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Summary

Transport and radiative properties of complex molecular plasmas are investigated
via numerical modeling. A significant part of this work is devoted to the study of
high pressure equilibrium plasmas that are used for lighting applications. Addi-
tionally, low pressure plasmas used for deposition purposes are considered. Kinetic
plasmas are also briefly studied by considering the scattering of a beam of electrons
with large kinetic energies.

Equilibrium plasmas are used to describe high intensity discharge (HID) lamps.
Standard HID lamps contain mercury. Replacing mercury with more environmen-
tally friendly species changes the discharge physics considerably. The considered
alternative species are metal-halide salts like InI, GaI and SnI. Many of these
species do not occur often in plasmas and are therefore not well studied. The
result is that literature data is relatively scarce.

The calculation of transport coefficients like the thermal conductivity and the
electrical conductivity relies on accurate input data for the collision integrals. In
order to obtain reasonable estimates for the transport coefficients, a general proce-
dure is required for estimating collision integrals for arbitrary interactions. Previ-
ously, the modeling toolkit PLASIMO used basic models like the rigid sphere and
coulomb potentials. Later Johnston initiated the development of a more advanced
approach. This approach relied on numerically unstable methods. Additionally,
the usage of the method required a significant amount of background knowledge
and was therefore not used frequently. In this work, a more accurate, more robust
and a more user-friendly procedure is described. The procedure has been adopted
as the new default in PLASIMO. As a result, more accurate transport coefficients
can now be calculated. Due to the fact that the expressions for the transport
coefficients for the electrons and the heavy particles are separated, estimates for
the transport coefficients in non-thermal plasmas have also been improved consid-
erably.

Another effect of replacing mercury is that a dominant background gas is no
longer present. Previously, the gas pressure of the metal halides that evaporated in
HID lamps summed up to a few percent of the total pressure in the most extreme
cases. In such a situation, the diffusive fluxes can be described by Ficks law. In the
mercury-free case there is not a single species that is dominant over the complete
temperature range. In that case, the diffusive fluxes must be calculated based on
a coupled system for the diffusive velocities. This system is supplemented with
conservation equations for the total mass of a given species in the gas phase or
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the elemental pressure at the salt pool (cold spot).
Additionally, the emitted radiation of these mercury-free lamps appeared to be

dominated by continuum radiation. Ab initio calculations of the interaction po-
tential of In and I showed that the process of recombination is the dominant source
of the continuum radiation. Important features in measured spectra were repro-
duced in the simulated spectra. It is observed that the recombination radiation is
required to contract the arc in order to generate a lamp voltage that is sufficiently
high. At the same time the recombination radiation contains a significant amount
of infrared radiation that limits the efficiency of the lamp.

The work on non-equilibrium plasmas mainly focuses on the low pressure
plasma that is used to produce optical fibers. In such a reactor the gases O2

and SiCl4 are fed to a quartz tube surrounded by a microwave cavity where part
of the gas eventually is deposited on the inside of the glass as SiO2. A 2D model
of a simplified chemistry containing SiCl4 and Ar is considered. In this study,
the impact of adding SiCl4 is discussed by comparison with a pure Ar plasma.
The current model still contains a few limitations. For that reason, a mixture
containing O2 and SiCl4 is not considered. Possible improvements are suggested
to overcome these limitations.

Two other models have been considered. In the first model, a two-temperature
argon plasma with self-consistent radiation transport is investigated. The model
demonstrated that radiation from the resonant states can act as an effective trans-
port mechanism for metastable species. The second model is used to evaluate var-
ious angular distribution functions for the differential cross section describing the
electron scattering in argon. It is observed that accurate results can be obtained
when the elastic scattering is described with isotropic scattering and the inelastic
scattering with forward scattering.

The work in this thesis has resulted in a better understanding of the physics
behind mercury-free HID lamps. The spectral simulations of the considered lamps
suggest that the emitted spectra contain a large amount of infrared radiation. For
this reason the efficiency of the considered mercury-free lamps is lower in compar-
ison to mercury containing lamps. Additionally, the research related to transport
cross sections, transport coefficients, self-consistent diffusion and radiation also
improved the accuracy of other models. Specifically, these improved models were
applied in a plasma that is used for the deposition of SiO2.



Contents

Summary v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Metal-halide lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Chemical vapor deposition . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Vector notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Thermodynamics 17
2.1 Partition sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Thermodynamic identities . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Non-ideal gasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 LTE composition calculation . . . . . . . . . . . . . . . . . . . . . 33
2.A Comparing the reactive and the frozen specific heat . . . . . . . . . 36
2.B Conversion of the heat capacity . . . . . . . . . . . . . . . . . . . . 36

3 Transport equations 37
3.1 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Conservation equations two-temperature plasma . . . . . . . . . . 40
3.3 LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.A Derivation momentum balance . . . . . . . . . . . . . . . . . . . . 48
3.B Derivation energy balance . . . . . . . . . . . . . . . . . . . . . . . 49
3.C Converting species system to bulk system . . . . . . . . . . . . . . 50

4 Transport properties 53
4.1 Collision integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Collision integrals for various interaction potentials . . . . . . . . . 56
4.3 Default procedures for estimating collision integrals . . . . . . . . . 69
4.4 Collision integrals from interaction potentials . . . . . . . . . . . . 75
4.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . 80
4.A Ratios of reduced collision integrals . . . . . . . . . . . . . . . . . . 81
4.B Q elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



viii Contents

4.C Estimates for potential parameters . . . . . . . . . . . . . . . . . . 83
4.D Born-Mayer parameters . . . . . . . . . . . . . . . . . . . . . . . . 84
4.E Corrections related to the exponential repulsive potential . . . . . 87
4.F Fit functions for collision integrals . . . . . . . . . . . . . . . . . . 88
4.G H-H ab initio potential curve . . . . . . . . . . . . . . . . . . . . . 89

5 Transport coefficients 91
5.1 Chapman-Enskog expansion . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Expressions transport coefficients . . . . . . . . . . . . . . . . . . . 93
5.3 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.A Jupiter data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.B Mars data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.C DALTON calculations . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Stefan Maxwell equations 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Diffusive velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3 Diffusive mass fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4 Numerical oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5 Conclusions and recommendations . . . . . . . . . . . . . . . . . . 136
6.A Stefan-Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . 137
6.B Converting pressure to mass fractions . . . . . . . . . . . . . . . . 139
6.C Charge conservation with pressure fractions . . . . . . . . . . . . . 140

7 A conservative multicomponent diffusion algorithm for ambipo-
lar plasma flows in LTE 141
7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3 Equations for chemically reacting plasmas in LTE . . . . . . . . . 142
7.4 Discretization of the elemental continuity equations . . . . . . . . . 149
7.5 Test case: analytical solution for a binary mixture . . . . . . . . . 152
7.6 Elemental demixing in a metal halide lamp . . . . . . . . . . . . . 153
7.7 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . 157
7.A Derivation of the discrete mass end charge conservation equations . 157

8 Radiation transport 161
8.1 Radiative processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 Radiation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.3 Change of spectral radiance . . . . . . . . . . . . . . . . . . . . . . 170
8.4 Cylindrical geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.5 Optically thin radiation . . . . . . . . . . . . . . . . . . . . . . . . 177
8.6 Optically thick radiation . . . . . . . . . . . . . . . . . . . . . . . . 178
8.7 Improved discretization . . . . . . . . . . . . . . . . . . . . . . . . 180
8.8 Model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.A Ab initio potential curves . . . . . . . . . . . . . . . . . . . . . . . 185



Contents ix

9 On the atomic line profiles in high pressure plasmas 189
9.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.3 Line broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.4 Stormberg’s expression . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.5 Numerical stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

10 Numerical investigation on the replacement of mercury by in-
dium iodide in HID lamps 201
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11 Modeling of Diffusive LTE Plasmas with Integral Constraints 217
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
11.4 Population of molecular states . . . . . . . . . . . . . . . . . . . . . 226
11.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.A Ab initio curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

12 The effect of resonant Ar-lines on metastable densities 237
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
12.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
12.3 Spectral lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
12.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

13 Surfatron plasmas in mixtures containing SiCl4 255
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
13.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
13.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
13.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
13.A Complex electrical conductivity . . . . . . . . . . . . . . . . . . . . 269

14 Evaluation of angular scattering models for electron-neutral
collisions in Monte Carlo simulations 271
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
14.2 Differential scattering cross sections . . . . . . . . . . . . . . . . . 273
14.3 Direct fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
14.4 Quantification of anisotropy using Monte Carlo . . . . . . . . . . . 284
14.5 Extrapolating the cross sections . . . . . . . . . . . . . . . . . . . . 290
14.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290



x Contents

15 Conclusions 295

Bibliography 301

Acknowledgements 323

Curriculum vitæ 325



Chapter 1

Introduction

Matter on earth is commonly classified using the states solid, liquid and gas. The
difference between these states is that the binding forces between species is decreas-
ing. Each transition between states requires a certain amount of kinetic energy to
overcome the attractive forces. These transitions occur at specific combinations of
temperature and pressure. A state that is less familiar is the plasma state or the
‘fourth state’ of matter [1]. Unlike the previous transitions, the transition of a gas
to a plasma occurs in a continuous way. The plasma state is characterized by the
fact that electrical forces are dominating the behavior of the gas. In plasmas the
kinetic energy is high enough to liberate electrons from the atoms or molecules.
The long-range electric forces can induce collective behavior of the electrons and
the ions. An example is the quasi-neutral behavior of plasmas. Charged parti-
cles tend to organize themselves in such a way that electric fields are effectively
shielded on length scales in the order of the Debye length, λD. In other words,
the plasma can be considered neutral on a scale greater than this length. The
plasma can express collective behavior if the Debye length is significantly smaller
than the dimensions of the plasma itself [1, p. 9]

λD � L, (1.1)

with L the length scale of the plasma. Additionally the volume described by a
sphere with the radius equal to the Debye length must contain sufficient electrons

neλ
3
D � 1, (1.2)

with ne the electron density. Another example of collective behavior is ambipolar
diffusion. The lighter electrons diffuse faster through the gas than the ions. As a
result, an electric field is created due to the charge separation. This electric field
decreases the diffusion rate of the electrons and increases the rate of the ions in
such a way that charge separation can not occur. This means that no net current
is transported via diffusion.

Around 99 % of the visible matter is in the plasma state [2]. Stars and inter-
stellar space form a large contribution to this number. On earth, plasmas occur
naturally, for example as lighting. Plasmas are also frequently used in industrial
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2 Chapter 1. Introduction

processes. Applications of plasmas are very diverse. A few applications are fu-
sion reactors for the production of electricity; gas discharge lamps for lighting;
industrial processes for the deposition of various layers or thin films; biomedi-
cal applications for the acceleration of wound regeneration and decontamination;
plasma thrusters for the propulsion of satellites; air purification; and welding.

In this work, the metal-halide lamp and the chemical vapor deposition pro-
cess are investigated. In the next section, the motivation for investigating these
applications is given. In the remaining sections, an overview is presented of the
various types of discharges that can occur for a plasma that is generated between
two electrodes. After that, metal-halide lamps and plasma chemical vapor depo-
sition are discussed in more detail. In the last sections, the outline of this thesis
is presented and the vector notation used in this work is discussed.

1.1 Motivation

This work focuses on two plasma applications: metal-halide lamps and the chem-
ical vapor deposition process for the production of glass fibers. The plasma con-
ditions in these two applications deviate significantly from each other. However,
in both applications the plasma contains a complex chemistry. In addition to
that, input data for various processes is largely unavailable. In this work ab initio
calculations are used to obtain some of the missing data. In other cases, scaling
relations are adopted from the literature. The overall goal of this work is thus to
develop a strategy for obtaining or estimating missing data. Specifically,
this work focuses on obtaining missing data for transport and radiative properties
for arbitrary species.

Standard metal-halide lamps contain the toxic species mercury. The European
Union attempts to minimize the usage of this toxic species using legislation. In
this work, the technical feasibility of a mercury-free lamp using molecu-
lar radiators like InI is investigated. For metal-halide lamps, the impact of
the removal of mercury from the discharge is significant. The emitted spectra in
Hg free lamps are dominated by molecular radiation rather than atomic radiation.
There is no longer a dominant background gas available in the discharge. This im-
pacts the diffusive fluxes of all species. Additionally, the lamp voltage is generated
via arc contraction instead of a high gas pressure. The effect of these processes is
investigated via numerical modeling. The research focuses on the self-consistent
treatment of diffusion and radiation. Ab initio calculations are used to estimate
the emitted wavelengths and the transition rates of the molecular radiation.

The second application focuses on a plasma that is used for chemical vapor
deposition. This is the first step in the production of glass fibers using a plasma.
The process uses O2 + SiCl4 ↔ SiO2 + 2Cl2 to produce quartz. The plasma chem-
istry has been studied before by Jiménez and Kemaneci [3, 4] in a global and a
two-dimensional (2D) model. The developed 2D model can currently not be used
to model the full chemistry. This is related to the diffusion algorithm that re-
quires a dominant background gas. This species is not included in the chemistry
calculation, since its density is calculated from the pressure constraint. If there
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is no dominant background gas it is possible that the species that is appointed
as the background species obtains negative densities. The goal of this project is
to improve the accuracy of the 2D modeling results and to extend the
range of conditions that can be modeled. In order to achieve this goal, the
algorithm for the calculation of transport coefficients like the thermal and elec-
trical conductivity is improved. The scaling relations for the collision integrals
from Capitelli et al. [5] are used to obtain more accurate default estimates when
no additional input data is available. Additionally, the self-consistent diffusion
algorithm from Peerenboom [6] is extended to a two-temperature plasma and its
stability is analyzed. It provides an alternative for Fick’s diffusion algorithm which
in the current implementation can allow unphysical results.

1.2 Plasmas

Different plasmas occur depending on the input power, pressure and the compo-
sition of the gas. These discharges are discussed in the framework of a plasma
generated between two electrodes. In figure 1.1, the qualitative behavior is shown
at a fixed pressure as a function of the current [7]. The discharge types are different
when the plasma is generated in other ways.

Cosmic radiation or radioactive material produces electrons via photo ioniza-
tion. Between A and B, the applied voltage is sufficient to extract some of these
electrons before they either recombine with an ion or attach to an atom to form
negative ions. By increasing the voltage eventually all background electrons can
be extracted as depicted in B-C. When the voltage is increased further, the elec-
trons gain enough energy to ionize the gas. At this stage (C-E), more electrons
are created and the current can increase more.

Although the plasma is quasi-neutral, near the cathode (negative electrode)
and the anode (positive electrode) a non-neutral plasma layer exists. This is
the plasma sheath. In the plasma sheath near the cathode, positive ions are
accelerated towards the cathode. When these ions have sufficient energy they can
release electrons from the cathode. This process occurs between E and F and is
called electrical breakdown. Due to the usage of sharp points or edges, the electric
field can be enhanced locally and partial breakdown can occur between D and
E. The voltage required to obtain breakdown is dependent on the product of the
pressure and the distance between the electrodes as described by Paschen’s law.
At F, the plasma channel covers only a small fraction of the cathode. This fraction
increases until the plasma covers the entire cathode surface at G. The current can
now only be increased by increasing the voltage. The voltage increases between
G and H because the plasma moves away from the Paschen minimum.

At I, the ions that are accelerated towards the cathode heat the cathode consid-
erably. The cathode now emits electrons thermionically which reduces the voltage
significantly. The large currents heat the gas and eventually the arc becomes ther-
mal at J. Increasing the current further also increases the number of collisions
between the electrons and the background gas. As a result, the voltage increases
again.
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Figure 1.1: A qualitative voltage-current characteristic for a plasma created be-
tween two electrodes at a fixed pressure [7].

In a thermal discharge, the gas can be described with a single temperature.
The particles in the gas have a specific velocity distribution relative to the average
velocity1. The kinetic energy distribution associated with the peculiar velocity can
be described by the Maxwell-Boltzmann distribution. This distribution function
depends only on the density, mass and the temperature of the species and is given
by [1, p. 178]

f (ε) dε = n
2
√
ε

√
π (kBT )

3/2
exp

(
− ε

kBT

)
dε, (1.3)

with ε = 1
2mv

2 the kinetic energy, m the mass, v the peculiar velocity, n the
number density and T the temperature. The energy distribution is shown for two
different temperatures in figure 1.2. The figure shows that for a higher temperature
the probability of finding a particle with a large kinetic energy increases. Ionization
processes typically have a threshold energy ranging from 3.89 eV for Cs to 24.59 eV
for He. Excitation processes can also occur at lower threshold energies. The
figure shows that for both temperatures only a small fraction of the electrons have
sufficient energy to cause an excitation or ionization event. The heavy particles
(atoms, ions and molecules) follow a similar distribution function. However, most
of the excitation and ionization events are caused by electrons. This is related to
the mass of the electrons that is about 1800 times lower than the lightest atom.
The consequence is that electrons reach significantly higher velocities than the
heavy particles due to the larger acceleration. As a result of the high relative

1The velocity relative to the average velocity is called the peculiar velocity.
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velocity, the electrons take part in more collisions with the heavy particles. For
this reason electrons are responsible for sustaining the plasma. Moreover if the
energy transfer between the electrons and the heavy particles is small the electrons
can have a significantly higher temperature than the heavy particles. In that case,
the plasma has the reactive properties corresponding to the electron temperature
while the energy exchange with the environment is governed by the heavy particle
temperature. For biomedical plasmas this is an important property.

If the energy transfer between electrons does not occur frequently enough, their
velocity distribution function can deviate from the Maxwell-Boltzmann distribu-
tion. In that case, the probability of finding an electron with a high kinetic energy
is typically decreased due to the various possible excitation and ionization events.
Three plasma regimes can be classified based on the temperatures and the velocity
distribution of the electrons.

In the first regime, the electron temperature is equal to the heavy particle
temperature. Additionally, the velocity distribution of the electrons is Maxwellian.
In that case, the plasma can be described locally by a single temperature. The
chemistry is then only dependent on the local temperature and elemental mass.
Such a plasma is considered to be in local thermodynamic equilibrium. An example
of such a plasma is the metal-halide lamp.

In the second regime, the velocity distribution of the electrons is still Maxwellian.
However, the temperature of the electrons is no longer equal to the heavy particle
temperature. Such a plasma can be called a two-temperature plasma. Since the
plasma is not in thermal equilibrium, the composition must be determined from a
set of reaction rates. An example of a two-temperature plasma is the plasma that
is used for chemical vapor deposition.

In the third regime, the plasma properties are the same as in the two tempera-
ture plasma with the exception that the electron distribution function is no longer
Maxwellian. In this case, the electron energy distribution function must also be
solved for self-consistently.

1.3 Metal-halide lamps

First, a brief introduction to various lighting systems is given. After that, the
desired lamp properties are discussed. In the last section, a mercury-free metal-
halide lamp is discussed in more detail.

1.3.1 Historical perspective

Up to 1800, the only artificial light source known to mankind was fire [8]. The
development of alternative light sources started with Volta’s discovery of the bat-
tery. It was soon discovered that incandescent metal wires and electrical arcs
could emit light. Practical usage of these discoveries had to wait until the fur-
ther development of the battery and vacuum technology. The first commercially
viable incandescent lamps were built by Edison around 1879 [8]. Around the
1900’s, the carbon filament was replaced by a tungsten filament [8]. Later, the



6 Chapter 1. Introduction

0 1 2 3 4 5
0(eV)

0

1

2

3

f(
0)

/n
(1

/e
V

)

2000K
5000K

Figure 1.2: The Maxwell-Boltzmann distribution for an electron calculated at
T = 2000 K and T = 5000 K.

filament was wound to reduce the thermal losses and gases were added to limit the
evaporation rates of tungsten. Around the 1950’s, the last great breakthrough in
incandescent lamps was the usage of halogen fillings [8]. The halogens were added
to create a chemical cycle that returned evaporated tungsten back to the filament.

The discharge lamps created in the 19th century mainly emitted light from the
hot electrodes rather than from the plasma [8]. The first actual discharge lamps
were low-pressure mercury lamps built in early 1900’s. Mercury was used
because of its high vapor pressure. Although these lamps had a considerably higher
efficiency than incandescent lamps, they mainly suffered from bad color rendering.
In the 1930’s, the color rendering of commercial metal-halide lamps was improved
by increasing the mercury pressure (high pressure mercury lamps) [8]. This
required the development of quartz-to-tungsten seals that were able to resist the
high temperature. Additionally, in the 1950’s and 1960’s, the usage of a phosphor
coating improved the efficiency by converting the up to then useless ultraviolet
(UV) light into visible light [8]. In 1998, ultra-high-pressure (200 bar) lamps were
developed. These lamps have a supreme color rendering and are therefore used in
projection systems.

After creating the first mercury lamps in the 1900’s it was already observed
that adding metals to the discharge improved the bad color rendering and lowered
the color temperature [8]. The main challenges with the first designs were the
low vapor pressure of the metals and the corrosion of the quartz by the metals
which reduced the lifetime considerably. The solution was found in the 1960’s with
the introduction of metal-halides [8]. The advantage of using metal-halides is
the higher vapor pressure in comparison with the pure metal. Additionally, the
metal-halides dissociate in the hot part of the plasma where the light emitting
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properties of the metals are needed and they form molecules near the wall to limit
the corrosion. These lamps are mainly used in car headlights and for commercial,
industrial and street lighting. The replacement of the quartz wall with a ceramic
wall in 1995 allowed for higher vapor pressures [8]. These improvements further
pushed the efficacies and the color rendering. The main drawback for using these
lamps for domestic applications is the fact that the plasma can not be reignited
easily when the gas is still hot. As a result, a cool down period of about 15 minutes
is required.

A recently strongly emerging technology is LED (light-emitting-diode)
lighting [9, p. 26-28]. A p-n junction is created in a semiconductor material.
This is done by doping the semiconductor with a layer that contains excess elec-
trons, n-type and a layer with a deficit of electrons, p-type. The energy level of
the n-type is larger than the energy level of the p-type and the difference between
these energies is the bandgap. By applying a voltage over the p-n junction the
electrons from the n-type move towards the junction where they recombine with
the ‘holes’ of the p-type. When the electron recombines with a hole, a photon
with the energy of the bandgap is released. Currently, the efficiency of LEDs is
comparable to the efficiency of metal-halide lamps [9, p. 57]. It is expected that
in the future LEDs will obtain a higher efficiency. However, for some applications
LEDs are not the optimal choice. Due to the decrease in efficiency at higher oper-
ating temperatures, LEDs do not perform well in high-temperature applications.
This is related to the cooling mechanism. The walls of an LED are mainly cooled
by convection rather than by infrared radiation as is the case for HID lamps. The
result is that LEDs are not necessarily good candidates for replacing HID lamps.
Extra expenses must be made to replace the luminaire to facilitate the convective
cooling needed for LEDs. Interestingly, the energy costs of LEDs are higher in
comparison to metal-halide lamps when the energy during production, operation
during lifetime and end-of-life phases are included on a per Mlmh (Mega lumen
hour) basis (based on the status of the technology in 2013) [10, p. 31]. Addi-
tionally, due to cooling issues, the light intensity required in applications such as
projectors can not be reached by current LEDs. Favorable properties of LEDs are
the facts that the desired color can more easily be changed and that the emitted
light is directional. The radiance of LEDs is comparable to HID lamps. How-
ever, due to the directional nature of the light, the irradiance of a surface can be
significantly larger for LEDs.

1.3.2 Photometry

In order to obtain a good lamp the emitted spectrum must meet a few criteria. The
most important criteria are the luminous efficacy, the correlated color temperature
(CCT) and the color rendering index (CRI). The luminous efficacy is a measure of
how much of the emitted light per unit of input power corrected for the sensitivity
of the human eye. The CCT indicates what the temperature of an object in
thermal equilibrium would be, to emit the same apparent color. The CRI is a
measure of how well the colors of a given object are reproduced using the light
source in comparison to a thermal radiator. In the ideal case, the lamp has a high
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luminous efficacy, a high color rendering index and a correlated color temperature
that is perceived as warm white. A tradeoff between luminous efficacy and CRI
must be made. In order to understand this tradeoff, these concepts are briefly
discussed in this section.

The luminous efficacy η can be calculated from

η =
ΦV
Pin

=

683.002
∞∫
0

Pλ (λ) Ȳ (λ) dλ

Pin
lm/W, (1.4)

with ΦV the luminous flux, Pin the input power, Pλ the spectral power density
and Ȳ the eye sensitivity curve. As indicated in figure 1.3, the human eye is most
sensitive to light with a wavelength of 557 nm [11,12]. An example of a lamp that
is optimized by only considering the luminous efficacy is the low pressure sodium
lamp. Its lamp spectrum contains one strong peak at the sodium D-lines (589.0
and 589.6 nm). This peak is located close to the maximum of the eye sensitivity
curve and therefore ensures a high luminous efficacy. The consequence of such a
spectrum is that these lamps can only render a single color and thus have a very
low CRI value.

In order to derive the CCT, the emitted spectrum is compared to the spectrum
of a thermal radiator. The spectral radiance Iλ of a thermal radiator can be
calculated from

Iλ =
2hc2

λ5

1

exp
(

hc
λkBT

)
− 1

, (1.5)

with h Planck’s constant, c the speed of light, λ the wavelength, kB Boltzmann’s
constant and T the temperature. The CCT of an arbitrary source can be de-
rived from the color matching functions X̄, Ȳ , Z̄ displayed in figure 1.3 from

X =

∫ ∞
0

Pλ (λ) X̄ (λ) dλ

Z =

∫ ∞
0

Pλ (λ) Z̄ (λ) dλ

y = Y/ (X + Y + Z)

Y =

∫ ∞
0

Pλ (λ) Ȳ (λ) dλ

x = X/ (X + Y + Z) (1.6)

z = Z/ (X + Y + Z)

The chromaticity coordinates x, y are sufficient to describe a color since z =
1− x− y. For a thermal radiator, the CCT for several temperatures is displayed
in figure 1.4. The CCT can be calculated using McCamy’s approximation

TCCT = −449n3 + 3525n2 − 6823.3n+ 5520.33, (1.7)

with n = x−0.3320
y−0.1858 expressed in the chromaticity coordinates. This fit is an accurate

approximation of the CCT for results in the range of 2 ≤ TCCT ≤ 12, 5 kK [13,14].
In order to determine the CRI, the chromaticity coordinates2 of a series of

objects are determined using a test source [15]. After that, the reflected light
from the light source is used to obtain the chromaticity coordinates of the same

2The CRI is measured in other chromaticity coordinates than the parameters x, y and z.
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Figure 1.3: The color matching func-
tions defined by CIE [11].

Figure 1.4: A chromaticity diagram
with the blackbody locus drawn in-
side. From right to left on the black-
body locus, the first six crosses indi-
cate a CCT ranging from 1000 K to
6000 K in steps of 1000 K. The cross
located on the left hand side shows a
CCT of 10 kK.

objects again. For each object, the color rendering decreases if the difference in
chromaticity coordinates is larger. The CRI is then calculated as the average of
the individual CRIs.

1.3.3 Mercury-free metal-halide lamps

A simplified image of a metal-halide lamp is shown in figure 1.5. The plasma is
generated in the lamp burner. Before applying a voltage over the electrodes, the
salts and the mercury are present in liquid/solid form. After applying a voltage,
the start gas, which is usually a noble gas, is heated. The heat is transferred to the
salt and the mercury which in turn partially or fully evaporates. The molecules
dissociate in the hot core where the released metal particles emit light. The burner
is placed inside an outer bulb. This bulb is evacuated to limit the heat losses to the
environment. A getter is present to absorb any hazardous species for the burner.
Depending on the lamp type, a UV ignition aid is installed.

The main reasons for using mercury are the high vapor pressures in com-
bination with a high momentum transfer cross section with electrons which
results in a high lamp resistance. This makes mercury an ideal species to create a
high lamp voltage. The input power P is delivered to the lamp as P = UI = I2R
with U the voltage, I the current and R the lamp resistance. In the ideal case, the
resistance is relatively high to limit the current. This follows from I =

√
P/R.

High currents increase the degradation rate of the electrodes and therefore limit
the lifetime of the lamp. The relatively high ionization energy is also acting
as a current limiter. Another useful property of mercury is the strong radiation
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transport via the resonant UV lines. The absorption of these lines creates a
large radiative thermal conductivity which in turn provides a wide and stable arc
discharge. Other favorable properties of Hg are the low thermal conductiv-
ity that limits the heat losses towards the wall, limiting the evaporation rate of
tungsten due to the high pressure and mono-iodide formation. The formation
of condensed mono-iodides limits the amount of I− in the initial stages of
the discharge which is favorable for ignition. These mono-iodides also min-
imize corrosion of the discharge wall. Additionally, Hg does not interfere
with the tungsten cycle. The tungsten cycle is important to extend the lifetime
of the lamp by providing a chemical path for evaporated tungsten to return to the
electrode.

The initial strategy was to replace mercury by a single element. These el-
ements should have a comparable vapor pressure, electron momentum transfer
cross section and radiative properties in comparison with mercury. One of the
possible candidates was Zn. Although high luminous efficacies could be obtained,
the lamp performance never reached the level of Hg-containing lamps [16,17]. Al-
ternative options include the usage of electrodeless lamps like the sulfur lamp [18].
However, these lamps also did not reach the potential of Hg containing lamps.

The latest attempts use metal-halides to replace mercury. This changes the
physics in the lamp dramatically [17]. The spectrum of the molecular lamps is
dominated by optically thin continuum radiation, rather than optically thick Hg
atomic radiation. The resistance is no longer generated due to the high vapor
pressure and momentum transfer cross sections, but due to arc contraction. The
arc contraction is generated due to the large amount of molecular radiation. The
broadband continuum cools down the outer parts of the plasma. As a result, the
plasma core heats up due to the larger current density through the center of the
arc. Another difference is that the globally dominant species Hg is replaced by
species which only locally dominate the chemistry. The reason for this different
behavior is molecule formation. The consequence is that the diffusion can no
longer be described by Fick’s law, but requires a self-consistent multicomponent
approach.

In this study we have also looked at Hg replacements. Specifically, the molecule
InI is considered. The measured InI continuum stretches from the visible to the
infrared wavelengths. The ultraviolet radiation is largely absorbed. A drawback
is the relatively low ionization energy of In which makes it more difficult to build
up a high lamp voltage.

The objective is to determine the origins of the continuum radiation and to
find ways to improve the efficiency of the lamp. For this purpose, a fluid model
will be used. The gas is assumed to be in local thermodynamic equilibrium. The
emitted spectra are calculated by extending the ray tracing technique developed
by Van der Heijden [19, 20]. The simulated spectra are compared to measured
spectra using the integrating sphere setup of Rijke [21–23]. This setup is capable
of measuring the spectral radiance of the visible, infrared and part of the UV on
an absolutely calibrated scale.
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Figure 1.5: An example of a metal-halide lamp.

1.4 Chemical vapor deposition

The second discharge considered in this thesis is used for chemical vapor depo-
sition. This process is one of the possible production processes of glass fibers.
The plasma-enhanced chemical vapor deposition (PECVD) process produces high-
quality fibers. There are three stages in the PECVD route: deposition, collapsing
and drawing [24]. These stages are schematically depicted in figure 1.6. The first
stage involves a plasma. A mixture of O2 and SiCl4 is fed through a quartz tube.
A small part of the quartz tube is surrounded by a microwave deposition reactor.
This reactor can move back and forth over the tube. Inside the reactor many
reactions take place. The overall result is the following reaction

O2 + SiCl4 ↔ SiO2 + 2Cl2. (1.8)

The species SiO2 diffuses to the wall and forms a new layer of quartz. After
sufficient passes of the reactor, the diameter of the tube has shrunk considerably.
The remaining gap in the axis is closed by heating the tube. This process is called
collapsing and provides a rod of high-purity quartz. After this step, a layer of
low-quality glass is deposited on the rod. By heating, a very thin thread can be
drawn from the rod. These threads are protected by adding a polymer coating.

The reactor has been studied previously by Jiménez and Kemaneci [3, 4] with
the plasma simulation toolkit PLASIMO [25]. Jiménez developed a more efficient
electromagnetic module and used a 2D fluid model in an Ar chemistry to study the
reactor. Kemaneci considerably improved the chemistry by creating a global model
for the O2 + SiCl4 mixture. He verified the O2 + Cl2 part of the chemistry by mak-
ing a comparison with experimental results. He additionally made a 2D model for
an O2 plasma. More advanced mixtures could not be taking into account due to
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Figure 1.6: A schematic representation of the three stages of the production of an
optical fiber.

the usage of Fick’s law for diffusion. This law’s validity relies on the presence of a
dominant background gas. In that case, the molar fraction of the background gas
could be calculated from 1−

∑
i xi. Since this procedure does not conserve mass,

it is possible that this number can become negative at locations where the power
input is large. In this work, a solution is presented. The self-consistent diffusion al-
gorithm from Peerenboom [6] is extended towards two-temperature plasmas. This
algorithm has the advantage that it conserves mass. Additionally, it does not
require that a species is appointed as the background species. Initially, this algo-
rithm was very unstable. Currently, the stability of the algorithm has improved
significantly. The algorithm is however not stable for all conditions. One of the
reasons for the improved stability is the more accurate calculation of the transport
coefficients. The accuracy of the transport coefficients improved, because the col-
lision integrals are estimated with a considerably increased accuracy. The simple
hard sphere and Coulomb models have been replaced by more accurate models.
Additionally, whenever tabulations for the collision integrals from the literature
are available these replace the approximate models automatically.

1.5 Outline

A considerable part of this work deals with plasmas that are in local thermody-
namic equilibrium (LTE). In chapter 2, the relevant thermodynamic relations are
summarized. These are the Guldberg-Waage equations and the calculation of the
atomic and molecular partition sums which are required as input. Using these
equations, the number densities ni of the various species in thermal plasmas can
be calculated.

In chapter 3, the basic conservation equations are discussed for mass, momen-
tum and energy. Using these balances implies a continuum approach. Such an
approach is valid if Kn = λ/L � 1, with Kn the Knudsen number, λ the mean
free path and L a typical dimension of the system. The conservation equation for
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the mass uses the number density n and the mixture mass density ρ as

n =
∑
i

ni, xi ≡
ni
n

(1.9)

ρ =
∑
i

ρi =
∑
i

mini, yi ≡
ρi
ρ
, (1.10)

with mi the species mass, xi the species molar fraction and yi the species mass
fraction. These definitions can be used to obtain an expression for the average
mass of a particle in the mixture m and is given by

m ≡
∑
imini∑
i ni

=
ρ

n
. (1.11)

The conservation equation for momentum introduces the definition of the average
velocity ~u as

ρ~u ≡
∑
i

ρi~ui, (1.12)

with ~ui the average species velocity. The conservation equation for the energy is
applied to ideal gases. For that reason, it can be simplified using Dalton’s law

p =
∑
i

pi =
∑
i

nikBTi, zi ≡
pi
p
, (1.13)

with pi the partial pressure and kB the Boltzmann constant, Ti the species tem-
perature and zi the pressure fraction. This allows the definition of the mixture
temperature T as

p ≡ nkBT (1.14)

T =
∑
i

xiTi = m
∑
i

yiTi
mi

=
∑
i

1∑
i zi/Ti

. (1.15)

The conservation equations for the energy are very different for thermal and non-
thermal plasmas. By applying the Boltzmann relation to the balances of the
individual species, the conservation equations for thermal plasmas can be derived.
The derivation given in this chapter explains the common origin for these equations
for both types of plasmas. Additionally, it explains the origins of parameters like
the internal and reactive heat capacity and the internal and reactive thermal
conductivity.

In chapter 4, the improved calculation method for the collision integrals is
discussed. Collision integrals are required in the calculation of quantities like the
thermal conductivity, viscosity and the electrical conductivity. Despite the work
of Johnston [26], the relatively simple hard sphere, Langevin and Coulomb mod-
els were still the defaults in PLASIMO. An important reason for still using the
simple models is the difficulty of acquiring the necessary input data for Johnston’s
method. The improved default calculation procedure replaces the simple mod-
els and is shown to be more accurate and less data intensive in comparison to
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Johnston’s approach. The usage of ab initio calculations is also proven to provide
reliable results for the collision integrals. Additionally, ab initio calculations can
be used to estimate parameters, like the polarizability, for the improved calculation
procedure in case they can not be obtained from literature.

In chapter 5, the calculation of important transport coefficients like the thermal
conductivity, electrical conductivity and the viscosity is discussed. It turns out
that the expressions given in the literature using determinants are not the most
numerically convenient ones. Alternative relations are presented. Additionally, the
transport coefficients using various methods for the collision integrals are compared
for mixtures that resemble the planetary atmospheres of Earth (O2 + N2), Jupiter
(H + He) and Mars (CO2 + N2 + O2 + Ar). These calculations are compared to
results from Capitelli [27]. Since the calculation procedure is not exactly the same
as Capitelli’s, a separate implementation is made in MATLAB for verification
purposes. The implementations in PLASIMO and MATLAB provide excellent
agreement.

In chapter 6 the self-consistent multicomponent diffusion algorithm introduced
by Peerenboom [6,28,29] is considered. It provides a more accurate calculation of
the diffusive fluxes for plasmas without a dominant background gas in comparison
to Fick’s law. A special property of this method is that mass and charge are
conserved numerically. This algorithm is extended to two-temperature plasmas.
However, for relatively simple systems the algorithm is shown to be unstable. The
conditions where these instabilities occur are investigated. The extension towards
non-thermal plasmas uses the following relations between the molar, mass and
pressure fractions

yi
xi

=
nimi

ρ

n

ni
=
mi

m
(1.16)

zi
xi

=
nikBTi
p

n

ni
=
Ti
T

(1.17)

zi
yi

=
nikBTi
p

ρ

nimi
=
Tim

Tmi
(1.18)

In chapter 7, the self-consistent multicomponent diffusion algorithm described
in chapter 6 is applied to a thermal plasma. Due to the Guldberg-Waage equations,
the system of Nr species can be reduced to a system of Ne independent elements.
The scheme has the advantage that mass and charge are conserved analytically.
A unique feature of this scheme is that these quantities are also conserved numer-
ically. Due to the scarcity of verification methods, a separate implementation in
MATLAB is made. Again, the agreement between the PLASIMO and MATLAB
implementations is excellent.

In chapter 8, the procedure to calculate the net radiative emission of a local
piece of plasma is discussed. The calculations are based on the algorithms of Van
der Heijden [20]. In this work, his discretization procedure is improved. The
broadening mechanisms that can occur in high pressure plasmas are discussed as
well.

In chapter 9, the line profile calculated by Stormberg [30] that arises as the
convolution of a Lorentz and a Levy profile is reconsidered. The expression given
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by Stormberg is not fully simplified and therefore can introduce some unnecessary
numerical error in calculations. A superior expression is presented in this chapter
that does not have these issues.

In chapter 10, a 1D simulation of a metal-halide lamp containing InI and Xe is
discussed. Ab initio calculations are used to calculate the interaction potential and
the transition dipole moment of In and I. The interaction potential reveals that the
continuum is mostly generated by free-bound radiation rather than bound-bound
radiation.

In chapter 11, the lamp model described in chapter 10 is improved by includ-
ing the self-consistent diffusion algorithm described in chapter 7. Additionally,
more recombination transitions are included. Also the calculation procedure for
the number of species that emit free-bound radiation is altered from a thermal
calculation to a nearest-neighbor-like approximation.

In chapter 12, PLASIMO’s ray tracing module is used in a two-temperature
plasma. A 1D model is used with self-consistent diffusion. An Ar chemistry is con-
sidered and the influence of absorption of radiation on the resonant and metastable
states is investigated. Additionally, escape factors predicted by Holstein [31] are
compared to the global escape factors predicted by the ray tracing model.

In chapter 13, a 2D model of a surfatron is considered. The surfatron is
a simplified reactor of the actual reactor that is used for deposition of quartz.
The plasma is described with the two-temperature conservation equations from
chapter 3. A simplified chemistry is considered by using a mixture that contains
Ar and SiCl4. A comparison is made between a plasma that only contains Ar and
a plasma that also contains SiCl4. In order to improve the stability of the model,
additional simplifications were made. A brief discussion is given of a few methods
that could enhance the model’s stability and reduce the calculation time.

In chapter 14, a plasma is considered that can not be described by the fluid
approach given in chapter 3. The evolution of an electron beam with a large kinetic
energy is followed. In this case, the trajectory of the electrons is dependent on
the shape of the angular part of the differential scattering cross section. The
impact on the trajectories of various analytical approximations for the shape of
the angular distribution function is investigated. These trajectories are compared
with the angular shape predicted by Zatsarinny and Bartschat [32, 33] using ab
initio calculations for electrons impacting on Ar. These scattering formulas are
evaluated using a Monte Carlo simulation of a simplified Ar system. The range,
straggling and backscattering of the electrons are used as diagnostics.

1.6 Vector notation

Throughout this thesis, an arrow sign is used to represent a spatial vector. In a
3D Cartesian system, this vector can be written in terms of its components as

~u = ux~ex + uy~ey + uz~ez, (1.19)

with ~ex, ~ey and ~ez the unit vectors and ux, uy and uz the magnitudes of the vector
in a particular direction.
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A bold font is used to represent matrices and vectors that do not have a spatial
interpretation. For example, in a system with 10 different chemical species, the
densities and masses can be summarized as

n =

 n1

...
n10

 , m =

m1

...
m10

 . (1.20)

Such “species vector” notation allows for very compact expressions of species prop-
erties. As an example, the mixture mass density (1.10) can be written as a matrix
product,

ρ =
∑
i

nimi = mTn, (1.21)

where mT is the transpose of m.



Chapter 2

Thermodynamics

A significant part of the remainder of this work describes thermal plasmas. For
this reason a brief overview of the most important properties is given. One of these
properties is the composition. In thermodynamic equilibrium the composition of
a mixture can be described with the temperature and the elemental composition.
The species densities are related to each other via the Guldberg-Waage relation.
The Boltzmann relation and the Saha equation are special cases of this law.

The Guldberg-Waage relation requires the partition sum of the species as input.
Such a sum describes the occupation of states within an atom or a molecule. This
sum only depends on the temperature. Other thermodynamic quantities, like
the enthalpy and the heat capacity, can also be derived from the partition sum.
Therefore the calculation of the partition sums for atoms and molecules is discussed
first. Then the expressions for the thermodynamic identities are given.

The thermodynamic identities can depend on the first or second derivative of
the partition sum with respect to the temperature. The numerical evaluation of
the derivatives is avoided by using higher order moments of the partition sum.
These higher order moments remove any numerical error in the differentiation
process. The partition sum is usually calculated for an ideal mixture. In such a
mixture the particles are treated as point-particles. Additionally, it is assumed
that these particles only interact via rigid sphere interactions. These assumptions
are not necessarily valid for any plasma. Various strategies for correcting the
partition sums are given.

2.1 Partition sums

In a mixture with N particles in a given volume at a given temperature, the prob-
ability of the particles having positions between rN and rN + drN and momenta
between pN and pN +dpN is described by the canonical ensemble [34, p. 86]. The
probability a mixture occupies a certain state j is given by [34, p. 93],

Pj =
gj
Z

exp

(
− Ej
kBT

)
, (2.1)

17
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with Ej the energy of state j, gj its degeneracy, kB the Boltzmann constant, Z
the partition sum and T the temperature. The degeneracy represents the number
of states that have the same energy level. The quantum mechanical partition sum
can be written as a sum over all energy states [34, p. 105]

Z =
∑
j

gj exp

(
− Ej
kBT

)
, (2.2)

with Ej the energy of state j. This partition sum can be used to calculate proper-
ties of a system. For example, statistical thermodynamics states that an average
of a given property xi is defined as [35, p. 57]

〈x〉 =
∑
i

xiPi =
1

Z

∑
i

xigi exp

(
− Ei
kBT

)
. (2.3)

For a mixture the partition sum is given by [34, p. 120]

Z =
∏
a

ZNaa
Na!

exp

(
−NaEa
kBT

)
, (2.4)

with Za the partition sum of species a, Na the number of particles of species
a and Ea the formation energy of species a. The factorial originates from the
indistinguishability of the particles. For an arbitrary particle the partition sum
can be expressed as

Z = ZtZint, (2.5)

with Zt the translational partition sum and Zint the internal partition sum. The
internal partition sum can be written as

Zint =
∑
i,j

gi,j exp

(
− Ei,j
kBT

)
, (2.6)

with the indices i and j describing the electronic state and the vibrational mode,
respectively. In case of decoupled electronic, vibrational and rotational degrees of
freedom the energy can be rewritten as

Ei,j = Ei +Gi,j (v) + Fi (J) , (2.7)

with Ei the electronic energy, Gi,j the vibrational energy, Fi the rotational energy,
v the vibrational quantum number and J the rotational quantum number. For
these decoupled energies the internal partition sum can be rewritten as the product
of the partition sums of the individual processes:

Zint = Ze,i

Nv∏
j=1

(Zv,i,j)Zr,i. (2.8)

The individual contributions listed in this sum are the electronic (Ze,i), vibrational
(Zv,i,j) and rotational (Zr,i) contributions. The number of vibrational modes Nv
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can be expressed in terms of the number of atoms Np present in the molecule. For
a non-linear molecule the number of vibrations is given by Nv = 3N − 6 and for
linear molecules by Nv = 3Np− 5 [35, p. 95]. The number of rotational modes Nr
is 2 for linear molecules and 3 for non-linear molecules. In case of a linear molecule
Nr is reduced, because the rotation around the molecular axis is not taken into
account.

The translational contribution is given by an integration over the spatial and
momentum coordinates as [34, p. 117]

Zt =
1

h3/2

∫
dr3

∫
exp

(
− p2

2mkBT

)
dp3

= V

(
2πmkBT

h2

)3/2

, (2.9)

with h Planck’s constant, V the considered volume, m the mass, r the spatial
coordinate and p the momentum. Planck’s constant is introduced as a correction
for the usage of the classical Hamiltonian. It represents the classical length scale
of an element drdp in phase space [34, p. 106]. The electronic contribution can
be calculated as

Ze =
∑
i

Ze,i =
∑
i

ge,i exp

(
− Ee,i
kBT

)
, (2.10)

with ge,i the statistical weight and Ee,i the energy of electronic state i. Similarly
the vibrational and rotational contributions can be expressed as

Zv,i,j =
∑
v

exp

(
−Gi,j (v)

kBT

)
, (2.11)

and

Zr,i =
1

σ

∑
J

(2J + 1) exp

(
−Fi (J)

kBT

)
, (2.12)

with σ the number of indistinguishable orientations of the molecule. The descrip-
tion using these symmetry planes breaks down at low temperatures. The coupling
of the nuclear spin with electronic and rovibrational wavefunctions demands that
the nuclear spin should be included explicitly. This is relevant for example in
homogeneous diatomic molecules [35, p. 83-85] [36, p. 133-140] [37, p. 595]. As
a result the population of rotational levels with an even J can deviate from the
levels with an odd J . The nuclear spin I determines the nuclear degeneracy. For
integer nuclear spin the degeneracy is given by

ge =
I + 1

2I + 1
go =

I

2I + 1
, (2.13)

while for half-integer nuclear spin the degeneracy is given by

ge =
I

2I + 1
go =

I + 1

2I + 1
, (2.14)
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with ge the degeneracy for even rotational numbers and go the degeneracy for odd
rotational numbers. For hydrogen this amounts to1

Zr,i =
1

4

∑
J,even

(2J + 1) exp

(
−Fi (J)

kBT

)
+

3

4

∑
J,odd

(2J + 1) exp

(
−Fi (J)

kBT

)
, (2.15)

which at sufficiently high temperatures can be approximated by [37, p. 595]

Zr,i =
1

2

∞∑
J=0

(2J + 1) exp

(
−Fi (J)

kBT

)
. (2.16)

A list that contains the nuclear spins of a large number of species has been pub-
lished by Fuller [38].

2.1.1 Harmonic potential

The vibrational and rotational energies depend on the shape of the interatomic
potential V (r). Close to the position of the minimum re the shape of this potential
can be approximated with the Taylor series

V (re + x) = V (re) +
1

2

(
∂2V

∂x2

)
x=0

x2, (2.17)

with x = r− re and at r = re the first derivative is zero. A constant can be added
to the potential to remove the first term. The potential can thus be rewritten as
V = 1

2kx
2. This is the potential of a harmonic oscillator. For such a potential the

vibrational energy [34, p. 119] [36, p. 76] can be expressed as

Gi,j (v) = vhνe,i,j , (2.18)

with νe,i,j the vibrational frequency2. Note that the constant vibrational zero
point energy of 1

2hνe,i,j, is included in the electronic energy Ei. The vibrational
energy is thus measured relative to the level with v = 0. A consequence is that the
lowest vibrational energy and the minimum of the potential well do not coincide
as is shown in figure 2.1. For one vibrational mode the partition sum can be
calculated by using a geometric series as

Zv,i,j =
∑
v

exp

(
−θV,i,jv

T

)
=

1

1− exp
(
− θV,i,jT

) , (2.19)

with the vibrational temperature θV,i,j =
hνe,i,j
kB

. For most light molecules the
vibrational temperature is significantly larger than the thermal energy at room
temperature.

1 Note that Capitelli et al. switches the statistical weights of the ortho (odd) and para (even)
contributions [35, p. 84].

2Note that in this work νe is used which has unit s−1 while in most spectroscopic texts ωe
is used which is usually expressed in cm−1.
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Figure 2.1: The definition of the vibrational energy rela-
tive to the lowest vibrational level for a harmonic oscilla-
tor.

2.1.2 Rigid rotator

For a linear molecule with a harmonic potential the rotational energy is given
by [36, p. 71]

Fi (J) = hBiJ (J + 1) , (2.20)

with Bi the rotational frequency3. The rotational partition sum [37, p. 593] can
be approximated as an integral when the separation between neighboring states
is much smaller than kBT .

Zr,i =
1

σ

∑
J

(2J + 1) exp

(
−hBiJ (J + 1)

kBT

)
(2.21)

≈ 1

σ

∫ ∞
0

(2J + 1) exp

(
−hBiJ (J + 1)

kBT

)
dJ

=
kBT

hBiσ
=

T

σθR,i
, (2.22)

with θR,i = hBi
kB

the rotational temperature. For most molecules the rotational
temperature is significantly smaller than the thermal energy at room temperature.

2.1.3 Higher order corrections

For larger separations with respect to re the harmonic potential must be corrected
with additional terms in the Taylor series. The corrections are discussed here for

3Note that in this work Bi has units of s−1 while in most spectroscopic texts these frequencies
are given in cm−1.
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diatomic molecules. The subscript j can then only take one value and is therefore
omitted in this section. As a result the vibrational energy [36, p. 90-93, p. 107] [35,
p. 87] is modified to

Gi (v)

h
= νe,i,j

(
v +

1

2

)
− νexe,i,j

(
v +

1

2

)2

+ νeye,i,j

(
v +

1

2

)3

· · · , (2.23)

and the rotational energy for a linear molecule is modified to

Fi,v (J)

h
= Bi,vJ (J + 1)−Di,vJ

2 (J + 1)
2 · · · , (2.24)

with νexe,i,j and νeye,i,j higher order correction terms for the vibrational energy
levels and Di,v represents the influence of the centrifugal force on the rotational
levels. The rotational constants now also depend on the vibrational quantum
number and are given by

Bi,v = Be,i − αe,i
(
v +

1

2

)
· · · , (2.25)

and

Di,v = De,i + βe,i

(
v +

1

2

)
· · · , (2.26)

with Be,i and De,i the rotational constants at re. The corrections αe,i and βe,i
are small compared to Be,i and De,i. When only the lowest vibrational levels
are significantly populated the rotational and vibrational partition sums can be
approximated by independent partition sums. When rotational levels with large
J are populated, the partition sums can no longer be represented with (2.8) since
vibrational and rotational terms are mixed. In that case the partition sum are
calculated according to [35, p. 95]

Za =
Zt
σ

∑
i

gi exp

(
− Ee,i
kBT

)∑
v

∑
J

gJ exp

(
−Ev,J
kBT

)
. (2.27)

2.1.4 Morse potential

A well known improvement of the harmonic potential is the Morse potential [35,
p. 88]. The Morse potential does not account for rotation. Therefore the centrifu-
gal potential should also be included to obtain the effective Morse potential. For
a diatomic molecule the effective Morse potential [35, p. 89] [36, p. 462] is given
by

V (r) = DE,i [1− exp (−βi (r − re,i))]2 +
h2

8π2µr2
J (J + 1) , (2.28)

with DE,i the depth of the potential well of electronic state i, re,i the position of
the well, µ the reduced mass and βi a parameter that describes the width of the
well. The first term in this equation is the Morse potential and the second term
is the centrifugal potential. The Morse potential is derived [39, p. 58] with the
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constraint that the first two terms of the vibrational energy (2.23) form the exact
solution for the vibrational energy levels. The vibrational frequency4 and the first
anharmonicity constant are given by [36, p. 101] [40]

hνe,i,j = hβi

√
De,i

2π2µ
, (2.29)

and

hνexe,i,j =
ν2
e,i,jh

2

4De,i
=
β2
i h

2

8π2µ
. (2.30)

When the parameters of the Morse potential are not available they can be esti-
mated based on the vibrational frequency and the first anharmonicity correction.
The relations for the Morse parameters are given by

βi =

√
8π2µνexe,i,j

h
, (2.31)

and

De,i =
2π2µν2

e,i,j

β2
i

. (2.32)

Estimates for the rotational constants can also be made. These can be ex-
pressed as [36, p. 106-108] [35, p. 89]

hBe,i =
h2

8π2µr2
e,i

, (2.33)

hDe,i =
4hB3

e,i

ν2
e,i,j

, (2.34)

hαe,i =
6h

νe,i,j

(√
νe,i,jxe,i,jB3

e,i −B
2
e,i

)
, (2.35)

and

hβe,i = hDe,i

(
8νe,i,jxe,i,j

νe,i,j
− 5αe,i

Be,i
−
α2
e,iνe,i,j

24B3
e,i

)
. (2.36)

The calculation of the partition sum from a direct summation using these rovi-
brational levels requires the determination of vmax and Jmax. The maximum
vibrational quantum number is the highest number that still satisfies

Gi,v ≤ De,i. (2.37)

Herzberg [36, p. 426] and Capitelli et al. [35] note that including the centrifugal
potential can create a rotational barrier that exceeds De,i. This rotational barrier
has a different local potential maximum for every electronic state and for every J .

