

Methodologies for requirement checking on building models

Citation for published version (APA):
Krijnen, T., & Van Berlo, L. A. H. M. (2016). Methodologies for requirement checking on building models: A
technology overview. In H. Timmermans (Ed.), Design and Decision Support Systems in Architecture and Urban
Planning - 13th International Conference on Design and Decision Support Systems in Architecture and Urban
Planning, DDSS 2016 (pp. 1-11). Technische Universiteit Eindhoven.

Document license:
Unspecified

Document status and date:
Published: 01/01/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/b21e76c4-f470-4927-89d7-b2f5b77a925a

1

Methodologies for requirement

checking on building models
A technology overview

T. Krijnen
1
 and L.A.H.M. van Berlo

2

¹Eindhoven University of Technology

Eindhoven, The Netherlands

t.f.krijnen@tue.nl
2Netherlands organisation for applied scientific research TNO

Delft, The Netherlands

leon.vanberlo@tno.nl

Key words: Building Information Modelling, data management, code compliance,

automation, model checking

Abstract: The use of Building Information Modelling (BIM) has increased in the

Architectural and Urban domain. Stakeholders within distinct disciplines

collaborate and exchange such information models digitally. In order to strive

for an interoperable use of the models, requirement documents are being

written by stakeholders, standardisation bodies and governments. Such

documents pose additional requirements to the exchange of building model

definitions and limit the scope of information to something that is relevant to

the disciplines the exchange pertains to, the phase of the construction project

and the level of development of the project. For effective collaboration

processes, checking these requirements in an automated and unambiguous way

is of crucial importance. Yet, requirement definitions often comprise natural

language texts and academic and commercial tools being developed in this

regard are fragmented and heterogeneous. Furthermore, the models being

checked are of uncertain quality because the semantics of the schema are not

rigorously formalized and enforced and models contain redundancies that

affect their reliability. This paper urges for more developed schema semantics

and illustrates how the body of technical means, such as classification system,

concept libraries, query languages, reasoners and model view definitions are

related to one another and to the concept of automated rule checking.

2 DDSS 2016

1. INTRODUCTION

1.1 Current practice

In recent years the use of Building Information Modelling (BIM) has

increased in the Architectural and Urban domain. BIM has become an

umbrella term for many recent innovations and insights based on data, but

primarily signifies the transition from 2D CAD drawings to semantically

rich information models in the building industry. Novel use cases have been

enabled by virtue of the added semantic information.

In order to guarantee an interoperable use of these models, requirement

documents are being written that make statements on the validity or

appropriateness of (parts of) building model definitions. These use cases

range from checking the conformance to rules set out by (local)

governments to in-house guidelines and Level Of Development (LOD)

specifications. In a similar fashion, the compliance to building codes needs

to be checked in order to obtain permits. Several terms have been coined to

name such requirements, such as “BIM norms”, “BIM employers

requirements” and “BIM protocols”. They govern the requirements that

people, organisations and government pose on the data or edifice that is

delivered to them. Being able to check these requirements in an automated

way is highly desirable for effective data exchange and high quality end-

results.

On a technical level, various approaches are being researched to assess

these requirements on actual models. These approaches allow for different

levels of expressivity and extents to which they allow for automation,

modularity and reuse. This paper will give an overview of available

technical solutions to automate data requirements checking. It will state

characteristics, advantages and limitations pertaining to these technologies.

The technologies included in this overview are the IFC schema and its

implementers agreements, Model View Definitions (mvdXML),

classification systems and concept libraries, query languages, reasoners and

proprietary software solutions.

1.2 State of the art

Various model checking platforms exist and are described in literature or

are commercially available. A platform used in practice is Solibri Model

Checker (SMC). It is a JAVA-based executable that reads an IFC model and

provides proprietary processing routines to facilitate the rule checking on

common operations in the Architecture Engineering and Construction

Methodologies for requirement

checking on building models

3

(AEC) industry. This includes checking for the existence of attributes (so

called pre-checking), and more advanced fire exit and evacuation checking

and comparisons against the schedules and design briefs. SMC is a

proprietary application that implements rule by means of hard-coding them

in program code, therefore, other than adjusting specifically targeted

parameters, this program is not extensible to add new types of rules.

Jotne EDModelChecker (EDM) is a commercial library that separates the

definition of rules from the program code. Rules are defined in the

EXPRESS modelling language, an ISO certified open standard, in which the

IFC schema is conceived as well (Eastman, et al., 2009).

FORNAX is among the first large government-involved effort towards

automated rule checking in the building industry. It is part of the Singapore

CORENET platform, developed as an automated system to regulate building

permits. It is implemented on top of the EDM Model Checker (Khemiani,

2005).

