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Abstract

We address the effect of wall slip on the dynamics of a spherical particle

suspended in an inertialess Newtonian or viscoelastic shear-thinning fluid

under shear or Poiseuille flow. The study is performed through 3D direct

finite element simulations by employing an Arbitrary Lagrangian-Eulerian

∗Corresponding author. Tel.: +39 0817682280
Email addresses: marco.trofa@unina.it (Marco Trofa), gadavino@unina.it

(Gaetano D’Avino), m.a.hulsen@tue.nl (Martien A. Hulsen),
pierluca.maffettone@unina.it (Pier Luca Maffettone)

Preprint submitted to Journal of Non-Newtonian Fluid Mechanics September 14, 2016



method for the particle motion.

In both shear and Poiseuille flows, wall slip reduces the difference between

the particle translational velocity along the flow direction and the velocity

of the unperturbed fluid, and slows down the particle rotational velocity.

Remarkably, in a viscoelastic fluid, the presence of wall slip reverses the

migration direction as compared to the no-slip case. Hence, for sufficiently

high slip coefficients, all the particles migrate toward the channel midplane

in shear flow and toward the channel centerline in Poiseuille flow, regardless

of their initial position through the channel.
Keywords: Slip boundary condition, Particle migration, Viscoelasticity,

Shear flow, Poiseuille flow, Numerical simulations

1. Introduction

In the last decades, a growing interest in microfluidics, i.e., a technology

characterized by the engineered manipulation of fluids at the sub-millimeter

scale, has been observed [1, 2]. This technology, indeed, has a number of

advantages as compared to macroscopic systems such as a fine tuning of flow

and transport conditions and the capability to handle micrometric particles,

which are fundamental in both synthesis and analysis.

An important aspect when dealing with suspensions flowing in microfluidic

devices is the precise manipulation of particle trajectories. In this regard,

a primary operation in several microfluidic applications is the so-called 3D

particle focusing, i.e., the controlled alignment of particles along one streamline

of the flow field. As such, particle focusing has been widely studied and many

methods to promote particle alignment have been proposed [3].
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A promising technique to induce particle alignment is based on the use of

viscoelastic fluids as suspending medium in microfluidic devices [4]. Indeed, 3D

focusing [5, 6, 7] has been proven to be easily feasible in straight microchannels

by suspending particles in viscoelastic liquids. Fluid elasticity, in fact, induces

a cross-streamline particle migration, i.e., a motion of the suspended particles

transversally to the main flow direction, that can be efficiently exploited to

concentrate particles in some specific region of the channel cross-section. The

migration direction depends on several parameters such as the flow field, the

flow intensity, and the fluid rheological properties [4]. In general, in tube flow,

the suspended particles move toward the wall or the centerline depending

on their initial position, and fluid shear-thinning promotes particles at wall

[6, 4]; in shear flow, they migrate toward the nearest wall [8].

In most of the theoretical and numerical studies on the dynamics of single,

rigid particles in viscoelastic liquids, the validity of the no-slip boundary

condition at all solid-fluid interfaces is assumed. However, at small scales

[9, 10] and with complex fluids [11, 12], boundary slip, i.e., a discrepancy

between the fluid velocity and the velocity of the solid surface immediately

in contact with it, may occur. Slip at a solid-fluid interface modifies both

the fluid velocity profile and the fluid-particle hydrodynamic interactions,

affecting, in turn, the particle migration phenomenon [11].

The simplest slip boundary condition has been proposed by Navier [13]

and defines a linear relationship between the tangential components of the

fluid velocity at the boundary and the traction acting tangentially to the

surface, the proportionality being ruled by a ‘slip coefficient’. The Navier

boundary condition has been used to study the effect of the slip on the
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creeping motion of a spherical particle suspended in a Newtonian fluid near a

flat wall [14, 15] or in a circular cylindrical pore [16]. In general, both slip on

the particle surface and on the wall reduce the drag on the particle.

