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Abstract: The use of Building Information Modelling (BIM) has increased in the 

Architectural and Urban domain. Stakeholders within distinct disciplines 

collaborate and exchange such information models digitally. In order to strive 

for an interoperable use of the models, requirement documents are being 

written by stakeholders, standardisation bodies and governments. Such 

documents pose additional requirements to the exchange of building model 

definitions and limit the scope of information to something that is relevant to 

the disciplines the exchange pertains to, the phase of the construction project 

and the level of development of the project. For effective collaboration 

processes, checking these requirements in an automated and unambiguous way 

is of crucial importance. Yet, requirement definitions often comprise natural 

language texts and academic and commercial tools being developed in this 

regard are fragmented and heterogeneous. Furthermore, the models being 

checked are of uncertain quality because the semantics of the schema are not 

rigorously formalized and enforced and models contain redundancies that 

affect their reliability. This paper urges for more developed schema semantics 

and illustrates how the body of technical means, such as classification system, 

concept libraries, query languages, reasoners and model view definitions are 

related to one another and to the concept of automated rule checking. 
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1. INTRODUCTION 

1.1 Current practice 

In recent years the use of Building Information Modelling (BIM) has 

increased in the Architectural and Urban domain. BIM has become an 

umbrella term for many recent innovations and insights based on data, but 

primarily signifies the transition from 2D CAD drawings to semantically 

rich information models in the building industry. Novel use cases have been 

enabled by virtue of the added semantic information. 

In order to guarantee an interoperable use of these models, requirement 

documents are being written that make statements on the validity or 

appropriateness of (parts of) building model definitions. These use cases 

range from checking the conformance to rules set out by (local) 

governments to in-house guidelines and Level Of Development (LOD) 

specifications. In a similar fashion, the compliance to building codes needs 

to be checked in order to obtain permits. Several terms have been coined to 

name such requirements, such as “BIM norms”, “BIM employers 

requirements” and “BIM protocols”. They govern the requirements that 

people, organisations and government pose on the data or edifice that is 

delivered to them. Being able to check these requirements in an automated 

way is highly desirable for effective data exchange and high quality end-

results. 

On a technical level, various approaches are being researched to assess 

these requirements on actual models. These approaches allow for different 

levels of expressivity and extents to which they allow for automation, 

modularity and reuse. This paper will give an overview of available 

technical solutions to automate data requirements checking. It will state 

characteristics, advantages and limitations pertaining to these technologies. 

The technologies included in this overview are the IFC schema and its 

implementers agreements, Model View Definitions (mvdXML), 

classification systems and concept libraries, query languages, reasoners and 

proprietary software solutions. 

1.2 State of the art 

Various model checking platforms exist and are described in literature or 

are commercially available. A platform used in practice is Solibri Model 

Checker (SMC). It is a JAVA-based executable that reads an IFC model and 

provides proprietary processing routines to facilitate the rule checking on 

common operations in the Architecture Engineering and Construction 
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(AEC) industry. This includes checking for the existence of attributes (so 

called pre-checking), and more advanced fire exit and evacuation checking 

and comparisons against the schedules and design briefs. SMC is a 

proprietary application that implements rule by means of hard-coding them 

in program code, therefore, other than adjusting specifically targeted 

parameters, this program is not extensible to add new types of rules. 

Jotne EDModelChecker (EDM) is a commercial library that separates the 

definition of rules from the program code. Rules are defined in the 

EXPRESS modelling language, an ISO certified open standard, in which the 

IFC schema is conceived as well (Eastman, et al., 2009). 

FORNAX is among the first large government-involved effort towards 

automated rule checking in the building industry. It is part of the Singapore 

CORENET platform, developed as an automated system to regulate building 

permits. It is implemented on top of the EDM Model Checker (Khemiani, 

2005). 

An attempt to aid the formalization process of rule definitions is 

provided by SMARTcodes, which presents methods of converting codes and 

standards from textual natural language definitions into computer code. This 

is accomplished by means of semantically structured domain knowledge 

(Nawari, 2012). 

Automated approaches to validate the conformance of a model to a 

Model View Definition (MVD) are described in (Zhang, et al., 2013). But as 

described in (Solihin, et al., 2015), what constitutes a valid, meaningful and 

unambiguous exchange is broader than what currently can be expressed in 

such a MVD and includes in addition aspects such as geometrical and 

topological correctness, for example that spaces are correctly bounded and 

that the faces that constitute this boundary conform to their (typically 

planar) underlying surface geometry. 

Disambiguation is a crucial part of the formalization of rule definitions. 