4Note that the depth of the potential well is specified in J which deviates from the cm−1

which is frequently used. Frequencies are specified in the unit Hz instead of cm−1
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First, the position of the maximum of the rotational barrier rm is determined by
solving

∂V

∂r
= 2De,iβi exp−βi(r−re,i)

[
1− expβi(r−re,i)

]
− h2

4π2µr3
J (J + 1) = 0, (2.38)

and obtaining the outermost root. Secondly, this position is used to determine the
maximum of the rotational barrier εm,i,J . The conditions

Gi,v + Fi,Jmax,v ≤ εm,i,Jmax

Gi,v + Fi,Jmax+1,v > εm,i,Jmax+1, (2.39)

specify the maximum rotational quantum number.

The Morse potential is constructed using three parameters. It is known that
there can be deviations from literature values when spectroscopic data are used to
calculate the potential parameters from (2.31) and (2.32). Hulburt et al. [40, 41]
constructed a potential that uses additional parameters based on the availability
of the spectroscopic constants νe,i,j , νe,i,jxe,i,j , Be,i and αe,i. In addition to this
data the dissociation energy can be obtained from thermodynamic data. In the
worst case the corrections are in the order of 10% of the dissociation energy for
moderately large separations.

These corrections are neglected in PLASIMO. For diatomic molecules with
multiple vibrational anharmonicity constants the potential in principal deviates
from the Morse potential. However, the procedure to include the rotational barrier
in combination with the Morse potential is still used. The vibrational and rota-
tional energies are calculated by including additional spectroscopic data if these
are available. In specific cases the rotational energy starts to decrease for larger J
before the rotational barrier is reached. In that case the partition sum is truncated
at that point.

This framework has been implemented in PLASIMO. A comparison with re-
sults from Pagano [42, p. 51] and Capitelli [35, p. 259] shows that at T = 50 kK
a considerable error occurs between the results from Pagano (ZH2

= 1.098× 104)
, Capitelli (ZH2

= 1.1008× 104) and PLASIMO (ZH2
= 8.039× 103). These dif-

ferences may be caused by the electronic states of H2, specified by Pagano [42,
p. 31,32], that did not include specifications for νe,i,j , νe,i,jxe,i,j and Be,i. In the
PLASIMO calculation these states are neglected. It is not clear how the Morse
parameters for these levels have been obtained by Pagano or Capitelli, or whether
these states are included in the calculation in the first place. Additionally, the
authors refer to Chase [43, p. 1310] for the data for the ground state of H2. Chase
gives vmax = 14 and Jmax = 38−v/vmax. This is not in agreement with the results
obtained using PLASIMO. For other molecules the differences with the calculated
partition sums are also significant. For this reason an independent implementa-
tion in MATLAB is made. Multiple tests indicate that the agreement between
both implementations is excellent. The implementation of the models is therefore
considered as verified. The differences with the results from Pagano and Capitelli
are attributed to undocumented procedures for estimating missing input data.
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Figure 2.2: PLASIMO results for the
partition sum of H2. The partition
sum is calculated according to (2.27)
(Sum) and a similar procedure is used
only for the ground state with Sum
ground. The partition sum is com-
pared with the rigid rotator and har-
monic oscillator approaches (RRHO).
Input data are taken from Pagano
[42].
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Figure 2.3: PLASIMO results for the
partition sum of O3. The legend is the
same as in figure 2.2. Input data are
taken from Capitelli et al. [44].

In figure 2.2 the partition sum of H2 is calculated using various approaches.
For T< 25 kK the partition sum that is calculated according to (2.27) is larger.
Initially the full summation provides a larger sum because the vibrational spacing
is smaller due to the anharmonicity corrections. Since the finite number of vibra-
tional levels of the ground state are almost fully occupied and the energy barrier
towards the first excited state is still large the partition sum increases slowly. The
harmonic oscillator model does not contain a finite number of vibrational states
and therefore eventually surpasses the partition sum calculated from (2.27). The
harmonic oscillator model reaches a relative error of about 40 % at 14 kK and
reaches its maximum value at 50 kK where it reaches 280 %.

2.1.5 Polyatomic molecules

For polyatomic molecules the partition sum is calculated similar to (2.27) [45,
p. 20]. This time the vibrational summation also accounts for the different vibra-
tional modes j and the vibrational states now also have a degeneracy that is not
always equal to 1. Additionally the expressions for the vibrational and rotational
contributions are not the same. The vibrational energy level of mode j is given
by [46, p. 211]

Gi (v)

h
=
∑
j

ν0
j vj +

∑
j

∑
k≥j

x0
jkvjvk +

∑
j

∑
k≥j

gjklj lk + · · · , (2.40)
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with xjk and gjk anharmonicity constants, lj the angular momentum quantum
number of a degenerate vibration and ν0

j and x0
jk the adjusted vibrational fre-

quencies5. Note that the adjusted vibrational frequencies are the result of setting
the zero-point of the vibrational energy at the vibrational level with all vibrational
quanta set to zero. The angular momentum quantum number can take the values

lj = νj , νj − 2, νj − 4, · · · , 1 or 0. (2.41)

For non-degenerate vibrations lj and gjk are zero. Due to the difficulty of obtaining
accurate estimates of xik and gik these contributions to the vibrational energy
level are often neglected. This approximation is equivalent to using the harmonic
oscillator model which is also used by Capitelli [35, p. 95-96]. The statistical weight
of a vibrational mode for polyatomic molecules is given by [35, p. 96] [42,47]

gv,j =
(νj + dj − 1)!

νj ! (dj − 1)!
, (2.42)

for a single vibration mode. The total weight is given by

gv =
∏
j

gv,j . (2.43)

A simplified expression for the rotational partition sum of a non-linear molecule
is given by [37, p. 596]

Zr,i =
1

σ

(
kBT

h

) 3
2
(

π

Ae,iBe,iCe,i

) 1
2

, (2.44)

with Ae,i, Be,i and Ce,i the rotational frequencies that can be related to the three
moments of inertia IA, IB and IC [35, p. 96-97]. The moment of inertia of any of
the three components can be related to the rotational frequency via

hBe,i =
h2

8π2IB
. (2.45)

Similar relations can be derived for Ae,i and Ce,i. The frequencies follow the
relationship Ae,i ≥ Be,i ≥ Ce,i. More advanced expressions can be obtained for
different combinations of the moments of inertia.

For linear (IA = 0 and IB = IC) or spherical (IA = IB = IC) molecules the
rotational energy levels are given by [45, p. 69]

Fi,v (J)

h
= Bi,vJ (J + 1)−Di,vJ

2 (J + 1)
2

+ · · · , (2.46)

with

Bi,v = Be,i −
∑
j

αj

(
νj +

dj
2

)
, (2.47)

5At the level of approximation used in (2.40) these quantities are given by ν0
j = νj + xiidi +∑

k 6=i xikdk and x0
ik = xik with dj the degeneracy of vibrational mode j.
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and

Di,v = De,i +
∑
j

βj

(
νj +

dj
2

)
, (2.48)

and dj the degeneracy of vibrational mode j.
For symmetric top molecules (0 < IA < IB and IB = IC) the rotational energy

levels are given by [45, p. 82]

Fi,v (J,K)

h
= Bi,vJ (J + 1) + (Ai,v −Bi,v)K2

−Di,vJ
2 (J + 1)

2
+Di,v,KJ (J + 1)K2 −DKK

4, (2.49)

with K being the component of the total angular momentum J about the top axis
(with I = IA). The allowed values of K are thus given by −J ≤ K ≤ J . The
first two terms occur for a rigid symmetric top molecule. The remaining terms are
related to centrifugal stretching and are only important for large values of J and
K. The variation of the centrifugal terms as a function of J and K is neglected.
Most spectroscopic data used in PLASIMO originates from Capitelli et al. [42,
44]. Alternatively, data can be obtained from the NIST database [43, 48]. The
input data collected from these databases facilitates more accurate calculations of
molecular partition sums in PLASIMO.

For asymmetric top molecules (0 < IA < IB < IC) the rotational energy levels
are given by [45, p. 106]

Fi,v (J,K)

h
=

Bi,v + Ci,v
2

J (J + 1) +

(
Ai,v −

Bi,v + Ci,v
2

)
×(

1− 3

8
b2 − 51

512
b4 · · ·

)
K2 + ∆BKeffJ (J + 1) +

∆DK
effJ

2 (J + 1)
2

+ ∆HK
effJ

3 (J + 1)
3 · · · , (2.50)

with b representing the asymmetry parameter. The coefficients ∆XK
eff can be

expressed in terms of the rotational constants and b. For a small asymmetry
parameter the rotational energy can be simplified to

Fi,v (J,K)

h
=
Bi,v + Ci,v

2
J (J + 1) +

(
Ai,v −

Bi,v + Ci,v
2

)
K2. (2.51)

In figure 2.3 results of calculations in PLASIMO are presented for the parti-
tion sum of O3 using various approaches. The partition sum that is calculated
according to the direct summation is smaller than the ‘RRHO’ calculations for the
complete temperature range. This is related to the finite number of vibrational
levels that is included. Since the vibrational partition sums occur in a product the
relative errors are increasing rapidly. For T = 100 K the relative error is 1600 %
while at 50 kK the error has increased to six orders of magnitude. Note that
Capitelli et al. [35, p. 256-257] obtain a result in the order of the curve indicated
by ‘RRHO ground’. This is an indication that the rovibrational sums are not
truncated. The results obtained with the direct summation are approximations as
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well, since higher order corrections in the rovibrational energy levels are neglected.
In order to test the PLASIMO implementation of the calculation of the partition
sum for polyatomic molecules a separate implementation in MATLAB is used for
the verification. The agreement between both codes is excellent.

2.2 Thermodynamic identities

The thermodynamic potentials that are used in this work are introduced in this
section. The internal energy and the enthalpy appear in the next chapter, where
the conservation equation for the energy is derived. An expression for the compo-
sition of a thermal plasma is obtained by minimization of the Gibbs free energy.
Additionally, the specific heat is discussed. This property also appears in the
energy equation. Its origin is explained in this section.

The expressions for the thermodynamic properties are summarized in table 2.1.
The internal energy is related to the average energy of the system. This quantity
corresponds to a system with a constant volume that does not exchange heat with
its environment. It can be described by its volume and the entropy6. The enthalpy
describes a system that is thermally insulated from the environment. It can ad-
ditionally adjust its pressure to the pressure of the environment and is therefore
described by the variables pressure and entropy. The Gibbs free energy describes
a system that can exchange mechanical energy and heat with the environment.
This system can be described by the pressure and the temperature. The specific
heat as given in the table is only valid for non-reacting mixtures. The next section
describes how to obtain the specific heat for reacting mixtures.

2.2.1 Specific heat

In table 2.1 the specific heat is given for frozen (non-reacting) mixtures in units
of energy per number of particles per kelvin with Cpf . Including the reactive
contributions is done in this section by considering cp, which is expressed in terms
of energy per unit of mass per Kelvin. In general the specific heat per unit of mass
can be calculated from [49]

cp =

(
∂

∂T

(∑
a naH̄a

ρ

))
p

=

(
∂

∂T

(∑
a xaH̄a

m

))
p

=
∑
a

(
∂xa
∂T

)
p

H̄a

m
−
∑
a

1

m2
xaH̄a

(
∂m

∂T

)
p

+
∑
a

xa
m

(
∂H̄a

∂T

)
p

= cpr + cpf , (2.52)

with H̄a = Ha/Na the enthalpy of a single particle, cpf the frozen (non-reactive)
specific heat and cpr the reactive specific heat. The first two terms are part of the
reactive specific heat and the last term forms the frozen specific heat. The frozen

6 The entropy is not discussed in this work. For more details the reader is referred to
Atkins [37, p. 616], Hirschfelder [34, p. 110-121] or Capitelli [35, p. 59]
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specific heat can also be obtained from cpf = Cpf,mol/ (NAm). The expression
derived in (2.52) is not in agreement with Capitelli’s result [35, p. 16, eq. 1.73,1.77].
Appendix 2.A shows that Capitelli’s expression is not complete.

In order to calculate the derivative of the mole fraction with respect to tem-
perature all reactions are written as∑

i

RjiXi = 0, (2.53)

with Rji the stoichiometric coefficient and Xi a chemical species. Similarly to the
derivation of the reactive thermal conductivity given by Butler and Brokaw [50]
the equilibrium constant is used in combination with van ’t Hoff’s isochore (see
Butler and Brokaw or (2.57)). The equilibrium constant for reaction k is given by

Kp,k =
∏
i

p
Rk,i
i . (2.54)

Taking the logarithm and using za = xa, a property of a one-temperature plasma
(see (1.17)), gives

lnKp,k =
∑
α

Rk,α ln pα − ln pk (2.55)

=
∑
α

Rk,α lnxα − lnxk +

(∑
α

Rk,α − 1

)
ln p, (2.56)

with α representing the elements and p the total pressure. Taking the derivative
with respect to the temperature at constant pressure gives(

d lnKp,k

dT

)
p

=
∑
α

Rk,α

(
d lnxα
dT

)
p

−
(
d lnxk
dT

)
p

(2.57)

=
∆Hk

kBT 2
, (2.58)

with ∆Hk the enthalpy for reaction k. For numerical convenience the equation is

scaled with kBT
2

∆Hk
. The system of equations must be completed with the elemental

continuity equations. These are given by

mα

∑
i

Rα,iyi
mi

= mα

∑
i

Rα,ixi
m

= yα, (2.59)

with m =
∑
i ximi and yα the elemental mass fraction. Taking the derivative with

respect to temperature at constant pressure gives

mα

∑
i

Rα,i

(
1

m

(
dxi
dT

)
p

− 1

m2
xi

(
dm

dT

)
p

)
= 0. (2.60)

The derivative of the averaged mass with respect to the temperature is given by(
dm

dT

)
p

=
∑
i

mi

(
dxi
dT

)
p

. (2.61)
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In practice the average mass can be captured with a piecewise polynomial fit as a
function of temperature. This improves the solver’s stability.

2.2.2 Internal states

The thermodynamic quantities require the calculation of derivatives of the par-
tition sum with respect to the temperature. The numerical evaluation of the
derivatives can be avoided by introducing the following moments of the partition
sum [51,52]

Z ′ =
∑
i

gi

(
Ei
kBT

)
exp

(
− Ei
kBT

)
= T

(
∂Z

∂T

)
, (2.62)

and

Z ′′ =
∑
i

gi

(
Ei
kBT

)2

exp

(
− Ei
kBT

)
= T 2

(
∂2Z

∂T 2

)
+ 2T

(
∂Z

∂T

)
, (2.63)

where the summation over i covers all electronic, vibrational and rotational states.
In PLASIMO the partition sum is calculated as

Zint =
∑
i

gi exp (−Ei/kBT )Zrv,i, (2.64)

with
Zrv,i =

∑
rv

exp (−Erv,i/kBT ) , (2.65)

the rovibrational partition sum. It is therefore convenient to express (2.62) and
(2.63) in terms of Zrv. The derivation for this new general expression is given in
the remainder of this section. The partition sum can be written as

Zint(T ) =
∑
i

gi
∑
j

wij exp (−Eij/kBT ) ≡
∑
i

gi
∑
j

wij exp (−xij) , (2.66)

with gi and wij the statistical weight of the electronic state i and the rovibrational
state j, respectively. The moments are then given by

Z
(n)
int (T ) ≡

∑
i

gi
∑
j

wijx
n
ij exp (−xij) , (2.67)

with xij = xi0 + (
Eij
kBT
− xi0) ≡ xi + ∆ij . The power xnij can be expanded as a

binomial power,

xnij = (xi + ∆ij)
n =

n∑
p=0

(
n

p

)
xn−pi ∆p

ij . (2.68)

Furthermore e−xij = e−xie−∆ij . Substitution of these two results yields

Z
(n)
int (T ) =

∑
i

gi exp (−xi)
∑
j

wij

(
n∑
p=0

(
n

p

)
xn−pi ∆p

ij

)
exp (−∆ij) . (2.69)
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By changing the summation order, this can be written as

Z
(n)
int (T ) =

∑
i

gi exp (−xi)
n∑
p=0

(
n

p

)
xn−pi

∑
j

wij∆
p
ij exp (−∆ij) . (2.70)

The last sum is nothing but the p’th moment of the internal partition sum Z
(p)
rv,i(T )

over the rovibrational states,

Z
(p)
rv,i(T ) =

∑
j

wij∆
p
ij exp (−∆ij) . (2.71)

This allows us to write

Z
(n)
int (T ) =

∑
i

gi exp (−xi)
n∑
p=0

(
n

p

)
xn−pi Z

(p)
rv,i(T ). (2.72)

This is a general expression for the moment Z(n)(T ) of a species partition sum in
terms of the moments of the partition sums of its electronically excited states. It
is a linear combination of the internal partition sums up to order n. For n = 0, 1, 2
we find:

Z
(0)
int (T ) =

∑
i

gi exp (−xi)Z(0)
rv,i(T ), (2.73)

Z
(1)
int (T ) =

∑
i

gi exp (−xi)
[
Z

(1)
rv,i(T ) + xiZ

(0)
rv,i(T )

]
, (2.74)

Z
(2)
int (T ) =

∑
i

gi exp (−xi)
[
Z

(2)
rv,i(T ) + 2xiZ

(1)
rv,i(T ) + x2

iZ
(0)
rv,i(T )

]
. (2.75)

These expressions are used in table 2.1. The conversion of the second derivative
occurring in the specific heat is discussed in appendix 2.B.

2.3 Non-ideal gasses

Previously the thermodynamic relations have been derived by considering a mix-
ture that behaves as an ideal gas which only interacts via hard sphere collisions.
In reality a mixture can also interact via charged particles. Additionally particles
are not point-like. Virial corrections can be used to account for the occupied vol-
ume of the particles. Virial corrections are not considered in this work for a more
detailed discussion the reader is referred to Capitelli et al. [35, p. 117-140].

The effect of charged particles on the partition sum can be taken into ac-
count via Debye-Hückel, Margenau and Lewis or Fermi theory [35, p. 142-144].
According to Debye-Hückel theory the ionization potential is lowered by ∆Ia =

q2e
4πε0λD

(za + 1) with za the charge number of particle a, qe the elementary charge,
ε0 the electric permittivity in vacuum and λD the Debye length. Using this theory
the summation of the partition sum is thus cut off at εmax,a = Ia−∆Ia. Margenau
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Figure 2.4: The calculated reduction of the upper energy limit for atoms and ions
used in the calculation of the partition sum.

and Lewis suggest a different cutoff by assuming that the classical Bohr radius of a
hydrogenoid atom should not exceed the Debye length. In that case the maximum

energy is given by εmax,a = Ia

(
1− 1

n2
max,a

)
with the maximum principal quantum

number given by n2
max,a = λD(za+1)

a0
with a0 the Bohr radius. Fermi suggested a

different estimate for the maximum principal quantum number. He suggested that
the classical Bohr radius should not exceed the average interparticle separation.

His suggestion can be expressed as n2
max,a = (za+1)

n1/3a0
.

The impact of these constraints is tested with PLASIMO and our MATLAB
code in a mixture of xN2 = 0.788 and xO2 = 0.212 at p=1 bar. The calculated
corrections for the upper limit of the partition sum are based on the Griem and
Fermi constraints and are shown in figure 2.4. Such an approach is suggested in
Capitelli et al. [35, p. 274]. The curve shows that for temperatures below 10 kK
the Fermi criterion dominates. Due to the increase of the temperature the density
decreases which means the criterion is becoming less important. The increase of
the temperature causes a decrease of the Debye length7. Eventually the rate of
increase of charged particles is not high enough to overcome the decrease of the
total gas density. The result is that the energy correction decreases again. The
partition sums have been calculated using all energy levels tabulated by NIST [53]
that are smaller than the corrected ionization energy. The results in this section
therefore justify neglecting these corrections in the remainder of this work.

7In this case the Debye length has been calculated by only including the electrons. This is
similar to Capitelli et al. [35, p. 274]. For a more detailed discussion see section 5.2.6
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2.4 LTE composition calculation

The equilibrium composition for a mixture can be found by minimizing the chemi-
cal potential µ [35, p. 163-167]. The chemical potential is defined as [35, p. 4, p. 57]

µi =

(
∂Gi
∂Ni

)
p,T,Nj 6=i

= −kBT ln
Zi
Ni
, (2.76)

with Gi the Gibbs free energy. Alternatively the composition can be calculated
based on a maximization of the entropy. When the mixture can be described with
a single temperature both approaches find the same equilibrium composition. In
this section the minimization of the Gibbs free energy is discussed for a single
temperature mixture according to∑

i

(dG)p,T =
∑
i

µidNi = 0. (2.77)

The partition sum for an arbitrary species can be written as

Zi = Zt,iZint,i exp

(
− Ei
kBT

)
, (2.78)

with Zt the translational partition function given by (2.9). The chemical potential
for a single species is then given by

µi = kBT
[
lnni − ln Λ3

i − lnZint,i

]
+ Ei, (2.79)

with Λi = 2πmikBT
h2 . The composition can then be derived from (2.77) and is given

by ∑
i

Rki
[
kBT

(
lnni − ln Λ3

i

)
− kBT lnZint,i + Ei

]
= 0. (2.80)

Dividing by kBT and separating the density from the other terms gives∑
i

Rki lnni =
∑
i

Rki

[
ln Λ3

i + lnZint,i +
Ei
kBT

]
. (2.81)

Taking the exponent of (2.81) gives∏
i

nRkii = exp

(
−∆Ek
kBT

)∏
i

(
Λ3Zint,i

)Rki
, (2.82)

with ∆Ek =
∑
iRkiEi.

Special cases of the Guldberg-Waage equation are excitation and ionization.
For excitation processes of the type e + Ai + Eij → e + Aj with Ai a particle in
state i and Eij the excitation energy the Boltzmann equation can be obtained,

nj
ni

=
Zint,j

Zint,i
exp

(
− Eij
kBT

)
. (2.83)
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Similarly for ionization processes of the type e + A+c
i + Eij → 2e + A+c+1

j with c
the charge the Saha equation is obtained

nenA+c+1
j

nA+c
i

=

(
ΛeΛj

Λi

)3
Zint,eZint,j

Zint,i
exp

(
− Eij
kBT

)
. (2.84)

A composition calculation of a mixture of µ species involves ν reactions and
µ − ν conservation equations. The reactions are expressed in the mass fractions.
In order to reduce the large dynamical range of these fractions the reactions are
expressed in terms of ln y. The system for a mixture can then be expressed as∑

i

Rki ln yi =
∑
i

Rki

[
ln
mi

ρ
+ ln Λ3 + lnZint,i −

Ei
kBT

]
, (2.85)

with ρ the mass density. If necessary the additional parameterization ln yi = −p2
i

can be used. The advantage of that parameterization is that 0 ≤ yi ≤ 1 results
naturally. The remaining conservation equations are given by

yα = mα

∑
i

Rαi
yi
mi

, (2.86)

with α indicating the elemental species and m the average mass of a single particle.
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Table 2.1: The thermodynamic formulas for the calculation of the internal energy, enthalpy, Gibbs free energy and the frozen
specific heat. The frozen specific heat neglects the contributions from chemical reactions. Separate contributions are shown
for the translational and internal components. In order to avoid the numerical calculation of the first and second derivatives of
the partition sum to the temperature the system is expressed in terms of the first and second moments of the partition sum.
All quantities are calculated for Na species. Additionally all expressions are corrected with the formation energy Ea. Molar
mixture properties can be calculated by using Na = NA (Avogadro’s number) and summing all species quantities weighted by
the molar fraction. An exception is the Gibbs free energy which additionally should be corrected with the entropy of mixing
given by −NAkB

∑
a xa lnxa. For more details see Atkins [37, p. 615,616], Hirschfelder et al. [34, p. 110-121] or Capitelli et

al. [35, p. 58,59].

Type Formula Translational Internal

U
∑
aNa

[
Ea + kBT

2 1
Za

(
∂Za
∂T

)
V

] ∑
a

3
2NakBT

∑
aNakBT

Z′int,a
Zint,a

H
∑
aNa

[
Ea + kBT

(
T 1
Za

(
∂Za
∂T

)
V

+ 1
)] ∑

a
5
2NakBT

∑
aNakBT

Z′int,a
Zint,a

G
∑
aNa

[
Ea − kBT ln

(
Za
Na

)] ∑
aNakBT ln

(
V
Na

[
2πmkBT

h2

] 3
2

) ∑
a−NakBT ln

(
Zint,a

Na

)
Cpf

∑
aNakB

[(
∂2 lnZa
∂(lnT )2

)
p

+
(
∂ lnZa
∂ lnT

)
p

] ∑
a

5
2NakB

∑
aNakB

(
Z′′int,a
Zint,a

−
(
Z′int,a
Zint,a

)2
)
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2.A Comparing the reactive and the frozen specific heat

In order to compare (2.52) with the expression given by Capitelli [35, eq. 1.77] the
derivatives are expressed in terms of the densities as

Cp,mol = cpNAm

=
∑
a

Hmol,a

[
1

n

(
∂na
∂T

)
p

− na
n2

(
∂n

∂T

)
p

]

−
∑
a

1

m

na
n
Hmol,a

∑
j

mj

n

(
∂nj
∂T

)
p

−
∑
j

njmj

n2

(
∂n

∂T

)
p


+
∑
a

na
n

(
∂Hmol,a

∂T

)
p

. (2.87)

Capitelli’s result is

Cp,mol =
∑
a

na
n

(
∂Hmol,a

∂T

)
p

+
∑
a

Hmol,a

n

(
∂na
∂T

)
p

− 1

n

(
∂n

∂T

)
p

Hmol, (2.88)

which shows that Capitelli only includes the first, second and fifth terms.

2.B Conversion of the heat capacity

The specific heat can be expressed in terms of the logarithmic derivatives. In that
case the specific heat is given by [35, p. 55]

Cp,int,a = NakBT
2

(∂ lnZint,a

∂ lnT

)
p

+

(
∂2 lnZint,a

(∂ lnT )
2

)
p

 . (2.89)

The logarithmic derivatives can be expressed in terms of the derivatives of the
partition sum as follows(

∂ lnZint,a

∂ lnT

)
p

=
T

Zint,a

(
∂Zint,a

∂T

)
p

=
Z ′int,a

Zint,a
, (2.90)

and (
∂2 lnZint,a

(∂ lnT )
2

)
p

=
∂

∂ lnT

(
T

Zint,a

(
∂Zint,a

∂T

)
p

)

=
T 2

Zint,a

(
∂2Zint,a

∂T 2

)
p

− T 2

Z2
int,a

(
∂Zint,a

∂T

)2

p

+
T

Zint,a

(
∂Zint,a

∂T

)
p

=
Z ′′a
Zint,a

− Z ′a
Zint,a

−
(

Z ′a
Zint,a

)2

. (2.91)
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Transport equations

A mixture can be characterized by the positions and velocities of all individual
particles. Such a characterization requires a large amount of parameters. For
example, the number of parameters necessary to describe a volume of 1 m3 of air
at room temperature is in the order of 1025. Such a large number of parameters can
be reduced to only a few by using a fluid approach. Three types of approaches are
considered in this work. A kinetic approach which does not allow a fluid description
and two fluid models. The considered fluid models are two-temperature plasmas
and plasmas in local thermodynamic equilibrium. Figure 3.1 presents an overview
of the plasma types and in which chapters they are discussed.

The governing equations in the fluid approximation can be derived from the
Boltzmann equation. This equation can be used to derive the continuity equation
as well as the conservation equations for momentum and energy. These conser-
vation equations are derived for two-temperature plasmas and plasmas in local
thermodynamic equilibrium. Although these conservation equations appear to be
different we demonstrate that the final results are derived from a common ori-
gin and are consistent. The common origin for the derivations is the Boltzmann
equation for the species systems. By writing the species velocity in terms of the
diffusive velocity and the bulk velocity the various conservation equations can be
summed to obtain the conservation equations in the bulk system. By summing the
balances for the heavy particles the conservation equations for a two-temperature
plasma can be derived.

In the case of local thermodynamic equilibrium we sum the species conserva-
tion equations for all states that correspond to the same nuclear core using the
Boltzmann relation. In that case it is observed that the transport coefficients like
the thermal conductivity and the heat capacity contain an additional dependency
on the temperature due to the inclusion of internal and reactive terms.

In the last section the calculation of the transport coefficients that occur in
the conservation equations are discussed. A transport theory based on particles
that are restricted to movement in six possible directions is applied to obtain a
first order approximation for transport coefficients. These estimates are made for
the thermal conductivity, the viscosity and the diffusion coefficient.

37
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Boltzmann equation

Maxwell distribution?
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Thermal plasma?
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Chapter 
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Figure 3.1: The three different types of plasmas considered in this work and the
chapters where these plasma types are discussed.

3.1 Boltzmann equation

In the statistical approach the properties of species i are derived from the species
distribution function fi (~r, ~pi, t) [34, p. 442-449]. The distribution function de-
scribes the probable amount of particles of species i that have a position in the
range of d~r around ~r and with momentum coordinates in the range of d~p around ~pi
at time t. The next sections describe how properties can be derived from the dis-
tribution function. Additionally a general conservation equation for an arbitrary
property is derived.

3.1.1 Species properties

The distribution function can be used to calculate mixture averages. This is done
by integrating over all possible velocities at a given position and time. For the
property χi the mixture average is thus given by

〈χi〉 =
1

ni

∫
χifid

3v, (3.1)

with ni the species number density and v the peculiar velocity. For example for
χi = 1 the density is obtained ∫

fid
3v = ni. (3.2)

The velocity of a particle of species i can be written as ~vi = ~ui + ~ci with ~ui the
species average velocity and ~ci the velocity relative to the average velocity. The
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velocity ~ci is also called peculiar velocity and has the property 〈ci〉 = 0. By taking
χi = ~ui + ~ci the species average velocity is derived

〈~ui + ~ci〉 =
1

ni

∫
(~ui + ~ci) fid

3v = ~ui. (3.3)

The species velocities can be summed to obtain the mass averaged or bulk velocity
as

~u =
1

ρ

∑
i

ρi~ui =
∑
i

yi~ui, (3.4)

with the mass density given by ρ =
∑
i ρi =

∑
i nimi, mi the mass of particle i

and the mass fraction by yi = nimi/ρ. The mass averaged velocity can be used
to introduce the diffusive velocity which is given by

~vd,i = ~ui − ~u. (3.5)

This property can be used in (3.4) to show that the diffusive velocities transport
no net mass ∑

i

yi~u+
∑
i

yi~vd,i = ~u. (3.6)

The diffusive velocities must thus obey∑
i

yi~vd,i = 0. (3.7)

In the next section we will see that the general conservation equation involves a
term ni 〈χi (~ui + ~ci)〉. The pressure tensor is one of the terms that can be derived
from the substitution χi = mi (~ui + ~ci) as [1, p. 149]

nimi 〈~ci~ci〉 =
1

ni

∫
nimi~ci~cifid

3v = Pi. (3.8)

The pressure tensor can be rewritten as [54, p. 183]

Pi = piI− ¯̄τ i, (3.9)

with pi = 1
3ρyi

(
c2ix + c2iy + c2iz

)
= 1

3ρyic
2
i = ρyic

2
ix the scalar pressure and ¯̄τ

the viscous stress tensor. In the previous relations the pressure is simplified by
assuming an isotropic velocity distribution. The temperature can be related to
the pressure via [1, p. 152] 3

2kBTi = 1
2mi

〈
c2i
〉
. Multiplication with ni results in

the ideal gas law

pi = nikBTi. (3.10)

The substitution χi = nimi (~ui + ~ci) (~ui + ~ci) in ni 〈χi (~ui + ~ci)〉 leads to the in-
troduction of the heat flux. It is given by [1, p. 154]

~qi =
1

2
ρyi
〈
c2i~ci

〉
. (3.11)
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3.1.2 General conservation equation

In the presence of an external force ~Xi (r, t) the distribution function at time t+dt
can be written as [1, p. 130,134]

fi

(
~r +

~pi
mi

dt, ~pi + ~Xidt, t+ dt

)
=

(
∂fi (~r, ~pi, t)

∂t

)
coll

. (3.12)

The collision term can be expressed as the sum of an elastic and an inelastic term(
∂fi (~r, ~pi, t)

∂t

)
coll

=

(
∂fi (~r, ~pi, t)

∂t

)
el

+

(
∂fi (~r, ~pi, t)

∂t

)
inel

. (3.13)

The Boltzmann equation can be derived from (3.12) by Taylor expanding

∂fi
∂t

+ (~ui + ~ci) · ∇fi +
~Xi

mi
· ∇fi =

(
∂fi
∂t

)
coll

. (3.14)

A general continuity equation can be derived by multiplying (3.14) with the prop-
erty χi and integrating over velocity space. The result can be written as [1, p. 194-
197]

∂

∂t
(ni 〈χi〉) +∇ · (ni 〈χi (~ui + ~ci)〉)− ni

〈
~Xi

mi
· ∇vχi

〉
=

[
∂

∂t
(ni 〈χi〉)

]
coll

.

(3.15)

The mass, momentum and energy balances can be obtained from (3.15) by se-
lecting an appropriate χi (~ui + ~ci). A more elaborate discussion is given in the
following sections.

3.2 Conservation equations two-temperature plasma

In the following sections the conservation equations for the mass, momentum and
energy are derived. These balances are applied to a two-temperature plasma.

3.2.1 Mass balance

The mass balance can be derived from (3.15) by using χi = mi [1, p. 197-198].
The required averages are given by

〈mi〉 = mi, 〈mi (~ui + ~ci)〉 = miui,

〈
~Xi

mi
· ∇umi

〉
= 0. (3.16)

Substituting these properties in (3.15) gives

∂ρyi
∂t

+∇ · (ρyi~ui) = miωi, (3.17)
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with ωi the production rate per unit volume of species i. Summing over all species
mass balances gives

∂ρ

∂t
+∇ · (ρ~u) = 0, (3.18)

which indicates that mass is conserved. The bulk mass balance uses ~u =
∑
i yi~ui

as the mass averaged velocity.

3.2.2 Momentum equation

The momentum transport equation can be derived by using χi = mi (~ui + ~ci) [1,
p. 201-204]. The terms in (3.15) are expanded in appendix 3.A. The resulting
species momentum balance is given by

∂ρyi~ui
∂t

+∇ · ρyi~ui~ui = −∇pi +∇ · ¯̄τ i + ~Ri + niqi

(
~E + ~ui × ~B

)
+ ρyi~g, (3.19)

with ~Ri =
[
∂
∂t (ni 〈mi (ui + ci)〉)

]
coll

, qi the charge of particle i, ~E the electric

field, ~B the magnetic field and ~g the gravitational acceleration.
The momentum equation for the bulk flow can be derived by summing over

all species momentum balances. The mass averaged velocity of the species is
expressed in terms of the velocity of the bulk flow as ~ui = ~u+~vd,i with ~u the bulk
velocity and ~vd,i the diffusion velocity. Effectively, this is equivalent to changing
coordinates of the species system which moves with ~ui to the bulk system that
moves with ~u [55, p. 168-170] [6, p. 7-8]. This conversion is discussed in appendix
3.C. The Navier-Stokes equation (bulk momentum balance) is thus given by

∂ρu

∂t
+∇ · ρ~u~u = −∇p+∇ · ¯̄τ + ρσc

(
~E +~j × ~B

)
+ ρ~g, (3.20)

with ~j the current density and σc =
∑
i
qiyi
mi

. The bulk momentum balance is
solved using the SIMPLE algorithm described by Peerenboom [6, p. 69-73]. The
species momentum balances are not taken into account as indicated in (3.19) and
are simplified further. The contributions from the viscosity and the terms on the
left hand side are neglected. More details can be found in appendix 6.A.

3.2.3 Energy equation

The energy equation can be derived by using χi = 1
2mi (~ui + ~ci) · (~ui + ~ci) +Ei [1,

p. 204-207]. The derivation will deviate from the derivation given in Bittencourt
because a term Ei is added which accounts for the energy difference between
state i and a reference energy. The energy offset is necessary to group the energy
equations of the ground state and the excited states of a given atom, molecule or
ion. The derivation is carried out in appendix 3.B. The result is that the species
energy balance can be written as

∂
(

3
2nikBTi + niEi

)
∂t

+∇ ·
(

5

2
nikBTi + niEi

)
~ui − ~ui · ∇pi

−¯̄τ i : ∇~ui +∇ · ~qi = Qi − ~ui · ~Ri +
1

2
miu

2
iωi. (3.21)
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The energy equation for the bulk system can be obtained by summing the
species equations (3.21). A change of reference system is required again to change
the velocity of the coordinate system from ~ui to ~u. The details are given in
appendix 3.C.

Plasmas are usually created by applying electromagnetic fields. The absolute
force that is applied to the electrons and the ions (with the same absolute charge
as the electrons) via these fields is equal. Due to the lower mass the electrons
gain a much larger velocity than the ions. Electrons that are accelerated long
enough can induce inelastic processes like excitation, ionization or dissociation.
The smaller mass differences between different heavy particles causes an efficient
transfer of energy. As a result these particles reach the same temperature. Since
electrons do not transfer energy efficiently in collisions with heavy particles it is
possible that the electron temperature exceeds the heavy particle temperature.
For this reason the electron balance is considered separately

∂

∂t

∑
i 6=e

(
3

2
nikBTh + niEi

)
+∇ ·

∑
i 6=e

(
5

2
nikBTh~u+ niEi~ui

)
=

Qeh +Qinel,e −Qrad −∇ · ~qh + ~u · ∇ph + ¯̄τ : ∇~u (3.22)

∂

∂t

(
3

2
nekBTe

)
+∇ ·

(
5

2
nekBTe

)
~u =

~u · ∇pe −∇ · ~qe +Qohm −Qeh −Qinel,e, (3.23)

where the viscous dissipation of the electrons is neglected and the formation energy
of the electrons is set to zero. Additionally the ohmic heating term for the heavy
particles is neglected1 The elastic energy transfer between the electrons and the
heavy particles is given by Qeh. The term Qinel,e contains the energy losses related
to excitation and ionization processes involving an electron. A similar term Qinel,h

describes the chemical losses due to reactions for the heavy particles. This term
does not appear in the energy balance since χ = 1

2mi (~ui + ~ci)
2

+ niEi. In other
words, the kinetic loss term −Qinel,h is balanced by the increase of chemical energy
Qinel,h. A separate term covers the radiation losses Qrad. Contributions from the
second and third terms on the RHS of (3.21) are neglected.

3.3 LTE

The large number of species equations for the mass, momentum and energy can
in specific cases be simplified to a smaller set of equations. In equilibrium the loss
processes are balanced by the production processes. The production rate for an
inelastic process from state i towards state j can be written as neni

〈
σ(e)~ve

〉
i→j .

1In the species system the contribution from external forces vanishes. In the bulk system a
term ni ~Xi ·vd,i is added to account for the change of reference system as shown in appendix 3.C.

The energy added to the bulk system from external forces includes niqi ~E ·vd,i = ~ji · ~E .The total
current density is approximately equal to the current density of the electrons. For that reason
the ohmic heating term is approximated with ~j · ~E ≈ ~je · ~E. Other forces are neglected in the
energy balances of the electrons and the heavy particles.
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The destruction rate of state j by electron collisions is given by nenj
〈
σ(e)~ve

〉
j→i.

The electrons lose the energy Eij in the inelastic process. This energy can be
retrieved from other electrons via momentum transferred in collisions with other
electrons. The rate of these collisions is proportional to n2

e

〈
σ

(e)
m,e~ve

〉
E≥Eij

with

E ≥ Eij indicating the range that is considered for the energy average. According
to Drawin [56] the electrons follow the Maxwellian velocity distribution if the
following equation holds for all inelastic transitions

ni
〈
σ(e)~ve

〉
i→j − nj

〈
σ(e)~ve

〉
j→i

1 + ne

〈
σ

(e)
m,e~ve

〉
E≥Eij

� 1. (3.24)

In other words, the energy gained by momentum transfer from the electron-
electron collisions can compensate for all inelastic losses. The equilibrium dis-
tribution or Maxwellian distribution is given by [34, p. 466]

fi = ni

(
mi

2πkBT

)3/2

exp

(
−mi~ci

2

2kBT

)
. (3.25)

Additionally, the heavy particles can be described with the same velocity distri-
bution function as the electrons if the number of momentum transfer collisions is
much larger than the number of inelastic collisions∑

i

∑
j

neni

〈
σ(e) (~ue + ~ce)

〉
i→j
�
∑
i

neni

〈
σ

(e)
m,i

〉
. (3.26)

When conditions (3.24) and (3.26) are met, the atomic and molecular state distri-
butions are given by the Boltzmann relation. The Boltzmann relation [34, p. 105]
is given by

ni
nj

=
gi
gj

exp

(
−Ei − Ej

kBT

)
, (3.27)

with gi the degeneracy of state i. In the next sections LTE equations for the mass,
momentum and energy balance are derived.

3.3.1 Mass and momentum balance

The number of mass and momentum balances can be greatly reduced when LTE is
valid by introducing elemental species. The elemental species form the minimum
set of species that is required to represent all other species. A species can be
expressed in the elemental species by setting up a reaction where the elemental
species are the only reactants and the species is the only product. A general
reaction can then be written as ∑

i

νk,iAi = 0, (3.28)

with νk,i the stoichiometry coefficient and Ai representing species i. An example
of a species that is expressed in this form is Ar+ −Ar + e where Ar and e are



44 Chapter 3. Transport equations

used as the elemental species. Another example is O2 − 2O. Additionally, the
parameter φα,i is used to represent the number of occurrences of elemental species
α in species i. These parameters can be assembled in a matrix R. The non-
elemental species are listed before the elemental species. For a system containing
the following species order O2, O+, O and e the matrix is given by

Ry =


1 0 −2 0
0 1 −1 1
2 1 1 0
0 −1 0 1



yO2

yO+

yO

ye

 . (3.29)

The first two rows in this matrix contain information about the non-elemental
species and the last two rows provide the occurrences of the elements in the species.
This formalism is used to show that in an LTE system knowledge about the tem-
perature, pressure and elemental mass fractions is sufficient to construct all species
densities from the Guldberg-Waage law. These elemental mass balances can be
obtained by summing all species mass balances after multiplying with φα,imα/mi.
The elemental mass balance is given by

∂ρy{α}

∂t
+∇ ·

(
ρy{α}~u+ J{α}

)
= 0, (3.30)

with J{α} the elemental diffusive mass fluxes. The elemental diffusive mass fluxes
can be determined from the elemental momentum balance. However in this work
an alternative approach is used. The diffusive mass fluxes are obtained from the
Stefan-Maxwell equations. These equations can be derived by simplifying the
momentum balances [57]. The Stefan-Maxwell system is given by

Fv = −d, (3.31)

with F the friction matrix, v the diffusive velocities and d the driving forces. The
driving forces contain contributions from ordinary diffusion, pressure diffusion,
thermal diffusion and forced diffusion. A more elaborate discussion of the Stefan-
Maxwell equations is given in chapters 6 and 7.

3.3.2 Energy balance

The Boltzmann relation can be used to simplify the summation of the energy
balance for all possible states of particle s. Particle s can represent the collection
of (electronically excited) states that correspond to an atom, a molecule or an ion.
The first term in (3.21) is proportional to∑

i

3

2
nikBTi +

∑
i

niEi. (3.32)

By assuming that all states of species s have the same temperature the first sum
can be written as

3

2
kBT

∑
i

ni. (3.33)
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The summation of the species densities can be expressed as

ns =
∑
i

ni = n0

∑
i

ni
n0

= n0

∑
i

gi
g0

exp

(
−Ei − E0

kBT

)
= n0

Zint

Zint,0
, (3.34)

with Zint the internal partition sum, E0 the formation energy of the ground state
of species s, subscripts zero referring to properties of the ground state and Zint,0

the internal partition sum by only considering the ground state. The second sum
can be written as∑

i

niEi =
∑
i

ni (Ei − E0) +
∑
i

niE0

= n0

∑
i

ni
n0

(Ei − E0) + nsE0

=
nsn0

∑
i (Ei − E0) gig0 exp

(
−Ei−E0

kBT

)
ns

+ nsE0

=
ns

n0

Zint,0

∑
i (Ei − E0) gi exp

(
− Ei
kBT

)
n0Zint

Zint,0

+ nsE0

= ns 〈Eint〉B + nsE0 = ns 〈Eint〉B + nsEs, (3.35)

with 〈Eint〉B the average internal energy weighted by the Boltzmann relation and
Es = E0 the formation energy of species s. The complete term can be written as

3

2
nskBT+ns 〈Eint〉B+nsEs = nsmset,s+nsmseint,s+nsmser,s = nsmses, (3.36)

with es the total specific energy, et,s the specific energy due to translational degrees
of freedom, eint,s the specific energy due to internal excitations and er,s the specific
energy due to chemical reactions. Similarly, the second term in (3.21) can be
written as

5

2
nskBT + ns 〈Eint〉B + nsEs = nsmsht,s + nsmshint,s + nsmshr,s = nsmshs,

(3.37)
with hs the specific enthalpy. This term can be combined with the heat flux

∇ · (~q + nsmshs~us) = ∇ ·
(
−λc,s∇T +

(
∂ns
∂T

mshs + nsms
∂hs
∂T

)
~us∇T

)
= −∇ · (λc,s + λr,s + λint,s)∇T
= −∇ · λs∇T, (3.38)
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with λc,s the thermal conduction coefficient due to collisions, λr,s the thermal con-
duction coefficient due to reactions, λint,s the thermal conduction due to internal
excitation and λs the total thermal conduction coefficient. The energy balance for
species s can now be expressed as

∂nimies
∂t

− ~us · ∇ps − ¯̄τs : ∇~us −∇ · λs∇T = Qs − ~us · ~Rs +
1

2
miu

2
sωs,

where it is assumed that internal states travel with the same velocity ~us as the
ground state. By following a similar procedure as in section 3.2.3 the energy
balance of the entire mixture can be written as

∂
∑
s nsmses
∂t

− ~u · ∇p− ¯̄τ : ∇~u−∇ · λ∇T =
∑
i

ni ~Xi · ~vd,i, (3.39)

where the external forces are added due to a change of reference system as dis-
cussed in appendix 3.C.

3.4 Transport coefficients

In this section an overview is presented of the various coefficients and matrices
introduced in the previous sections. These are the reaction rate for inelastic pro-
cesses, the elastic energy transfer by the electrons, the viscous stress tensor, the
viscosity, the thermal conductivity and the diffusion coefficient.

The energy transferred via inelastic collisions is given by

Qinel = Qinel,e +Qinel,h =
∑
j

∆hjRj , (3.40)

with Rj the reaction rate and ∆hj the reaction enthalpy. The reactions involving
an electron as a reactant are part of Qinel,e and the remaining reactions are part
of Qinel,h. The reaction rate is given by

Rj = kj
∏
i

n
νji
i , (3.41)

with νj,i the stoichiometry coefficient and kj the rate coefficient. For an inelastic
process the rate coefficient is given by [58, p. 78]

kj =

∫ ∞
∆εj

σ (ε) v (ε) f (ε) dε. (3.42)

The elastic energy transfer between the electrons and the heavy particles is con-
structed from the average energy transferred via collisions and the definition of
the elastic collision rate. The result is given by [54, p. 34,45,51]

Qelas,eh =
∑
h6=e

3

2
kB (Te − Th) 2

me

mh
neνeh. (3.43)
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The average collision frequency between two species is given by [54, p. 45]

νij = nj

√
8kBT

πmij
Q̄ij =

16

3
njΩ

(1,1), (3.44)

with mij the reduced mass. The average momentum transfer cross section Q̄ij
can be expressed in terms of the collision integral Ω(1,1) as [54, p. 45]√

8kBT

πmij
Q̄ij =

√
8kBT

πmij

2

3

∫ ∞
0

x2 exp (−x)Q
(1)
ij dx

= 4

√
kBT

2πmij

2

3

∫ ∞
0

2γ5 exp
(
−γ2

)
Q

(1)
ij dγ

=
16

3
Ω(1,1),

(3.45)

with Q
(1)
ij the momentum transfer cross section. Cross sections and collision inte-

grals are discussed in more detail in chapter 4.

The viscous stress tensor is defined as2 [54, p. 183]

¯̄τ = η

[
∇~u+ (∇~u)

T − 2

3
(∇ · ~u) I

]
, (3.46)

with η the dynamic viscosity. Note that sometimes a different sign convention is
used for the viscous stress tensor [6, p. 7,10].

Hirschfelder et al. [34, p. 11-13] and Capitelli et al. [27, p. 2-3] provide sim-
ple estimates for the viscosity, diffusion coefficient and the thermal conduction
coefficient. The mean free path is approximated with

lc = 1/
(
nπσ2

)
. (3.47)

By assuming that molecules are only allowed to move parallel to one of the coor-
dinate axes, the flux of a given property P along the positive z-direction can be
approximated with 1

6uP . In that case the flux of P through plane O which lies in
the middle of plane A and plane B can be written as

ψP =
1

6
u (PA − PB)

=
1

6
u

(
PO − lc

∂P

∂z
− PO − lc

∂P

∂z

)
= −1

3
ulc

∂P

∂z
, (3.48)

2Note that the mathematical notation of Peerenboom is used [6]. However, a different sign
convention is used in that work.
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where a constant derivative is assumed. The transport coefficients corresponding
to the mass, momentum and energy flux can then be derived from

ψnm = −D∂nm
∂z

= −ξ
√
πmkBT

πσ2

1

ρ

∂nm

∂z

ψnmuy = −η ∂uy
∂z

= −ξ
√
πmkBT

πσ2

∂uy
∂z

ψncvT = −λ∂T
∂z

= ξ

√
πmkBT

πσ2

cv
m

∂T

∂z
, (3.49)

with ξ a numerical factor3. These coefficients can be related to each other via
D = η

ρ = λm
ρcv

. More advanced expressions are derived in chapter 5.

