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SUMMARY

Stencil computation is of paramount importance in many fields, in image processing, structural biology and
biomedicine, among others. There exists a permanent demand of maximizing the performance of stencils
on state-of-the-art architectures, such graphics processing units (GPUs). One of the important issues when
optimizing these kernels for the GPU is the selection of the best thread-block that maximizes the overall
performance. Usually, programmers look for the optimal thread-block configuration in a reduced space of
square thread-block configurations or simply use the best configurations reported in previous works, which
is usually 16 � 16. This paper provides a better understanding of the impact of thread-block configurations
on the performance of stencils on the GPU. In particular, we model locality and parallelism and consider
that the optimal configurations are within the space that provides: (1) a small number of global memory
communications; (2) a good shared memory utilization with small numbers of conflicts; (3) a good
streaming multi-processors utilization; and (4) a high efficiency of the threads within a thread-block. The
model determines the set of optimal thread-block configurations without the need of executing the code.
We validate the proposed model using six stencils with different halo widths and show that it reduces the
optimization space to around 25% of the total valid space. The configurations in this space achieve at least a
throughput of 75% of the best configuration and guarantee the inclusion of the best configurations. Copyright
© 2015 John Wiley & Sons, Ltd.

Received 10 December 2014; Revised 26 April 2015; Accepted 17 June 2015

KEY WORDS: modeling; global memory transactions; shared memory transactions; thread-block;
concurrent thread-blocks; GPU; stencils; convolutions

1. INTRODUCTION

Stencils, also called convolutions in image processing, are very important in scientific, engineering,
and emerging applications. A stencil can be defined as a function that updates each point of a regu-
lar grid based on the values of its neighbors. The stencil structure remains constant as it moves from
one point of the grid to the next. There exists a growing effort in developing new languages, com-
pilers, execution systems, and autotuners for optimizing stencils on the newest high-performance
computers [1, 2]. As most stencils are memory-bound kernels, the main strategy to approach their
theoretical peak performance on the graphic processing unit (GPU) is by using data tiling through
shared memory. This transformation improves locality but introduces synchronization points due to
halos and boundary conditions. Halos are the data needed to update the borders of the thread-block.

Since the last decade, GPUs have become the most popular accelerators due to their good ratio
price to performance. As a result, the demand of highly optimized kernels for GPUs is also increas-
ing. The most important aspects a programmer considers when optimizing stencil codes for the
GPU are: (1) using the appropriate code optimizations and, once having the code; (2) finding the
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optimal thread-block configurations. The most common criteria reported in a large number of works
are either selecting thread-block sizes that maximize the SM occupancy or using specific sizes and
shapes, mainly square shapes, to simplify the programming task and to ease portability among
different accelerator architectures [3].

The works that deal with the determination of the best thread-block configurations for GPUs can
be classified into three groups. The first group focuses on automating the exhaustive search pro-
cess [1]. The second category intends to partially reduce the configuration space. For example, [4]
calculates the best configuration based only on GPU limitations without considering the particular-
ities of the kernel implementation. The authors showed that their approach is not appropriate for
stencils. In [5], Ryoo et al. proposed an approach for reducing the optimization space first by defin-
ing two metrics to judge the performance of all the configurations and then evaluating the set of a
Pareto-optimal configurations. This approach requires the code to be executed on several configu-
rations and does not always guarantee the presence of the best configuration in that set. The third
group focuses on understanding the interrelation between the thread-block configuration and differ-
ent memory access patterns by means of experimental explorations [6–8]. Our own work does not
require the code to be executed as the previously cited works and take into account the main char-
acteristics of the (i) GPU, (ii) kernel implementation, and (iii) input size. We build a performance
model for stencil computation which can be especially useful for stencils compilers, execution
systems and autotuners. The main contributions of this paper can be summarized as follows:

� We accurately model the number of global memory transactions and the number of shared
memory transactions for stencil kernels on the GPU.
� We build a performance model that predicts the best thread-block configurations without the

need of running the code.
� Provide insights into the interrelation between thread-block size and shape and the performance

of stencils.

The rest of the paper is organized as follows. An overview of the GPU architecture is provided in
Section 2. A description of the stencils selected for our study is given in Section 3. The performance
model that we build for stencil implementations on GPUs is provided in Section 4. The validation
of our model is shown in Section 5, and the conclusions are given in Section 6.