For this purpose the use of multilingual concept libraries is crucial as it 

allows to unambiguously point to a well understood concept from within 

diverse national classification systems and different languages (Palos et al., 

2014). In the AEC industry initiatives are being undertaken to implement 

such concept libraries specific to the industry, such as the buildingSMART 

Data Dictionaries (bsDD). In addition, well established ontologies with a 

broader scope are available, for example (Navigli and Ponzetto, 2012) and 

(Miller, 1995). 

An orthogonal line of research is initiated by (Krijnen and Tamke, 2015) 

that tries to employ machine learning concepts, such as anomaly detection to 

enable model checking without the à priori definition of formal rules, but 

instead deduce a norm to which most building elements conform to and flag 

the elements that deviate from this norm. 
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(Eastman, et al., 2009) describes a variety of rules and discusses the 

implementation of them in various of the available rule checking platforms. 

Often these rule sets are a mixture of safety or programmatic requirements. 

This work identifies major issues, such as a lack of extensibility of some of 

the platforms and resonates the finding that none of the platforms address 

the entire scope of rule checking. This entails the process of converting rules 

from natural languages into formal definitions, pre-checking the suitability 

of the model for more rigorous checking, executing the checks that often 

need geometrical and topological functionality to abstract building models 

into spatial structures suitable for e.g. fire exit checking and finally 

reporting the results. 

1.3 Problem statement 

The authors observe that on the one hand there is a wide variety of rules 

being developed, predominantly in natural languages within government 

bodies and standardization institutes. Yet, there is no easily apprehensible 

overview of the implications on computational complexity and decidability 

for such rules in the context of automated rule checking. On the other hand 

there is a wide variety of technical research directions undertaken that try to 

solve the notion of automated rule checking on top of various platforms with 

different levels of expressivity and with different requirements and 

prerequisites for the definition of rules. Often these technical ventures are 

focussed on isolated parts and not on the overall process. A general 

overview that connects and harmonizes the various approaches in this field 

seems to be lacking and is trying to be created in this paper. For that purpose 

an allegorical example of a rule is approached from various technical means. 

From this analysis the complimentary nature of these technical means can be 

seen. 

2. DEFINITION OF A RULE 

As an allegorical example of a rule, to be used throughout this paper, a 

seemingly simple example has been chosen that touches on and 

interconnects the relevant technical means of rule checking described in this 

paper. The rule is given below in Listing 1. 

Listing 1. Rule introduced in this paper 

A blind wall should not be longer than 3 meters 
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2.1 Relevance of concept libraries 

In the particular case of the rule in Listing 1 three concepts can be 

identified: “length”, “meter” and, most interestingly, “blind wall”. 

Ontologies such as the Getty Architecture and Art Thesaurus (AAT) readily 

contain an identifiable concept that can be used for this purpose (Krijnen 

and Beetz, 2016), while there is no explicit semantics in the IFC schema to 

annotate walls of this type. In general, requirements, like the example above, 

are provided in natural language and the process of reinterpreting them into 

something formally understood, and to include the implicitly available 

domain knowledge, is a significant part of coming to an automated approach 

to checking such rules (Sohilin and Eastman, 2015). After understanding the 

formal implications of the rule, the process of rule checking relies on 

disambiguating terms in the equation by means of classification systems or 

concept libraries (Eastman et al., 2009). For a “blind wall” in  AAT the 

following definition is given provided in Listing 2. 

Listing 2. Definition of a blind wall in the Getty Architecture and Art Thesaurus 

Walls whose whole surfaces are unbroken by windows, doors, or other openings. 

 

With this definition the rule can be formalized as given in Listing 3, 

which is to say that a valid wall implies that either its length is less than or 

equal to three meters or no openings are associated to the wall element. 

Listing 3. Formalization using predicate logic of the rule in Listing 1. 

valid_wall(𝒲) → (length(𝒲) ≤ 3m) ∨ (∃𝒪: opening(𝒲, 𝒪)) 

2.2 Relevance of query languages 

After the formalization, the rule can be encoded as a query. For the 

purpose of reporting issues with model, that is to say, return elements within 

a model that violate the rule, the query in Listing 4 has been negated. Only 

the second part of the conjunction is included initially. In this particular case 

the SPARQL query language has been used. This necessitates that the 

building model definition in IFC has to be converted to a linked data 

representation, for example as defined by (Pauwels and Terkaj, 2016). The 

query returns unique identifiers for walls to which no IfcRelVoidsElements 

are related. This is the objectified relationship in the IFC schema that 

connects elements to openings, which in turn are connected to windows and 

doors. 
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Listing 4. SPARQL query to return walls without openings 

PREFIX ifcowl: <http://www.buildingsmart-tech.org/ifcOWL#> 

 

SELECT ?wall_guid_value 

WHERE 

{ 

    ?wall a ifcowl:IfcWallStandardCase ; 

         ifcowl:GlobalId ?wall_guid . 