3.A Derivation momentum balance

The momentum transport equation can be derived by using χi = mi (~ui + ~ci) [1,
p. 201-204]. The individual terms are given by

∂ni 〈mi (~ui + ~ci)〉
∂t

=
∂ρyi~ui
∂t

∇ · ni 〈mi (~ui + ~ci) (~ui + ~ci)〉 = ∇ · [ρyi~ui~ui + ρyi 〈~ci~ci〉]

−ni

〈
~Xi

mi
· ∇umi (~ui + ~ci)

〉
= −ni

〈
~Xi

〉
[
∂

∂t
(ni 〈mi (~ui + ~ci)〉)

]
coll

= ~Ri, (3.50)

with Pi the kinetic pressure dyad and ~Ri the momentum exchange with other
species via elastic and inelastic collisions. The momentum equation can now be
expressed as

∂ρyi~ui
∂t

+∇ · ρyi~ui~ui = −∇ · Pi + ~Ri + ni

〈
~Xi

〉
. (3.51)

The pressure tensor can be rewritten as (see (3.9))

Pi = piI− ¯̄τ i,

with pi the scalar pressure and ¯̄τ the viscous stress tensor. The forces can be
rewritten as

ni ~Xi = niqi

(
~E + ~ui × ~B

)
+ nimi~g, (3.52)

with ~E the electric field, ~B the magnetic field and ~g the gravitational acceleration.
The species momentum balance can then be expressed as

∂ρyi~ui
∂t

+∇ · ρyi~ui~ui = −∇pi +∇ · ¯̄τ i + ~Ri + niqi

(
~E + ~ui × ~B

)
+ ρyi~g. (3.53)

3 A more accurate expression for the mean free path uses the factor 1√
2

which amounts to

ξ = 2
3π

[34, p. 10-12].
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3.B Derivation energy balance

The energy balance for the species i can be derived by using χi = 1
2mi (~ui + ~ci)×

(~ui + ~ci) + Ei. The terms in (3.15) are given by

∂ni
〈

1
2mi (~ui + ~ci) (~ui + ~ci) + Ei

〉
∂t

=
∂
(

3
2nikBTi + niEi

)
∂t

+
1

2

∂

∂t
ρyiu

2
i (3.54)

∇ · ni
〈(

1

2
mi (~ui + ~ci) (~ui + ~ci) + Ei

)
(~ui + ~ci)

〉
= ∇ ·

(
1

2
ρyi
[
u2
i ~ui +

〈
c2i
〉
~ui +2 〈~ci~ci〉 · ~ui +

〈
c2i~ci

〉]
+ niEi~ui

)
=

= ∇ · 1

2
ρyiu

2
i ~ui +∇ ·

(
3

2
nikBTi + niEi

)
~ui +∇ · (Pi · ~ui) +∇ · ~qi (3.55)

− ni

〈
~Xi

mi
· ∇u

(
1

2
mi (~ui + ~ci) (~ui + ~ci) + Ei

)〉
= −ni

〈
~Xi · (~ui + ~ci)

〉
(3.56)[

∂ni
〈

1
2mi (~ui + ~ci) (~ui + ~ci) + Ei

〉
∂t

]
coll

= Qi, (3.57)

with Ti the temperature, ~qi the heat flux vector and Qi the energy transferred via
collisions. It contains an elastic contribution Qelas,i and an inelastic contribution
due to reactions Qinel,i. By using these substitutions the energy balance can be
written as

∂
(

3
2nikBTi + niEi

)
∂t

+∇ ·
(

3

2
nikBTi + niEi

)
~ui +

∂ 1
2ρyiu

2
i

∂t
+

∇ · 1

2
ρyiu

2
i ~ui +∇ · (Pi · ~ui) +∇ · ~qi − ni

〈
~Xi · (~ui + ~ci)

〉
= Qi. (3.58)

The third and fourth term can be rewritten as

∂ 1
2ρyi (~ui · ~ui)

∂t
+∇ · 1

2
ρyi (~ui · ~ui) ~ui

=
1

2
u2
i

[
∂ρyi
∂t

+∇ · ρyi~ui
]

+ ρyi~ui ·
[
∂~ui
∂t

+ ~ui · ∇~ui
]

=

(
1

2
− 1

)
u2
i

[
∂ρyi
∂t

+∇ · ρyi~ui
]

+ ~ui ·
[
∂ρyi~ui
∂t

+∇ · ρyi~ui~ui
]

= −1

2
u2
imiωi + ni~ui ·

〈
~Xi

〉
− ~ui · (∇ · Pi) + ~ui · ~Ri, (3.59)
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where the mass and momentum balances have been substituted in the last step. By
combining these terms with the terms in (3.58) a few simplifications are possible4

∇ · (Pi · ~ui)− ~ui · (∇ · Pi) = (Pi · ∇) · ~ui
= pi∇ · ~ui − ¯̄τ i : ∇~ui
= ∇ · pi~ui − ~ui · ∇pi − ¯̄τ i : ∇~ui, (3.60)

and [1, p. 206]

− ni
〈
~Xi · (~ui + ~ci)

〉
+ ni~ui ·

〈
~Xi

〉
= −ni

〈
~Xi · ~ci

〉
. (3.61)

For a velocity independent force another simplification is possible

− ni ~Xi 〈~ci〉 = 0. (3.62)

The energy balance can then be rewritten as

∂
(

3
2nikBTi + niEi

)
∂t

+∇ ·
(

5

2
nikBTi + niEi

)
~ui − ~ui · ∇pi

−¯̄τ i : ∇~ui +∇ · ~qi = Qi − ~ui · ~Ri +
1

2
miu

2
iωi. (3.63)

3.C Converting species system to bulk system

In this section the conversion from the species system to the bulk system for the
momentum balance and the energy balance are discussed. The random motion in
the species system is indicated with ~ci. In this section ~cb,i is used to represent the
random motion of species i in the bulk system.

3.C.1 Momentum balance

In the species system the velocities are measured relative to ~ui as

〈(~ci + ~ui) (~ci + ~ui)〉 = 〈~ci~ci〉i + ~ui~ui. (3.64)

Using ~ui = ~u+ ~vd,i gives

〈~ci~ci〉+ ~u~u+ 2~u~vd,i + ~vd,i~vd,i. (3.65)

In the bulk system the velocities are measured relative to the mass averaged ve-
locity which gives

〈(~cb,i + ~u) (~cb,i + ~u)〉 = 〈~cb,i~cb,i〉+ ~u~u+ 2~u~vd,i. (3.66)

4 Note that ¯̄τ i : ∇~ui = (¯̄τ i · ∇) · ~ui =
∑
k

∑
l
¯̄τ i,kl

∂ui,k
∂xl

with ui,k representing the velocity

component k of species i in a Cartesian coordinate system.
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Both reference frames describe the same system and should therefore provide
identical results. The difference between the averages in both systems is thus
given by

〈~cb,i~cb,i〉 = 〈~ci~ci〉+ ~vd,i~vd,i. (3.67)

Other useful quantities for the conversion of the species system to the bulk system
are ∑

i

ρyi (~u+ ~vd,i) = ρ~u∑
i

ρyi (~u+ ~vd,i) (~u+ ~vd,i) = ρ~u~u+ ρ~vd,i~vd,i∑
i

~Ri = 0∑
i

niqi = ρ
∑
i

qiyi
mi

= ρσc∑
i

niqi~ui = ~j, (3.68)

with ~j the current density. The term ρ~vd,i~vd,i can be used to convert the pressure
tensor from the species system to the bulk system.

3.C.2 Energy balance

In the species system the velocities are measured relative to ~ui as

ρyi 〈[(~ci + ~ui) · (~ci + ~ui)] (~ci + ~ui)〉+ niEi~ui

= ρyi
(
u2
i ~ui +

〈
c2i
〉
~ui + 2 〈~ci~ci〉 · ~ui +

〈
c2i~ci

〉)
+ niEi~ui. (3.69)

The first term on the RHS can be rewritten using ~ui = ~u+ ~vd,i which gives∑
i

ρyiu
2
i ~ui = ρu2~u+ 2

∑
i

ρyi~u · 〈~vd,i~vd,i〉+
∑
i

ρyi~u
〈
v2
d,i

〉
+
∑
i

ρyi
〈
~vd,iv

2
d,i

〉
.

(3.70)
In the bulk system the velocities are measured relative to the mass averaged

velocity which results in∑
i

ρyi 〈[(~cb,i + ~u) · (~cb,i + ~u)] (~cb,i + ~u)〉+
∑
i

niEi (~u+ ~vd,i)

= ρu2~u+ 2
∑
i

ρyi~u · 〈~cb,i~cb,i〉+
∑
i

ρyi~u
〈
c2b,i
〉

+∑
i

ρyi
〈
~cb,ic

2
b,i

〉
+
∑
i

niEi (~u+ ~vd,i) . (3.71)

By using 〈~cb,i~cb,i〉 = 〈~ci~ci〉 + 〈~vd,i~vd,i〉 and
〈
c2b,i

〉
=
〈
c2i
〉

+
〈
v2
d,i

〉
the following

definition can be obtained from both systems〈
~cb,ic

2
b,i

〉
=
〈
c2i~ci

〉
+
〈
~vd,iv

2
d,i

〉
+
〈
c2i
〉
· vd,i + 〈~ci~ci〉 · vd,i +

∑
i

niEi~vd,i. (3.72)
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Another conversion is made for a term that vanishes in the species system [1,

p. 224-227]: −ni ~Xi · 〈~ci〉 = 0. In terms of the bulk system this term can be written

as −ni ~Xi · 〈~cb,i + vd, i〉. Averaging in the bulk system then gives −ni ~Xi · vd,i.
Unlike in the species system the term does not vanish in the bulk system.



Chapter 4

Transport properties

In general large temperature variations are encountered in plasmas. In the ideal
case the transport properties that occur in the relevant continuity equations are ac-
curate for this entire temperature interval. This requires accurate representations
of the collision integrals which ultimately depend on the interaction potentials for
the colliding species. The number of unique interaction potentials for a mixture
of N species is 1

2N (N − 1). For a mixture with a large number of components
it is not practical to specify an interaction potential for every possible collision
pair. It is therefore necessary to develop a general method for estimating collision
integrals for any type of interaction.

This chapter covers the various approaches that are and have been used in
PLASIMO for calculating collision integrals in the past. Whenever a user did not
specify a calculation procedure for the collision integral for a given collision pair
a default interaction was automatically chosen based on the type of interaction.
Initially, the simple rigid sphere and Coulomb collision integrals were used as de-
faults. After that Johnston [26] considered more accurate methods. However, his
method required a significant amount of input parameters without any automatic
routine for the determination of these parameters. PLASIMO therefore still relied
on the rigid sphere and Coulomb collision integrals when no specifications were
given for a collision pair. Furthermore, some methods proposed by Johnston are
outdated and numerically instable. In this chapter a more accurate and more
robust procedure for estimating collision integrals is presented. This method con-
tains an automatic routine for the selection of the required input data and has
therefore become the new default procedure in PLASIMO.

The chapter starts by introducing the concepts of scattering angles, cross sec-
tions and collision integrals. After that, various interaction potentials and their
corresponding collision integrals are discussed. For the collision integrals corre-
sponding to the exponential repulsive potential it is observed that the derivation
presented by Monchick is incorrect. Since the interaction potential is frequently
used a correct derivation is presented in section 4.E. Note that the final expression
for the collision integral presented in literature is correct. In the last sections the
drawbacks of Johnston’s general method and the advantages of the current de-

53
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r0

b

χ

Figure 4.1: A schematic representation of the trajectory of a colliding pair of
particles is given. The concepts of the impact parameter b, scattering angle χ and
the distance of closest approach r0 are explained.

fault method in PLASIMO are discussed. Additionally, a program for obtaining
numerical estimates of collision integrals is described for cases where an interac-
tion potential is available. Such interaction potentials can in principal also be
obtained from software packages that perform ab initio quantum-mechanical cal-
culations. As an example the potential curve for H−H is calculated using the
package DIRAC. The details are discussed in section 4.G.

4.1 Collision integrals

The calculation of the transport properties requires collision integrals Ω(l,s) as
input. These integrals are composed of three integrations. The first integration
deals with the trajectory of the interacting particles and delivers the scattering
angle. The scattering angle χ (b, ε) is determined by the interaction potential V (r),
the impact parameter b and the relative velocity g that correspond to a kinetic

energy of ε =
mijg

2

2 in the center of mass frame. The second integration delivers

a cross section Q(l) (ε) by considering all possible impact parameters weighted by
a function that is dependent on the scattering angle. In the last integration all
initial velocities are considered and the cross sections are weighted by a function
that is dependent on these velocities. In this section all three integrations are
discussed. Schematically they can be depicted as

V (r)→ χ (b, ε)→ Q(l) (ε)→ Ω(l,s) (T ) . (4.1)

The scattering angle of two interacting particles can be calculated from con-
servation of energy and angular momentum. These particles have masses mi,mj
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and positions ri, rj . The equations of motion in the center of mass frame can be
expressed as [34, p. 45-51]

M ~̈R = 0, (4.2)

and
mij

~̈r = −∇V (r) , (4.3)

with the total mass M = mi + mj , the position of the center of mass ~R =
mi ~ri+mj ~rj
mi+mj

, the reduced mass mij =
mimj
mi+mj

, the relative position ~r = ~ri − ~rj and

time derivatives indicated by dots above the variable. The laws of conservation of
energy and angular momentum in polar coordinates are given by

1

2
mij ṙ

2 +
1

2
mijr

2φ̇2 + V (r) =
1

2
mijg

2, (4.4)

and
mijr

2φ̇ = mijgb, (4.5)

where g is the initial relative velocity at large separation and b is the impact
parameter. The collision trajectory for a given impact parameter is illustrated in
figure 4.1. Substitution of the angular momentum gives

ṙ2 +
b2 − r2

r2
g2 +

2V (r)

mij
= 0, (4.6)

which is equivalent to

ṙ = ∓g

√
1− b2

r2
− V (r)

εij
, (4.7)

with the initial energy εij = 1
2mijg

2. The negative sign corresponds to the part
of the trajectory where the particles are approaching r0 while the positive sign
corresponds to the part where the particles are moving away from r0. By using
∂φ
∂r = φ̇

ṙ and φ̇
g = b

r2 we obtain

∂φ

∂r
= ∓ b

r2

1√
1− b2

r2 −
V (r)
εij

. (4.8)

The integral over the path contains two identical contributions: From r = ∞ to
r = r0 and from r = r0 to r = ∞ with r0 the interparticle distance at closest
approach. The scattering angle is defined as the angle between the unperturbed
path and the perturbed path of the incident particle and is given by

χij (εij , b) = π − 2b

∫ ∞
r0

dr

r2
√

1− b2

r2 −
V (r)
εij

. (4.9)

The distance of closest approach is reached when 1− b2

r20
− V (r0)

εij
= 0. The transport

cross sections Q
(l)
ij (εij)can be obtained from the scattering angle as [34, p. 484]

Q
(l)
ij (εij) = 2π

∫ ∞
0

[
1− cosl χij (εij , b)

]
bdb. (4.10)
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Some of these cross sections can be easily related to physical processes. For ex-
ample, for l = 1 the factor 1− cosχij describes the ratio of the momentum after
the collision to the momentum before the collision in the initial direction in the
center of mass frame.

An alternative way of expressing these transport cross sections is by using the
differential cross section given by [54, p. 254]

dσ (ε, χ)

dΩS
=

1

2π sinχ

dσ (ε, χ)

dχ
=

b

sinχ

∣∣∣∣ ∂b∂χ
∣∣∣∣ . (4.11)

The cross sections can then be expressed as

Q
(l)
ij (εij) = 2π

∫ ∞
0

[
1− cosl χij (εij , b)

] dσ (ε, χ)

dΩS
sinχdχ. (4.12)

The collision integrals are given by

Ω
(l,s)
ij =

√
kBT

2πmij

∫ ∞
0

γ2s+3Q
(l)
ij

(
γ2kBT

)
exp

(
−γ2

)
dγ, (4.13)

with the reduced velocity given by γ2 =
mijg

2

2kBT
. In order to use the temperature T

the species velocities should have a Maxwellian or nearly Maxwellian distribution.
In case of a multi-temperature plasma the temperature that is used in the collision
integrals is the reduced temperature given by Tij =

mjTi+miTj
mi+mj

[59, p. 129].

4.2 Collision integrals for various interaction potentials

This section describes multiple default procedures for estimating collision inte-
grals. The considered defaults are the current default and the default procedures
that have been used in the past in PLASIMO. The first potential that is described
is the rigid sphere potential. Collision integrals are often presented in dimension-
less form. The second subsection describes how collision integrals are normalized
using collision integrals from the rigid sphere potential. The third subsection de-
scribes the Langevin model that has been used for neutral-ion and neutral-electron
interactions. The fourth subsection describes the Tang and Toennies potential. In
PLASIMO collision integrals for a simplified form have been used: exponential re-
pulsive potential. In the fifth subsection the Lennard Jones potential is considered
in generalized form.

The interactions described in the first five subsections are suitable for neutral-
neutral and neutral-ion collisions. For specific interactions an additional contri-
bution must be taken into account for neutral-ion interactions namely; resonant
charge exchange. A general discussion of charge exchange is given in the sixth
subsection. In the seventh subsection the Rapp-Francis model is discussed. The
eight subsection describes more advanced models for resonant charge exchange
that may be used in future default procedures.

The ninth subsection describes a strategy for electron-neutral interactions for
cases where tabulated cross section data for only one l value is available. The tenth
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subsection describes the Coulomb interaction that is used for charged-charged in-
teractions. The Coulomb potential can not be integrated analytically and therefore
the integration is cut off at the Debye screening length. A more accurate proce-
dure is described in the eleventh subsection where the screened-Coulomb potential
is used.

4.2.1 Rigid spheres

The rigid sphere potential is given by [34, p. 525, 544]

V (r) =

{
∞ r < σ

0 r ≥ σ
, (4.14)

with σ the collision diameter. The scattering angle for b ≤ σ can be expressed as

χ = π − 2b

∫ ∞
σ

1

r2

1√
1− b2

r2

dr = 2 arccos

(
b

σ

)
. (4.15)

For b > σ the scattering angle is zero. By using (4.12) the cross section for a rigid
sphere can be expressed as

Q(l) = 2π

∫ σ

0

(
1− cosl

(
2 arccos

σ

b

))
bdb = πσ2

[
1− 1− (−1)

l+1

2 (l + 1)

]
. (4.16)

Note that 1−
(

1− (−1)
l+1
)
/ (2 (l + 1)) can be simplified as 1−1/ (l + 1) for even

l and as 1 for odd l. By using (4.13) the rigid sphere collision integral can then
be expressed as

Ω(l,s) = πσ2

√
kBT

2πµ

[
1− 1− (−1)

l+1

2 (l + 1)

]∫ ∞
0

γ(2s+3) exp
(
−γ2

)
dγ

= πσ2

√
kBT

2πµ

[
1− 1− (−1)

l+1

2 (l + 1)

]
(s+ 1)!

2
. (4.17)

The collision diameter is calculated as

σij = ri + rj , (4.18)

with ri the rigid sphere radius of particle i. For atoms these radii have been de-
termined empirically by Slater [60] by extracting the internuclear distance from
many bonds in crystals and molecules. Additionally, Clementi [61] calculated
atomic rigid sphere radii by using the maximum value of r times the radial dis-
tribution of the most outer STO1. Hirschfelder et al. [62] developed an empirical

1Slater-type-orbitals (STO) are given by Nrn−1 exp (−ξr)Yl,m (θ, φ) with ξ the orbital ex-
ponent and Yl,m a spherical harmonic.
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Table 4.1: The rigid sphere radii of various species determined with different
methods.

Species Hirschfelder [62] (Å) Clementi [61] (Å) Slater [60](Å)
H 0.79 - 0.25
He 0.47 0.31 -
C 0.81 0.67 0.70
N 0.54 0.56 0.65
O 0.58 0.48 0.60
Ne 0.45 0.38 -
Na - 1.90 1.80
Si - 1.11 1.10
P - 0.98 1.00
S - 0.88 1.00
Cl 0.91 0.79 1.00
Ar 0.82 0.71 -
Br 1.08 0.94 1.15
Kr 0.88 0.88 -
Xe 1.15 1.08 -

formula in terms of the expectation value2 of these STO’s given by

σij = 〈ri〉+ 〈rj〉+ 1.8Å, (4.19)

where Hirschfelder et al. [62] note that Pauling obtained a similar formula using the
constant 1.6Å. For diatomic molecules Hirschfelder et al. used the same procedure
but added the bond length to one of the dimensions and obtained

σij =
4

3
(〈ri〉+ 〈rj〉) + 1.8Å. (4.20)

A similar formula for triatomic molecules has been proposed by Svehla [63, p. 12].
Hirschfelder et al. [62, eq. 11,18,19] also list a few methods for obtaining the
collision diameter from known values of the viscosity, thermal conductivity via
Ω(2,2) or diffusion coefficients via Ω(1,1). Table 4.1 shows the radius of a few
species and how they change as a function of the method. Although some radii
are approximately equivalent for all methods most radii show variations in the
order of 10% or more. On top of that the choice for c in

σij = 〈r〉i + 〈r〉j + c, (4.21)

can influence the collision diameter considerably.

2The expectation value is given by 〈r〉 =
n∗(2n∗+1)

2(Z−S)
a0 with n∗ the effective quantum number,

Z the atomic number, S the screening constant and a0 the Bohr length.
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4.2.2 Reduced parameters

Collision integrals are often tabulated in reduced form. In that case the collision
integral is normalized by the value of a rigid sphere collision integral for the same
interaction [34, p. 526]

Ω
(l,s)∗
ij =

Ω
(l,s)
ij

Ω
(l,s)
RS,ij

=
(s+ 1)!

[
1− 1−(−1)l+1

2(l+1)

]
πσ2

2

∫ ∞
0

γ2s+3 exp
(
−γ2

)
Q(l)dγ,

(4.22)

with Ω
(l,s)∗
ij the reduced collision integral. The rigid sphere potential is an artificial

potential. Other interaction potentials can be related to the rigid sphere potential
by using V (σ) = 0. It is also possible to derive the collision diameter from
measurements of the viscosity as is for example done by Svehla [63].

4.2.3 Langevin model

The interaction between a charged particle and an induced dipole moment is given
by [64, p. 15]

V = −1

2
~µ · ~E = −1

2
αCE

2 = −1

2
αC

Z2e2

(4πε0r2)
2 , (4.23)

with ~µ the dipole moment, ~E the electric field, αC the polarizability in Cm2V−1.
Note that the polarizability volume is given by α = αC

4πε0
. This potential is of the

form

V = − C

rX
, (4.24)

with C = Z2e2αC
2(4πε0)2

= Z2e2α
8πε0

and X the exponent of the intermolecular separation.

The collision integrals for such a potential have been evaluated numerically. Tab-
ulations can be found in Hirschfelder et al. [34, p. 546-548] and Kang et al. [65].
The collision integral is given by

Ω(l,s) =

√
πkBT

2µ

(
XC

kBT

)2/X

A(l)Γ (s+ 2− 2/X)

=

√
Z2e2α

4µε0
A(l)Γ (s+ 3/2) , (4.25)

with A(l) =
∫∞

0

(
1− cosl χ

)
y0dy0 a constant and y0 = b

(
µg2

2XC

)1/X

the reduced

impact parameter. For X = 4 the values of this constant are A(1) = 0.298 and
A(2) = 0.308.

4.2.4 Exponential repulsive potential

A general formula for the interaction potential of neutrals with neutrals and neu-
trals with ions is proposed by Tang and Toennies [66, 67]. This potential is given
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by

V (r) = A exp (−br)−
∑
n≤3

f2n (r)
C2n

r2n
, (4.26)

where the first term represents the exponential repulsive potential and the second
term contains the dispersion coefficients C2n and the damping functions f2n (r).
When the kinetic energy is much larger than the depth of the potential well,
considering only the exponential repulsive term is enough to describe the potential
accurately

V (r) = A exp (−br) . (4.27)

The collision integrals for the exponential repulsive potential are evaluated numer-
ically by Monchick [68]. He presented his results in the following form

Ω
(l,s)
ij = 4

√
kBT

2µπ
α2πρ2I(l,s), (4.28)

with I(l,s) tabulations for specific l and s values, α = ln A
kBT

and ρ = 1/b the decay
length of the potential. The calculation of the parameters A and b is discussed
in appendix 4.C and 4.D. Although the parameters C2n from the original Tang
and Toennies potential do not occur in the exponential repulsive potential these
coefficients are necessary to estimate the parameters A and b.

Various errors have been identified in Monchick’s paper [68]. Monchick presents
the final expression in equation 18 of his paper, but omits the reduced mass.
Additionally, the derivation of the final result is not correct. The substitution
made in equation 13 is incorrect. Later in equation 16 Monchick omits a bracket.
A more detailed discussion of these errors is given in appendix 4.E. Note that the
errors that are discussed in the appendix do not change the final result in the
paper.

4.2.5 Lennard Jones

The Lennard Jones potential is given by

V (r) = 4ε0,ij

[(σ
r

)12

−
(σ
r

)6
]
, (4.29)

with ε0,ij the potential well depth, σ = 2−1/6rm,ij and rm,ij the position of the well
minimum. The well depth and well position can be estimated using the scaling
relations provided in section 4.C. The collision integrals for the Lennard Jones
potential can be obtained from the tabulations of Klein et al. [69, p. 365-366].

The Lennard Jones potential generally describes the well accurately. However,
the repulsive term proportional to r−12 is often found to be too repulsive [26,
p. 128]. This problem is remedied by using a generalized Lennard-Jones potential,
which is given by [5]

V = ε0,ij

[
m

nij (xij)−m

(
1

xij

)nij(xij)
− nij (xij)

nij (xij)−m

(
1

xij

)m]
, (4.30)
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with m = 6 for neutral-neutral interactions, m = 4 for neutral-ion interactions,
and further

xij =
r

rm,ij
, (4.31)

nij (xij) = βij + 4x2
ij , (4.32)

βij = 6 +
5

si + sj
. (4.33)

The softness parameter si is given by

si = α
1
3
i (2S + 1) , (4.34)

with S the spin quantum number of the ground state. The reduced collision
integral is parameterized in terms of

yij = lnT ∗ij . (4.35)

The parameterization is given by [5, eqn. 15] ( [27, eqn. 3.67])

ln Ω
(l,s)∗
ij =

(a1 (βij) + a2 (βij) yij) exp
(
yij−a3(βij)
a4(βij)

)
exp

(
yij−a3(βij)
a4(βij)

)
+ exp

(
a3(βij)−yij
a4(βij)

)
+

a5 (βij) exp
(
yij−a6(βij)
a7(βij)

)
exp

(
yij−a6(βij)
a7(βij)

)
+ exp

(
a6(βij)−yij
a7(βij)

) . (4.36)

A computationally more efficient form is given by

ln Ω
(l,s)∗
ij =

a1 (βij) + a2 (βij) yij

1 + exp
(

2(a3(βij)−yij)
a4(βij)

) +
a5 (βij)

1 + exp
(

2(a6(βij)−yij)
a7(βij)

) , (4.37)

with the functions ai given by [5, eqn. 16] ( [27, eqn. 3.68]):

ai (βij) =

2∑
k=0

ckβ
k
ij , (4.38)

with ck tabulated for a large set of collision integrals. The collision integral can
be calculated as

Ω
(l,s)
ij =

(s+ 1)!

2

[
2l + 1− (−1)

l
]

2 (l + 1)

√
kBT

2πµ
πσ2

ijΩ
(l,s)∗
ij . (4.39)

The collision diameter is parameterized with

σij = x0rm,ij , (4.40)

and x0 is given by
x0 = ξ1β

ξ2
ij , (4.41)

where ξi are tabulated constants.
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4.2.6 Charge exchange interactions

The cross section for charge exchange can be written in terms of the probability
of charge exchange Pex,ij [70] as

Q
(l)
ij = 2π

∫ ∞
0

(1− Pex,ij)
(
1− cosl χ

)
bdb+

2π

∫ ∞
0

Pex,ij

[
1− cosl (π − χ)

]
bdb. (4.42)

The scattering angle for the process of charge exchange is different from the one
where no exchange occurs. In the center of mass frame without charge exchange
the ionic particle I and the neutral particle N are scattered over an angle χ. The
same process with charge exchange gives the same result for the particle that is
initially ionized and the particle that is initially neutral, but the ionic and neutral
particles have changed places. The particles are now effectively scattered over an
angle of π − χ [71]. Since for even l, cosl χ = cosl (π − χ) the total cross section
is equal to the elastic cross section and no distinction is necessary. For odd l the
cross section can be written as [70]

Q
(l)
ij = 2π

∫ ∞
0

[
1− (1− 2Pex,ij) cosl χ

]
bdb. (4.43)

This cross section is often separated in a contribution from charge exchange and
an elastic contribution as

Q
(l)
ij = 2π

∫ ∞
0

2Pex,ijbdb+ 2π

∫ ∞
0

(1− 2Pex,ij)
(
1− cosl χ

)
bdb

= 2Qex,ij +Q
(l)
ex,elas,ij . (4.44)

In principle these two terms provide two contributions for the collision integral. In
practice, Murphy [72,73] observed that for high energies resonant charge transfer
is the dominant process. For low energies, Murphy observes that Pex is small and
the cross section should only contain the elastic contribution. Murphy summarized
these statements with

Ω
(l,s)
ij =

√(
Ω

(l,s)
el,ij

)2

+
(

Ω
(l,s)
ex,ij

)2

, (4.45)

which reduces to the correct asymptotes. The total collision integral thus con-
sists of charge exchange and elastic contributions. Currently, PLASIMO neglects
contributions from charge exchange for X–Y+ with X6= Y. Additionally, charge
exchange is only included when X is a neutral particle.

4.2.7 Rapp-Francis model

The probability for charge exchange typically oscillates rapidly between 0 and 1
for small b . The probability Pex,ij can thus be approximated with 1/2 for b < bc.
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The cross section can then be rewritten as

Q
(l)
ij ≈ πb

2
c + 4π

∫ ∞
bc

Pex,ijbdb+ 2π

∫ ∞
bc

(1− 2Pex,ij)
(
1− cosl χ

)
bdb, (4.46)

where the contribution (1− 2Pex,ij) can be neglected for 0 ≤ b ≤ bc due to the
rapid oscillations of Pex,ij . The cross section for charge transfer can be introduced
as

Qex,ij = 2π

∫ ∞
0

Pex,ijbdb =
1

2
πb2c + 2π

∫ ∞
bc

Pex,ijbdb ≈
1

2
πb2c , (4.47)

where the decaying probability of charge exchange is assumed to be small for
b ≥ bc. Combining both equations gives

Q
(l)
ij ≈ 2Qex,ij + 2π

∫ ∞
bc

(1− 2Pex,ij)
(
1− cosl χ

)
bdb. (4.48)

Since bc is large the scattering angle generally is small for b ≥ bc. Thus the last
term in the expression for the cross section can be neglected which gives

Q
(l)
ij ≈ 2Qex,ij . (4.49)

In order to obtain the collision cross section for charge exchange only a value of
bc is required. A crude estimate can be obtained from the model of Rapp and
Francis.

Rapp and Francis [74] obtained an expression for estimating bc by considering
semi-empirical wave functions. These wave functions are chosen in such a way
that they reduce to the correct wave function for H+ (1s). They indicate that
these orbitals are a gross approximation for other species especially for species
that do not have their outer electron in an s state. The system that is described
consists of A+ and A where A is represented as A+ and an electron. Since A and
A+ have the same core this is also called resonant charge exchange. Resonant
charge exchange is then proportional to the probability of the electron moving
from one ion to the other ion within the collision time. This probability has the
form Pex = sin2 Y (b, g). For small b, Pex is an oscillating function. For large b,
Y (b, g) is a decaying function. Rapp and Francis assume that neglecting the tail
of Pex is compensated by overestimating bc with Pex (bc) = 1

4 . The final expression
from Rapp and Francis can be converted to a dimensionless form as

√
x (1 + x) exp (−x) =

√
2π

12

h̄g

IHa0
, (4.50)

with x = γkbc/a0, γk =
√

Ik
IH

, IH the ionization potential of hydrogen, Ik =

Eion−Ek the ionization potential for state k and a0 the Bohr radius. The function
reaches a maximum at x = 1 which means the search interval is restricted to
1 ≤ x ≤ ∞. Rapp and Francis derived their expression taking the limit of Bessel
functions with x as the variable. This approximation is valid when x� 1.
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By neglecting the dependence of bc on g, the cross section can be parameterized
[75,76] with √

2Qex,ij = A−B ln g, (4.51)

with A and B fit parameters. For such a parameterization the collision integral
can be calculated analytically with [76]

Ω
(l,s)
ij =

(s+ 1)!

2

√
kBT

2πmij

(s+ 1)!
[
2l + 1− (−1)

l
]

4 (l + 1)
×[

A2 −ABx+

(
Bx

2

)2

+
Bξ

2
(Bx− 2A) +

B2

4

(
α+ ξ2

)
+

B

2
[B (x+ ξ)− 2A] ln

T

mij
+

(
B

2
ln

T

mij

)2
]
, (4.52)

with x = ln (2kB), α = π2

6 −
∑s+1
n=1

1
n2 , mij the reduced mass and ξ =

∑s+1
n=1

1
n − γ̄

where γ̄ is Euler’s constant3. The expression for the collision integral can be
simplified to [77, p. 138]

Ω
(l,s)
ij =

(s+ 1)!

2

√
kBT

2πmij

B2

4

[(
ln

(
2kBT

mij

)
− 2A

B
+ ξ

)2

+ α

]
. (4.53)

Note that the terms in the logarithms are not dimensionless. This is caused by
the conversion of the dimensional ln g from the original cross section to the dimen-
sionless form that is used in the integral of the collision integral. Additionally, van
Dijk [77, p. 138] uses mi rather than the reduced mass mij = mi +mj ≈ 2mi.

4.2.8 Charge-exchange revisited

The contribution from charge-exchange has been calculated using the methods of
Rapp and Francis. In that approach a hydrogen-like wave function is used for
all species. A more advanced method is proposed by Smirnov et al. [27, p. 103-
107] [78–80] Smirnov et al. account for the internal structure of the atom and the
ion. The expression for the critical impact parameter proposed by Smirnov et
al. [79, p. 621, 613] is given by

1

h̄g

√
πbc
2γ

∆ (bc) = 0.28, (4.54)

with γ2 = I
IH

the ratio of the ionization potential of the considered state with
respect to the ionization potential of hydrogen in the ground state. The exchange
interaction potential is given by [80, eq. 14]

∆JMJjmj (bc) = ne
(
GLSls (le, ne)

)2∑
µ,σ

∑
ML,MS

∑
ml,ms

CG∆leµ (bc) , (4.55)

3Note that Devoto obtains x = ln (4kB). This is related to the usage of the reduced mass
2mij ≈ mi.
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with the quantum numbers LSJMLMS representing the atom, the quantum num-
bers lsjmlms representing the ion (atomic core) and the quantum numbers le

1
2µσ

representing the valence electron, ne the number of valence electrons, GLSls (le, ne)
the parentage coefficient which is tabulated [78, table. 6] for atoms with an s- or
a p-shell as the outer shell and CG represents a multiplication of eight Clebsch-
Gordan coefficients4. The single electron-exchange potential is given by

∆leµ (R) = A2R
2
γ−1−|µ| exp−Rγ−

1
γ

(2le + 1) (le + |µ|)!
(le − |µ|)!|µ|! (γ)

|µ| , (4.56)

with A [78, table. 7] the proportionality constant of the asymptotic wavefunction
for the valence electron in wave functions of the type

Ψ (r) = Ar
1
γ−1 exp (−rγ) , rγ � 1. (4.57)

This more elaborate approach is one of the methods that have been used by
Capitelli et al. [27] to calculate the charge-exchange collision integral. These col-
lision integrals are fitted as5

σ2
ijΩ

(l,s)∗
ij = d1 + d2x+ d3x

2, (4.58)

with x = lnT and the coefficients di are given in [27, table 11.5, 11.10]. A com-
parison of the values obtained using this fit and the approach of Rapp-Francis is
given in table 4.2. For all atom-single-ion interactions the agreement is remark-
ably good. The maximum deviation of the Rapp-Francis model reaches 26.8 % for
the resonant charge interaction for H–H+. More surprising is the fact that 4 out
of 6 atom-single-ion interactions are reproduced with errors smaller than 10 %.
Apparently the hydrogen-like wave functions maintain sufficient information to
accurately represent these interactions. Larger deviations are obtained for H–H−

and H2–H+
2 for which the one-electron-wavefunction apparently is not a good ap-

proximation. In spite of the large relative errors a proper order of magnitude
estimate is still provided in these cases.

The method proposed by Smirnov requires considerably more input data than
the procedure suggested by Rapp and Francis. Since the relative errors introduced
by using the approach from Rapp and Francis are small this method is preferred
when no tabulated cross sections are available. When an interaction potential
is available the contribution from charge exchange can also be obtained from
the cross sections given by Viehland [83, eq. 7-8]. These expressions are derived
from quantum mechanics and therefore contain an extra term for cross sections
corresponding to odd l. The exchange probability is approximated semi-classically
using

Pex,ij = sin2
(
η(+) − η(−)

)
. (4.59)

4The Clebsch-Gordan coefficient can be expressed in the Wigner 3j-symbol as

〈j1m1j2m2|j3m3〉 = (−1)m3+j1−j2
√

2j3 + 1

(
j1 j2 j3
m1 m2 −m3

)
.

The Wigner 3j-symbol can be calculated based on the Racah formula [81, p. 1058] [82].
5Note that σ2

ijΩ
(l,s)∗
ij is provided in Å

2
.
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Table 4.2: For various interactions the charge exchange cross section is evaluated
according to the methods of Rapp and Francis and Capitelli et al. (4.58). The
minimum and maximum errors over a temperature range from 100 K to 50000 K
are reported. The errors are normalized to the results of Capitelli et al. The data
from Capitelli et al. for He–He+ and H–H− is based on experiments and for H–
H+ on quantum mechanical calculations. The remaining results are calculated
according to the framework of Smirnov et al.

Interaction minimum error(%) maximum error(%)
N–N+ 3.57 7.77
O–O+ 0 5.22
C–C+ 25.1 25.8

Ar–Ar+ 3.96 6.86
CO–CO+ 19.3 23.9
He–He+ 1.6 6.94
H–H− 235 432
H–H+ 23.8 26.8
H2–H+

2 58.2 122

The phase shifts are given by

η(±) = κ

∫ ∞
r0

[
1− b2

r2
− V (±) (r)

ε

]1/2

dr − κ
∫ ∞
b

[
1− b2

r2

]1/2

dr, (4.60)

with κ the wavenumber ε = h̄2κ2/ (2µ) and ± indicating whether the potential
curve is symmetric or antisymmetric, respectively.

4.2.9 Electron-neutral interactions

In the absence of any specific cross section data the Langevin potential is recom-
mended for interactions between electrons and neutrals. When a differential cross
section is available a direct integration can provide all the collision integrals. The
azimuthally symmetric differential cross section can be written as

∂σ (ε, χ)

∂ΩS
=

1

2π sinχ

∂σ (ε, χ)

∂χ
= σ (ε) I (ε, χ) , (4.61)

with I (ε, χ) the normalized angular distribution. This angular distribution is
described in more detail in chapter 14. This distribution satisfies∫

I (ε, χ) dΩ = 2π

∫ π

0

I (ε, χ) sinχdχ = 1. (4.62)

In many cases a differential cross section is not available, but an elastic momentum
transfer cross section is specified6. It is then possible to obtain an l scaling for

6This corresponds to the case l = 1 in (4.12).
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l > 1 by assuming an angular distribution. Many studies [84–86] suggest that
the angular distribution for elastic interactions for electrons with neutrals can be
approximated accurately with an isotropic differential cross section. In that case
I (ε, χ) = 1

4π . The angular part of a transport cross section is then given by

Q(l)

σ (ε)
=

1

2

∫ π

0

(
1− cosl χ

)
sinχdχ =

[
1− 1

2 (l + 1)

(
1− (−1)

l+1
)]
. (4.63)

Note that for odd l this ratio is equal to 1 and for even l it is given by 1−1/ (l + 1).
It is thus possible to convert Q(1) in any Q(l). Additionally, it is interesting to
note that the isotropic differential cross section provides the same l-scaling as the
rigid sphere model, see (4.16).

4.2.10 Coulomb potential

For the Coulomb potential Mitchner and Kruger [54, p. 255-257] derive an expres-
sion for the differential cross section. The potential is written as

V =
Z1Z2e

2

4πε0r
=
A

r
, (4.64)

with Zi the charge number. The equation for the distance of closest approach is
given by (r0

b

)2

− 2
r0b0
b2

u− u2 = (u+ u1) (1− u) = 0, (4.65)

with u = r0
r equal to 1, b0 = A

2E and u1 =
(
r0
b

)2
= 1− 2 r0b0b2 . The scattering angle

can now be expressed as7

χ = π − 2

∫ 1

0

du√
(u+ u1) (1− u)

= −π + 4 arctan
(r0

b

)
, (4.66)

which can be rearranged to8

tan
χ

2
=
b0
b
. (4.67)

This result can be used to calculate the (Rutherford) differential cross section as

dσ (ε, χ)

dΩS
=

(b0)
2

4 sin4
(
χ
2

) . (4.68)

The transport cross sections are infinite due to the large contributions from small
angle collisions. The cross sections can be made finite by cutting off the integral at

7The integral is given by
∫ 1
0

du√
(u+u1)(1−u)

= 2 arctan
√
u+u1
1−u |

1
0.

8The integration from the scattering angle gives tan π+χ
4

= r0
b

which can be rewritten as

1
tan χ

2
= tan

(
2
[
π+χ

4

])
=

2 tan
(
π+χ

4

)
1−tan2

(
π+χ

4

) =
2
r0
b

1−( r0b )2
= b

b0
. In the last step the definition of u1

has been used.
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a minimum scattering angle χm (bm). From a physical point of view the particles
are electrically shielded from one another which means they do not interact for
b > bm. An appropriate value for the cutoff impact parameter bm is the Debye
length λD. The cross sections are given by

Q(l) = 2π

∫ π

χm

(
1− cosl χ

) b20
4 sin4

(
χ
2

) sinχdχ

= 2πb20

∫ π

sin(χm/2)

1− (1− 2x)
l

x3
dx. (4.69)

For the first two values of l this amounts to9

Q(1) = 4πb20 ln

(
1 +

λ2
D

b20

)1/2

Q(2) = 4πb20

[
2 ln

(
1 +

λ2
D

b20

)1/2

− λ2
D

λ2
D + b20

]
. (4.70)

For evaluating the collision integral it should be noted that the parameter b0 is

proportional to
(
µg2
)−1

. The collision integrals can thus be obtained from

Ω
(1,s)
ij =

√
kBT

2πµ
4πb2a

∫ ∞
0

γ2s−1 exp
(
−γ2

)
ln

(
1 +

λ2
D

b2a
γ4

)
dγ

≈ 9

2
πb̄20

√
kBT

2πµ
ln

(
1 +

λ2
D

b̄20

)
(s− 1)!

Ω
(2,s)
ij =

√
kBT

2πµ
4πb2a

∫ ∞
0

γ2s−1 exp
(
−γ2

) [
2 ln

(
1 +

λ2
D

b2a
γ4

)
− λ2

D

λ2
D +

b2a
γ4

]
dγ

≈ 9

2
πb̄20

√
kBT

2πµ
(s− 1)!

[
2 ln

(
1 +

λ2
D

b̄20

)
− λ2

D

λ2
D + b̄20

]
(4.71)

with ba =
ZiZje

2

8πε0kBT
and b̄0 = 2

3a. Hirschfelder et al. [34, p. 549] neglect the depen-

dency of b0 on g by replacing 1
2µḡ

2 with the average value over all collisions 2kBT .
Our implementation uses the substitution 1

2µḡ
2 = 3

2kBT according to Mitchner
and Kruger [54, p. 57]. The approximate expressions for the collision integrals are
derived by assuming that the logarithm and the ratio are approximately constant.

4.2.11 Screened Coulomb potential

The charged-charged interactions are described with a screened-Coulomb potential
given by

V = V0
λD
r

exp

(
− r

λD

)
, (4.72)

9Note that sin χm
2

= b0√
b20+λ2

D

which follows from (4.67)
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with

V0 =
Z1Z2e

2

4πε0λD
, (4.73)

and λD the Debye length. Tabulations of the resulting collision integral have been
provided by Mason et al [87] and Devoto [88] in terms of the reduced temperature

T ∗ =
kBT

V0
=
λD
2ba

, (4.74)

with

ba =

∣∣Z1Z2e
2
∣∣

8πε0kBT
. (4.75)

All tabulations are either represented as (T ∗)
2

Ω(l,s)∗ or as a ratio of reduced
collision integrals. The relevant ratios are listed in section 4.A.

In figure 4.2 the collision integrals for various charged-charged approaches for
Ar+–Ar+ are plotted. LTE was assumed to calculate the Debye length in pure Ar.
For large temperatures the relative error between the Coulomb and the screened-
Coulomb collision integrals approaches 250% at 14.4 kK and then decreases again.
At low temperatures the screened-Coulomb collision integral contains a disconti-
nuity. This is related to the tabulations provided by Mason et al. which cover
0.1 ≤ T ∗ ≤ 108. The position of the discontinuity occurs at T = 2000 K which can
be observed from figure 4.3. This discontinuity is not important since the charged
species densities that correspond to such a large Debye length are negligible. Any
influence on the transport properties is thus not expected. When LTE conditions
are not valid such a low electron density can not even be reached.

4.3 Default procedures for estimating collision integrals

Initially, the rigid sphere and Coulomb collision integrals were used as collision
integral defaults. These approximations are not reliable for large temperature
intervals. Johnston [26] therefore initiated the development of more accurate pro-
cedures for calculating collision integrals in PLASIMO. His default procedure is
briefly discussed. After that a comparison is made between Johnston’s method
and a few other strategies. The results of this comparison are used to define the
current default procedure. In chapter 5 the effect of the choice of the default
procedure on the transport coefficients is discussed.

4.3.1 Johnston’s default collision integrals

Johnston summarizes his default procedure on page 130 of his thesis [26]. These
methods are listed below

• neutral-neutral: Two cases are considered. These options are chosen based
on the estimated potential well depth using the relations from section 4.C.
For εij,m < kBT the Lennard Jones model (4.29) is used. For ε > kBT the
exponential repulsive potential (4.27) is used.
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Figure 4.2: The collision integrals for
Ar+–Ar+ for the Coulomb (4.71) and
the screened-Coulomb models(4.72).
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Figure 4.3: The reduced temperature
(4.74) as a function of the gas tem-
perature in pure Ar under LTE condi-
tions. The red line indicates the high-
est value of T ∗ for which tabulations
of the screened-Coulomb collision in-
tegral are published.

• neutral-ion: Three cases are considered. If the interacting pair is of the type
A–A+ with A a neutral particle, the collision integral is taken from the model
of Rapp and Francis (4.49) and (4.50). Note that no elastic contribution is
included for this case. The remaining two cases are similar to the neutral-
neutral interactions with the Lennard Jones and the exponential repulsive
potentials selected based on the ratio of the well depth to the thermal energy.

• neutral-electron: For the electron neutral interaction the Langevin model
(4.25) is used.

• charged-charged: For charged-charged interactions the screened-Coulomb
potential (4.72) is used.

4.3.2 Comparison of neutral-neutral and neutral-ion models

The main concerns about the default procedure that was introduced by John-
ston [26] are related to neutral-neutral and neutral-ion interactions. For these
interactions he used a Lennard Jones model when the potential well depth is
smaller than the thermal energy. The Lennard Jones model is an acceptable way
of representing the interaction. However, due to the relatively small well depth
that is predicted by (4.115) all species that have been considered in [26, table. 8.2-
8.3] at room temperature already satisfy the relation ε0,ij < kBT , which means
that the exponential repulsive potential (4.27) is used. All 15 reported neutral-
neutral [5, table. 4] interaction pairs in a 10 species air mixture have a well depth
that is smaller than the thermal energy at room temperature. The reported ion-
neutral pairs satisfy ε0,ij ≈ kBT for temperatures ranging from 580 K till 1740 K.
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From these observations it can be concluded that in Johnston’s algorithm most
neutral-neutral interactions are included with the exponential repulsive potential.
For cold plasmas the ion-neutral interactions are most likely included with the
Lennard Jones model. For increasing heavy particle temperatures these will be
exchanged one by one for the exponential repulsive potential. The exponential
repulsive potential is thus used frequently in Johnston’s algorithm.

The parameters for the exponential repulsive potential are estimated based
on the method proposed by Tang and Toennies [66, 67] as explained in 4.D. The
method uses the attractive dispersion coefficients to predict the repulsive behavior
for small separations. The proposed connection between attractive and repulsive
forces is more based on mathematics rather than actual physical grounds. A
private discussion with Laricchiuta, Colonna and Bruno, revealed that the method
can be considered rather artificial.

Additionally, in the original form the model is not intended for neutral-ion
interactions. The method can be extended to neutral-ion interactions by also
including a term −C4/r

4 in the expansion of the dispersion coefficients with
C4/EH = 5.2eV/EHZ

2
IαN based on (4.121). In that case the equation that deter-

mines b∗ = b/rm,ij with b = 1/ρ can be rewritten as10

f (b) = 1 +
∑
n>2

(
1− e−b

∗
2n∑
k=0

(b∗)
k

k!

)(
2n

b∗
− 1

)
C∗2n −

∑
n>2

e−b
∗ (b∗)

2n

(2n)!
C∗2n = 0.

(4.76)
At small values of b∗ the function returns f (0) = 1. In order to find a solution for
large values of b∗ the following relation must hold f (∞) < 0. This requirement
can be written as

lim
b→∞

f (b) = lim
b→∞

1 +
∑
n>2

(
2n

b∗
− 1

)
C∗2n = 1−

∑
n>2

C∗2n. (4.77)

Interestingly, this is not necessarily smaller than 0. Interaction pairs with small
reduced dispersion coefficients may potentially violate this condition.

Tang and Toennies mention that the summation is usually truncated at C18 [67,
p. 93]. For that value the interactions Ne–Ne+, Ar–Ar+, Kr–Kr+, Xe–Xe+, Zn–
Zn+, Cd–Cd+ and Hg–Hg+ do not satisfy f (∞) < 0. Johnston [26, p. 128]
mentions that he sums the coefficients up to nmax = 18 which corresponds to C36.
In that situation all previously mentioned interactions converge. However, the
results still depend on the amount of dispersion terms that have been included.
In table 4.3 the parameters are shown for Ar–Ar+ and Ar–Ar as a function of the
upper limit in the summation of the dispersion coefficients. The table shows that
when the number of dispersion coefficients is increased the parameters A and b do
not converge to a fixed value for neutral-ion systems. Since the choice of nmax is
arbitrary the method does not provide well defined output. The term α2/b2Il,s is
proportional to the collision integral. The values of this term extend over almost

10When 1 − e−b
∗∑2n

k=0
(b∗)k

k!
< 10−10 the term is replaced with e−b

∗∑∞
k=2n+1

(b∗)k

k!
to

avoid numerical instabilities.



72 Chapter 4. Transport properties

Table 4.3: Born-Mayer coefficients as a function of the number of terms in the
summation of the dispersion coefficients. The terms α2/b2I1,1 have been evalu-
ated for T=1000 K. Values that are outside the range of the lookup table for I1,1
provided by Monchick [68] are extrapolated cubically.

Ar–Ar+

nmax in C2n A(au) b(au) α2/b2I1,1
15 5.0569× 105 2.9053 1.4608× 10−21

20 9.6651× 103 2.1956 1.9891× 10−21

25 597.67 1.7256 2.5751× 10−21

30 61.873 1.3601 3.3028× 10−21

35 9.2205 1.0676 4.2198× 10−21

40 1.8250 0.83312 5.3516× 10−21

45 0.45240 0.64603 6.6727× 10−21

50 0.13314 0.49791 8.0257× 10−21

Ar–Ar
nmax in C2n A(au) b(au) α2/b2I1,1

15 105.03 1.7580 2.09× 10−21

20 92.891 1.7152 2.1714× 10−21

25 31.455 1.4670 2.6239× 10−21

30 5.7846 1.1785 3.2353× 10−21

35 1.0580 0.92952 3.8763× 10−21

40 0.22165 0.72515 4.4078× 10−21

45 0.054654 0.56093 4.5631× 10−21

50 0.015684 0.43082 3.9465× 10−21

an entire order of magnitude for neutral-ion systems. If the suggestions of the
original authors are followed 5 ≤ nmax ≤ 10 does provide stable results for A and
b in neutral-neutral systems. Additionally the variations in α2/b2Il,s are smaller.
Using 5 ≤ nmax ≤ 10 for neutral-ion systems still gives strongly varying results if
the method converges at all.

In principal the Tang and Toennies approach can thus be used for neutral-
neutral interactions although the connection between attraction and repulsion
seems to be quite artificial. Tang and Toennies only applied this method to
neutral-neutral interactions. Johnston’s generalization to neutral-ion systems con-
tains an arbitrary choice for nmax which strongly influences the results. It is
therefore not recommended to use this approach for neutral-ion interactions.

In figure 4.4 and 4.5 collision integrals for neutral-neutral interactions are
shown for Ar-Ar and for O-O using different approaches. The parameters for
the generalized Lennard-Jones potential (GLJ) were taken from [27, table. 11.2].
For Ar-Ar with the exponential repulsive potential (ERP) the first point is calcu-
lated with the Lennard-Jones potential since ε0,ij � kBT was not satisfied. This
does not occur in O-O. The relative error in Ar-Ar of the ERP is below 10%. In
O-O the relative error decreases from 20% to 10%, indicating that the ERP ap-
proach can provide reasonable values for neutral-neutral interactions. For Ar-Ar
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Figure 4.4: Comparison of various ap-
proaches for calculating collision inte-
grals for Ar-Ar. The legend: The gen-
eralized Lennard Jones potential ( ),
the combined Lennard-Jones and ex-
ponential repulsive potential ( ) and
the rigid sphere approach with two
different values for c ( , c=0; ,
c=1.8Å). The radii of Clementi [61]
were used.
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Figure 4.5: Comparison of various ap-
proaches for calculating collision inte-
grals for O-O. The legend is the same
as in figure 4.4.

the rigid sphere model (RS) estimates are inaccurate with absolute errors of the
order of the GLJ result. In O-O the rigid sphere model with σij = ri + rj works
only in a small temperature interval. Outside this interval the absolute errors are
increasing up to 70% of the GLJ result.

In figure 4.6 and 4.7 collision integrals for neutral-ion interactions are shown
for Ar–Ar2+ and for O–O2+ using different approaches. For O–O2+ it is apparent
that none of the interactions follow the GLJ curve well. The best approximation
is provided by the ERP approach with relative errors increasing up to 50%. The
ERP method uses a mixed calculation. For temperatures below 104 K the Lennard
Jones potential is used and above that the ERP11. This produces an undesirable
discontinuity. For Ar–Ar2+ the conclusions are similar. This time the relative
errors of the ERP approach reach 40%.

For neutral-neutral and neutral-ion interactions it is thus recommended to
use the generalized Lennard Jones model rather than the exponential repulsive,
Langevin or rigid sphere models.

11In order to treat all ion-neutral interactions the same the dispersion coefficients for esti-
mating the Born-Mayer coefficients are included up to C30. This is necessary because otherwise
some parameters can not be calculated. For neutral-neutral interactions C18 is used which is in
agreement with the Tang and Toennies [67]
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Figure 4.6: Comparison of various ap-
proaches for calculating collision inte-
grals for Ar–Ar2+. The legend is the
same as in figure 4.4. Additionally the
Langevin potential is introduced ( ).
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Figure 4.7: Comparison of various ap-
proaches for calculating collision inte-
grals for O–O2+. The legend is the
same as in figure 4.6.

