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a b s t r a c t 

Iterative learning control (ILC) enables high performance for systems that execute repeating tasks. Norm- 

optimal ILC based on lifted system representations provides an analytic expression for the optimal feed- 

forward signal. However, for large tasks the computational load increases rapidly for increasing task 

lengths, compared to the low computational load associated with so-called frequency domain ILC de- 

signs. The aim of this paper is to solve norm-optimal ILC through a Riccati-based approach for a gen- 

eral performance criterion. The approach leads to exactly the same solution as found through lifted ILC, 

but at a much smaller computational load ( O(N) vs O(N 

3 ) ) for both linear time-invariant (LTI) and lin- 

ear time-varying (LTV) systems. Interestingly, the approach involves solving a two-point boundary value 

problem (TPBVP). This is shown to have close connections to stable inversion techniques, which are cen- 

tral in typical frequency domain ILC designs. The proposed approach is implemented on an industrial 

flatbed printer with large tasks which cannot be implemented using traditional lifted ILC solutions. The 

proposed methodologies and results are applicable to both ILC and rational feedforward techniques by 

applying them to suitable closed-loop or open-loop system representations. In addition, they are applied 

to a position-dependent system, revealing necessity of addressing position-dependent dynamics and con- 

firming the potential of LTV approaches in this situation. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

1.1. Iterative learning control in mechatronic applications 

Mechatronic systems can be accurately positioned using con-

trol. With feedback control the command signal is updated based

on past errors, namely the difference between the measured and

desired output. With feedforward control information of the de-

sired output is used to anticipate on future errors which enables

accurate positioning. In this paper, the main focus is on learning
Abbreviations: ILC, iterative learning control; LTI, linear time-invariant; LTV, lin- 

ear time-varying; LQ, linear quadratic; RAM, random-access memory; TPBVP, two- 

point boundary value problem; ZPETC, zero phase error tracking control. 
� This research is supported by the Dutch Technology Foundation STW, carried 

out as part of the Robust Cyber-Physical Systems (RCPS) project (no. 12694); and 

Innovational Research Incentives Scheme under the VENI grant “Precision Motion: 

Beyond the Nanometer” (no. 13073) awarded by NWO (The Netherlands Organiza- 

tion for Scientific Research). 
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uch a feedforward command signal from data via iterative learn-

ng control (ILC). 

ILC algorithms often achieve exceptional performance for sys-

ems that operate repetitively, i.e., systems that perform the same

ask over and over again. ILC [1,2] exploits the repetitive behav-

or of the system by learning from past executions. Many success-

ul ILC applications in mechatronics have been reported, includ-

ng wafer scanners [3,4] , H-drive pick and place machines [5] , and

rinting systems [6,7] . 

An important class in ILC is norm-optimal ILC [8] , where the

ptimal feedforward is determined on the basis of a performance

riterion. When representing the system in the lifted framework

9] , an analytic expression can be directly obtained for the optimal

LC controller [10] . However, the implementation of lifted ILC in-

olves multiplication and inversion of N × N -matrices, with N the

ask length. Since the matrices scale with the task length, lifted

LC is impractical for large tasks. The need for computationally ef-

cient techniques is well-recognized, see, for example, [11] . In ad-

ition, efficient techniques for the computation of the ILC conver-

ence condition are developed, see, for example, [12] . 

http://dx.doi.org/10.1016/j.mechatronics.2016.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechatronics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2016.07.001&domain=pdf
mailto:j.c.d.v.zundert@tue.nl
http://dx.doi.org/10.1016/j.mechatronics.2016.07.001
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.2. Iterative learning control for large tasks 

Several approaches in ILC have been used that have a sig-

ificantly smaller computational burden compared to standard

orm-optimal ILC algorithms. On the one hand, norm-optimal ILC

as been extended in several ways. Basis functions in lifted ILC

13,14] lead to smaller computational burden. However, these basis

unctions are typically used to enhance extrapolation properties of

LC, at expense of performance. Alternatively, the Toeplitz/Hankel

tructure of the involved matrices can be exploited, see [15] , as is

one in [16] . 

On the other hand, alternative approaches to ILC are typically

ased on (non-optimal) two step approaches. These approaches in-

lude a learning filter obtained via typically noncausal plant inver-

ion techniques and is completed by a robustness filter to guaran-

ee convergence of the iteration. For instance, preview based con-

rol approaches such as zero phase error tracking control (ZPETC)

re often applied in ILC. ZPETC was originally developed for non-

ausal feedforward compensation of non-minimum phase systems

17] . See [18] for a multivariable extension and [19] for related

ethods. Such ZPETC-related algorithms enable the design of non-

ausal filters and have computationally complexity O(N) . However,

hey typically introduce approximation errors and are only applica-

le to linear time-invariant (LTI) systems. 

Interestingly, stable inversion [20–22] has been abundantly

sed in ILC and feedforward, see, for example, [14,18,23,24] for

igh-tech motion control applications, and [25] for multivariable

xtensions. Such inversion methods enable noncausal inverses for

quare multivariable systems and immediately generalize to linear

ime-varying (LTV) systems. These methods essentially provide an

xact inverse over a bi-infinite time horizon, but still introduce ap-

roximation errors for finite tasks. These errors are caused by in-

ompatible initial conditions in the finite time case as a result of

ixed causal/noncausal filtering. 

.3. Contributions 

Although several frameworks and associated algorithms have

een developed for ILC, there seems to be a trade-off between

omputational requirements and accuracy. One either has to ac-

ept a large computational time or approximation errors for non-

ptimal approaches. The aim of the present paper is to develop

n optimal design algorithm for joint design of the learning and

obustness filter. The algorithm exploits noncausality, is directly

pplicable to LTV systems, and addresses the finite time inter-

al behavior through LTV designs for both LTI and LTV systems,

hile providing computational complexity O(N) . In addition, the

nderlying solution involves solving a two-point boundary value

roblem (TPBVP). This is shown to have a direct connection to

TI/LTV stable inversion techniques, revealing very similar under-

ying mechanisms and proving a unified framework for both ap-

roaches. 

The main contribution of this paper is to provide a system-

tic resource-efficient norm-optimal ILC framework which is im-

lementable for large tasks, and is applicable to both LTI and LTV

ystems. The following five sub-contributions are identified. 

I. The resource-efficient ILC approach is presented for LTI and LTV

systems with general performance criteria, including deriva-

tions and proofs. 

II. Connections to stable inversion are established, revealing very

similar underlying mechanisms. These inversion techniques

have recently received significant attention in ILC and feed-

forward. This in turn leads to a unified framework of norm-

optimal ILC and stable inversion. Hence the techniques in the

present paper apply to a large class of LTI/LTV ILC algorithms. 
II. Through application of the resource-efficient ILC approach on

an industrial flatbed printer with large tasks, the practical rele-

vance is demonstrated as lifting techniques are unsuitable. 

V. The relevance of LTV feedforward and ILC is demonstrated on a

position-dependent printer system, confirming the necessity to

address position-dependent effects in this situation. 

V. The computational load of the lifted ILC and the resource-

efficient ILC approach are compared, revealing the significant

advantages of the proposed approach. 

The proposed approach is foreseen to facilitate the resource-

fficient implementation of optimal ILC for LTI/LTV systems. Due to

ts inherent connection with stable inversion, it also enables the di-

ect implementation of both square and non-square rational feed-

orward controllers [26,27] . Finally, it is foreseen for use as model

nversion technique in frequency domain ILC designs. 

.4. Related results 

Several results related to the ones presented here have ap-

eared in the literature. As in typical ILC designs, the proposed ap-

roach is based on noncausal feedforward techniques for reference

racking, but then applied iteratively and on a closed-loop system

ransfer function. This is similar to applying ZPETC and stable in-

ersion. In this paper, the approach is based on the classical linear

uadratic (LQ) tracking controller [28, Ch. 9] , which is well-known

o be noncausal. It builds on the ILC approaches in [29,30] and

xploits optimal control theory for computing the optimal feed-

orward signal. Since the state-space instead of the lifting frame-

ork is used for describing the system, the computational bur-

en is much smaller. In particular, it extends the result in [29] for

 more general performance criterion (including input weighting)

nd LTV systems. In [30] , a related theoretical development is pre-

ented, linked to sampled-data ILC with intersample behavior. Fur-

her, related results are developed in [31] , where a different LQ

riterion is posed and in [32, Ch. 6] , where an H ∞ 

-type criterion

s employed. 