2. GPU ARCHITECTURE

Nvidia GPUs are massively parallel processors that provide an advantageous ratio between GFlop/s
rate and power consumption. They are characterized by a large number of cores (e.g., 16) called
streaming multi-Processors (SM), wide Single Instruction Multiple Data (SIMD) units (e.g., 32
lanes), and a complex memory hierarchy including scratchpad memory (called shared memory)
explicitly controllable by the programmer, a two-level cache hierarchy, constant and texture mem-
ory, and global memory (random access memory). Because they are in-order processors, GPUs hide
pipeline latencies by interleaving the execution of hundreds of warps (e.g., a group of 32 threads)
per SM. To support a fast context switch for such a large number of concurrent threads, each SM is
equipped with a high number of registers. Threads in Compute Unified Device Architecture (CUDA)
are organized into grids, grids are composed of thread-blocks, and each thread-block is executed
in warps.

The GPU architecture has known a noticeable evolution in the last 10 years. The main trend in
this evolution has been the increase of the number of cores per SM and the number of registers
per thread-block as it is shown in Table I. These changes affect directly the configuration of the
optimal thread-blocks. In this work, we formulate a model that finds out a set of the best thread-
block configurations by taking into account the most important characteristics and limitations of
GPU architecture.

3. CASE STUDIES

Stencils are crucial to capture, analyze, mine, and render digital signals such as 2D and 3D images
and videos. To carry out our study, we selected six stencils with different data access patterns and
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Table I. The evolution of NVIDIA GPUs.

Parameter Tesla Fermi Kepler

PE/SM 8 32 192-384
32-bit registers/SM 16384 32768 65536
Maximum number of threads (per SM) 1024 1536 2048
Maximum number of threads (per block) 512 1024 1024
Thread per Warp 32 32 32
Maximum number of blocks/SM 8 8 16
Warp scheduler Single Dual HyperCube
Shared memory (per SM) 4 8KB 48d /16 KB 48d /32/16 KB
Number of shmem banks 32 32 32
Bandwidth of each shmem bank 16-32 32 32d /64
L1 cache (per SM) — 16d /48 KB 16d /32/48 KB
Cache line 128 bytes 128 bytes 128 bytes
L2 cache — 764 KB 256–1.536 KB
Global memory banks 8 6 4
Size of global memory transaction 32/64/128 B 32/128 B 32/128 B
Year of introduction Nov. 2006 Mar. 2010 Mar. 2012

d means by default; GPUs, graphics processing units; shmem, shared memory.

Figure 1. The pipeline, of six-stencils, considered in this work. Upward and downward arrows refer to reads
and writes from/to global memory, respectively. Only the first four stages are used in our study.

different arithmetical intensities. Four convolutions from a real-world denoising application in
image processing is the anisotropic non-linear diffusion (AND) [9, 10]. AND is a pipeline of six
stages as depicted in Figure 1. We only consider the first four stages, GX, GY, GZ, and ST, because
PDE is similar to ST and DT is a simple 1-point stencil. Moreover, to cover stencils with larger
halos, we consider two individual stencils, 5-FDD and 7-FDD, obtained from finite difference dis-
cretization (FDD) of the wave equation in seismic imaging provided in [3]. The used stencils can be
described as follows:

1. GX: This stage applies a Gaussian blur in the x-direction. It processes the noisy 3D image of
size Nx �Ny �N´ and outputs an intermediate 3D image of size Nx �Ny �N´. This kernel
will be used as example in the next section to illustrate the proposed model.

2. GY: This stencil applies the Gaussian blur in the y-direction. It sweeps the output 3D image
of the previous stage and generates a temporal 3D image of the same size.

3. GZ: This stage applies the Gaussian blur in the ´-axis dimension. It reads the output of the
previous stage and outputs a temporal 3D image.

4. ST: This 3D stencil calculates the structure tensor, which is a 3� 3 symmetric matrix, for each
input pixel. Only the six elements of the upper part of these 3 � 3 matrices are stored. ST
calculates the structure tensor of the 3D input image and generates a structure of arrays of size
6 �Nx �Ny �N´. This stencil is a 7-points 3D stencil.