4.3.3 Current default procedure

The previously discussed approaches have lead to a new default approach for
estimating collision integrals. An overview of these methods is presented in this
section. The following section assumes that no custom interactions have been
specified in the input file. Custom interactions have precedence over the default
method. The current default procedure relies on large amounts of tabulated data.
This data can be found in the directory called input/mixture/ in the PLASIMO
distribution.

• neutral-neutral: Initially an attempt is made to use a fit function (4.152).
The parameters are stored in jupiter capitelli.dat. The next option is the
generalized Lennard-Jones potential. The parameters ε0,ij , rm,ij and βij
are tabulated in lennard jones.in or default coll int.in for more than 800
common interaction pairs. If these parameters are not available a rigid
sphere collision integral is used based on user-provided particle radii.

• neutral-ion: The collision integral is calculated according to (4.45). A first
attempt is made to calculate the elastic contribution with the fit function
(4.152). The parameters are stored in jupiter capitelli.dat. The next op-
tion is the generalized Lennard-Jones potential. The parameters ε0,ij , rm,ij
and βij are tabulated in lennard jones.in. If the parameters are not avail-
able a rigid sphere model is used based on user-provided particle radii. The
first attempt for the contribution from charge-exchange uses the fit function
(4.58). These coefficients are tabulated in charge exchange capitelli.in. Al-
ternatively, (4.53) with parameters from charge exchange.in is used. If the
coefficients are not available the Rapp-Francis model (4.49) and (4.50) is
used.
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• neutral-electron: In the first attempt the collision integral is calculated ac-
cording to the fit functions (4.151) or (4.153). The parameters can be found
in electron neutral capitelli.in or electron neutral capitelli 8.in. If these coef-
ficients are not available the Langevin polarizability model is used (4.25). If
the polarizability is not specified the polarization volume is calculated from
α = r3 [58, p. 60].

• charged-charged: The collision integrals are calculated using the screened-
Coulomb potential (4.72).

It is highly recommended to avoid the cases where the general algorithm uses a
rigid sphere collision integral or the Langevin polarizability model. If the param-
eters ε0,ij , rm,ij and βij are not available they should rather be estimated using
(4.115),(4.114),(4.121) and (4.33).

4.4 Collision integrals from interaction potentials

The general method outlined in the previous sections can in specific cases pro-
vide an inaccurate estimate for the collision integral. In such cases, it is possible
to obtain a more accurate estimate by integrating an interaction potential. In-
teraction potentials can be obtained from literature or can be calculated using
ab initio methods. Two recent methods for a calculation of the collision inte-
gral are considered. These are the methods proposed by Viehland et al. [89] and
Colonna et al. [90]. Colonna’s approach uses the trapezoidal rule for integration
of the scattering angle and the cross section. Viehland’s approach is based on
the Clenshaw-Curtiss quadratures. In this section a C++ implementation is dis-
cussed that uses a combination of parts from Viehland’s approach and parts from
Colonna’s approach. The developed code is validated by a comparison of the cal-
culated collision integrals with tabulated collision integrals presented in literature.
First the Clenshaw-Curtiss quadratures are briefly addressed.

4.4.1 Clenshaw-Curtiss quadratures

A Clenshaw-Curtiss quadrature is a special case of a Chebyshev series [91]. To

use this method the integral
b∫
a

F (x) dx must be written in the form

I =

1∫
−1

F (y) dy, (4.78)

via a transformation of the variable x. The function F (y) can be expanded in a
Chebyshev series as [91]

F (y) =
a0

2
T0 (y) +

aN
2
TN (y) +

N−1∑
r=1

arTr (y) , (4.79)
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with ar the coefficients of the expansion and Tr (y) the Chebyshev polynomial.
Clenshaw and Curtiss set the polynomial to Ti (y) = Ti (cos θ) = cos (iθ). The
coefficients are then calculated as

ar =
2

N

(
F (1)

2
+
F (−1)

2
+

N−1∑
s=1

cos

(
iπs

N

)
F
(

cos
(πs
N

)))
. (4.80)

A term by term integration of the Chebyshev series gives

I =

N∑
s=0

wNs F
(

cos
πs

N

)
, (4.81)

where the weights are given by

wNs =

{
(−1)

s 2
N2−1 + 4

N sin πs
N

∑N
2
i=1

sin[(2i−1)πsN ]
2i−1 1 ≤ s ≤ N − 1,(

N2 − 1
)−1

s = 0, N
. (4.82)

The major advantage of this quadrature is the positioning of the quadrature points
given by y = cos πsN . A higher order approximation that doubles N still contains
the old quadrature points. As a result the integral can be evaluated with a min-
imum amount of function evaluations. Additionally an error estimate is possible
by comparison with the previous approximation. The order of the quadrature will
be increased until the difference between the current and the previous order is
lower than a predefined tolerance. The coefficients can be efficiently calculated
using the algorithm presented by von Winckel [92].

4.4.2 Collision integrals

The collision integral is evaluated using Clenshaw-Curtiss quadratures following
O’Hara and Smith [91]. The integrand is split in two terms. The position is
determined by the peak of the weighing function exp−x xs+1 which is x = s + 1.
The following function is considered

Ω(l,s) =
1

2

√
kBT

2πµ

(∫ 1

−1

f1 (y) dy +

∫ 1

0

f2 (y) dy

)
. (4.83)

The first integrand is given by

f1 (y) =
s+ 1

2
exp−x1 xs+1

1 Q(l) (x1kBT ) , (4.84)

with

x1 =
s+ 1

2
(1 + y) . (4.85)

The second integrand is given by

f2 (y) =
s+ 1

y2
exp−x2 xs+1

2 Q(l) (x2kBT ) , (4.86)
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with

x2 =
s+ 1

y
. (4.87)

The second integral has deviating boundaries. O’Hara and Smith note that at y =
0 the integrand and its derivatives are zero. The integrand can thus be reflected
to the interval (−1, 0) to produce a smooth even function in the interval (−1, 1).
Since the whole Clenshaw-Curtiss interval is equal to twice the integral only the
positive quadrature points are considered. In both integrals the cross section Q(l)

is interpolated from a tabulation of previously calculated cross sections.

4.4.3 Cross sections

Viehland’s algorithm is implemented to acquire a tabulation of the cross section as
a function of the energy. The tabulation is used in the calculation of the collision
integral. The approach uses three different strategies depending on the considered
energy. The three different energy ranges are

• εd ≤ ε ≤ εc

• εc < ε ≤ 3εc

• ε < εd or ε > 3εc,

with εd and εc the minimum and the maximum energy where orbiting can occur.
Orbiting can occur when at least one extremum is present in the potential. In
that case the integrand of the scattering angle

F (r, b, ε) =
1

r2

[
1− b2

r2
− V (r)

ε

]−1/2

=
1

r2

[
1− Veff (r)

ε

]−1/2

, (4.88)

contains a non-integrable singularity for the scattering angle (it reaches χ = −∞)
[89, p. 1689]. However, the cross sections remain finite. The criteria for which
orbiting occurs are best evaluated in terms of the effective potential

Veff (r) = V (r) +
εb2

r2
. (4.89)

These criteria are

Veff (r0) = ε0 > 0 (4.90)

V ′eff (r0) = 0 (4.91)

V ′′eff (r0) < 0, (4.92)

with r0 the distance of closest approach. Thus orbiting can occur when the effective
potential is positive and reaches a local maximum. These criteria can be rewritten
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as

ε0 = V (r0) +
1

2
r0V

′ (r0) > 0 (4.93)

ε0b
2
0 =

1

2
r3
0V
′ (r0) (4.94)

0 > V ′′ (r0) +
3

r0
V ′ (r0) . (4.95)

An interesting property of these criteria is that they only depend on the poten-
tial. Note that this system implicitly implies that V ′ (r0) > 0 and V ′′ (r0) < 0.
Viehland [89] suggests to make a lookup table of the parameters E0 and b0 as a
function of r0 that satisfy all criteria for orbiting. In our implementation only the
energy interval is stored for which orbiting can occur. In case of multiple orbiting
there will be multiple energy intervals. A consequence of this procedure is that for
analytical potentials the first and second derivative should be implemented as well.
For tabulated potentials the coefficients of a spline fit can provide estimates of the
potential and its derivatives. Viehland suggests to extrapolate a tabulated poten-

tial for small r with V (r) = V1

(
r1
r

)Nshort where r1 is the first tabulated point and
Nshort = ln (V2/V1) / ln (r1/r2). For large r he recommends V (r) = −Clong/r

Nlong

with Clong = −V (rL) r
Nlong

L and rL the last tabulated point. Nlong is 4 for atomic
ion-neutral interactions and 6 for neutral-neutral interactions. The value of rL
should be large enough to guarantee that Clong is in agreement with values from
the literature.

The cross section is then expressed as

Q(l) =

M∑
i=0

2π

bi+1∫
bi

[
1− cosl χ

]
bdb, (4.96)

with bi the orbiting impact parameter. For i = 0 the integration boundaries are
b = 0 and b = b1. Similarly for i = M the integration boundaries are b = bM
and b = ∞. Splitting the integral is necessary because at orbiting conditions the
scattering angle approaches χ = −∞. This causes oscillations in the integrand of
the cross section. These are properly resolved by splitting the integral. For the
remaining details of the integration algorithm the reader is referred to [89].

4.4.4 Scattering angle

The calculation of the scattering angle is based on the work of Colonna et al. [90]
rather than the work of Viehland. Viehland’s algorithm is not used for the calcu-
lation, since it requires that the distance of closest approach is known in advance.

In specific cases, it was observed that our solver for the equation 1− b2

r2 −
V (r)
ε = 0

did not deliver the outer root. By using the adaptive algorithm from Colonna it
is not necessary to know the distance of closest approach in advance.
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The scattering angle is represented as

χ = π − 2b

∫ ∞
r0

[
1− b2

r2
− V (r)

ε

]−1/2
dr

r2
= π − 2bF (r, b, ε) . (4.97)

The adaptive algorithm uses an estimate of the initial separation between the
two particles rmax. This value is multiplied by 2 until the difference between

integrals of the functions F1 = 1
r2

[
1− b2

r2 −
V (rmax)

ε

]−1/2

and F2 =
[
1− b2

r2

]−1/2

is smaller than a given tolerance δ. The error can thus be expressed as |I1 − I2| ≤ δ
with [90, p. 812]

I1 (rmax) =

∫ ∞
rmax

F1 (r) dr =
1

b
sin−1

(
b

rmax

[
1− V (rmax)

ε

]−1/2
)

I2 (rmax) =

∫ ∞
rmax

F2 (r) dr =
1

b
sin−1

(
b

rmax

)
. (4.98)

Once rmax is determined a step dr is made. The size of dr is adjusted to make
sure that the difference between the following functions is below a given tolerance
δ [90, p. 811]

I3 ≈ dr

2
(F (r − dr, b, ε) + F (r, b, ε))

I4 ≈ dr

2

(
1

2
F (r − dr, b, ε) +

1

2
F (r, b, ε) + F (r − dr/2, b, ε)

)
. (4.99)

The error given by dI = |I4 − I3| is used to adjust the step size with the following
multiplicative factor m = 0.9 (δ/dI) if dI ≥ δ or dI ≤ δ/4. The allowed values
of the multiplicative factor m are restricted to the interval 0.5 ≤ m ≤ 2. This
procedure is followed until r0 is reached.

4.4.5 Validation of the implementation

The implementation of the code discussed in the previous sections is validated
with both analytical and tabulated potentials. Tests for the Lennard-Jones and
the Morse potential for the reduced collision integral are based on the comparisons
provided by Colonna [90,93,94]. The comparison is given in figure 4.8 and 4.9. For
both results the agreement with the reference data is better than 1 %. Viehland
[89] provides results for the reduced cross section of the 12-4 potential specified
by Mason et al. [95, eq. 1] with γ = 0. The results are given in figure 4.10.
The relative errors are smaller than 1 %. Additionally the interaction potential of
H2 has been calculated with the input file for the ab initio package for quantum
mechanical calculations DIRAC given in appendix 4.G. The collision integrals of
the X1Σ+

g and b3Σ+
u states have been averaged according to [96, p. 670]

Ω(l,s) =
∑
i

giΩ
(l,s)
i

gi
. (4.100)
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Figure 4.8: Comparison of calcu-
lated reduced collision integrals for
the Lennard Jones potential with data
from Neufeld [93].
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Figure 4.9: Comparison of calcu-
lated reduced collision integrals for the
Morse potential with data from Smith
(C = 4) [94].

The calculated collision integral is compared with Capitelli’s fit formula(4.37) in
figure 4.11. The Ω(1,1) collision integral that is obtained from the integration of the
potential curve calculated by using DIRAC is in good agreement with Capitelli’s
fit formula. If in this case the generalized Lennard Jones potential is used to
calculate the collision integral a significantly different behavior is obtained for
8 kK≤ T ≤ 50 kK. In that interval the relative error increases to 250 % for the
highest temperature. In the interval T ≤ 8 kK the relative error decreases from
30 % to zero. A similar behavior is observed for the Ω(2,2) collision integral. In
section 5.3 the validity of the generalized Lennard Jones potential is evaluated
more elaborately. This comparison shows the added value of using programs like
DIRAC in combination with a program that calculates cross sections and collision
integrals.

4.5 Summary and conclusions

In this chapter an overview of various potentials and their collision integrals is
presented. These collision integrals have been compared in order to find a default
procedure that can give a reasonable estimate of the collision integrals without re-
quiring excessive amounts of input data or input values that are scarcely available.
Previously, Johnston developed such a default procedure. However, due to the ab-
sence of an automatic routine PLASIMO still relied on the Coulomb potential and
the rigid sphere models when the interaction was not specifically requested. This
work shows that for the neutral-neutral and especially the neutral-ion interactions
the usage of Johnston’s default procedure can provide unreliable results. Addi-
tionally, his method is not robust enough to provide estimates for any collision
pair. In this work a new default procedure is presented that is robust, more ac-
curate and requires a smaller number of input parameters. On top of that an
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Figure 4.10: Comparison of calculated
reduced cross section for the 12-4 po-
tential given by Mason et al. [95](γ =
0). Legend: Q(1) ( ), Q(2) ( ), Q(3)
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dicate data calculated by Viehland et
al. [89].
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Figure 4.11: Comparison of calcu-
lated collision integrals for H-H with
fits from Capitelli ( , Ω(1,1); ,
Ω(2,2)), the general Lennard Jones
potential with estimated parameters
( , Ω(1,1); , Ω(2,2)) from (4.114)-
(4.115) and an integration of the po-
tential calculated using DIRAC ( ,
Ω(1,1); , Ω(2,2)).

automatic routine is developed in PLASIMO to make sure that these improved
collision integrals are used without requiring an explicit request in the input file.

The default procedure can be further improved by maintaining a database of
potential interaction curves. These potential curves can be obtained from litera-
ture or can be calculated directly using quantum mechanical software packages like
DIRAC. The cross sections and collision integrals can then be directly evaluated
by using the code presented in section 4.4. This code is currently being extended
to interaction pairs for which resonant charge transfer should be included.

4.A Ratios of reduced collision integrals

This section provides a list of common ratios of reduced collision integrals [34,87,
p. 528] and their expressions in terms of non-reduced collisional integrals. A ratio
of reduced collision integrals can be written as

Ω(l1,s1)∗

Ω(l2,s2)∗ =
(s2 + 1)!

(s1 + 1)!

1−
(

1− (−1)
l2+1

)
/ [2 (l2 + 1)]

1−
(

1− (−1)
l1+1

)
/ [2 (l1 + 1)]

Ω(l1,s1)

Ω(l2,s2)
. (4.101)
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The ratios that occur frequently can thus be written as

A∗ij =
Ω

(2,2)∗
ij

Ω
(1,1)∗
ij

=
1

2

Ω
(2,2)
ij

Ω
(1,1)
ij

, (4.102)

B∗ij =
5Ω

(1,2)∗
ij − 4Ω

(1,3)∗
ij

Ω
(1,1)∗
ij

=
1

3

5Ω
(1,2)
ij − Ω

(1,3)
ij

Ω
(1,1)
ij

, (4.103)

C∗ij =
Ω

(1,2)∗
ij

Ω
(1,1)∗
ij

=
1

3

Ω
(1,2)
ij

Ω
(1,1)
ij

, (4.104)

E∗ij =
Ω

(2,3)∗
ij

Ω
(2,2)∗
ij

=
1

4

Ω
(2,3)
ij

Ω
(2,2)
ij

, (4.105)

F ∗ij =
Ω

(3,3)∗
ij

Ω
(1,1)∗
ij

=
1

12

Ω
(3,3)
ij

Ω
(1,1)
ij

, (4.106)

G∗ij =
Ω

(4,4)∗
ij

Ω
(2,2)∗
ij

=
1

24

Ω
(4,4)
ij

Ω
(2,2)
ij

. (4.107)

4.B Q elements

The qxy elements are expressed in terms of the averaged cross section. Devoto’s [97]
definition is given by

Q̄
(l,s)
ij =

4 (l + 1)

(s+ 1)!
[
2l + 1− (−1)

l
] ∫ ∞

0

e−γ
2

γ2s+3Qlijdγ

= πσ2
ijΩ

(l,s)∗
ij = πσ2

ij

Ω
(l,s)
ij

Ω
(l,s)
RS,ij

, (4.108)

with σij the collision diameter. The qxy factors are given by

q00 = 8
∑
i 6=e

neniQ̄
(1,1)
ei , (4.109)

q01 = 8
∑
i 6=e

neni

[
5

2
Q̄

(1,1)
ei − 3Q̄

(1,2)
ei

]
, (4.110)

q11 = 8
√

2n2
eQ̄

(2,2)
ee + 8

∑
i 6=e

neni

[
25

4
Q̄

(1,1)
ei − 15Q̄

(1,2)
ei + 12Q̄

(1,3)
ei

]
,(4.111)
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q12 = 8
√

2n2
e

[
7

4
Q̄(2,2)
ee − 2Q̄(2,3)

ee

]
+8
∑
i

neni

[
175

16
Q̄

(1,1)
ei − 315

8
Q̄

(1,2)
ei + 57Q̄

(1,3)
ei − 30Q̄

(1,4)
ei

]
, (4.112)

q22 = 8
√

2n2
e

[
77

16
Q̄(2,2)
ee − 7Q̄(2,3)

ee + 5Q̄(2,4)
ee

]
+ 8

∑
i

neni

[
1225

64
Q̄

(1,1)
ei

−735

8
Q̄

(1,2)
ei +

399

2
Q̄

(1,3)
ei − 210Q̄

(1,4)
ei + 90Q̄

(1,5)
ei

]
. (4.113)

4.C Estimates for potential parameters

In the absence of accurate interaction potentials it is required to generate an
approximate potential curve. Such a parameterization often involves the potential
minimum ε, the position of the well depth rm and the dispersion coefficients Cn.
This section describes parameterizations for these variables.

The position of the potential minimum has been obtained empirically by Cambi
et al. [98]. The formula is given by

rm,ij
a0

= 1.767
Å

a0

α′
1/3
i + α′

1/3
j(

α′iα
′
j

)0.095 , (4.114)

with α′i = αC
4πε0

the polarizability in Å
3
, αC the polarizability in C m2 V−1 and

a0 the Bohr length. The formula is based on the work of Liuti et al. [99]. The
assumption is made that the numerator scales with the radius of the species while
the denominator is proportional to the change in the attraction. Cambi et al. used
a reference set of about 100 well known interactions to determine the scaling
constant and the exponent. From the same reference set Cambi et al. obtained an
expression for the well minimum

ε0,ij
EH

= 0.72
eV

EH

C6,eff,ij

r6
m,ij

, (4.115)

with EH representing the energy in Hartree12. The dispersive coefficients have the
subscript effective since they are intended to describe the overall attraction near
the position of the potential well. Therefore, they may also contain contributions
from dipole-multipole and multipole-multipole terms. The effective dispersion
coefficients are calculated based on the Slater-Kirkwood formula [98–101]

C6,eff,ij

EH.a6
0

=
3

2

αiαj√
αi

Neff,i
+
√

αj
Neff,j

, (4.116)

12 Note that one Hartree is given by EH = mee4/
(
4πε0h̄

2
)

and that the Bohr length can be

written as a0 = 4πε0h̄
2/
(
mee2

)
. In the atomic unit system these are linked via EH = e2/a0

where 1/ (4πε0) has the numerical value unity by definition. The proportionality factor changes

from 3/2 EHa6
0 to approximately 15.7 eVÅ

6
by using the previous relations and expressing the

polarizabilities in Å rather than Bohr.
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with αi the polarizability in a3
0 and Neff,i the effective number of electrons present

in the outer shell. Cambi et al. proposed the following expression for atoms and
ions

Neff,i = Next,i

(
1 +

[
1− Next,i

Nint,i

] [
Nint,i

Nint,i +Next,i

]2
)
, (4.117)

with Next,i the number of valence electrons and Nint,i the number of inner shell
electrons. By introducing β = Next,i/ (Next,i +Nint,i) Cambi’s expression can be
modified to also obtain a numerically stable result for Nint,i = 0

Neff,i = (Nint,i +Next,i)β
(
2− 3β + 2β2

)
. (4.118)

For light molecules they suggested

Neff,i = (Nb,i +Nnb,i)

(
1− Nb,iNnb,i

(Nb,i +Nnb,i)
2

)
, (4.119)

with Nb,i the number of bonding external electrons and Nnb,i the number of
non-bonding external electrons. Another important result is the extension of
the dipole-dipole interaction to the dipole-ion interaction. The previously men-
tioned relations for the position and depth of the well should also account for
ion-multipole interactions. Cappelletti et al. [102, 103] introduced the ratio of
these terms as

ρ =
C6,eff/r

6
m

C4,eff/r4
m

=
α′I

Z2
I

[
1 +

(
2
α′I
α′N

)2/3
]√

α′N

, (4.120)

with ZI the charge of the ion, the indices N representing the neutral and I the ion
and the dispersion coefficients are effective coefficients which also include effects
of higher order terms. The position and depth of the well can then be modified to

rm,ij
a0

= 1.767
Å

a0

α′
1/3
i + α′

1/3
j

Z2
(
α′iα

′
j

[
1 + 1

ρ

])0.095

ε0,ij
EH

= 5.2
eV

EH

Z2
Iα
′
N

r4
m,ij

[1 + ρ] . (4.121)

4.D Born-Mayer parameters

The parameters in the exponential repulsive potential can be obtained from the
methods proposed by Tang and Toennies [66, 67]. The damping functions are
expressed as

f2n (r) = 1−

(
2n∑
k=0

(br)
k

k!

)
e−br. (4.122)
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They normalize their parameters with U = V (r) /ε0,ij , x = r/rm,ij , b
∗ = b/rm,ij ,

A∗ = A/ε0,ij and C∗2n = C2n/
(
ε0,ijr

2
m,ij

)
. At x = 1 the system ∂U

∂x = 0 and
U (1) = −1 gives

A∗ =
∑
n>3

(
eb∗ −

2n∑
k=0

(b∗)
k

k!

)
2n

b∗
C∗2n −

∑
n>3

(b∗)
2n

(2n)!
C∗2n (4.123)

0 = 1 +
∑
n>3

(
1− e−b

∗
2n∑
k=0

(b∗)
k

k!

)(
2n

b∗
− 1

)
C∗2n −

∑
n>3

e−b
∗ (b∗)

2n

(2n)!
C∗2n. (4.124)

The last equation can be solved iteratively to obtain b. The dispersion coefficients
are calculated from a semi-empirical recursive formula

C2n+4 =

(
C2n+2

C2n

)3

C2n−2. (4.125)

The coefficient C6 is estimated by using (4.116) and the higher order dispersion
coefficients are taken from Koutselos [100]. The relations from Koutselos are
intended for S-state atoms and ions, but Johnston [26] obtained accurate results
for species in other states as well. The interpretation from Koutselos deviates from
Cambi et al. [98] by not considering the Slater-Kirkwood formula to provide an
effective dispersion coefficient. In [100, (14-17)] he derives a scaling law based on
recursive relations for the polarizabilities. The dispersion coefficient C8,ij is then
written as the sum of two dipole-quadrupole terms and C10,ij is expanded as the
sum of two dipole-octupole terms and a quadrupole-quadrupole term. The result
is

C8,ij

EH.a8
0

=
15

4

αiα
(2)
j√

αi
Neff,i

+

[ (
α

(2)
j

)2

9Neff,jαj
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+
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4
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i√
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+
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(2)
i
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9Neff,iαi
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= 7
αiα
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+
√

2
15

[ (
α
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α
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i α

(2)
j( (
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(2)
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)2

9Neff,iαi

)1/4

+

( (
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j

)2

9Neff,jαj

)1/4

+7
αjα

(3)
i√

αj
Neff,j

+
√

2
15

[ (
α

(3)
i

)4

9Neff,iαi
(
α

(2)
i

)2

] , (4.126)

with α
(2)
i the quadrupole polarizability and α

(3)
i the octupole polarizability in a3

0.
For most atoms, single ionized and double ionized species Patil [104] lists the
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dipole, quadrupole and octupole polarizabilities. Johnston [26, p. 117] developed
empirical relations

α
(2)
i

Å
5 =

(
αi

Å
3

)1.553

α
(3)
i

Å
7 =

(
αi

Å
3

)2.238

, (4.127)

for atoms with atomic numbers above 20 and applied this relation to molecules. In
order to get the dipole polarizability, Thole’s model [105] was used. He constructed
a model that can predict the polyatomic polarizability based on the atomic po-
larizabilities. The presence of the other particles induces a dipole moment µp on
particle p which can be calculated as

µp = αp

Ep − N∑
q 6=p

Tpqµq

 , (4.128)

where αp is the isotropic atomic polarizability tensor of atom p, Ep is the applied
electric field at atom p and Tpq is the dipole field tensor. The induced dipole
moments are given by

µ = AE, (4.129)

with
A =

(
α−1 + T

)−1
. (4.130)

The matrix A is a 3N × 3N matrix with N the number of atoms in the molecule.
The diagonal elements are 3× 3 blocks of α−1

pp,ij and the off-diagonal elements are
the 3× 3 Tpq,ij blocks. A molecular polarizability can be obtained by contracting
the atomic representation as

αmol,ij =
∑
p

∑
q

Apq,ij . (4.131)

The components of the dipole field tensor are given by

Tpq,ij =

(
4v3 − 3v4

)
δij

r3
− 3v4 rirj

r5
, (4.132)

with i and j representing the spatial directions x, y and z and

v =

{
r
s r < s

1 r ≥ s
, (4.133)

where r is the distance between particles p and q. In the original model Thole fits
s to 16 molecules and obtains

s = 1.662 (αpαq)
1/6

. (4.134)

Van Duijnen [106] reconsidered the model with more accurate molecular geome-
tries and atomic polarizabilities. The fit to 52 molecules gives

s = 1.7278 (αpαq)
1/6

. (4.135)
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4.E Corrections related to the exponential repulsive
potential

This section elaborates on the incorrect definition of the parameter ξ which is
given in [68, eq. 13]. The solution of the problem was obtained in a private
communication with Laricchiuta. The exponential repulsive potential is given by

V (r) = A exp

(
− r
ρ

)
. (4.136)

The scattering angle for this potential can be rewritten by using the following
substitutions

sin θ =
b

r

sin θ0 =
b

r0

u2 = cos2 θ0

θ =
(
1− z2

)
θ0. (4.137)

The result of these substitutions is

χ = π − 4k′θ0, (4.138)

with

k′ =

∫ 1

0

zdz√
1− V/xkBT cos2 θ

. (4.139)

By introducing ξ = ρ
r0

the term in the denominator can be rewritten as

1−
A exp

(
− 1
ξ

)
xkBT cos2 θ

. (4.140)

At the distance of closest approach this can be expressed as

ξ =
1

ln (A/kBT )− lnx− ln (cos2 θ0)
=

1

α− lnx− 4 lnu
. (4.141)

The expression that Monchick gives, erroneously omits the last term in the de-
nominator, reading [68, eq. 13]

ξ =
1

α− lnx
. (4.142)

With Monchick’s definition it is impossible to reproduce the remaining part of
his derivation. The matter is resolved in the aforementioned communication with
Laricchiuta by introducing a new parameter

1

ξ′
=
r0

ρ
=

1

ξ
− lnu4 =

1− ξ lnu4

ξ
, (4.143)
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with ξ now redefined as indicated in (4.142). Using this definition the correct
expression of k′ in terms of ξ is obtained [68, p. 14]:

k′ =

∫ 1

0

[
1− cos2 θ0

cos2 θ
exp

(
1

ξ′

(
1− sin θ0

sin θ

))]−1/2

zdz

=

∫ 1

0

[
1− cos2 θ0

cos2 θ
exp

(
1− 4ξ lnu

ξ

(
1− sin θ0

sin θ

))]−1/2

zdz. (4.144)

Additionally, the derivation of the cross section contains an inconsistency. The
impact parameter can be written as

b2 = r2
0 sin2 θ0 = r2

0

(
1− u4

)
. (4.145)

Taking the derivative gives

2b
∂b

∂u
= 2r0

∂r0

∂u

(
1− u4

)
− 4r2

0u
3. (4.146)

The derivative of r0 can be calculated from

∂r0

∂ξ′
= − ρ

ξ′2

∂ξ′

∂u
= 4

ξ′2

u
∂r0

∂u
=

∂r0

∂ξ′
∂ξ′

∂u
= −4

ρ

u
. (4.147)

By using these substitutions the cross section can be expressed as

Q(l) = 8πρ2

∫ 1

0

du
(
1− cosl χ

) 1

ξ′2

(
u3

2
+
ξ′

u

(
1− u4

))
. (4.148)

This expression deviates from [68, eq. 15-16]. The correct formula can be derived
by replacing ξ′ again with ξ which gives

Q(l) =
8πρ2

ξ2
I ′l , (4.149)

with

I ′l =

∫ 1

0

du
(
1− cosl χ

) [u3

2
+ ξ

(
1

u
− u3 [4 lnu+ 1]

)
+ξ2

(
4 lnu

[
2u3 lnu+ u3 − 1

u

])]
. (4.150)

4.F Fit functions for collision integrals

This section contains the fit functions that have been used by Capitelli et al. [27,
eq. 11.3-11.5] to represent the collision integral. The quantity σ2Ω(l,s) is given in
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Å
2

in all cases. Note that in all expressions presented in this section terms pro-

portional to exp(ax)
exp(ax)+exp(−ax) are rewritten as 1/ (1 + exp (−2ax)) which is compu-

tationally more efficient. For electron-neutral interactions with species from the
Mars atmosphere13 the fit formula is given by

σ2Ω(l,s)∗ =
g3e

g6

1 + e−2(x−g1)/g2
+ g7e

−
(
x−g8
g9

)2

+ g4 + g10x
g5 , (4.151)

with x = lnT and gi fit parameters. For heavy particle interactions in the Jupiter
atmosphere14 the following fit is used

σ2Ω(l,s)∗ =
a1 + a2x

1 + e2(a3−x)/a4
+

a5

1 + e2(a6−x)/a7
, (4.152)

with ai fit parameters. Electron-neutral interactions for the Jupiter atmosphere
are expressed as

σ2Ω(l,s)∗ =
g3e

g5

1 + e−2(x−g1)/g2
+ g6e

−
(
x−g7
g8

)2

+ g4, (4.153)

with gi fit parameters.

4.G H-H ab initio potential curve

The potential curves of the X1Σ+
g and b3Σ+

u states are calculated using DIRAC
[107]. The input files are given in figures 4.12 and 4.13. Two types of calculations
are executed: A self-consistent field (SCF) calculation and a calculation using
Kramers-restricted configuration interaction (KRCI). For the SCF calculation the
.CLOSED SHELL and .OPEN SHELL keywords can be used. Since all electrons
are part of a closed shell the keyword .OPEN SHELL is omitted in this case. In
this case there are two electrons in gerade orbitals and no electrons in ungerade
orbitals. Electron correlation can be included with the keyword .KR CI. The
.INACTIVE statement specifies the amount of orbitals (one orbital contains two
electrons) that should remain fully occupied. These orbitals are not included in
the electron correlation calculation. All virtual states are included in the KR CI
calculation as indicated in the .GAS SHELLS section. The first digit indicates the
amount of gas shells which is one in this case. The first two digits on the next
row indicate the minimum and the maximum amount of cumulative electrons
that are present after considering all shells up to and including the current shell.
The last two digits represent the number of states in the gerade and ungerade
symmetry that are used to generate this shell. These numbers are not cumulative.
For example by specifying 2 gas shells with 0 2/2 2 the second shell starts with
the third and fourth states in the gerade and ungerade symmetries. When the
molecule is not symmetric a single number is used to specify the amount of states
that are considered to be a part of a shell. By using the keyword .CIROOT a

13N2, O2, CO2, Ar and derived species.
14H2, He and derived species.
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Figure 4.12: Input file for calculating the interac-
tion potential for H–H.

**DIRAC
.TITLE
H-H
.WAVE FUNCTION
.ANALYZE
.PROPERTIES
**HAMILTONIAN
.X2C
**INTEGRALS
*READIN
.UNCONTRACT
**WAVE FUNCTION
.SCF
.KR CI
*SCF
.CLOSED SHELL
2 0
.MAXITR
100
*KRCICALC
.CI PROGRAM
LUCIAREL

.INACTIVE
0 0
.GAS SHELLS
1
2 2/36 36
.CIROOTS
0u 4
.CIROOTS
0g 4
.CIROOTS
2u 4
.CIROOTS
2g 4
.MAX CI
150
.TRDM
.OMEGAQ
**ANALYZE
.MULPOP
*MULPOP
**END OF

Figure 4.13: Geometry input file
for H–H. The string aaa is re-
placed by the interatomic sepa-
ration in atomic units.

DIRAC
H-H
Interatomic separation
C 1
1. 2
H 0.0 0.0 0.0
H 0.0 0.0 -aaa
LARGE BASIS dyall.cv4z
FINISH

number of roots for a specific symmetry can be requested. The number behind
the symmetry token indicates the number of states that should be calculated for
that symmetry. In this case the molecule is symmetric and the states are requested
with 2Ju or 2Jg for states with an ungerade or gerade symmetry and J the total
angular momentum. Molecules without symmetry are simply requested with 2J.
Note that all values of the total angular momentum are multiplied with 2 to avoid
fractions.

The keywords .TRDM and .OMEGAQ are useful but not necessary for calcu-
lating the interaction potential. By using .TRDM the electronic transition dipole
moments are calculated for all possible state to state transitions. The keyword
.OMEGAQ requests a calculation of the spin and the orbital angular momentum
as well as the total angular momentum. This is useful for recognizing states. The
interaction potential is calculated for 0.5 a0 ≤ r ≤ 10 a0.
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Transport coefficients

The transport coefficients are derived from the Chapman-Enskog expansion. This
expansion is briefly discussed in the first section. After that an overview is given
of the expressions for the viscosity and the electrical and thermal conductivities
that are used in the studies presented in chapters 6, 7, 10, 11,12 and 13 of this
thesis. In the original literature these expressions are presented in a form that is
not numerically stable. Those expressions are not stable for mixtures containing
many species or for mixtures where the species densities cover many orders of
magnitude. In this work more stable expressions are presented. In the third sec-
tion the transport coefficients are calculated for various mixtures. The calculated
coefficients are benchmarked by comparison with results obtained by Capitelli et
al. [27, p. 273-342] for the planetary mixtures of Earth, Jupiter and Mars. Ad-
ditionally, the implementation of the code is verified by comparing the results of
the PLASIMO implementation with a separate implementation in MATLAB. The
verification is not only done for the transport coefficients, but also for the collision
integrals. In this section the effect of the new defaults for the collision integrals
on the transport coefficients is discussed as well. These defaults are discussed in
more detail in chapter 4.

5.1 Chapman-Enskog expansion

In local thermodynamic equilibrium the distribution function is given by the
Maxwell distribution. This section considers the corrections that should be taken
into account when the distribution function deviates slightly from Maxwell’s dis-
tribution. Such a case is relevant for the calculation of transport fluxes and the
accompanying coefficients like the thermal conductivity, viscosity and electrical
conductivity. For the details of the derivation the reader is referred to Hirschfelder
et al. [34, p. 466-491]. The derivation is valid under the following assumptions [34,
p. 17-21]

• binary collisions: Only binary collisions are included. At sufficiently high
densities three-body collisions become important and the theory is not ap-
plicable.

91
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• classical mechanics: The theory neglects quantum effects. These effects
are important when the de Broglie wavelength is of the order of magnitude of
the molecular dimensions. Additionally, relativistic effects are not included.

• small gradient lengths: The first approximation describes the effects of
the first derivative of the density, velocity and temperature. These correc-
tions are sufficient when λmfp (∂ lnn/∂x) � 1, where λmfp is the mean free
path. When this is not satisfied, higher order corrections are necessary.
These corrections introduce higher order derivatives and terms proportional
to products of gradients of the density, the velocity and the temperature.

• large systems: The dimensions of the considered vessel should be large
with respect to the mean free path. In that case the impact on the transport
coefficients of collisions with the walls is small.

• monatomic gases: The effect of internal degrees of freedom is not included
in the derivation of the thermal conductivity. These effects must be included
separately.

The collision term in the Boltzmann equation can be modified with a factor 1
ξ

to scale the collision rate

∂fi
∂t

+ ~vi · ∇fi +
~Xi

mi
· ∇fi =

1

ξ
J [fi, fj ] . (5.1)

For ξ � 1 collisions occur very often while for larger values of ξ collisions occur
less frequent. The distribution function can then be expanded as

fi = f
[0]
i + ξf

[1]
i + ξ2f

[2]
i + · · · . (5.2)

The lowest order approximation is the equilibrium distribution given by

f
[0]
i = ni

(
mi

2πkBTi

)3/2

exp

(
−mi~vi

2

2kBTi

)
= nifv,i, (5.3)

where fv,i is the normalized velocity distribution and vi is the velocity relative
to the mass averaged velocity. Terms with the same power of ξ are equated. By
using this procedure, the higher order corrections to the distribution function can
be expressed in the known lower order corrections. The system provides a unique
solution by adding the following constraints∫

fid
3~vi = ni∑

i

mi

∫
~vifid

3~vi = ρ~u

∑
i

1

2
mi

∫
(~vi − ~u)

2
fid

3~vi =
3

2
kBT. (5.4)
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The above integrals evaluate to zero if fi is replaced with f
[r]
i where r is an

integer larger than zero. Hirschfelder et al. [34, p. 466-491] solve the system by
introducing a perturbation function that contains the functions Ai, Bi and Ci
that are proportional to the gradients of the temperature, velocity and the driving
forces. These functions are expanded in a finite series of Sonine polynomials.
The final result contains integrals over these polynomials. Those integrals can be
expressed in terms of the collision integrals which have been introduced in (4.13)

Ω
(l,s)
ij =

√
kBT

2πmij

∫ ∞
0

γ2s+3Q
(l)
ij

(
γ2kBT

)
exp

(
−γ2

)
dγ. (5.5)

Devoto [97,108] follows a similar procedure but expresses his final result in terms
of the elements qmpij which depend on the average cross sections

Q
(l,s)

ij = πσ2Ω
(l,s)∗
ij = πσ2

Ω
(l,s)
ij

Ω
(l,s)
RS,ij

, (5.6)

where σ is the rigid sphere collision diameter and Ω
(l,s)
RS,ij is the collision integral

for a rigid sphere. Previously, the average cross sections have been introduced in
(4.108).

5.2 Expressions transport coefficients

The expressions for the viscosity, thermal conductivity and electrical conductivity
are given. The numerical stability of the original form of these expressions is
analyzed. More stable expressions are presented in this section.

5.2.1 Viscosity

Previously, PLASIMO used the Wilke [109] approximation to calculate the vis-
cosity [26, p. 138]. This approximation provides reasonable results when neutral-
neutral interactions are dominant. However, when neutral-charged interactions
are introduced, relative errors of the order of 100% can be reached. A more ac-
curate expression is provided by the first approximation in the Chapman-Enskog
method [34, p. 531,532]

η =

∣∣∣∣H x
xT 0

∣∣∣∣
|H|

. (5.7)

Here x are the species’ molar fractions, the diagonal elements are given by

Hii =
x2
i

ηii
+

µ∑
j=1,j 6=i

2xixj
ηij

mimj

(mi +mj)
2

(
5

3A∗ij
+
mj

mi

)
, (5.8)
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and the off-diagonal elements are given by

Hij = −2xixj
ηij

mimj

(mi +mj)
2

(
5

3A∗ij
− 1

)
i 6= j, (5.9)

with the viscosity of the pure gases expressed as1

ηij =
5kBT

8Ω
(2,2)
ij

. (5.10)

The definition of A∗ij can be found in section 4.A. Higher order approximations for
the viscosity provide a correction of the order 7 % in an argon mixture [27, p. 249].

5.2.2 Numerical stability

In case of a minority species, m, it can be shown that all matrix elements in column
m are proportional to xm. For the matrix element Hmm the term proportional to
x2
m is neglected. The determinant of the augmented matrix can be written as a sum

of products of cofactors and minors. By expanding the determinant from column
m, it can be shown that all terms in this sum contain a product that is proportional
to x2

m except for the term with cofactor Hmm. This term is proportional to xm.
This is the dominant contribution to the sum. The determinant of matrix H can
be obtained similarly. Thus, in both cases the determinant can be written as a
product of Hmm and the determinant of its minor. This description is equivalent
to a mixture that does not contain species m.

Although limxi → 0 is well defined, numerical problems in expressions (5.7)–
(5.9) can still occur due to the proportionality of Hij with xi. For mixtures
containing a large number of species this proportionality can lead to underflows.
Mixture calculations using LTE can easily provide such conditions at low temper-
atures. The problem can be solved by introducing coefficients Hr

ij = Hij/xi that
are given by

Hr
ii =

xi
ηii

+

µ∑
j=1,j 6=i

2xj
ηij

mimj

(mi +mj)
2

(
5

3A∗ij
+
mj

mi

)
, (5.11)

for the diagonal elements, and by

Hr
ij = −2xj

ηij

mimj

(mi +mj)
2

(
5

3A∗ij
− 1

)
i 6= j, (5.12)

for the off-diagonal elements. Using this row-scaling of the matrix H, its determi-
nant |H| can be written as

|H| = | diag(x)Hr| = | diag(x)||Hr|. (5.13)

1Note that an incorrect pre-factor in η = Cη
√

2µT

σ2Ω
(l,s)∗
ij

was specified by Capitelli et al. [27,

p. 171]. They used a value of Cη = 2.6693× 10−6 J1/2/K1/2 while the correct value is Cη =

5
16

√
kB
π
≈ 3.6961× 10−13 J1/2/K1/2.
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Similarly, the augmented matrix that appears in the nominator of equation can
be written as (5.7), ∣∣∣∣H x

xT 0

∣∣∣∣ = | diag(x; 1)|
∣∣∣∣Hr 1
xT 0

∣∣∣∣ . (5.14)

Since | diag(x)| = | diag(x; 1)|, substitution of these expressions in equation (5.7)
yields

η = −

∣∣∣∣Hr 1
xT 0

∣∣∣∣
|Hr|

. (5.15)

A numerically more convenient expression that avoids the usage of the determinant
is derived from the identity [110, p. 99]∣∣∣∣A B

C D

∣∣∣∣ = |A|
∣∣D−CA−1B

∣∣ . (5.16)

Applying this rule to the numerator gives∣∣∣∣H x
xT 0

∣∣∣∣ = |H|
∣∣−xTH−1x

∣∣ = − |H|xTH−1x, (5.17)

where the last step uses the fact that the determinant of a scalar is the value itself.
The viscosity can then be expressed as

η = xTH−1x = xT (Hr)
−1

1. (5.18)

PLASIMO uses this more stable form to calculate the viscosity. The author is not
aware of any publications that also explicitly state this form for the viscosity.

5.2.3 Thermal conductivity

The thermal conductivity contains four separate contributions. These are the
translational contributions of the heavy particles λhp and the electrons λe, the
reactive thermal conductivity λr and the internal thermal conductivity λint.

Translational thermal conductivity for heavy particles

The translational conductivity of the heavy particles is given by the second order
expression from Muckenfuss and Curtis [111]

λhp = 4

∣∣∣∣ L x
xT 0

∣∣∣∣
|L|

. (5.19)

The elements Lii are given by

Lii = −4x2
i

λii
−

µ∑
k=1,k 6=i

2xixk
λik

15
2 m

2
i + 25

4 m
2
k − 3m2

kB
∗
ik + 4mimkA

∗
ik

A∗ik (mi +mk)
2 , (5.20)
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where µ represents the number of heavy particles. The off-diagonal elements are
given by

Lij =
2xixj
λij

mimj

(mi +mj)
2

55
4 − 3B∗ij − 4A∗ij

A∗ij
. (5.21)

The thermal conductivity of the pure gases is given by2

λij =
75

64

k2
BT

mijΩ(2,2)
, (5.22)

where mij is the reduced mass. The ratios of reduced collision integrals A∗ij and
B∗ij are given in section 4.A.

Numerical stability

The matrix structure of the translational thermal conductivity is similar to the
viscosity. It is thus also possible to define Lrij = Lij/xi. An alternative expression
for the thermal conductivity is then given by

λhp = 4

∣∣∣∣Lr 1
xT 0

∣∣∣∣
|Lr|

. (5.23)

This can again be written in a computationally more efficient form3

λhp = −4xTL−1x = −4xT (Lr)
−1

1. (5.24)

No other publications containing this form for the calculation of the thermal con-
ductivity have been found.

Translational thermal conductivity for electrons

The translational contribution for the electrons is calculated by using Devoto’s
third order expression [97]

λe =
75n2

ekB
8

√
2πkBT

me

1

q11 − (q12)
2
/q22

, (5.25)

with the qxy elements defined in appendix 4.B. All elements qxy are proportional
to ne. It is thus possible to introduce qr,xy = qxy/ne and obtain

λe =
75nekB

8

√
2πkBT

me

1

qr,11 − (qr,12)
2
/qr,22

, (5.26)

2Note that an incorrect pre-factor in λ = Cλ

√
T/(2µ)

σ2Ω
(l,s)∗
ij

was specified by Capitelli et al. [27,

p. 167]. They used a value of Cη = 0.0832 J3/2/K3/2 while the correct value is Cη = 75
64

k
3/2
B
π
≈

1.9136× 10−35 J3/2/K3/2.
3See the discussion that leads to (5.18) for more details.
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which has the advantage that it is also well-defined for limne → 0. The necessity
of an appropriate l and s scaling for Q̄(l) can be derived from a situation where
the electron density is negligible. In that case the contributions to qxy that are
proportional to n2

e can be neglected. If no s-scaling is applied the qxy-terms are
proportional to q11 = 8

∑
i 6=e neni

9
4 Q̄

(1), q12 = 8
∑
i 6=e neni

99
48 Q̄

(1) and q22 =

8
∑
i6=e neni

121
64 Q̄

(1). The denominator is then given by q11 −
(
q12
)2
/q22 = 0.

The fourth approximation can be obtained from [97, eq. 20]

λe =
75nekB

8

√
2πkBT

me

|qtop|
|qbot|

, (5.27)

with

qtop =

[
qr,22 qr,32

qr,23 qr,33

]
qbot =

qr,11 qr,12 qr,13

qr,21 qr,22 qr,23

qr,31 qr,32 qr,33

 . (5.28)

Calculations in argon show that the convergence of the electronic translational
thermal conductivity is poor around T = 8 kK and that the fifth approximation
still provides a small correction [27, p. 248]. This is related to the Ramsauer
minimum. For gases that do have such a minimum the third order approximation
is sufficient [27, p. 249].

Reactive thermal conductivity

The reactive thermal conductivity describes the transport of chemical energy and
is calculated according to the expressions developed by Butler and Brokaw [50,112].
They neglect thermal diffusion, pressure gradients and external force fields. Butler
and Brokaw [50, 112] consider a mixture of µ species. This mixture contains
ν independent reactions. A reaction is considered to be independent when at
least one component does not occur in any other reaction. Thus ν reactions are
considered in the form

µ∑
k=1

RikX
k = 0, (5.29)

where Xk is the kth chemical species and Rik is the stoichiometric coefficient of
species k in reaction i. An example of a stoichiometry matrix is given in section
7.3. The coefficients of this matrix can be derived from the left hand side of the
Guldberg-Waage equation (2.82). Effectively all species are represented as a linear
combination of a few species that have been chosen as the ‘building blocks’. Using
this formalism the reactive thermal conductivity can be expressed as [112, eq. 3]

λr = − 1

kBT 2

∣∣∣∣ A ∆H
∆HT 0

∣∣∣∣
|A|

, (5.30)
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where ∆H is the reaction enthalpy vector with elements ∆Hi =
∑µ
k=1RikHk and

Hk is the enthalpy4 of species k. The matrix elements Aij are given by

Aij =

µ−1∑
k=1

µ∑
l=k+1

kBT

Dklp
xkxl

(
Rik
xk
− Ril

xl

)(
Rjk
xk
− Rjl

xl

)
, (5.31)

where the diffusion coefficients are calculated from

Dkl =
3

16

k2
BT

2

pmklΩ(1,1)
, (5.32)

where mkl is the reduced mass.

Numerical stability

The calculation of the determinant of A can be problematic when the species that
have been used as the ‘building blocks’ reach low mole fractions. This is apparent
if the last part of the matrix element Aij is rewritten as

Aij RikRjk
xl
xk
−RikRjl −RilRjk +RilRjl

xk
xl
. (5.33)

Thus when one of the ‘building block’ species occurs both in reaction i and j, the
off-diagonal elements can become large when the corresponding mole fraction is
small. On the diagonal elements any ‘building block’ species that reaches a low
mole fraction can give rise to a large matrix element. These problems in principle
can be avoided using

|cA| = cν |A| , (5.34)

where c is a scalar value. However, a computationally more stable and more
efficient form is derived from∣∣∣∣ A ∆H

∆HT 0

∣∣∣∣ = |A|
∣∣−∆HTA−1∆H

∣∣ . (5.35)

The final result can then be written as

λr =
1

kBT 2
∆HTA−1∆H. (5.36)

Rini et al. [113] mention this result in the appendix. They are the only ones known
to the author that also provide this more convenient and stable expression.

5.2.4 Internal thermal conductivity

The transport of the energy of excited states is not included in the translational
contributions. Eucken [114, p. 3] [27, p. 22,274] proposed a correction based on

4Unlike Butler and Brokaw Hi represents the enthalpy per particle.
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the relation between the translational thermal conductivity and the viscosity. For
a multicomponent mixture this correction is given by

λint =
p

T

ν∑
j=1

xjcp,int,j/kB∑ν
i=1 xi/Dij

, (5.37)

where cp,int represents the heat capacity of the internal states, see section 2.B.

5.2.5 Electrical conductivity

Devoto’s second order expression is used to calculate the electrical conductivity [97,
eq. 16] as

σe =
3n2

ee
2

2kBT

√
2πkBT

me

1

q00 − (q01)
2
/q11

, (5.38)

with the definition of the qxy elements given in appendix 4.B. Similar to the ther-
mal conductivity of the electrons, the electrical conductivity can be expressed in
qr,xy = qxy/ne. The necessity of an appropriate s scaling for the collision integrals
can also be derived from the point of view of the electrical conductivity. If no s
scaling is applied and the electron density is negligible, the qxy are proportional
to q00 = 8

∑
i6=e neniQ̄

(1), q01 = 8
∑
i 6=e neni

3
2 Q̄

(1) and q11 = 8
∑
i 6=e neni

9
4 Q̄

(1).

The result is that q00 −
(
q01
)2
/q11 = 0.

An estimate for the third order expression is readily made [97, eq. 16] using

σe =
3n2

ee
2

2kBT

√
2πkBT

me

|qtop|
|qbot|

, (5.39)

with

qtop =

[
q00 q01

q10 q11

]
qbot =

q00 q01 q02

q10 q11 q12

q20 q21 q22

 . (5.40)

Around T = 8 kK the third order approximation is not even converged sufficiently.
Capitelli et al. [27, p. 252] show that the sixth order approximation provides a
correction of 200 % relative to the first order and is still not converged for an
argon mixture. This is related to the Ramsauer minimum that limits convergence
of the Chapman-Enskog series. Capitelli et al. [27, p. 253] state that in general
the third order approximation is sufficiently accurate for partially or fully ionized
mixtures.

5.2.6 Debye length

For charged-charged interactions the collision integrals depend on the Debye length.
Some authors include the ions in the calculations while others neglect this contri-
bution. Capitelli [27, sec. 3.3.1.1] gives a short discussion and Ghorui [115] gives a
more elaborate overview of the different choices that have been made in the past.

Devoto [88, fig. 2] started the discussion by noting that the calculated elec-
trical and thermal conductivities using only the electrons in the calculation of
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the Debye length agreed best with calculations that used the collision integrals
from Williams and DeWitt [116]. This comparison was made because Williams
and DeWitt used accurate quantum mechanical plasma transport theory. A com-
parison of the calculated electrical conductivity at high temperature showed that
experimental data was bounded by the calculations that included the ions and the
calculations that neglected the ions. However, the best agreement was obtained for
the calculation that neglected the ions. Later Hahn [117], Mason [87], Wang [118]
and Murphy [72,73,119] followed Devoto. Additionally, Mason and Wang mention
the option to include the ions. Others include the ions in the calculation [120–122].
Ghorui observed similar discrepancies in a two-temperature plasma. He proposed
the following definition of the Debye length

1

λ2
D

=
q2

ε0kBTe

ne +
∑
i6=e

z2
i ni

 , (5.41)

which deviates from the usual definition

1

λ2
D

=
q2

ε0kB

ne
Te

+
∑
i 6=e

z2
i

ni
Th

 , (5.42)

via the temperature of the ions only. A comparison between the calculated electri-
cal conductivity with the new definition of the Debye length and the experimental
data shows that the agreement at high temperatures is also very good. Ghorui
motivates the usage of the electron temperature in non-equilibrium mixtures with
the higher mobility of the electrons. Any change in the electrical potential is
expected to be redistributed at a rate that is proportional to Te. Murphy [119]
noted that the variation of the experimental results is larger than the variation of
the theoretical results. Since the discussion hasn’t been resolved, PLASIMO uses
both the ions and the electrons in the calculation of the Debye length using (5.42)
unless indicated otherwise.

