problems with sharp boundary layer profiles. The pro-
posed method is a simple and accurate approach to solve the GBH equation
and can deal with boundary layers problems.

The outline of the paper is as follows. The nonlinear GBH equation is
briefly presented in Section 2. In Section 3 the proposed FV-CF scheme
is elaborated. Numerical results are presented in Section 4. Finally, the
conclusions are drawn in Section 5.

2. The generalized Burgers-Huxley equation

The generalized Burgers-Huxley equation is a nonlinear partial di↵erential
equation (PDE) of second order. It di↵ers from the well-known Burgers’
equation by its highly nonlinear right-hand side. It describes the evolution
of a wave profile ' = '(x, t) and reads

@

t

'+ ↵'

�

@

x

'� "@

xx

' = s('),

s(') = �'(1� '

�)('� � �),
(1)

where t > 0 denotes the time parameter and x the spatial coordinate. The
second term on the left-hand side represents the nonlinear advection e↵ect
with advection speed ↵ and the third term the di↵usion with di↵usion coef-
ficient " > 0. The source term s includes the strength � and the nonlinear
perturbation parameter 0 < � < 1. The nonlinearity of the equation, caused
by the parameter � � 0, vanishes for the choice � = 0 for which a homoge-
neous linear second order PDE is obtained. Note that for � = 0, � = 1, a zero
right-hand side, the viscous Burgers’ equation is retrieved. This equation has
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an explicit family of traveling waves given by

' = '̃

,c

(x, t) =
c

↵

� 2 tanh
⇣


↵

"

�
x� ⇠t

�⌘
, (2)

with , ⇠ 2 R. This is a stationary solution along the characteristic lines
x� ⇠t = constant.

3. Numerical scheme

In this section we outline the finite volume-complete flux scheme for equa-
tions with a linear advection-di↵usion operator; for more details see [28].
Next, we present the extension to a nonlinear advection term, as occurs in
the (generalized) Burgers-Huxley equation.

First, we present the stationary flux approximation, thus we consider the
model equation (conservation law)

df

dx
= s, f = u'� "

d'

dx
, (3)

where f is the flux. Parameters in (3) are the advection velocity u and the dif-
fusion coe�cient " � "min > 0, both assumed to be su�ciently smooth func-
tions of x, and s = s(') is a (possibly nonlinear) source term. To discretize
equation (3) we introduce an equidistant grid x

j

= (j�1)�x (j = 1, 2, . . . , N)
with �x = L/(N�1) the grid size and N the number of grid points. Further-
more, we cover the domain with control volumes ⌦

j

= (x
j�1/2, xj+1/2) (j =

2, 3, . . . , N�1) where x
j±1/2 =

1
2(xj

+x

j±1

�
. Integrating the first equation in

(3) over the control volume ⌦
j

and using the midpoint rule for the integral
of the source term s, the discrete conservation law is obtained

F

j+1/2 � F

j�1/2 = s

j

�x, (4)

where F

j+1/2 is the numerical flux at x
j+1/2 and s

j

= s('
j

). The expression
for the numerical flux F

j+1/2 is based on the following local boundary value
problem

df

dx
=

d

dx

⇣
u'� "

d'

dx

⌘
= s, x

j

< x < x

j+1, (5a)

'(x
j

) = '

j

, '(x
j+1) = '

j+1. (5b)

Note that we consider the entire equation, including the source term, con-
sequently, the numerical flux is the superposition of a homogeneous flux,
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corresponding to the advection-di↵usion operator, and an inhomogeneous
flux, corresponding to the source term. Introducing the Péclet function P ,
defined as

P =
u�x

"

, (6)

the expressions for the numerical flux read

F

j+1/2 = F

h
j+1/2 + F

i
j+1/2, (7a)

F

h
j+1/2 =

"̄

j+1/2

�x

�
B(�P̄

j+1/2)'j

� B(P̄
j+1/2'j+1

�
, (7b)

F

i
j+1/2 =

�
1
2 �W (P̄

j+1/2

�
su,j+1/2�x. (7c)

In (7) the functions B and W are defined as

B(z) =
z

ez � 1
, W (z) =

ez � 1� z

z

�
ez � 1

�
, (8)

moreover, P̄
j+1/2 = 1

2

�
P

j

+ P

j+1

�
is the average Peclet number, and su,j+1/2

is the upwind value for s at the cell interface x

j+1/2. We refer to the flux
approximation in (7) as the complete flux (CF) scheme.