5. 5-FDD: This 3D stencil processes a 3D array of size Nx � Ny � N´ and outputs another 3D
array of the same size. This is a 31-points stencil where each pixel needs to read the five nearest
neighbors from behind, in front, up, down, right, and left sides. That is, the halo width equals
5 in the three dimensions.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5557–5573
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6. 7-FDD: This is a 43-points stencil where each pixel needs to read the seven nearest neighbors
from behind, in front, up, down, right, and left sides. The halo width equals 7 in the three
dimensions.

The input, intermediate, and output 3D images are implemented as a uni-dimensional array.

3.1. Optimizing locality in stencils

This subsection provides an overview of GPU mapping strategies for stencils. For clarity, we use
GX stencil as an educational example. The pseudocode of GX is listed in Algorithm 1.

An intuitive mapping for this stencil would be, each thread is in charge of updating one point
of the output 3D image by reading all the necessary neighbor points directly from global memory
(Figure 2). This strategy has a high degree of parallelism, because each output–point can be updated
independently but has a small amount of data-reuse between neighbor points. If we omit the cache
effect, this strategy has a total number of accesses to global memory that equals 3�Nx �Ny �N´.

Locality can be increased by tiling the i and j loops. Each input point can be reused three times
between three successive neighbor points and transfers to and from global memory can be reduced
depending on the values ofBlk:x andBlk:y. Different values ofBlk:x andBlk:y lead to different
volumes of memory transfers.

The optimal implementations of 3D stencils on GPUs reported in many studies [1, 3, 11–13]
apply a 2D tiling in the x and y dimensions, that is, the i and j loops. No tiling is applied in the
Z-dimension. Each thread updates one output pixel. The threads of the thread-blocks traverse the
volume along the ´-axis and compute one XY plan per iteration. Algorithm 3 shows a pseudocode
expressed using CUDA syntax, where tiles are stored in shared memory to take advantage of its

Figure 2. Illustration of data-access pattern in Algorithm 1. Three input points (in green color) are needed
to update each output point (in green orange).

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5557–5573
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high bandwidth and low latency. In the algorithm, Blk:x and Blk:y correspond to the width and
height of both, the tile and thread-block, with Blk:x =0,. . . ,Nx � 1 and Blk:y = 0,. . . ,Ny � 1. The
scheme of GX data dependencies is plotted in Figure 3(a).

As discussed, tiling has beneficial effects but also has negative ones; it penalizes parallelism by
introducing multiple thread-block synchronizations that are necessary for halos. The larger the halo,
the higher is the overhead and the higher is the thread divergence.

The GPU implementation of the GY, GZ, ST, 5-FDD, and 7-FDD convolutions have the same
structure as the GX implementation, even if their data-dependence patterns are completely different.
One of the particularities of the GY stencil is that the allocated space in shared memory is Blk:x �
.Blk:yC2/ instead of .Blk:xC2/�Blk:y as shown in Figure 3(b) (see differences in Table II). As
the threads in GZ need to read only neighbor points from different XY plans, that is, only temporal
locality is available; it does not make use of shared memory and utilize only registers. In ST, each
thread needs to read the neighbors from the right, left, top, bottom, behind, and in front as shown in
Figure 3(c). The space allocated in shared memory is .Blk:x C 2/ � .Blk:y C 2/.

4. OPTIMAL THREAD BLOCK CONFIGURATION

Given a stencil implementation, an input volume of data, and a GPU, we aim at determining the
optimal thread-block configurations that provide the best overall performance. The common way

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5557–5573
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Figure 3. A close look into the GX, GY, and ST implementations. shmem visualizes shared memory.

Table II. Shared memory utilization of GX,
GY, GZ, ST, 5-FDD, and 7-FDD stencils using
the same thread-block configuration Blk:x �

Blk:y.

Stencil shmem usage

GX .Blk:x C 2/ � Blk:y
GY Blk:x � .Blk:y C 2/
GZ none
ST .Blk:x C 2/ � .Blk:y C 2/
5-FDD .Blk:x C 2 � 5/ � .Blk:y C 2 � 5/
7-FDD .Blk:x C 2 � 7/ � .Blk:y C 2 � 7/

of finding the optimal configuration is by exhaustively testing the complete space or considering a
reduced space of popular square configurations such as 16 � 16.