Our group has recently investigated the effect of the slip at the particle-

fluid interface on the dynamics of a rigid sphere in an inertialess viscoelastic

fluid under shear and Poiseuille flow [17]. No-slip condition was imposed at

the channel walls. In both flows, particle slip reduces the difference between

the particle translational velocity along the flow direction and the velocity

of the unperturbed fluid at the same position, and speeds up the particle

rotation with respect to the no-slip case. Furthermore, in shear flow, particle

slip only affects the migration velocity magnitude, which, for increasing values

of the slip coefficient, reaches a maximum and then decreases to values lower

than the no-slip one. In Poiseuille flow, the migration dynamics qualitatively

changes as compared to the no-slip case for sufficiently high slip coefficients:

the tube wall becomes an unstable equilibrium position, and the particle

migrates toward the channel centerline for any initial position through the

channel.

The present paper reports results complementary to our previous one [17],

i.e., here we consider no-slip condition at the particle-fluid interface and a

slip condition at the channel walls. Specifically, we present 3D numerical

simulations on the dynamics of a neutrally-buoyant spherical particle sus-

pended in an inertialess viscoelastic fluid, both under shear and Poiseuille

flows, with slip on the channel walls, with specific interest on the particle

migration phenomenon. The governing equations are solved through the finite

element method, with an Arbitrary Lagrangian-Eulerian (ALE) approach to
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handle the particle motion. The particle translational and angular velocities

as a function of the particle position through the channel are presented in

terms of mastercurves for different wall-fluid slip coefficients.

2. Governing equations

The two problems studied in this work are schematically presented in

Fig. 1: a single, rigid, non-Brownian, spherical particle moves between two

parallel plates in shear flow (Fig. 1a) or in a cylindrical tube in Poiseuille

flow (Fig. 1b). A Cartesian reference frame is selected as illustrated in Fig. 1.

For sake of clarity, in Fig. 1b, the coordinate system is translated along the

positive x-direction by half tube length. Notice that, in both flows, x denotes

the flow direction. In shear flow, y and z are the gradient and vorticity axes.

The spherical particle, with diameter dp, is located with center along the

y-axis. For symmetry, the particle center remains on the plane z = 0 and

only one half of the total geometry can be considered. Furthermore, the

particle can only rotate around the z-axis. We denote the particle center

by xp = (xp, yp, 0) and its rotation angle by θp. The volume occupied by

the particle is P (t) with boundary ∂P (t). The particle moves in a domain

Ω according to the imposed flow. We denote the particle translational and

angular velocities by up = (up, vp, 0) = dxp/dt and ωp = ωpk = dθp/dtk,

where k is the unit vector in the z-direction.

The dimensions of the domain in the shear flow case are L, H and W/2

along the x-, y- and z-axis, respectively; in Poiseuille flow, L and H are the

tube length and diameter, and W/2 is the tube radius. The notation used for

the external boundaries is illustrated in Fig. 1. In what follows, n indicates
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the unit vector normal to a surface pointing from the fluid to a boundary,

i.e., exiting the channel and entering the particle. Finally, in shear flow, the

flow is generated by the motion of the boundaries Σw with velocity ±uwi,

with uw the magnitude of the wall velocity and i the unit vector denoting

the x-direction. The imposed shear rate is, then, given by γ̇ = 2uw/H. In

Poiseuille flow, a flow rate Q is imposed on the left boundary Σ1.

Assuming inertialess conditions, the fluid dynamics is governed by the

following mass and momentum balance equations

∇ · u = 0 (1)

∇ · σ = 0 (2)

σ = −pI + 2ηsD + τ (3)

where σ, u, p, I, ηs, D, and τ , are the total stress tensor, the velocity

vector, the pressure, the 3× 3 unity tensor, a Newtonian viscosity, the rate-of-

deformation tensor D = (∇u+ (∇u)T)/2, and the viscoelastic stress tensor.

We select the Giesekus constitutive equation [18] to model the viscoelastic

fluid. According to this model, the viscoelastic stress tensor τ is given by

λ
∇
τ +αλ

ηp
τ · τ + τ = 2ηpD (4)

where ηp is a constant viscosity, λ is the fluid relaxation time, and α is the

so-called ‘mobility parameter’ [18] that modulates the shear-thinning behavior.