An attempt to aid the formalization process of rule definitions is

provided by SMARTcodes, which presents methods of converting codes and

standards from textual natural language definitions into computer code. This

is accomplished by means of semantically structured domain knowledge

(Nawari, 2012).

Automated approaches to validate the conformance of a model to a

Model View Definition (MVD) are described in (Zhang, et al., 2013). But as

described in (Solihin, et al., 2015), what constitutes a valid, meaningful and

unambiguous exchange is broader than what currently can be expressed in

such a MVD and includes in addition aspects such as geometrical and

topological correctness, for example that spaces are correctly bounded and

that the faces that constitute this boundary conform to their (typically

planar) underlying surface geometry.

Disambiguation is a crucial part of the formalization of rule definitions.

For this purpose the use of multilingual concept libraries is crucial as it

allows to unambiguously point to a well understood concept from within

diverse national classification systems and different languages (Palos et al.,

2014). In the AEC industry initiatives are being undertaken to implement

such concept libraries specific to the industry, such as the buildingSMART

Data Dictionaries (bsDD). In addition, well established ontologies with a

broader scope are available, for example (Navigli and Ponzetto, 2012) and

(Miller, 1995).

An orthogonal line of research is initiated by (Krijnen and Tamke, 2015)

that tries to employ machine learning concepts, such as anomaly detection to

enable model checking without the à priori definition of formal rules, but

instead deduce a norm to which most building elements conform to and flag

the elements that deviate from this norm.

4 DDSS 2016

(Eastman, et al., 2009) describes a variety of rules and discusses the

implementation of them in various of the available rule checking platforms.

Often these rule sets are a mixture of safety or programmatic requirements.

This work identifies major issues, such as a lack of extensibility of some of

the platforms and resonates the finding that none of the platforms address

the entire scope of rule checking. This entails the process of converting rules

from natural languages into formal definitions, pre-checking the suitability

of the model for more rigorous checking, executing the checks that often

need geometrical and topological functionality to abstract building models

into spatial structures suitable for e.g. fire exit checking and finally

reporting the results.

1.3 Problem statement

The authors observe that on the one hand there is a wide variety of rules

being developed, predominantly in natural languages within government

bodies and standardization institutes. Yet, there is no easily apprehensible

overview of the implications on computational complexity and decidability

for such rules in the context of automated rule checking. On the other hand

there is a wide variety of technical research directions undertaken that try to

solve the notion of automated rule checking on top of various platforms with

different levels of expressivity and with different requirements and

prerequisites for the definition of rules. Often these technical ventures are

focussed on isolated parts and not on the overall process. A general

overview that connects and harmonizes the various approaches in this field

seems to be lacking and is trying to be created in this paper. For that purpose

an allegorical example of a rule is approached from various technical means.

From this analysis the complimentary nature of these technical means can be

seen.

2. DEFINITION OF A RULE

As an allegorical example of a rule, to be used throughout this paper, a

seemingly simple example has been chosen that touches on and

interconnects the relevant technical means of rule checking described in this

paper. The rule is given below in Listing 1.

Listing 1. Rule introduced in this paper

A blind wall should not be longer than 3 meters

Methodologies for requirement

checking on building models

5

2.1 Relevance of concept libraries

In the particular case of the rule in Listing 1 three concepts can be

identified: “length”, “meter” and, most interestingly, “blind wall”.

Ontologies such as the Getty Architecture and Art Thesaurus (AAT) readily

contain an identifiable concept that can be used for this purpose (Krijnen

and Beetz, 2016), while there is no explicit semantics in the IFC schema to

annotate walls of this type. In general, requirements, like the example above,

are provided in natural language and the process of reinterpreting them into

something formally understood, and to include the implicitly available

domain knowledge, is a significant part of coming to an automated approach

to checking such rules (Sohilin and Eastman, 2015). After understanding the

formal implications of the rule, the process of rule checking relies on

disambiguating terms in the equation by means of classification systems or

concept libraries (Eastman et al., 2009). For a “blind wall” in AAT the

following definition is given provided in Listing 2.

Listing 2. Definition of a blind wall in the Getty Architecture and Art Thesaurus

Walls whose whole surfaces are unbroken by windows, doors, or other openings.

With this definition the rule can be formalized as given in Listing 3,

which is to say that a valid wall implies that either its length is less than or

equal to three meters or no openings are associated to the wall element.

