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Abstract

This paper studies the wave attenuation performance of dissipative

solid acoustic metamaterials (AMMs) with local resonators possessing

subwavelength band gaps. The metamaterial is composed of dense rubber-

coated inclusions of a circular shape embedded periodically in a matrix

medium. Visco-elastic material losses present in a matrix and/or resonator

coating are introduced by either the Kelvin-Voigt or generalized Maxwell

models. Numerical solutions are obtained in the frequency domain by

means of k(ω)-approach combined with the finite element method. Spa-

tially attenuating waves are described by real frequencies ω and complex-

valued wave vectors k. Complete 3D band structure diagrams including

complex-valued pass bands are evaluated for the undamped linear elastic

and several visco-elastic AMM cases. The changes in the band diagrams

due to the visco-elasticity are discussed in detail; the comparison between

∗Electronic address: akrushynska@gmail.com; Corresponding author
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the two visco-elastic models representing artificial (Kelvin-Voigt model)

and experimentally characterized (generalized Maxwell model) damping

is performed. The interpretation of the results is facilitated by using

attenuation and transmission spectra. Two mechanisms of the energy ab-

sorption, i.e. due to the resonance of the inclusions and dissipative effects

in the materials, are discussed separately.

It is found that the visco-elastic damping of the matrix material de-

creases the attenuation performance of AMMs; however, if the matrix

material is slightly damped, it can be modeled as linear elastic without

the loss of accuracy given the resonator coating is dissipative. This study

also demonstrates that visco-elastic losses properly introduced in the res-

onator coating improve the attenuation bandwidth of AMMs although the

attenuation on the resonance peaks is reduced.

1 Introduction

Acoustic metamaterials (AMMs) are engineered materials designed to control

the propagation of sound and/or elastic waves at subwavelength frequencies.

Their functionality originates from local resonances [36, 18, 47, 32, 23] of struc-

tural units, usually, periodically arranged. Under certain conditions, AMMs

exhibit absolute frequency band gaps, within which the wave propagation is for-

bidden independent of the wave polarization or wave vector. The band gaps in

AMMs are usually opened at low frequencies, for wavelengths of 1-2 orders larger

than the spatial period of a periodic metamaterial structure [34, 59, 56, 46, 39, 9].

This fact principally distinguishes AMMs from phononic crystals (PnCs) with

band gaps resulting from the Bragg scattering effect [7] for wavelengths in the

order of the lattice period. AMMs with local resonances have been widely

studied during the past 15 years in view of their potential to demonstrate

negative effective properties [35, 58, 61], sub-wavelength imaging and focusing
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abilities [33, 30, 29, 31], as well as to perform low-frequency vibration insula-

tion [4, 47], sub-wavelength waveguiding [32, 23], seismic wave protection [6, 9],

etc.

To describe the dynamic behavior of AMMs and predict the response of

finite-sized structures, it is necessary to solve a dispersion equation relating the

wave vector k of a wave to its frequency ω. For a periodic medium, this equation

can be derived by applying the Bloch expansion theorem [5] to a representative

unit cell and subsequently solving an eigenvalue problem for ω at specified values

of k or for k at specified frequencies ω. These two solution techniques are

known as ω(k)- or k(ω)-approaches, respectively [54, 2, 23]. Thus, by analyzing

the dynamics of only a single unit cell, both approaches allow constructing a

complete band/dispersion diagram including propagating and evanescent waves

for an entire infinite periodic medium.

The analysis is commonly performed for propagating waves assuming lin-

ear elastic behavior of the material constituents that results in both real-valued

frequencies and wave vectors. However, realistic materials such as epoxy and

rubber, which are widely used as components of PnCs and AMMs [36, 18, 35,

58, 44, 55, 59, 56, 23, 26], typically reveal a dissipative visco-elastic behav-

ior [17]. In this case, either wave vector or frequency become complex-valued

with imaginary parts representing spatial or temporal wave attenuation, respec-

tively [1, 27, 23]. Thus, all the waves become evanescent, and the analysis of

complete dispersion diagrams should be performed.

The methods developed to analyze complex-valued dispersion relations can

be divided into two groups [2, 23]. The first group deals with real-valued fre-

quencies of harmonic waves and complex-valued wave vectors [40, 42, 60, 38, 44,

16, 2]. This approach is useful for analyzing steady-state wave fields and compar-

ison with experimental data for finite-sized structures. Another group of meth-

3



ods deals with freely propagating waves possessing complex-valued frequencies,

which is relevant for loading conditions of an impulsive nature [45, 19, 20, 48].

The comparison of two mentioned approaches was recently performed and re-

vealed that, for periodic composites with a low up to medium level of dissipation,

both approaches provide equivalent results in the long-wavelength range [2].

The effect of material losses on the wave dispersion has been mainly studied

for PnCs and less intensively for AMMs. Detailed reviews of the considered

dissipative effects and the developed solution methods can be found in the lit-

erature [44, 21, 23, 39]. Since this paper deals with visco-elastic effects on wave

propagation in solid AMMs of infinite extent, the following brief summary is

focusing on the influence of visco-elastic damping on band diagrams.

For PnCs, it has been argued that the visco-elasticity results in shifting pass

bands along the frequency axis [42, 19, 20, 44, 2, 21], if the Kelvin-Voigt model or

complex-valued elasticity tensor are used to model the damped matrix material.

The real part of the wave vector, which describes the propagating part of a wave,

appears to be more affected by losses than its imaginary part, especially near

the band gap edges [44]. This also causes enhanced wave attenuation near the

band gap boundaries, resulting in extension of the effective band gap size for

PnCs. For freely propagating waves in PnCs modeled as 1D or 2D mechanical

mass-spring systems, it has been also found that the increase of damping leads

to broadening of a band gap – a desirable feature for various noise isolation and

frequency sensing applications [21, 19].

For AMMs with visco-elastic losses in mass-spring models representing the

dynamics of 1D metamaterials, the so-called ‘metadamping’ phenomenon is dis-

covered, when an AMM exhibits higher levels of dissipation within the propa-

gating modes compared to those for a statically equivalent PnC with identical

material damping properties [22]. The parameters of optimal damping ratios are
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recently analyzed for 3 simple visco-elastic models: Kelvin-Voigt, Maxwell and

standard linear solid-types [39]. The interaction between two attenuation mech-

anisms, i.e. due to the resonance and dissipative effects, as well as possibilities

of tuning the damping to enhance the attenuation bandwidths are thoroughly

considered in Refs. [41, 50, 52, 39].

Summarizing, one may conclude that the performed analysis of mechanical

mass-spring analogues of 1D AMMs demonstrates that the presence of damping

in the resonating units can enhance the performance of metamaterials and pro-

vides key attributes for optimal design of dissipative AMMs. However, a system-

atic study of 2D or 3D configurations of damped continuous AMMs is manda-

tory in order to understand the wave dispersion mechanism in these structures.