The best configurations should achieve a good compromise between locality and parallelism
and hide synchronization cost. These configurations are characterized by a reduced number of
global memory transactions, a good utilization of shared memory and SMs and high thread-block
efficiency. We propose a model that accurately estimates: (1) the number of global memory trans-
actions; (2) number of shared memory transactions; (3) the SM utilization; and (4) thread-block
efficiency. Then we consider that the optimal configurations are the ones that obtain the best global
memory and shared memory behavior, the highest SM occupancy, and an optimal thread-block

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5557–5573
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Table III. The space of thread-block configurations, (Blk:x; Blk:y), for the GX
stencil on ‘Geforce GTX TITAN’.

The white cells indicate the valid configurations. The red, light grey, dark grey, and
cells with X are impossible configurations or configurations that lead to a sub-optimal
utilization of the GPU resources.

efficiency. Our approach first eliminates the configurations that lead to a sub-optimal utilization
of the GPU resources and all impossible and illegal configurations due to the physical GPU
limitations, stencil-implementation constraints, and input size constraints. Then our performance
model is built according to the estimations indicated previously. To make the discussion clearer,
we use the GX stencil implementation shown in Algorithm 3 as an example and consider the
architecture of ‘Geforce GTX TITAN’.

4.1. GPU and implementation limitations

A first pruning of the configuration space is performed based on the GPU, input size, and
implementation limitations.

GPU limitations

– To avoid an under-utilization of the GPU resources, thread-blocks must have at least one
work-unit, that is, one warp, Blk:x � Blk:y > warpsi´e , where warpsi´e D 16 in Fermi
and warpsi´e D 32 in Kepler. The configurations that do not meet this requirement are
indicated by the symbol X in Table III.

– To discard unnecessary divergence and load unbalance, the number of threads per block
should be multiple of the warp size, ..Blk:x�Blk:y/ mod warpsi´e/ D 0, and the thread-
block sizes should be divisible by the size of the input.

– The total number of threads per thread-block must be smaller than or equal to a given limit
T hreadsMax

Blk
, Blk:x � Blk:y 6 T hreadsMax

Blk
; invalid thread-block configurations are

indicated by the red cells in Table III.
– The data tile including halos must fit in shared memory .Blk:xCH:x/� .Blk:yCH:y/ 6
shmemsi´e � si´eof .data/; H:x and H:y refer to the halo width in the x-direction and
y-directions, respectively.

– The used registers per thread-block must be smaller than a given limit, Regthread 6
RegMaxSM , for example, 65536 in Kepler.

Input size limitation, Blk:x < Nx and Blk:y < Ny . The area in dark gray color in Table III.
Implementation limitations, Blk:x > H:x and Blk:y > H:y. The area in light gray color in
Table III.

4.2. Global memory transactions

For memory bound kernels, as it is often the case for stencils, the number of global memory transfers
is a key parameter for performance. Reducing global memory transactions in stencils is possible by

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5557–5573
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increasing data reuse in the on-chip shared memory and registers. The amount of data reutilization
strongly depends on the shape of the thread block, because it defines the memory portion used in
the block. The prediction of the required global memory transactions can be performed based on
the general intra-block communication model for one thread on a mono-core chip [14]. This model
expresses the communication volume of the data loaded into and written out to a block of data of
size Blk:x � Blk:y as follows:

Ng:mem:trans D NBlks � .datatransfer=Blk/

D stores C loads

D

�
Nx

Blk:x

��
Ny

Blk:y

��
N´

Blk:´

�
�0

@Blk:x � Blk:y � Blk:´„ ƒ‚ …
stores

C .Blk:x CH:x/.Blk:y CH:y/.Blk:´CH´/C Coeff„ ƒ‚ …
loads

1
A

(1)

where NBlks is the total number of tiles or data blocks. It is calculated by dividing the total size
of the output 3D image by the size of one block of data. Nx ,Ny , andN´ are the size of the input 3D
image in the x-axis, y-axis, and ´-axis. Blk:x, Blk:y, and Blk:´ are the size of the 3D data-block
in the x-axis, y-axis, and ´-axis.Hx ,Hy , andH´ model the halos in the x-dimension, y-dimension,
and ´-dimension and depend on the GPU implementation of the kernel. Coeff is the number of
necessary loads and stores of the stencil weight coefficients, which in general equals zero because
the weights are stored in registers, that is, Coeff D 0.