 

    ?wall_guid ifcowl:has_string ?wall_guid_value . 

    

    FILTER NOT EXISTS { 

         ?rel a ifcowl:IfcRelVoidsElement ; 

               ifcowl:RelatingBuildingElement_of_IfcRelVoidsElement ?wall . 

    } 

} 

 

However, when the results of such a query on a commonly used example 

model1 are then visualized, the set of elements returned consists of several 

unexpected elements. Elements identified by this query do not conform what 

would be typically understood as a wall. As has also been noted in 

(Krijnen and Tamke, 2015) models might contain flaws pertaining to 

misclassifications into element categories. 

 

 
Figure 1. Elements returned by the query in Listing 1 include elements 

not typically considered as walls. Elements that are matched by the query 

are printed in solid green. Unmatched elements are printed transparently. 

 
1 http://www.nibs.org/?page=bsa_commonbimfiles 
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2.3 Relevance of schema semantics 

As illustrated in Figure 1, many of the elements returned by the query to 

retrieve blind walls, while they indeed do not contain openings, also do not 

appear to match the common idea of a wall. According to the IFC standard, 

which draws from ISO 6707-1 for most of its terminology, a wall is a 

“vertical construction usually in masonry or in concrete which bounds or 

subdivides a construction works”. However, as has been noted by 

(Amor, 2015), with the IFC schema expanding its size and domain coverage, 

the body of codified and formal where rules is not growing along. The only 

semantic constraint to a wall (IfcWallStandardCase) is that there should be a 

single material layer set defined that depicts the distribution of material over 

its cross section. There is no formal apprehension in place of the fact that 

elements, which do not function as a wall in the model, should not be 

classified as such. 

An additional issue with the body of formal rules defined in the IFC 

standard is that these rules are defined in the EXPRESS language, which is a 

relatively old specification for which little support is available in terms of its 

rule language. This calls for mapping such rules to other formal languages, 

for example as implemented in (Terkaj and Šojić, 2015). 

2.4 Relevance of Model View Definitions 

Model View Definitions specify additional constraints on the validity of 

an exchange of information. Such an MVD then describes the subsets of the 

schema that supports the needs of a particular data exchange 

(Lee et al., 2016). The language to describe such MVDs, mvdXML, is not as 

expressive as other rule languages, making it relatively easy to implement in 

software and making the definition of such rules straightforward. On the 

other hand it necessitates that if higher levels of expressiveness are required, 

other languages need to be incorporated, for example SWRL in 

(Lee et al., 2016). In addition, by specifying what information is relevant, 

they also define where is to be found in the model. 

The left-hand side of the conjunction in the query in Listing 3 constraints 

the maximum length of a blind wall. IFC allows the definition of key-value 

pairs by means of its IfcPropertySets and IfcElementQuantities. They form 

an extensible means to encode information that is not directly prescribed in 

the IFC schema. The extensibility stems from the usage of free-form strings 

as the keys of the pairs, which is the sole constituent that defines the 

meaning. This is also why additional conventions are needed to guarantee an 

interoperable interpretation of the information conveyed in these key-value 
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pairs. MVDs are a way of enforcing that for relevant building elements such 

information is present and defines how it is encoded. In that sense MVDs 

are a very relevant component of the pre-checking phase 

(Eastman et al., 2009) of the model checking workflow in which basic 

availability of information is asserted. With such assertions in place, the 

query from listing 4 can be appended with a triple pattern to retrieve and 

filter on the wall length. 

Listing 5. Addition to the SPARQL query to retrieve wall lengths in explicitly stored 

quantities 

    ?rel_prop a ifcowl:IfcRelDefinesByProperties ; 

       ifcowl:RelatedObjects_of_IfcRelDefines ?wall ; 

       ifcowl:RelatingPropertyDefinition ?prop . 

       

    ?prop a ifcowl:IfcElementQuantity ; 

       ifcowl:Quantities ?quantity . 

       

    ?quantity a ifcowl:IfcQuantityLength ; 

       ifcowl:LengthValue ?length . 

       

    ?length ifcowl:has_double ?length_value . 

2.5 Relevance of reasoners 

As described in the previous section, MVDs can be seen as a form of 

contract between the exporting and the importing party of the exchange. On 

the other hand, it might not always be feasible for exporting parties to be 

able to comply to all MVDs. Development iterations of exporting software 

are sometimes lagging behind or views on information are simply not 

always available in the authoring software. In such cases the importing party 

may need to infer the information using reasoners. Using reasoners and 

inference engines, a bottom-up higher-order apprehension of a model can be 

obtained by inferring new knowledge from explicitly available information 

and inference rules. 