Moreover, the realistic visco-elastic behavior of polymers is better described

by more complicated visco-elastic models, such as the generalized Maxwell or

generalized Kelvin-Voigt models, compared to the simple Kelvin-Voigt model

with 1 viscosity parameter not taking into account a spectrum of relaxation

times [17]. Thus, it is instructive to investigate whether the phenomena previ-

ously found for 1D AMMs with simplified mechanisms of material losses also

exist in continuous 2D AMM structures with a sophisticated dissipation. This

paper aims at making a step towards achieving the two mentioned objectives.

The goal of this paper is to numerically study the wave dispersion in dissi-

pative solid continuous AMMs, qualitatively compare the obtained wave propa-

gation characteristics with those known for damped PnCs, and identify the role

of damping in the metamaterial performance.

To this purpose, we consider an AMM made of 3 material phases in order

to analyze separately the effects of material losses in the matrix and coating of

resonating units. To minimize computational costs, we consider a 2D configu-

ration consisting of rubber-coated lead cylinders of an infinite length embedded
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in an epoxy matrix. The developed solution procedure can be applied to 3D

AMMs as well. The material losses are introduced, using a Kelvin-Voigt model

with 1 viscosity parameter and a generalized Maxwell model with 8-12 param-

eters required to represent the experimentally measured behavior of epoxy and

rubber polymers [17, 42, 14]. The necessity for considering these two mod-

els can be justified as follows. It is known from the study of 1D AMMs that

the Kelvin-Voigt-type oscillators provide the best attenuation broadening [39].

This model also allows analyzing the changes in the pass bands location due to

various levels of viscosity by varying the value of one relevant parameter. Fur-

thermore, since the Kelvin-Voigt model is often used to represent visco-elastic

losses in damped PnCs and AMMs, it seems to be reasonable to evaluate its

applicability regions by comparing the attenuation spectra with those calcu-

lated with a generalized Maxwell model. As already mentioned, the generalized

Maxwell model is often used to fit experimental measurements of storage and

loss moduli of polymers [42, 14]. To facilitate the comparison of the complex-

valued dispersion spectra and the interpretation of dissipation mechanisms, we

use the so-called attenuation spectrum relating the ratio between the imaginary

and real parts of the wave vector to the frequency [10, 2]. Finally, the wave

transmission analysis is performed to confirm the results obtained for the wave

dispersion.

The paper is organized as follows. In Section 2, the problem under con-

sideration is defined in the time domain by using hereditary integrals in linear

visco-elastic constitutive relations. The governing equations are then trans-

formed into the frequency domain by means of a combination of the classic

correspondence principle and the Laplace-Carson transform. This results in a

problem for the corresponding linear elastic medium with frequency-dependent

quantities. The evaluation of band diagrams is performed numerically based on
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the finite-element method and the k(ω)−approach to determine the complex-

valued wave vectors of spatially decaying waves for fixed values of the frequency.

Section 3 presents full complex-valued band diagrams of 2D AMMs for both the

undamped linear elastic and damped visco-elastic cases. The resonance and

dissipative mechanisms of attenuation are discussed in Section 4. The applica-

bility range of the Kelvin-Voigt model is evaluated by comparing the computed

dispersion, attenuation transmission spectra for damped AMMs with those ob-

tained for the generalized Maxwell model. The role of visco-elastic losses in

the attenuation performance of damped 2D AMMs is also discussed. The main

conclusions are presented in Section 5.

2 Wave propagation in visco-elastic acoustic meta-

materials

In this section, we introduce a theoretical approach to evaluate wave dispersion

in periodic heterogeneous composites with visco-elastic losses.

Under the assumption that a metamaterial is periodic and of an infinite

extent, the analysis of wave dispersion can be restricted to a representative unit

cell by applying the Bloch expansion theorem [5]. According to this theorem,

the displacement field u = uxex+uyey +uzez is also periodic (with (ex, ey, ez)

vectors of a Cartesian basis) and can be represented in the form of plane waves

with wave vector k = kxex + kyey + kzez:

u(x,k, t) = U(x,k)ei(k·x−ωt), (1)

where U(x,k) = U(x + R,k) is a periodic Bloch displacement vector, R =

nxex+nyey+nzez represents any lattice vector with arbitrary integers nx, ny, nz.

Attention is now focused on steady-state wave propagation at a prescribed
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frequency. In this case, the physically realistic scenarios are captured if the

frequency ω is assumed to be a real-valued independent variable and the wave

vector k is to be computed [1]. For an undamped medium, there exist real,

imaginary and complex values for the wave vector k. Real components of k are

inversely proportional to the wavelength of propagating waves along mutually

perpendicular directions. Due to the symmetry of the lattice, these values are

restricted to the 1st Brilloiun zone representing a unit cell of the reciprocal

lattice-space with the basis vectors (bx,by,bz) such that a·b = 2πδij [24]. Pure

imaginary components of k describe standing waves with exponentially decaying

or growing amplitudes [2]. These values are not periodic and can take any value

from 0 to infinity [44]. Complex-valued components of k describe propagating

waves with attenuating or amplifying amplitudes as the wave progresses within a

unit cell. The energy conservation in the lossless elastic medium can be shown by

considering complex-conjugate pairs of the wave vector k, which represent two

waves propagating in opposite directions and, thus, form a standing wave that,

on average, does not transfer any energy. In case of a damped medium, there are

no pure real/imaginary nor complex-conjugate wave vectors, but only frequency-

dependent complex-valued wave vectors k, the positive imaginary part of which

describes wave attenuation due to the material dissipation [16, 44].

The proper statement of the dynamic problem for a linear visco-elastic peri-

odic composite is provided by the standard equation of motion with the classical

strain-displacement relation for infinitesimal deformations

∇ · σ(x, t)− ρ(x)ü(x, t) = 0, ∀ t > 0; (2)

ǫ(x, t) =
1

2

(

∇u(x, t) + (∇u(x, t))
T
)

= ∇
Su(x, t) (3)

with the gradient ∇ and symmetric gradient ∇S operators; σ and ǫ are the
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stress and linear strain tensors, respectively; ρ is the material density, and a

superimposed dot denotes differentiation with respect to time. Eqs. (2), (3) are

supplemented by the visco-elastic stress-strain relation in terms of hereditary or

Duhamel integrals [17]:

σ(x, t) =

t
∫

−∞

K(x, t− τ)
∂

∂τ
tr(ǫ(x, τ))I dτ +

t
∫

−∞

2G(x, t− τ)
∂

∂τ
ǫ
d(x, τ)dτ, (4)

for the cubical dilatation tr(ǫ) = ∇ · u and deviatoric ǫ
d = ǫ − 1

3 tr(ǫ)I defor-

mations with volumetric K(t) and shear G(t) relaxation moduli, respectively;

I is the second-order unit tensor.

The separation of deformation into two parts, corresponding to a change of

volume and a change of shape, appears to be convenient for the description of

visco-elastic polymers. The linear visco-elastic behavior of these materials is

usually limited to negligibly small volume changes [17, 27]. In this case, K(t)

becomes the time-independent equilibrium bulk modulus K. The visco-elastic

behavior of polymers is discussed in detail in the next section. To provide a gen-

eral description of the problem, the bulk relaxation modulus K(t) is considered

time-dependent, nevertheless.