The LTV case is of particular importance for certain systems, in-

luding the position-dependent printer considered here, but also

n very different applications, including nuclear fusion [33] . More

eneral criteria with dedicated optimizations can be found in [34] .

inally, in [35] , stable inversion is extended to deal with non-

quare systems to address non-square systems with more actua-

ors using infinite horizon LQ theory. In the present paper, possi-

le truncation effects for finite time implementations are explicitly

ddressed. It thereby possibly extends the results in [35] for situa-

ions where these boundary effects have a significant influence on

he performance, as occasionally occurs in ILC. 

.5. Outline 

The outline of this paper is as follows. In Section 2 , ILC and

orm-optimal ILC are formulated and the well-known analytic so-

ution of lifted norm-optimal ILC is presented. Analysis of this so-

ution reveals the computational challenges that come with ac-

ual implementation and motivates the development of a resource-

fficient ILC approach. In Section 3 , the resource-efficient ILC ap-

roach for LTI and LTV systems is presented based on LQ tracking

hich forms contribution I. Also, in Section 3 , connections to sta-

le inversion and a simulation case study of both approaches are

resented, leading to contribution II. Many systems, including the

osition-dependent flatbed printer considered in this paper, can be

odeled as LTV systems. The experimental setup of the flatbed

rinter is described in Section 4 . The developed resource-efficient

LC approach can directly be applied on LTV models which signif-

cantly enhances the performance for LTV systems, as shown in
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Fig. 1. ILC control diagram. The goal for trial j + 1 is to minimize the error e j+1 by 

design of feedforward f j+1 . 
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Section 5 which constitutes contribution III. In Section 6 , the po-

tential of resource-efficient ILC is demonstrated on the industrial

flatbed printer involving large tasks ( N = 10 0 , 0 0 0 ), forming contri-

bution IV. Finally, the computational load of resource-efficient ILC

is compared with that of lifted ILC in Section 7 to illustrate the

significant saving in computational time, leading to contribution V.

Conclusions are given in Section 8 . 

1.6. Notation 

Systems are linear, in discrete time, have n i inputs and n o out-

puts, and are indicated in boldface, e.g., H . Let x [ k ] denote a signal

x at time k . Let h i j [ k, l] ∈ R 

n o ×n i be the impulse response of the

time-varying system H 

ij [ k ] from the j th input u j [ l ] at time l , to the

i -th output y i [ k ] at time k . The output y i [ k ] of the response of H 

ij [ k ]

to input u j is given by y i [ k ] = 

∑ ∞ 

l= −∞ 

h i j [ k, l ] u j [ l ] . Let N ∈ Z 

+ de-

note the trial length, i.e., the number of samples per trial. Many

results directly generalize to the continuous time case. 

Variables related to the lifted framework, also called supervec-

tor notation [2] , are underlined. Define the stacked input signal

u [ k ] = 

[
u 1 [ k ] u 2 [ k ] · · · u n i [ k ] 

]� ∈ R 

n i ×1 and similarly y [ k ] ∈
R 

n o ×1 and h [ k, l] ∈ R 

n o ×n i . Assuming u [ l] = 0 for l < 0 and l > N −1 ,

then the input-output relation in lifted notation is given by ⎡ 

⎢ ⎢ ⎣ 

y [0] 

y [1] 

. . . 
y [ N − 1] 

⎤ 

⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
y 

= 

⎡ 

⎢ ⎢ ⎣ 

h [0 , 0] h [0 , 1] . . . h [0 , N −1] 
h [1 , 0] h [1 , 1] . . . h [1 , N −1] 

. . . 
. . . 

. . . 
. . . 

h [ N − 1 , 0] h [ N − 1 , 1] . . . h [ N − 1 , N − 1] 

⎤
⎥⎥⎦

︸ ︷︷ ︸ 
H 

×

⎡ 

⎢ ⎢ ⎣ 

u [0] 
u [1] 

. . . 
u [ N − 1] 

⎤ 

⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
u 

. 

Let ‖ x ‖ W 

:= x � W x , where x ∈ R 

Nn x and W = W 

� ∈ R 

N n x ×N n x . W is

positive definite ( W � 0 ) iff x � W x > 0 , ∀ x 	 = 0 and positive semi-

definite ( W 
 0 ) iff x � W x ≥ 0 , ∀ x . In case the system H is LTI, then

h ij [ k, l ] reduces to h i j [ k − l] , i.e., only depends on the relative time,

and in which case H is Toeplitz. 

2. Problem formulation 

In this section, the problem is formulated by defining the ILC

design problem and the norm-optimal performance criterion, and

deriving and analyzing the analytic optimal solution for lifted ILC.

This reveals the computational challenges of this solution, which

in turn motivates the development of the resource-efficient ILC ap-

proach. 

2.1. ILC and norm-optimal ILC 

Consider the closed-loop configuration depicted in Fig. 1 , with

P the n i -input, n o -output system to control with outputs y j+1 , C
 stabilizing feedback controller, and e j+1 = r − y j+1 the error sig-

al to be minimized. For repetitive tasks, the reference signal r has

nite length and is independent of j . Each repetition/execution is

alled a trial and indicated with a subscript j = 0 , 1 , 2 , . . . . In iter-

tive learning control, the goal is to minimize error e j+1 by design

f the n i -dimensional feedforward f j+1 based on data of previous

rials ( e j , f j ). Typically, approximate models P and C are used. 

In lifted notation (see Section 1 ), the error at trial j is 

 j = S r − SP f j 

= 

˜ r − J f j , 

ith (output) sensitivity S = 

(
I Nn o + P C 

)−1 
, (output) process sensi-

ivity J = SP , and ˜ r = S r . Since ˜ r is trial-invariant, it follows that 

 j+1 = 

˜ r − J f j+1 

= e j − J ( f j+1 − f j ) . (1)

ence, to minimize e j+1 , f j+1 can be based on a model J and data

 j , f j . 

.2. Lifted norm-optimal ILC 

An important class of ILC is norm-optimal ILC in which f j+1 

ollows from minimizing a performance criterion as given in

efinition 1 . 

efinition 1 (Performance criterion) . A general performance crite-

ion in norm-optimal ILC is given by 

 ( f j+1 ) = ‖ e j+1 ‖ W e 
+ ‖ f j+1 ‖ W f 

+ ‖ f j+1 − f j ‖ W � f 
, (2)

ith W e � 0 , W f , W � f 
 0 , and e j+1 given by (1) . 

Since e j+1 is affine in f j+1 , J ( f j+1 ) is quadratic in f j+1 and

ence the optimal feedforward signal f ∗
j+1 

can be computed ana-

ytically, as in, e.g. [10] , from 

dJ ( f j+1 ) 

d f j+1 

∣∣∣∣
f j+1 = f ∗j+1 

= 0 (3)

ith solution provided by Theorem 2 . 

heorem 2 (Solution lifted ILC) . Given J � W e J + W f + W � f � 0 , an

TI or LTV model J , and measurement data f j , e j , the optimal f ∗
j+1 

or the performance criterion of Definition 1 is 

f ∗j+1 = Q f j + L e j , (4)

ith 

= 

(
J � W e J + W f + W � f 

)−1 
, 

Q = �
(
J � W e J + W � f 

)
, 

L = � J � W e . 

(5)

roof. Substitute (1) in (2) and solve (3) for f ∗
j+1 

= f j+1 . �

Two key observations can be made from Theorem 2 . First, the

olution of Theorem 2 is time-varying ( Q , L not Toeplitz), even if

odel J is LTI ( J Toeplitz). This is caused by taking the transpose J � 

nd the inverse �. Second, the solution in Theorem 2 is noncausal

 Q , L not necessarily lower triangular), even if the model J is causal

 J lower triangular). 

.3. Computational challenges in lifted ILC 

The derivation and calculation of f ∗
j+1 

in Theorem 2 is elemen-

ary and involves straightforward matrix algebra. However, its di-

ect implementation may be challenging from a computational per-

pective. For instance, the Nn × Nn matrix inversion in � via the
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auss-Jordan method has time complexity w = 3 , i.e., the compu-

ational time grows as O(N 

3 ) , see [36] . Although many methods

ave been developed to reduce the computational time, currently

 time complexity of w = 2 . 4 seems to be the limit [36] . Also the

atrix multiplications via Schoolbook matrix multiplication grow

s O(N 

3 ) . Even when pre-computing Q and L off-line, a direct im-

lementation of Theorem 2 is impractical when N becomes large

ince matrix-vector multiplication (via Schoolbook matrix multi-

lication) grows as O(N 

2 ) . These observations are experimentally

emonstrated in Section 6 , and intensively analyzed in Section 7 . 