Next, we consider the time-dependent version of equation (3), which reads

@'

@t

+
@f

@x

= s, f = u'� "

@'

@x

, (9)

with corresponding semi-discrete conservation law

'̇

j

�x+ F

j+1/2 � F

j�1/2 = s

j

�x, (10)

where '̇
j

⇡ @'/@t(x
j

, t). For the numerical flux we have two options. First,
the flux approximation (7) can be taken, henceforth referred to as the sta-
tionary complete flux (SCF) scheme. The alternative is to include the time
derivative in the source term, thus we introduce the modified source ŝ, de-
fined as

ŝ = s� @'

@t

, (11)

and replace su,j+1/2 in (7c) by ŝu,j+1/2. The inhomogeneous flux then changes
to

F

i
j+1/2 =

�
1
2 �W (P̄

j+1/2

��
su,j+1/2 � '̇u,j+1/2

�
�x, (12)
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where '̇u,j+1/2 denotes the upwind value of @'/@t at the interface x

j+1/2.
Obviously, the homogeneous flux remains the same. We refer to this flux
approximation as the transient complete flux (TCF) scheme.

Combining the semi-discrete conservation law (10) with the expressions
for the numerical flux, we obtain the (implicit) ODE-system

M '̇+A' = Bs+ b, (13)

where A and B represent the homogeneous and inhomogeneous flux dif-
ferences, respectively. Furthermore, M = �xI for the SCF scheme and
M = B for the TCF scheme. Boundary conditions are incorporated in the
right-hand side vector b. For time integration of (13) the ✓-method is used,
which reads

1

�t

M
�
'n+1�'n

�
+(1�✓)A'n+✓A'n+1 = (1�✓)�Bsn+bn

�
+✓

�
Bsn+1+bn+1

�
,

(14)
where 'n ⇡ '(t

n

), t
n

= n�t (n = 0, 1, 2, . . .) with �t > 0 the time step and
✓ = 1/2 for the second order accuracy [29].

The generalized Burgers-Huxley equation can be written as an nonlinear
advection-di↵usion-reaction equation:

@

t

'+ v(')@
x

'� "@

xx

' = s('),

v = v(') = ↵'

�

,

(15)

where v is the nonlinear advection term. In the same manner as in the linear
case, we define now the nonlinear flux

f = f(') = u'� "

@'

@x

,

u = u(') =
v

� + 1
.

(16)

Obviously, the previous derivation doesn’t hold anymore. To remedy this
problem we embed the scheme (14) in an iterative scheme as follows. Let

 

(k)
j

be the kth iterative approximation for 'n+1
j

. The iterative procedure to
compute from current time level n the solution at the next time level 'n+1

j

now reads:

1. Set  (0)
j

= '

n

j

;
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2. Compute the Péclet numbers: P (k)
j

= u( (k)
j

)�x/"

3. Compute the matrices M = M ( (k)
j

),A = A( (k)
j

),B = B( (k)
j

), b =

b( (k)
j

);
4. Solve (14) with the TCF scheme (using a Newton-Rhapson iterative

solver) to find  (k)
j

;
5. Repeat until convergence (and set k = k + 1);

6. Set 'n+1
j

=  

(k)
j

;

4. Numerical results

The initial boundary value problem (IBVP) under consideration is com-
posed of (1) with initial condition

'(x, 0) = '0(x), 0  x  1, (17)

and Dirichlet boundary conditions

'(0, t) = '

L

(t), '(1, t) = '

R

(t), t � 0. (18)

First, we validate the proposed method for a traveling wave solution. Next,
the boundary layer profiles are assessed.