By applying the Bloch boundary conditions (1) on the unit cell boundaries

and zero initial conditions for the displacements and velocities, the obtained

initial-boundary value problem can be formally solved by employing the classic

elastic-visco-elastic correspondence principle [1, 27].

To this purpose, the governing equations (2)-(4) are first transformed into

the frequency domain by employing the Laplace-Carson transform (LCT), which

is s times the Laplace transform:

f̂(s) = sL[f(t)](s) = s

∞
∫

0

f(t)e−stdt, (5)
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with the complex-valued argument s and transform function f̂ . The real part

of the transform variable s is an abscissa of absolute convergence [57]. It can be

set to 0, since the stresses, displacements and strains to be transformed describe

real physical quantities, and thus, are absolutely integrable functions in time.

The imaginary part of s is assumed to be equal to iω, corresponding to the

harmonic displacement field of the original problem. Hence, the constitutive

equation (4) is transformed into the following tensor-form relation between σ̂

and ǫ̂:

σ̂(x, iω) = ˆ4D(x, iω) : ∇û(x, iω), (6)

where

ˆ4D(x, iω) = K̂(x, iω)II + 2Ĝ(x, iω)

(

4I S
−

1

3
II

)

, (7)

where II is the fourth-order tensor given by II = I ⊗ I , and 4I S is the fourth-

order symmetric identity tensor.

In order to establish the elastic-visco-elastic correspondence principle [1, 27],

let us formulate the corresponding elastic problem for a periodic elastic com-

posite with a representative unit cell of the same configuration and dimensions,

which is subjected to the same initial and boundary conditions as the visco-

elastic composite. The LCT of the corresponding elastic stress-strain relation

is

σ̂(x, iω) = 4D(x) : ∇û(x, iω). (8)

The other transformed equations have the same form for the elastic and visco-

elastic problems, namely:

∇ · σ̂(x, iω)− ρ(x)ω2û(x, iω) = 0; (9)

ǫ̂(x, iω) = ∇
Sû(x, iω). (10)
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According to the correspondence principle, the solution of the transformed visco-

elastic problem (6), (9), (10) can be obtained from the solution of the trans-

formed corresponding elastic problem (8), (9), (10) replacing K(x) by K̂(x, iω)

and G(x) by Ĝ(x, iω). The correspondence principle holds by virtue of the fact

that the Laplace-Carson transform of the visco-elastic constitutive law with con-

volution integrals (4) is given by the product of the Laplace-Carson transforms

of two cumulative functions (8). In relation to the wave propagation in an un-

bounded medium, the principle enables separating the space and time variables

and focusing on the space variation of the wave field at a fixed frequency.

The Laplace-Carson transform is used here instead of the frequently ap-

plied Laplace transform [17, 1, 27], since the former allows preserving the same

structure of the transformed governing equations as for the elastic case in the

time domain and, thus, retaining the physical meaning of the transformed prob-

lems. This means that the methods developed to analyze the wave dispersion

in periodic composites with linear elastic behavior can be directly applied to

visco-elastic composites, taking into account the frequency dependence of the

elastic moduli.

In this study, the so-called k(ω)-approach is used, which is applied in several

recent papers to characterize the dissipative behavior of PnCs [44, 16, 8, 2]. In

the following, only the key aspects of the approach are outlined by considering

a representative unit cell for a two-dimensional periodic medium with spatially

dependent material parameters in the (x, y)-plane. By substituting Eqs. (10),

(6) into Eq. (9), one obtains the equations governing the wave motion in the

unit cell:

∇ ·
4D : ∇û(x, iω) = ρ(x)ω2û(x, iω). (11)

Next, the Bloch expansion theorem (1) in the frequency domain takes the fol-
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lowing form:

û(x,k, iω) = Û(x,k, iω)eik·x. (12)

Thus, the displacement gradient operator becomes:

∇û = (∇Û+ ik⊗ Û)eik·x = ∇kÛeik·x. (13)

The substitution of the Bloch theorem (12) into the wave equation (11) results

in the k-dependent wave equation:

∇k ·
4D : ∇kÛ(x,k, iω) = ρ(x)ω2Û(x,k, iω). (14)

This equation can be solved by means of the finite element method. The dis-

cretization of the unit cell into finite elements is performed based on the standard

Galerkin approach, which results in the following generalized eigenfrequency

equation:

(K(k, ω)− ω2M)d = 0, (15)

where d is the column of nodal displacements, M and K(k, ω) are the mass and

stiffness matrices, respectively.

In this work, wave propagation will be restricted to the (x, y) plane with the

wave vector k = kxex + kyey. Eq. (14) then describes two types of modes. One

represents in-plane modes formed by interaction of longitudinal and transverse

waves with Û = Ûxex + Ûyey. Another type of modes are out-of-plane modes

formed by transverse polarized waves with Û = Ûzez. The mass and stiffness

matrices are then given by:

M =
∑

e

ρe

∫

Ve

NTNdVe; (16)
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K(k, ω) = K0 − i(kxK1 + kyK2) + k2xK3 + k2yK4 + kxkyK5, (17)

where

K0 =
∑

e

∫

Ve

BTD(ω)BdVe; (18)

Ki =
∑

e

∫

Ve

NTΛT
i D(ω)B−

(

NTΛT
i D(ω)B

)T

dVe, i = 1, 2; (19)

K2+i =
∑

e

∫

Ve

NTΛT
i D(ω)ΛiNdVe, i = 1, 2; (20)

K5 =
∑

e

∫

Ve

NT

(

ΛT
1 D(ω)Λ2 +

(

ΛT
1 D(ω)Λ2

)T
)

NdVe. (21)

Here the summation and integration are performed over all the finite elements

and the element volume Ve, respectively; N is the matrix (in-plane modes)

or column (out-of-plane modes) of shape functions; B = ∇N. The following

notations are used for in-plane modes:

Λ1 =













1 0

0 0

0 1













, Λ2 =













0 0

0 1

1 0













, D =













K̂ + 4Ĝ
3 K̂ − 2Ĝ

3 0

K̂ − 2Ĝ
3 K̂ + 4Ĝ

3 0

0 0 Ĝ













(22)

and, for out-of-plane modes:

Λ1 =







1

0






, Λ2 =







0

1






, D = Ĝ(x, iω). (23)

In the matrix D, the dependence of the elastic moduli K̂(x, iω) and Ĝ(x, iω) on

the spatial coordinates and frequency is omitted for brevity.