5.3 Mixtures

Transport coefficients for the planetary atmospheres of Jupiter, Earth and Mars
are discussed. These atmospheres contain H2–He, N2–O2 and N2–O2–CO2–Ar
mixtures. Many of these species are frequently studied which makes it essential
to have good transport coefficients for them. Capitelli et al. [27, 35] performed
accurate calculations for these species. Therefore, their calculated results are used
to benchmark PLASIMO. Following Capitelli, the approximation is made that the
collision integrals for the excited states are the same as the ones for the ground
state5. Estimating the effect of excited states is currently the topic of active
research [27, p. 275].

5 Note that Capitelli et al. [27, ch. 7] give an estimate of the effect of the cross sections of
excited states in hydrogen on the thermal and electrical conductivities and the viscosity.
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Five methods have been used to compare the transport properties. The first
approach uses the specified collision integrals from [35, ch. 11] and is called ‘Cap
ci database’. The second approach uses the methods specified in section 4.3.3.
The polarizabilities used for the species are given in 5.A or 5.B. The approach
is called ‘Cap formulas’. The third approach uses rigid-sphere collisions for the
neutral-neutral and neutral-ion interactions. The Coulomb potential for charged-
charged interactions and the Langevin polarizability model for electron-neutral
interactions. The method is named ‘RS’. The fourth approach is similar to the
third approach. The only difference is that the neutral-ion interaction also uses the
Langevin polarizability model. The method is called ‘RS/L’. The fifth method uses
the approaches specified by Johnston [26, p. 130]. The differences with method 2
are the usage of the Exponential repulsive potential or the (12-6) Lennard Jones
potential for the neutral-neutral and neutral-ion interactions. The approach is
named ‘Johnston’. The transport properties are compared with data calculated
by Capitelli et al. [35, ch. 11]. This data is named ‘Capitelli’.

5.3.1 Jupiter

The composition of the Jupiter mixture is defined as xH2 = 0.89 and xHe = 0.11
[35, p. 217]. The electrical conductivity, thermal conductivity and viscosity are
calculated based on four different approaches. The reason for using only four
approaches is the inaccurate set of polarizabilities. These polarizabilities are re-
quired for the ‘Johnston’ method. The only complete set of dipole- quadrupole
and octupole polarizabilities is obtained for He. The quadrupole and octupole
values for other species are extrapolated based on Patil’s results [104] for He and
Li. Li is used since Patil presents no data for H. This dataset causes numerical
overflow for a few interactions when the found b∗ is used to obtain A∗. Such large
values for A∗ basically correspond to a rigid sphere model with r = 1/b∗. Since
the value of b∗ is large, the collision diameter reaches unrealistically small values.
In other cases the value of b∗ is very small. This results in negative values for A∗,
which is also not realistic.

The thermal conductivity and its relative accuracy are displayed in figure 5.1
and 5.2. The ‘Cap ci database’ values are within 10 % of the reference value for
almost the entire temperature interval. Small differences are caused by the fact
that Capitelli et al. use the third order approximation6 for the heavy particle
thermal conductivity; the partition sums contain a different number of states7;
and no corrections for non-ideal gas behavior have been made. These differences

6A comparison with the translational thermal conductivity for the heavy particles with the
data from Bruno et al. [122] shows that the relative error with our second order approximation is
smaller than 1% for T = 10 kK. For larger temperatures the relative error increases up to 130 %
for T = 20 kK and decreases again to 30 % for T = 50 kK. These errors are acceptable, since
the dominant contribution to the translational thermal conductivity comes from the electrons
(which is calculated using the third order expression). Note that the third order approximation
for the electrons is not enough for specific temperature ranges where the interactions mainly
occur around the Ramsauer minimum [27, p. 248-249].

7Capitelli et al. [27] use the atomic levels specified by NIST [53]. These levels are supple-
mented with predicted levels according to the Ritz-Rydberg series [35, sec. A.3].
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are responsible for the largest errors near the peaks that correspond to dissoci-
ation of H2 and ionization of H. The method ‘Cap formulas’ obtains errors of
the order of 40 % near the dissociation peak. This is related to Ω(1,1) for H–H2

which is estimated with a relative error of 100 %. A similar error is obtained for
the H–H+ elastic interaction. However, it is camouflaged by the much stronger
resonant charge exchange interaction which is accurately taken into account. The
remaining methods show errors in the range of 40-2400 % near the reactive peaks.
This is an indication that the predictions for the collision integral Ω(1,1) are not
accurate. The reason for those inaccurate results is that resonant charge exchange
is not taken into account for those methods. For higher temperatures the differ-
ence between the Coulomb and the screened-Coulomb potential is apparent in the
thermal conductivity of the electrons.

The electrical conductivity and its relative accuracy are shown in figure 5.3 and
5.4. For temperatures above 7 kK the errors of the ‘Cap ci database’ method are
decaying from 5 % to 1 %. The reason that there are still some deviations is related
to the different set of partition sums and the absence of corrections for non-ideal
gas behavior. For temperatures lower than 7 kK the errors are increasing because
of deviations in the composition. This is related to the small mole fraction of the
electrons. At 7 kK the mole fraction is only xe =4.6× 10−4. Small deviations in
the partition sums can cause large relative errors in the electrical conductivity.
The induced error is thus not caused by the calculation of the collision integrals.
The other methods use the Langevin polarizability model for the calculation of
the electron-neutral collision integrals. Such a choice results in overestimates of
the order of 300 % for the electrical conductivity. The errors in the ‘Cap formulas’
calculation are decreasing with decreasing xH and xHe.

The viscosity and the relative accuracy are displayed in figure 5.5 and 5.6. The
calculation ‘Cap ci database’ is again approximately within 10 % of the reference
value for all temperatures. The main contribution to the error is the fact that
Capitelli et al. calculate the viscosity by using the second order approximation
while in this work the first order approximation is used8. The initial increase
of the viscosity is modeled relatively well by all models. The methods that use
rigid spheres accumulate more error when H–H interactions are more important.
The decrease between 10 kK and 30 kK of the viscosity is related to the ionization
of the plasma. The charged-charged interactions have larger collision integrals
than neutral-neutral interactions, which causes the viscosity to decrease as shown
by (5.10). The sudden increase of the viscosity is the result of the H–H, H–
H+, He–He and He–He+ collision integrals reaching a maximum before 5 kK. The
decreasing trend for the collision integrals at 20 kK is not reproduced by any of
the general methods. The decline in the viscosity shows two separate sections.
The first one corresponds to the ionization of H. In this section the influence of
the neutral-neutral interactions is reduced. The second one to the ionization of
He and any leftover H. In that section the neutral-ion interactions are replaced by

8Capitelli et al [27, p. 249-250] demonstrate that the first order approximation is accurate
for neutral-neutral interactions. For charged-mixtures the errors of the first order approximation
in comparison to the sixth order approximation increase to 7 % for an argon mixture.
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Figure 5.1: The thermal conductiv-
ity for the Jupiter atmosphere at
p =1 bar. The labels are explained in
section 5.3 and the legend is given in
figure 5.5.
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Figure 5.2: The relative error made
in the calculation of the thermal con-
ductivity displayed in figure 5.1. The
legend is given in figure 5.5.

charged-charged interactions. The viscosity is then described by the asymptotes
corresponding either to the Coulomb or the screened-Coulomb collision integrals.

For the Jupiter mixture it is necessary to use the method ‘Cap ci database’ for
calculating transport coefficients. Inaccurate results are obtained when any of the
general approaches is used. This is partly caused by the species H+ which does
not contain any electrons and is therefore not modeled properly with the relations
from (4.121) and (4.37). Additionally, it seems that the predictions for interactions
between H–H, H2–H and H2–H2 are also not well modeled with (4.114), (4.115)
and (4.37) based on the large errors obtained for the reactive thermal conductivity.

In figure 5.7 the specific heat of the Jupiter mixture is shown. The peaks
correspond to the dissociation of H2 at 3.8 kK, the ionization of H at 15 kK, the
ionization of He at 23 kK and the ionization of He+ at 48 kK. The contribution of
chemical reactions is quite strong. It is the dominant contribution to the specific
heat for large temperature intervals. In this case the position of the peaks is
predicted accurately. This indicates that the effects of neglecting the non-ideal gas
corrections and only using the levels that are reported by NIST [53] are negligible.
The fact that the species H+ and He2+ have no internal structure severely restricts
the temperature interval for which these corrections could play a role.

5.3.2 Earth

The composition of the atmosphere on Earth is defined as xN2 = 0.8 and xO2 =
0.2 [35, p. 187]. This time the method proposed by Johnston [26] was able to
provide an estimate for all of the interactions. For neutral-neutral interactions
the dispersion coefficients (see (4.125)) were included up to C18. For neutral-
ion interactions the sum was extended to C30 in order to treat all neutral-ion
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Figure 5.3: The electrical conduc-
tivity for the Jupiter atmosphere at
p =1 bar. The labels are explained in
section 5.3 and the legend is given in
figure 5.5.
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Figure 5.4: The relative error made in
the calculation of the electrical con-
ductivity displayed in figure 5.3. The
legend is given in figure 5.5.
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Figure 5.5: The viscosity for the
Jupiter atmosphere at p =1 bar. The
labels are explained in section 5.3.
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Figure 5.6: The relative error made
in the calculation of the viscosity dis-
played in figure 5.5. The legend is
given in figure 5.5.
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Figure 5.7: The specific heat for the
Jupiter atmosphere at p =1 bar.
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Figure 5.8: The specific heat for air at
p =1 bar.

interactions with the same amount of terms. All calculations have been performed
by using a Debye length that only accounts for the electrons [27, p. 274].

The thermal conductivity and its relative accuracy are displayed in figure 5.9
and 5.10. By using ‘Cap ci database’ the relative accuracy of the thermal conduc-
tivity is always less than 3 %. The reason for the discrepancies are small deviations
in the partition sums which cause deviations in the composition. The methods
‘Cap formulas’ and ‘Johnston’ this time also obtain an accuracy that is better than
10 % for almost the entire temperature interval. This is related to the fact that
Capitelli et al. use similar scaling relations to estimate the transport properties,
while for the Jupiter atmosphere specific tabulations from external literature were
used. The methods that use rigid sphere models show errors of 35 % or more for
large temperature intervals.

The electrical conductivity and its relative accuracy are shown in figure 5.11
and 5.12. The calculation ‘Cap ci database’ yields a relative error of 6 % or less
for T > 4 kK. The large error for T < 4 kK is again caused by deviations in
the electron density. Small deviations in the molecular partition sums result in
slightly different electron densities. At around T = 8 kK the increased error by
using the Langevin model for the neutral-electron interactions is visible when ‘Cap
formulas’ or ‘Johnston’ is used. By using the screened-Coulomb model instead of
the Coulomb model the electrical conductivity increases approximately by a factor
3-5 for T > 10 kK.

The viscosity with its relative accuracy are displayed in figure 5.13 and 5.14.
The relative error of the methods ‘Cap ci database’ and ‘Cap formulas’ for the
entire temperature interval is less than 5 % and 8 %, respectively. The method
‘Johnston’ obtains errors of the order of 30 % around T =15 kK. This is related
to the inaccurate N–N+ interaction. For the thermal conductivity this was not a
problem since the larger resonant charge transfer collision integral hides the error.
The methods using rigid spheres obtain errors of the order of 35 % or more for
large temperature intervals.

The nitrogen dominated air plasma can be accurately described with the
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Figure 5.9: The thermal conductivity
for air at p =1 bar. The labels are ex-
plained in section 5.3 and the legend
is given in figure 5.13.
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Figure 5.10: The relative error made
in the calculation of the thermal con-
ductivity displayed in figure 5.9. The
legend is given in figure 5.13.

method ‘Cap ci database’. The method ‘Cap formulas’ is almost as good as ‘Cap
ci database’. In comparison to ‘Cap formulas’ Johnston’s approach results in er-
rors that are equal or larger. It is therefore not recommended to use Johnston’s
method. The same conclusion is valid for the methods involving rigid spheres.

The specific heat for this air mixture is given in figure 5.8. Again the calcu-
lated specific heat is dominated by the reactive contribution. The first two peaks
correspond to the dissociation of O2 and N2, respectively. The last three peaks
contain contributions from the single, double and triple ionizations of O and N.
The agreement in the last three peaks is a bit reduced due to the fact that Capitelli
et al. [35, app. A.2,A.3] apply a procedure to complete the tables provided by NIST
with a scaling rule. The PLASIMO calculation only contains the states reported
by NIST; therefore, it deviates slightly.

5.3.3 Mars

The composition of the atmosphere on Mars is defined as xCO2 = 95.3, xN2 = 2.7,
xAr = 1.6 and xO2 = 0.4 [35, p. 202]. From Capitelli et al. [27, p. 274] one
could conclude that the Debye length only contains the electrons. However, after
comparing the transport properties it appears that the ions have also been taken
into account. This is confirmed by contacting the authors [27].

The thermal conductivity and the relative accuracy are displayed in 5.15 and
5.16. The calculation according to ‘Cap ci database’ reaches errors of 4 % or less
for the entire temperature interval. The method ‘Cap formulas’ also performs well
with maximum relative errors of 8 % for T > 2500 K. These errors are reached near
the dissociation peak of O2 and the ionization peak of O. For lower temperatures
the relative error increases up to 15 % for T = 100 K. This error is related to the
CO2–CO2 interactions. Collision integrals at the dissociation and ionization peaks
are less accurate using the ‘Johnston approach’, but the errors for the CO2–CO2
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Figure 5.11: The electrical conductiv-
ity for air at p =1 bar. The labels are
explained in section 5.3 and the legend
is given in figure 5.13.
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Figure 5.12: The relative error made
in the calculation of the electrical con-
ductivity displayed in figure 5.11. The
legend is given in figure 5.13.
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Figure 5.13: The viscosity for air at
p =1 bar. The labels are explained in
section 5.3.
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Figure 5.14: The relative error made
in the calculation of the viscosity dis-
played in figure 5.13. The legend is
given in figure 5.13.
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interactions are smaller in comparison with ‘Cap formulas’. Again the methods
that use rigid sphere interactions produce inaccurate results.

The electrical conductivity and the corresponding relative accuracy are shown
in 5.17 and 5.18. For temperatures larger than 7 kK the error for the method
‘Cap ci database’ is lower than 5 %. For smaller temperatures the error increases
due to small differences in the composition. By using the Langevin model the
neutral-electron interactions are less accurate as indicated with ‘Cap formulas’ and
‘Johnston’. Surprisingly, by additionally replacing the screened-Coulomb model
with the Coulomb model, the error of the ‘RS’ model is smaller than the error in
the ‘Johnston’ model for 4 kK ≤ T ≤ 7 kK. This is presumably caused by error
cancellation.

The viscosity and its relative accuracy are displayed in 5.19 and 5.20. The
method ‘Cap ci database’ shows a maximum error of the order of 16 % at 20 kK.
These errors are caused by deviations in the composition induced due to small
differences in the partition sums9. This large error is similar to the error that
Murphy reported [73, p. 289]. He observed that calculating the viscosity for air
with 0.033 % CO2 and without CO2 gave relative deviations up to 15 % due to
deviating compositions. Slightly larger errors are obtained for the method ‘Cap
formulas’. Again the errors are larger for low temperatures where the CO2–CO2

interactions are important. The errors for the method ‘Johnston’ increase up to
35 % near the ionization peak of O. For low temperatures more accurate results are
obtained in comparison to ‘Cap formulas’. However, for the O–O+ interactions the
error increases considerably. For the thermal conductivity these errors are hidden
due to the larger resonant charge transfer cross section. Errors for the methods
that use rigid sphere models range from 20 % to 600 %.

The transport coefficients for the oxygen dominated Mars mixture can be accu-
rately calculated with the method ‘Cap ci database’. This time the ‘Cap formulas’
approach turns out to be quite accurate as well. For large temperature intervals
the approach developed by ‘Johnston’ gives accurate results as well. However,
the overall performance is less accurate in comparison with the ‘Cap formulas’
approach. On top of that, the input data requirements for the ‘Johnston’ method
are higher. Thus, more accurate results can be obtained by using a smaller amount
of input parameters. Therefore, it is not advised to use the ‘Johnston’ approach
in the future.

The specific heat of the Mars atmosphere is given in figure 5.21. There are
five peaks dominating the specific heat. The first two peaks corresponds to the
dissociation of CO2 and CO. The last three peaks are related to the overlapping
first, second and triple ionizations of O and C. For the same reasons as indicated
in the discussion of the specific heat of air, there is a small shift in the peaks related
to ionization. The relative errors in the partition sums of O and O+ are shown in
5.22. For O the errors accumulate as a function of temperature to values above
90 % at 50 kK. The results for O+ are better: at 50 kK the errors increased to 45 %.
This indicates that using the Ritz-Rydberg series to complement from the NIST

9As discussed before, Capitelli et al. extend the levels listed by NIST [53] with the Ritz-
Rydberg series [35, p. 241-242].
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Figure 5.15: The thermal conductivity
for the Mars atmosphere at p =1 bar.
The labels are explained in section 5.3
and the legend is given in figure 5.19.
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Figure 5.16: The relative error made
in the calculation of the thermal con-
ductivity displayed in figure 5.15. The
legend is given in figure 5.19.
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Figure 5.17: The electrical conduc-
tivity for the Mars atmosphere at
p =1 bar. The labels are explained in
section 5.3 and the legend is given in
figure 5.19.

1 2 3 4 5
T(K) #104

0

0.1

0.2

0.3

0.4

0.5

R
el

. e
rr

or
 <

Figure 5.18: The relative error made
in the calculation of the electrical con-
ductivity displayed in figure 5.17. The
legend is given in figure 5.19.

database can amount to a considerable correction of the partition sum [35, p. 241-
242]. Additionally, the effects of ionization lowering on the Saha balance should
be taken into account.

5.4 Conclusion

By using the collision integrals from Capitelli et al. [35, ch. 11], the transport
coefficients for mixtures involving species consisting of H, He, N, O, C and Ar
can be accurately calculated. For Ar a satisfying comparison is made with the
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Figure 5.19: The viscosity for the
Mars atmosphere at p =1 bar. The
labels are explained in section 5.3.
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Figure 5.20: The relative error made
in the calculation of the viscosity dis-
played in figure 5.19. The legend is
given in figure 5.19.
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Figure 5.21: The specific heat for the
Mars atmosphere at p =1 bar.
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Figure 5.22: The deviations of the
partition sums of O and O+ in com-
parison to the partition sum given by
Capitelli et al. [35, p. 280, 281].
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data from Murphy [72]. This comparison is not described in this work. The
remaining species have been benchmarked in this chapter against the planetary
mixtures of Jupiter, Mars and Earth with good results. In many cases the formulas
for estimating the parameters for the generalized Lennard Jones model provide a
similarly accurate transport properties. Therefore, it is expected that by using
these formulas the interactions for many other species can be estimated with a
relative errors being smaller than 20 % for large temperature intervals. In specific
temperature intervals the errors are larger due the usage of the Langevin model
for the electron-neutral interactions. Whenever possible these collision integrals
should be determined from (4.13) using a known cross section. For light atoms, like
H and He the polarizability relations are shown to be less accurate. For mixtures
containing these species the formulas from Capitelli resulted in relative errors of
the order of 40-60 % for the temperature intervals that are dominated by neutral-
neutral and neutral-ion collisions. This indicates that these collision integrals are
best evaluated from a known cross section.

The transport coefficients have been verified for LTE conditions. However,
for NLTE conditions the transport coefficients can be separated in terms that
depend on the electrons as a function of the electron temperature and terms that
depend on the heavy particles as a function of the heavy particle temperature.
Special cases are the viscosity and the electrical conductivity. For the viscosity
the electronic term is usually neglected. Similarly, the electrical conductivity is
mostly calculated without the contribution from the ions. By calculating the
transport coefficients for the electrons and the heavy particles separately, it is
thus possible to use the same strategies to obtain accurate transport coefficients
for NLTE mixtures with reasonable accuracy.

5.A Jupiter data

The polarizabilities and rigid sphere radii that have been used in the transport
calculations are given in table 5.1. The main purpose of the polarizability dataset
is to test what the influence on the transport data is when the specified polariz-
abilities and collision integrals by Capitelli [27, ch. 11] are ignored.

5.B Mars data

The polarizabilities and the rigid sphere radii that have been used in the mixture
calculations in air and for the Mars atmosphere are given in table 5.2. The polar-
izability data for all neutral atoms and singly and doubly ionized species is taken
from [104]. The values for the triple and qudruple ions are not reported. For that
reason they are approximated with the values of the double ions. Due to the usage
of LTE, collisions between neutral species and ions with a charge of three or larger
are rare. Therefore, this approximation does not influence the calculated transport
properties. The polarizability for the molecules and the negatively charged atoms
is taken from a database that contains results of ab initio quantum-mechanical
calculations [124]. In most cases the result for the Hartree-Fock method with the
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Table 5.1: Alternative dataset for polarizabilities and rigid sphere radii for compar-
ison with the data in [27, table. 11.9]. The rigid sphere radii are taken from [123]
with the exception of the H+ and He2+ species. The CCCBDB [124] value con-
sulted is calculated with the Hartree-Fock method and uses the aug-cc-pVQZ basis
set.

α(Å
3
) r(Å)

H2 0.765 [124] 1.25
H+

2 0.422 [124] 1.25
H 0.666 [124] 0.73

H− 4.92 [124] 0.73
H+ 1× 10−15 0
He 0.1728 [104] 1.04

He+ 0.039 [124] 1.43
He2+ 1× 10−15 0

basis set aug-cc-pVQZ is used. In some cases the results strongly vary for different
methods and basis sets. This was the case for N− and CO2

−. Not in all cases
accurate data was available. For CN+ the method B3LYP was used since HF gave
negative results. For O3 and NO2 the basis set aug-cc-pVTZ was used. The species
C2N and C2O were calculated using the ab initio program DALTON [125, 126].
The DALTON input scripts are described in section 5.C.

5.C DALTON calculations

The ab initio quantum mechanical program DALTON [125,126] is used to calculate
the polarizabilities for the molecules C2O and C2N. DALTON does not take
relativistic effects into account, therefore it should only be used for molecules that
consist out of light atoms. The polarizabilities are calculated using the multi
configurational self consistent field (MCSCF) level. First a simpler input file is
discussed. This file for C2O is given in figures 5.23 and 5.24. The geometry file
specifies the basis set on the first two lines. The next two lines are comments. In
the remaining lines the positions of the atoms are declared. These positions do
not correspond to the equilibrium position for C2O. The keyword .OPTIMIZE
in the input file indicates that DALTON will search for this equilibrium position.
In order to do an unbiased search, the atoms must not be placed on a line or in
a plane. Otherwise, the routine will not consider positions outside this line or
plane. These calculations can be optimized by using symmetry operators. This is
not done in this input file. If the initial results indicate that the molecule is linear,
as is the case for C2O, the allowed positions of the atoms can be restricted to a
line in the next simulation.

The section **WAVE FUNCTIONS is used to specify a method. In figure
5.23, only a Hartree-Fock (HF) calculation is requested. In principle the keywords
.MP2 and .MCSCF can be added to account for electron correlation. In such a
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Table 5.2: Alternative dataset for polarizabilities and rigid sphere radii for compar-
ison with the data in [27, table. 11.1]. The rigid sphere radii are taken from [123].
The CCCBDB [124] value consulted is calculated with the Hartree-Fock method
and uses the aug-cc-pVQZ basis set.

α(Å
3
) r(Å) α(Å

3
) r(Å)

Ar 1.4463 1.75 Ar+ 0.8005 1.74
Ar2+ 0.4895 1.74 C 1.2938 1.08
C+ 0.4251 1.08 C2+ 0.213 1.08
C− 5.969 1.08 N 0.8046 1.05
N+ 0.3047 0.1938 N2+ 0.1482 1.05
N− 9.884 1.05 O 1.0071 1.02
O+ 0.2257 1.02 O2+ 0.1189 1.02
O− 2.072 1.02 C2 2.168 1.85
C+

2 1.837 1.85 N2 1.65 1.8
N+

2 0.569 1.8 N2
− 6.991 1.8

O2 1.538 1.75 O+
2 0.92 1.75

O2
− 3.129 1.75 CN 2.195 1.82

CN+ 3.198 1.82 CN− 3.915 1.82
CO 1.791 1.74 CO+ 1.182 1.8
NO 1.567 1.78 NO+ 0.987 1.78
C3 4.945 2.31 N3 3.215 2.25
O3 2.714 2.19 O3

− 4.857 2.19
C2N 4.54 2.29 CO2 2.268 2.2
CO+

2 2.1 2.23 CO2
− 4.817 2.23

C2O 3.22 2.27 NO2 2.526 2.21
N2O 2.614 2.23 N2O+ 1.998 2.23
CNO 3.006 2.25

case the section *CONFIGURATION INPUT must be specified with the fields
.SYMMETRY and SPIN MULTIPLICITY. If this input is unknown, it can be
obtained from a .HF calculation. These values can be obtained from an analysis
of the HF or Møller-Plesset perturbation theory (MP2) results. The symme-
try corresponds to the state that contains the highest occupied molecular orbital
(HOMO). The spin multiplicity can be deduced from 2S + 1 where S is the spin
of the molecule.

Additionally, the orbitals that should remain fully occupied during the calcu-
lation (inactive orbitals) must be specified under .INACTIVE. The active orbitals
for which the electron population can deviate from 0, 1 or 2 due to electron cor-
relation should be specified under .CAS SPACE. The amount of electrons in the
complete active space (CAS) is given by the field .ELECTRONS. The amount
of states that should be included in the inactive or the CAS SPACE should be
based on an orbital population analysis obtained from an MP2 calculation. An
example of such an input file is given in figure 5.25. All possible orbital occupa-
tions in the CAS SPACE with the amount of specified electrons are considered.
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Figure 5.23: Input file for calcu-
lating the polarizability of C2O.

**DALTON INPUT
.OPTIMIZE
.RUN WAVE FUNCTIONS
.RUN PROPERTIES
**WAVE FUNCTIONS
.HF
**PROPERTIES
.POLARI
**END OF DALTON INPUT

Figure 5.24: Input geometry file
for C2O.

BASIS
aug-cc-pVQZ
C2O
using the aug-cc-pVQZ basis
Atomtypes=2
Charge=6.0 Atoms=2
C 1.00000 -1.0000 -0.26687
C -2.00000 0.1000 2.47886
Charge=8.0 Atoms=1
O 1.00000 0.0400 -2.13655

The number of combinations, and therefore the calculation time, rapidly increases
with the amount of electrons and orbitals in the CAS SPACE. For the described
geometry optimization the CAS SPACE is kept small. For C2O only the orbitals
that are singly or doubly occupied are included in the CAS SPACE. More accurate
results can be obtained by including more virtual states (unoccupied states) and
by taking correlation effects into account for more occupied levels. The calcula-
tion time will then rapidly increase while the optimized geometry is not strongly
influenced. An advantage of using the MCSCF optimization is that DALTON’s
HF optimization can only account for singlet states. Since the ground state of
C2O is a triplet (according to an MCSCF calculation of the energy levels), the HF
routine does not use the correct state description for optimizing the geometry of
the ground state. A similar input file can be constructed for the ground state of
C2N which is a doublet. In that case the HF optimization also deviates from the
MCSCF optimization. A drawback of DALTON is the number of implemented
symmetries. A linear molecule has the point group [45, p. 2-6] C∞v. DALTON
approximates this symmetry with the point group C2v, which may introduce some
error.

The section **PROPERTIES contains a request for the polarizabilities via
.POLARI. The isotropic polarizability can be calculated from [127, eq. 7]

α =
1

3
(αxx + αyy + αzz) . (5.43)

Contributions from vibrational polarization are included for C2O. Another useful
keyword for this section is .VIBANA. This keyword requests a calculation of the
rotational and vibrational frequencies. Any corrections for these frequencies are
not calculated.
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Figure 5.25: Example input file for calculating the polarizability of C2O using the
MCSCF approach.

**DALTON INPUT
.RUN WAVE FUNCTIONS
.RUN PROPERTIES
**WAVE FUNCTIONS
.HF
.MP2
.MCSCF
*SCF INPUT
.SINGLY OCCUPIED
0 1 1 0
.DOUBLY OCCUPIED
7 1 1 0
*CONFIGURATION INPUT
.SYMMETRY
2

.SPIN MULTIPLICITY
3
.INACTIVE
6 1 1 0
.CAS SPACE
1 1 1 0
.ELECTRONS
4
**START
.SHIELD
.MAGNET
**PROPERTIES
.VIBANA
.DIPGRA
.POLARI
**END OF





Chapter 6

Stefan Maxwell equations

In section 3.2.2 the momentum balance is discussed for the species system. The
purpose of this balance is to calculate the species velocities. In practice only the
bulk velocity is evaluated based on the momentum balance. The species velocity
is calculated using the sum of the bulk velocity and a diffusive velocity. This
diffusive velocity is obtained from a simplified momentum balance. The simplified
momentum balances are the Stefan-Maxwell equations. A key characteristic for
these equations is that they form a coupled system. The diffusive velocities thus
depend on the velocities of all species present in the plasma.

In the presence of a dominant background gas the diffusive fluxes can be ob-
tained by only considering interactions with the background gas. This system is
equivalent to Fick’s law and has the advantage that it is not coupled. The dis-
advantage is that Fick’s law is only valid when the mixture contains a dominant
background gas. Additionally, the gradients of the pressure fractions can only be
converted to gradients of the molar fractions when the contribution proportional
to the gradient of the temperature is significantly smaller than the contribution
proportional to the gradient of the species densities. In general these criteria are
not met in a non-thermal plasma. For that reason the Stefan-Maxwell equations
are considered in this chapter.

The coupled system is represented in matrix form. Several properties of these
matrices have been proven by Giovangigli [128, 129]. The numerical implementa-
tion of such a model in PLASIMO [25] is discussed by Peerenboom [6,28,29]. The
major advantage of the developed solution procedure is that conservation equa-
tions for mass and charge are free of spatial discretization errors. However, the
model appeared to be unstable for some conditions. It was observed that for neu-
tral mixtures the implementation works as expected. Mixtures that involve one
ion and one electron are also stable. Mixtures containing multiple ions appear to
be susceptible to oscillatory behavior in the mass fractions. These oscillations are
diverging and the model will eventually provide physically unacceptable results.

In this chapter the theory presented by Peerenboom [6] is extended from one-
temperature mixtures to two-temperature mixtures. The remaining part of the
chapter discusses the instabilities that can still occur in the current algorithm.

117
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The following causes for the instabilities have been investigated.

• A concern using the theory in its current form is the singularity of the fric-
tion matrix. The singularity is avoided by using a regularization procedure.
Different regularization constants have been discussed. The effect on the
condition number of the relevant matrices is relatively small. Typical con-
dition numbers for the system matrix remain in the order of 106-109 which
is still large.

• Linear, cubic and harmonic interpolation from the nodal points to the inter-
faces also did not appear to make a significant improvement on the stability.

• Additionally, alternative solution procedures for the problem have been con-
sidered. One of these attempts is related to a formulation in terms of the
diffusive mass fluxes rather than the diffusive velocities. The advantage of
using mass fluxes is that a stable formulation is guaranteed in the presence
of vanishing mass fractions.

• Another attempt involves the usage of pressure fractions rather than mass
fractions. Although charge conservation is not guaranteed in the two-temperature
case the magnitude of the electron pressure fraction is in the same order of
magnitude as the the pressure fraction of the ions. Rounding errors may
therefore be less of a concern. This is not the case using mass fractions.

• Additionally, it was attempted to apply the mass and charge constraints
analytically.

None of the methods described above improved the stability of the system.
It has been observed that changing the calculation of the collision integrals or
the pressure can influence the profile of the mass fractions by influencing the
calculation of the diffusion coefficient. The calculation of more accurate collision
integrals as described in chapter 4 appeared to improve the stability. Further
improvements of the stability could be obtained by increasing the number of grid
points or reducing the under relaxation factor. The last two improvements increase
the amount of computational resources that are required to solve the system and
are therefore not ideal.

6.1 Introduction

In section 3.2.1 the mass balance has been derived

∂ρyi
∂t

+∇ · (ρyi~ui) = miωi, (6.1)

with ρ =
∑
i nimi the mass density and ωi the species production rate per unit of

volume. The species velocity can be expressed in terms of the bulk velocity and
the diffusive velocity as

~ui = ~u+ ~vd,i, (6.2)
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with
~u =

∑
i

yi~ui. (6.3)

The mass balance can now be rewritten to

∂ρyi
∂t

+∇ · (ρyi~u) +∇ · (ρyi~vd,i) = miωi

∂ρyi
∂t

+∇ · (ρyi~u) +∇ · ~Ji = miωi, (6.4)

with ~Ji the diffusive mass flux. The diffusive mass fluxes can be obtained from
the species momentum balances given in section 3.2.2. A constraint for the total
diffusive mass flux can be derived by assuming steady-state conditions; summing
over all species; and using ∑

i

yi = 1. (6.5)

A comparison with the bulk equation for the mass balance reveals that no nett
mass is transported via diffusive mass fluxes∑

i

~Ji =
∑
i

ρyi~vd,i = 0. (6.6)

A similar constraint can be derived by multiplying the species mass balance with
the ratio of the charge over the mass qi/mi. Summing over all species and ne-
glecting time dependencies gives∑

i

[
∇ ·
(
ρqiyi
mi

~u

)
+∇ ·

(
ρqiyi
mi

~ui

)]
=

∑
i

qiωi

∇ ·
∑
i

ρqiyi ~vd,i
mi

= ∇ ·
∑
i

niqi ~vd,i = ∇ ·~jext = 0, (6.7)

with ~jext the external current density. This relation for the current density has
been derived by assuming quasi-neutrality

σc =
∑
i

qiyi
mi

= 0. (6.8)

6.2 Diffusive velocities

This section covers the calculation of the diffusive velocities. Additionally, it is
shown that the solution is guaranteed to conserve mass and charge both mathe-
matically and numerically. First two properties are discussed that must be satisfied
for any type of system. In the remainder of this chapter a bold font will be used
to represent the vector that contains the properties of a given quantity for all
species. When this property has a direction, like the velocity, the vector contains
only one component of that property. The diffusive driving forces and the diffusive
velocities must satisfy the following properties [6, p. 33]
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• yTv=0 as shown in (6.6). Note that a superscript T is used to indicate the
transpose. In other words: the diffusive velocities do not cause a net mass
transport.

• 1Td=0 with 1 representing a vector containing ones. Thus the sum of the
diffusive driving forces is zero.

In section 6.A the Stefan-Maxwell equations have been derived from the momen-
tum balance. The driving forces are given by

−
∑
j

~dij =
∑
j

zizj
Dij

(~ui − ~uj)

= −∇zi −
1

p
(zi − yi)∇p+

ρyi
p

(~ai − ~a)

+
∑
j

(βij∇ lnTj − βji∇ lnTi)

= −~dord,i − ~dpres,i − ~dforced,i − ~dthermal,i, (6.9)

where the terms on the bottom row represent the driving forces for ordinary diffu-
sion, pressure diffusion, forced diffusion and thermal diffusion, respectively. In this
section a simplified system is considered by neglecting pressure diffusion, forced
diffusion and thermal diffusion. The simplified system can thus be represented as∑

j

zizj
Dij

(~ui − ~uj) = −
∑
j

dij = −∇zi. (6.10)

In matrix form the system of equations is given by1

Fv = −d, (6.11)

with F the friction matrix and v the vector of diffusive velocities. The matrix
elements are given by

Fij =

{∑
j 6=i fij if i = j

−fij if i 6= j
, (6.12)

with fij the friction coefficient. It is given by

fij =
zizj
Dij

. (6.13)

The diffusion coefficients in a non-thermal mixture are given by [59, eq. 47]

Dij =
3k2
BTiTj

16pµΩ(1,1) (Tij)
, (6.14)

1 Note that the difference between the averaged velocities of the species is the same as the
difference between the diffusive velocities ~ui − ~uj = ~vd,i − ~vd,j .
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with Tij =
miTj+mjTi
mi+mj

. The diffusion velocities can be calculated from

v = −Dd, (6.15)

with D the symmetric multicomponent diffusion coefficient matrix. The matrix
D can not be calculated by inverting F, since F is singular. Giovangigli obtained
the following properties for these matrices [128, p. 78] [6, p. 33]:

• 1TF = 0 and F1 = 0. Thus the null space of F is 1.

• yTD = 0 and Dy = 0 with y a vector containing the mass fractions.

Giovangigli obtains the following properties from the theory of generalized inverses
[128, p. 79] [6, p. 34]

FD = I− y1T

yT1
(6.16)

DF = I− 1yT

yT1
. (6.17)

The matrices F and D can be regularized with [6, p. 37] [128, p. 87-88]

F̃ = F + αyyT (6.18)

D̃ = D + β11T, (6.19)

with α and β regularization constants and F̃ and D̃ the generalized inverses. The
product of these matrices is given by [128, p. 88] [129, p. 253]

F̃D̃ = FD + βF11T + αyyTD + αβyyT11T

= FD + αβ
(
yT1

)2
= I− y1T

yT1
+ αβ

(
yT1

)2
. (6.20)

In the special case of αβ
(
yT1

)2
= 1 the property F̃D̃ = I is obtained. The

regularization constants can thus be related to each other via

β = 1/
(
α
(
yT1

)2)
. (6.21)

The same relation can be obtained for D̃F̃. In order to make the regulariza-
tion term αyyT of the same order of magnitude as the matrix elements

zizj
Dij

the

regularization constant is chosen as [6, p. 37] [28]

α = 1/max (Dij) . (6.22)

An alternative choice for the regularization constant is based on choosing the value
that is most suitable for the considered dynamical range of the diagonal elements
of F and yyT

βi =
Fii
y2
i

(6.23)

α =
√

min (βi) max (βi). (6.24)
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This choice for α makes sure that the regularization matrix αyyT is of the same or-
der of magnitude as the singular friction matrix F. The multicomponent diffusion
matrix can be calculated from

D =
(
F + αyyT

)−1 − 1

αuTy2
11T. (6.25)

The diffusive mass flux is thus obtained by multiplying (6.15) by the species mass
density

J = ρYD∂z. (6.26)

with Y = diag (y). In the next section the conversion from pressure to mass
fractions is discussed.

6.2.1 Conversion matrix M̃

Giovangigli observed that a straightforward conversion from the mole fractions
to the mass fractions leads to a singular matrix M. He solved the problem by
redefining the average mass as [128, eq. 4.4,4.6] [6, p. 35-36]

m =
σm∑
i yi/mi

=

∑
i ximi

σm
, (6.27)

with σm =
∑
i yi =

∑
i xi =

∑
i zi. Such a definition is required since σm = 1 is

not explicitly applied to the system. All mass fractions are treated as independent
variables. The consequence is that σm = 1 may not be satisfied exactly. By
following a similar strategy the conversion from pressure to mass fractions can be
regularized. In this case the temperature is redefined as

T =

∑
i xiTi
σm

=
m

σm

∑
i

yiTi
mi

= σm
∑
i

Ti
zi
. (6.28)

The pressure fraction is given by

zi =
Tiyi
mi

m

T
= σm

yiTi
mi

1∑
j yjTj/mj

. (6.29)

The derivation of the conversion of the gradient is discussed in section 6.B. The
result is

∂zi = zi
∑
j

(
δij +

1

σm
(yj − zj)

)
y−1
j ∂yj +

zi
σm

∑
j

zj∂ ln
Ti
Tj
. (6.30)

In matrix form this equation can be expressed as

∂z = M̃∂y + Tz

= M̃∂y + TM̃y, (6.31)
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with

M̃ = Z
[
I + 1/σm1 (y − z)

T
]

Y−1

Tij =
ze
σm

∂ ln
Th
Te

(σij − σie) , (6.32)

with Z = diag (z) and Y = diag (y). The matrix M̃ is the same as the one derived
by Peerenboom [6, p. 36] if zi is replaced by xi. The matrix T was obtained by
considering a two-temperature plasma. In that case the only non-negative terms
in the summation originate from Ti 6= Tj . The summation is thus replaced with

zi
σm

∑
j

zj∂ ln
Ti
Tj

=

{
zi
σm ∂ ln Th

Te
ze i 6= e

− ze
σm ∂ ln Th

Te

∑
j 6=e zj i = e

(6.33)

Since 1T∂z = 0 the matrices M̃ and T should satisfy 1TM̃ = 1T and 1TT = 0T.
From the definition of T it is apparent that

1TT = 0T, (6.34)

which indicates that a gradient in the temperature difference does not influence
the validity of 1T∂z = 0T. For M̃ the proof is given by

1TM̃ = zT
[
I + 1/σm1 (y − z)

T
]

Y−1

=
[
zT + 1/σmσm (y − z)

T
]

Y−1

= yTY−1 = 1T. (6.35)

Note that if the mixture temperature in (6.28) was not corrected with the factor
σm the conversion matrix would be given by M = zT

[
I− 1zT

]
Y−1. In that case

1T is a null vector2 and M would be a singular matrix.

6.2.2 Ambipolar diffusion

Previously, only ordinary diffusion was included in the driving forces. For mixtures
involving charged species the driving forces should also account for forced diffusion
as [6, p. 49-50] [29]

d = ∂z− ρcEext

p
− ρcEamb

p
, (6.36)

with ρc,i = niqi, Eext the external electric field and Eamb the ambipolar electric
field. The diffusive velocities are thus given by

v = −D

(
∂z− ρcEext

p
− ρcEamb

p

)
. (6.37)

2A null vector is obtained when 1TM = 0T is valid.



124 Chapter 6. Stefan Maxwell equations

The diffusive fluxes should now satisfy the additional constraint

jext = ρc
Tv = σEext

= −ρcTD∂z + ρc
TDρc

Eext

p
+ ρc

TDρc
Eamb

p
, (6.38)

with σ = ρc
TDρc/p the electrical conductivity. Therefore the ambipolar field

must satisfy
Eamb

p
=
ρc

TD∂z

ρcTDρc
. (6.39)

Using this relation the diffusive velocities can be rewritten to

v = −
(

D− Dρcρc
TD

ρcTDρc

)
∂z + Dρc

Eext

p

= D̂∂z + Dρc
Eext

p
, (6.40)

with D̂ the ambipolar diffusion matrix. The ambipolar diffusion matrix is singular,
since it is designed to carry no nett current. Left multiplication with ρc

T indeed
returns the null vector. The matrix should thus be regularized with an additional
term. The additional regularization term is given by γrrT with ri = qi/mi. The
regularization constant is chosen as γ = 105rTDr/rTr2. Peerenboom [6, p. 50]
wrote the total diffusive mass flux as a function of the mass fractions for a plasma
in local thermodynamic equilibrium (LTE). The same formalism is followed to
write the diffusive mass flux for plasmas in non-LTE (NLTE) as

J = −ρY
(
D̂M̃− β11T + γrrT

)
∂y + ρY

(
D̂TM̃ + Dρc1

TEext

p

)
y, (6.41)

where the dot product 1Ty has been added. Since the sum of the mass fractions
is equal to one the solution is not modified.

6.2.3 Mass and charge conservation

Previously Peerenboom showed that mass and charge are conserved numerically
for the LTE system. In this section the prove is extended to the NLTE system.
Since parts of the prove overlap a shorter version is given here. Mass and charge
are not necessarily conserved in general since 1∂y = 1 and rT∂y = 0 are not
directly enforced. This section will demonstrate that this is a property of the
system. The summed mass and charge balances are given by [6, p. 53-54]

∇ · (ρ~uσm)−∇ · (Dm∇σm) = 0

∇ · (ρ~uσc)−∇ · (Dc∇σc) = 0, (6.42)

with Dm = ρβσm and Dc = γρc
Tr. The absence of any sources in these equations

implies that σm and σc are conserved quantities. In other words if σm = 1 and
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Figure 6.1: Stencil used for discretization. C,W and E denote the central, west
and east nodal grid points, respectively. The west and east cell interfaces are
denoted by w and e.

σc = 0 are satisfied on any location these conditions are also satisfied anywhere
else.

Similar expressions can be obtained for the discretized equations. For the grid
shown in figure 6.1 the discrete equation for the mass fraction vector is given by

ACyC = AWyW + AEyE + sC∆x, (6.43)

with capital subscripts indicating nodal points and the letters w and e are used
to represent points on a boundary. In practice the system is ill-conditioned. For
that reason the following pre-conditioning step is used [6, p. 27-28]

RACC−1x = Rb ↔ Ãx̃ = b̃, (6.44)

with Ã = RAC, C = diag (mi/mH), mH the mass of a hydrogen atom and
R = diag (1/ (AC)ii). The matrix C−1 can be considered as a correction for the
differences between the mass of the heavy particles and the mass of the electron.
For the exponential scheme the discretization matrices are given by Peerenboom
as [6, p. 19-21]

AW =
1

δxw
ΓwB (−Pw) (6.45)

AE =
1

δxe
ΓeB (Pe) (6.46)

AC = AW + AE , (6.47)

with the flux diffusion matrix Γx = ρYxD̂xM̃x, subscript x indicating either w or
e, Px = ρuxΓ

−1
x /δxx the Peclet matrix and B (P) the Bernoulli function3. Dis-

crete mass and charge conservation are satisfied if 1T and rT are left eigenvectors

3 The scalar Bernoulli function is given by B (z) = z
exp z−1

. By diagonalization of the Peclet

matrix the scalar function can be applied to the eigenvalues on the diagonal.
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of the discretized system. Peerenboom [6, p. 40-42] used P ∝ Γ−1 to show that
an eigenvector of Γ is also an eigenvector of P. Additionally, a matrix contain-
ing the eigenvectors of P appears in the diagonalization process of B (P). Thus
an eigenvector of P is also an eigenvector of B (P). Using these statements a
multiplication of 6.43 with 1T gives

amC σ
m = amE σ

m + amWσ
m, (6.48)

with amx discretization coefficients. Since amC = amE + amW and amx > 0 this is an
interpolation. On the wall σm = 1 is satisfied. Applying the discrete maximum
principle shows that σm is valid on all grid points. A similar procedure can be
followed to demonstrate this property for charge conservation. The flux diffusion
matrix has the eigenvector 1T based on

1TΓ = 1TρY
(
D̂M̃− β11T + γrrT

)
= ρyT

(
D̂M̃− β11T + γrrT

)
= ρyTD̂M̃ + ρβσm1T + γρσcrT = βσm1T. (6.49)

The eigenvector corresponding to charge conservation can be derived as

rTΓ = rTρY
(
D̂M̃− β11T + γrrT

)
= ρc

T
(
D̂M̃− β11T + γrrT

)
= ρc

TD̂M̃− βρσc1T + γρc
TrrT = γρc

TrrT. (6.50)

Both derivations use charge conservation in the last step. In practice charge
is not conserved perfectly due to the finite precision. It is observed that the
term proportional to σc in both derivations is the smallest of the three listed
terms. Relatively the terms are much smaller than 10−16 in comparison to ρβσm1T

and γρc
TrrT. Using charge conservation in the derivation is thus also allowed

numerically. The term ρyTD̂MT can reach a relative contribution in the range of
10−10- 10−12 and therefore does not vanish numerically. Additionally, the relative
contribution of ρc

TD̂M is in the order of 10−16. These contributions are random
and therefore are expected to add a net contribution of zero over many iterations.
However, the consequence of these terms not being smaller than 10−16 is that
mass and charge conservation is not satisfied up to 10−16.

6.3 Diffusive mass fluxes

The previously presented approach can become numerically unstable in the limit
of vanishing mass fractions. This is caused by the fact that the elements of Fij
are proportional to xixj . If the density of species i approaches zero, the product
xixj vanishes as well. The matrix F as well as the regularization term αyyT then
both contain a row and a column with only zeros. The matrix is thus singular and
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cannot be regularized. Giovangigli [129, p. 256] suggested to rewrite the system
to (

F̃ρ−1Y−1
)

(ρYv) ≡ H̃J = −d. (6.51)

The elements of the non-regularized matrix H can then be derived from FρY−1

and are given by

Hij =

{
− m
mj

xi
ρDij

i 6= j∑
l 6=j

m
mj

xl
ρDlj

i = j
. (6.52)

The matrix elements using this alternative formulation are now only dependent
on a single molar fraction. In the event of a vanishing species only a single matrix
element will be equal to zero rather than an entire row or column.

The mass fluxes can be obtained from the system

J = −L̃d. (6.53)

Since the matrix H is singular, a regularization procedure is required again to
obtain L. From the properties L = ρYD and H = Fρ−1Y−1 it is apparent that
the left null space of both H and L is 1T and the right null space is y. The
regularized matrices are thus given by [129, p. 258]

H̃ = H + αy1T (6.54)

L̃ = L + βy1T. (6.55)

The regularization constants are related to each other via

H̃L̃ = I− y1T/yT1 + αβy1TyT1. (6.56)

The matrices H̃ and L̃ are thus true inverses of each other when β = 1/
(
α
(
yT1

)2)
.

An appropriate choice for the regularization constant is α = 1/ [ρmax (Dij)].
If the mixture contains charged species a correction for the ambipolar field

must be taken into account. The current is obtained from

jext = rTJ = σEext

= −rTL∂z + rTLρc
Eext

p
+ rTLρc

Eamb

p
, (6.57)

therefore the ambipolar field is given by

Eamb

p
=

rTL∂z

rTLρc
. (6.58)

This choice introduces another singularity in

L̂ =

(
L− Lρcr

TL

rTLρc

)
. (6.59)
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The singularity can be removed by regularizing with γρcr
T. The regularized mass

flux can therefore be expressed as

J =
(
L̂M̃− βy1T + γρcr

T
)
∂y +

(
L̂TM̃ + Lρc1

TEext

p

)
y. (6.60)

Using this formulation mass and charge conservation can also be proven for the
matrix Γ = L̂M̃. By following a similar strategy as in section 6.2.3 the only
proof that should be delivered is that 1T and rT are left eigenvectors of Γ. Mass
conservation is obtained from

1TΓ = 1T
(
L̂M̃− βy1T + γρcr

T
)

= 1TL̂M̃− βσm1T + γρσcrT = −βσm1T. (6.61)

Similarly charge conservation is derived from

rTΓ = rT
(
L̂M̃− βy1T + γρcr

T
)

= rTL̂M̃− βσc1T + γrTρcr
T = γrTρcr

T (6.62)

6.4 Numerical oscillations

The algorithm presented in the previous sections contains a few favorable proper-
ties, like the accurate conservation of mass and charge. However, experiments in
1D and 2D models reveal that the algorithm is not stable. In order to investigate
the observed numerical instabilities a simplified 1D system is considered. The
considered system neglects the bulk flow, time variations and reactions. It can be
described by

∇ · ρyi~vd,i = 0. (6.63)

Dirichlet boundary conditions are used on both sides of the Cartesian grid. For
such a system the following observations are made:

• In neutral mixtures the instability does not occur.

• In charged mixtures at least two ions and an electron are required to see the
oscillation.

Two systems are investigated. The first system that is investigated contains the
following species Ar, Ar+ and e. The ion is implemented twice with exactly
the same specifications. The second system contains H, H+, Ar, Ar+ and e.
The considered boundary conditions for these two systems are given in table 6.1.
Intermediate results of simulations that are diverging are given in figure 6.2 and
6.3. Initially the simulations seem to converge. However, from a given iteration
oscillations start to appear. These oscillations typically continue to grow until
they violate 0 ≤ y ≤ 1. For the 4 species Ar mixture this is shown in figure 6.4.
The difference between the Ar ions suddenly increases while the mass and charge
conservation remain accurate. The condition number of the system matrix also
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Table 6.1: The boundary conditions that have been considered on the left (yl)
and right (yr) sides of the grid for the Ar and the Ar-H systems. The boundary
condition for the electrons is not mentioned, because all boundary conditions are
automatically modified to satisfy mass and charge conservation.

yl yr yl yr
Ar 0.8 0.6 H 0.2 0.4
Ar+ 0.1 0.2 H+ 0.25 0.05
Ar+ 0.1 0.2 Ar 0.35 0.45

Ar+ 0.2 0.1

0 0.5 1 1.5 2
r(m) #10-3

0

0.2

0.4

0.6

0.8

y

Ar

Ar+

Ar+

e

Figure 6.2: A diverging simulation for
a mixture containing Ar, two species
of Ar+ and an electron. The pres-
sure is 10−2 Pa and the number of
grid points is 200. Basic collision inte-
grals (rigid sphere and Coulomb mod-
els) were used to obtain this result.