In lifted ILC, matrices with dimensions in the order of N × N

re used to describe the system J and the fact that a resource-

fficient system with McMillan degree n x underlies this input-

utput system is not recognized. Since typically n x � N , lifted

LC is a resource-inefficient norm-optimal ILC approach, as will

e shown in Section 7 . In the following section, an alternative to

heorem 2 is presented that builds on well-known results in op-

imal control. The approach exploits state-space descriptions and

rovides a resource-efficient norm-optimal ILC approach. 

. Resource-efficient ILC 

In this section, the resource-efficient ILC approach is presented,

.e., contribution I. The approach is an alternative to the lifted

LC approach (see Theorem 2 ) providing identical optimal perfor-

ance, but at significantly smaller computational load. This makes

esource-efficient ILC practical for experimental implementation of

ong tasks, as is demonstrated in Section 6 . The difference in com-

utational load is analyzed and demonstrated in Section 7 . In the

urrent section, also connections and a simulation comparison to

table inversion techniques are presented, constituting contribu-

ion II. 

emark 3. In the remainder, the argument k is suppressed for the

ystem matrices. This is done to emphasize that the optimal ILC

ontroller for an LTI system is LTV, which is an important property

f such finite time optimal ILC controllers. 

.1. State-space description 

In resource-efficient ILC the system J is described using a state-

pace description as provided by Lemma 4 . 

emma 4. Let the LTV system P and the feedback controller C in

ig. 1 be described by the state-space realizations 

 

s = 

[
A P B P 

C P D P 

]
and C 

s = 

[
A C B C 

C C D C 

]
. (6) 

hen, a state-space realization of the process sensitivity J is given by 

 

s = 

[
A B 

C D 

]
, 

ith 

A = 

[
A P − B P ( I n i + D C D P ) 

−1 D C C P B P ( I n i + D C D P ) 
−1 C C 

−B C ( I n o + D P D C ) 
−1 C P A C − B C ( I n o + D P D C ) 

−1 D P C C 

]
, 

B = 

[
B P ( I n i + D C D P ) 

−1 

−B C ( I n o + D P D C ) 
−1 D P 

]
, 

C = 

[
( I n o + D P D C ) 

−1 C P ( I n o + D P D C ) 
−1 D P C C 

]
, 

 = (I n o + D P D C ) 
−1 D P , 

nd for D P = 0 

 

s = 

[
A B 

C D 

]
= 

[ 

A P − B P D C C P B P C C B P 

−B C C P A C 0 

C P 0 0 

] 

. 
roof. See Appendix A . �
.2. Optimal solution 

Typically, diagonal performance weights are chosen in

efinition 1 , see, e.g., [10,13] , i.e., W e = diag (w e [ k ]) with

 e [ k ] ∈ R 

n o ×n o , W f = diag (w f [ k ]) with w f [ k ] ∈ R 

n i ×n i , and

 � f = diag (w � f [ k ]) with w � f [ k ] ∈ R 

n i ×n i . For this choice,

efinition 1 is equivalent to Definition 5 . 

efinition 5 (Performance criterion diagonal weights) . The perfor-

ance criterion with diagonal weights is given by 

 ( f j+1 ) = 

N−1 ∑ 

k =0 

e � j+1 [ k ] w e [ k ] e j+1 [ k ] + f � j+1 [ k ] w f [ k ] f j+1 [ k ] 

+ 

(
f j+1 [ k ] − f j [ k ] 

)� 
w � f [ k ] 

(
f j+1 [ k ] − f j [ k ] 

)
(7) 

ith w e [ k ] > 0, w f [ k ] ≥ 0, w �f [ k ] ≥ 0, ∀ k . 

Resource-efficient ILC determines the optimal feedforward for

he performance criterion of Definition 5 and is provided by

heorem 6 . 

heorem 6 (Solution resource-efficient LTI/LTV ILC) . Let the model

 of the process sensitivity have the LTI/LTV state-space realization ( A,

, C, D ), with n i inputs, n o outputs, and state dimension n x , see also

emma 4 . Then, for the performance criterion of Definition 5 , f ∗
j+1 

is

he output of the state-space system 

A − BL [ k ] −BL f [ k ] BL e [ k ] BL g [ k ] 
−L [ k ] I n i − L f [ k ] L e [ k ] L g [ k ] 

]
, (8) 

ith zero initial state for input 

[ 

f j [ k ] 

e j [ k ] 

g j+1 [ k + 1] 

] 

, where 

L [ k ] = 

(
γ −1 [ k ] + B 

� P [ k + 1] B 

)−1 (
D 

� w e [ k ] C + B 

� P [ k + 1] A 

)
, 

 f [ k ] = 

(
γ −1 [ k ] + B 

� P [ k + 1] B 

)−1 
w f [ k ] , 

L e [ k ] = 

(
γ −1 [ k ] + B 

� P [ k + 1] B 

)−1 
D 

� w e [ k ] , (9) 

L g [ k ] = 

(
γ −1 [ k ] + B 

� P [ k + 1] B 

)−1 
B 

� , 

γ [ k ] = 

(
D 

� w e [ k ] D + w f [ k ] + w � f [ k ] 
)−1 

, 

ith 

g j+1 [ k ] = 

(
A 

� − K g [ k ] B 

� )g j+1 [ k + 1] + C � w e [ k ] e j [ k ] 

+ K g [ k ] w f [ k ] f j [ k ] , (10) 

 j+1 [ N] = 0 n x ×1 , 

here 

 g [ k ] = 

(
A 

� − C � w e [ k ] Dγ [ k ] B 

� )P [ k + 1] 

×
(
I n x + Bγ [ k ] B 

� P [ k + 1] 
)−1 

Bγ [ k ] , 

nd P [ k ] the solution of the matrix difference Riccati equation 

P [ k ] = 

(
A 

� − C � w e [ k ] Dγ [ k ] B 

� )P [ k + 1] 

×
(

I n x −B 

(
γ −1 [ k ] + B 

� P [ k + 1] B 

)−1 
B 

� P [ k + 1] 

)
×
(
A − Bγ [ k ] D 

� w e [ k ] C 
)

+ C � w e [ k ] C − C � w e [ k ] Dγ [ k ] D 

� w e [ k ] C, 

 [ N] = 0 n x ×n x . (11) 

roof. See Appendix B . �

emark 7. For D = 0 and w f [ k ] + w � f [ k ] = R, (11) reduces to 

 [ k ] = C � w e [ k ] C + A 

� P [ k + 1] A 

−A 

� P [ k + 1] B 

(
B 

� P [ k + 1] B + R 

)−1 
B 

� P [ k + 1] A 

hich is the well-known discrete time dynamic Riccati equation. 
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Note that time index k is explicitly indicated only for some ele-

ments in (8) , while it is suppressed for others. The main reason is

to illustrate the following interesting aspects, see also Remark 3 . If

P and C are LTI, then optimal ILC in (8) is LTV, and time-variance

of any of the matrices in (6) affects all elements in (8) through

L [ k ], L f [ k ], L e [ k ], L g [ k ]. Note that LTV designs are a key advantage

for LTI systems, since these essentially handle the boundary effects

for finite time trials [37] . To see this, by definition of the optimal

feedforward, the result of Theorem 6 is the same as the result of

Theorem 2 , computed using a different approach. It is well-known

that lifted ILC allows for time-varying and noncausal feedforward

signals. This is reflected in the matrices Q and L of (5) being not

Toeplitz and not lower-triangular, respectively. These aspects can

also be observed in the results of Theorem 6 : the dependence on

k of the state-space matrices (8) reflects time-variance, whereas

solving part of the equations backwards in time reflects noncausal-

ity and is closely related to stable inversion techniques. 

Algorithm 8 provides a step-by-step procedure for implement-

ing the results of Theorem 6 . Note that step 1) can be performed

off-line and steps 2) and 3) form the trial update. 

Algorithm 8 The resource-efficient f ∗
j+1 

is calculated as: 

1. Solve the matrix difference Riccati equation (11) backwards in

time. 

2. Calculate g j+1 [ k ] by solving (10) backward in time. 

3. Calculate f ∗
j+1 

[ k ] forward in time as the output of state-space

system (8) . 