The symbol (∇) denotes the upper-convected time derivative, defined as

∇
τ ≡ ∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · ∇u (5)

A Newtonian fluid with constant viscosity η0 = ηs + ηp is obtained from

Eqs. (3) and (4) by setting λ = 0.
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Figure 1: Computational domains and typical meshes used in shear (a) and Poiseuille

(b) simulations. For sake of clarity, in (b) the coordinate system is translated along the

positive x-direction by half tube length.
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Concerning the boundary conditions, both problems have a symmetry

plane corresponding to the plane z = 0. Furthermore, the plane at z = W/2

is also assumed to be a symmetry plane for the shear flow case. Hence, in

both flows we have

u · n = 0 on Σsym (6)

(σ · n)|x = (σ · n)|y = 0 on Σsym (7)

As mentioned above, in shear flow, the upper and lower walls are moved

with velocity uw = (±uw, 0, 0). However, since slip occurs at these walls, only

the normal components of the fluid velocity u and the wall velocity uw are

equal at the wall surface. Regarding the tangential components, we use the

Navier slip boundary condition that linearly relates the tangential component

of the traction on the fluid and the tangential component of the difference

between the fluid and the solid velocities. Therefore, we have

u · n = uw · n on Σw (8)

(I − nn) · (σ · n) = − η0

λw
(I − nn) · (u− uw) on Σw (9)

where I − nn is the tangential projection operator and λw is the wall slip

parameter. Since λw has the dimension of a length, it is often called the ‘slip

length’. Notice that the slip length λw can be interpreted as the fictitious

distance beyond the wall such that the linearly extrapolated velocity profile

would satisfy the no-slip boundary condition, i.e., where the fluid would have

the same velocity of the wall. Finally, periodicity is applied for the velocity
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and the traction between the left and right boundaries:

u|Σ1 = u|Σ2 (10)

−(σ · n)|Σ1 = (σ · n)|Σ2 (11)

In Poiseuille flow, the slip condition at the fixed wall is

u · n = 0 on Σw (12)

(I − nn) · (σ · n) = − η0

λw
(I − nn) · u on Σw (13)

Periodicity is imposed between the inflow and outflow boundaries

u|Σ1 = u|Σ2 (14)

(σ · i)|Σ1 = (σ · i)|Σ2 −∆p i (15)

−
∫

Σ1
u · n dS = Q (16)

where ∆p is the pressure drop along the tube (in between Σ1 and Σ2). The

flow rate in Eq. (16) is imposed through a constraint where the associated

Lagrange multiplier is identified as the unknown pressure difference ∆p [19].

Finally, adherence is assumed on the particle surface ∂P (t) resulting in

the rigid-body motion equation

u = up + ωp × (x− xp) on ∂P (t) (17)

To close the set of equations, the hydrodynamic force and torque acting

on the particle need to be specified. Under the assumptions of no ‘external’

forces and torques, and inertialess particle, such balance equations are given

by

F =
∫

∂P (t)
σ · n dS = 0 (18)

T =
∫

∂P (t)
(x− xp)× (σ · n) dS = 0 (19)
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where F = (Fx, Fy, 0) and T = Tk are the total force and torque on the

particle boundary ∂P (t).

An initial condition for the stress tensor is also needed. We set

τ |t=0 = 0 (20)

corresponding to a stress-free state in the whole fluid domain.

Once the fluid velocity, pressure and stress fields are calculated along

with the particle kinematic quantities, the particle position and rotation are

updated by integrating the following equations

dxp

dt
= up (21)

dθp
dt

= ωp (22)

with initial conditions xp|t=0 = (0, yp,0, 0) and θp|t=0 = θp,0.

The governing equations are made dimensionless by choosing, for the

shear flow problem, the gap H as characteristic length, γ̇H as characteristic

velocity, and η0γ̇ as characteristic stress. In Poiseuille flow, we select the

tube diameter H as characteristic length, ū = 4Q/(πH2) as characteristic

velocity and η0ū/H as characteristic stress. In both cases, the characteristic

time tf is defined as the ratio between characteristic length and velocity,

i.e., tf = 1/γ̇ in shear and tf = πH3/(4Q) in Poiseuille flow. Then, the

following dimensionless parameters appear in the governing equations: the

confinement ratio β = dp/H, the wall slip coefficient λw/H, the Deborah

number De = λ/tf, the viscosity ratio ηs/η0, and the constitutive parameter

α. In what follows, all the symbols will refer to dimensionless quantities.
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3. Numerical method and code validation

3.1. Numerical method

The governing equations are solved by means of the finite element method.