0 0.5 1 1.5 2
r(m) #10-3

0
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y
H

H+

Ar

Ar+

e

Figure 6.3: A diverging simulation for
a mixture containing H, H+, Ar, Ar+

and an electron. The pressure is 80 Pa
and the number of grid points is 100.

remains stable at the initial stages of the instability. It is unclear what is causing
these oscillations. The oscillations can be prevented by applying under-relaxation.
In the ideal case an alternative solution can be found that does not increase the
calculation time. In figure 6.5 the under-relaxation factor has been reduced and
the spatial accuracy of mass and charge conservation is shown. The figure shows
that mass and charge are conserved up to 5× 10−14 and 5× 10−12, respectively.
However, the mass and charge fluxes show maximum errors in the order of 10−8

and 10−9. In the next sections the influence of the transport coefficients, the
number of grid points, the interpolation, the formulation of the diffusive fluxes
and the regularization procedure are investigated.
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0 100 200 300 400 500
iterations

10-20

10-10

100

1010

1020 residue
mass
charge
cond(A)
|y

ion1
-y

ion2
|

Figure 6.4: For a grid containing 100
points and a gas pressure of 102 the
evolution of the residue of the mass
fractions; mass and charge conserva-
tion; the condition number of the sys-
tem matrix (Ay = b); and the differ-
ence between the ion mass fractions
are logged as a function of the itera-
tion number.

0 0.5 1 1.5 2
r(m) #10-3
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Figure 6.5: By reducing the urf
to 0.8 and using the conditions
as described in 6.4 a converged
simulation is obtained. The ac-
curacy of the mass (|1 −

∑
i yi|,

) and charge constraints
(|
∑
i yiqi/mi|/|

∑
q<0 yiqi/mi|, )

as well as the mass
(|
∑
i yivi|/|

∑
vi<0 yivi|,

) and charge
(|
∑
i yiqi/mivi|/|

∑
qivi<0 yiqi/mivi|, )

flux are shown.

6.4.1 Pressure and collision integrals

Originally the system was investigated using PLASIMO’s basic collision integrals.
These are the rigid sphere, Coulomb and Langevin models. Currently more ac-
curate collision integrals are available. It is observed that using the improved
collision integrals the models are more stable. In principle both sets of collision
integrals provide a valid mathematical system of equations. The fact that one set
converges and the other diverges indicates that the solution procedure is not ro-
bust. The improved stability is illustrated in table 6.2 where the condition number
of the local diffusive flux matrix and the system matrix are given as a function
of pressure for the H-Ar mixture. These values have been obtained in the first
iteration after initializing the system linearly. The table shows that for decreasing
pressures the condition numbers increase. All of the listed simulations using the
new collision integral defaults converge. Additionally, all calculations using the
old collision integral defaults display larger condition numbers than the improved
collision integral defaults. None of the tabulated simulations using the old colli-
sion integral defaults converge. The condition number does not decrease further
for higher pressures using the old defaults.

A comparison between the numerical values of the collision integrals of both
sets is given in table 6.3. Interestingly most collision integrals only differ in the
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Table 6.2: The maximum condition number of the spatially dependent diffusive
flux matrix is listed. Additionally, the condition number of the full system is listed
(Ãy = b̃). Both quantities are tabulated as a function of pressure for the old and
the improved set of collision integrals. The number of grid points is 200 and the
urf is set to 0.9. A constant temperature of 5000 K is used. The H-Ar system is
initialized linearly and the condition numbers are obtained in the first iteration.

CI New CI old

p(Pa) cond (Γ) cond(Ã) cond (Γ) cond(Ã)
10 2.88× 105 1.21× 108 3.64× 106 2.68× 108

102 2.32× 105 9.15× 107 3.04× 106 2.18× 108

103 1.76× 105 6.24× 107 2.44× 106 1.67× 108

104 1.23× 105 3.71× 107 1.85× 106 1.19× 108

105 7.81× 104 1.81× 107 1.27× 106 7.42× 107

108 2.16× 104 2.42× 106 6.13× 105 4.41× 107

order of a factor 3-4 or less. The only exception is the H–H+ interaction which is
significantly larger. This is related to neglecting the contribution from resonant
charge exchange in the old default. By including charge exchange in the old de-
fault the collision integral is modified to 2.80× 10−15 m3/s. The ratio New/old is
than modified to 1.19. This modification reduces the condition numbers and guar-
antees a stable simulation for p ≥ 100 Pa. The reduced condition numbers may
be responsible for the stabilized simulation. Alternatively, modifying the pressure
or the collision integrals is equivalent to modifying the diffusion coefficients. The
charged-charged collision integrals depend on the pressure via the Debye length
while collision integrals of other interaction types are independent of the pressure.
Decreasing the pressure increases the Debye length and therefore increases the
charged-charged collision integral. The result is that the binary diffusion coeffi-
cient for charged-charged interactions is increasing at a lower rate for decreasing
pressures than diffusion coefficients for other types of processes. The effect is that
the gradient of the ions is changed. In the H-Ar mixture decreasing the pressure
has the effect of increasing the gradients of the ions. Discretization errors may
therefore be emphasized. Additionally, the discretization scheme is set up to con-
serve mass and charge, however, there are no limitations set up for the individual
mass fractions. Therefore the scheme does not guarantee that these oscillations
can not occur. Possibly the mass flux must be limited in a similar way the source
terms are limited using source term linearization [6, p. 21-26].

6.4.2 Grid size and interpolation

The pressure variation could be interpreted as a modification of the solution. Mod-
ified gradients of the mass fractions may require a different level of discretization.
In this section the effect of the grid size and the interpolation from the nodal
points to the interfaces are discussed.

One of the effects of the pressure variation that was not discussed previously
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Table 6.3: The collision integrals using the new and the old defaults at 5000 K a
pressure of 100 Pa and the mass fractions corresponding to the right boundary in
table 6.1.

Interaction CI New(m3/s) CI Old (m3/s) New/Old
H–H+ 3.3366e-15 2.4267e-16 13.75
H–Ar 5.0126e-16 5.0126e-16 1.00

H–Ar+ 1.6752e-16 5.0126e-16 0.33
H–e 2.7260e-14 7.0938e-15 3.84

H+–Ar 2.2452e-16 5.0139e-16 0.45
H+–Ar+ 1.8836e-13 5.0494e-13 0.37

H+–e 8.2526e-12 2.1376e-11 0.39
Ar–Ar+ 6.7230e-16 2.2150e-16 3.04

Ar–e 1.9465e-15 1.9465e-15 1.00
Ar+–e 8.2504e-12 2.1371e-11 0.39

is the stability. By continuously decreasing the pressure eventually the H-Ar and
the Ar simulation are getting unstable. The effect of the variation of the number
of grid points, n, on the lowest pressure for which a stable result can be obtained
is given in table 6.4. The table shows that for increasing n more conditions are
stable. In all cases the new collision integral defaults provide a stable result in a
larger pressure range. The increased stability observed in table 6.4 can possibly
be attributed to a more accurate interpolation due to the finer meshes.

One of the main concerns in the current discretization scheme is the interpola-
tion of the matrix Γ from the nodal points to the interfaces. Currently the mass
fractions on the nodal points are used to calculate Γ. The matrix on the interface
is then obtained from a linear interpolation from the calculated matrices on the
nodal points. Such a procedure can be inaccurate since the matrices depend non-
linearly on the mass fractions. A good alternative however is not readily available.
One possibility is the usage of harmonic interpolation. For matrices it is given by

Γ1/2 = 2
(
Γ−1

0 + Γ−1
1

)−1
. (6.64)

Alternatively the mass fractions are linearly or cubically interpolated to the inter-
faces. The interpolated mass fractions can then be used to calculate the diffusive
flux matrix locally. An interesting test case is provided by the Ar mixture. The
mass fractions of the atom and the ions are almost linear. In such a case interpo-
lating the mass fractions cubically is expected to be a very accurate method. The
test is carried out with n = 100, r =2× 10−3 m, urf=0.9 and the old collision in-
tegral defaults. No difference in the condition number of the system matrix could
be observed between the four discussed interpolation methods. Additionally, all
four methods are unstable at p =102 Pa and stable at p = 2× 102 Pa. Note that
the solution of the Ar system does not depend on the pressure or the collision
integrals. The interpolation towards the interfaces is therefore not expected to be
the cause of the oscillations. The presence of such oscillations is not forbidden by
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Table 6.4: The variation of the lowest pressure for which a stable result can be
obtained as a function of the number of grid points n.

Ar CI new Ar CI old H-Ar CI new H-Ar CI old
n p(Pa) p(Pa) p(Pa) p(Pa)
40 1× 10−2 4× 105 2× 104 unstable
100 1× 10−10 2× 102 9× 101 unstable
200 1× 10−10 3× 10−2 1× 10−1 unstable
700 1× 10−10 3× 10−2 1× 10−1 1× 105

the coupled exponential scheme. This can be understood from

yC = A−1
C (AWyW + AEyE + sC∆x) (6.65)

=
(
I + A−1

W AE

)−1
yW +

(
I + A−1

E AW

)−1
yE + A−1

C sC∆x, (6.66)

with AC = AW + AE . Even in the absence of any sources it is not guaranteed
that yW,i ≤ yC,i ≤ yE,i or yE,i ≤ yC,i ≤ yW,i always holds, since AW and AE

have non-zero off-diagonal elements. Note that the sum of the mass fractions still
remains an interpolation. However, when there is no flow and the number of grid
points is increased the approximation AW ≈ AE is more accurate and (6.65)
approaches the interpolating function yC = 1

2yW + 1
2yE . Adding more grid points

can possibly act as a restriction on the non-linear behavior of the diffusive flux
matrices.

6.4.3 Alternative formulations and regularizations

The calculations in the previous sections all used the formalism based on the
diffusive velocities. The effect of the stability on the system of the description
based on the diffusive mass fluxes is investigated. Alternatively the system is set
up in terms of the mole fractions. Another option is to reduce the dimension of the
system of equations. Additionally, a few regularization strategies are considered.

In terms of mole fractions the equations (6.6) and (6.7) are still valid. In matrix
form the total mass is then given by

1TΓ = 1TρY
(
D̂ + β11T + γrqT

)
= ρyTD̂ + ρβσm1T + γσczq

T = ρβσm1T, (6.67)

and the total charge is given by

rTΓ = rTρY
(
D̂ + β11T + γrqT

)
= ρc

TD̂ + βσcz1
T + γρc

TrqT = γρc
TrqT, (6.68)

with σcz =
∑
i niqi = ρσc. Multiplication with the gradient of the pressure frac-

tions reveals the desired conserved properties. Note that when using pressure
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fractions charge conservation is only guaranteed for a single temperature mixture
as shown in appendix 6.C.

The previous implementations in PLASIMO considered a reduced system of
equations. The reduction was achieved by applying mass and charge conserva-
tion explicitly. The most important drawback of such a procedure is the slow
convergence rate as was already observed by Janssen [130, p. 51]. In spite of
these remarks, later versions of the implementation of self-consistent diffusion in
PLASIMO, see for example Hartgers [131, p. 85,86] still applied the mass and
charge constraint explicitly. The electron flux can be dealt with analytically by
expressing it in terms of the other species. The sum of all charges is given by

rTJ =
∑
i

ri

Γie∇ye +
∑
j 6=e

riΓij∇yj

 . (6.69)

The gradient of the electron species is then given by

∇ye =
−1∑
i riΓie

∑
i

∑
j 6=e

riΓij∇yj . (6.70)

The matrix elements of the reduced system are then given by

Γ∗ij = Γij − Γie

∑
k rkΓkj∑
k rkΓke

i 6= e j 6= e, (6.71)

where the electrons are included in k. The reduced system can be regularized with

Γ̃∗ = Γ∗ + β1n1T
n , (6.72)

with un,i = 1 − qi
qe
me
mi

. Application of this vector to the non regularized system

gives 1T
nΓ∇y = −Je − me/qeje = 0. The system can be reduced further by

applying mass conservation on neutral species m. Mass conservation is given by

1TJ =
∑
i

Γie∇ye + Γim∇ym +
∑
j 6=e,m

Γij∇yj


=

∑
i

−Γie

∑
j 6=e riΓij∑
k riΓke

∇yj + Γim∇ym +
∑
j 6=e,m

Γij∇yj


=

∑
i

([
Γim − Γie

∑
k rkΓkm∑
k rkΓie

]
∇ym+

∑
j 6=e,m

[
Γij − Γie

∑
k rkΓkj∑
k rkΓke

]
∇yj

 , (6.73)

with i and j not equal tom and e. By introducing sj =
∑
k Γkj and wj =

∑
k rkΓkj

the gradient can be written as

∇ym = − sj − sewj/we
sm − sewm/we

∇yj . (6.74)
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Table 6.5: The condition numbers of the diffusive flux matrix and the system ma-
trix are shown for the Ar mixture. The following settings are used: r = 22× 10−3,
urf=0.9, n = 100 and the old collision integral defaults are used. The reported
values are obtained in the first iteration.

method p(Pa) cond (Γ) cond(Ã)
Fv (6.41) 100 3.41× 108 2.11× 107

Fv (6.41) 200 3.23× 108 1.87× 107

HJ (6.60) 100 4.31× 109 1.01× 108

HJ (6.60) 200 4.30× 109 9.41× 107

Fv in z (6.67) 100 7.96× 104 6.18× 105

Fv in z (6.67) 200 7.42× 104 5.76× 105

Γ∗ (6.71) 100 8.98× 106 1.52× 108

Γ∗ (6.71) 200 8.98× 106 1.52× 108

Γ∗∗ (6.75) 100 1.15× 107 2.14× 108

Γ∗∗ (6.75) 200 1.08× 107 2.00× 108

The matrix elements of the doubly reduced system can then be expressed as

Γ∗∗ij = Γij − Γiewj/we − (Γim − Γmewm/we)
sj − sewj/we
sm − sewm/we

. (6.75)

A comparison of the various formulations is given in table 6.5. The table
shows the condition numbers that are observed in the first iteration using the same
initialization. The results are reported at two different pressures. All simulations
at 100 Pa do not converge. There is only one simulation that does not converge
at 200 Pa. This model uses Γ∗∗(6.75). Additionally, the model Γ∗ (6.71) can not
reduce the residue to values lower than 10−8 while the other converging models
at least obtain 10−10. These results are a confirmation that applying the charge
or the charge and mass constraint analytically leads to large numerical errors.
For these models the condition number of the system matrix indeed reports the
largest values. Interestingly the condition number of Γ is larger for the methods
based on Fv and HJ. This indicates that the condition number of Γ is not a
direct predictor of the stability of the model. The condition numbers using HJ
are larger in comparison with Fv. In the absence of vanishing mass fractions
it seems to be beneficial to use Fv. The lowest values of the condition number
of the system matrix are obtained using a description that does not convert the
pressure fractions to the mass fractions. A possible advantage of such a method
is the absence of a mismatch in the fractions between the electrons and the heavy
particles which can be induced by the difference in the mass. Using the pressure
fractions the condition number of the system matrix for a case that is not working
is in the order of 105 while the condition number using HJ almost reaches 1× 108

for a case that is working. This suggests that the condition number of the system
matrix is also not a direct indicator for stability.

The method chosen for the regularization can also influence the stability of
the model. Two cases are investigated for the charge regularization. The first one
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Table 6.6: The condition numbers of the various regularization strategies. The
values are obtained in the first iteration using the same initialization. The HAr
mixture uses the new CI default while the Ar results use the old CI defaults. The
remaining settings are r = 22× 10−3, urf=0.9, n = 100.

mixture p(Pa) method cond (Γ) cond(Ã)
Ar 100 γ1 3.41× 108 2.28× 107

Ar 100 γ2 1.00× 109 5.08× 107

H-Ar 5000 γ1 1.11× 105 3.53× 107

H-Ar 5000 γ2 1.36× 105 3.49× 107

is the standard choice given by γ1 = 105rTDr/
(
rTr
)2

. The second method uses

N = diag (D) / diag
(
rrT
)

and γ2 =
√

NminNmax. The condition numbers of both
methods are given in table 6.6. In the Ar mixture the condition numbers increase
when the γ2 is used. In the H-Ar mixture the condition number of Γ increases
while the condition number of Ã decreases. However, the differences in the H-
Ar mixture are small. There is no difference observed in stability between both
regularization methods. Although γ2 produces slightly higher condition numbers
it has the advantage that is does not depend on an empirical factor. Such a factor
may be inappropriate in other cases.

6.5 Conclusions and recommendations

The algorithm described by Peerenboom is extended from one-temperature mix-
tures to two-temperature mixtures. The current algorithm can in specific cases
become unstable due to diverging oscillations in the calculated mass fractions.
The oscillations are not observed in neutral mixtures or mixtures containing an
electron and only one ion. In principal the oscillations in mixtures with multiple
ions can be avoided by using a lower urf value or more grid points. Such solutions
increase the time required to run the model and are therefore preferably avoided.
Ideally a stable simulation is obtained in another way. It has been observed that
changing the pressure or the collision integrals influences the stability of the model.
Changing either parameter ultimately means that the diffusion coefficients are al-
tered. This can lead to different solutions. The gradients of the mass fractions
are changed which may require a different number of grid points. It is indeed
observed that increasing the number of grid points increases the stability of the
model. However, in the tested Ar model the mass fractions are almost linear and
independent of the pressure or collision integrals. In this case it is still observed
that for decreasing pressure the simulation is unstable. Possibly the calculation of
the nodal points yC is more stable when AW ≈ AE . This approximation is more
accurate when more grid points are used. In that case the matrix A is approaching
a stable interpolating matrix.

Various other attempts to minimize the effect of the oscillations were not suc-
cessful. Experiments using descriptions other than Fv were considered. A de-
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scription based on the mass fluxes using HJ is supposed to avoid singularities
when mass fractions are approaching or reaching zero. The tested mixtures show
no beneficial effects for mass fractions that are not approaching zero. Changing
the description from mass to pressure fractions guarantees that the fractions of
the ions have a more similar magnitude as the fractions of the electrons. Such a
method may reduce the impact of rounding errors. A drawback is that the method
does not ensure charge conservation. The simulations show that despite a change
in the condition number of multiple orders of magnitude in the matrices Γ and
Ã the model does not gain stability. Imposing the mass and charge constraints
analytically also did not avoid the oscillations.

Other attempts that did not improve the model are related to changing the
interpolation method or changing the regularization constant. Interpolation is
required since the fluxes are evaluated on the interfaces instead of on the nodal
points. Interpolating the mass fractions to the interfaces using linear, harmonic
or cubic schemes and calculating the flux diffusion matrix on the interfaces had
no effect on the stability. Calculating the matrices on the nodal points and using
the same interpolation methods to interpolate the flux diffusion matrices towards
the interfaces also did not improve the stability. Changing the regularization
procedure only had a small impact on the condition number of the matrices Γ
and Ã. It seems that the condition number is not a direct measure of the model’s
stability. An interesting alternative approach is [129, p. 262-267] which avoids the
inversion of the system by using an iterative method. Flux limiters [132] may
also aid in preventing the oscillations. However, the flux limiter should still allow
the presence of minima or maxima in the coupled system, since these are not by
definition forbidden.

6.A Stefan-Maxwell equations

In principal the species velocities can be obtained from (3.19). An alternative set
of equations called the Stefan-Maxwell equations can also be used to calculate the
velocities. This set of equations is derived from the momentum balance. First the
LHS of the species momentum balance is rewritten as

∂ρyi~ui
∂t

+∇ · ρyi~ui~ui = ~ui

(
∂ρyi
∂t

+∇ · ρyi~ui
)

+ ρyi

(
∂~ui
∂t

+ (~ui · ∇) ~ui

)
= mi~uiωi + ρyi

(
∂~ui
∂t

+ (~ui · ∇) ~ui

)
. (6.76)

The bulk equation can be written in a similar form. In that case the first term
vanishes since it is equal to the continuity equation. Following Whitaker [57, eq. 40]
the bulk momentum equation (3.20) can be multiplied with the mass fraction yi
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and subtracted from the species momentum balance (3.19) to obtain

ρi

[
∂~vd,i
∂t

+ (~ui · ∇)~vd,i + (~vd,i · ∇) ~u

]
= ni 〈Xi〉 − yi

∑
j

nj 〈Xj〉 − ∇pi +∇ · τi

−yi∇ ·

∑
j

(−pjI + τj − ρyj~vd,j~vd,j)

+ ~Ri −mi~uiωi. (6.77)

The momentum source term can be written as an elastic diffusive term and an
inelastic reactive term [57, eq. 23, 51, 52] [59, eq. 5,8]

~Ri =
∑
j

(
p
zizj
Dij

(~uj − ~ui) + βij∇ lnTj − βji∇ lnTi

)
+mi~u

∗
iωi, (6.78)

with Dij the binary diffusion coefficient and βij a phenomenological coefficient
describing thermophoretic forces. Ramshaw [59, eq. 50] provides an expression
for βij in terms of the thermal diffusion coefficient. Using that conversion and
replacing zi with xi shows that the results are identical to the single temperature
result obtained by Hirschfelder et al. [34, eq. 7.4-48, 7.3-27]. Whitaker [57, eq. 48]
simplifies (6.77) with the following assumptions

• The terms related to time and spatial derivatives on the left hand side are
neglected. The source terms thus should add up to zero indicating that local
equilibrium is assumed.

• Viscosity is neglected.

• The diffusive stress ρyj~vd,j~vd,j describing the stress between the bulk and
species system is neglected.

• The reactive terms are neglected.

After dividing (6.77) by the pressure the following result can be obtained

−
∑
j

~dij =
ni
p
〈Xi〉 − yi

∑
j

nj
p
〈Xj〉 −

1

p
∇pi +

yi
p
∇p

+
1

p

∑
j

(βij∇ lnTj − βji∇ lnTi)

=
ρyi
p

(~ai − ~a)−∇zi −
1

p
(zi − yi)∇p

+
1

p

∑
j

(βij∇ lnTj − βji∇ lnTi) , (6.79)

with ~dij the driving forces, ~ai the force per unit of mass per unit of volume acting
on species i and zi the pressure fraction. The driving forces can be related to the
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velocity difference between the species. Ramshaw [59, eq. 8] obtains the following
result for a two-temperature plasma

−
∑
j

~dij =
∑
j

zizj
Dij

(~ui − ~uj) (6.80)

Whitaker describes the additional assumptions that are used in order to derive
(6.9). These are the usage of the dilute gas theory and the fact that the dif-
fusion coefficients are calculated by only considering the first Chapman-Enskog
approximation.

6.B Converting pressure to mass fractions

In this section the conversion from pressure fraction gradients to mass fraction
gradients is discussed. The pressure fraction is given by

zi =
Tiyi
mi

m

T
= σm

yiTi
mi

1∑
j yjTj/mj

. (6.81)

The gradient can be expressed as

∂zi = σm
Ti
mi

∂yi∑
j yjTj/mj

+
yiTi
mi

∑
j ∂yj∑

j yjTj/mj
+ σm

yi
mi

∂Ti∑
j yjTj/mj

−σm yi
mi

∂Ti(∑
j yjTj/mj

)2

∑
j

Tj/mj∂yj +
∑
j

yj/mj∂Tj

 . (6.82)

Dividing by zi gives

z−1
i ∂zi = y−1

i ∂yi +
1

σm

∑
j

∂yj + T−1
i ∂Ti

− 1∑
j yjTj/mj

∑
j

Tj/mj∂yj +
∑
j

yj/mj∂Tj

 . (6.83)

The last term can be rewritten to

− 1

σm
σm∑

j yjTj/mj

∑
j

(yjTj/mj) y
−1
j ∂yj +

∑
j

(yjTj/mj)T
−1
j ∂Tj


= − 1

σm

∑
j

zjy
−1
j +

∑
j

zjT
−1
j

 . (6.84)
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Putting this term back in (6.83) and multiplying with zi gives

∂zi = zi
∑
j

(
δij +

1

σm
(yj − zj)

)
y−1
j ∂yj

+ziT
−1
i ∂Ti −

zi
σm

∑
j

zjT
−1
j ∂Tj

= zi
∑
j

(
δij +

1

σm
(yj − zj)

)
y−1
j ∂yj +

zi
σm

∑
j

zj∂ ln
Ti
Tj
. (6.85)

6.C Charge conservation with pressure fractions

Using pressure fractions charge conservation is not guaranteed for all temperature
profiles. The conditions for which charge is conserved are derived in this section.

In terms of pressure fractions the total mass is given by

1TΓ∂z = 1TρY
(
D̂ + β11T + γrqT

z

)
∂z− 1TρYTM̃y

=
(
ρyTD̂ + ρβσm1T + γσczq

T
z

)
∂z− ρyTTM̃y

= ρβσm1T∂z− ρyTTM̃y, (6.86)

and the total charge is given by

rTΓ∂z = rTρY
(
D̂− β11T + γrqT

z

)
∂z− rTρYTM̃y

= ρc
TD̂∂z + βσcz1

T∂z + γρc
TrqT

z ∂z− ρT
c TM̃y

= γρc
TrqT

z ∂z− ρT
c TM̃y, (6.87)

with qz,i = qiT/Ti. These expressions are problematic since ρyTTM̃y 6= 0 and

ρT
c TM̃y 6= 0. Additionally, qT

z ∂z = 0 is only valid for specific temperature profiles.
This last statement can be understood by multiplying the charge vector with the
pressure gradient which gives

qi∇zi =
qiTi
T

∇ni
n

+
qini

n

∇Ti
T
− qiniTi

nT

∇p
p

=
qiTi
T

[
∇ni
n
− xi∇n

n

]
+
qixi
T

[
∇Ti − Ti

∇T
T

]
=

qiTi
T
∇xi + qixi

[
∇Ti
T
− Ti
T

∇T
T

]
. (6.88)

Multiplying this result with T/Ti amounts to

qiT

Ti
∇zi = qi∇xi + qixi

[
∇Ti
Ti
− ∇T

T

]
. (6.89)

In general the temperature gradients do not satisfy ∇ lnTi = ∇ lnT and thus mass
and charge conservation are not necessarily numerically guaranteed by using pres-
sure fractions. In the special case where all particles have the same temperature,
charge conservation is also guaranteed numerically.



Chapter 7

A conservative multicomponent
diffusion algorithm for ambipolar
plasma flows in local
thermodynamic equilibrium

7.1 Abstract

The usage of the local thermodynamic equilibrium (LTE) approximation can be
a very powerful assumption for simulations of plasmas in or close to equilibrium.
In general, the elemental composition in LTE is not constant in space and effects
of mixing and demixing have to be taken into account using the Stefan-Maxwell
diffusion description. In this article, we will introduce a method to discretize the
resulting coupled set of elemental continuity equations. The coupling between the
equations is taken into account by the introduction of the concept of a Péclet
matrix. It will be shown analytically and numerically, that the mass and charge
conservation constraints can be fulfilled exactly. Furthermore, a case study is
presented to demonstrate the applicability of the method to a simulation of a
mercury free metal halide lamp. The source code for the simulations presented in
this article is provided as supplementary material [133].

7.2 Introduction

The usage of the laws of local thermodynamic equilibrium (LTE) can be a powerful
tool in the numerical simulation of plasmas in or close to equilibrium. Plasmas that
can be described by such an approach are typically high power density discharges.
Typical applications are for example metal halide lamps [134, 135], arc welding

Published as: Kim Peerenboom, Jochem van Boxtel, Jesper Janssen and Jan van Dijk, A
conservative multicomponent diffusion algorithm for ambipolar plasma flows in local thermody-
namic equilibrium in Journal of Physics D: Applied Physics, 47, p425202
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and cutting [136] and re-entry applications [137, 138]. For such plasmas, LTE
simulations are advantageous as these simulations are less costly than non-LTE
(NLTE) simulations and require much less input data.

However, the standard LTE approach is often not accurate enough. As pointed
out by Rini [113], in general the elemental composition can vary significantly in
space due to the effects of mixing and demixing. Demixing occurs for example
in the arc discharge of a metal halide lamp. Due to temperature gradients, the
different elements demix, giving rise to color segregation [135]. To account for the
effects of mixing and demixing, elemental continuity equations have to be solved
and a formulation of the elemental diffusion fluxes is needed. In the past several
contributions to the description of these elemental diffusion fluxes have been made.
The derived continuity equations in these contributions are mostly in an open for-
mulation [134,139–141]; the elemental diffusion fluxes do not depend explicitly on
the gradients of the elemental concentrations, pressure and temperature. Rather,
they depend explicitly on the gradients of the species concentrations. Further-
more, for simplicity often the Fick diffusion formulation is used, for example in
lamp simulations [142]. However, this approach is not valid when there is no
dominant background gas. This is for example the case when studying elemental
demixing mercury free metal halide lamps, where the dominant mercury buffer
gas is absent.

Alternatively, Rini [113] derived a closed form of the equations based on the
Stefan-Maxwell diffusion formulation, where the diffusion fluxes depend on the
gradients of the elemental concentrations and the temperature. We agree with
his conclusion that using a closed formulation, by calculating the LTE transport
coefficients, is more advantageous from both a numerical and a physical point of
view. He presents calculations of the LTE transport coefficients obtained with the
new formulation. However, his elegant formulation is not exploited by solving the
elemental continuity equations to simulate the effect of elemental (de)mixing.

The goal of the present contribution is to present an approach to actually
solve the elemental continuity equations in ambipolar plasmas. To this end, we
will extend the closed formulation of Rini to mixtures including charged species
in section 7.3. To discretize the coupled elemental diffusion fluxes, a coupled
discretization scheme is introduced in section 7.4. It will be shown that this
scheme together with the closed formulation conserves mass and charge exactly,
without the need to apply the mass and charge constraints explicitly. Sections 7.5
and 7.6 present an analytical test model and a case study, respectively. The case
study describes the effect of elemental demixing in mercury free metal halide lamps
in the absence of a dominant background gas. Finally, conclusions are drawn in
section 7.7.

7.3 The equations for chemically reacting plasmas in LTE

7.3.1 Elemental and species definitions

In this article, the multi-component plasma contains a set of Ns different species.
This set of species is subdivided in a set of Ne pure chemical elements and a set
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of Nr = Ns − Ne combined species. The combined species have indices R =
{1, . . . , Nr}, while the elements have indices E = {Nr + 1, . . . , Ns}. The set S =
R∪ E contains the indices of all species.

7.3.2 Species continuity equations

The species continuity equations are given by:

∂

∂t
(ρyi) +∇ ·

(
ρ~vyi + ~Ji

)
= miωi, (7.1)

where ρ is the mass density, yi the mass fraction of species i, ~v the flow velocity,
~Ji the diffusive mass flux of species i, mi the mass of species i and ωi the den-
sity production rate of species i due to volume production processes. By their
definition, the mass fractions should obey the following mass constraint:∑

i∈S
yi = 1. (7.2)

In plasmas, the drift of charged particles in electric fields causes charge separations
over a typical length scale of the order of the Debye length λD. This charge sepa-
ration leads to an electric field, which can be calculated with Poisson’s equation.
In plasmas where λD is small, this approach is not very efficient, since it requires
excessively fine meshes. In these plasmas, it is more appropriate to consider the
electric field in the limit of vanishing Debye length. In that case, the plasma
becomes quasi-neutral and the electric field necessary to maintain this situation
is called the ambipolar field ~E. The assumption of an ambipolar plasma puts
extra constraints on the mass fractions. The quasi-neutrality constraint can be
expressed as: ∑

i∈S
riyi = 0, (7.3)

where ri = qi/mi is the ratio between the charge qi and the mass mi of species i.

The diffusive mass fluxes ~Ji are described by the mass flux formulation of the
Stefan-Maxwell equations [129], which can be deduced from the kinetic theory of
gases [143,144]. Alternatively, the Stefan-Maxwell equations can be obtained from
momentum conservation considerations [145]. The derivation in [145] corresponds
to the first order Sonine polynomial expansion [146] of the exact kinetic theory of
gases. In this case the Stefan-Maxwell equations for the mass fluxes are given by:∑

j

Hij
~Jj = −~di ⇔ HJ = −d, (7.4)

where H = (Hij) is the mass flux based friction matrix, J = (~Ji) is the vector

of diffusive mass fluxes and d = (~di) is the driving force for species i. Note that
the mass flux based formulation is needed in LTE calculations rather than the
velocity based formulation1 of the Stefan-Maxwell equations. The reason is that

1The velocity based calculation uses Fv = −d where F is the friction matrix and v is the
velocity vector. For more details, see Giovangigli [128, p. 76-79] or chapter 6 of this thesis.



144
Chapter 7. A conservative multicomponent diffusion algorithm for ambipolar

plasma flows in LTE

in LTE calculations, the species mass fractions can easily become very small for
low temperatures. For small mass fractions, the normal friction matrix becomes
singular and the velocity based formulation can not be used to obtain the diffusive
mass fluxes.

The Stefan-Maxwell equations (7.4) can be expressed in kinetic form as

~Ji = −
∑
j

Lij ~dj ⇔ J = −Ld, (7.5)

with L = (Lij), the multicomponent flux diffusion coefficient matrix. The matrices
H and L are singular and they are each others generalized inverses with prescribed
range and null space [147, section 2.5]. The coefficients of H are explicitly known,
while the elements of L are not. The elements of H are given by:

Hij =

{
1
ρ
σm
mj

∑
l 6=j

xl
Dlj if i = j,

− 1
ρ
σm
mj

xi
Dij if i 6= j,

(7.6)

with xi the mole fraction of species i and Dij the usual binary diffusion coefficient
[143,144]. For the species conservation equations, we need the formulation where
the diffusive mass fluxes are given in terms of the driving forces. Therefore, we
have to calculate the multicomponent flux diffusion matrix L from the friction
matrix H.

To keep the following discussion as simple as possible, we will take into account
ordinary concentration diffusion and the ambipolar electric field as driving forces,
in which case:

~di = ∇xi − zi ~E/p ⇔ d = ∂x− z ~E/p, (7.7)

with x = (xi) the vector of mole fractions, z = (zi) the vector of charge densities,
~E the ambipolar electric field and p the pressure.

The diffusive mass fluxes are also subject to constraints. The diffusive mass
fluxes should not transport net mass:∑

i∈S

~Ji = 0. (7.8)

The quasi-neutrality puts a constraint on the diffusive fluxes as well. To main-
tain quasi-neutrality, the current should be divergence-free. However, often the
stronger constraint of zero current is used. We will use the zero-current assump-
tion, which reads: ∑

i∈S
ri ~Ji = 0. (7.9)

This zero-current constraint can be used to remove the ambipolar electric field
from the Stefan-Maxwell equations. When we define the inner product in species
space as 〈a,b〉 =

∑
i aibi, the current constraint (7.9) can alternatively be written

as:
〈r,J〉 = 0. (7.10)
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By taking the inner product of r with (7.5), the following expression for the am-
bipolar field is obtained:

~E/p =
〈r,L∂x〉
〈r,Lz〉

. (7.11)

Substitution in expression (7.5) for the diffusion velocities gives:

J = −
(

L− (Lz⊗ r)L

〈r,Lz〉

)
∂x,

= −L̂∂x, (7.12)

where⊗ denotes the dyadic product in species space: a⊗ b = (aibj). As discussed,
the matrices H and L are singular. They are each others generalized inverses with
prescribed range and null space with the following properties:

HLH = H, LHL = L,

HL = I− y ⊗ u

〈y,u〉
, LH = I− y ⊗ u

〈y,u〉
,

where y is vector containing the mass fractions and u is a vector containing only
ones. The elements of L are not explicitly known and need to be calculated from H.
However, H is singular and non-invertible. The regularization can be established
by:

H̃ = H + αy ⊗ u, L̃ = L + α−1y ⊗ u. (7.13)

The matrices H̃ and L̃ are now each others true inverses: H̃L̃ = I, and the matrix
L can be calculated as:

L = (H + αy ⊗ u)
−1 − α−1y ⊗ u. (7.14)

From this the ambipolar matrix L̂ can be calculated. Also the matrix L̂ is singular,
its left null space consists of the vectors u and r.

7.3.3 Equilibrium composition calculation

When the chemistry time scales are fast with respect to the transport time scales,
the composition can be calculated from the pressure, temperature and elemental
mass fractions instead of solving the species continuity equations as defined in the
previous section. To obtain the equilibrium composition, Nr independent reactions
should be specified: ∑

i∈S
νriAi = 0 (r ∈ R), (7.15)

where νri is the stoichiometric coefficient of species i in reaction r and Ai is the
symbolic notation for species i. The species mole fractions xi involved in these
reactions obey the following relations:∑

i∈S
νri lnxi = lnKr

p − lnp
∑
i∈S

νri (r ∈ R), (7.16)
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where lnKr
p is the equilibrium constant. In addition, the elemental composition

needs to be fixed by the specification of Ne elemental constraints:∑
i∈S

φiαyim{α}/mi = y{α} (α ∈ E), (7.17)

where φiα is the stoichiometric coefficient indicating the number of atoms of ele-
ment α in species i. The elemental mass fractions2 y{α} are calculated from a set
of convection-diffusion equations for the elements. These will be derived in the
next section.

For usage in the next sections, we gather νri and φiα in the stoichiometric

matrix R =

(
ν
φ

)
:

Rri = νri (r ∈ R, i ∈ S),

Rαi = φiα(α ∈ E , i ∈ S).

For example, for a subset of the species from the case study that will be presented
in section 7.6, the matrix R looks as follows:

I2 InI In+ Xe+ I In Xe e
I2 1 0 0 0 -2 0 0 0
InI 0 1 0 0 -1 -1 0 0
In+ 0 0 1 0 0 -1 0 1
Xe+ 0 0 0 1 0 0 -1 1

I 2 1 0 0 1 0 0 0
In 0 1 1 0 0 1 0 0
Xe 0 0 0 1 0 0 1 0
e 0 0 -1 -1 0 0 0 1

In the next section, the elemental continuity equations and the elemental diffusion
fluxes will be derived from the species continuity equations and the equilibrium
composition relations.

7.3.4 Elemental continuity equations

The elemental continuity equations can be derived by taking a linear combi-
nation of the species continuity equations. Multiplication of equation (7.1) by
φiαm{α}/mi and summation over all species gives the elemental continuity equa-
tion:

∂

∂t

(
ρy{α}

)
+∇ ·

(
ρ~vy{α} + ~J{α}

)
= 0, (7.18)

where ~J{α} is the elemental diffusion flux. We will now derive an expression for
the elemental diffusion fluxes from the species diffusion fluxes.

2Throughout this article, we will use {} to denote the elements.
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In chemical equilibrium, we know that the chemical composition x is deter-
mined by the pressure, temperature and elemental mass fractions: x = x(p, T, {y}).
So, when ignoring pressure variations, we may write the diffusion driving force as:

∂x =
∂x

∂T

∣∣∣∣
p,{y}

∂T +
∂x

∂{y}

∣∣∣∣
p,T

∂{y}. (7.19)

To derive the dependence of ∂x on ∂T , we start by taking the gradient of equation
(7.16): ∑

i∈S
νri /xi∂xi =

∆hr
RuT 2

∂T, (7.20)

where ∆hr is the molar enthalpy of reaction r and Ru the universal gas constant.

Note that we used Van ’t Hoff’s relation
∂lnKr

p

∂T = ∆hr
RuT 2 and assumed constant

pressure, consistent with the neglect of pressure diffusion. Using matrix notation
this becomes:

ν diag−1(x)∂x = ∂θ, (7.21)

where ∂θr = ∆hr
RuT 2 ∂T .

To derive the dependence of ∂x on ∂{y}, we start with equation (7.17). By
taking the derivative of (7.17), we obtain:∑

i∈S
φiα∂yim{α}/mi = ∂y{α} (α ∈ E). (7.22)

In matrix notation this becomes:

diag({m})φ diag−1(m)∂y = ∂{y}. (7.23)

Converting the gradients of the mass fractions to the gradients of the mole fractions
in a non-singular way according to [128], we arrive at:

diag({m})φ diag−1(m)Ñ∂x = ∂{y}, (7.24)

where Ñ is the non-singular matrix relating the species mass fractions to the
species mole fractions:

Ñ = diag(y)
[
I− σ−1u⊗ (y − x)

]
diag−1(x). (7.25)

Combination of equations (7.21) and (7.24) gives enough information to relate
the gradients of the species mole fractions to the gradients of the elemental mass
fractions and the temperature:

A∂x =

(
∂θ
∂{y}

)
, (7.26)

where A is

(
Ar

Aα

)
, with

Ar = ν diag−1(x), Aα = diag({m})φ diag−1(m)Ñ. (7.27)
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Inversion gives the expression for the gradients of the species mole fractions:

∂x = A−1

(
∂θ
∂{y}

)
. (7.28)

By combining the above expression with (7.12), we obtain the following expression
for the diffusive mass fluxes:

J = −L̂A−1

(
∂θ
∂{y}

)
. (7.29)

Conversion to elemental mass fluxes gives:

{J} = − diag({m})φ diag−1(m)L̂A−1

(
∂θ
∂{y}

)
. (7.30)

By defining the elemental multi-component flux diffusion matrix Γ and the thermal
demixing matrix Γθ, we can write:

{J} =
(
Γθ Γ

)( ∂θ
∂{y}

)
. (7.31)

The elemental flux diffusion matrix Γ is singular with the vectors u and r in its
left null space. The matrix Γ can be regularized as follows:

Γ̃ = Γ + α{y} ⊗ {u}+ β{z} ⊗ {r}, (7.32)

where α and β are free parameters. In this chapter, these are chosen as α =
max(Γ)/〈y,u〉 and β = max(Γ)/〈z, r〉. We noticed however that this is not always
the optimal choice. We will see in the next section that with (7.32), the elemental
mass and charge constraints are fulfilled analytically.

7.3.5 Mass and charge conservation

We will now investigate the mass and charge conservation properties of the diffu-
sion formulation. To investigate the mass conservation properties, the elemental
continuity equations (7.18) are summed:∑

α

{
∂

∂t

(
ρy{α}

)
+∇ ·

(
ρ~vy{α} + ~J{α}

)}
= 0 ⇐⇒

∂

∂t
(ρσm) +∇ ·

(
ρ~vσm +

∑
α

~J{α}

)
= 0, (7.33)

where σm ≡ 〈{u}, {y}〉 is representing the mass constraint. Let us now look at
the summation of the diffusive mass fluxes in more detail:∑

α

~J{α} = 〈{u}, {J}〉 = −{u}TΓθ∂θ − {u}T Γ̃∂{y}. (7.34)
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Since {u} is in the left null space of Γ and Γθ and since 〈{u}, {z}〉 = 0 due to
charge conservation, this can be written as:∑

α

~J{α} = −ασm∇σm ≡ −Dm∇σm, (7.35)

with Dm = ασm.
A similar derivation can be carried out for the charge constraint, but now we

have to consider the following summation:∑
α

qα
mα

{
∂

∂t

(
ρy{α}

)
+∇ ·

(
ρ~vy{α} + ~J{α}

)}
= 0 ⇐⇒

∂

∂t
(ρσc) +∇ ·

(
ρ~vσc +

∑
α

qα
mα

~J{α}

)
= 0, (7.36)

where σm ≡ 〈{r}, {y}〉 is representing the charge constraint. The current density
can be further worked out as:∑

α

qα
mα

~J{α} = 〈{r}, {J}〉 = −{r}TΓθ∂θ − {r}T Γ̃∂{y}. (7.37)

Since {r} is in the left null space of Γ and Γθ and since 〈{r}, {y}〉 = 0 due to
charge conservation, this can be written as:∑

α

qα
mα

~J{α} = −β〈{r}, {z}〉∇σc ≡ −Dc∇σc, (7.38)

with Dc = β〈{r}, {z}〉.
With the expressions for the fluxes, we finally arrive at the following partial

differential equations (PDE’s) for the mass and charge constraints:

∂ρσm

∂t
+∇ · (ρ~vσm −Dm∇σm) = 0. (7.39)

∂ρσc

∂t
+∇ · (ρ~vσc −Dc∇σc) = 0. (7.40)

Due to the elliptic nature of these PDE’s and the absence of source terms the mass
and charge constraints will be fulfilled analytically when there is a point on the
boundary that fulfills the constraints.

7.4 Discretization of the elemental continuity equations

The elemental mass fractions {y} cannot be described by a scalar continuity equa-
tion for each element separately. Instead, they are described by a system of coupled
continuity equations. Because of the coupling, the equations cannot be discretized
with traditional finite volume schemes such as the exponential scheme [148, 149]
without unphysical oscillations. In this section, we will present a coupled form
of the exponential scheme, based on the work in [28, 150] and apply this to the
elemental fluxes. It will be shown that with the diffusion formulation of section
7.3.4 and this discretization scheme, mass and charge conservation can be fulfilled
up to machine accuracy without being explicitly applied.
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7.4.1 Flux expressions

In the steady, one-dimensional case, the system of continuity equations can be
written as

d

dx
J = s, J = ρuφ− Γ

d

dx
φ, (7.41)

where the different elements in the vector φ are coupled by the non-diagonal
elements of Γ. The grid stencil used for discretization is given in figure 7.1. Inte-

Δx

δxeδxw

W C E
ew

Figure 7.1: Stencil used for discretization. C,W and E denote the central, west
and east nodal grid points, respectively. The west and east cell interfaces are
denoted by w and e.

gration of equation (7.41) over the control volume shown in figure 7.1 gives:

Je − Jw = sC∆x, (7.42)

where sC is the source term at the central point C. When the flux Je is expressed
in φC and φE , and the flux Jw is expressed in φC and φW , the following discrete
equation is obtained:

ACφC = AEφE + AWφW + sC∆x. (7.43)

The discretization matrices AC , AE and AW depend on the expressions for the
numerical flux. Like in the traditional exponential scheme the flux representation
is based on the homogeneous solution of the local boundary value problem, i.e.
without sources.

To derive an expression for the flux Je, the following system boundary value
problem for the vector φ of unknowns is used:

d

dx
J =

d

dx

(
(ρu)e φ− Γe

d

dx
φ

)
= 0, xC < x < xE ,

φ(xC) = φC ,

φ(xE) = φE , (7.44)
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where (ρu)e and Γe are assumed to be constant on (xC , xE). Note that (7.44)
is equal to (7.41) in case s = 0. It is important to mention here that neglecting
the source in the derivation of the flux, does not limit the application of the
discretization scheme to problems without sources. The only consequence is that
uniform second order convergence is not guaranteed by the discretization scheme.

Using the system boundary value problem, the following expression for the flux
is obtained:

Je =
1

δxe
Γe

(
B(−Pe)φC −B(Pe)φE

)
, (7.45)

where B() is the Bernoulli function and Pe is the Péclet matrix, which is defined
as:

Pe = δxe(ρu)eΓ
−1
e . (7.46)

The Bernoulli function of the Péclet matrix is calculated by diagonalization of the
Péclet matrix:

P = VΛV−1 = V

 λ1

. . .

λN

V−1, (7.47)

B(P) = VB(Λ)V−1 = V

 B(λ1)
. . .

B(λN )

V−1, (7.48)

with V the matrix containing the eigenvectors of P as its columns and Λ a diagonal
matrix with the eigenvalues λi of the Péclet matrix. Likewise, B(−P) can be
computed. Note that for the diagonalization, it is required that P has a complete
set of linearly independent eigenvectors. In Cullinan [151] it is proven that for
Péclet matrices resulting from multi-component diffusion problems this is indeed
the case.

For the flux at the west interface, an expression similar to the east interface
can be obtained. Substitution of the expression for the fluxes in equation (7.42),
gives the following expressions for the discretization matrices:

AE =
1

δxe
ΓeB(Pe), AW =

1

δxw
ΓwB(−Pw), AC = AE + AW . (7.49)

Note that we have used the fact that the flow field ρ~v is divergence free in the
expression for AC . From (7.48) it can be seen that the coupled exponential scheme
guarantees that the eigenvalues of the discretization matrices are positive, since
the eigenvalues of B(P) are given by B(λi), which are always positive.

7.4.2 Discrete mass and charge conservation

In section 7.3.5 we have shown that analytically, σm = 1 and σc = 0 will be satisfied
in the entire domain due to the elliptic nature of equations (7.39) and (7.40). It
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appears that when the coupled exponential scheme is used for discretization, this
is true numerically as well. In this case the discrete equations for σm and σc read:

amC σ
m
C = amE σ

m
E + amWσ

m
W ,

acCσ
c
C = acEσ

c
E + acWσ

c
W , (7.50)

with σmC , σmE , σmW , σcC , σcE and σcW the values of σm and σc on the central,
east and west nodal point, respectively. The coefficients aC , aE and aW are
the corresponding discretization coefficients and satisfy aE > 0, aW > 0 and
aC = aE + aW . The discrete equation for σm reveals a very pleasant property
of the coupled exponential scheme that we introduced in section 7.4.1. Since σmC
is a weighted average of σmE and σmW , we can deduce from the discrete maximum
principle that σm = 1 will be satisfied in the entire domain. Suppose that σmC is
a local maximum: σmC ≥ σmE , σ

m
C ≥ σmW . However, since σmC is a weighted average

the following needs to be true: σmC = σmE = σmW . We can now take σmE or σmW and
continue the procedure until we hit the boundary, where σm = 1. Although the
mass fractions of the individual species may be affected by discretization errors,
we are guaranteed to have a mass conserving solution for σm where all the points
in the domain satisfy σm = 1, without discretization error. Similarly, σc = 0
is satisfied without discretization error. The complete derivation of the discrete
equations for σm and σc can be found in appendix 7.A.

7.5 Test case: analytical solution for a binary mixture

As a test case3 for the elemental diffusion algorithm with coupled discretization, a
1D diffusion problem with an analytical solution was used. The test case consists
of a binary mixture of atomic argon and hydrogen. The mixture is confined to a
1D domain between x = 0 m and x = 1 m. At the boundaries the composition is
prescribed as a boundary condition. Furthermore, the mixture is stationary, the
mass averaged velocity ~v = 0 and the pressure and temperature are uniform and
fixed over time. In this case, the analytical solution for hydrogen can be expressed
as:

yH(x) = (yH,0 + γ)

(
yH,L + γ

yH,0 + γ

)x/L
− γ, (7.51)

where γ = mH/ (mAr −mH). Note that the solution should be independent of
pressure and temperature. The results of the analytical solution and the numerical
calculation can be seen in figure 7.2. As should be the case, there is excellent
agreement between the analytical and the numerical solution. As can be seen,
the solution is not a straight line, as would be the case for Fick diffusion. This
demonstrates the mutual influence of the species diffusive motion when Stefan-
Maxwell diffusion is used.

To study the convergence of the numerical solution to the analytical solution
in more detail, the simulations were repeated for different numbers of grid points.

3See Supplemental Material at [133] for the source code of this binary mixture test case
(inputfile HAr neutral.txt).
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Figure 7.2: Numerical and analytical
result for a binary mixture of hydro-
gen and argon.
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Figure 7.3: Grid convergence for the
analytical model.
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the mass constraint is free from dis-
cretization errors.
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Figure 7.5: Radial temperature profile
used in the case study of the metal
halide lamp.

The result is displayed in figure 7.3. Since there is no convection, we expect second
order convergence behavior for the coupled exponential scheme [150]. From figure
7.3 it appears that this is indeed the case.

As derived in section 7.4.2, the mass and charge constraints should be satisfied,
although they are not applied explicitly. The error in mass conservation for this
test case can be seen in figure 7.4.

7.6 Case study: elemental demixing in a metal halide lamp

As mentioned in the introduction, a typical application where elemental demixing
occurs is the metal halide lamp. Currently, most metal halide lamps contain
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mercury as a buffer gas, because of its beneficial effects on the lamp performance.
Mercury has a high vapor pressure and a large momentum transfer cross-section.
This provides ohmic dissipation at low currents. Furthermore, mercury has a
low thermal conductivity and a high ionization level. These characteristics are
beneficial for the power balance of the lamp. Due to the high toxicity of mercury,
there is the wish to replace mercury by more environmentally friendly elements
without deteriorating the lamp performance too much. Numerical simulations may
guide the search for new lamp fillings replacing mercury in metal halide lamps.
Since in mercury free lamps there is no longer a dominant background gas, the Fick
diffusion approach as used in [142] is no longer valid and Stefan-Maxwell diffusion
should be used. Recent work on the modeling of mercury free lamps neglected the
effects of demixing due to the absence of a suitable diffusion description [152]. As
discussed in that work, the neglect of demixing effects may be responsible for the
discrepancy in UV radiation observed between the model and the experiments.
The availability of a suitable elemental diffusion algorithm could thus help the
understanding of lamp physics.

A mercury free lamp with a filling of xenon and indium iodide will be used as
a case study of the new diffusion method. The model4 consists of a 1D simulation
with 100 grid points in the radial direction for a lamp with a radius of 2.6 mm.
The pressure was set to 8 bar, while the applied temperature profile can be seen
in figure 7.5. The temperature profile is contracted which is typical for lamps
that presumably emit optically thin radiation The model includes a mixture of
12 species and four elements (Xe, In, I, e). At the symmetry axis, homogeneous
Neumann conditions are used for all the elements. At the lamp wall, the elemental
mass fractions are set to 0.30, 0.44, 0.26 and 0.00 for In, I, Xe and e, respectively.

In Figures 7.6,7.7 and 7.8, the results of this calculation can be seen.
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Figure 7.6: Elemental mass fractions
in the lamp of Xe, In and I.
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Figure 7.7: Elemental mass fractions
of the electrons. This represents
charge conservation.

4See Supplemental Material at [133] for the source code of this demixing case study (inputfile
XeInI.txt).



7.6. Elemental demixing in a metal halide lamp 155

0 0.005 0.01 0.015 0.02 0.025
r(m)

10-4

10-3

10-2

10-1

100
y

In

In+

I-

I
I
2

InI
InI

2

Xe

Figure 7.8: Species mass fractions.