It should be noted that the solutions of Theorem 2 and

Theorem 6 are exactly the same. Hence, no performance is sac-

rificed, however the computational approaches do differ. In partic-

ular, the calculations in Theorem 6 scale with N instead of N 

3 as

in Theorem 2 , see also Section 2.3 . Therefore the resource-efficient

ILC approach delivers a significant reduction in computational cost

at a small expense of diagonal time-varying weighting filters, see

Definition 5 . As a result, resource-efficient ILC is well-suited for

large tasks as will be demonstrated in Section 6 by implementing

the approach on an industrial setup. Next, connections to stable

inversion are highlighted. 

3.3. Stable inversion 

Theorem 6 reveals that solutions for resource-efficient ILC for

both LTI and LTV systems are O(N) . Interestingly, the results and

proof of Theorem 6 have a very close connection to algorithms

used in, i.a., frequency domain ILC designs and rational feedfor-

ward control [27] . In particular, in both cases a rational model H

has to be inverted as F = H 

−1 , where H = P for rational feedfor-

ward and H = J −1 = (SP ) −1 for the ILC structure in Section 2 . Let H

be square, invertible, and have state-space realization ( A H [ k ], B H [ k ],

C H [ k ], D H [ k ]), then, 

F 
s = 

[
A H [ k ] − B H [ k ] D 

−1 
H 

[ k ] C H [ k ] B H [ k ] D 

−1 
H 

[ k ] 

−D 

−1 
H 

[ k ] C H [ k ] D 

−1 
H 

[ k ] 

]
. (12)

Note that the system F in (12) may be unstable. For instance, in

the case where H is LTI and has non-minimum phase zeros, then F

has unstable poles. 

A traditional solution in feedforward and ILC to deal with such

unstable poles is ZPETC [17] , which leads to an approximate in-

verse that is noncausal with a certain finite preview. However, it is

by definition an approximation, see also [19] where different ap-

proximations are evaluated, and does not address the finite time

aspect of practical feedforward and ILC implementations. In addi-

tion, extension to multivariable systems is practically not trivial,

see [18] for results in this direction. 
In stable inversion, the unstable part is seen as a noncausal

perator and solved backwards in time as a stable system. For

he general time-varying system (12) , this means that the sys-

em has to be split in a stable and unstable part, which is not

rivial for time-varying systems [38,39] . If such a split is found,

heorem 9 can be applied. When poles are on the unit circle, the

echniques in [40,41] can be exploited. Note that if the state matrix

f F in (12) is independent of k , then such a split follows directly

rom an eigenvalue decomposition as in Corollary 10 . 

heorem 9. Let an LTV system be split as 

x s [ k + 1] = A ss [ k ] x s [ k ] + A su [ k ] x u [ k ] + B s u [ k ] , 

 u [ k + 1] = A us [ k ] x s [ k ] + A uu [ k ] x u [ k ] + B u u [ k ] , (13)

y [ k ] = 

[
C s [ k ] C u [ k ] 

][x s [ k ] 
x u [ k ] 

]
+ D [ k ] u [ k ] , 

here x s [ k ] is picking up the stable part with x s [0] = x 0 s and x u [ k ] the

nstable part with x u [ N] = 0 . Then, to find the bounded solution y [ k ],

olve for P [ k ] backward in time using 

P [ k ] = ( A uu [ k ] − P [ k + 1] A su [ k ] ) 
−1 

(P [ k + 1] A ss [ k ] − A us [ k ]) , 

 [ N] = 0 , (14)

nd for g [ k ] backward in time using 

g[ k ] = ( P [ k + 1] A su [ k ] − A uu [ k ] ) 
−1 

×( B u [ k ] u [ k ] − P [ k + 1] B s [ k ] u [ k ] − g[ k + 1] ) , 

[ N] = 0 . (15)

hen, x s [ k ] can be solved forward in time from 

 s [ k + 1] = ( A ss [ k ] + A su [ k ] P [ k ] ) x s [ k ] + B s [ k ] u [ k ] + A su [ k ] g[ k ] 

x s [0] = x 0 s , 

nd x u [ k ] follows from 

 u [ k ] = P [ k ] x s [ k ] + g[ k ] . 

utput y [ k ] follows directly from 

 [ k ] = [ cC s [ k ] C u [ k ]] 

[
x s [ k ] 
x u [ k ] 

]
+ D [ k ] u [ k ] . 

roof. See Appendix C . �

orollary 10. For systems F with time-invariant state matrix, the fol-

owing procedure can be followed. 

1. Let F have the state-space realization 

x [ k + 1] = Ax [ k ] + B [ k ] u [ k ] , 

y [ k ] = C[ k ] x [ k ] + D [ k ] u [ k ] , 

with x [ k ] = x 0 . 

2. Introduce the state transformation 

x [ k ] = T 

[
x s [ k ] 
x u [ k ] 

]
, 

where T contains eigenvectors of A as columns such that [
x s [ k + 1] 
x u [ k + 1] 

]
= 

[
A s 0 

0 A u 

][
x s [ k ] 
x u [ k ] 

]
+ 

[
B s [ k ] 
B u [ k ] 

]
u [ k ] , 

y [ k ] = 

[
C s [ k ] C u [ k ] 

][x s [ k ] 
x u [ k ] 

]
+ D [ k ] u [ k ] , 

with λ(A s ) ⊂ D̄ and λ(A u ) ∩ D̄ = ∅ , where D̄ is the closed unit

disk and λ( · ) the set of eigenvalues, i.e., all stable poles are con-

tained in A s and all unstable poles in A u . 
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Fig. 2. The flexible cart system, consisting of a single mass mounted on two spring- 

damper combinations, is subject to input force F and has translation and rotation 

freedom x and φ, respectively. Position y is the output. 

Table 1 

Parameter values of the flexible cart system. 

Parameter Symbol Value Unit 

Mass m 8 kg 

Inertia I 0 .0133 kgm 

2 

Spring constant k 10 4 N/m 

Damping constant d 10 Ns/m 

Length l 0 .1 m 
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3. Solve 

x s [ k + 1] = A s x s [ k ] + B s [ k ] u [ k ] , x s [0] = x 0 s 

forward in time, 

x u [ k + 1] = A u x u [ k ] + B u [ k ] u [ k ] , x u [ N] = x N u 

backward in time via 

x u [ k ] = (A u ) 
−1 x u [ k + 1] − (A u ) 

−1 B u [ k ] u [ k ] . 

Then, y [ k ] follows directly from 

y [ k ] = [ C s [ k ] C u [ k ]] 

[
x s [ k ] 
x u [ k ] 

]
+ D [ k ] u [ k ] . 

emark 11. The result of Corollary 10 is a special case of

heorem 9 with A ss [ k ] = A s , A su [ k ] = 0 , A us [ k ] = 0 , A uu [ k ] = A u ,

ielding P [ k ] = 0 , ∀ k and x u [ k ] = g[ k ] . 

emark 12. For motion control systems the states typically repre-

ent time-derivatives of the position such as velocity and accelera-

ion. Hence, if the system is initially at rest, then x 0 s = 0 . The termi-

al condition x N u should ideally be chosen such that x u [0] matches

ith x [0]. It can, however, not be derived a priori from x u [0] since

his requires simulation of the unstable system. 

A key observation is that both the results in Theorem 6, Theo-

em 9 , and Corollary 10 involve a two-point boundary value prob-

em. In addition, a very similar sweep method is used for the ac-

ual solution, albeit applied to a system with smaller dimension

n case of Theorem 9 and Corollary 10 . The following remarks are

ppropriate. 

• The stable inversion approach provides an exact inverse in the

case where the initial conditions are taken at x s [ −∞ ] and x u [ ∞ ]

in Theorem 9 . In the case where they are finite, as is specified

in Theorem 9 and Corollary 10 , then this may lead to an in-

correct initial state, leading to an inexact inverse and boundary

effects. These boundary effects depend on the location of the

non-minimum phase zeros and can be mitigated if the preview

length is extended, i.e., by preceding the input with zeros, see,

e.g., [42] , or by using an approach as in Theorem 6 . 

• The stable inversion technique delivers an LTI inverse in

case where the system is LTI, whereas the approach in

Theorem 6 (i.e., LQ tracking based) generally leads to an LTV

solution even if the original system is LTI. 