Since the elastic moduli entering D are frequency-dependent, one assumes

that the frequency ω is specified, whereas (real, imaginary or complex) kx and
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ky are unknown. Thus, the problem (15) for the eigenfrequencies should be

reformulated as an eigenvalue problem for the wave vector k. This can be

performed by specifying a relation between the wave vector components, e.g.,

ky = ckx as in Ref. [2], where c is a real constant. By inserting this relation into

Eq. (15) and reformulating the problem into the first-order form, one obtains [2]:

(K(ω)− kxM)d = 0 (24)

with

K =







I 0

−i (K1 + cK2) K0 − ωM






, d =







d

kxd






; (25)

M =







0 I

−
(

K3 + cK5 + c2K4

)

0






. (26)

Eq. (24) can be solved for specified frequencies ω and periodic boundary

conditions for d on the unit cell boundaries. The computed eigenvalues are used

for constructing a dispersion spectrum (band diagram) along lines ky = ckx for

fixed values of c through the 1st Brillouin zone (c = 0 for Γ − X direction,

c = 1 for Γ−M direction, etc.). The eigenvalues for the linear elastic and visco-

elastic cases are calculated and validated with data available in the literature for

phononic crystals [44, 2]. The results calculated for the adopted discretization

agree well with those for a refined mesh, confirming the mesh-independence and

stability of the calculations.

The transmission of the wave field in a finite-size metamaterial is analyzed by

using the commercial software COMSOL Multiphysics 5.0. The calculations are

performed in the frequency domain for structures composed of 10 representative

unit cells arranged along the horizontal direction. The structure isassumed to
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be infinite in the vertical direction, which is modeled by periodic (continuity)

boundary conditions at the horizontal bottom and top boundaries. A plane

wave of amplitude 1e-3 (polarized vertically or horizontally) is incident on the

left vertical boundary of the structure, while a non-reflecting boundary condi-

tion (PML with default characteristics) is applied on the right boundary. The

frequency is swept in 100 steps within the ranges specified for each considered

case by the corresponding dispersion spectrum. The transmitted wave field is

represented by the averaged total displacements over the last 5 unit cells of the

considered finite AMM structure.

3 AMM composition and visco-elastic models

3.1 The AMM configuration

This paper deals with an AMM made of infinite rubber-coated lead cylinders

of circular cross-section embedded in epoxy in a periodic square lattice. The

representative unit cell of the metamaterial is shown in Fig. 1 together with

the corresponding unit cell in the reciprocal space (the 1st Brillouin zone).

The described AMM exhibits subwavelength band gaps originating from lo-

cal resonances [36, 35, 59, 26, 23]. When material losses are considered, this

3-component configuration allows studying separately the influence of damp-

ing in the matrix and/or coating materials on the dispersion and attenuation

characteristics of the elastic waves.

The radius of the lead inclusion is 5 mm, the coating thickness is 2.5 mm,

and the unit cell size is 21 mm. The filling fraction of inclusions, defined as

the ratio between the coated inclusion area to the area of the unit cell, is 40%.

The low filling fraction is chosen to eliminate interactions between inclusions,

which may lead to a complex behavior of the dispersion curves [26]. The elastic

15



Table 1: Material properties for the linear elastic constituents of AMMs consid-
ered in this work (bulk modulus K∗, shear modulus G∗, density ρ, longitudinal
cl and shear cs wave velocities)

Material K∗ (Pa) G∗ (Pa) ρ (kg/m3) cl (m/s) cs (m/s)
Lead [36] 5.23×1010 1.49×1010 11600 2490 1133
Epoxy [14] 3.1×109 7.9×108 1200 1860 810
Rubber [42] 1.83×109 7.1×105 1260 1200 24

properties of the constituent materials are given in Table 1. Lead is assumed

to be isotropic and lossless, whereas epoxy and rubber are modeled as either

linear elastic or linear visco-elastic materials with parameters discussed in the

next section.

3.2 Visco-elastic models

To solve the eigenvalue problem (24), the mathematical expressions for the fre-

quency dependent bulk K(iω) and shear G(iω) moduli are required. Prior to

the introduction of these relations, it should be noted that under isothermal

conditions the bulk modulus of most polymers can be well approximated by a

constant time-independent equilibrium value K̂ = K∗ over a wide range of time

scales [17, 12]. The physical explanation for this originates from the molecu-

lar structure of the polymers, resulting in a visco-elastic movement of polymer

chains in response to shear a stress, while under hydrostatic stress only local

motion of molecules takes place, which is not influenced by long range entangle-

ments and cross-links [28, 49]. As a result, the relaxation times of the volumetric

response are considerably shorter than those of the shear response, and the vol-

umetric excitation attains equilibrium relatively fast [13]. Therefore, the bulk

modulus of most dense polymers can be assumed constant within the limits of

linear visco-elasticity. A frequency-independent value K∗ is therefore adopted,

which is equal to that of the linear elastic case, given in Table 1.
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Table 2: Storage modulus G′ and viscosity G′′ values for the visco-elastic ma-
terial behavior described by the Kelvin-Voigt model (27)

Material G′ (Pa) G′′ (Pa·s)
Epoxy 7.9×108 1e4 5e4 1e5
Rubber 7.1×105 5 10 25

The frequency dependence of the shear modulus Ĝ(iω) can be effectively

approximated by exploiting various mechanical models with elastic (springs)

and viscous (dashpots) elements [17, 27]. In this study, two mechanical models

are considered.

The first model is a simple Kelvin-Voigt model represented by a spring par-

allel to a dashpot. For a harmonic wave field, the Kelvin-Voigt model provides

a complex-valued shear modulus with imaginary part linearly proportional to

the frequency:

Ĝ(iω) = G′ + iωG′′. (27)

The spring element has a stiffness value equal to the real part G′, also called

storage modulus, whereas the frictional resistance of the dashpot yields the to

viscosity contribution G′′. To evaluate the influence of various levels of viscosity

on the wave propagation characteristics, different viscosity values for epoxy and

rubber are considered as given in Table 2. The choice of these values is discussed

in the next section.

The Kelvin-Voigt model is practically not very useful, since its simplicity

prohibits a reliable fit of experimental data. However, this model has been

used before in theoretical studies of the material damping effects on dispersion

characteristics of PnCs, e.g. [2, 44, 23], since it enables analyzing gradual changes

in pass bands behavior by progressively varying the viscosity G′′.

The second model is a generalized Maxwell model, which takes into account
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a spectrum of relaxation times of a visco-elastic medium. The model can be

represented by a parallel configuration of different Maxwell elements (a spring

and a dashpot in series) with an extra parallel spring to describe the long-term

behavior of a visco-elastic medium [27]. For an n-element generalized Maxwell

model, the shear modulus is calculated as follows:

Ĝ(iω) = G∞ +

n
∑

i=1

iωGi

iωτi + 1
, (28)

where τi and Gi are the relaxation times and corresponding relaxation shear

moduli of the Maxwell elements, and G∞ is the equilibrium shear modulus.

The number n is usually chosen on the basis of an adequate fit of experimental

data.

The generalized Maxwell model is often used to characterize the experimen-

tally measured behavior of linear visco-elastic materials by performing dynamic

mechanical analysis (DMA). It has been recently found that dynamic torsion ex-

periments on long rods are the most direct and reliable methods for determining

the time-dependent shear modulus [12]. In the present work, the visco-elastic

behavior of epoxy is described by a set of relaxation pairs (Gi, τi) given in Ta-

ble 3. These data are obtained by fitting dynamic torsion measurements for the

storage and loss moduli of the epoxy bars under isothermal conditions [14]. The

small strain elastic behavior of the material at room temperature with ν = 0.38

is recovered by combining the elastic bulk modulusK∗ with the high glassy shear

modulus G∗ = G∞ +
∑n

i=1 Gi. The equilibrium shear modulus G∞ is used to

recover the finite strain behavior at high temperatures with ν = 0.5 [14].