Listing 3. Formalization using predicate logic of the rule in Listing 1.

valid_wall(𝒲) → (length(𝒲) ≤ 3m) ∨ (∃𝒪: opening(𝒲, 𝒪))

2.2 Relevance of query languages

After the formalization, the rule can be encoded as a query. For the

purpose of reporting issues with model, that is to say, return elements within

a model that violate the rule, the query in Listing 4 has been negated. Only

the second part of the conjunction is included initially. In this particular case

the SPARQL query language has been used. This necessitates that the

building model definition in IFC has to be converted to a linked data

representation, for example as defined by (Pauwels and Terkaj, 2016). The

query returns unique identifiers for walls to which no IfcRelVoidsElements

are related. This is the objectified relationship in the IFC schema that

connects elements to openings, which in turn are connected to windows and

doors.

6 DDSS 2016

Listing 4. SPARQL query to return walls without openings

PREFIX ifcowl: <http://www.buildingsmart-tech.org/ifcOWL#>

SELECT ?wall_guid_value

WHERE

{

 ?wall a ifcowl:IfcWallStandardCase ;

 ifcowl:GlobalId ?wall_guid .

 ?wall_guid ifcowl:has_string ?wall_guid_value .

 FILTER NOT EXISTS {

 ?rel a ifcowl:IfcRelVoidsElement ;

 ifcowl:RelatingBuildingElement_of_IfcRelVoidsElement ?wall .

 }

}

However, when the results of such a query on a commonly used example

model1 are then visualized, the set of elements returned consists of several

unexpected elements. Elements identified by this query do not conform what

would be typically understood as a wall. As has also been noted in

(Krijnen and Tamke, 2015) models might contain flaws pertaining to

misclassifications into element categories.

Figure 1. Elements returned by the query in Listing 1 include elements

not typically considered as walls. Elements that are matched by the query

are printed in solid green. Unmatched elements are printed transparently.

1 http://www.nibs.org/?page=bsa_commonbimfiles

Methodologies for requirement

checking on building models

7

2.3 Relevance of schema semantics

As illustrated in Figure 1, many of the elements returned by the query to

retrieve blind walls, while they indeed do not contain openings, also do not

appear to match the common idea of a wall. According to the IFC standard,

which draws from ISO 6707-1 for most of its terminology, a wall is a

“vertical construction usually in masonry or in concrete which bounds or

subdivides a construction works”. However, as has been noted by

(Amor, 2015), with the IFC schema expanding its size and domain coverage,

the body of codified and formal where rules is not growing along. The only

semantic constraint to a wall (IfcWallStandardCase) is that there should be a

single material layer set defined that depicts the distribution of material over

its cross section. There is no formal apprehension in place of the fact that

elements, which do not function as a wall in the model, should not be

classified as such.

An additional issue with the body of formal rules defined in the IFC

standard is that these rules are defined in the EXPRESS language, which is a

relatively old specification for which little support is available in terms of its

rule language. This calls for mapping such rules to other formal languages,

for example as implemented in (Terkaj and Šojić, 2015).

2.4 Relevance of Model View Definitions

Model View Definitions specify additional constraints on the validity of

an exchange of information. Such an MVD then describes the subsets of the

schema that supports the needs of a particular data exchange

(Lee et al., 2016). The language to describe such MVDs, mvdXML, is not as

expressive as other rule languages, making it relatively easy to implement in

software and making the definition of such rules straightforward. On the

other hand it necessitates that if higher levels of expressiveness are required,

other languages need to be incorporated, for example SWRL in

(Lee et al., 2016). In addition, by specifying what information is relevant,

they also define where is to be found in the model.

The left-hand side of the conjunction in the query in Listing 3 constraints

the maximum length of a blind wall. IFC allows the definition of key-value

pairs by means of its IfcPropertySets and IfcElementQuantities. They form

an extensible means to encode information that is not directly prescribed in

the IFC schema. The extensibility stems from the usage of free-form strings

as the keys of the pairs, which is the sole constituent that defines the

meaning. This is also why additional conventions are needed to guarantee an

interoperable interpretation of the information conveyed in these key-value

8 DDSS 2016

pairs. MVDs are a way of enforcing that for relevant building elements such

information is present and defines how it is encoded. In that sense MVDs

are a very relevant component of the pre-checking phase

(Eastman et al., 2009) of the model checking workflow in which basic

availability of information is asserted. With such assertions in place, the

query from listing 4 can be appended with a triple pattern to retrieve and

filter on the wall length.

Listing 5. Addition to the SPARQL query to retrieve wall lengths in explicitly stored

quantities

 ?rel_prop a ifcowl:IfcRelDefinesByProperties ;

 ifcowl:RelatedObjects_of_IfcRelDefines ?wall ;

 ifcowl:RelatingPropertyDefinition ?prop .