Expression (1) must be adapted to the GPU as multiple threads are simultaneously accessing
global memory. The number of transactions required per warp request (load or store request) varies
depending on the warp access pattern. Next, we analyze typical access patterns in stencil kernels
and their impact on the number of global memory transactions.

4.2.1. Global memory transactions per request. To take advantage of coalescence and locality,
most stencil studies [1, 3, 11–13, 15] assign consecutive image pixels to consecutive GPU threads.
That is, thread-blocks and data blocks have similar sizes Blk:x � Blk:y and consider Blk:´ D 1
and H:´ D 0.

As data pixels are stored in row-major order, the number of necessary transactions to load and
store one row of the tile depends strongly on the shape and size of the thread-block. For thread-
blocks of width larger than or equal to the size of a warp, Blk:x > warpsi´e , the number of
required accesses to read one row of data pixels is d Blk:x

warpsi´e
e transactions, in addition to d H:x

warpsi´e
e

transactions per row to load halo pixels. Figure 4(a) illustrates this situation using GX stencil for
warpsi´e D 8 and Blk:x D 16. In this example,three transactions are needed, two for data pixels
and one for halo pixels.

For thread-blocks of width smaller than the size of a warp, Blk:x < warpsi´e , data accesses
are not coalesced as the threads of one warp have to read data located in different rows of the input
volume. In this case, the number of non-coalesced accesses needed to read data pixels is dwarpsi´e

Blk:x
e

transactions. This scenario is illustrated in Figure 4(b) using the GX stencil for Blk:x D 4 and
warpsi´e D 8. In this example, four transactions are required, two for data pixels and two for
halo pixels.

4.2.2. Global memory transactions in stencil computation. From the analysis shown earlier, the
total number of global memory transactions, Ng:mem:trans , for a given stencil can be reformulated
into Expression (2) as follows:

Ng:mem:trans D
l
Nx
Blk:x

ml
Ny
Blk:y

m
N´�8<

:
l
Blk:x
warpsi´e

m
�Blk:y C

l
Blk:x
warpsi´e

m
� .Blk:y CH:y/C

l
H:x

warpsi´e

m
�Blk:y Blk:x > warpsi´e

Blk:x�Blk:y
warpsi´e

�
h˙warpsi´e

Blk:x

�
C
l

H:x
warpsi´e

m
C
l
Blk:x
warpsi´e

mi
C Blk:x
warpsi´e

�H:y Blk:x < warpsi´e

(2)
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To maintain clarity by distinguishing the stores and loads operations, we kept Expression (2) for
the cases Blk:x < warpsi´e without applying further mathematical simplifications.

To derive the number of global memory transactions from Expression (2) for GX stencil, we have
to substitute H:y D 0. Recall that for GX stencil, the halo is needed only in the right side of the
tile. Applying some mathematical simplifications for the cases where Blk:x < warpsi´e , the total
number of global memory transactions for GX for any Blk:x value will be as follows:

Ng:mem:trans D

�
Nx

Blk:x

��
Ny

Blk:y

�
N´�

��
2 �

�
Blk:x

warpsi´e

�
C

�
H:x

warpsi´e

��
� Blk:y

�
(3)

Figure 5 shows the number of global memory transactions calculated using Formula (3) for GX
stencil considering all the valid thread-block sizes and shapes on a ‘Geforce GTX TITAN’. For this
architecture, warpsi´e D 32. As can be observed, the number of required transactions decreases
when Blk:x increases. The differences between successive configurations with Blk:x > 32 are
slighter than the differences between successive configurations with Blk:x < 32. We consider
that the optimal configurations are the best 50% configurations, shown in lightest orange cells in
Figure 5. All the values shown in Figure 5 are validated using NVIDIA CUDA profiler, nvccprof.
This demonstrates that our model for predicting the total number of global memory transactionssss
is exact.

Figure 4. The global memory transactions required for the GX stencil considering warpsi´e D 8. For
Blk:x D 16 (a) and Blk:x D 4 (b).