We can see that the elemental electron mass fraction vanishes as should be the
case according to the derivation in section 7.4.2. Furthermore, the demixing of
Xe, In and I under the influence of the applied temperature gradient can clearly
be seen. It can be seen that In and I are expelled from the center, while Xe shows
the opposite behavior. The reason is that Xe is primarily present as atoms, while
In and I are present in the form of molecules which diffuse more difficultly due to
their larger size. This effect can also be seen from the thermal demixing coefficient
which is depicted in figure 7.9. Xenon has a negative thermal demixing coefficient,
pushing it toward the hotter center of the discharge. In and I have positive thermal
demixing coefficients. In the thermal demixing coefficients, three transitions can
be identified. The first one around 0.5 mm is caused by the ionization of In. The
second one in the middle of the domain is due to the dissociation of InI into In and
I. The third transition near the wall is caused by the fact that I2, InI2 and InI3

are formed at low temperatures. Gradients in the elemental fractions are largest
when the temperature gradient is largest. The reason is as follows. The elemental
fluxes should be divergence free. This conditions translates to a zero flux for a 1D
simulation. Looking at equation (7.31), it can thus be seen that a temperature
gradient should be balanced by a gradient in the elemental mass fractions.

The elemental mass fractions are constraints to the local composition, which
is temperature dependent. At the wall of the lamp, In and I are mostly present in
the form of InI. These molecules dissociate towards the center of the lamp. Even
further towards the center of the lamp some of the atoms ionize, although the
ionization degree remains quite low.

A recent description of a mercury free metal-halide lamp [152] concerns a lamp
with the salt InI and the start gas Xe. This 1D-model calculates the tempera-
ture profile self-consistently by accounting for radiation transfer, ohmic heating
and thermal conductivity. However, constant elemental mass fractions were used
because an algorithm that solves the Stefan-Maxwell equations was not available
at that time. The modeled spectrum contains a large contribution from molec-
ular radiation. This radiation is predominantly attributed to recombination (or
free-bound) radiation between the molecular levels A and X. However, not all of
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Figure 7.9: Elemental thermal demixing coefficient.
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the molecular features could be reproduced. For example the absorption in the
spectral interval up to 450 nm could not be reproduced. Additionally, the molec-
ular emission between 450 and 1500 nm was slightly overestimated. The effect of
demixing on the mass fractions of the species In, I and InI is shown in figure 7.10.
The figure shows that in the hot part of the lamp (r < 0.75 mm) the mass fraction
of the species In and I decreases. Thus the excess molecular radiation is at least
partly accounted for. Additionally, the amount of InI in the coolest part of the
lamp (r > 2 mm) is increased. This is the area where the absorption of radiation is
most effective. Thus the increased density of InI will aid in explaining the missing
absorption up to 450 nm.

7.7 Discussion and conclusions

In this article, we introduced a method to discretize the elemental continuity
equations in closed form. In the discretization scheme the effects of cross-diffusion
are taken into account by introduction of the concept of a Péclet matrix. It was
shown analytically and numerically that by this definition of the discretization
scheme mass and charge constraints are fulfilled exactly. The test case and the case
study from sections 7.5 and 7.6 show that indeed the mass and charge constraints
are satisfied numerically. It was shown that the coupled scheme shows second
order convergence in cases where no flow is present.

The results of the case study of the metal-halide lamp show that the proposed
algorithm is capable of describing elemental demixing in real simulations. We hope
that our results are useful to actually solve the equations of the closed formulation
of LTE diffusion.
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7.A Derivation of the discrete mass end charge
conservation equations

To derive the discrete equations for σm and σc, we start with the discretized
equation for the mass fraction vector y. When we apply the coupled exponential
scheme from section 7.4.1 to equation (7.18), the following expression is obtained:

ACyC = AEyE + AWyW + sC∆x. (7.52)

To derive the discrete equations for σm and σc, we start with the discretized
equation for the mass fraction vector y. When we apply the coupled exponential
scheme from section 7.4.1 to equation (7.18), the following expression is obtained:

ACyC = AEyE + AWyW + sC∆x. (7.53)
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Left multiplication with uT = (1, . . . , 1) and rT = (q1/m1, . . . , qN/mN ), respec-
tively, gives:

uTACyC = uTAEyE + uTAWyW ,

rTACyC = rTAEyE + rTAWyW , (7.54)

since uTsC = 0 and rTsC = 0. If uT and rT are left eigenvectors of the discretiza-
tion matrices AE , AW and AC , this can be written as:

amCuTyC = amEuTyE + amWuTyW ,

acCrTyC = acErTyE + acW rTyW , (7.55)

where amE , amW , amC , acE , acW and acC are the corresponding eigenvalues. The above
equation is equivalent to equation (7.50). We will now prove that uT and rT are
indeed left eigenvectors of all the discretization matrices. In section 7.3.5, it was
already shown that uT and rT are left eigenvectors of the flux diffusion matrix.
Now, we will consider the product with the Péclet matrix P = ρvδxΓ−1:

uTP = uTρvδxΓ−1 = ρvδx/DmuT = PmuT,

rTP = rTρvδxΓ−1 = ρvδx/DcrT = P crT, (7.56)

where we define the ‘constraint’ Péclet numbers as Pm = ρvδx/Dm and P c =
ρvδx/Dc. Note that these forms of the ‘constraint’ Péclet numbers can be un-
derstood from equation (7.50). To prove that uT and rT are left eigenvectors of
B (P), we have to diagonalize to the left eigenvectors of the Péclet matrix:

P = W−1ΛW = W−1

 λ1

. . .

λN

W, (7.57)

B(P) = W−1B(Λ)W = W−1

 B(λ1)
. . .

B(λN )

W, (7.58)

where W contains the left eigenvectors as its rows. Multiplying with W gives:

WB(P) = B(Λ)W =

 B(λ1)
. . .

B(λN )

W, (7.59)

Since uT and rT are rows of W, we can conclude that applying the Bernoulli
function to the Péclet matrix does not change the left eigenvectors, but only the
corresponding eigenvalues:

uTB(P) = B(Pm)uT,

rTB(P) = B(P c)rT. (7.60)
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With this result the product of uT and rT with the discretization matrices be-
comes:

uTAE = 1/δxeDme B(Pme )uT = amEuT,

rTAE = 1/δxeDceB(P ce )rT = acErT. (7.61)

Similar expressions for the west and central discretization matrices can be
derived, with which we arrive at (7.50). Note that the discrete equations for
σm and σc have the form as if the scalar exponential scheme was applied to
equation (7.39) and (7.40), respectively. Left multiplication with uT = (1, . . . , 1)
and rT = (q1/m1, . . . , qN/mN ), respectively, gives:

uTACyC = uTAEyE + uTAWyW ,

rTACyC = rTAEyE + rTAWyW , (7.62)

since uTsC = 0 and rTsC = 0. If uT and rT are left eigenvectors of the discretiza-
tion matrices AE , AW and AC , this can be written as:

amCuTyC = amEuTyE + amWuTyW ,

acCrTyC = acErTyE + acW rTyW , (7.63)

where amE , amW , amC , acE , acW and acC are the corresponding eigenvalues. The above
equation is equivalent to equation (7.50). We will now prove that uT and rT are
indeed left eigenvectors of all the discretization matrices. In section 7.3.5, it was
already shown that uT and rT are left eigenvectors of the flux diffusion matrix.
Now, we will consider the product with the Péclet matrix P = ρvδxΓ−1:

uTP = uTρvδxΓ−1 = ρvδx/DmuT = PmuT,

rTP = rTρvδxΓ−1 = ρvδx/DcrT = P crT, (7.64)

where we define the ‘constraint’ Péclet numbers as Pm = ρvδx/Dm and P c =
ρvδx/Dc. Note that these forms of the ‘constraint’ Péclet numbers can be un-
derstood from equation (7.50). To prove that uT and rT are left eigenvectors of
B (P), we have to diagonalize to the left eigenvectors of the Péclet matrix:

P = W−1ΛW = W−1

 λ1

. . .

λN

W, (7.65)

B(P) = W−1B(Λ)W = W−1

 B(λ1)
. . .

B(λN )

W, (7.66)

where W contains the left eigenvectors as its rows. Multiplying with W gives:

WB(P) = B(Λ)W =

 B(λ1)
. . .

B(λN )

W, (7.67)
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Since uT and rT are rows of W, we can conclude that applying the Bernoulli
function to the Péclet matrix does not change the left eigenvectors, but only the
corresponding eigenvalues:

uTB(P) = B(Pm)uT,

rTB(P) = B(P c)rT. (7.68)

With this result the product of uT and rT with the discretization matrices be-
comes:

uTAE = 1/δxeDme B(Pme )uT = amEuT,

rTAE = 1/δxeDceB(P ce )rT = acErT. (7.69)

Similar expressions for the west and central discretization matrices can be
derived, with which we arrive at (7.50). Note that the discrete equations for σm

and σc have the form as if the scalar exponential scheme was applied to equation
(7.39) and (7.40), respectively.



Chapter 8

Radiation transport

In a plasma there are various processes that are responsible for the production of
radiation. The most common process is the spontaneous decay of an excited state
in an atom, molecule or an ion. Such a transition occurs at a distinct frequency.
Due to Doppler, natural and/or pressure broadening, radiation is also observed in
a range around this distinct frequency. In the first sections of this chapter, these
broadening mechanisms are discussed in more detail. The remaining sections
discuss the discretization of the energy transported as radiation.

Typically, the radiation that is absorbed in a given part of the plasma is not
necessarily generated at the same location. The transport associated with this
type of plasma is thus non-local. In this chapter, a method is discussed that
determines the energy and species source terms related to radiation transport.
This is achieved by following the emission and absorption along a few probe lines
through the plasma. The theory is applied to an infinite cylinder and is based on
the work of Harm van der Heijden [19]. The scheme developed by Van der Heijden
is subject to discretization errors. The errors are most severe in the central areas
of the cylinder. The discretization errors rapidly decrease for larger radii. In
this chapter, the discretization is improved to make sure that the errors indeed
vanish when more probe lines are used. The method is tested by calculating and
comparing the spectra of a few Hg and Hg–Na discharges. A good agreement is
obtained with measured spectra.

8.1 Radiative processes

In this section, the radiative processes are discussed that occur in chapter 10, 11
and 12. These processes include line radiation and continuum radiation. Depend-
ing on the initial and final conditions these processes can also be categorized as
bound-bound, bound-free, free-bound and free-free transitions. Line radiation of
atoms, ions or molecules is accompanied by a change in the state of the emitting
particle and can therefore also be considered as bound-bound radiation. The en-
ergy difference between the initial and final states defines the frequency of the
emitted photon via E = hν. The total emission j corresponding to line radiation

161



162 Chapter 8. Radiation transport

can then be written as

j =
hν

4π
Aulnu, (8.1)

with Aul the transition strength for spontaneous emission and nu the excited state
density. In reality a range of frequencies around ν is observed. This profile is called
the line profile φ. The spectral emission can then be expressed as

jν =
hν

4π
Aulnuφ (ν) = jφ (ν) , (8.2)

The line profile can be considered as a distribution function and should therefore
be normalized ∫

φdν = 1. (8.3)

Various mechanisms can be responsible for the line profile. For example, a velocity
difference between the emitter and the observer can induce Doppler shifts. Another
broadening mechanism is natural broadening, where the uncertainty principle in-
troduces small energy variations of the upper and lower states of the emitting
particle. Additionally, the energy levels of the upper and lower states can be per-
turbed due to interactions with the electric field of other particles. This type of
broadening mechanism is called pressure broadening.

Most broadening processes in the remainder of this chapter can be either de-
scribed by a Lorentzian or a Gaussian profile. For that reason, these line profiles
are considered before the processes are discussed in more detail. The Lorentz
profile is given by

φL =
∆γ

π
(

∆γ2 + (ν − ν0)
2
) , (8.4)

with γ the half width at half maximum (HWHM). The Gaussian profile can be
written as

φG =
1

σ
√

2π
exp

(
− (ν − ν0)

2

2σ2

)
, (8.5)

with the full width at half maximum (FWHM) given by ∆νFWHM = σ
√

8 ln 2, σ
the standard deviation and ν0 the unperturbed frequency. In the case of multiple
broadening mechanisms, the final line profile can be calculated as the convolution
of the individual profiles [153, p. 101,102]. This procedure is only correct if the
two broadening mechanisms are statistically independent. The convolution of
multiple Lorentzian profiles results in another Lorentzian profile with γ the sum
of the individual HWHM.

A different process that has not been discussed so far is continuum radiation.
Two processes will be considered. The first process is called free-free continuum
radiation where electrons are scattered on a neutral or an ion. In this case, ra-
diation is emitted by charged particles that are accelerated or decelerated in the
plasma. This process is also called Bremsstrahlung. The second process is called
free-bound continuum radiation or recombination radiation. In the recombination
process, an electron is captured by an ion and a photon is released.
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8.1.1 Doppler broadening

The Doppler effect explains the frequency shift that is induced by the motion of
the emitter relative to the observer [154, p. 248]. If the distribution of velocities is
described by a Maxwellian distribution, the corresponding line profile is a Gaussian

profile (8.5). Its FWHM is given by ∆νFWHM =
√

8kBT ln 2
mc2 ν0.

8.1.2 Natural broadening

The quantum mechanical uncertainty principle of time and energy ∆E∆t ≥ h̄
2

indicates that the uncertainty in the energy of the upper and lower states can
induce a distribution of possible frequencies [154, p. 232-236]. The induced profile
is a Lorentzian profile (8.4). The HWHM of this distribution can be estimated
with γ = 1

2π

∑
iAki. In plasmas, this contribution is usually small in comparison

to other contributions.

8.1.3 Pressure broadening

The interaction potential between an excited atom and a perturber can be ap-
proximated with [154, p. 236-248]

∆V (r) =
Cn
rn
, (8.6)

with Cn a constant dependent on the excited state and the perturbing species.
The cases n = 2, 3, 4or6 are most often encountered. For n = 2, the process
is called linear Stark broadening, since the perturbation is proportional to the
electric field. It is applicable for hydrogen and hydrogenic ions. For n = 3, the
process is called resonance broadening. This can occur when the excited state
is perturbed by a species of the same type. The magnitude of the perturbation
is linearly dependent on the dipole transition strength between the excited state
and the perturbing state. The process is described using the dipole potential [155,
eq. 3]. For n = 4, the process is called quadratic Stark broadening. The potential
is proportional to the square of the electric field induced by charged particles.
Stark broadening is an important broadening mechanism for plasmas with a high
ionization degree. For n = 6, the process is called Van der Waals broadening. This
weak long-range interaction is caused by the dipole-dipole interaction. In high
pressure discharges the dominant broadening mechanisms are resonance and Van
der Waals broadening. Broadening mechanisms due to short-range interactions
are neglected in the remaining sections.

The interaction potential (8.6) is required to describe the movement of a per-
turber in the vicinity of an atom at a given impact parameter. In order to account
for a range of possible perturbations, multiple impact parameters have to be con-
sidered. Analytical expressions can only be obtained in the quasi-static or the
impact limit. One can distinguish between these limits by comparing the duration
of one collision, tc, with the average time between collisions, Tc. The duration of
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a collision can be approximated by [154, p. 239]

tc =
r0

〈v〉
, (8.7)

where r0 is the distance of closest approach during the straight line trajectory and
〈v〉 is the average velocity at r0.

• The quasi-static approximation is valid when the duration of a collision is
much larger than the time between collisions

tc �
1

2π∆ν
≈ Tc. (8.8)

The relatively large collision time is caused by the slow movement of the
perturbers. For that reason, the motion of the perturbers can be neglected.
In that case, the broadening is dependent on the difference between the
potential curves

∆νki =
∆Vk (r)−∆Vi (r)

h
, (8.9)

with ∆Vi (r) = Vi (r)−Vi (∞). Quasi-static broadening is relevant when the
density of perturbers is high. Additionally, the velocity of the perturbing
particles should be low to ensure a long collision time. This is the case at
low temperatures.

• The impact approximation is valid when the duration of the collisions is
short compared to the time between collisions

tc �
1

2π∆ν
≈ Tc. (8.10)

These conditions are met when the pressure is low and when the temperature
is high.

In general, the line profile contains contributions of both theories. In that case the
core of the line broadening is given by the impact limit and the wings of the profile
by the quasi-static limit. For example, these line profiles are used in chapters 10
and 11.

Quasi-static broadening

The radiation emitted at frequency ν in a bandwidth dν induced by the presence
of a perturber in a region dr around r from the excited atom is given by

φ (ν) dν =
4πr2dr

V
, (8.11)

with V the volume under consideration. The shift from the line center is given by

∆ν =
C ′

rn
, (8.12)
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with C ′ = Ck−Ci
h . Changing variables from r to ν gives

φ (ν) dν =
4πC ′3/n

nV

1

(ν − ν0)
(n+3)/3

dν. (8.13)

A more accurate approximation accounts for the distribution of perturbing parti-
cles. In that case, it is assumed that the nearest neighbor is the only perturbing
particle. For such a modification, the quasi-static line profile can be approximated
by [30]

φ (∆λ) =

{
∆λ0

2(∆λ)3/2
exp

(
−π∆λ0

4∆λ

)
λ > λ0

0 λ ≤ λ0

, (8.14)

with ∆λ0 =
λ2
0

2πcC6 (4/ [3πnp])
2
. This type of approximation can only be made for

potentials that decay sufficiently fast: n ≥ 6. For Stark broadening with n = 2, or
n = 4 the simultaneous effect of all perturbers must be included. The previously
described line profiles use a potential energy difference of ∆V ∝ −C6/r

6. Such
an energy difference only provides a reasonable estimate at pressures where only
large interatomic separations contribute significantly to the line profile. For higher
pressures the potential energy difference at lower interatomic separations are more
prominently contributing. The result is that the line profile should be calculated
according to Hedges [156, eq. 7,12]

φ (ν) dν ∝ np4πr
2 (ν) f (r) dν

|dν/dr|
, (8.15)

with np the perturber density and f (r) the distribution function of the radiators.

The distribution of the radiators f (r) is proportional to exp
(
− (Vu(r)−V (∞))

kBT

)
.

The distribution proposed by Hedges is accurate if the time averaged probability of
an excited particle being perturbed in a volume of 4

3πR
3 is small. The radius R can

be considered as the interatomic separation between the radiator and the perturber
where V (r) deviates significantly from V (∞). If np

4
3πR

3 � 1 is valid, only binary
encounters are important. For example, np = 1025 m−3 and R = 5× 10−10 m give
a result of about 0.005, which still satisfies the criterion.

Impact broadening

The first version of the impact theory was proposed by Lorentz [154, p. 241]. He
assumed that a classical wave train was emitted at the moment of excitation1 at
t = 0.

At the moment of collision t = Tc, he assumed that the wave train was ter-
minated. The spectral distribution is then dependent on the distribution of times
between collisions. By averaging over this distribution he obtained a Lorentzian
profile. However, the cross sections that were derived from his theory were one or
two orders of magnitude larger than the gas kinetic cross sections.

1 The classical electric field that was considered by Lorentz is given by E (t) =
E (0) exp (−i [ω0 − iγ/2] t) where γ is the decay rate of the oscillating electron.
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Weisskopf modified the theory by assuming that the wave train is not ter-
minated but is subject to a phase change. The phase shift for a straight line
trajectory is given by2

η (b) =

∫ ∞
−∞

2π∆νdt =

∫ ∞
−∞

2πC ′ndt(
b2 + 〈v〉2 t2

)n/2 =
2πC ′nan
〈v〉 bn−1

. (8.16)

Weisskopf assumed that the wave train with a phase change larger than unity is
incoherent with the wave train emitted before the collision. Thus, from η (bW ) = 1
an optical collision radius can be derived

bW =

(
2πC ′nan
〈v〉

)1/(n−1)

. (8.17)

The HWHM is obtained from

2πγ = npπb
2
W 〈v〉 = npπ

(
2πC ′nan
〈v〉

)2/(n−1)

〈v〉 , (8.18)

with np the number density of perturbing particles.
Lindholm and Foley [157, eq. 17,18] [158, p. 179] [154, p. 245] improved Weis-

skopf’s theory by including the phase changes smaller than unity by using corre-
lation functions. The resulting line profile is again a Lorentzian profile. The line
width and the line shift are given by nvσr and nvσi, respectively. The real part
of the optical collision cross section σr is given by

σr = 2π

∫ ∞
0

[1− cos η (b)] bdb, (8.19)

and the imaginary part σi is given by

σi = 2π

∫ ∞
0

sin η (b) bdb. (8.20)

For b < bW , the integrand of σi is an oscillating function. Its contribution to
the integral vanishes. However, a significant contribution to σr originates from
b > bW .

In chapters 10, 11 and 12, the theory of Lindholm and Foley is used. A
summary of the estimates for the parameters C3, C4 and C6 is given in [159] and
chapter 9. For interaction potentials of the type V = −Cn/rn, the results for the
theories of Weisskopf and Lindholm and Foley differ only by a numerical factor.
These factors are given by Foley [157, p. 621] and Sobelman [158, p. 181]. When an
interaction potential is available, (8.19) and (8.20) can be integrated numerically
to obtain more accurate expressions for the line width according to impact theory.
The phase shift can then be related to the interaction potential using the JWKB
approximation [83, eq. 6].

2 The last step uses the following substitution 〈v〉 t = b tan θ and an =
∫ π/2
−π/2 cosn−2 θdθ.



8.1. Radiative processes 167

Combined broadening processes

A broadening profile that is often encountered in plasma physics is the Voigt
profile. It is the result of a convolution between a Gaussian and a Lorentzian
profile. The Voigt profile can be calculated from [160–162]

φV (z) =
√

2
R [w (z)]√

πσG
, (8.21)

with z =
√

ln 2 (ν − ν0 + iγL) /σG and σG and γL the Gaussian standard deviation
and the Lorentzian HWHM, respectively.

At sufficiently high pressures, the line profile contains contributions from the
theories of impact and quasi-static broadening. For the quasi-static profile given
by (8.14), the convolution with a Lorentzian profile is given by [159, eq. 51]

φ (∆λ) =
4

π2∆λ0

(
b

a

)3/2 [√
π

2

(
w
(√

b/a
)

+ w
(
−
√
b/a
))]

, (8.22)

with a = ∆λ/γL, b = π∆λ0/ (4γL) and w (x) the Faddeeva function. An analyt-
ical expression for the convolution of the quasi-static line profile given by (8.15)
with a Lorentzian profile is not obtained. Instead the convolution integral is ap-
proximated by cutting off the quasi-static profile at interatomic separations larger
than r = R. For r > R, the potential difference is given by V = Vu (∞)− Vl (∞)
and the modified quasi-static contribution can be written as

φQS,m (ν (r)) = F1φQS,n (ν (r)) + F2δ (ν − ν0) , (8.23)

with φQS,n given by (8.15) and normalized on 0 ≤ r ≤ R. The remaining param-
eters are given by

F1 =

∫ R

0

f (r) dr/N, (8.24)

F2 = exp

(
−
(
V (∞)

kBT

))(
1− 4

3
πR3np

)
/N, (8.25)

f (r) = 4πr2np exp

(
−V (r)− V (∞)

kBT

)
, (8.26)

N = 1/ (F1 + F2) . (8.27)

The convolution can than be written as

(φL ∗ φQS,m) = F1 (φL ∗ φQS,n (ν (r))) + F2 (φL ∗ δ (ν − ν0))

≈ F1φQS,n (ν) + F2φL, (8.28)

The first term on the RHS has been derived by considering the Lorentzian profile
as a delta peak. Such an approximation is valid if the quasi-static profile is much
broader then the Lorentzian profile.
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8.1.4 Continuum radiation

Three types of continuum radiation are discussed: electron-atom, electron-ion free-
free and electron-ion free-bound (recombination radiation). The electron-atom
emission (Bremsstrahlung) is given by [163] [164, eq. 16,21]

jν = Cea
nena
c

(kBTe)
3/2

Q(1)

[(
1 +

hν

kBTe

)2

+ 1

]
exp

(
− hν

kTe

)
, (8.29)

with Cea =2.000 Wm2J−3/2sr−1. Burm [164] notes that there are different possi-
bilities to relate the Bremsstrahlung cross section to the momentum transfer cross
section. The methods differ slightly in the factor before the exponent [164, eq. 19-
21]. The free-free continuum radiation (Bremsstrahlung) emitted in an electron-
ion encounter can be approximated with

jν = Cei
neni√
kBTe

ξeiff exp

(
− hν

kBTe

)
, (8.30)

with Cei=2.023× 10−63 WJ1/2m3Hz−1sr−1 and ξeiff the Biberman factor. The
free-bound Bremsstrahlung for electron-ion collisions is given by

jν = Cei
neni√
kBTe

[
1− exp

(
− hν

kBTe

)]
ξeifb. (8.31)

The Biberman factors account for the non-hydrogenic behavior of the radiation
levels of gases [164, p. 391]. Burm states that in practice the factors are ap-
proximately 1 for λ > 800 nm. For lower wavelengths a process specific Biberman
factor is required for accurate calculations. In this wavelength range the Biberman
factors also depend on the temperature.

8.2 Radiation theory

The power transported by radiation can be expressed as a function of the radiative
flux. The radiative flux is a function of the radiance3. The radiance is determined
by the local properties of the plasma and can be calculated with the equation of
radiative transport. This equation is given by

dIν
ds

= jν − κνIν , (8.32)

with jν the emission in Wm−3sr−1Hz−1, κν the absorption in m−1, Iν the spectral
radiance in Wm−2sr−1Hz−1 and s the path traversed by the radiation. A subscript
ν is used to indicate that a variable depends on the frequency. The emission,
absorption and the spectral radiance all depend on the local composition of the
plasma.

3Note that the radiance is also called intensity in the field of astrophysics [165, p. 1].
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In case of local thermodynamic equilibrium (LTE) Kirchhoff’s law [165, p. 8]
can be used to determine the spectral radiance from

Iν =
jν
κν

=
2hν3

c2
1

exp
(

hν
kBTe

)
− 1

= Bν , (8.33)

with Bν the thermal radiation or blackbody radiation. The spectral emission is
given by [166, p. 8-13, p. 30-32] [19, p. 44-47]

jν =
hν

4π
Aulnuφ, (8.34)

with φ the line profile, Aul the transition strength and nu the excited state density.
The absorption can be written as

κν = σabsnl − σstimnu, (8.35)

with nl the density of the state where the species decays towards. The cross
sections can be calculated by inserting (8.34) and (8.35) in (8.33). The cross
sections for stimulated emission and absorption are thus given by

σstim =
c2

8πν2
Aulφ =

hν

4π
Bulφ, (8.36)

σabs =
c2

8πν2
Aul

gu
gl

exp

(
h (ν − ν0)

kBTe

)
φ

≈ c2

8πν2
Aul

gu
gl
φ =

hν

4π
Bluφ, (8.37)

with ν0 the unperturbed frequency. In order to derive these equations the Boltz-
mann relation was used to relate the lower state density to the upper state density.

The derived cross sections are valid regardless of the state of the plasma. In
general the plasma is not thermal. The local radiative equilibrium is then defined
by

Iν =
jν
κν

=
2hν3

c2
1

nlgu
nugl

exp
(
h(ν−ν0)
kBTe

)
− 1

. (8.38)

The cross section for stimulated emission can be simplified by neglecting the vari-
ation in ν−ν0. However, this approximation induces deviations in cases where the
emitting particle is subject to severe pressure broadening and h (ν − ν0)� kBTe.
For low pressure plasmas the absorption can be approximated with

κν =
hν

4π
nlBlu

(
1− glnu

gunl

)
φ, (8.39)

from which it is apparent that stimulated emission can be neglected if gunl � glnu.
Note that the Einstein relations have been used to rewrite the equations. These
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relations are given by [166, p. 30]4

glBlu = guBul, (8.40)

Aul =
2hν3

c2
Bul. (8.41)

The radiative flux d2Φν that passes through a surface area dA in the direction
~s, covering a solid angle dΩ is given by

d2Φν = Iν~s · d ~AdΩ. (8.42)

The spectral power density passing through that surface can then be calculated
by integrating over the solid angle and the area

Qν,rad =

∫∫
d2Φν
V

, (8.43)

with V the local volume of the considered gas. In order to demonstrate that ra-
diation transport is a non-local phenomenon it is useful to consider the radiation
losses in a cylinder for a few constant values of jν and κν . In figure 8.1 these losses
are shown for jν = 10−10 Wm−3Hz−1sr−1. The figure shows that for κ = 0.01 m−1

the radiation losses per unit volume are practically constant. This is expected for
radiation that is not reabsorbed. However, for plasmas with higher absorption
coefficients the radiation losses are larger in the outer volume of the plasma. The
reason is that for higher absorption coefficients the radiation approaches equilib-
rium faster. In that situation the net energy transferred approaches zero since the
energy emitted as radiation is balanced by the energy absorbed.

8.3 Change of spectral radiance

The calculation of the radiative energy transport can in general not be evaluated
analytically. Computer models are required for these calculations. These models
require a discretization of the radiative energy transport. In this section an ex-
pression for the change of the radiance is given for an arbitrary direction through
an arbitrary volume. This section also discusses the optically thick and thin limits.

The solution of (8.32) for a ray originating at s0 can be written down in integral
form as

Iν (s) =

∫ s1

s0

jν (s′) exp

(
−
∫ s1

s′
κν (s”) ds”

)
ds′. (8.44)

This equation can be simplified to

Iν (s) =

∫ s1

s0

jν (s′) exp (−τν) ds′, (8.45)

4 Note that the derivation in the cited work uses the mean spectral radiance Jν = 1
4π

∫
IνdΩ.

By using the total radiation density for the derivation uν = 4π
c
Jν the relation between Aul and

Bul changes with the factor 4π
c

due to the different definition.
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Figure 8.1: The radiation losses per unit volume are shown for jν =
10−10 Wm−3Hz−1sr−1 and a few different values of the absorption coefficient.

by introducing the optical depth, τν , defined as

τν =

∫ s1

s′
κν (s”) ds”. (8.46)

For an arbitrary distance ∆s through a small piece of plasma with constant jν
and κν it is possible to integrate (8.45) analytically. The result of this integration
is given by

jν

∫ s+∆s

s

exp

(
−
∫ s+∆s

s′
κνs
′′ds′′

)
ds′

= jν exp (−κν (s+ ∆s))

∫ s+∆s

s

exp (κνs
′) ds′

=
jν
κν

[1− exp (−κν∆s)] . (8.47)

By also considering the spectral radiance which entered this piece of plasma and
is traveling in the same direction, Iν (s), the radiation leaving the plasma at,
Iν (s+ ∆s) is given by

Iν (s+ ∆s) = Iν (s) exp (−κν∆s) +
jν
κν

[1− exp (−κν∆s)]

= Iν exp (−τν) +
jν
κν

[1− exp (−τν)] . (8.48)

The change of the radiance along this path, ∆Iν , can then be expressed as

∆Iν = Iν (s+ ∆s)− Iν (s) =

(
jν
κν
− Iν (s)

)
[1− exp (−τν)] . (8.49)
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This equation shows that the plasma reduces the difference between the local
source Sν = jν

κν
and the ingoing radiance Iν (s) by a factor [1− exp (−τν)]. In the

special case of LTE this result can be rewritten as

∆Iν = (Bν − Iν) [1− exp (−τν)] , (8.50)

with Bν the thermal radiance. The plasma thus tries to reduce the difference
between the radiance and the local thermal radiance.

Two limits can be distinguished. In the optical thick limit τ � 1 the outgoing
radiance, Iν (s+ ∆s), is always equal to the local source, Sν . In this limit the
radiation achieved a local equilibrium. The spectral power emitted as radiation
can be calculated locally as

Qν,rad =

∫∫
(Bν −Bν,ext)~s · d ~AdΩ, (8.51)

with Bν,ext the ingoing thermal radiation from the environment. In the optically
thin limit τ � 1 (8.49) can be approximated with

∆Iν ≈
(
jν
κν
− Iν (s)

)
κν∆s

≈ jν∆s− Iνκν∆s

≈ jν∆s. (8.52)

The power emitted as thin radiation can be calculated locally as

Qν,rad =

∫
jν4πdV. (8.53)

In general a local calculation of the radiation losses is not possible. The energy
transferred should then be evaluated numerically.

Besides the energy source term the radiation module should also calculate the
source term for the species. The species source term can be written as [19, p. 105]

∂ni
∂t

=

∫
4π

hν
(κν,iJν − jν,i) dν, (8.54)

with Jν the angle averaged radiance. This averaged radiance is given by [165, p. 4]

Jν =
1

4π

∫
IνdΩ. (8.55)

In the next section a grid-based numerical method is discussed that can evaluate
the energy and species source terms for arbitrary optical depths.

8.4 Cylindrical geometry

Section 8.3 showed how the spectral radiance of a ray with an arbitrary direction
vector changes due to interaction with the gas in a given volume. In this section
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a numerical method is described which is used to calculate the radiative energy
transport in an infinite cylinder. The method is called ray tracing and is based
on the description given by van der Heijden [19, p. 109-114] [20]. In section 8.7
is shown that the algorithm developed by van der Heijden contains discretization
errors and an improved algorithm is presented. This section describes the original
implementation. The radiative losses are estimated by considering the evolution
of the radiance along a set of rays in multiple directions.

In section 8.2 it was shown that the spectral radiative flux can be calculated
as

d2Φν = Iν~s · d ~AdΩ. (8.56)

The spectral radiative flux passing through the area d ~A on the surface of a cylin-
drical shell can be discretized by following the evolution of the radiance along a few
rays. Later in this section it is shown that the spectral radiative flux transported
along ray segment k, i, t can be discretized as

∆~Φk,i,t,ν = ∓4π∆z∆Ik,i,t,ν (∆sk,i,t) sin2 θt∆rk∆θ. (8.57)

The radiative energy source term can then be derived from (8.43) as

Qν,rad =

∫∫
d2Φν
V
≈
∑
t

k=i∑
k=1

∆Φk,i,t,ν
Vk

. (8.58)

The local change of the spectral radiance Ik,i,t,ν (∆sk,i,t) is taken from (8.49).
The probe lines that are used in the discretization procedure are characterized

by their direction vector ~s. These are chosen in a way that all rays originate on a
boundary point and form a tangent line to a different nodal point. These tangent
lines are only drawn for nodal points with a smaller radius than the radius of
the boundary point. The first and last nodal points are not included since they
represent no volume. The discretization of the radiative flux through d ~A for the
two boundary points with the largest radii is shown in figure 8.2. For both cases
the rays can be rearranged by making use of azimuthal symmetry. The result is
shown in figure 8.3. This figure shows that rays originating on the outer boundary
point follow the same path as rays originating on other boundary points. The
number of rays required to sample the radiance is thus reduced to the number of
control volumes. The distance through a control volume ∆sk,i, shown in figure
8.5 for rays in a horizontal plane, is given by{

∆sk,i =
√
R2
i − r2

k −
√
R2
i−1 − r2

k i > k

∆sk,i = 2
√
R2
k − r2

k i = k,
(8.59)

with k the nodal point number with the smallest radius the ray passes through,
and i the nodal point number indicating in what control volume this distance is
calculated. R is the radius of the boundary points and r is the radius of the nodal
points. Note that due to azimuthal symmetry only half of the azimuthal angle is

considered:
∫ π/2
−π/2 dα = 2

∫ π/2
0

dα.
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Figure 8.2: Discretization of the radiative flux at a point on the largest (left) and
second largest (right) boundary point. The nodal points are shown in dotted lines
and the boundary points are shown in solid lines. A red line shows the direction
vector. The direction vectors of the rays are chosen in such a way that every ray is
a tangent line to a different nodal point. The black lines preceeding the red lines in
the figure on the right hand side show where the lines used for the sampling of the
second shell originated. The green lines show the sampled angle in the cylindrical
plane.

Figure 8.3: Rays emerging at different boundary points can all be rearranged to
the same set of parallel rays. In the left figure the rays emerging at the outer
shell are shown and in the right figure the rays that emerge at the second largest
shell are shown. The rays in the left and right figures follow the same path. This
procedure significantly reduces the number of rays required to sample the radiance.
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Figure 8.4: The red arrows indicate how
the zenith angle has been discretized.
The black dots indicate the section of the
zenith angle that is represented by the
red arrows. The ray at θ = π/2 covers a
part of the zenith angle that is half above
and half below the symmetry plane.
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Figure 8.5: The distance a ray travels between control volumes is
given by the line segments between the red dots.
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In order to account for the full solid angle a discretization of the zenith angle
θt should also be considered. This angle is discretized as

θt =
π

2

(
1− t

tm − 1
2

)
, (8.60)

with 0 ≤ t < tm and tm the total number of points used for the discretization
of θ. Only the upper half of the zenith angle is considered due to the symmetry

with respect to θ = π/2. The integration is thus written as Qν,rad =
∫∫ π

0
d2Φν
V =

2
∫∫ π/2

0
d2Φν
V . The discretization was made in such a way that no ray has a zenith

angle of zero. The first ray has a zenith angle with a value of θ = π/2 and covers a
part of the zenith angle which lies half above and half below the symmetry plane.
An image of the zenith angle points is shown in figure 8.4. The distance through
a control volume ∆sk,i,t can now be expressed as∆sk,i,t =

√
R2
i−r2k−

√
R2
i−1−r2k

sin θ i > k

∆sk,i,t =
2
√
R2
k−r

2
k

sin θ i = k.
(8.61)

The calculation of the radiative flux also requires the calculation of the inner
product between the normal of the area of the control volume and the ray. The
angle in the plane αk,i can be expressed as

sinαk,i =
rk
Ri
, (8.62)

with the indices k and i defined similarly as the indices in ∆sk,i,t. In figure 8.5
the calculations of αk,i and ∆sk,i,t are clarified.

The radiative flux going through area ~ndA can be written as

d2Φν = Iν (~n · ~s) dAdΩ. (8.63)

The normal vector ~n and the ray’s direction vector ~s can be expressed in Cartesian
coordinates as

~nout = cosαx̂+ sinαŷ,

~nin = cos (π − α) x̂+ sin (π − α) ŷ = − cosαx̂+ sinαŷ,

~s = sin θx̂+ cos θẑ. (8.64)

The dot product is thus given by ∓ sin θ cosα with the sign indicating a ray en-
tering or leaving the volume, respectively. The solid angle can be written as
dΩ = sin θdθdα. The change of the radiative flux induced by passing through dA
can now be rewritten as

d2Φk,i,t,ν = ∓4πRidzdIk,i,t,ν sin2 θt cosαk,idαk,idθt. (8.65)

Note that a factor of 2 has been included due to azimuthal symmetry. The ex-
pression can be rewritten by taking the derivative of (8.62) with respect to the
nodal point coordinate

cosαk,idαk,i =
drk
Ri

. (8.66)
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The substitution gives

d2Φk,i,t,ν = ∓4πdzdIk,i,t,ν sin2 θtdrkdθt. (8.67)

The contribution of ray segment i belonging to ray k can be calculated by inte-
grating from one boundary point to the next boundary point. The contribution
to the power density is given by

dQk,i,t,ν =
1

V

∫∫ Ri

Ri−1

d2Φk,i,t,ν
drk

drk

≈ 4π∆z∆Ik,i,t,ν sin2 θt (Ri −Ri−1) dθt

π
(
R2
i −R2

i−1

)
∆z

. (8.68)

The value of ∆Ik,i,t,ν is calculated with (8.49) using the distance from (8.61). The
contribution to the control volume with nodal point number i is given by summing
all contributions from all rays that reach this control volume. These contributions
are given by

dQi,t,ν =
4π sin2 θ (Ri −Ri−1)

∑k=i
k=1

(
∆I

(1)
k,i,t,ν + ∆I

(2)
k,i,t,ν

)
dθt

π
(
R2
i −R2

i−1

) , (8.69)

with ∆I
(1)
k,i,t,ν the contribution from the first time that ray k passes through con-

trol volume i and ∆I
(2)
k,i,t,ν the contribution from the second passage. The total

contribution is given by integrating over the frequency and the zenith angle. The
integral over the zenith angle uses the symmetry with respect to θ = π/2 to write∫ π

0
dQi as 2

∫ π/2
0

dQi. The total contribution can then be expressed as

Qν,rad =

∫
dQi,t,ν

dθt
dθt

=

∫ π/2
0

8π sin2 θt (Ri −Ri−1)
∑k=i
k=1

(
∆I

(1)
k,i,t,ν + ∆I

(2)
k,i,t,ν

)
dθt

π
(
R2
i −R2

i−1

)
≈

∑
t 8 sin2 θt

∑k=i
k=1

(
∆I

(1)
k,i,t,ν,t + ∆I

(2)
k,i,t,ν,t

)
∆θt

Ri +Ri−1
. (8.70)

8.5 Optically thin radiation

In this section the discretization for optically thin radiation is discussed. This
section also describes the discretization error that occurs in the method of van der
Heijden. For optically thin radiation the results obtained from that method do
not reduce to the correct limit.

The radiation losses in control volume i can be expressed as (8.70)

Qi,t,ν =

∑
t 8 sin2 θt

∑k=i
k=1

(
∆I

(1)
k,i,t,ν + ∆I

(2)
k,i,t,ν

)
∆θt

Ri +Ri−1
. (8.71)
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The central volume is poorly discretized since it is only visited by a single ray. For
optically thin radiation ∆Ik,i,t,ν ≈ jν∆sk,i,t is an accurate approximation. For
the central volume the distance through the entire volume is given by

∆sk,i,t = 2

√
R2
i − r2

k

sin θt
=

√
3Ri

sin θt
. (8.72)

By substituting Ri−1 = 0 in (8.71) an expression for the radiated energy in the
central volume can be derived as

Qi,t,ν = 8
√

3
∑
t

sin θtji,ν∆θt. (8.73)

The analytical expression for optically thin radiation is given by Qi,ν = ji,ν4π.
The ratio of these expressions is given by

Qi,t,ν
ji,ν4π

=
8
√

3
∑
t sin θt∆θt
4π

=
2
√

3

π
≈ 1.10. (8.74)

This ratio shows that the error is approximately 10%. The current radiative
description is thus subject to errors in the optically thin case. The errors are
largest for the central grid cell. Cells that are visited by multiple rays are subject
to a smaller discretization error. The relative error for the nodal point approach
is given in figure 8.6 in red. The figure shows that the relative error for optically
thin radiation is already reduced to values below 1 % for the volume corresponding
to the third smallest nodal point. In cylindrically symmetric plasmas the core
region is the region where most radiation originates from. In that case a large
grid is required to minimize the discretization error of the radiation in the central
volumes. A correct discretization can prevent the need for such large grids. Such
a discretization is provided in section 8.7.

8.6 Optically thick radiation

Optically thick plasmas are characterized by τ � 1. The equation of radiative
transfer can then be reduced to

∆Ik,i,t,ν = Ik,i,t,ν − Ik,i±1,t,ν =
ji,ν
κi,ν
− ji±1,ν

κi±1,ν
, (8.75)

with the ± sign indicating whether the ray is moving inwards or outwards. The
energy source term can be calculated analytically as

Qi,t,ν =
1

V
2πL

[
Ri

(
ji,ν
κi,ν
− ji+1,ν

κi+1,ν

)
+Ri−1

(
ji,ν
κi,ν
− ji−1,ν

κi−1,ν

)]
×∫ π

0

sin2 θdθ

∫ π

0

cosαdα

=
2π2L

V

(
Ri

[
ji,ν
κi,ν
− ji+1,ν

κi+1,ν

]
+Ri−1

[
ji,ν
κi,ν
− ji−1,ν

κi−1,ν

])
, (8.76)
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Figure 8.6: The relative error between the analytical power density and the numer-
ical approximation in an optically thin plasma. There are 100 nodal grid points
and 20 zenith angles. The discretization error using van der Heijden’s method is
largest in the center. The remaining errors in the improved discretization scheme
are related to the discretization of θ. These errors vanish when more zenith angles
are used.

with L the length of the plasma in axial direction and V = π
(
R2
i −R2

i−1

)
L. In

the special case of constant ji,ν and κi,ν these losses cancel in every control volume,
since there is no difference between the inward and the outward radiance. The
only exception is the outer control volume which is responsible for the difference
between the radiance at the wall and the local equilibrium value. In that case the
radiation losses can be expressed as

Qn,ν =
2πRn

R2
n −R2

n−1

[
jn,ν
κn,ν

− Iw,ν
]
, (8.77)

with Iw,ν the radiance emitted by the wall. A more interesting case is given by a
quadratic emission

jν (r) = j0,ν

(
1−

( r
R

)2
)
, (8.78)

and a constant absorption κν (r) = κ0,ν . The source function Si,ν =
ji,ν
κi,ν

is now

a quadratic function as well. The radiation losses can then be calculated from
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(8.76) and are given by

Qi,ν =
2π

R2
i −R2

i−1

j0,ν
κ0,ν

(
Ri

([ri+1

R

]2
−
[ri
R

]2)
+Ri−1

([ri−1

R

]2
−
[ri
R

]2))
,

=
2π

2∆RRi −∆R2

j0,ν
κ0,ν

(
Ri

([ri+1

R

]2
− 2

[ri
R

]2
+
[ri−1

R

]2)
−∆R

([ri−1

R

]2
−
[ri
R

]2))
,

=
4π∆R

R2

j0,ν
κ0,ν

. (8.79)

The energy source term is thus constant for these conditions. The expression for
the outer control volume is slightly different because there is no plasma emission
entering via the outer boundary. The radiation losses for the cases of constant and
quadratic emission constants are both in agreement with the analytical results up
to 10−14. The discretization scheme proposed by van der Heijden thus produces
the largest errors for optically thin radiation. For larger optical depths the errors
vanish.

8.7 Improved discretization

In section 8.5 it was shown that the discretization procedure from van der Heijden
does not reduce to the correct limit for optically thin radiation. In this section
an improved scheme is presented that provides results that reduce to the correct
limits in both the optically thin and thick limits.

In section 8.4 the indices k and i are used to describe the individual line
segments. Previously the index k referred to a position halfway between the inner
and outer radius of the control volumes. The correct way of placing the rays is

by taking a proper average using 〈f (x)〉 =
∫ b
a
f(x)dx∫ b
a

dx
. The rays should thus pass

through the point 〈rk〉 that satisfies

〈∆sk,k〉 (Rk −Rk−1) = 2

√
R2
k − 〈rk〉

2
(Rk −Rk−1) =

∫ Rk

Rk−1

2
√
R2
k − r2dr.

(8.80)
Due to the non-linearity of this integral it is not correct by simply placing the
points 〈rk〉 halfway between the boundary points. In this case the path length is
chosen to ensure that the total area in the discretized chord segments is the same
as the analytical result for the optically thin case. This choice does not affect the
result for the optically thick calculation, since that result is independent of the
path length. This is illustrated in figure 8.7. The integral for the line segment
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Figure 8.7: The discretization error in van der Heijden’s algorithm can
be removed by placing 〈rk〉 in such a way that the length through the
segment multiplied by the width is equal to the area of the segment. A
consequence of this procedure is that the lines through the segments are
no longer continuous.

that is closest to the cylindrical axis can be solved as5

〈∆sk,k〉 =
2
∫ Rk
Rk−1

√
R2
k − r2dr∫ Rk

Rk−1
dr

=
2R2

k

∫ αk
αk−1

√
1− sin2 α cosαdα

Rk −Rk−1
=

2R2
k

[
α
2 + sin(α/2)

4

]αk
αk−1

Rk −Rk−1

=
2R2

k

Rk −Rk−1

(
1

2

(
π

2
− arcsin

Rk−1

Rk

)
− Rk−1

2Rk

√
1−

(
Rk−1

Rk

)2

. (8.81)

The new positions can be obtained from (8.80) and are thus defined as

rk =

√
R2
k −

(
〈∆sk,k〉

2

)2

. (8.82)

5 Note that the relation sinαk,i = rk
Ri

is used. Additionally, 0 ≤ α ≤ π/2 is valid which

ensures that cosα ≥ 0.
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The distance through a control volume for k 6= i is given by

〈∆sk,i〉 =

∫ Rk
Rk−1

(√
R2
i − r2 −

√
R2
i−1 − r2

)
dr∫ Rk

Rk−1
dr

=
R2
i

Rk −Rk−1

[
1

2

(
arcsin

Rk
Ri
− arcsin

Rk−1

Ri

)

+
1

2

Rk
Ri

√
1−

(
Rk
Ri

)2

− Rk−1

Ri

√
1−

(
Rk−1

Ri

)2


−
R2
i−1

Rk −Rk−1

[
1

2

(
arcsin

Rk
Ri−1

− arcsin
Rk−1

Ri−1

)

+
1

2

 Rk
Ri−1

√
1−

(
Rk
Ri−1

)2

− Rk−1

Ri−1

√
1−

(
Rk−1

Ri−1

)2
 . (8.83)

Using the new discretization of the chord segments the errors in the optically thin
case are much smaller in comparison to the previous discretization method. The
remaining errors shown in figure 8.6 are related to the discretization of the zenith
angle.

8.8 Model verification

A few HID lamps are used to verify the accuracy of the ray tracing model. For
this purpose lamp mixtures involving Hg and Hg and Na are considered. The
calculation procedure is described in detail in chapter 10 and Gnybida et al. [152].
The energy balance that is considered is the Elenbaas-Heller equation and is given
by

∇ · (−λ∇T ) = σE2 − qrad, (8.84)

with the thermal and electrical conductivity calculated as indicated in chapter 5.
The calculation of the radiation losses are discussed in section 8.4. The electric
field is assumed to be uniform in the axial direction. In that case it can be obtained
from

Qin −Qelec =

∫ R

0

σ (r)E2dV = 2πLE2

∫ R

0

rσ (r) dr, (8.85)

with Qin the input power and Qelec the power dissipated in the electrodes. Addi-
tionally, constant elemental pressures are assumed.

8.8.1 Hg

The lamp described by Stormberg [167, p. 4341,4345] is modeled. The pressure is
5 bar. The dimensions of the burner vessel are R = 7 8 mm and L = 42 mm. The
input power for the lamp is Qin = 259 W, the electrode losses are Qelec = 17 5 W
and the wall temperature is Tw = 900 K. The broadening constants of Hartel [168,



8.8. Model verification 183

200 250 300
wavelength (nm)

0

500

1000

1500
R

ad
ia

nc
e 

(W
/(

m
2 *n

m
*s

r)
Model
Hartel
Stormberg

Figure 8.8: Calculations of the side-on
radiance for a Hg discharge.

250 300 350
lambda(nm)

j(a
.u

.)

Figure 8.9: Emission from the
Ω = 2u,#1−X transition at 5000 K.

p. 7082] are used. The simulated 253.7 nm line is shown in figure 8.8 and is
compared to the simulations of Stormberg and Hartel. Hartel suggests to adjust
Stormberg’s broadening constant for the 253.7 nm line. For that reason the model
deviates slightly from Stormberg’s line profile. Additionally, Hartel uses a Hg
pressure of 6 bar which explains why the self-reversal peak of the 184.95 nm line
is located at a different position. Hartel et al. also use a shorter distance between
the electrodes (L = 2.59 cm).

At higher pressures the validity of the Van der Waals profile is questionable.
In that case the quasi-static line profile must be calculated based on the true
potential curves. The total line profile can then be approximated with (8.28). The
potential curves listed in section 8.A.1 are used. These curves predict a continuum
that covers the spectral band from 250 nm up to 380 nm. In the minimum of the
Ω = 2u,#1 potential a transition of 316 nm can occur. The transition at this
interatomic separation is also called a satellite peak. Such a peak cannot be
obtained using Stormberg’s line shape. For a temperature of 5000 K the emission
from the Ω = 2u,#1−X transition is shown in figure 8.9. The emission indeed
reveals a peak at 316 nm. Another peak can be observed at 277 nm. This peak is
related to a peak in the calculated transition strength. For a temperature of about
3000 K the peak at 316 nm reaches approximately the same height as the peak at
277 nm. At lower temperatures the satellite peak dominates the continuum.

8.8.2 Na and NaI additives

The spectrum of a high pressure sodium (HPS) lamp operated at 70 W is measured
in an integrating sphere setup [21]. In the numerical model it is assumed that about
10 % of the energy is dissipated in the electrodes or plasma sheath. The broadening
constants of the sodium D-lines are taken from de Groot and van Vliet [169, p. 85]
as C3 = 1.56× 10−14 m3s−1 for D1 and C3 = 2.39× 10−14 m3s−1 for D2

6. Using

6Note that the book uses a different definition of the broadening constant.
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these broadening constants the sodium pressure was adjusted to obtain the correct
self-reversal width. The obtained pressure is pNa = 104 Pa. The mercury pressure
was set to 9× 104 Pa to match the lamp voltage of 75 V. Using these settings the
Van der Waals broadening constant was set to C6 = 5× 10−42 m6s−1 to represent
the wing of the resonant lines correctly. This value is more than ten times the
value reported by de Groot and van Vliet [169, p. 145]. The simulated spectrum is
compared with a measured spectrum in figure 8.11. The spectrum shows that the
resonant line has the correct shape, but the total amount of emitted radiation is
too large. The simulated luminous efficacy of 119 lumW−1 and measured luminous
efficacy of 86 lumW−1 confirm this statement. The reason for the large emission
is shown in figure 8.10. A typical HPS lamp reaches a maximum temperature of
about 4000 K while the simulation calculated a profile with a peak of 4500 kK.
Possibly the wall temperature is overestimated. The experiment used a lamp with
a removed outer bulb. This removal will increase the radiative losses, since the
outer wall can not heat the burner vessel with reflected radiation. Additionally,
the Van der Waals broadening constant could be fixed to the literature value. The
mercury pressure should then be adjusted again to get the correct lamp voltage.
The temperature can also be too high, because the self-reversal of other emission
lines is not correctly taken into account. In spite of these limitations the overall
agreement is satisfactory.

