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Abstract

A control stategy based on a possibly non-deterministic
discrete-event model of a continuous system is proposed.
Such a model can arise when a continuous plant is to be
supervised by some computer program which uses discrete
state information. The discrete-event representation of
the continuous system will often be non-deterministic and
therefore difficult to control. The contol method proposed
exploits the fact that the original system is continuous. An
example shows the possibilities of the control method.

1 Introduction

Discrete-event representations (models) of continuous sys-
tems are frequently arising in systems and control theory.
For example, a system that is continuous by nature but
is only observed by discrete sensors (i.e. sensors only de-
tecting when a state crosses a certain boundary), can be
represented by a discrete model. Also the analysis of some
hybrid systems can be facilitated by transforming the con-
tinuous part into a discrete-event part such that only a
discrete-event system has to be investigated which may be
less difficult than studying the underlying hybrid system.
A typical situation is when a (possibly controlled) contin-
uous plant is to be supervised by some programmable log-
ical controller or computer program which uses discrete
state information. Since the discrete controller cannot
communicate with the system at a continuous level it is
necessary to use an interface. This corresponds to dis-
cretizing the continuous state space of the system into a
finite set of symbols to be used by the controller. Various
formalisms and methods have been proposed to describe
these kind of systems and to solve the discretizing prob-
lem.

In [ LUN94] a qualitative modelling approach for lin-
ear, discrete-time systems is presented and necessary and

sufficient conditions are given for which the resulting au-
tomaton is deterministic. The discretizing method pro-
posed in [ STI93] is able to deal with non-linear systems
and is based on a test which has similarities with the
method for linear systems presented in [ PRE96], which is
extended for nonlinear systems in [ PHI97]. The resulting
discrete-event representation will in most cases be non-
deterministic. This implies that, given a discrete state
and a discrete input, more than one new state is possible.
This makes it difficult to design a controller, since it is not
clear what the result of a control action will be.

In this paper a control strategy based on a possi-
bly non-deterministic discrete-event model of a continu-
ous system is proposed. The method explicitly exploits
the fact that the underlying system of the discrete-event
model is continuous by nature. The paper is organized
as follows. First, the continuous and discrete-event mod-
els will be presented. Then an alternative representation
of the discrete-event model is given to enhance the com-
putations necessary for the control strategy proposed in
the next chapter. The control strategy is illustrated by
means of a three tank example. Finally some conclusions
are drawn.

2 The discrete-event model

The point of departure is a continuous system which is to
be transformed into a discrete-event model. Suppose a dy-
namical system described by a set of ordinary differential
equations in Rn is given:

ẋ = f(x, u), x ∈ Rn (1)

It is assumed that f is continuous and that the system (1)
has a unique solution for every initial value in the region
of interest.

The discrete-event model which has to result is given
by the system [ SON90]:

Σ = (T ,X ,U , φ)

where the time set T = Z, and the finite set of inputs U ,
also called the input alphabet are given. Next, a finite set



of discrete states X , and the possibly non-deterministic
transition function φ : X × U → P(X ) have to be deter-
mined.

2.1 Discrete states

First, the state space is partitioned into regions. For this
purpose for each coordinate xi, (i = 1...n) of x a set of
boundaries is chosen:

βi
0 < βi

1 < . . . < βi
ni

(ni ≥ 1). (2)

A discrete state is given by an integer x̃ ∈ Np =
{1, ..., p}, where p =

∏
i ni. The discrete state x̃ is con-

nected with the continuous state space due to its relation
with a discrete state region, R(x̃) defined as the bounded
region in Rn

R(x̃) = {x ∈ Rn |βi
ji−1 ≤ xi ≤ βi

ji
, ∀i}. (3)

where ji ∈ {1, ..., ni} is chosen such that there are p differ-
ent discrete state regions covering the region of interest.

Two discrete states are adjacent if the corresponding
discrete state regions share an (n−1)-dimensional bound-
ary. The crossing of a boundary, that is the transition
from one discrete state to another is called a discrete event.