Unfortunately, a similar complete data set for the visco-elastic behavior of

rubber is not reported in Ref. [14]. Standard uniaxial tension or compression

tests are commonly performed, whereas visco-elastic data in shear hardly ap-

pears in the literature [12]. For this reason, the experimental data for dynamic

18



tension test on a commercial silicone rubber reported in Ref. [42] is here used

instead. This type of experiment provides a time-dependent Young’s modulus,

which is often used to estimate the shear and compression response by assuming

a constant Poisson’s ratio through the following approximation [42, 12, 15]:

G(t) ≈
E(t)

2(1 + ν)
, K(t) ≈

E(t)

3(1− 2ν)
. (29)

However, this approximation appears to be rather inaccurate, since it is well-

known that the Poisson’s ratio of many polymers also depends on loading

time [25, 27, 12]. Furthermore, it has been shown that the standard measure-

ment accuracy is totally inadequate to convert the Young’s modulus functions

into the other material moduli, since the relative error, especially for the bulk

modulus, is extremely sensitive to the errors in the material functions E(t) and

ν(t) [11, 37, 49, 53].

Based on this understanding, the visco-elastic properties of the rubber are

extracted from the experimental measurements in Ref. [42] in the following way.

The first step was to evaluate the equilibrium shear modulus G∞, for which the

approximation G∞ = E∞

2(1+ν∞) can be assumed. To this purpose, the Poisson’s

ratio was determined from the relation ν∞ =
M∞−2G′

∞

2M∞−2G′

∞

with longitudinal mod-

ulus M∞ = ρc2l and shear modulus G′

∞
= ρc2s [51]. The estimated ν∞ = 0.49986

indicates that the polymer is in the rubbery state. Thus, the corresponding elas-

tic behavior can be recovered for G∞ = G∗ by setting Gi = 0 for i = 1, ..., n in

relation (28). The obtained G∞ = 71 kPa corresponds to cs ≈ 24 m/s, which

is slightly higher than cs ≈ 20 m/s (corresponding to G′

∞
= 50.4 kPa). Note

that the value of G′

∞
used here only serves to estimate the Poisson’s ratio of

the rubber in the equilibrium state, since the corresponding shear velocity cs

was not measured experimentally, but taken from the literature as an average

value for various types of rubber [42]. The relaxation shear moduli Gi were
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Table 3: Generalized Maxwell model relaxation times τi and associated shear
moduli Gi for epoxy (12DA3) [14] and rubber (commercial silicone elas-
tomer) [42]

Epoxy Rubber
τi (s) Gi (Pa) τi (s) Gi (Pa)

0.3031× 10−4 0.1476× 109 4.32× 10−9 3.0003× 106

0.1721× 10−3 0.1756× 109 5.84× 10−8 1.4001× 106

0.9768× 10−3 0.2025× 109 3.51× 10−7 9.8009× 105

0.5545× 10−2 0.1775× 109 2.28× 10−6 8.0341× 105

0.3147× 10−1 0.6802× 108 1.68× 10−5 6.2339× 105

0.1787× 100 0.1139× 108 2.82× 10−4 4.3671× 105

0.1014× 101 0.2264× 107 7.96× 10−3 2.3402× 105

0.5757× 101 0.8132× 106 9.50× 10−3 1.4835× 105

0.3268× 102 0.4020× 106

0.1855× 103 0.1760× 106

0.1053× 104 0.5056× 105

0.5977× 104 0.1265× 105

calculated by means of the relation Gi =
Ei

2(1−ν∞) and given in Table 3. Since,

as mentioned above, this is a debatable approximation, the results obtained by

means of this data set should not be considered as quantitative and only provide

a qualitative description of the wave dispersion in the visco-elastic rubber.

4 Results and discussion

This section presents complete band diagrams for AMMs with undamped and

damped components and discusses the influence of the visco-elastic matrix

and/or coating behavior on the dispersion and attenuation of elastic waves. Fur-

thermore, the ability of the Kelvin-Voigt model with one viscosity parameter to

predict the wave dispersion in visco-elastic AMMs is evaluated compared to the

generalized Maxwell model, which takes into account a number of relaxation

times and corresponding relaxation moduli fitting the experimental data.

The band structures are computed for the Γ −X direction within the irre-
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ducible Brillouin zone (see Fig. 1c, i.e. ky = ckx = 0, c = 0). The eigenvalue

problem (24)-(26) for wave number kx was solved for discrete values of the fre-

quency in a selected range. The unit cell shown in Fig. 1b was discretized

into 7148 2D quadrilateral 8-node finite elements. The vertically (out-of-plane)

and horizontally (in-plane) polarized modes are considered separately. First,

the out-of-plane modes are investigated, the dispersion of which is governed by

only the shear modulus G resulting in simple band structure diagrams (see,

e.g. Ref. [26]). The analysis of out-of-plane modes in a damped AMM enables

selection of the values of the viscosity parameter in the Kelvin-Voigt model for

both epoxy and rubber, which are further used for studying visco-elastic effects

on the wave dispersion of in-plane modes.

The band structures are presented through 3D diagrams along with their

corresponding 2D projections on the real- and imaginary-valued planes of the

normalized wave number kxa/2π. In the band diagrams, the real parts of the

wave number slightly exceed the range of the Brillouin zone in order to em-

phasize the periodicity of the dispersion curves. As the imaginary part of the

wave number is non-periodic, only those imaginary- and complex-valued curves

are shown that intersect pass bands of propagating waves (for the reference lin-

ear elastic case) in the considered frequency range. The considered values of

frequencies are limited up to those of the second band gap. To facilitate the

interpretation of the wave dispersion and compare results for damped and un-

damped cases, we also use the so-called attenuation diagrams plotting the ratio

between the imaginary and real pars of the wave number η = 2Imkx

Rekx

versus the

wave frequency f = 2πω [10, 2].
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4.1 Undamped linear elastic AMM

The 3D and 2D band structure diagrams for the out-of-plane modes in the

linear elastic material are shown in Fig. 2 a-b with a band gap between 543

Hz and 1041 Hz shaded in gray. The band diagram consists of two curves

indicated by numbers, each of them spanning continuously the whole considered

frequency range starting from 0. This structure satisfies the continuity condition

for dispersion curves and confirms the completeness of the dispersion spectrum

from the mathematical point of view [43].

From the physical point of view, there are two pass bands with real-valued

wave numbers (shown by blue) corresponding to propagating waves. They exist

only outside the band gap. The lowest pass band contains a horizontal part

representing a localized mode, at which the motion of the lead core occurs out-

of-phase to the motion of the matrix material [36, 26]. This mode opens a band

gap, which is also known as a hybridization band gap [32]. The band gap is

recognized as local resonance due to the fact that the Bloch wave vector kxa

experiences a π jump for its real part inside the band gap and shows an abrupt

change in the slope of its imaginary part in the vicinity of the frequency for

the localized mode. This behavior has been previously observed for lumped 1D

AMMs and is in a striking contrast to the dispersion curve behavior typical for

Bragg band gaps [59].