Figure 5. The number of global memory transactions for each configuration (Blk:x; Blk:y) for the GX
convolution. The light orange cells highlight the 50% best configurations.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5557–5573
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Figure 6. Shared memory transactions for different Blk:x values.

4.3. Shared memory transactions

The number of shared memory transactions is also critical to the performance of memory-bound
kernels. Current GPUs have a shared memory with a number of banks similar to the warp size,
allowing free conflict access patterns. However, stencil access patterns can generate bank conflicts,
which increase the expected number of memory transactions. This subsection describes a model that
accurately predicts the number of shared memory transactions for stencil kernels.

4.3.1. Shared memory transactions per request. Load and store instructions on shared memory can
suffer from bank conflicts. These conflicts increase the shared memory latency, because the memory
warp requests have to wait till all the required accesses are finished. The bank conflict degree of a
warp is the maximum number of memory requests that fall in the same bank. According to [16],
bank conflicts can have a high impact on shared memory performance as memory latency increases
linearly with respect to the bank conflict degree.

For store operations, no bank conflicts occur whenBlk:x > warpsi´e . This scenario is illustrated
in Figures 6(a) and (b) using GX stencil, warpsi´e D 8, considering a shared memory of eight
banks for Blk:x D 16 and Blk:x D 8, respectively. The number of memory accesses required to
read one row of the tile is given by

l
Blk:x

warpsi´e

m
in addition to

l
H:x

warpsi´e

m
transactions to read the

halo of one row. However, bank conflicts appear when Blk:x < warpsi´e . Figure 6(c) illustrates
an example with Blk:x D 4, where the memory addressing generates a two-degree bank conflict
when data pixels are stored. Notice that in this case there is no bank conflicts for halo pixels stores.
Therefore, the number of transactions per warp is three in this particular case. Figures 6(d) shows
another possible scenario, with Blk:x D 2. In this case, a two-degree bank conflict occurs for both
data-pixels and halo-pixels writes, requiring four transactions.

For load operations, no bank conflicts occur when reading a row of the tile forBlk:x > warpsi´e .
So, the number of needed transactions can be given by

l
Blk:x

warpsi´e

m
transactions per block row.

Whereas, when Blk:x D 8, two transactions are required per warp as no halo pixels are read. For
Blk:x D 4, also two transactions are needed per warp.

4.3.2. Shared memory transactions in stencil computation. From previous analysis, we compute
the number of shared memory transactions required for a specific stencil in GPU. Without loss
of generality, we show in this section how the total number of store and load transactions can be
deduced for GX stencil:

Nshmem:trans D Nstores:trans CNloads:trans (4)
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Figure 7. The total number of shared memory transactions calculated using our shared memory transactions
model for the example of GX stencil and considering the characteristics of ‘Geforce GTX TITAN’.

Nstores:trans D

�
FBCD:stores �

�
Blk:x

warpsi´e

�
C FBCH:stores �

�
Hx

warpsi´e

��

.Blk:y CHy/

�
Nx

Blk:x

��
Ny

Blk:y

�
N´

(5)

where FBCD:stores and FBCH:stores represent the bank conflict degree for data and halo, respec-
tively. These two factors are defined as

FBCD:stores D

²
1 Blk:x > warpsi´e
2 Blk:x < warpsi´e

(6)

FBCH:stores D

²
1 Blk:x > warpsi´e
2 Blk:x < warpsi´e

(7)

Nloads:trans D numreads�

��
Blk:x

warpsi´e

�
C FBCH:loads

�
.Blk:yCHy/

�
Nx

Blk:x

��
Ny

Blk:y

�
N´

(8)
where FBCH:loads is the degree of bank conflicts when reading halos. numreads is the number

of reads required to update one single pixel. This factor can take the next values:

FBCH:loads D

²
0 Blk:x > warpsi´e
2 Blk:x < warpsi´e

(9)

Figure 7 depicts the number of shared memory transactions calculated using our model for GX
kernel. As can be observed from this figure, the number of transactions increase with Blk:x. The
thread-blocks with width Blk:x > 32 show better numbers than the cases with Blk:x < 32. Again,
we select the 50% best configurations as candidates, shown in light orange cells.