It will be convenient to represent the discrete state x̃ by
means of a boolean vector x̂ ∈ Bp = {0, 1}p. The trans-
formation from the integer to the boolean vector repre-
sentation IB : Np → Bp follows immediately:

IB(x̃) = [0, 0, ..., 0, 1, 0, ..., 0, 0]T

with the 1 at the x̃-th position. Consequently the trans-
formation BI : Bp → Np is defined by

BI(x̂) = k if the k-th element of x̂ is 1

In the boolean vector representation a vector is called a
set if the integer representation of that vector is a set. The
set {x̃i} then is given by

x̂ = IB({x̃i}) =
∑

x̃∈{x̃i}
IB(x̃)

where the summation has to be taken as a boolean vector
addition. In this way it is possible to call a vector x̂1

a subset of x̂2 if {x̃i}1 ⊆ {x̃i}2. In the boolean vector
notation it is easy to check if x̂1 ⊆ x̂2 since

x̂1 ⊆ x̂2 ⇐⇒ x̂1 + x̂2 = x̂2

2.2 Transition function

A discrete event approximation of the continuous model
has to satisfy the following property: let x̃1 and x̃2 be
two adjacent states, then a transition x̃2 = φ(x̃1, ui) is
admissible iff there exists a solution x(t) of (1) with u = ui,
starting with initial condition x(t1) = x1 ∈ R(x̃1) and

crossing x2 ∈ R(x̃2) at time t2 such that x(t) ∈ R(x̃1) ∪
R(x̃2) for t1 ≤ t ≤ t2.

From this it can be seen that determining the transition
function is equal to answering the question whether or not
there exists a solution of (1) with constant ui ∈ U , that
starts in R(x̃1) and reaches R(x̃2) where x̃1 and x̃2 are any
two adjacent states. In [ PRE96] a sufficient condition is
presented to answer this question. The key-idea here is
that if at the boundary between x̃1 and x̃2 the derivative
of x(t) given by (1) has a component in the direction of
R(x̃2), then due to continuity, a transition from x̃1 to x̃2 is
possible. A computer program checking this condition can
automatically generate the transition function. An imple-
mentation of this method, described in [ PHI97] results
in automaton tables. An automaton table A is a table in
which, given a discrete state, all possible new states can
be found. Each discrete input ui ∈ U requires the com-
putation of an automaton table Ai. Then the transition
function φ is characterized by ({u1, ...uk}, {A1, ..., Ak}).
In almost all cases the transition function φ will be non-
deterministic, that is given ui, more than one possible new
discrete state will be possible.

2.3 Interconnection Matrices

The information an automaton table A contains can be
represented by means of an interconnection matrix (adja-
cency matrix). An interconnection matrix Â ∈ Bp×p =
{0, 1}p×p is a boolean matrix where

âij =
{

1 if i = φ(j, u)
0 else

In the boolean vector domain it is easy to compute the
new set {x̃i}2 given an automaton table A and the initial
set {x̃i}1, that is x̂2 = Âx̂1.

3 Control

Using the information provided by the interconnection
matrices to control the system will be very difficult due
to its non-deterministic nature. The control of non-
deterministic discrete-event systems is still in development
(see e.g.[ HEY98]). There is however a difference between
a discrete-event system resulting from a continuous sys-
tem and a regular discrete-event system. The difference
is that in the first situation it may be possible to let a
control action respond to an event (measurement) as to
’undo’ this event. That is, instead of trying to make sure
transitions cannot occur at all (which is very difficult due
to the non-determinism), sometimes a transition can be
corrected. The motivation for this is that if the contin-
uous system crosses a boundary from one discrete state
to another, and it is certain that there exists an input for
which at that particular boundary the first derivative of
x at each point at the boundary has a component in the
opposite direction, then due to continuity close enough



just after that boundary also the first derivatives of x has
a component in the opposite direction. This will be ex-
ploited to construct a control strategy.