 ?prop a ifcowl:IfcElementQuantity ;

 ifcowl:Quantities ?quantity .

 ?quantity a ifcowl:IfcQuantityLength ;

 ifcowl:LengthValue ?length .

 ?length ifcowl:has_double ?length_value .

2.5 Relevance of reasoners

As described in the previous section, MVDs can be seen as a form of

contract between the exporting and the importing party of the exchange. On

the other hand, it might not always be feasible for exporting parties to be

able to comply to all MVDs. Development iterations of exporting software

are sometimes lagging behind or views on information are simply not

always available in the authoring software. In such cases the importing party

may need to infer the information using reasoners. Using reasoners and

inference engines, a bottom-up higher-order apprehension of a model can be

obtained by inferring new knowledge from explicitly available information

and inference rules.

In the case of the rule in Listing 3 and without the explicitly encoded

quantity information for wall lengths, which is queried in Listing 5, the

length can be obtained by means of a conventional query (Listing 6). This is

mainly provided to illustrate the relative infeasibility of this approach.

Methodologies for requirement

checking on building models

9

Listing 6. Addition to the SPARQL query to retrieve wall lengths from geometrical data

 ?wall ifcowl:Representation ?shape .

 ?shape ifcowl:Representations ?list .

 ?list ifcowl:isFollowedBy*/ifcowl:hasListContent ?rep .

 ?rep ifcowl:RepresentationIdentifier ?label .

 ?label ifcowl:has_string "Axis" .

 ?rep ifcowl:Items ?rep_item .

 ?rep_item a ifcowl:IfcPolyline ;

 ifcowl:Points ?point_list .

 ?point_list ifcowl:hasListContent ?point1 .

 ?point_list ifcowl:isFollowedBy/ifcowl:hasListContent ?point2 .

 ?point1 ifcowl:Coordinates_of_IfcCartesianPoint ?p1xy .

 ?point2 ifcowl:Coordinates_of_IfcCartesianPoint ?p2xy .

 ?p1xy ifcowl:hasListContent/ifcowl:has_double ?p1x .

 ?p1xy ifcowl:isFollowedBy/ifcowl:hasListContent/ifcowl:has_double ?p1y .

 ?p2xy ifcowl:hasListContent/ifcowl:has_double ?p2x .

 ?p2xy ifcowl:isFollowedBy/ifcowl:hasListContent/ifcowl:has_double ?p2y .

 BIND (afn:sqrt((?p2x - ?p1x) * (?p2x - ?p1x) + (?p2y - ?p1y) * (?p2y - ?p1y)) as ?length)

 FILTER (?length > 3.0)

There is a large amount of complexity involved with querying seemingly

trivial information from building models in IFC. This stems from the

standard being permissive as it allows geometry to defined in my ways. In

addition, complexity is introduced by the objectified relationships that

introduce additional indirection to get to relevant information. By

introducing shortcuts to such data, the model can be made more idiomatic to

common linked data ontologies (Farias et al., 2015). Such shortcuts is also

something part of specific-purpose query language for IFC building models,

such as presented in (Mazairac and Beetz, 2013).

To summarize, there are three complicating factors illustrated here: 1)

the inference of a wall length in this case depends on the availability of an

‘axis’ geometry, which might not be defined, although dictated to exist in

textual form 2) for such a representation geometry may be defined in

different ways 3) ordered aggregates difficult are difficult to inspect and

query in SPARQL as they have to modelled as a tree structure in RDF

(Pauwels et al., 2015). Therefore the query in Listing 6 is only able to return

a wall length for the simple cases. As such, due to the combinatorial

10 DDSS 2016

complexity of these complications, a bottom-up approach to infer new

information is more suitable.

3. CONCLUSIONS

In order to come to an efficient automated rule checking workflow, the

technical aspects discussed in this paper need studied holistically and not in

isolation. By exploiting their complementary nature, rules can be encoded

formally, succinctly and expressively.

A crucial foundation for rule checking are the semantics introduced on

the schema level: in order to prevent false positives and negatives, elements

need to be classified correctly. Currently there are no or very limited

provisions in the IFC schema that actually guarantee this formally. As a

consequence elements are misclassified, or classified in overly broad or

meaningless categories, such as IfcBuildingElementProxy. Elements that are

misclassified result either in false negatives, as certain relevant checks are

not performed, or in false positives (as illustrated in the case of Figure 1),

because irrelevant checks are performed. Both are detrimental to the quality

of the rule checking process and therefore to the delivered artefact. For this

purpose, a large body of the documentation of the IFC standard, which

consists of hundreds of pages, needs to be translated into formal and

decidable statements.