• In case the original system is LTV, then notice that time vari-

ance of any of the entries, i.e. A, B, C , or D , implies that the in-

verse has a time-dependent state matrix, see F in (12) , in which

case Theorem 9 has to be used instead of the simpler version

in Corollary 10 . This in turn necessitates the dichotomic split

in stable and unstable dynamics in (13) . This split is not neces-

sary in the case Theorem 6 is applied, which may be preferred

in practical applications, e.g., systems with varying sensor loca-

tions or actuators, such as the moving-mass mechatronic stage

in [43] . 

• Both Theorem 9 and Corollary 10 require that D H is invert-

ible. This requires that H is square. In the case that D H is non-

invertible, additional steps of preview can be added, i.e., for-

ward shift operators, as is done in, e.g., ZPETC [17] . 

• In contrast to stable inversion in Theorem 9 and Corollary 10 ,

the optimal approach in Theorem 6 does not require the system

to be square or strictly proper due to the input weighting. As a

result, it also applies to next-generation motion systems where

additional sensors and actuators will be exploited [43, sec. 1] ,

[44] . 

• Theorem 6 is very closely related to LQ optimal control, for

which it is well-known that the LQ solution mirrors the unsta-

ble poles with respect to the unit disc, see also [45, sec. 6.1] for
vanishing input weight. As a result, it is very closely related

to the solution of the stable inversion approach in Theorem 9 ,

where essentially a slightly different split is made. Notice that

in this case, the TPBVP in Theorem 6 is twice the size of the

one in Theorem 9 . In this case, both solutions are present in

the TPBVP, where a suitable selection is made in standard feed-

back control. Interestingly, the solution to the stable inversion

problem is thus contained in the LQ tracking solution, where a

different selection is made. 

• Stable inversion can also be directly seen in an input-output

setting. In the LTI case, H is decomposed as H stab , H unstab , which

essentially can be solved using a bilateral instead of a unilateral

Laplace/ Z -transform [46] , see also [47, sec. 1.5] . 

.4. Resource-efficient ILC and stable inversion 

The stable inversion techniques presented in the previous sec-

ion can be used to determine an exact bounded inverse of a non-

inimum phase system. In the previous section, it is highlighted

hat these techniques are very similar to those used in the pro-

osed resource-efficient ILC solution, see Section 3.2 . In particular,

or vanishing input weighting, the resource-efficient ILC solution

onverges to the optimal, possibly noncausal, inverse solution, as

s shown in this section via a simulation example. 

Consider the mechanical system shown in Fig. 2 , with parame-

ers listed in Table 1 . 

The continuous -time state-space realization ( A c , B c , C c , D c ) of the

inearized system dynamics with input F , state q = [ x ˙ x φ ˙ φ] 
� 
,

nd output y is 

A c B c 

C c D c 

]
= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 1 0 0 0 

0 0 0 0 

1 
m 

0 0 0 1 0 

0 0 − 1 
2 

kl 2 

I 
− 1 

2 
dl 2 

I 
1 
2 

l 
I 

1 0 − 1 
2 

l 0 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

ssuming zero-order-hold on the input, system P has discrete

tate-space realization 

 

s = 

[
A B 

C D 

]
= 

[
e A c h A 

−1 
c (A − I) B c 

C c D c 

]
, 

ith sampling interval h = 0 . 001 s. The system is in open-loop, i.e.,

 = 0 in Fig. 1 , with reference trajectory r as depicted in Fig. 3 a.
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Fig. 3. Regular inversion yields an unbounded f . The error with stable inversion is 

larger than for resource-efficient ILC due to the nonzero unstable state at t = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Regular inversion yields an unbounded f . Preview information significantly 

reduces the error for stable inversion. 
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The resulting system SP has one non-minimum phase zero and no

direct feedthrough ( D = 0 ). Since D = 0 , stable inversion requires

additional preview steps, see also the fourth remark at the end of

the previous section. Note that preview information is not required

for resource-efficient ILC. 

Due to the non-minimum phase zero, direct inversion yields

an unbounded response f , see Fig. 3 b. With stable inversion, i.e.,

Corollary 10 , bounded input f and error e shown in Fig. 3 b and

Fig. 3 c are obtained, respectively. By selecting w � f [ k ] = 0 , ∀ k in

resource-efficient ILC, see Theorem 6 and Algorithm 8 , one-step

convergence of f is obtained. The result for w e [ k ] = 1 , w f [ k ] =
10 −12 , w � f [ k ] = 0 , ∀ k , is also shown in Fig. 3 b and Fig. 3 c. The

small error indicates the high quality of the inverse. 

Due to the finite-length task, the solution for stable inversion

is not exact. The inverse system SP −1 contains one unstable state

which is simulated as a stable system backwards in time with
ero terminal condition, see also Corollary 10 . The evolution of

he unstable state is depicted in Fig. 3 d. For determining the re-

ponse of system SP , zero initial state is assumed. However, since

he unstable state of SP −1 , see Fig. 3 d, is not exactly zero at t = 0

 x u (t = 0) = −0 . 0158 ), this assumption is violated resulting in non-

xact output as shown in Fig. 3 c. 

Consider the case where preview information is available, i.e.,

he reference is zero for t < 0, then the unstable state converges to

ero for decreasing t since the system is stable in backward time.

he result when N pre = 50 samples are introduced prior to the

eference task of Fig. 3 is shown in Fig. 4 . Here, x u (t = −0 . 05) =
1 . 73 · 10 −4 . This confirms that for N pre → ∞ exact results are ob-

ained. 

This simulation case study shows that stable inversion yields

on-exact results for finite-length tasks, whereas the proposed

esource-efficient approach handles finite time conditions approxi-

ately. 

. Experimental setup: industrial flatbed printer 

In the next sections, the resource-efficient ILC approach intro-

uced in the previous section is validated on an industrial printer,

amely the Océ Arizona 550 GT flatbed printer shown in Fig. 5 . 

In contrast to conventional consumer printers, the medium on

he flatbed printer is fixed on the printing surface using vacuum

nd the print heads move in two directions. The print heads are

ocated in the carriage which can move in one direction over the

antry, which moves in perpendicular direction over the print-

ng surface. The moving mass of the carriage is approximately
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Fig. 5. Industrial flatbed printer. The print heads of the Arizona flatbed printer are 

located in the carriage which can move over the gantry. The gantry can move in 

perpendicular direction and rotate over small angles around the vertical axis. 

Fig. 6. Schematic top view of the flatbed printer. The gantry translation x and ro- 

tation ϕ are controlled via DC motors u 1 , u 2 . 
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Fig. 7. Bode diagram of diagonal controller C . Note that the off-diagonals C x ϕ and 

C ϕx are empty. 
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2 kg, the maximum medium size is 2.5 × 1.25 m, and the maxi-

um medium thickness is 50.8 mm. A schematic top view of the

ystem is provided in Fig. 6 . The system is controlled via Mat-

ab/Simulink that is running on a host computer connected to a

eparate xPC target computer. On the target computer the applica-

ion runs in real-time with a sampling frequency of 10 0 0 Hz. After

ach trial, the ILC algorithm is executed on the host computer and

he resulting feedforward signals are uploaded to a lookup table

n the target computer via Ethernet. During the real-time execu-

ion of the task, the feedforward signals are read from the lookup

able. 

The validation of resource-efficient ILC is based on the gantry

ystem of the flatbed printer since i) printer tasks are typically

arge, ii) it is a MIMO system, iii) it is position-dependent, and iv)

t is a practically relevant system. The gantry position is controlled

hrough two brushed DC motors ( u 1 and u 2 ) and the position is

easured through linear encoders with a resolution of 1 μm. De-

oupling into a gantry translation and rotation yields a system with

nputs u x , u ϕ ( n i = 2 ) and outputs x , ϕ ( n o = 2 ). The system oper-

tes at a sample frequency of 1 kHz. Depending on the application,

ifferent models P of the gantry system are used and introduced

hen appropriate. 

For both the time-varying system model considered in

ection 5 as well as the actual experimental system considered in

ection 6 , the same feedback controller C is used, shown in Fig. 7 .

he controller achieves a bandwidth of approximately 5 Hz for the

iagonal terms. A diagonal controller suffices since for low fre-

uencies the system is decoupled and feedback is only effective

ntil the bandwidth. ILC is effective until much higher frequen-

ies where interaction also plays a significant role. Hence, the full

IMO model is used in ILC. 
. Resource-efficient ILC simulation for the position-dependent 

rinter system 

In this section, resource-efficient ILC based on LTI and LTV mod-

ls is simulated on an LTV model of the flatbed printer, forming

ontribution III. The system is position-dependent, hence the dy-

amics vary during motion. The results reveal the potential of us-

ng LTV models based on linearization around trajectories when

ompared to LTI models for fixed positions. 