The band structure diagram for in-plane modes with a band gap between

2892-3720 Hz is shown in Figs. 2 d-e and is more complex, since it contains more

dispersion curves. However, all the features found for the out-of-plane modes

can be observed for the in-plane modes as well. In particular, each mode spans

the whole frequency range by starting from the zero frequency and consists of

different branches corresponding to propagating and evanescent waves. The

symmetry with regard to the first Brillouin zone’s border is preserved for the
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curves with real wave numbers. The lower bound of the band gap is again

formed by a localized mode, and the behavior of the dispersion curves shows

that the band gap is of a hybridization nature as described above. Note that the

localized modes at frequencies 912 Hz and 4876 Hz corresponding to torsional

motions within the inclusions [26] are badly resolved, as the k(ω)-approach used

to evaluate the band structure is insensitive to uncoupled localized modes.

The attenuation spectra for the out-of-plane and in-plane modes are shown

in Figs. 2c and f, respectively. From the definition of η is obvious that the

attenuation for real-valued branches is zero. Hence, for an undamped AMM,

the attenuation outside a band gap always equals to zero. Within the band

gaps, the value of η is unbounded for pure imaginary branches and takes finite

values for complex branches.

It is important to emphasize here that for the linear elastic material, the

wave attenuation solely occurs due to the local resonance effect without any

damping in the material constituents. Therefore, when analyzing visco-elastic

AMMs, this pure resonance contribution can be ’subtracted’ from the atten-

uation obtained for a damped AMM, yielding attenuation values due to the

visco-elastic effect only. This distinction allows quantifying the influence of

various mechanisms of the wave attenuation on the AMM performance.

4.2 Visco-elastic AMMs

The wave attenuation performance of dissipative AMMs is evaluated by using

the Kelvin-Voigt (27) and generalized Maxwell (28) models for dissipative matrix

and/or coating materials. First, we study the effect of the viscosity parameter

G′′ (Kelvin-Voigt model) on the wave dispersion in the so-called ‘empty-lattice’

material, which is continuous homogeneous material artificially divided into a

square lattice of unit cells with Bloch boundary conditions at each unit cell [44,
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55]. Figs. 3 a-b show 2D dispersion spectra for empty-lattice visco-elastic epoxy

and rubber materials, respectively, for 4 different arbitrary chosen values of G′′.

The spectra are calculated for the same frequency range and unit cell size as for

the linear elastic AMM described above. It is evident that the imaginary part

of the wave vector is more influenced by the viscosity compared to the real part,

as for any homogeneous visco-elastic medium [1, 3]. The shear wave velocity in

rubber has a rather low value (see Table 1) resulting in folding of the dispersion

curves at the boundary of the IBZ at the considered frequencies. The indicated

viscosity values are further used to analyze the changes in the band diagrams

for visco-elastic AMMs compared to the reference linear elastic case.

4.2.1 Visco-elastic AMM with a damped matrix

Figs. 4 a-b present the dispersion spectrum for the out-of-plane modes in the

visco-elastic AMM with a mildly damped epoxy (G′′ = 1e4 Pa·s, blue lines)

compared to the undamped linear elastic AMM (G′′ = 0, black lines). Ob-

viously, there are no apparent differences between the real branches for both

cases; the imaginary branch corresponding to the visco-elastic AMM becomes

complex-valued right at the lower boundary of the band gap for certain wave

numbers; the complex-valued curve located exactly at the Brillouin zone bor-

der for the undamped AMM is divided into 2 symmetric curves and undergoes

the same twisting as the imaginary curve. The mentioned changes are hardly

noticable in the 2D representation of the spectrum in Fig. 4 b, but are clearly

observed in the 3D plot in Fig. 4 a. The corresponding attenuation spectrum is

shown in Fig. 4 c. Even though all the waves become evanescent in visco-elastic

AMMs, the introduction of a small viscosity in the matrix material does not

substantially alter the wave attenuation performance of AMM due to the local

resonance effect. In this sense, the wave dispersion in visco-elastic AMMs qual-

itatively differs from that for PnCs, for which the edges of band gaps become
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rounded even for small viscosity levels [44].

Next, the viscous parameter is further increased up to G′′ = 5e4 Pa·s and

G′′ = 1e5 Pa·s (light blue and green lines in Figs. 4 d-e, respectively). The

trends observed for a lower value of G′′ become naturally more pronounced, and

the two complex branches lying within the IBZ approach each other for higher

viscosity values. It is further observed that the effect of the viscosity is larger

on the imaginary part of the wave vector similarly to the case of homogeneous

materials [1, 3]. The real part is only slightly influenced at higher frequencies,

as the viscosity value for the shear modulus G increases linearly with frequency

(cf. Eq. (27)). This observation is in striking contrast to the behavior of PnCs

with a damped matrix, for which the visco-elasticity influences mostly the real

part of the wave vector and causes the rounding of the edges of the band gap

bounds [44].

The attenuation spectrum for higher values of G′′ presented in Fig. 4 f reveals

that the band gap frequencies are almost not affected; however, within the band

gap, the wave attenuation decreases as the viscosity level increases. The decrease

of the wave attenuation occurs due to the fact that by introducing viscosity in

the matrix material, the pure imaginary dispersion branch, which represents a

non-propagating wave (black curve, G′′ = 0), is transformed into a propagating

complex-valued mode, the spatial attenuation of which is characterized by a

small value of the imaginary part of the wave vector. As the damping increases,

the imaginary value decreases. This naturally leads to the conclusion that an

increasing visco-elastic behavior of the matrix material decreases the attenuation

performance of the acoustic metamaterial.

Red curves in Fig. 4 d-e show the dispersion spectrum for a visco-elastic

AMM with the damped matrix modeled by the generalized Maxwell model, the

parameters for which taken from experimentally measured data (Table 3). From
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the comparison of this spectrum with the two spectra constructed by using the

Kelvin-Voigt model, it can be found that, in general, a Kelvin-Voigt model, with

a properly assigned viscosity value, well represents the wave dispersion in an

AMM with a damped matrix. Essential deviations between the two models are

observed only in the very low frequency range (up to 200 Hz), where the complex

curve described by the Maxwell model has a pronounced curving. However,

since these frequencies are significantly below the band gap, the evaluation of

the AMM performance at those frequencies is not of a critical importance. These

discrepancies can be ignored. Hence, one can conclude that outside the band

gap, the wave attenuation performance of AMM due to the visco-elastic effect

in the matrix material increases linearly with the frequency in the same way as

in homogeneous visco-elastic solids.

The conclusions derived above remain valid for in-plane modes as well.

Figs. 5 a,b present the 3D dispersion and attenuation spectra, respectively, for

a dissipative AMM with viscosity parameters G′′ = 1e2 Pa·s and G′′ = 1e3 Pa·s

for the visco-elastic epoxy matrix. Smaller values of the viscosity (compared to

those for the out-of-plane modes) are chosen, since for higher values the matrix

appeared to be too damped that was indicated by the presence of a large number

of additional complex branches, resulting in an almost uniform damping over

the whole considered frequency range and leading to the disappearance of the

band gap.