In the case of the rule in Listing 3 and without the explicitly encoded 

quantity information for wall lengths, which is queried in Listing 5, the 

length can be obtained by means of a conventional query (Listing 6). This is 

mainly provided to illustrate the relative infeasibility of this approach. 
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Listing 6. Addition to the SPARQL query to retrieve wall lengths from geometrical data 

    ?wall ifcowl:Representation ?shape . 

    ?shape ifcowl:Representations ?list . 

    ?list ifcowl:isFollowedBy*/ifcowl:hasListContent ?rep . 

    ?rep ifcowl:RepresentationIdentifier ?label . 

    ?label ifcowl:has_string "Axis" . 

    

    ?rep ifcowl:Items ?rep_item . 

    ?rep_item a ifcowl:IfcPolyline ; 

       ifcowl:Points ?point_list . 

       

    ?point_list ifcowl:hasListContent ?point1 . 

    ?point_list ifcowl:isFollowedBy/ifcowl:hasListContent ?point2 . 

    

    ?point1 ifcowl:Coordinates_of_IfcCartesianPoint ?p1xy . 

    ?point2 ifcowl:Coordinates_of_IfcCartesianPoint ?p2xy . 

    

    ?p1xy ifcowl:hasListContent/ifcowl:has_double ?p1x . 

    ?p1xy ifcowl:isFollowedBy/ifcowl:hasListContent/ifcowl:has_double ?p1y . 

   

    ?p2xy ifcowl:hasListContent/ifcowl:has_double ?p2x . 

    ?p2xy ifcowl:isFollowedBy/ifcowl:hasListContent/ifcowl:has_double ?p2y . 

    

    BIND (afn:sqrt((?p2x - ?p1x) * (?p2x - ?p1x) + (?p2y - ?p1y) * (?p2y - ?p1y)) as ?length) 

    

    FILTER (?length > 3.0) 

 

There is a large amount of complexity involved with querying seemingly 

trivial information from building models in IFC. This stems from the 

standard being permissive as it allows geometry to defined in my ways. In 

addition, complexity is introduced by the objectified relationships that 

introduce additional indirection to get to relevant information. By 

introducing shortcuts to such data, the model can be made more idiomatic to 

common linked data ontologies (Farias et al., 2015). Such shortcuts is also 

something part of specific-purpose query language for IFC building models, 

such as presented in (Mazairac and Beetz, 2013). 

To summarize, there are three complicating factors illustrated here: 1) 

the inference of a wall length in this case depends on the availability of an 

‘axis’ geometry, which might not be defined, although dictated to exist in 

textual form 2) for such a representation geometry may be defined in 

different ways 3) ordered aggregates difficult are difficult to inspect and 

query in SPARQL as they have to modelled as a tree structure in RDF 

(Pauwels et al., 2015). Therefore the query in Listing 6 is only able to return 

a wall length for the simple cases. As such, due to the combinatorial 
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complexity of these complications, a bottom-up approach to infer new 

information is more suitable. 

3. CONCLUSIONS 

In order to come to an efficient automated rule checking workflow, the 

technical aspects discussed in this paper need studied holistically and not in 

isolation. By exploiting their complementary nature, rules can be encoded 

formally, succinctly and expressively. 

A crucial foundation for rule checking are the semantics introduced on 

the schema level: in order to prevent false positives and negatives, elements 

need to be classified correctly. Currently there are no or very limited 

provisions in the IFC schema that actually guarantee this formally. As a 

consequence elements are misclassified, or classified in overly broad or 

meaningless categories, such as IfcBuildingElementProxy. Elements that are 

misclassified result either in false negatives, as certain relevant checks are 

not performed, or in false positives (as illustrated in the case of Figure 1), 

because irrelevant checks are performed. Both are detrimental to the quality 

of the rule checking process and therefore to the delivered artefact. For this 

purpose, a large body of the documentation of the IFC standard, which 

consists of hundreds of pages, needs to be translated into formal and 

decidable statements. 

Secondly, formal notations of explicitly encoded quantities are necessary 

in order to guarantee that the available quantities are accurate. IFC is a 

highly redundant data format: the length of a wall will typically be reflected 

in many places within  the schema, including space boundary geometries, 

explicitly calculated quantities and different representations for the body 

and axis of elements. The quality of a data schema can be described by 

means of a minimal redundancy and maximum reliability (McLeod, 1995). 

Without formalized connections between the different apprehensions of 

attributes like the wall length, the amount of redundancy induces an 

increased risk of errors when parts of a model get updated. 
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