The particle motion is handled through the Arbitrary Lagrangian-Eulerian

(ALE) approach [20]. As previously done [8, 17], at each time step the

mesh is rigidly translated along the flow direction by a velocity equal to the

particle translational velocity. In this way, mesh distortion only occurs along

the migration direction, preserving a sufficient accuracy during the whole

simulation without needing to remesh.

The continuity and momentum balance equations are decoupled from

the constitutive equation [21]. An implicit-stress formulation is used for

the momentum balance discretization whereby the viscoelastic stress tensor

term is replaced by the space-continuous but time-discretized form of the

constitutive equation through an Euler scheme implicit in the velocity [22].

Finally, the constitutive equation is discretized through a semi-implicit Gear

scheme, and the Streamline-Upwind/Petrov-Galerkin (SUPG) technique [23]

with a log-representation for the ‘conformation tensor’ [24, 25] are used to

stabilize the code. The force- and torque-free conditions are imposed through

Lagrange multipliers in each node of the spherical surface. The particle

kinematic quantities are included as additional unknowns and are computed

from the solution of the governing equations [8].

Further details on the implementation, the weak form and the adopted

solver can be found elsewhere [8].
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3.2. Code validation

Mesh and time convergence are checked for all the simulations reported in

this work. A typical mesh used in the simulations is illustrated in Fig. 1. In this

figure, only the element distribution on three faces and on the spherical surface

is shown. The domain is discretized through tetrahedral elements refined

around the particle where the largest gradients are expected. A continuous

quadratic interpolation for the velocity, a continuous linear interpolation

for pressure, and a continuous linear interpolation for the stress tensor are

used [8]. To avoid any artificial effect on the particle dynamics due to the

periodic boundary conditions, the length of the computational domain in the

x-direction is selected sufficiently larger than the particle diameter. The same

criterion is adopted to set the depth W/2 of the domain in shear flow. We

get L/dp = W/dp = 15 in shear flow and L/dp = 20 in Poiseuille flow.

Figure 2 shows a typical convergence test for shear (a) and Poiseuille (b)

flows. In these plots, the particle migration velocity vp is reported as function

of time t for different mesh resolutions (see Table 1) and time step sizes. The

fair superposition of the data indicates that, for the chosen parameters, both

mesh and time convergence are satisfied.

For all the simulations, a mesh with 80 elements on the particle equator

satisfies mesh convergence. In both flows, however, an extra refinement

between the particle and the closest boundary is needed when the particle

starts quite close to the wall (e.g., yp,0 = 0.35). Therefore, the total number

of elements varies from about 40,000 to 50,000 in shear flow and from 70,000

to 90,000 in Poiseuille flow. Finally, a time step ∆t = 0.01 is sufficient to

achieve time convergence.
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Figure 2: Particle migration velocity vp for different mesh resolutions (see Table 1) and

time step sizes. (a) shear flow with yp,0 = 0.35 and λw = 0.5; (b) Poiseuille flow with

yp,0 = 0.2 and λw = 0.1. The other parameters are: De = 1.0, α = 0.2, ηs/η0 = 0.091, and

β = 0.2.
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Mesh label M1 M2 M1 M2

Particle y-position 0.20 0.20 0.35 0.35

Shear

#el. on the particle equator 80 100 80 100

#el. in the mesh 42,210 67,061 49,505 82,610

Poiseuille

#el. on the particle equator 80 90 80 100

#el. in the mesh 68,667 104,746 92,082 113,566

Table 1: Parameters of the meshes used in the simulation results shown in Fig. 2.

4. Results

In this section, we present simulation results for the dynamics of a spherical

particle suspended in a fluid subjected to a confined shear or Poiseuille flow

with slip on the channel walls. The wall slip coefficient λw is varied in the

range [10−3 − 1]; the other parameters are kept fixed to the following values:

α = 0.2, β = 0.2, De = 1.0, ηs/η0 = 0.091. (Notice that the non-zero value

of the constitutive parameter α denotes a shear-thinning fluid.) We choose

this set of values to allow a direct comparison with our previous works on

migration in viscoelastic fluids with no-slip conditions [8, 6] and with slip on

the particle surface [17].