3.1 The Control Algorithm

The control problem is to find a sequence of control inputs
such that, starting from the initial discrete state, x̂0 the
system will evolve towards the target discrete state, x̂e.
The control strategy proposed is based on the following
two operations:

1. InvSet(x̂): Compute the smallest set, say x̂inv con-
taining the set x̂ for which there exists inputs pre-
venting the system leaving this set x̂inv (so it is a
controlled invariant set)

2. NeighSet(x̂): Compute the set of neighbors of x̂,
i.e. the discrete states sharing boundaries with x̂,
that can force the transition to x̂ and create a new
set, say x̂ext from the union of this neighbors with
x̂ (so x̂ is extended with its neighbors from which a
transition to x̂ can be forced)

With ’force a transition’ it is meant that if the contin-
uous state is on the boundary of a discrete state, then
there exists an input such that a transition to the adja-
cent discrete state is possible, whereas the opposite tran-
sition is not possible (with that same input). Notice that
this is a much weaker condition than the requirement that
given a discrete state there must exist an input such that
a transition to a certain adjacent state is the only possible
transition.

The operations InvSet(x̂) and NeighSet(x̂) are eas-
ily expressed in the boolean vector domain. First define
the Neighbor interconnection matrix, N̂ ∈ Bp×p in the
following manner:

n̂ij =
{

1 if i is a neighbor of j
0 else

With N̂ it is clear that x̂2 = N̂x̂1 contains all (adjacent)
neighbor states of x̂1.

Next, define the Smallest interconnection matrix, Ŝ and
the Largest interconnection matrix, L̂ as

Ŝ = Â1&Â2&...&Âk

L̂ = Â1 + Â2 + ... + Âk

with C = A&B defined as cij = aij · bij and C = A + B
is defined as cij = aij + bij .

The interpretation of Ŝ is that x̂2 = Ŝx̂1 contains all
neighbor states of x̂1 that cannot be avoided by any in-
put. The interpretation of L̂ is that x̂2 = L̂x̂1 contains all
neighbor states of x̂1 that can be reached by some input.

With this computation of InvSet(x̂) and NeighSet(x̂)
become

Algorithm 1 InvSet(x̂)

x̂inv = (
q−1∑
i=0

Ŝi)x̂

with

q = min{l | (
l∑

i=0

Ŝi)x̂ = (
l−1∑
i=0

Ŝi)x̂}

Algorithm 2 NeighSet(x̂)

x̂ext = N̂forx̂

with N̂for ∈ Bp×p defined as

N̂for = (N̂ − Â1)&AT
1 + (N̂ − Â2)&ÂT

2 + ...

... + (N̂ − Âk)&ÂT
k

To facilitate the computation of InvSet(x̂) it is as-
sumed that it is measured when the continuous state is at
a boundary. This allows the controller to respond when
a boundary actually is hit instead of when a boundary
already is crossed.

3.1.1 Controlled Invariant Sets

With these operations the controlled invariant sets can be
computed. Set x̂ = x̂e and k = 1 and do

step 1 InvSet(x̂), for the resulting x̂inv , label it x̂k
inv

and do

step 2 NeighSet(x̂inv). If x̂inv does not contain x̂0 set
x̂ = x̂ext and k = k + 1 and do step1, else stop.

The result is a set of controlled invariants sets {x̂k
inv}

satisfying x̂k
inv ⊂ x̂k+1

inv . The control strategy consists of
two phases:

Correction Phase If a transition took place which re-
sulted in a discrete state that is in a larger controlled
invariant set than the previous discrete state was,
then this transition has to be corrected.

Improvement Phase If no transition has to be cor-
rected then there is the freedom to use the inputs
for trying to let the state evolve to a smaller invari-
ant set, that is if the state is in x̂k

inv then try to go to
x̂k−1

inv until the state is arrived in x̂1
inv.

3.1.2 Correction Phase

In a control situation it is kept track of the discrete state
the continuous state is in and a number r is assigned to
it:

r = min{l|x̂ ∈ {x̂k
inv}}



If after a transition from state x̂1 to x̂2 it appears that r2 >
r1 which means that the state has entered a larger control
invariant subset, then a correction is necessary. Now an
input must be chosen that forces the opposite transition.
From the construction of the controlled invariant sets it
is clear that such input exists if some care is taken of the
choice of the inputs in the improvement phase, as will be
explained in the next.

3.1.3 Improvement Phase

If it is not necessary to correct a transition then the inputs
can be used to let the state evolve to a smaller controlled
invariant set. To do this, first it must be recognized that,
depending on the discrete state the continuous state is
in, there may exist inputs that have to be avoided. For
characterizing all illegal inputs the following observations
must be formalized.