.1. Position-dependent system 

The flatbed printer system introduced in the previous section is

onsidered, see also Figs. 5 and 6 . Since the system is inherently

osition-dependent, a first-principles model is derived to analyze

ts effect in a simulation study. Due to the moving carriage mass

f approximately 32 kg, this model is position-dependent. Given

 trajectory y , the first principles model can be linearized around

his trajectory resulting in an LTV model of the gantry system. Note

hat linearization around a trajectory is also done in, for example,

33] . Fig. 8 shows Bode diagrams of the closed-loop gantry system

 for different carriage positions y , with y = 0 at the left side of the

able. The feedback controller in Fig. 7 is used for feedback. 

.2. Reference trajectories and performance weights 

The carriage trajectory is designed to cover the whole range

rea of 3.2 m in y -direction and 0.8 m in x -direction, see Fig. 9 . To

eep the results insightful, the rotation ϕ is controlled using feed-

ack only, with r ϕ [ k ] = 0 , ∀ k , and ILC is only applied in x -direction.

he simulated system is thus a multi-input, multi-output system (2

2) and ILC is applied to a multi-input, single output system (1

2). Note that, although ILC is only applied to x , position y influ-

nces the system model through time dependency and rotation ϕ 

hrough the strong cross-coupling (except for y ≈ 1.6 m), see Fig. 8 .
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Fig. 8. Parametric closed-loop gantry model J for carriage position y = 1 . 6 m ( ) 

and y = 6 m (———). For y = 1 . 6 m, there is no cross-coupling. 

Fig. 9. Reference trajectory r y (———) introduces position-dependent dynamics due 

to the moving carriage mass. Reference r x ( ) is a forward-backward movement. 

Rotation ϕ is suppressed, i.e., r ϕ = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Performance criterion for simulations on an LTV system with ILC based 

on: LTV model, w f = 10 −10 ( ); LTI model at y = 1 . 6 m, w f = 10 −10 ( ); LTI 

model at y = 6 m, w f = 10 −10 ( ); and LTI model at y = 6 m, w f = 10 2 ( ). 

The LTI model at y = 6 m requires additional robustness (larger w f ) to converge. 
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The weights (see (7) ) are selected as w e [ k ] = 10 10 , w f [ k ] =
10 −10 , w � f [ k ] = 0 in order to achieve high performance in the er-

ror norm and fast convergence (after convergence, f j is in the order

of 10 0 and e j is in the order of 10 −6 ). 

5.3. Results 

Fig. 10 shows the performance criterion for ILC based on LTI

models at several positions y , together with ILC based on the LTV

model. When based on the LTV model ( ), one-step convergence

is obtained since the model is exact and w � f = 0 . In this case,

an accurate LTV model is available due to the fact that a first-

principles model is derived. As will become clear in Section 6 , such

models are not straightforward to obtain in practice. Since in y -

direction the carriage covers the whole working range (from 0 m

to 3.2 m), an obvious choice when using an LTI model would be

to use the LTI model with the carriage positioned in the middle

of the gantry, i.e., y = 1 . 6 m. With ILC based on this ‘averaged’

LTI model the convergence is slower ( ), due to the model mis-

match, but eventually the same high performance as with the LTV
odel is obtained. If a poor LTI model is chosen, for example at

 = 6 m, there is no convergence ( ). Convergence can be guar-

nteed by introducing robustness through increasing w f [48] . In-

eed, for w f = 10 2 there is convergence ( ), but at the cost of

erformance. Note that y = 6 m is not feasible for the current sys-

em, but might become so for larger printing systems. The result

tresses the need for identification of accurate position-dependent

odels which is part of future research. 

The simulation example shows the benefit of ILC based on

n LTV model when the system to control is LTV. For accurate

TI models, high performance is still achievable but at the cost

f slower convergence, whereas for inaccurate LTI models perfor-

ance needs to be sacrificed to guarantee convergence. Impor-

antly, resource-efficient ILC in Algorithm 8 can directly be applied

o LTV models, while preserving computational cost O(N) . 

. Experimental implementation 

In this section, the resource-efficient ILC approach is applied to

he industrial flatbed printer in an experiment with task length

 = 10 0 , 0 0 0 which forms contribution IV. 

.1. System modeling 

The previous section shows the importance of an accurate sys-

em model to obtain both fast convergence and high performance

n the error norm. However, the accuracy of the derived position-

ependent model based on first principles is limited and identi-

cation of accurate position-dependent models is part of ongoing

esearch. Still, for the considered range of operation, the simula-

ion study in Section 5 reveals that an LTI model is sufficiently ac-

urate to guarantee convergence, albeit at a lower rate compared

o the LTV model, see Fig. 10 . This validates the use of LTI mod-

ls in the present experimental study. For the experiments in this

aper, ILC is based on an LTI model derived from an averaged fre-

uency response measurement, see Fig. 11 for the Bode diagram of

he model P . For feedback, the feedback controller in Fig. 7 is used.

.2. Experiment design 

Contrary to the simulation case study in Section 5 , where ILC

as applied to a multi-input, single output system, in the exper-

ments ILC is applied to a multi-input, multi-output system. Dur-

ng printing the gantry position is typically fixed while the car-

iage with the print heads moves over the gantry. In between the

rinting, the gantry performs a stepping motion in x -direction in
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Fig. 11. Bode diagram of the system P for the 2 × 2 Arizona gantry based on an 

averaged frequency response measurement. 

Fig. 12. The gantry performs a stepping movement in x direction ( r x ), while small 

rotations in ϕ ( r ϕ ) can be used for correcting misalignments. The task length is 

N = 10 0 , 0 0 0 . 
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Fig. 13. The performance criterion J decreases significantly (more than a factor 

10 0 0) over the trials indicating convergence and high performance. 

Fig. 14. After several ILC trials both the error signal in x direction ( e x ) and ϕ- 

direction ( e ϕ ) are significantly reduced (note the scales). Only the first ten seconds 

is shown. 

o  

v  

L

 

 

2  

a  

J  

 

t  

T  

w  

a  

d  

m  

w  

b  

t  

o

 

t  
rder to cover the next part of the medium. Without controlling

he carriage, this results in the reference trajectories as shown in

ig. 12 , with task length N = 10 0 , 0 0 0 . The small rotation in ϕ dur-

ng printing can be used for correcting misalignments. 

The performance weights in Definition 5 are selected as 

 e = 

[
10 

5 0 

0 5 ×10 

5 

]
, w f = 

[
10 

−4 0 

0 5 ×10 

−5 

]
, w � f = 0 , 

or all k . The choice w � f = 0 results in fast convergence of the ILC

pdate, whereas the combination of w e and w f ensures minimiza-

ion of the error, with minimal restriction of the feedforward sig-

al. Note that since an LTI model is used on a position-dependent

ystem, additional robustness ( w f > 0) is used to enhance robust

onvergence properties. As shown in the previous section, this will

egrade the performance in terms of the error norm. 

.3. Results 

The performance criterion when applying resource-efficient ILC

s shown in Fig. 13 for ten trials. Two important aspects are to be

oted. First, the decrease in J indicates convergence of the ILC al-

orithm, which is enforced by selecting w f sufficiently high. Sec-
nd, despite w � f = 0 , several iteration steps are required to con-

erge to a steady state value due to model mismatches since an

TI model is used. 

The time domain errors are shown in Fig. 14 . In the first trial,

j = 0 , no feedforward is applied (i.e., f j [ k ] = 0 , ∀ k ) yielding J =
272 , ‖ e x ‖ ∞ 

= 1122 μm, and ‖ e ϕ ‖ ∞ 

= 506 μrad. After several tri-

ls the performance criterion is decreased by a factor 10 0 0 to

 = 2 . 2 at trial j = 9 , with ‖ e x ‖ ∞ 

= 48 μm, and ‖ e ϕ ‖ ∞ 

= 24 μrad.

The results show a significant performance enhancement for

he position-dependent printer system, even with an LTI model.

he performance may be further increased, where the parameter

 f can be used to tune robustness. Either this has to be chosen

t a reasonably high value to guarantee robustness for position-

ependent dynamics, or an LTV model of the printer has to be

ade. The latter is presently under investigation. In addition, a

 �f weighting may be introduced to reduce trial-varying distur-

ances. This is not done in the present research as the focus is on

he computation load rather than performance, but can be further

ptimized. 