For a fixed set of parameters, simulations are carried out by placing the

particle at different positions along the channel gap. Following previous works

[8, 17], we report the particle kinematic quantities in terms of ‘mastercurves’,

i.e., the trends of the particle translational and angular velocities as a function
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of the actual position of the particle center of volume, after the ‘fast’ initial

transients due to the viscoelastic stress building-up have extinguished. Due

to the symmetry, only the curves corresponding to the ‘upper-half’ of the

channel are shown, i.e., from y = 0 (the channel centerline) to y = 0.4 (the

distance from the wall corresponding to a particle radius). In the following

figures, the data obtained from the simulations are shown as symbols. The

lines passing through the symbols are interpolating curves that are added in

the plots just as guides to the eye. In the case of a viscoelastic suspending

medium and for high slip coefficients, numerical issues prevent the calculation

of the particle dynamics very close to the wall. As previously done [17], we

extrapolate the mastercurve toward the wall when the value of a specific

kinematic quantity is known at the wall (e.g., the migration velocity must

become zero when the particle touches the wall). If this is not the case, the

interpolation is limited within the data range.

4.1. Shear flow

We first analyze the shear flow case. To better understand the simulation

results, it is worthwhile recalling that, in this kind of flow, for both Newtonian

and viscoelastic fluids, the effect of wall slip on the fluid without particles is

that of reducing the fluid shear rate with respect to the no-slip case, while

the velocity profile remains linear. We denote with γ̇eff the shear rate in a

confined fluid without particles where slip occurs at the walls. Of course, γ̇eff
depends on the slip coefficient and the fluid rheological properties.

In Fig. 3, we report the difference between the x-component of the particle

translational velocity up and the undisturbed local fluid flow velocity u0 =

γ̇eff yp as a function of the particle position yp, for different slip coefficients λw.
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This relative velocity is also known as ‘slip velocity’ [26], but it has nothing to

do with the slip boundary condition at the wall. The solid lines refer to the

viscoelastic case for six values of the slip coefficient. The no-slip case is shown

as a black solid line that is hardly visible since it is below the orange one.

Finally, the dashed lines correspond to the Newtonian fluid for the no-slip

case (black) and for the highest slip coefficient (red).

NoSlip

λw = 10-3

λw = 10-2

λw = 10-1

λw = 0.2

λw = 0.5

λw = 1
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0.000
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0.015

yp

u
p
-
u
0

Figure 3: Difference between the x-component of the particle translational velocity up(yp)

and the local undisturbed fluid flow velocity u0(yp) = γ̇eff yp as a function of the particle

position yp, for different slip coefficients λw in shear flow. A Newtonian (dashed lines) and

a viscoelastic (solid lines) suspending fluids are considered. The black lines refer to the

no-slip case.

First of all, it can be observed that, for slip coefficients up to λw = 0.2,

the slip velocity is positive (i.e., the particle ‘leads’ the fluid) and it increases

as the particle moves toward the wall. This relative velocity progressively

reduces for increasing values of λw, due to the corresponding reduction of

the fluid velocity. However, for sufficiently high λw-values, the trend close to
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Figure 4: Viscoelastic data of Fig. 3 scaled through the effective shear rate γ̇eff, which is a

function of the slip coefficients λw.

the wall changes: indeed, starting from λw = 0.5 the slip velocity exhibits a

maximum and, at λw = 1.0, it even changes sign, for both Newtonian and

viscoelastic fluids. This behavior observed for particles very close to the wall

is in agreement with the results of Luo and Pozrikidis [15] for a Newtonian

sheared fluid, and is due to the influence of the particle-wall hydrodynamic

interactions on the slip boundary condition. In fact, due to the presence of

the particle, the stress on the wall is modified and, consequently, the fluid

velocity is different from the undisturbed case (that is the velocity u0 used

to calculate the slip velocity). Finally, when comparing the Newtonian and

viscoelastic curves, a slight deviation is observed for the no-slip case (dashed

black line and solid black line), whereas the curves coincide for the largest

λw-value (dashed and solid red lines).

Since wall slip reduces the shear rate γ̇eff of the undisturbed flow, the
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difference between particle and fluid velocities decreases as well. The fair

superposition of the data in Fig. 4 demonstrates that the slip velocity can be

rescaled through the effective shear rate. In the Newtonian case, the effective

shear rate is given by 1/(1 + 2λw). In the viscoelastic case, it has been

computed by numerically solving the governing equations for a viscoelastic

fluid in a channel with slip boundary conditions at the walls. Because the

undisturbed shear flow with slip on the wall corresponds to a no-slip flow in

a wider channel (remember the interpretation of the slip length), also the

characteristic length has to be rescaled; then, the wall ‘moves’ from 0.4 in

the no-slip case to 0.4γ̇eff when slip is present. The scaled data in Fig. 4 show

that the no-slip behavior is recovered in a wide region of the channel, except

close to the wall due to the reason mentioned above.