Condition 3 A transition from x̂k
inv to x̂k−1

inv is only pos-
sible if the continuous state is in a subset of x̂k

inv whose
elements are neighbors of x̂k−1

inv and for which there ex-
ists an input such that a transition to x̂k−1

inv is possible.
Furthermore only inputs are allowed for which no uncor-
rectable transition to a specific set (x̂k)ill to be defined is
possible. The subset of x̂k

inv satisfying these conditions will
be denoted (x̂k

inv)trans.

Condition 4 If a discrete state x̂ ∈ x̂k
inv \ (x̂k

inv)trans has
a path to (x̂k

inv)trans then this path is legal only if it is real-
izable with inputs for which no uncorrectable transitions to
a specific set (x̂k)ill to be defined is possible. The subset of
x̂k

inv satisfying this condition (which includes (x̂k
inv)trans)

will be denoted (x̂k
inv)legal.

Condition 5 There is a legal path from x̂k+1
inv to x̂k−1

inv

if there is path from x̂k+1
inv to (x̂k

inv)legal which is realiz-
able with inputs for which no uncorrectable transitions to
(x̂k+1)ill are possible.

The first two conditions lead to the construction of a
new set of controlled invariant subsets {(x̂k

inv)legal} with
x̂k

inv ⊇ (x̂k
inv)legal. The third condition states that in order

to prevent that no further improvement is possible, the
state has to be navigated from (x̂k

inv)legal to (x̂k−1
inv )legal,

that is, it must be taken care of that the state is always
in a legal set.

It is clear that (x̂k)ill are those states that are disad-
vantageous and therefore should be avoided. These states
are 1) those who are in a larger controlled invariant set
than the one the continuous state is at the current mo-
ment and 2) those for which no further improvement of
the state evolution is possible within the proposed con-
trol strategy. This are the states for which no legal path
is possible to states for which a transition to a smaller
controlled invariant subset is possible. With this (x̂k)ill

becomes:

(x̂k)ill = (x̂l
inv \ x̂k

inv) ∪ (x̂k
inv \ (x̂k

inv)legal) ∪ ...

... ∪ (x̂1
inv \ (x̂1

inv)legal)

where l denotes the number of sets in {xk
inv}.

From condition 3 and condition 4 it is clear that
{(x̂k

inv)legal} has to be computed in an iterative scheme,
since (x̂k

inv)trans and (x̂k
inv)legal depend on (x̂k

inv)ill which
in turn depends on (x̂k

inv)trans and (x̂k
inv)legal. Notice that

(x̂1
inv)legal = x̂1

inv. Now define

Ŝfor= L & (A1+(N −AT
1 )) & (A2+(N −AT

2 )) &...

...& (Ak+(N −A
T
k ))

and notice that x̂2 = Ŝforx̂1 are those states for which a
transition from x̂1 cannot be corrected.

Algorithm 6 Set (x̂1
inv)legal = x̂1

inv, (x̂k
inv)trans

0 = x̂k
inv,

x̂l+1
inv = N̂x̂l

inv , and (x̂k
inv)ill

0 = x̂l+1
inv \ x̂k

inv . For j = 2, ..., l
do

At the r-th iteration, do

Step 1 for all Âi, i = 1, ..., k compute

(p̂j
r)

i= Â
T

i (x̂j−1
inv )legal∪(x̂j−1

inv )legal∩(x̂j
inv)trans

r−1

(q̂j
r)

i= (Â
T

i (x̂j)ill
r−1∩(Ŝ

for
)T (x̂j)ill

r−1) ∩ (x̂j
inv)trans

r−1

(x̂j
inv)trans,i

r = (p̂j
r)

i\(q̂j
r)

i

Then set

(x̂j
inv)trans

r = ((p̂j
r)

1\(q̂j
r)

1) ∪ ((p̂j
r)

2\(q̂j
r)

2) ∪ ...