In general, all the trends in the dispersion and attenuation curves discussed

for the out-of-plane modes are observed for the in-plane modes. However, the

conclusion on the negative effect of damping on the AMM performance can-

not be directly derived from the dispersion spectrum for the in-plane modes,

since the behavior of the curves is more complicated. To justify this conclusion,

we evaluated the transmission displacement field for waves propagating in hor-
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izontal (x-axis) and vertical (y-axis) directions. The normalized (with regard

to the amplitude of an incident wave) simulation results are shown in Fig. 5 c

and d around the band gap frequencies, respectively. For horizontally polarized

waves (Fig. 5c), the differences between elastic and visco-elastic structures are

observed only outside the band gap, and they do not appear for even medium

values of viscosity. At the same time, a decrease of the attenuation level within

the band gap is clearly observed for vertically polarized waves (Fig. 5d), while

increasing the viscosity level.

Therefore, a small level of the visco-elastic dissipation in the matrix material

does not affect the AMM performance, and the matrix behaves as a linear elastic

material within the band gap. Contrary to this, medium damping results in a

decline of the wave attenuation performance and should be either avoided or

minimized.

4.2.2 Visco-elastic AMM with a damped coating

The complete dispersion diagram for out-of-plane modes in the AMM with a

dissipative coating, G′′ = 5 Pa·s, is shown in Figs. 6 a-b (blue lines) together

with the reference diagram for the undamped case (black lines). For this low

viscosity level, the wave propagation in homogeneous rubber appears to be only

slightly damped at higher frequencies as illustrated in Fig. 3 b. However, the

band diagram of the dissipative AMM is changed significantly compared to the

reference linear elastic AMM that is in contrast to the case of a damped matrix,

see Figs. 4 a-b.

The most striking difference is the disappearance of the horizontal part of

the real-valued branch corresponding to the localized mode, with forms the

lower band gap bound in the linear elastic AMM. The branch becomes complex-

valued with large imaginary part. The dispersion diagram for the dissipative

visco-elastic AMM has still two dispersion curves, as in the linear elastic case.
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However, the trends of these branches differ significantly that also leads to the

formation of the so-called ‘wavenumber’ band gap [16, 20], i.e. a wavenumber

range with no propagating waves. The dispersion curve 2 in the visco-elastic

case is formed by only complex-valued branches with large imaginary parts.

Most probably, this curve is responsible for the occurrence of the ‘metadamping’

phenomenon in AMMs [22], i.e. enhanced attenuation performance of AMMs

compared to the statically equivalent PnC configurations. (Note that all the

mentioned differences are not visible in the 2D representation of the band dia-

gram, Fig. 6 b.) The analysis of the attenuation spectrum in Fig. 6 c shows that

additional wave attenuation occurs near the band gap edges. The physical rea-

son for this enhanced dissipation, as discussed in Ref. [39], is a higher velocity of

waves in the visco-elastic coating resulting in a faster response of the resonator

at near-resonant frequencies.

As the viscosity level is increased up to G′′ = 10 Pa·s or G′′ = 25 Pa·s, the

above mentioned trends in the wave dispersion changes are amplified as shown

in Figs. 6 d-e in light-blue and green. For various viscosity levels, the horizontal

part of the complex-valued branch has the same frequency as the lower bound of

the band gap in the linear elastic case. The attenuation rate η shown in Fig. 6 f

indicates that the increase of damping diminishes the attenuation within the

band gap. The value η, which is unbounded at the lower band gap bound due to

undamped resonances of inclusions in the linear elastic case, becomes finite and

is shifted towards higher frequencies. The clear bounds of the band gap (as in

the linear elastic case) are smeared out with increasing viscosity. Thus, without

a reference solution for the undamped AMM, it would be difficult to identify

the frequency band gap. However, additional dissipation of the propagating

modes results in a wider attenuation spectrum for the visco-elastic AMM. Thus,

optimal choice of damping for the coating material, similar to that proposed
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for a mass-spring analogue of 1D AMM [39], may substantially increase the

attenuation performance of damped AMMs.

The band diagram for the damped AMM with visco-elastic rubber repre-

sented by the generalized Maxwell model is shown in Figs. 6 d-e by red curves.

Again, as in the case of the AMM with a dissipative matrix, the behavior of

the dispersion curves evaluated for the two visco-elastic models is qualitatively

similar, except at low frequencies. However, for the generalized Maxwell model,

the curve bends are shifted towards higher frequencies compared to those for

the Kelvin-Voigt model. The same conclusion can be derived from the analysis

of the attenuation spectrum in Fig. 6 f in comparison with those for the Kelvin-

Voigt model. The observed shift of the band gap is most probably due to the

inaccurate approximation of visco-elastic parameters for rubber as discussed

previously.

Figs. 7a,b show dispersion and attenuation spectra for in-plane modes in a

damped AMM (dark and light blue curves) along with those for the undamped

AMM (black curves). The viscosity parameters are G′′ = 5 Pa·s (dark blue)

and G′′ = 10 Pa·s (light blue) in the Kelvin-Voigt model for the visco-elastic

rubber. The visco-elastic effects on the wave dispersion discussed above for the

out-of-plane modes are found for in-plane modes as well despite the more com-

plicated behavior of the in-plane dispersion curves. The calculations performed

for the generalized Maxwell model are not shown here to keep the figures clear.

However, the same shift of the band gap frequencies to higher frequencies as

described for out-of-plane modes is observed.

The main conclusion that a visco-elastic behavior of the coating material

results in extending the band gap size with simultaneous decrease of the wave

attenuation within the band gap is confirmed by the transmission analysis for

horizontally and vertically polarized in-plane waves as shown in Fig. 7c and d,
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respectively.

4.2.3 Visco-elastic AMM with damped matrix and coating

Finally, we analyze a dissipative AMM with both visco-elastic matrix and coat-

ing and compare the resulting dispersion and attenuation spectra with those

considered in the two previous sections.

Although the calculations have been performed for both mode types and the

two analyzed visco-elastic models, we discuss here only the out-of-plane modes

in a damped metamaterial with experimentally measured visco-elastic losses

represented by the generalized Maxwell models (Table 3). The corresponding

band structure and attenuation diagrams are shown in Fig. 8 by light green lines;

blue and orange lines indicate diagrams for the AMMs with only dissipative

matrix or coating materials, respectively. At frequencies below the band gap,

the wave attenuation occurs purely due to visco-elasticity of the matrix material.

This is due to the fact that the appropriate wavelengths of waves propagating

in the matrix are 2 orders of magnitude larger than the resonator size, and as

the filling fraction for the inclusions is rather low, the waves do not ‘feel’ its

presence. However, starting from frequencies slightly below the band gap and

up to the highest considered frequency, the wave dispersion and attenuation

are governed solely by visco-elastic damping in the coating material, and the

damping in the matrix is not pronounced anymore.