Importantly, the results show that resource-efficient ILC is prac-

ical for large tasks (here N = 10 0 , 0 0 0 ). For such large tasks, lifted
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Fig. 15. The computation time �tot = �init + �trial for lifted ILC ( ) grows as O(N 3 ) 

(see the fit ), whereas for resource-efficient ILC ( ) it grows as O(N) (see the 

fit ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The initialization time �init for lifted ILC ( ) evolves as O(N 3 ) as shown 

by the red curve ( ). For resource-efficient ILC ( ) it evolves as O(N) as shown 

by the green curve ( ). For large N , there is insufficient RAM available for the 

initialization of lifted ILC resulting in large computation times. 

Fig. 17. The trial update time �trial for lifted ILC ( ) evolves as O(N 2 ) as shown by 

the red curve ( ). For resource-efficient ILC ( ) it evolves as O(N) as shown by 

the green curve ( ). 
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ILC is impractical as is shown in the next section, since it would

involve matrices of dimensions 20 0 , 0 0 0 × 20 0 , 0 0 0 ( n i = n o = 2 ). 

7. Computational requirements 

In this section the computational load of lifted ILC and

resource-efficient ILC are compared, constituting contribution V.

The total computational load �tot is split into two parts: �tot =
�init + �trial n trial , where �init is the initialization of the algorithm

(i.e., all calculations that can be computed a priori off-line), �trial 

the on-line update (i.e., all calculations that need to be executed

each trial), and n trial the number of trials. 

7.1. Analysis of computational complexity 

For lifted ILC ( Theorem 2 ), the initialization is given by (5) ( Q 

and L are trial-invariant) and the trial update by (4) . The initial-

ization (5) is dominated by matrix multiplication and inversion,

hence �li f 
init 

∼ O(N 

3 ) , when using Schoolbook matrix multiplication

and Gauss-Jordan elimination, respectively, see also [49] . The trial

update (4) is dominated by matrix-vector multiplication, hence

�li f 

trial 
∼ O(N 

2 ) , when using Schoolbook matrix multiplication. 

For resource-efficient ILC ( Theorem 6 ), the initialization is given

by step 1) in Algorithm 8 and the trial update by steps 2) and 3) in

Algorithm 8 . Note that the state-space matrices of (8) and (10) are

trial-invariant and can hence be determined off-line during initial-

ization. The dimensions in all steps are in the order of n x . Hence,

for n x � N , �low 

init 
∼ O(N) and �low 

trial 
∼ O(N) . 

The above derivation is experimentally confirmed in the next

section. 

7.2. Comparison of computational cost 

In this section, the analysis of the previous section is supported

by numerical simulations. For the experiment, see Section 6 , the

initialization and trial update time of both approaches were mea-

sured on the full signals ( N = 10 0 , 0 0 0 ) as well as on parts of it,

i.e., for smaller N . Results for �tot = �init + �trial , i.e., n trial = 1 , are

depicted in Fig. 15 . As the analysis in the previous section indi-

cates, the computation time of lifted ILC for large N is dominated

by �li f 
init 

such that �li f 
tot ∼ O(N 

3 ) , see also the fit �li f 
tot = c li f N 

3 ( )

Furthermore, the analysis indicates that �low 

tot ∼ O(N) , as is con-

firmed by Fig. 15 , see also the fit �low 

tot = c low N ( ). Hence, espe-

cially for large N , the resource-efficient ILC approach is computa-

tionally significantly faster than the lifted ILC approach. For com-

parison, in one hour of calculation time, an experiment with a sin-

gle trial of length N ≈ 290 0 0 can be calculated with lifted ILC, and
f length N ≈ 15 · 10 6 with resource-efficient ILC, which is over

30 times as large. 

The computation time for the initialization and trial update step

re displayed separately in Figs. 16 and 17 , respectively. The results

onfirm the analysis of the previous section with respect to the

ependence on N , see the fitted lines. Note that O(N 

n ) corresponds

o a slope n on the double logarithmic scale. For large N , there is

nsufficient random-access memory (RAM) available for lifted ILC

esulting in large computation times �li f 
init 

, �li f 

trial 
. 

For the full experiment task length N = 10 0 , 0 0 0 , �low 

tot = 23 . 3 s

hereas �li f 
tot is estimated at 40 hours, under the assumption of

ufficient RAM. 

. Conclusions 

In this paper, a unified approach to resource-efficient ILC tech-

iques for LTI/LTV systems and optimal and general frequency do-

ain designs is developed. In particular, first it is shown that using

he lifted framework, an analytic expression for the optimal feed-

orward signal for generic norm-based performance criteria can be

erived by solving a set of linear equations. However, the actual

mplementation is troublesome for large tasks since the computa-

ion load increases as O(N 

3 ) , with N the task length. In this paper,

n alternative approach based on optimal control theory is pre-

ented that yields the same command signal, but at significantly

ower computational cost, namely O(N) , for both LTI and LTV sys-

ems. 

A further analysis of this solution reveals that it is very similar,

oth in terms of computational techniques as well as the under-

ying theoretical developments, to common stable inversion tech-

iques. The connections are explicitly established and analyzed,
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eading to a unified solution for many ILC approaches, both lifted

nd classical frequency domain based, for both LTI and LTV sys-

ems. 

Practical use is demonstrated by successfully applying resource-

fficient ILC on an industrial flatbed printer. Simulation results on a

osition-dependent model reveal that LTV techniques can be very

eneficial when applying ILC on position-dependent systems. Since

he required first principles model is not sufficiently accurate for

LC design, an LTI model of the experimental system is used. The

roposed algorithm, which is O(N) , can be successfully imple-

ented on a large task (here, N = 10 0 , 0 0 0 , with two inputs and

wo outputs), for which traditional lifted norm-optimal ILC breaks

own and is thus impractical to implement. 

Ongoing work focuses on further development of feedforward

nd ILC for position-varying systems, as occurring in, e.g., next-

eneration motion systems [43] . Indeed, LTV models for these type

f systems enable high performance, whereas LTI models require

dditional robustness at the cost of performance as also shown in

xperiments. These results motivate the ongoing research to de-

elopment of new identification techniques for position-dependent

ystems, see, e.g., [50] for important steps, and development of ILC

echniques compatible with these models. Also, next to the finite

ime results, at present H 2 / H ∞ 

optimal finite preview, infinite time

esults are being developed, see, e.g., [18] for preliminary results in

his direction. 
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ppendix A. Proof of Lemma 4 

In Fig. 1 , J is the transfer f → y . Let x P and x C denote the state

f P and C , respectively, then using (6) 

y [ k ] = C P x P [ k ] + D P u [ k ] + D P f [ k ] , 

 [ k ] = C C x C [ k ] − D C y [ k ] , 

hich can be combined to 

y [ k ] = ( I n o + D P D C ) 
−1 

×( C P x P [ k ] + D P C C x C [ k ] + D P f [ k ] ) , 

 [ k ] = ( I n i + D C D P ) 
−1 

×( −D C C P x P [ k ] + C C x C [ k ] − D C D P f [ k ] ) . (A.1) 

ubstitution of these relations into the state equations, rewriting

nd using the relation I −(I + X ) −1 X = (I + X ) −1 yields 

 P [ k + 1] = A P x P [ k ] + B P u [ k ] + B P f [ k ] 

= (A P − B P (I n i + D C D P C P ) 
−1 D C ) x P [ k ] 

+ B P (I n i + D C D P ) 
−1 (C C x C [ k ] + f [ k ]) , 

 C [ k + 1] = A C x C [ k ] − B C y [ k ] 

= (A C − B C (I n o + D P D C ) 
−1 D P C C ) x C [ k ] 

−B C (I n o + D P D C ) 
−1 (C P x P [ k ] + D P f [ k ]) . 

ombining the above state equations and output equation (A.1) ,

nd introducing state x [ k ] = 

[
x P [ k ] 

x C [ k ] 

]
yields the state-space realiza-

ion of J . 
ppendix B. Proof of Theorem 6 

roblem setup 

The system dynamics are given by 

 j+1 [ k + 1] = Ax j+1 [ k ] + B f j+1 [ k ] , 

y j+1 [ k ] = Cx j+1 [ k ] + D f j+1 [ k ] , 

ith initial state x j+1 [0] = x 0 and ( A, B, C, D ) a state-space repre-

entation of the process sensitivity J . Define 

x j+1 [ k ] := x j+1 [ k ] − x j [ k ] , 

f j+1 [ k ] := f j+1 [ k ] − f j [ k ] , 

hen 

x j+1 [ k + 1] = A �x j+1 [ k ] + B � f j+1 [ k ] , 

�y j+1 [ k ] = C�x j+1 [ k ] + D � f j+1 [ k ] , 

ith �x j+1 [0] = 0 n x ×1 . Since ˜ r is trial-invariant, 

 j+1 [ k ] = 

˜ r [ k ] − y j+1 [ k ] 

= e j [ k ] − C�x j+1 [ k ] − D � f j+1 [ k ] . 