4.1. Validation of method: Traveling wave problem

This problem serves as a validation of the proposed method. In this
boundary value problem the initial condition

'(x, 0) =
⇣
�

2
+
�

2
tanh(kx)

⌘1/�

(19)

and the boundary conditions

'

L

(t) =
⇣
�

2
+
�

2
tanh(�kct)

⌘1/�

, t � 0,

'

R

(t) =
⇣
�

2
+
�

2
tanh (k(1� ct))

⌘1/�

, t � 0,
(20)

are chosen (with ✏ = 1) such that an exact solitary wave solution exists. The
constants k, c are defined as, see e.g. [22],

k =
�↵� + �

p
(↵2 + 4�(1 + �))

4(1 + �)
�,

c =
�↵

1 + �

� (1 + � � �)(�↵ +
p
(↵2 + 4�(1 + �)))

2(1 + �)
,

(21)
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and the corresponding exact solution is given by

'(x, t) =
⇣
�

2
+
�

2
tanh (k (x� ct))

⌘1/�

, t � 0. (22)

To illustrate the behavior of the solution, we show some traveling wave pro-
files (with a strong source) in Figure 1. These profiles are obtained on a
course mesh of N = 15 mesh points and a temporal step size of �t = 10�4.

x
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φ
(x

,t)

×10-4
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t = 0.2 (approx)
t = 0.2 (exact)
t = 0.4 (approx)
t = 0.4 (exact)
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t = 0.8 (approx)
t = 0.8 (exact)

(a)

x
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φ
(x

,t
)
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1
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t = 0.4 (approx)
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t = 0.6 (exact)
t = 0.8 (approx)
t = 0.8 (exact)

(b)

Figure 1: Travelling wave - behavior of solution with strong source � = 100
and � = ✏ = 1 with N = 15, �t = 10�4. Left panel: ↵ = 1, � = 10�3, right
panel: ↵ = 2, � = 2.

Evaluation at test bed

We evaluate the results of our scheme at the test bed of M. Sari et al.
[22], which is, to the knowledge of the authors, the most complete testbed
for the GBH equation in literature. We use DQM-scheme to refer to their
method. The L1�norm of the errors, referred to as absolute errors, at various
grid points x

j

and times t are computed. The results for various values of
↵, �, � and � are shown for four cases in Tables 1-5.

Case (i). We start o↵ with a case with the parameters ↵ = 1, � = 1 and
� = 10�3. In Table 1 we show the absolute errors of both schemes for var-
ious values of x, t and �. A more nonlinear advection term, i.e. a higher �,
increases the complexity of the PDE. This is indicated by the results in the
table: the errors declining increase for increasing �. All errors of our scheme
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are of the same magnitude as of the DQM scheme.

Case (ii). In this case we take a very weak source term, � = 10�3, a small
advection speed ↵ = 10�1, and a small perturbation � = 10�4. This case can
be considered as the simplest one of all considered test cases. We show the
results for various values of x, t and � in Table 2. Again, the errors declin-
ingly increase for increasing �. In all cases our scheme is about one order of
magnitude more accurate than the DQM scheme.

Case (iii). Next, we take a negative advection speed, ↵ = �10�1, a weak
source term � = 10�1, and a perturbation of � = 10�3. As in the previous
two cases we vary � and show the results for di↵erent values of x, t in Table 3.
Again, the errors decliningly increase for increasing �. Comparing with the
results of the DQM scheme, the current errors are about a factor 2 smaller
in middle of the grid and are of the same magnitude at the boundaries.

Case (iv). A strong source term of � = 1, 10, 50, 100 is taken in this case,
which makes it a di�cult one. The convection term is the same as for the
Burgers’ equation, � = 1, and the other parameter values are ↵ = 1 and
� = 10�3. Table 4 shows the obtained results for various values of x, t and
�. For both methods, the errors linearly increase for increasing �. Again,
the comparison with the results of the DQM scheme shows that the current
errors are about a factor 2 smaller in middle of the grid and are of the same
magnitude at the boundaries.

Case (v). To check the influence of the perturbation parameter �, we vary
� = 10�2

, 10�3
, 10�4

, 10�5. A large perturbation � is the most challenging
case of this test bed. The other parameters are: a large advection speed of
↵ = 5, a strong source strength of � = 10 and a value of � = 2. Table 5 shows
the absolute errors for various values of �, x and t. For both methods, the
errors increase for increasing �. The comparison with the DQM scheme shows
that the absolute errors of the current approach are of the same magnitude
in the middle of the grid and are about a factor 2 larger at the boundaries.
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4.2. Boundary layer problem

In this case we asses the scheme on problems with sharp boundary layers. The
initial boundary value problem consists of Eq. (1) with initial and boundary
conditions

'0(x) = sin(⇡x),
'

L

(t) = 0, 0  t  1,
'

R

(t) = 0, 0  t  1.
(23)

We start o↵ by presenting a grid validation of the method. The two di↵erent
sets of parameters which are used for this propose are given in Table 6.