Figure 5 shows the difference between the particle angular velocity and

one-half of the effective shear rate for a Newtonian (Fig. 5a) and a viscoelastic

(Fig. 5b) suspending liquid. Notice that the quantity γ̇eff/2 is the rotation

rate of a particle in an unbounded shear flow with shear rate given by γ̇eff.

The shear flow induces a clockwise particle rotation (as seen from the

z-axis) corresponding to a negative angular velocity; thus, positive values of

the angular velocity difference indicate that the confinement slows down the

particle rotation. The data reported in these figures show, for a fixed value

of the slip coefficient, a monotonic increasing trend as the particle moves

from the midplane to the wall (i.e., the angular velocity slows down more and

more). Notice also that the scale of the angular velocity axis for a viscoelastic

suspending medium (Fig. 5b) covers a wider range as compared to Newtonian

case (Fig. 5a). Hence, in agreement with the previous literature [27, 8], both
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Figure 5: Difference between the particle angular velocity ωp(yp) and one-half of the

effective shear rate γ̇eff(λw) as a function of the particle position yp for different slip

coefficients λw in shear flow, for a Newtonian (a) and a viscoelastic (b) suspending fluid.

The black lines refer to the no-slip case.
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confinement and fluid viscoelasticity slow down the particle rotation. On

the other hand, although the effective shear rate decreases (in modulus)

with growing slip and the particle angular velocity decreases accordingly,

their difference (that is the quantity reported on the y-axis of Fig. 5) also

decreases. Therefore, for both suspending fluids, increasing values of the wall

slip coefficient slow down the particle rotation but increase its ‘normalized’

value ωp + γ̇eff/2. In other words, for increasing wall slip, a particle in a

confined sheared suspension rotates faster than the same particle suspended

in an unconfined sheared fluid with shear rate equal to the effective shear

rate of the confined system.

Finally, the effect of wall slip on the migration phenomenon is illustrated

in Fig. 6a, where the migration velocity of the particle vp is shown as function

of its position yp, for different values of the slip coefficient λw. Notice that a

positive vp indicates a particle moving toward the wall, whereas a negative

value implies a migration toward the channel midplane. We recall that a

particle suspended in a sheared viscoelastic fluid with no-slip at the fluid-solid

interfaces or with slip on the particle surface migrates toward the closest

wall regardless of its initial position [8, 17]. As depicted in Fig. 6a, slip at

the fluid-wall interface changes such a scenario. For small values of the slip

coefficient (up to λw = 0.1, blue curve in Fig. 6a), the mastercurves are

qualitatively similar to those corresponding to the no-slip case. Indeed, the

migration velocity is always positive, increasing as the particle moves from

the channel midplane toward the wall up to reaching a maximum, and then

steeply decreasing to zero when the particle approaches the wall. In this range,

slip only slows down the migration velocity. On the other hand, for λw = 0.2
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Figure 6: (a) Migration velocity vp(yp) of the particle as a function of its position yp, for

different slip coefficients λw in shear flow. Only the case with a viscoelastic suspending

fluid is considered. The black line refers to the no-slip case. (b) Migration velocity of the

particle vp as a function of the slip coefficients λw for yp = 0.35.
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and λw = 0.5, the migration velocity is still positive near the midplane but

becomes negative near the wall. Hence, the wall becomes repulsive and an

intermediate equilibrium position appears corresponding to the intersection

of the mastercurves and the x-axis of the diagram. Such an equilibrium

position moves toward the channel midplane as the slip coefficient increases.

This behavior further changes for the highest value of the slip coefficient

investigated in this work (λw = 1, red curve in Fig. 6a), where the migration

velocity is negative for any position through the channel, i.e., all the particles

move to the axis.