In the remainder of the proof the subscript j + 1 in general, and

ndex [ k ] for w e [ k ], w f [ k ], w �f [ k ] are omitted for notational conve-

ience. Note that this is not a restriction on the developed results.

The optimal input is given by 

f ∗ = arg min 

f 
J ( f ) = f j + arg min 

� f 
J 

′ (� f ) , 

here 

 

′ (� f ) := 

1 
2 
J ( f j+1 ) = 

N−1 ∑ 

k =0 

L (�x [ k ] , � f [ k ]) , 

ith 

 (�x [ k ] , � f [ k ]) = 

1 
2 
(e j [ k ] − C�x [ k ] − D � f [ k ]) � w e 

×(e j [ k ] − C�x [ k ] − D � f [ k ]) 

+ 

1 
2 
(� f [ k ] + f j [ k ]) 

� w f (� f [ k ] + f j [ k ]) 

+ 

1 
2 
(� f [ k ]) � w � f (� f [ k ]) . 

he steps followed are along the lines of [51, sec. 5.5] . 

amiltonian, state, costate and open-loop optimal control 

Let the Hamiltonian be defined as 

(�x [ k ] , λ[ k + 1] , � f [ k ]) 

= λ� [ k + 1](A �x [ k ] + B � f [ k ]) + L (�x [ k ] , � f [ k ]) . 

et H 

∗ = H(�x ∗[ k ] , λ∗[ k + 1] , � f ∗[ k ]) , then the optimal state is

iven by 

x ∗[ k + 1] = 

∂H 

∗

∂λ∗[ k + 1] 

= A �x ∗[ k ] + B � f ∗[ k ] , (B.1) 

ith 

x ∗[0] = 0 n x ×1 , (B.2) 

nd the optimal costate by 

∗[ k ] = 

∂H 

∗

∂�x ∗[ k ] 

= A 

� λ∗[ k + 1] 

−C � w e 

(
e j [ k ] − C�x ∗[ k ] − D � f ∗[ k ] 

)
, (B.3) 

ith 

∗[ N] = 0 n x ×1 . (B.4) 
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The optimal input satisfies 

∂H 

∗

∂� f ∗[ k ] 
= 0 , 

from which follows 

� f ∗[ k ] = γ (D 

� w e e j [ k ] − D 

� w e C�x ∗[ k ] 

−w f f j [ k ] − B 

� λ∗[ k + 1]) , (B.5)

with 

γ = 

(
D 

� w e D + w f + w � f 

)−1 
. 

With substitution of (B.5) , relations (B.1) and (B.3) , with boundary

conditions (B.2) and (B.4) , form the Hamiltonian system [
�x ∗[ k + 1] 

λ∗[ k ] 

]

= 

[
A − Bγ D 

� w e C −Bγ B 

� 

C � w e 

(
I − Dγ D 

� w e 

)
C A 

� − C � w e Dγ B 

� 

][
�x ∗[ k ] 
λ∗[ k + 1] 

]

+ 

[
−Bγ w f Bγ D 

� w e 

−C � w e Dγ w f C � w e Dγ D 

� w e − C � w e 

][
f j [ k ] e j [ k ] 

]
, 

�x ∗[0] = 0 n x ×1 , 

λ∗[ N] = 0 n x ×1 . (B.6)

Riccati and vector equations 

Next, the co-state is eliminated from (B.6) using the sweep

method [52] by applying the transformation 

λ∗[ k ] = P [ k ]�x ∗[ k ] − g[ k ] , (B.7)

which yields 

�x ∗[ k + 1] = 

(
I + Bγ B 

� P [ k + 1] 
)−1 

× [ 
(
A −Bγ D 

� w e C 
)
�x ∗[ k ] + Bγ D 

� w e e j [ k ] 

− Bγ w f f j [ k ] + Bγ B 

� g[ k + 1]] . (B.8)

Substituting (B.8) and (B.7) in the expression of λ∗[ k ] in (B.6) and

rewriting yields 

[ P [ k ] −
(
A 

� − C � w e Dγ B 

� )P [ k + 1] 

×
(
I + Bγ B 

� P [ k + 1] 
)−1 (

A − Bγ D 

� w e C 
)

−C � w e C + C � w e Dγ D 

� w e C]�x ∗[ k ] 

= g[ k ] −
(
C � w e − K g [ k ] D 

� w e − C � w e Dγ D 

� w e 

)
e j [ k ] 

−
(
K g [ k ] w f + C � w e Dγ w f 

)
f j [ k ] 

−
(
A 

� − C � w e Dγ B 

� − K g [ k ] B 

� )g[ k + 1] , (B.9)

where 

K g [ k ] = 

(
A 

� − C � w e Dγ B 

� )P [ k + 1] 
(
I + Bγ B 

� P [ k + 1] 
)−1 

Bγ . 

Relation (B.9) holds for all values �x ∗[ k ], ∀ k . Hence, the left-hand

side of (B.9) should be zero for all k , leading to 

P [ k ] = 

(
A 

� − C � w e Dγ B 

� )P [ k + 1] 
(
I + Bγ B 

� P [ k + 1] 
)−1 

×
(
A − Bγ D 

� w e C 
)

+ C � w e C − C � w e Dγ D 

� w e C, 

where the matrix identity 

( A + BCD ) 
−1 = A 

−1 −A 

−1 B 

(
C −1 + DA 

−1 B 

)−1 DA 

−1 , 

leads to the matrix difference Riccati equation (11) . Also, the

right-hand side of (B.9) should vanish for all k , leading to the

vector difference equation (10) . Evaluating (B.7) at time instance

k = N yields 
∗[ N] = P [ N]�x ∗[ N] − g[ N] , 

hich holds for all �x ∗[ N ] and given the boundary condition from

B.4) , yields terminal conditions 

 [ N] = 0 n x ×n x , 

g[ N] = 0 n x ×1 . 

losed-loop optimal control 

The closed-loop optimal control follows by substituting (B.7) at

 + 1 and (B.1) in (B.5) , and solving for �f ∗[ k ]: 

f ∗[ k ] = −L [ k ]�x ∗[ k ] − L f [ k ] f j [ k ] + L e [ k ] e j [ k ] + L g [ k ] g[ k + 1] , 
(B.10)

ith L [ k ], L f [ k ], L e [ k ], and L g [ k ] given by (9) . 

Combining (B.1) with (B.10) yields the state-space system

8) with state �x ∗[ k ], inputs f j [ k ] , e j [ k ] , g[ k + 1] , and output f ∗[ k ] =
f j [ k ] + � f ∗[ k ] as given by (8) . 

ppendix C. Proof of Theorem 9 

The proof is similar to that of [53] for continuous time systems.

ince x s [ k ] and x u [ k ] are linearly coupled, the solution is found by

pplying the sweep method with 

 u [ k ] = P [ k ] x s [ k ] + g[ k ] , (C.1)

hich holds for all x s [ k ] and since x u [ N] = 0 , 

 [ N] = 0 , g[ N] = 0 . 

valuating (C.1) at k + 1 and substituting the dynamics (13) yields 

(A us + A uu P [ k ] − P [ k + 1] A ss − P [ k + 1] A su P [ k ]) x s [ k ] 

= −A uu g[ k ] − B u u [ k ] + P [ k + 1] A su g[ k ] + P [ k + 1] B s u [ k ] + g[ k + 1] ,

hich holds for all x s [ k ] and therefore both sides should vanish.

rom the left-hand side follows (14) and from the right-hande side

ollows (15) . x s [ k ] follows from substituting (C.1) into x s [ k + 1] in

13) and solving forward in time. x u [ k ] directly follows from (C.1) . 
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