Secondly, formal notations of explicitly encoded quantities are necessary

in order to guarantee that the available quantities are accurate. IFC is a

highly redundant data format: the length of a wall will typically be reflected

in many places within the schema, including space boundary geometries,

explicitly calculated quantities and different representations for the body

and axis of elements. The quality of a data schema can be described by

means of a minimal redundancy and maximum reliability (McLeod, 1995).

Without formalized connections between the different apprehensions of

attributes like the wall length, the amount of redundancy induces an

increased risk of errors when parts of a model get updated.

4. REFERENCES

Amor, R., 2015, "Analysis of the Evolving IFC Schema", in: Proceedings of the 32nd

International Conference of CIB W78, Eindhoven, The Netherlands, p. 39-48.

Eastman, C., Lee, J.-M., Jeong, Y.-S., and Lee, J.-K., 2009, "Automatic rule-based checking

of building designs", Automation in Construction 18(8), p. 1011-1033.

Methodologies for requirement

checking on building models

11

Farias, T.M. de, A. Roxin, and C. Nicolle, 2015, "IfcWoD, Semantically Adapting IFC Model

Relations into OWL Properties", in: proceedings of the 32nd CIB W78 Conference on

Information Technology in Construction, 2015, Eindhoven, Netherlands.

Khemiani, L., 2005, “CORENET e-PlanCheck: Singapore ’s Automated Code Checking

System”, AECbytes, Building the Future , 1–8.

Krijnen, T. and J. Beetz, 2016, "An assessment of linked data ontologies for use in the

AEC/FM domain", in: Proceedings of the 33nd International Conference of CIB W78,

Brisbane, Australia.

Krijnen, T. and M. Tamke, , 2015, "Assessing Implicit Knowledge in BIM Models with

Machine Learning", in: Modelling Behaviour, Springer International Publishing, p. 397-

406.

Lee, Y.C., C.M. Eastman, and W. Solihin, 2016, "An ontology-based approach for

developing data exchange requirements and model views of building information

modeling", Advanced Engineering Informatics 30(3), p. 354-367.

Mazairac, W. and J. Beetz, 2013, "BIMQL – An open query language for building

information models", Advanced Engineering Informatics 27(4), p. 444-456.

McLeod, R.J., 1995, Management Information Systems: a Study of Computer-Based

Information Systems, 6th Edition, Prentice-Hall, Englewood Cliffs, NJ.

Miller, G.A., 1995, "WordNet: a lexical database for English." Communications of the ACM

38.11, p. 39-41.

Navigli, R. and S.P. Ponzetto, 2012, "BabelNet: The automatic construction, evaluation and

application of a wide-coverage multilingual semantic network", Artificial Intelligence 193,

p. 217-250

Nawari, O., 2012, Automated Code Checking in BIM Environment, in: Proceedings of 14th

International Conference on Computing in Civil and Building Engineering

Palos, S., A. Kiviniemi, and J. Kuusisto, 2014, "Future perspectives on product data

management in building information modeling", Construction Innovation 14(1), p. 52–68.

Pauwels, P. and W. Terkaj, 2016, "EXPRESS to OWL for construction industry: Towards a

recommendable and usable ifcOWL ontology", Automation in Construction 63, p. 100-

133

Pauwels, P., W. Terkaj, T. Krijnen, and J. Beetz, 2015, "Coping with lists in the ifcOWL

ontology", in: Proceedings of the 22nd EG-ICE International Workshop, Eindhoven, The

Netherlands, p. 113-122.

Solihin, W. and C. Eastman, 2015, "Classification of rules for automated BIM rule checking

development", Automation in Construction 53, p, 69-82.

Solihin, W., C. Eastman, Y.-C. Lee, 2015, "Toward robust and quantifiable automated IFC

quality validation", Advanced Engineering Informatics, 29(3), p. 739-756

Terkaj, W. and A. Šojić, 2015, "Ontology-based representation of IFC EXPRESS rules: An

enhancement of the ifcOWL ontology", Automation in Construction 57, p. 188-201

Zhang, C., J. Beetz, and M. Weise, 2014, "Model view checking: automated validation for

IFC building models." eWork and eBusiness in Architecture, Engineering and

Construction: ECPPM.

	1. Introduction
	1.1 Current practice
	1.2 State of the art
	1.3 Problem statement

	2. Definition of a rule
	2.1 Relevance of concept libraries
	2.2 Relevance of query languages
	2.3 Relevance of schema semantics
	2.4 Relevance of Model View Definitions
	2.5 Relevance of reasoners

	3. Conclusions
	4. References