Therefore, for the evaluation of the wave attenuation performance of 3-phase

AMMs made of visco-elastic polymers, the matrix material (if not too damped)

can be modeled as a linear elastic material to reduce the computational costs.

Visco-elastic losses in the coating should be properly accounted for, in any case.
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5 Conclusions

This paper analyzed the wave dispersion properties and attenuation perfor-

mance of continuous dissipative AMMs with local resonators. The metama-

terial configuration consists of coated inclusions of infinite length placed in a

periodic square array in the matrix material. The visco-elastic losses in the ma-

trix or/and coating materials were separately considered for out-of-plane and

in-plane elastic waves, propagating in a 2D structure without mutual interac-

tions. The solution for both wave types was obtained by means of the finite

element method in the frequency space for a representative unit cell. The dis-

persion of spatially decaying waves described by complex-valued wave numbers

was evaluated by solving the dispersion equation for fixed real-valued frequen-

cies. In this way, the complete band structure diagrams were constructed for

both linear elastic and visco-elastic AMM materials.

Two mechanisms contributing to wave attenuation in damped AMMs were

analyzed separately. The first mechanism, originating from local resonances

of the inclusions, is responsible for the existence of subwavelength band gaps.

The second mechanism appears by introducing visco-elastic losses in the matrix

and/or coating materials. The visco-elasticity was modeled by either a Kelvin-

Voigt model, which is frequently used to study damped metamaterials, or by a

generalized Maxwell model, representing real visco-elastic behavior of polymers.

The main effects of the material visco-elasticity on the wave attenuation

performance of AMMs are as follows:

• A small amount of visco-elastic damping in the matrix influences mostly

pure imaginary and complex branches of the dispersion curves similarly

to homogeneous materials (Figure 4), which is in contrast to damped

PnCs [44]. As the viscosity level increases, the visco-elastic matrix dete-

riorates the attenuation performance of AMMs (Figure 5).
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• For a low to medium damped coating, the attenuation around the band

gap edges increases, although the peak of the resonance attenuation inside

the band gap decreases (Figures 6 and 7). This agrees with the conclusions

derived for the mass-spring analogues of 1D AMMs [39].

• If the damping is present in both the matrix and coating material, the

wave dispersion below the lowest band gap is governed purely by the

visco-elasticity of the matrix, whereas near the band gap and at higher

frequencies only the visco-elasticity of the coating dominates (Figure 8).

From the results of the transmission analysis, it can be concluded that a medium

level of damping present in any constituent of a three-phase AMM results in

decreasing the wave attenuation performance of the AMM (Figures 5c,d and

7c,d). This important conclusion contradicts the common expectations that

regardless of the level of damping in any material component, an increased dis-

sipation response is expected. However, the dissipative coating material allows

extending the band gap size that might be useful for practical applications of

AMMs. The slightly damped matrix can be modeled as linear elastic provided

the visco-elastic losses in the coating are properly taken into account (Figures

5c,d and 8).

Finally, from the comparison of the two visco-elastic models, i.e. Kelvin-

Voigt and Maxwell, it follows that the Kelvin-Voigt model provides reliable

results concerning the wave dispersion, except for low frequencies. This model

can be efficiently used for analyzing realistic AMMs possessing unavoidable in-

trinsic losses, if the viscosity parameter for a given material is chosen in the

correct range.

The performed study of the wave dispersion in visco-elastic AMMs reveals

that a proper combination of the local resonance effect and material dissipation

can be efficient in tailoring the absorption properties of AMMs. This may enable
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design of practical systems with effective damping and stiff structural properties

suitable for various engineering applications.
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Figure 1: (a) A representative unit cell of an AMM with a square lattice of
coated inclusions. The metamaterial is assumed to be infinite along the z axis;
(b) 2D cross-section of the metamaterial unit cell; (c) sketch of the corresponding
1st and irreducible Brillouin zones (shaded triangle).

40



1

1

2

2

a) d)

1

1
1

2

2

b) e)

c) f)

Figure 2: Band structure (a,b,d,e) and attenuation (c,f) diagrams for (a-c) out-
of-plane and (d-f) in-plane modes in an undamped linear elastic AMM repre-
sented by a unit cell shown in Fig. 1. The geometric parameters are Rin=5mm,
h=2.5mm, and filling fraction of the coated inclusion is 40%. Real, pure imag-
inary, and complex branches are indicated by blue, red, and black lines, re-
spectively. The boundary of the IBZ for Rekx is indicated by a black dashed
line.
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Figure 3: Band structures for out-of-plane modes in an empty-lattice visco-
elastic a) epoxy and b) rubber material for several values of the shear viscosity
G′′ in [Pa/s] in the Kelvin-Voigt model (27).
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Figure 4: Band structure (a,b,d,e) and attenuation (c,f) diagrams for out-of-
plane modes in a dissipative AMM with a damped matrix described by either the
Kelvin-Voigt (with various viscosity levels G′′ in [Pa·s]) or generalized Maxwell
models. The composition of the AMM is the same as in the undamped linear
elastic case, with the reference spectrum shown by black lines. The band gap
evaluated for the undamped AMM is indicated by gray shaded regions.
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Figure 5: Band structure (a), attenuation (b) and transmission (c,d) diagrams
for in-plane modes in a dissipative AMMwith damped matrix material described
by the Kelvin-Voigt model (with various levels G′′ in [Pa·s]). The normalized
(to the amplitude of an input wave) transmitted displacements are shown for
horizontally (c) and vertically (d) polarized waves. The composition of the
AMM is the same as in the undamped linear elastic case with the reference
spectrum shown by black lines. The band gap evaluated for the undamped
AMM is indicated by gray shaded regions. The transmitted displacements are
shown in the vicinity of the band gap frequencies.
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Figure 6: Band structure (a,b,d,e) and attenuation (c,f) diagrams for out-of-
plane modes in the dissipative AMM with a damped rubber coating of inclusions
described by either the Kelvin-Voigt (with various viscosity levels G′′) or the
generalized Maxwell model. The composition of the AMM is the same as in
the undamped linear elastic case, for which the reference spectrum is shown in
black. The band gap evaluated for the undamped AMM is indicated by gray
shaded regions.
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Figure 7: Band structure (a), attenuation (b) and transmission (c,d) diagrams
for in-plane modes in a dissipative AMM with damped rubber coating described
by the Kelvin-Voigt model with G′′ = 5 Pa·s (dark blue) and G′′ = 10 Pa·s
(light blue). The normalized (to the amplitude of an input wave) transmitted
displacements are shown for horizontally (c) and vertically (d) polarized waves.
The composition of the AMM is the same as in the undamped linear elastic
case, for which the reference spectrum is indicated by black lines. The band
gap evaluated for the undamped AMM is shown by gray shaded regions.
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a) b)

Figure 8: Band structure (a) and attenuation (b) diagrams for the out-of-plane
modes in dissipative AMMs with: damped matrix (blue curves), damped coating
(orange curves), and damped both matrix and coating (green curves) described
by the generalized Maxwell model. The composition of the AMM is the same as
in an undamped linear elastic case with the corresponding band gap indicated
by gray shaded regions.
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