To better clarify the effect of wall slip, we show in Fig. 6b the migration

velocity as a function of the slip coefficient for a fixed particle position

yp = 0.35. A non-monotonic trend of vp is observed as the slip coefficient

increases. For small λw-values, the migration velocity initially grows, reaches

a maximum around λw = 10−2 (corresponding to the green curve in Fig. 6a),

then it progressively decreases. At high values of the slip coefficient, vp
becomes negative, with consequent inversion of the migration direction.

To summarize, depending on the slip coefficient, the migration velocity

under shear flow with slip on the wall can be higher or lower (in magnitude)

than the no-slip case. The migration direction is toward: (i) the closest wall

for λw . 0.1, (ii) an intermediate equilibrium position for λw ≈ 0.5, (iii) the

midplane for λw & 1.

The presence of this equilibrium position can be also visualized through

the time evolution of the particle position yp(t) (i.e., the particle trajectories

along the channel gap) reported in Fig. 7. Two starting points are considered,

one close to the center (yp,0 = 0.1) and one close to the wall (yp,0 = 0.3). The
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Figure 7: Particle position yp as function of time t for two initial positions yp,0 = 0.1 (solid

lines) and yp,0 = 0.3 (dashed lines), and for different slip coefficients λw in shear flow.

fast initial transient phase is not shown. At low λw-values, all the particles

migrate toward the wall (black and green curves). Starting from λw = 0.2

(magenta) the wall becomes an unstable equilibrium position and the particles

migrate toward an intermediate equilibrium position that, however, is very

close to the wall. This equilibrium position moves toward the channel center

as the slip coefficient increases (it is around 0.3 for λw = 0.5 (cyan)). Finally,

the equilibrium position becomes the channel midplane for λw = 1 (red).

4.2. Poiseuille flow

Let us now consider the case of Poiseuille flow with slip on the wall. In

this kind of flow, the undisturbed velocity profile becomes more and more

plug-flow-like as the slip increases for both Newtonian and viscoelastic fluids.

In particular, the Newtonian dimensionless velocity profile can be seen as
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the composition of a parabolic profile with average velocity 1/(1 + 8λw) and

a plug flow (total slip) with (constant) velocity of the slipping fluid at the

wall 8λw/(1 + 8λw). These coefficients have been calculated by solving the

governing equations for a Newtonian fluid in a tube with the slip boundary

condition at the wall.

Figures 8a and 8b show the velocity difference up−u0 (the slip velocity) in

the Newtonian and viscoelastic case, respectively, as a function of the particle

radial position and for different slip coefficients. In both suspending fluids,

the slip velocity is negative at any position through the channel and for any

value of λw, i.e., the particle always ‘lags’ the fluid. Furthermore, its absolute

value increases as the particle-wall distance is reduced, except for λw = 1

where an opposite trend is observed very close to the wall.

Similarly to the shear flow case, the modulus of the slip velocity is pro-

gressively reduced as the slip coefficient is increased. In particular, for the

largest value of λw investigated (red curves), the particle translational velocity

approximately coincides with the undisturbed fluid velocity. In this case, the

fluid velocity profile is flat far from the sphere and the particle dynamics

becomes similar to that of a freely suspended sphere in a medium with uniform

far-field velocity, where the particle translates at the same velocity of the

fluid. The effect of a flat profile is even more evident for the viscoelastic case

(Fig. 8b). Due to the fluid shear-thinning, the velocity profile is flatter near

the tube axis and steeper close to the wall as compared to the Newtonian

case. Consequently, the slip velocity up − u0 is lower around the channel axis

and higher close to the wall.

The trends of the particle angular velocity are reported in Fig. 9 for

24



(a)

● ● ● ● ●
●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

NoSlip

λw = 10
-3

λw = 10
-2

λw = 10
-1

λw = 1

0.0 0.1 0.2 0.3 0.4
-0.20

-0.15

-0.10

-0.05

0.00
u
p
-
u
0

(b)