4.4. SM utilization

Different shapes and sizes of the thread-block also lead to different utilization of the SMs. To
express the SM utilization, we first need to define the number of active blocks per SM, BlksactiveSM .
The BlksactiveSM depends on the maximum number of registers and shared memory space avail-
able per SM and also on the maximum block size allowed per SM, which are specific to each
GPU architecture.

BlksactiveSM D min

 $
RegsMaxSM

Regsstencil
Blk

%
;

$
shmemMaxSM

shmemstencil
Blk

%
; BlkMaxSM ;

T hreadsMaxSM

Blk:x � Blk:y

!
(10)

where BlkMaxSM D 8 for Fermi and BlkMaxSM D 16 for Kepler. The amount of shared memory
used by block is determined from the kernel implementation, which can be formulated in general as
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shmemstencil
Blk

D .Blk:xCH:x/� .Blk:yCH:y/� si´eof .data/ bytes. T hreadsMaxSM D 1024

in Fermi and T hreadsMaxSM D 2048 in Kepler and Maxwell families. T hreadsMax
block

D 1024 in
Fermi, Kepler, and Maxwell. Regsstencil

Blk
is provided by the nvcc compiler after compilation.

OccupancystencilSM D
BlksactiveSM �Warpsstencil

Blk

WarpsMaxSM

(11)

WarpsMaxSM D 64 in Kepler. The configurations that provide the optimal SM utilization, 100%,
are shown in light orange in Figure 8.

4.5. Thread-block efficiency

The size and shape of the thread-block affect the cost of synchronizations and, consequently,
the efficiency of threads within a thread-block. Stencil implementations include synchronizations
mainly to allow a number of the threads to read halos while the remaining threads are idle. The
higher the number of idle threads within the thread-block, the less efficient they are. Consider the
example of GX stencil, in each thread-block, H:x � Blk:y threads have to read the halo while
Blk:x�Blk:y�H:x�Blk:y are idle. Notice that storing in shared memory halos from the x-axis
is more expensive than storing halos from the y-axis, because they produce more conflicts. Indeed,
the performance analysis provided in the next section for stencils GX, GY, and ST validate this
statement. Stencil GZ does not have thread-efficiency issues because no synchronization is needed
due to the nature of its data access pattern.

The thread-block efficiency can be expressed as

BlkEff D
T imework

T imework C T imeidle
(12)

where T imework refers to the time spent only in doing useful work, that is, computing and, read-
ing and writing from/to memory. T imeidle is the idle time waiting for halos to be stored in shared
memory. As one can observe from this formula, the larger is the idle time, the less efficient is the

Figure 8. The occupancy of the SM for all the possible configuration space. The lighter orange indicates the
best 50% configurations.

Figure 9. The light orange cells show the configurations that produce the smallest number of active thread-
blocks per SM, which is 2 for the GX stencil.
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Figure 10. G1 and G2 stand for the best and worst group of configurations in each aspect, global memory
behavior, shared memory behavior, SM occupancy, and thread-block efficiency. The configurations that

provide the best behavior in all aspects are indicated by G1,G1,G1,G1 in blue color.

Table IV. Execution times (in milliseconds) on all the valid thread-block configurations
(Blk:x; Blk:y) for GX stencil using an input 3D image of size 256 � 256 � 256 on ‘Geforce

GTX TITAN’.
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Table V. The execution time (in milliseconds) on all the valid thread-block space using GX
stencil for an input 3D image of size 256 � 256 � 256, on ‘NVIDIA GeForce GTX 480’.
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thread-block. That is, the larger isBlk:x�Blk:y�H:x�Blk:y, the less efficient is the thread-block.
The main strategy to hide thread-blocks inefficiency is by increasing the number of simultaneous
running blocks in the same SM. This allows the overlapping between concurrent thread-blocks and
consequently increases SM resources utilization. The best configurations in this case can be repre-
sented by the ones that allow a higher number of active thread-blocks. We conservatively consider
that the best configurations are the ones that allows an active thread-blocks per SM higher than the
minimum possible, as shown in Figure 9.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5557–5573
DOI: 10.1002/cpe



5570 S. TABIK ET AL.

Table VI. The execution time (in milliseconds) on all the valid thread-block configurations for GX
stencil using an input 3D image of size 512 � 512 � 512, on ‘NVIDIA GeForce GTX 480’.
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Table VII. Time (ms) on different thread-block configurations for GY filter using an input size
256 � 256 � 256 on ‘Geforce GTX TITAN’.
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Table VIII. Time (ms) on all the valid thread-block configurations for GZ filter using an input size
256 � 256 � 256 on ‘Geforce GTX TITAN’.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

. .
.