Table 6: Boundary layer problem - Parameters for the grid validation.

↵ � � � ✏

Set 1 1 1 10�3 2 2�7

Set 2 10 100 10�3 1 2�3

The numerical simulations are performed using the double mesh principle
with grid sizes �x = 2�6

, 2�7
, 2�8

, 2�9. The solutions are evaluated using a
temporal step size of �t = 10�3. We show the obtained solution profiles in
Figure 2.
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Figure 2: Boundary layer problem - A grid validation. The left (right) panel
shows the numerical results for parameter set 1 (2).
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Figure 3: Boundary layer problem - The maximum absolute errors for various
meshes.

In Figure 2 no di↵erence between the profiles is visible, which indicates
the same behavior of the solutions for N > 65. We performing all remaining
computations with N = 129.

Since the exact solution for this IBVP is unknown, we use the solution at a
very fine mesh (�x = 2�15) as a reference solution. The maximum absolute
error, denoted e, is computed for the various meshes and is visualized in
Figure 3. To find the spatial accuracy, we compute '(x

M

,

1
2) for decreasing

grid sizes and apply Richardson extrapolation [30] to the results, where x
M

is
the middle gridpoint. For the size of the time steps we take �t = 10�4. Let
'�x

be the numerical solution at x = x

M

and t = 1.0 respectively, computed
with grid size �x. Furthermore, let e�x

be the error corresponding to the
'�x

, i.e.
'�x

+ e�x

= '�x/2 + e�x/2 = '�x/4 + e�x/4, (24)

We now assume
e

h

= Ch

p +O (hq) , (25)

where q 2 N, q > p and the order of convergence can be estimated:

2p
.

=
'�x/2 � '�x

'�x/4 � '�x/2
=: r�x

, (26)

We show the r�x

-values in Table 7.
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Table 7: Boundary layer problem - Parameters for the grid validation.

�x 2�6 2�7 2�8 2�9

Set 1 4.030 4.013 4.006 4.003
Set 2 3.746 3.862 3.928 3.963

Figure 3 and Table 7 indicate, for both parameter sets, quadratic convergence
for decreasing mesh size of the solution to the reference solution.

We assess the method for the boundary layer development (✏! 0) using
the same parameters as in [26]: ↵ = 1, � = 1, � = 0.001, � = 1, 2, 3. The
solutions are evaluated at the time levels t = 0.4 and t = 0.8. The positive
advection speed ↵ and the small di↵usion coe�cient ✏ (formally a large Péclet
number) in combination with the boundary condtions enforce the formation
of the boundary layer, as depicted in Figure 4.

The plots in Figure 4 indicate that the method can deal with (very) sharp
boundary layers. A comparison with the results in [26] shows no visible
di↵erence between the both methods.

We close this section by showing the boundary layer formation for increas-
ing t in Figure 5. Again, there is no visible di↵erence between our method
and the one in [26].

5. Summary and Conclusions

In this paper we have applied the finite volume-complete flux scheme to
the singularly perturbed generalized Burgers-Huxley equation. The equation
is approached in an advection-di↵usion-reaction fashion with nonlinear ad-
vection. The integral representation of a linear advection-di↵usion-reaction
equation, including source term, is used. As a result, the numerical flux
consists of a homogeneous and an inhomogeneous part, of which the latter
has proven to be very important for highly convection dominated problems.
The transient complete flux scheme is used, which is very suitable for these
problems. Furthermore, the scheme shows quadratic convergence for finer
meshes and has only a three-point spatial coupling.

The method is successfully validated on a large test bed of parameter
values. To assess the ability of the current method on boundary layer con-
taining profiles, highly advection dominated problems have been accurately
solved. The boundary layers have been captured very accurately and are
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Figure 4: Boundary layer problem - The evolution of a boundary layer as
✏! 0. In each one of these simulations we take ↵ = 1, � = 1, � = 0.001 and
vary � and t.
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Figure 5: Boundary layer problem - Formation of a boundary layer. In each
one of these simulations we take ↵ = 1, � = 1, � = 0.001 and vary � and ✏.
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in perfect agreement with reference results. Furthermore, the results never
show spurious oscillations or under or overshooting.
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