NoSlip

λw = 10-2

λw = 10-1

λw = 0.2

λw = 0.5

λw = 1

0.0 0.1 0.2 0.3 0.4
-0.20

-0.15

-0.10

-0.05

0.00

yp

u
p
-
u
0

Figure 8: Difference between the x-component of the particle translational velocity up
and the local undisturbed fluid flow velocity u0 as a function of the particle position yp,

for different slip coefficients λw in Poiseuille flow. A Newtonian (a) and a viscoelastic (b)

suspending fluids are considered. The black lines refer to the no-slip case.
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Figure 9: Particle angular velocity ωp as a function of the particle position yp, for different

slip coefficients λw in Poiseuille flow. A Newtonian (a) and a viscoelastic (b) suspending

fluids are considered. The black lines refer to the no-slip case.
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both the Newtonian and viscoelastic cases. In the Newtonian case, ωp grows

linearly moving from the axis to the wall, reaches a maximum near the

wall and tends to a finite value as the particle approaches the wall. In the

viscoelastic case, ωp has a similar behavior although it is always lower in

magnitude as compared to the Newtonian case, i.e., viscoelasticity slows down

the particle rotation. As the slip velocity, the angular velocity depends on

the local shear rate, decreasing with growing λw. Thus, in both cases, the

angular velocity is progressively reduced as the slip coefficient is increased.

In the limit of total slip (flat velocity profile), the particle does not rotate.
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Figure 10: Migration velocity of the particle vp as a function of its position yp in Poiseuille

flow for different wall slip coefficients λw. A viscoelastic suspending fluid is considered.

The black line refers to the no-slip case.

Finally, in Figs. 10 and 11, the mastercurves of the particle migration

velocity and some trajectories for different values of the wall slip coefficient are

shown, respectively. Let us first consider the no-slip case (black lines in the
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Figure 11: Particle position yp as function of time t for two initial positions yp,0 = 0.2

(solid lines) and yp,0 = 0.36 (dashed lines), and for different slip coefficients λw in Poiseuille

flow.
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two figures). In agreement with previous works (see, e.g., [6]), the migration

velocity is negative for a particle located between the channel centerline and

a ‘critical’ equilibrium position yN (≈ 0.35 for the chosen set of parameters),

and is positive between yN and the wall. Therefore, as shown in Fig. 11, the

particle migrates toward the channel centerline for 0 < yp < yN or the wall

for yp > yN, i.e., yN is an unstable equilibrium position.

Up to λw = 0.5 (cyan curve in Fig. 10), the mastercurves are qualitatively

similar to the no-slip case. On the other hand, by further increasing the slip

coefficient, the migration dynamics qualitatively changes. Indeed, at λw = 1

(red curves), the migration velocity is negative for any position of the particle

through the channel. Therefore, the unstable equilibrium position disappears,

the wall becomes repulsive, and the migration direction is always toward the

channel centerline. This behavior is readily visible Fig. 11 where both the red

curves tend to the channel centerline. Finally, notice that the magnitude of

the migration velocity decreases as the slip coefficient increases. Indeed, the

flattening of the velocity profile at high λw-values reduces the fluid normal

stress gradient, weakening the migration phenomenon.

In conclusion, similarly to the case of slip on the particle-fluid interface

(see [17]), fluid viscoelasticity combined with a sufficiently large slip at the

channel wall drives the suspended particles toward the channel centerline

regardless of their starting position. On the other hand, wall slip reduces

the shear rate gradients through the channel, slowing down the migration

dynamics.
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5. Conclusions

We investigated the effect of wall slip on the dynamics of a single, rigid

sphere in a Newtonian and viscoelastic shear-thinning fluid under shear and

Poiseuille flows through 3D direct finite element simulations with an ALE

formulation to handle the particle motion.

In both flow fields, the particle translational velocity along the flow

direction approaches the velocity of the unperturbed fluid as the wall slip

coefficient increases. Furthermore, higher slip coefficients slow down the

particle rotation due to the reduction of the effective shear rate in shear flow

and the flattening of the velocity profile in Poiseuille flow. In a viscoelastic

fluid, wall slip qualitatively changes the migration dynamics in both flow

fields as compared to the no-slip case. In shear flow, sufficiently high slip

coefficients reverse the migration direction, making the wall an unstable

equilibrium position and driving all the particles toward the channel midplane.

It is worthwhile to mention that this behavior is at variance with the no-

slip case as well as the case of slip on the particle-fluid interface where the

migration direction is always toward the wall. Similarly, in Poiseuille flow,

the tube wall becomes an unstable equilibrium position, and the particles

migrate toward the channel centerline regardless of their position. In both flow

fields, however, the magnitude of the migration velocity is reduced. Hence,

slip effects must be properly taken into account when designing 3D focusing

microdevices.
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