... ∪ ((p̂j
r)

k\(q̂j
r)

k)

Step 2 Set (x̂j
inv)legal

r = (x̂j
inv)trans

r and do

Step 2a for all Âi, i = 1, ..., k compute

(p̂j
r)

i= Â
T

i (x̂j
inv)legal

r ∩(xj
inv\(x̂

j
inv)legal

r )

(q̂j
r)

i= (Â
T

i (x̂j)ill
r−1∩(Ŝ

for
)T (x̂j)ill

r−1)∩
∩(xj

inv\(x̂
j
inv)legal

r )

(x̂j
inv)legal,new,i

r = (p̂j
r)

i\(q̂j
r)

i

Step 2b Set

(x̂j
inv)legal,new

r = ((p̂j
r)

1 \ (q̂j
r)

1)∩

∩((p̂j
r)

2 \ (q̂j
r)

2) ∩ ... ∩ ((p̂
j

r)
k\(q̂j

r)
k)

(x̂j
inv)legal

r = (x̂j
inv)legal,new

r ∪(x̂j
inv)legal

r

and go to Step 2a until (x̂j
inv)legal

r does not
change any more. Set

(x̂j)ill
r = (x̂l

inv\x̂
k
inv) ∪ (x̂j

inv\(x̂
j
inv)legal

r ) ∪ ...

... ∪ (x̂1
inv\(x̂

1
inv)legal)

Do the r + 1-th iteration or stop if nothing changes
anymore, in which case we have determined (x̂j

inv)legal and
(x̂j)ill and we can continue with computing the j + 1-th
sets.
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m̂5

a) initial state

b) target state

Figure 1: The three tank system with initial and target
discrete states marked

3.2 Limitations

If the construction of the controlled invariant sets is not
possible, that is if there is just one controlled invariant set
covering the whole region of interest, then the method will
fail. This situation can occur when a coordinate xi cannot
directly be influenced by any discrete input. Furthermore,
in the former it is assumed that all sequences x̂k = Lkx̂1

are in fact possible. If this is not true then there may
exists more illegal states. Also no improvement is possible
if transitions to a smaller legal set just do not happen
and the state evolves in a legal set without leaving it.
These controllability related issues are the topics for future
research.

4 Example: Three Tank Systems

The three tank system has the configuration depicted in
Fig 1. It consists of three communicating tanks which
are connected through small pipes. The input u =
(s1, s2, s3, s4, s5) of the system are the on/off switches,
s1, . . . , s5 controlling the valves, where si ∈ {0, 1}. The
state vector x = [L1, L2, L3]T is given by the water levels
in each tank. Each tank is divided into six parts (discrete
states) that are defined by the levels: 0, 0.01, 0.1, 0.2, 0.3,
0.4, and 0.5 [m]. It is only observed if a level is reached.

For each possible input combination (that is, for each
discrete input) the corresponding automaton table has
to be computed. So having five on/off switches gives
25 = 32 different input combinations. With these 32 au-
tomaton tables, one is able to predict, given any initial
state, the next possible state(s) for input u. Now the
controller invariant sets {(x̂k

inv)legal} and the set of illegal
state {(x̂k)ill) can be computed, following the procedure
described in Section 3.1.

The aim is to end at xtar = [0.12, 0.24, 0.34]T , that is
the discrete state x̂tar = (3, 4, 5) from the initial state
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Figure 2: Time response for initial state x̂init = (4, 5, 2)
and target state x̂tar = (3, 4, 5)
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Figure 3: The inputs s2, s3, s4 and s5

xinit = [0.22, 0.31, 0.09]T , that is x̂init = (4, 5, 2), see Fig.
1. Using the proposed control strategy, a possible state-
evolution is shown in Fig. 2. From Fig. 2 it can be seen
that the control objective (in terms of discrete states) is
achieved. For this, the level of the second tank first is
adjusted such that the first tank is in a position to have
an outflow. Then the level of the second tank rises again,
although this is difficult to see from Fig. 2. The corre-
sponding input is depicted in Fig. 3. Only the positions
of the switches s2, s3, s4, and s5 are shown; s1 = 0 during
the simulation. Fig. 3 shows that the correction of transi-
tions can result in scattering of the inputs, which may be
undesirable in practical situations. This scattering pos-
sibly can be reduced or even prevented by changing the
strategy for choosing an input from the set of legal inputs
in the improvement phase. This will be a topic for future
research.



5 Conclusions

A control strategy for a possibly non-deterministic
discrete-event model of a continuous system is proposed.
The strategy explicitly uses the fact that the discrete event
model is based on a continuous system. The control strat-
egy is applied to a three tank example.
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