.
.
.

.
.

.

..
.

4.6. The optimal configuration set for GX

As we stated before, we consider that the optimal thread-block configurations are the ones that
belong to the optimal sets in global memory behavior, shared memory behavior, SM utilizations,
and good efficiency. Figure 10 depicts this set for the GX kernel and considers the ‘Geforce GTX
TITAN’ limitations. The candidates for optimal configurations are shown by the blue colored cells.
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Table IX. Time (ms) on all the possible thread-block configurations for ST kernel using an input
size 256 � 256 � 256 on ‘Geforce GTX TITAN’.
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Table X. Time (ms) on all the possible thread-block configurations for 5-FDD using an
input size 256 � 256 � 256 on ‘Geforce GTX TITAN’.
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Table XI. Time (ms) on all the possible thread-block configurations for 7-FDD using
an input size 256 � 256 � 256 on ‘Geforce GTX TITAN’.
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5. EXPERIMENTS

For the purpose of validating our model, we carried out two sets of experiments. The first exper-
iments analyze the execution times using all valid configurations for GX stencil on two GPU
generations, ‘GeForce GTX 480’ and ‘Geforce GTX TITAN’, and using two input sizes, 3D images
of sizes 256 � 256 � 256 and 512 � 512 � 512. The second experiments analyze the five remain-
ing stencils, GY, GZ, ST, 5 � 5 � 5 stencil, and 7 � 7 � 7 stencil on all the possible configuration
space using an input of size 256� 256� 256 on ‘Geforce GTX TITAN’. Then, we compare the best
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configurations based on the execution times with the best configurations predicted by our model.
We used CUDA compiler version 4.0 on ‘GeForce GTX 480’ and version 6.5 on ‘Geforce GTX
TITAN’.

Tables IV, V, VI, VII, VIII, IX, X and XI show the average execution time of 10 executions of the
GX, GY, GZ, ST, 5-FDD, and 7-FDD for all possible configurations. The cells in blue color show
the optimal space predicted by our model. The values with the symbol � indicates the configurations
with the best execution time. We consider that the configurations with runtimes around 5% larger
than the optimum one belong to the optimal configurations set. As can be observed, all the optimal
configurations predicted by our model have lower execution time. Most importantly, the best config-
urations, that is, the configurations that provide the best execution times always belong to the space
predicted by our model. For example, comparing Table IV and Table V, one can observe that the
best configurations for the same stencil and same input size are (128,1), (256,1), (64,2) on ‘GTX
TITAN’ and (256,1), (256,2), (128,2), (128,4), (64,4) on ‘GTX 480’.

From Table VIII, the best 15 thread-block configurations give competitive results for GZ. As the
GPU implementation of GZ does not include any synchronization, all the configurations that provide
the best occupancy have a good thread-block efficiency.

Regarding the impact of the halo width on the performance of 3D stencils, Tables X and XI
demonstrate that the configurations with Blk.x= multiple of warp_si´e keep being the best config-
urations because they guarantee lower conflicts in shared memory and a reduced number of global
memory accesses. Recall that stencil-based codes are well known to be memory bound, therefore
the use of configurations that improve the memory management is crucial for the performance
independently of the width of the halo.

6. CONCLUSIONS

In this work, we built a model that determines the best set of thread-block configurations for stencils
on the GPU. The best configuration is not unique, multiple thread-block shapes and sizes can lead
to competitive performance. The model takes into account the global memory and shared memory
transactions, the SM utilization, and thread-block efficiency. We validated the proposed model using
six stencils of different memory access patterns, halo width, and input size on different GPUs. We
were able to reduce the space to 25% without missing the configurations with the highest perfor-
mance. Moreover, we provided insights into the impact of the thread-block size and shape on the
global memory, shared memory behavior, and SMs utilization. As future works, we are working on
extending the proposed performance model to determine whether or not fusing multiple successive
stencils of a given pipeline can be good for performance.
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