The formation of a self-reversal maximum is explained in figure 8.12. The
figure shows the evolution of the spectral radiance traversing a path from r = −R
through the center of the discharge towards the opposite wall at r = R. For the
central wavelength the optical depth reaches a maximum. For the NaD lines this
optical depth is sufficiently high to be in perfect radiative equilibrium. When
the wavelength is decreased the optical depth also decreases. The lag of the
local spectral radiance with respect to the local thermal radiance is increasing.
Eventually there is hardly any absorption which means the radiation becomes
optically thin. In this scala of spectra the dashed black line reaches the optimal
optical depth to obtain the largest radiant output at r = R.

For larger pressures the exact structure of the Na−Hg interaction becomes
important. Ab initio results for Na−Hg are displayed in section 8.A.2. An
emission spectrum for a temperature of 5000 K is shown in figure 8.13. A satellite
peak at 671 nm can be observed. This peak slightly deviates from the value that
is predicted based on the minimum of the potential (675 nm) due to the shape of
the transition probability. Woerdman [170] also reported an experimental value of
671 nm for the satellite peak. Additionally, he showed an undulation structure on
the blue side of the satellite peak which appears when a correction for the classical
singularity ( dr

dν = 0) is made. In the current calculation this undulation structure
appears on the red side of the satellite peak. This correction is dependent on the
second derivative of the potential with respect to the position. The fact that this
undulation structure is slightly misplaced indicates that the potential curves are
not fully resolved yet.
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8.A Ab initio potential curves

In this section the calculation of the potential curves for the Hg–Hg and Hg–Na
interactions are discussed. The potential curves are used to calculate the Van
der Waals broadening. The emitted wavelength is proportional to the inverse of
the potential difference of both states involved in the transition. The ab initio
package DIRAC [107] has been used to calculate the interaction potential and the
transition dipole moments as a function of the interatomic separation.
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8.A.1 Hg–Hg

The potential curve and the corresponding emitted wavelength for Hg–Hg that are
included in the model are shown in figure 8.14 and 8.15. The asymptotic limits of
the curves are 4.94 eV, 5.41 eV and 6.70 eV, respectively. Within approximately
0.05 eV, this corresponds to the atomic levels reported by NIST [53]. A compar-
ison with the molecular states calculated by Kullie [171] is difficult, since Kullie
only provides the absolute energy of the excited states. This information is not
directly comparable to our result, since the methods MCSCF and TDDFT using
CAMB3LYP produce a different energy offset.

8.A.2 Na–Hg

The potential curve and the corresponding emitted wavelength for Na–Hg that are
included in the model are shown in figures 8.16 and 8.17. The asymptotic limits of
the curves correspond to 0.07 eV and 2.23 eV, respectively. The atomic excitation
energy is thus 2.16 eV, which shows an error of 0.06 eV with the atomic levels
reported by NIST. According to measurements by Woerdman [170] satellite peaks
are visible around 671 nm. The current calculations show that the wavelength
corresponding to a transition from the minimum of the Ω = 1/2,#3 potential to
the ground state is 675 nm. The error in the difference potential is then 0.01 eV.
For smaller interatomic separations the potential curves are thus more accurate.
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Chapter 9

On the atomic line profiles in high
pressure plasmas

9.1 Abstract

Stormberg (J. Appl. Phys. 51 (4), p. 1963) presented an analytical expression
for the convolution of Lorentz and Levy line profiles; the resulting line profile
describes atomic radiative transitions in high pressure plasmas. Unfortunately,
the derivations are flawed with errors and the final expression, while correct, is
accompanied by misguiding comments about the meaning of the symbols used
therein, in particular the ‘complex error function’. In this chapter, we discuss
the broadening mechanisms that give rise to Stormberg’s model and present a
correct derivation of his final result. We will also provide an alternative expression,
based on the Faddeeva function, which has decisive computational advantages and
emphasizes the real-valuedness of the result. The MATLAB/Octave scripts of our
implementation have been made available on the publisher’s website for future
reference.

9.2 Introduction

Modeling and numerical simulation have been widely used to aid the understand-
ing and guide the development of High-Intensity Discharge (HID) lamps. An
important aspect of such models is the transport of energy via radiation, which
depends critically on broadening mechanisms. When multiple statistically inde-
pendent broadening mechanisms are present, the resulting line profile is obtained
as the convolution product of the individual line profiles (see Ref. [172, p. 56]).
A well-known example is the Voigt profile, which is obtained by convolving the
Gaussian and Lorentzian profiles that result from Doppler and resonance or Stark

Published as: J. F. J. Janssen, M. Gnybida, J. L. G. Suijker, A. J. Rijke and J. van Dijk;
On the atomic line profiles in high pressure plasmas in Journal of Applied Physics: Vol 114,
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broadening, respectively. The Voigt profile [160–162] can be expressed as

PV (z) =
R [w (z)]

σG
√

2π
, (9.1)

where z = ν−ν0+iγL
σG
√

2
, σG and γL represent the Gaussian and Lorentzian half widths

at half maxima (HWHM), ν is the frequency, ν0 is the unperturbed frequency, and
the Faddeeva function w(z) is given by

w (z) = exp
(
−z2

)
Erfc (−iz) . (9.2)

The function Erfc is the complementary error function, which is given by

Erfc (z) =
2√
π

∫ ∞
z

e−t
2

dt = 1− Erf (z) , (9.3)

where the error function is given by

Erf (z) =
2√
π

∫ z

0

e−t
2

dt. (9.4)

Stormberg [30] derived an analytical expression for the case that the center of
the spectral line can be described by a Lorentzian profile and the red wing by a
van der Waals profile. This case is particularly relevant for atomic transitions in
high-pressure plasmas. He showed that the resulting line profile is given by

P (∆λ) =
1

π∆λ1/2 (1 + a2)
− icπ

2

[
Z1.5

1 exp (Z1b) Erfc
(√

Z1b
)

−Z1.5
2 exp (Z2b) Erfc

(√
Z2b
)]
,

(9.5)

where ∆λ1/2 represents the full width at half maximum (FWHM) of the Lorentzian
profile and ∆λ0 the characteristic width of the van der Waals (also called Levy)
profile. The auxiliary parameters a, b, c and Z1,2 are given by

a =
∆λ

∆λ1/2
, (9.6)

b =
π∆λ0

4∆λ1/2
, (9.7)

c =

√
∆λ0

2π
(
∆λ1/2

)3/2 =

√
b

π3/2∆λ1/2

, (9.8)

Z1,2 =
−a∓ i
1 + a2

. (9.9)

Stormberg creates some confusion about the meaning of Erfc by mentioning
a method for calculating the complex error function in the accompanying text,
probably referring the evaluation of the error function for complex arguments
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instead [173, 174]. But more commonly, the term ‘complex error function’ refers
to the Faddeeva function [160,162,174].

Most authors who cite Stormberg’s article [30] merely indicate that they used
his expression, without any further remarks on the mistakes in Stormberg’s paper
or the meaning of Erfc. Only two articles known to the authors discuss Stormberg’s
expression any further. Weiß et al. [175] mention that they calculate a Faddeeva
function, but do not even provide an expression in which that function occurs.
Hartel et al. [168] present an interesting alternative form of Stormberg’s expression
that avoids the need to subtract two terms involving the complementary error
function, the result is

P (∆λ) =
1

π∆λ1/2 (1 + a2)
+ πc exp

(
−ab

1 + a2

)
× I

[
Z3/2 exp

(
−ib

1 + a2

)
Erfc

(√
Zb
)], (9.10)

with Z = Z1 and I denoting the imaginary part. Unfortunately, they also use
the confusing term ‘complex error function’ to refer to the complementary error
function and do not provide a derivation of their result, or discuss its advantages.

In this paper we will first provide a short introduction to the theory of line
broadening that is relevant for the present discussion. We continue the text with a
complete and corrected derivation of Stormberg’s and Hartel’s result, which shows
that indeed Erfc represents the complementary error function in all expressions.
We will then derive a novel expression for Stormberg’s result that employs the
Faddeeva function. This expression has decisive analytical and computational ad-
vantages: it highlights the real-valuedness of the result and avoids the subtraction
of two possibly (nearly-)equal terms. The MATLAB/Octave source code that has
been used in our tests has been made available on the publisher’s website for future
reference.

9.3 Line broadening

The most important broadening mechanisms in high pressure plasmas are reso-
nance, van der Waals and Stark broadening. Resonance, Stark and van der Waals
broadening can be calculated in the impact approximation, which is valid when
the collision time is much shorter than the time between collisions [158, 176], or
λ− λ0 = ∆λ < ∆λL , with

∆λL =
〈v〉λ2

2πcρW
. (9.11)

Here λ0 is the wavelength of the unperturbed transition and 〈v〉 the average ther-
mal velocity of the interacting particles. The potential of the perturbation is
assumed to be of the form

V = h
Cn
rn
, (9.12)
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where h is Planck’s constant and Cn is the broadening constant with dimensions
mns−1. For such a potential the Weißkopf radius is given by

ρW =

(
αnCn
〈v〉

) 1
n−1

, (9.13)

with

αn =
√
π

Γ
(
n−1

2

)
Γ
(
n
2

) , (9.14)

where Γ is the gamma function. This results in a Lorentzian line profile,

PLorentz (∆λ) =
∆λ1/2

π
(

∆λ2
1/2 + ∆λ2

) , (9.15)

with ∆λ1/2 the Lorentzian HWHM. The convolution of two Lorentzian profiles is
again a Lorentzian profile with a HWHM that is equal to the sum of the HWHM
of the individual profiles. In other words, the HWHM’s are additive for all statis-
tically independent mechanisms that result in a Lorentzian profile.

For resonance broadening in the impact approximation the HWHM is given by

∆λres =
∑
i

∑
j

CR,jini =
∑
i

∑
j

λ2

2c0
πC3,jini, (9.16)

where CR,ji and C3,ji are resonance broadening constants for exchange of excita-
tion energy (see Ref. [172, p. 101-103]) between states j and i, ni is the density
of the radiating particle in state i and c0 is the speed of light in vacuum. Laux et
al. [177] note that the following perturbations in general are sufficient

∆λres =
λ2
ulπ

2c0
(C3,lgng + C3,ugng + C3,ulnl) , (9.17)

where the indices l, u and g refer to the lower state, upper state and ground state
of the radiating particle. The resonance broadening constant is given by

C3,ji = kJj ,Ji
1

64π3

(
gj
gi

)
Ajiλ

3
ji, (9.18)

with kJj ,Ji a constant which depends on the total angular momentum quantum
numbers Jj and Ji. Corney [154, p. 263] reports the value k1,0 = 1.53 for the
case Jj = 1, Ji = 0. This value is in good agreement with experiments in helium
where the transition probability is accurately known for the 1P1–1S0 resonance
line. An expression often used for the resonance broadening constant is the value
from Griem [172,175,178,179] which is given by

C3,ji =
1

8π4

√
gj
gi
Ajiλ

3
ji. (9.19)
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Although this expression is not as accurate as Corney’s expression it has the
advantage that it does not rely on the constant kJj ,Ji . In case of resonance broad-
ening by a 1P1–1S0 line the ratio of Griem’s expression to Corney’s expression is
only 0.961. It is also interesting to note that Lawler [180] states that the linear
relation between density and resonance line width in Hg is valid at least up to
4 · 1025 m−3 . This density is outside the validity of the impact approximation.
Additionally, Lawler claims that the Lorentzian line profile may also be valid to
line offsets that are significantly larger than suggested by the validity of the impact
theory.

In the impact approximation the HWHM due to Stark broadening is calculated
with various degrees of sophistication. Stormberg [167] uses a HWHM given by

∆λStark = CSne, (9.20)

while Refs. [175,178,179] use the model

∆λStark =
λ2

4πc0
11.37C

2/3
4 v1/3

e ne, (9.21)

with CS and C4 the Stark broadening constants, ve the thermal velocity of the
electrons and ne the electron density. The second relation features a weak tem-
perature dependency which is not present in the first relation. Another expression
for the HWHM of Stark broadening is found in Griem [153, p. 91] [176],

∆λStark = [1 + 1.75α (1− 0.75r)]ω, (9.22)

with r the ratio of the mean distance between ions ρm and the Debye length ρD

r =
ρm
ρD

=

(
4πne

3

)−1/3(
ε0kBT
e2ne

)1/2
= 61/3π1/6

(
e2

4πε0kBT

)1/2

n1/6
e , (9.23)

where α and ω are tabulated 1 Stark broadening parameters by Griem [153, p. 454-
527].

The contribution of van der Waals broadening in the impact approximation
[175,178,179] is given by

∆λvdW =
λ2

2πc0
4.04

(
8kBT

π

)3/10∑
i

C
2/5
6,i

ni

µ
3/10
i

, (9.24)

with C6 the van der Waals broadening constant, ni the density of the perturbing
particle and µ the reduced mass calculated for the radiating and the perturbing
particle. The van der Waals broadening constant can be estimated based on a
hydrogen like approximation as [178]

C6 =
1

2hε0
e2αpert

∣∣〈r2
u

〉
−
〈
r2
l

〉∣∣ , (9.25)

1 Note that the values of ω are tabulated in Åfor n∗e = 1019m−3. The real value of ω can
be obtained by multiplying with ne/n∗e . Similarly the values for α should be multiplied by

(ne/n∗e)1/4 [153, p. 454].
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with αpert the polarizability of the perturbing particle and
〈
r2
i

〉
the mean square

radius of the atoms in state i, which is given by

〈
r2
i

〉
= a2

0

(n∗i )
2

2

〈
5 (n∗i )

2
+ 1− 3li (li + 1)

〉
. (9.26)

Here a0 is the Bohr radius, li is the orbital quantum number of state i and 〈n∗i 〉
2

is the effective quantum number,

〈n∗i 〉
2

=
EH

Eion − Ei
, (9.27)

with EH the ionization energy of hydrogen, Eion the ionization energy of the
radiating species and Ei the energy of state i.

The van der Waals interaction can also be calculated in the quasi-static approx-
imation. This approximation assumes that the radiating particles are perturbed
by a slowly varying potential field which can be considered quasi-static. This
approximation results in a Levy profile [176,178],

P (∆λ) =


√

∆λ0

2 (∆λ)
3/2

exp

(
−π∆λ0

4∆λ

)
∆λ > 0

0 ∆λ ≤ 0

, (9.28)

with ∆λ0 given by

∆λ0 =
∑
pert

CW,pertn
2
pert (9.29)

=
∑
pert

λ2

2πc0
C6,pert

(
4

3
πnpert

)2

, (9.30)

with CW and C6 van der Waals broadening constants and npert the perturber
density.

9.4 Stormberg’s expression

A comparison with experiments shows that the Lorentz profile describes the center
of the line profile accurately while the Levy profile is an accurate estimate of the red
wing. Stormberg determines the total line profile by taking the convolution of the
Lorentz and the Levy profile. In this section we present a corrected derivation of
Stormberg’s expression, derive Hartel’s result, and provide a numerically superior
expression, based on the Faddeeva function. The starting point is the convolution
integral

P (∆λ) =

∫ ∞
−∞

PLevy (∆λ)PLorentz (ε−∆λ) dε. (9.31)
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Substitution of (9.15) and (9.28) yields

P (∆λ) =

√
∆λ0

2π(∆λ1/2)3/2

√
∆λ1/2 ×∫ ∞

0

1

(ε)1.5
exp(− π∆λ0

4∆λ1/2

∆λ1/2

ε
)

1

1 +
(

∆λ−ε
∆λ1/2

)2 dε,
(9.32)

and by changing to the integration variable

y =
∆λ1/2

ε
, (9.33)

and using the definitions (9.6) and (9.7) one obtains

P (∆λ) = c

∫ ∞
0

√
y

y

y2 + (ya− 1)2
exp(−by)dy. (9.34)

Using definition (9.9), one gets

y

y2 + (ya− 1)
2 =

−i
2 (1 + a2)

(
a+ i

y + Z1
+
−a+ i

y + Z2

)
, (9.35)

which allows us to write equation (9.34) as

P (∆λ) =
ic

2 (1 + a2)

∫ ∞
0

[
(−a− i)√y
y + Z1

exp(−by)

−
(−a+ i)

√
y

y + Z2
exp(−by)

]
dy.

(9.36)

This equation has the form of a (unilateral) Laplace transform,

L{f (t)} =

∫ ∞
0

f (t) exp (−st) dt, (9.37)

and in a book of Laplace tables like Ref. [181] one finds that∫ ∞
0

√
y

y + Z
exp (−by) dy =

√
π

b
− π
√
Z exp (Zb) Erfc

(√
Zb
)
, (9.38)

where Erfc is the complementary error function. This result is valid under the
conditions that

R(b) = R
(
π∆λ0

4∆λ1/2

)
> 0, (9.39)

|arg (Z)| =
∣∣∣∣arg

(
−a∓ i
1 + a2

)∣∣∣∣ < π, (9.40)

which are always met because of the definitions of b and Z1,2. Note that R is
used to refer to the real part of an expression. By substituting (9.38) in (9.36)
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Stormberg’s original expression (9.5) can be obtained, with the observation that
Erfc is the complementary error function.

In the remaining part of this section an alternative expression will be derived
that is based on the Faddeeva function. We start by rearranging the Laplace
transform as√

π

b
− π
√
Z exp (Zb) Erfc

(√
Zb
)

=

√
π

b

(
1−
√
π
√
Zb exp (Zb) Erfc

(√
Zb
))

.

(9.41)
Using √

Zb = −i2
√
Zb = −id, (9.42)

with d = i
√
Zb, the Laplace transform can be expressed in terms of d as√

π

b

(
1 + i

√
πd exp

(
−d2

)
Erfc (−id)

)
=

√
π

b

(
1 + i

√
πdw (d)

)
, (9.43)

where we have introduced the Faddeeva function (9.2). The final line profile can
then be rewritten as

P (∆λ)

PLor (∆λ)
=
−i (+a+ i)

2

(
1 + i

√
πd1w (d1)

)
+
−i (−a+ i)

2

(
1 + i

√
πd2w (d2)

)
=1−

i
(
1 + a2

)
d2

1

2b
i
√
πd1w (d1) +

i
(
1 + a2

)
d2

2

2b
i
√
πd2w (d2)

=1 +

(
1 + a2

)√
π

2b

{
d3

1w (d1)− d3
2w (d2)

}
.

(9.44)

The term d3
1w (d1) can be related to d3

2w (d2) by noting that

d1 = i
√
Z1b = −i

√
Z1b = −i

√
Z2b = −d2, (9.45)

as a result of which

d3
1w (d1) = d3

1w (d1) = d1
3
w
(
−d1

)
= −d3

2w (d2) . (9.46)

In the last step we have used w (z) = w (−z) (see Ref. [182, eq. 7.1.12]). Then the
final expression can be simplified to

P (∆λ)

PLor (∆λ)
=

[
1 +

(
1 + a2

)√
π

b
R
{
d3

1w (d1)
}]

. (9.47)

When the Faddeeva function is expressed in terms of the complementary error
function this yields Hartel’s expression.

Equation (9.47) has decisive analytical and computational advantages, com-
pared with Stormberg’s and Hartel’s expressions. It is more compact, emphasizes
that the line profile is real-valued, and avoids the subtraction of possibly (nearly-
)equal terms. Moreover, there is no need to evaluate the product of a complex
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exponent and an error function, since specialized algorithms exist for the numeri-
cally stable evaluation of the Faddeeva function itself [183].

Before discussing the numerical stability further, it is instructive to explore
the limiting cases in which one of the broadening mechanisms is absent. The
Lorentzian profile can be retrieved trivially by using

lim
∆λ0↓0

b =
π∆λ0

4∆λ1/2
= 0, (9.48)

which implies that

lim
∆λ0↓0

d3
1,2

b
= lim

∆λ0↓0

[i (−a∓ i) b]3

(1 + a2)
3/2

b
= 0. (9.49)

Recovering the Levy profile is more tricky, since lim
∆λ1/2↓0

a =∞, lim
∆λ1/2↓0

b =∞ and

lim
∆λ1/2↓0

c =∞. But since

lim
∆λ1/2↓0

a

b
=

4∆λ

π∆λ0
(9.50)

is constant, for lim∆λ1/2↓0 we can easily derive that

P (∆λ) =
4

π2∆λ0

(
b

a

)1.5
[√

π

2

{
w

(√
b

a

)
+ w

(
−
√
b

a

)}]
. (9.51)

Using w (z) +w (−z) = 2 exp
(
−z2

)
(see Ref. [182, eq. 7.1.11]) and the definitions

of a and b, we arrive at the expression for the Levy profile.

9.5 Numerical stability

The line profile calculated with (9.5) shows oscillations for large values of b. First
an example is given of a physical situation where these high values of b can occur.
After that an implementation of (9.47) in MATLAB and its numerical stability
are discussed.

The line profile can be characterized with the variables ∆λ1/2 and ∆λ0. A
more insightful description is given by the parameter b which contains the ratio
of the impact and quasi-static linewidths. By only taking into account resonance
broadening in the impact limit and van der Waals broadening in the quasi-static
limit, this ratio can be expressed in terms of the broadening constants as

b =
π

4

16C6n
2
p

9C3nr
, (9.52)

with nr the density of radiating species and np the density of perturbing species.
In a situation where the radiating particles are not the same as the perturbing
particles a high value of b can occur. For example in a high pressure mercury
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Figure 9.1: For b = 50 the line profile can become numerically unstable when
Stormberg’s original expression (9.5) is used (solid line). The new expression
(9.47) is stable for all b values (dashed line).

discharge containing sodium iodide the ratio can become large at lower tempera-
tures where the sodium is bound in molecules. In methods like ray tracing [184]
a correct calculation of the line profile at lower temperatures is also required to
account for the absorption accurately.

The calculation of the line profile [185] according to (9.5) in MATLAB requires
an implementation of the error function. Since this is not a built-in function, we
used the implementation from Leutenegger [186] for our tests. For b > 50 these
revealed numerical artifacts in the line shape that can be attributed to inaccuracies
in Leutenegger’s implementation. Our new expression (9.47), that was tested with
the implemented Faddeeva function of Ikuma [183] did not have such problems.

These results are shown in figure 9.1. Since the line profiles are proportional
to c, we have plotted P (∆λ)/c in these graphs. The figure clearly shows the oscil-
lations for b = 50 when Stormberg’s original expression is used with Leutenegger’s
algorithm for calculating the error function; the noise rapidly increases in magni-
tude and width when b is increased further.

For a few values of b the resulting line profiles are shown in figures 9.2-9.5.
These figures show that the oscillations which start to occur around b = 50 arise
when the line profile is dominated by the Levy contribution. Wharmby [187]
already mentioned that impact and quasi-static theory have their limitations and
that for high densities the Levy profile can cause unrealistically large red wings.
He was still able to obtain accurate results by convolving again with a Gaussian
profile to artificially limit these wings. A correct calculation of the line profile
requires to take into account accurate potential curves of the interacting species.
Such curves are not always available and in some cases a more simple calculation
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Figure 9.2: P (∆λ) /c for b = 0.1
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Figure 9.3: P (∆λ) /c for b = 1
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Figure 9.4: P (∆λ) /c for b = 10
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Figure 9.5: P (∆λ) /c for b = 100

of the line profile is preferred. For these cases Stormberg’s line profile can be used
as a first order approximation.

9.6 Conclusion

We have evaluated the dominant broadening mechanisms of atomic lines in high
pressure plasma. We have shown that when Stormberg’s original expression is
used in conjunction with a popular implementation of the error function in MAT-
LAB/Octave, intolerable numerical errors are observed when the broadening is
dominated by the Levy contribution. We have presented a novel expression that
is based on the Faddeeva function, which is more elegant, computationally effi-
cient and accurate under all circumstances. The MATLAB/Octave scripts of our
implementation have been made available on the publisher’s website for future
reference [183,185,186].





Chapter 10

Numerical investigation on the
replacement of mercury by indium
iodide in HID lamps

Abstract

Mercury-free high-pressure discharge lamps have been studied by means of a
radial-dependent model. Xenon and indium iodide are chosen as start gas and
buffer, respectively. Local thermodynamic equilibrium (LTE) is assumed with a
single temperature for all species. The model consists of the coupled description
of the balance equation for the plasma temperature with the radiation transport
equation. The plasma composition is calculated according to the Guldberg-Waage,
Boltzmann and Saha laws. These laws were supplemented by additional equations
specifying the total pressure, constant element ratios and quasi-neutrality. The
model takes into account atomic, molecular as well as continuum radiation. The
broadening of the optically thick lines is approximated by Stormberg’s approach.
In order to predict the continuum radiation we performed ab initio calculations
to obtain the potential curves and the transition dipole moments. The predicted
spectrum is compared with a measured spectrum. The comparison shows that
the model is able to reproduce the continuum radiation. The conclusion from this
comparison is that the largest part of the continuum radiation is produced by
free-free and free-bound transitions in InI. The free-bound A-X transition is the
dominant process.

Published as: M. Gnybida, J.F.J. Janssen, J. van Dijk, J.L.G. Suijker, K.S.C. Peerenboom,
A.J. Rijke, M. Gendre and G.M.W. Kroesen, Numerical investigation on the replacement of
mercury by indium iodide in high-intensity discharge lamps in Journal of Physics D: Applied
Physics, 47, p. 125201
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10.1 Introduction

High-intensity discharge (HID) lamps have been used for general lighting ap-
plications for almost a century. There are three principal types of HID lamps
[8,169,188]: high-pressure mercury, high-pressure sodium and metal-halide lamps,
which differ by the nature of their radiating species. In all cases mercury is used as
buffer gas. Mercury provides a high vapor pressure and a large momentum transfer
cross section which generates the necessary ohmic heating at low currents. Mer-
cury has an impact on the discharge temperature profile due to radiation transport,
which leads to a broad temperature profile. The high mass of mercury results in
a low thermal conductivity. Mercury has high excitation/ionization levels, which
leads to a small contribution to the net radiative output and a small contribution
to electron production in a metal-halide lamp.

However, mercury compounds are extremely toxic and should therefore be
replaced by environmental-friendly elements without decreasing the lamp efficacy.
Replacement of mercury by metallic zinc is suggested by Born [16]. However,
this causes corrosion of the wall material due to the high temperature. A sulfur
lamp operating with a microwave discharge shows high luminous efficacy [189].
However, the lifetime and efficacy of sulfur lamps is limited by the magnetron
used to generate the microwaves. Despite these and other attempts, mercury
remains the main component of most commercial HID lamps.

K’́aning [17] suggest to replace mercury with strong molecular radiators. The
discharge voltage of these mercury-free lamps is then increased by shrinking the arc
cross section. Such a contraction is caused by molecular radiation emitted in the
colder mantle region of the discharge. A possible candidate to replace mercury
is indium iodide, which delivers a large amount of continuum radiation in the
visible and infrared (IR) ranges [190, 191]. Grabner et al. [190] claim that the
IR continuum is caused by recombination radiation and the visible continuum by
a combination of strong broadening of the indium resonance lines and molecular
radiation.

The goal of this investigation is to understand the effects of replacing mer-
cury in HID lamps with a mixture of xenon and indium iodide. These effects
are investigated by numerical simulations. The focus lies on the calculation of
the plasma temperature profile and the spatially integrated spectrum (spectral
power density). Furthermore, the calculated spectral power density is compared
with a measurement obtained from an integrating sphere setup. This comparison
demonstrates that the process responsible for the broadband continuum radiation
is understood.

10.2 Modeling

10.2.1 Assumptions

The plasma simulation platform PLASIMO [25] is used to model the replacement
of mercury in high-pressure discharge lamps. A 1D cylindrically symmetric plasma
is considered with a radiusR = 3 mm. The distance between the electrodes is Lel =
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7.1 mm. Based on simulation results of an electrode model [192], the electrode
losses are estimated to be 10 % of the lamp power. Thus 90 % of the power is
dissipated in the discharge as ohmic heating. The plasma temperature at the tube
wall is assumed to be 1400 K which is based on wall temperature measurements
of similar mercury-containing lamps. Additionally, LTE [172, p. 187] is assumed.

A correct description of demixing in a mercury-free lamp requires solving the
Stefan-Maxwell diffusion equations. In our xenon indium iodide discharge there
is no species that is dominant over the entire temperature range since the ele-
mental fractions of xenon, indium and iodide are of the same order of magnitude.
Because of the replacement of the dominant buffer gas mercury by a mixture,
standard demixing algorithms that are based on Fick’s law are no longer valid.
Constant elemental pressures will be assumed, since a correct description based on
the Stefan-Maxwell equations is not available. This approximation is equivalent
to the convection limit given by Fischer [193]. The usage of the convection limit
is not optimal considering the pressure and the radius of the lamp. However, the
model will be accurate enough to reveal what process in the discharge is causing
the continuum radiation.

10.2.2 Governing equations

The model couples the energy balance with the radiation transport equation self-
consistently. A fixed power is applied to the gas in the energy equation. This is
achieved by adjusting the electric field after every calculation of the temperature
profile. The total power dissipated in the discharge column is given by

Pin − Pel =

∫
σ (r)E2dV = E2Lel

∫ R

0

2πrσ(r)dr, (10.1)

with dV a volume element, r the radius, Pin the total input power, Pel the power
lost in the electrodes, E the axial electric field and σ(r) the electrical conductivity.
The electric field is thus calculated as

E =

√
Pin − Pel

Lel

∫ R
0

2πrσ(r)dr
. (10.2)

The energy equation is given by [16]

− 1

r

∂

∂r

(
rλ
∂T

∂r

)
= σE2 − Prad, (10.3)

where λ is an effective thermal conductivity that includes contributions from re-
actions, Prad the net radiative power and T the temperature. The term Prad is
the power density that is derived from the evolution of the spectral radiance along
multiple probe lines. The local change in spectral radiance is given by [20]

dIν
ds

= jν − κνIν , (10.4)
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with jν the local emission coefficient, κν the local absorption coefficient, Iν the
spectral radiance and s the path traversed by the radiation. The radiative flux
d2Φν passing through a surface area dA in the direction ~s and covering a solid
angle dΩ is given by

d2Φν = I~s · d ~AdΩ. (10.5)

The net radiative power passing through that surface can then be calculated by
integration over the frequency. The local power density can then be calculated as

Prad =

∫∫∫
d2Φν
V

dν =

∫∫∫
Iν~s · d ~AdΩdν

V
, (10.6)

with V the local volume under consideration. The probe lines that make a zenith
angle of 90 ◦ lay in the horizontal plane and are taken into account from one
side of the wall at −R to the other side of the wall at R. Probe lines at a
different zenith angle could start from the bottom or top cover of the cylinder.
According to the infinitely long cylinder approximation, these lines are extended
to the walls and are therefore also taken into account from −R to R. This means
that radiation transfer is also taken into account for sections of probe lines that
are in fact partly outside the lamp. Using this method the radiative losses are
slightly underestimated in the center of the plasma.The absorption in the mantle
is slightly overestimated. These effects are small in our plasma since the molecular
radiation is mostly optically thin and for a qualitative comparison of the spectra
such an approximation is sufficiently accurate. Additionally, we do not include
absorption or reflection from the wall of the discharge vessel1.

The plasma composition used for the model was calculated by solving a system
of Guldberg-Waage equations

Πi [nXi ]
ai

Πj

[
nYj
]bj =

Πi (ZXi)
ai

Πj

(
ZYj
)bj
(

2πkBT

h2

) 3
2 (
∑
i ai−

∑
j bj)
×

(
Πi (mXi)

ai

Πj

(
mYj

)bj
) 3

2

exp

(
−
∑
i aiEXi −

∑
j bjEYj

kBT

)
, (10.7)

with Π denoting the product of a sequence, kB the Boltzmann constant and h
Planck’s constant; the following properties correspond to the reactants Xi and
the products Yj : mXi the mass, nXi the number density, EXi the energy and ZXi
the internal partition sum (electronic and rovibrational states); the quantities
Xi,ai, Yj and bj are specified by the reaction

a1X1 + a2X2 + · · ·+ aiXi ↔ b1Y1 + b2Y2 + · · ·+ bjYj . (10.8)

These laws were supplemented by additional equations specifying the total pres-
sure p, uniform elemental fractions and quasi-neutrality. The elemental pressure

1The reflection can be included in a 1D radial symmetrical model according to Haverlag
et al. [194]. In order to account for reflection the spectral radiance can be multiplied with
T/ (1−R exp (−τ)) where T is the transmission and R the reflection.
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for indium and iodine is kept constant as a function of the radius. The elemental
pressure is defined as

pα =
∑
i

Rαipi, (10.9)

with pi the partial pressure of particle i and Rαi the stoichiometric coefficient
[113], which states how often element α occurs in particle i. The quasi-neutrality
constraint is given by ∑

i

qini = 0, (10.10)

with qi the charge of the particle. The elemental fraction of Xe is adjusted in
order to obtain a constant pressure as a function of the radius. Thermodynamic
data is taken from [195–199]. The composition contains the following species: e,
Xe, Xe+, In, In+, I, I+, I2, I−, InI, InI2 and InI3.

10.2.3 Transport coefficients

The model requires knowledge of the transport coefficients i.e. thermal and elec-
trical conductivity. The Chapman-Enskog expansion [34, p464-491] is used to
calculate the transport coefficients. A set of collision integrals, which describes
the interaction of one species with every other species, is required to compute the
transport properties.

The collision integral for collisions between species of type i and type j is given
by

Ω
(l,s)
ij =

(
kBT

∗

2πµij

)1/2 ∫ ∞
0

γ2s+3e−γ
2

Q
(l)
ij dγ, (10.11)

where l and s are two parameters defining the order of the collision integrals,
γ2 = (µij/2kBT

∗)g2 is a reduced energy where µij = mimj/(mi + mj) is the
reduced mass, g is the relative velocity and T ∗ is an effective collision temperature
[200], which is equal to the temperature T in LTE. Qlij is the lth moment collision
cross section which is given by

Qlij = 2π

∫ ∞
0

(1− cosl(χ))bdb, (10.12)

where b is the impact parameter and χ the scattering angle given by

χ = π − 2b

∫ ∞
rm

dr

r2[1− (b2/r2)− (2φ(r)/µg2)]1/2
, (10.13)

where rm is the distance of closest approach and φ(r) the interaction potential.
Each type of collision is described by a different interaction potential. For

neutral-neutral and neutral-ion cases the modified Lennard-Jones potential has
been used according to Laricchiuta et al. [5]. The approach requires knowledge of
the polarizability of the interacting particles. Patil [104] published a list containing
the polarizability for a large number of atoms and ions. Molecular polarizabili-
ties have been computed according to Thole’s approach [105]. Resonant charge
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transfer is included according to Rapp and Francis [74]. For charged-charged cases
the screened-Coulomb potential has been used. Highly accurate tabulations for
the collision integrals are available from Mason et al. for the repulsive as well as
attractive collisions [87]. There is no straightforward way to treat electron-neutral
collisions, because the energy at which it occurs and the magnitude of the Ram-
sauer minimum strongly varies for different collisions. Specific momentum transfer
cross sections were used to describe e−Xe, e− I, e− In interactions [201–205].
For In, there are two data sets. These sets describe different energy ranges and
therefore the intermediate energy range is interpolated. The polarizability model
of Langevin [64, p. 15] has been used to treat other electron-neutral collisions.
This model uses a relative polarizability αr that is calculated as

αr =
(R1 +R2)

3

8a3
0

, (10.14)

with Ri the radius of particle i and a0 the Bohr radius. A rigid sphere interaction
is used if no interaction type is specified.

The total thermal conductivity of the plasma is given by

λ = λt + λe + λr + λi, (10.15)

where λt is the translational thermal conductivity of the heavy particles, λe is
the translational thermal conductivity of the electrons, λr is the reactive ther-
mal conductivity and λi is the internal thermal conductivity. The second-order
translational thermal conductivity is given by Muckenfuss and Curtis [111]. The
Devoto’s third-order approximation is used to calculate the electronic thermal con-
ductivity [108]. To describe the reactive thermal conductivity we use the relations
of Butler and Brokaw [50, 112]. The internal contribution is calculated using the
Eucken-like expression from Gupta [206]. Devoto’s second-order approximation is
used to compute the electrical conductivity [108].

10.2.4 Local radiation properties

The model takes into account atomic and molecular radiation as well as radiation
emitted as Bremsstrahlung. The local emission coefficient [172, p. 226] for an
atomic transition between state u and state l is given by

jν =
hν

4π
nuAulφν , (10.16)

where h is Planck’s constant, nu is the density of the upper level, Aul is the tran-
sition probability, ν is the frequency and φν is the spectral line profile. Subscripts
ν indicate that the quantity is dependent on the frequency. The density of the
upper level is calculated using the Boltzmann distribution which is given by

nu = n
gu
Z(T )

exp

(
− Eu
kBT

)
, (10.17)



10.2. Modeling 207

where n is the total particle density, gu is the statistical weight of the upper level,
Z(T ) is the partition function and Eu is the energy of the upper level.

The local emission coefficient for a molecular transition is given by [207]

jν,r =
4πσsym

Vst

r2

4π
Aul

∣∣∣∣∂ν∂r
∣∣∣∣−1

hν

[
nu
Zu

exp

(
−Vu(r)

kBT

)]
, (10.18)

with σsym a statistical factor which is 1 for heterogeneous molecules and 1
2 for

homogeneous molecules. The state volume Vst is calculated as

Vst =

(
h2

2πµijkBT

)3/2

. (10.19)

The emitted frequency is given by

ν(r) =
∆E + Vu(r)− Vl(r)

h
, (10.20)

where ∆E is the potential difference between the two states, Vu(r) and Vl(r) are
the potential energies of respectively the upper and the lower states relative to
their minimum potential energies. The transition probability [154, p. 103] is given
by

Aul =
16π3D2 (r) ν3

3hguε0c3
, (10.21)

where D (r) is the transition dipole moment, ε0 is the electric permittivity of
vacuum and c is the speed of light. We calculated this variable using the program
DIRAC [208–211]. The total partition sum of the molecular state is [207]

Z =
σsym

Vst

∫ rmax

rmin

4πr2 exp

(
−V (r)

kBT

)
dr, (10.22)

where rmin and rmax represent the minimum and the maximum interatomic sepa-
rations that are included in the calculation. The local absorption coefficient is

κν,r =
4πσsym

Vst

c2

8π
Aul

r2

ν2

∣∣∣∣∂ν∂r
∣∣∣∣−1 [

gu
gl

nl
Zl

exp

(
−Vl(r)
kBT

)
− nu
Zu

exp

(
−Vu(r)

kBT

)]
.

(10.23)
We used the relativistic ab initio calculation program DIRAC [211] to calculate

the potential curves and the transition dipole moments. The excited states were
approximated by Kramers restricted configuration interaction calculations accord-
ing to the generalized active space concept [211]. The active space is formed by
the 5s and the 5p electrons with one excitation allowed2. Virtual states up to
1 Hartree above the ground state energy were taken into account. We used the
Triple-Zeta Basis Set from K.G. Dyall that is built in into Dirac12 [208–210].

2Note that the paper [152] incorrectly mentions that the 4d electrons are included. Addi-
tionally, only one excitation is taken into account instead of two excitations.
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Figure 10.1: Calculated ab initio energy curves for the InI
molecule using DIRAC [208–211].

According to measured spectra, lamps containing InI have a broad continuum
[190]. The main source of that continuum is claimed to be molecular radiation
and strongly broadened atomic radiation. In this model two radiative transitions
between ground and excited states of InI will be considered: InI[A]→ InI[X] and
InI[rep] → InI[X]. Potential curves of the ground state and two excited states
of InI are plotted in figure 10.1. The transition dipole moments are shown in
figure 10.2. The potential curves other than the ground state show a shallow or
a completely repulsive interaction potential. These curves show that the phase-
space population of the excited states predominantly are free states (V (r) >
V (∞)) rather than molecular/bound states (V (r) < V (∞)). A large part of the
continuum is thus free-bound or free-free radiation. We will call this radiation
quasi-molecular radiation. The increasing transition dipole moment in the range
of 4-5 Å for the transition from InI[A] to InI[X] is responsible for most of the IR
radiation.

The continuum radiation consists of electron-atom Bremsstrahlung jeabν . The
continuum is approximated with the expression given by De Regt [163]

jeabν = 2nena(kBT )3/2Qm(T )

[(
1 +

hν

kBT

)2

+ 1

]
exp

(
− hν

kBT

)
, (10.24)

where ne, na and Qm(T ) are the electron density, the atom density and the mean
cross section for momentum transfer [201–205] for electrons with atoms, respec-
tively.

Under LTE conditions the absorption coefficient can be deduced from Kirch-
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Figure 10.2: Calculated ab initio transition dipole mo-
ments for the InI molecule using DIRAC [208–211].

hoff’s law as [207]

κν =
jν
Bν

, (10.25)

where Bν is the spectral radiance of an object in thermal equilibrium. This radi-
ance is given by

Bν =
2hν3

c2

[
exp

(
hν

kBT

)
− 1

]−1

. (10.26)

10.2.5 Spectral line broadening

It is assumed that atomic transitions from xenon and iodine atoms can be neglected
because of the high energy levels of the excited states. Therefore only contributions
from indium atoms are included into the model. A list of the included energy levels,
transitions and broadening constants of the indium atom is displayed in table
10.1. The only atomic line in the UV or visible spectrum that is not completely
absorbed by the plasma is the 451 nm line. The broadening constants for this
line were adjusted to ensure a correct shape in the simulation. The constants
for the other lines are assumed to be equal to the constants for the 451 nm line.
The broadening of the optically thick atomic lines of Indium is approximated by
Stormberg’s approach [30,159]

φλ =
λres

π((λ− λ0)
2

+ (λres)2)
R

(
1 +

1 + a2

b

√
πd3

1w(d1)

)
, (10.27)

with R (s) the real part of s , λres the half width at half maximum (HWHM) of the
resonance line profile, λ0 the wavelength of the unperturbed line and the scaling
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parameters a, b and d1,2 given by

λres =
λ2

0π

2c
C3n0, (10.28)

λvdw =
C6λ

2
0

2πc

(
4

3
πnp

)2

, (10.29)

d1 = i

√
b
(−a− i)
1 + a2

, (10.30)

a =
(λ− λ0)

λres
, (10.31)

b =
πλvdw

4λres
, (10.32)

where C3 is the resonance broadening constant, λvdw the characteristic wavelength
of the Van der Waals profile n0 is the ground state of the radiating particle, C6 is
the Van der Waals broadening constant and np is the ground state of the perturber.
The expression of the line profile depends on the Faddeeva function

w(d) = exp(−d2)Erfc(−id). (10.33)

More details about the correct analytical expression for the line profile calculated
as the convolution of Lorentzian and Van der Waals profiles can be found in [159].

Table 10.1: Spectral line data of indium atom [53]

λ El Eu gl gu Aul C3 C6

(nm) (eV) (eV) (s−1) (m3s−1) (m6s−1)
303.936 0.00000 4.08099 2 4 1.30×108 1.00×10−15 1.9×10−44

325.609 0.27432 4.08099 4 6 1.30×108 1.00×10−15 1.9×10−44

325.856 0.27432 4.07910 4 4 3.77×107 1.00×10−15 1.9×10−44

410.176 0.00000 3.02185 2 2 5.60×107 1.00×10−15 1.9×10−44

451.131 0.27432 3.02185 4 2 1.02×108 1.00×10−15 1.9×10−44

10.3 Results and discussion

In this section simulation results for power loads P = 70 W are reported as well
as the most important plasma properties in the relevant temperature range. The
numerical results have been obtained by solving a discrete representation of the
coupled set of equations (10.3), (10.4) on an equidistant grid in space and fre-
quency. The spatial and frequency domains have been discretized using 98 and
2600 intervals, respectively. In order to reach a converged solution an iterative
scheme has been applied. The computations were performed on a 2.5 GHz CPU.
It took around 8 hours to reach a residue for the temperature lower than 1× 10−8.
The calculation of the radiation losses is responsible for the largest amount of the
total calculation time. The results have been obtained for a discharge containing
Xe and InI.
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10.3.1 Plasma composition

Figure 10.3 shows the number densities as a function of temperature for a XeInI
discharge. Due to the high pressure of xenon and iodine their number densities
dominate over the complete temperature range. Additionally, the low temperature
region from 1 kK to 3 kK contains high molecular densities. With increasing tem-
perature, molecules start to dissociate. In particular, diatomic iodine dissociates
into two iodine atoms around 1.5 kK and indium iodide dissociates into indium and
iodine atoms around 3 kK. Xenon and iodine have higher ionization energies than
indium. Therefore, the population of electrons is almost equal to the population
of indium ions in the high temperature region.
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Figure 10.3: Calculated number densities of indicated
species of the XeInI discharge. The elemental pressures
are p{In} = 3.9 bar and p{I} = 4.83 bar. The total
pressure is kept constant at 11.73 bar.

10.3.2 Transport coefficients

The temperature dependence of the total thermal conductivity and its compo-
nents, for the XeInI discharge lamp are plotted in figure 10.4. The internal ther-
mal conductivity is not displayed in this plot, because its values are of the order
of 1× 10−3 Wm−1K−1 which is significantly lower than the other contributions.
The reactive contribution to the total thermal conductivity reaches local maxima
in the temperature range where dissociation and ionization reactions occur. In
particular, the I2 and InI molecules dissociate around 1.5 kK and 3 kK, respec-
tively. The heavy particle translational thermal conductivity dominates in the
medium temperature range from 2 kK to 6 kK. Due to the high relative ionization
at high temperatures, the electron translational thermal conductivity is the major
contribution to the total thermal conductivity in this temperature range.
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Figure 10.4: Calculated components of the thermal
conductivity of the XeInI discharge. The elemental
pressures are p{In} = 3.9 bar and p{I} = 4.83 bar. The
total pressure is kept constant at 11.73 bar.

The temperature dependence of the electrical conductivity for the XeInI dis-
charge lamp is plotted in figure 10.5. The electrical conductivity strongly depends
on the electron density. Therefore, the evolution of the electrical conductivity and
the electron density as a function of the temperature is very similar.

10.3.3 Comparison with measured spectrum

The spectrum obtained from simulations has been compared with measurement
results determined by means of an integrating sphere [21]. The discharge vessel is
dosed with 6.48 mg of InI, 0.25 mg of AlI3 and is filled with 0.35 bar of Xe at room
temperature. The measured lamp is operated at a 120 Hz square wave current with
a total power of 70 W. The model assumes a DC current. The indium and iodine
pressures are estimated as 3.9 and 4.83 bar, respectively. These pressures were
determined by assuming constant elemental pressures and a cold spot temperature
of 1.2 kK [212]. The cold spot temperature is set equal to the cold spot temperature
of mercury-containing lamps. Due to this assumption the pressure in the lamp
may deviate from the pressure used in the simulation.

The simulated and measured spectra of the XeInI discharge are displayed in
figure 10.6. The measured IR and visible contributions are 44.1 and 23.7 W. The
amount of energy lost via thermal conduction through the electrodes is estimated
to be 2.2 W. In the simulation the IR, visible and UV contributions are 25.4,
26.0 and 1.8 W, respectively. Since the simulated spectrum does not account for
thermal radiation from the wall, a correction to the IR radiation must be made.
It is assumed that the conduction through the electrodes is also 2.2 W in the
model. The remaining energy lost in the electrodes and the energy lost via thermal
conduction to the wall of 14.6 W is expected to be lost as thermal radiation. The
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Figure 10.5: Calculated electrical conductivity of the
XeInI discharge. The elemental pressures are p{In} =
3.9 bar and p{I} = 4.83 bar and the total pressure is
11.73 bar.

IR losses are thus 40.1 W. The agreement between the energy balances is thus
good.

The spectrum calculated by the model also agrees well with the experiments.
In particular, the model reproduces the experimentally observed broad molecular
band from 410 nm to the far IR. The main origin of this broad band continuum are
transitions from the free A state to the X state of InI. The five atomic indium lines3

between 1250 and 1500 nm are not included in the model because of unknown
transition probabilities of those lines. The integral with respect to wavelength
which determines the power in these 5 lines is small compared to the power in the
continuum. The impact on the energy balance is thus expected to be small when
these IR lines are included. All other experimentally observed peaks are mainly
caused by contamination in the salt dosage and from lamp materials entering
the discharge. The UV spectrum is completely absorbed in the experiments in
contrast to the modeled spectrum, where atomic as well as a part of the molecular
radiation is still present. Such difference can be caused by not accounting for all
of the molecular transitions; a deviation from LTE in the molecular population; a
deviating cold spot temperature; and neglecting demixing.

The simulated temperature profile is shown in figure 10.7. The arc contraction
caused by molecular radiation can be clearly observed in the simulated tempera-
ture profile. In spite of the contraction, the measured electrical potential of the

3There are actually 6 lines visible between 1250 nm and 1500 nm. The second peak at 1312 nm
is from aluminum
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Figure 10.6: Calculated and measured spectra of the
XeInI discharge. The power is 70 W, the elemental pres-
sures are p{In} = 3.9 bar and p{I} = 4.83 bar and the total
pressure is 11.73 bar. The electrode distance is 7.1 mm
and the power is 70 W.

lamp was only 40.7 V. The calculated potential for this lamp is 26.6 V. The lower
voltage indicates that the temperature profile is too high. This is expected since a
1D model does not account for end losses. Additionally, the observed IR radiation
from the model was a bit too low. Possibly the contraction of the temperature
profile is underestimated by underestimating the molecular IR losses. The reasons
for these deviations have been discussed in the previous paragraph. In order to
built a practical lamp, the lamp voltage should be increased further. This can be
achieved by adding more InI. When more InI is added the temperature profile will
be more constricted and the voltage will increase. However, the InI pressure can
not be increased indefinitely. At much higher pressures the contribution of the
UV and parts of the visible radiation will become optically thick. As a result a
relative increase of optically thin IR radiation is expected.

The cumulative energy flows of power dissipated as ohmic heating, thermal
conduction and radiation are shown in figure 10.8. Due to the strong contraction
in the temperature profile most input power is dissipated in the cylindrical volume
enclosed by a radius of 0.75 mm. Initially, the power transported via thermal
conduction increases because the power dissipated as ohmic heating exceeds the
radiation losses. For r ≥ 0.75 mm the thermal conduction losses decrease because
the local radiation losses exceed the local input power from ohmic heating. Near
the wall the thermal conduction losses increase again because of absorption of
radiation.
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Figure 10.7: The calculated temper-
ature profile of the XeInI discharge
with an input power of 70 W, a radius
of 3 mm and an electrode distance of
7.1 mm. The elemental pressures are
p{In} = 3.9 bar and p{I} = 4.83 bar
and the total pressure is 11.73 bar.
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Figure 10.8: The cumulative energy
flows of power of the XeInI discharge.
The power is 70 W, the elemental
pressures are p{In} = 3.9 bar and
p{I} = 4.83 bar and the total pressure
is 11.73 bar. The electrode distance is
7.1 mm and the power is 70 W.

10.4 Summary

The replacement of mercury in high-intensity discharge lamps by a mixture of
xenon and indium iodide has been investigated by means of a 1D radial depen-
dent fluid model. The main features of the self-consistent model of the cylindrical,
axially homogeneous plasma are presented involving the plasma temperature, the
radiation transport as well as transport coefficients. The model has been quali-
tatively validated by comparison of a predicted spectrum with a measured one,
which shows relatively good agreement. However, not all spectral features could
be reproduced. This is partly caused by neglecting the five atomic indium transi-
tions in the IR. Their combined impact on the energy balance is small since the
power radiated via these lines is limited. Other possible causes are the limited
number of molecular transitions that have been considered; neglecting demixing;
and an incorrect prediction of the cold spot temperature.

The main conclusions are as follows:

• The largest contributions to the continuum radiation arise from molecular
transitions from the free state A towards the ground state in InI.

• In spite of the contraction, of the temperature profile the simulated voltage is
only 26 V. The voltage can be increased with higher InI pressures. However,
at very high pressures a relative increase of IR losses is expected, because of
the shape of the potential curves. As a result there must be an optimum InI
pressure.





Chapter 11

Modeling of Diffusive LTE
Plasmas with Integral Constraints:
Application to mercury-free lamp
mixtures.

The mercury free lamp model previously discussed in Gnybida et al. (J. Phys. D:
Applied Physics, 47, 125201) or chapter 10 of this thesis did not account for self-
consistent diffusion and included only two molecular transitions. In this chapter we
apply, for the first time, an algorithm that features 1) species/mass conservation
up to machine accuracy and 2) an arbitrary mix of integral (total mass) and
local (cold spot) constraints on the composition. Another advantage of the self-
consistent diffusion model is that the model determines the total pressure of the
gas instead of using a predetermined gas pressure.

Additionally, the number of association processes has been increased from 2 to
6. The population as a function of interatomic separation determines the spectrum
of the emitted continuum radiation. Previously, this population was calculated
using the limit of low densities. In this work an expression is used that removes
this limitation. The result of these improvements is that the agreement between
the simulated and measured spectra has improved considerably.

11.1 Introduction

Standard HID lamps contain the toxic component mercury. Several attempts have
been made to partially or completely replace it by a more environmentally friendly
species. A few of these options were also discussed by Gnybida et al. [152]. A short
summary is given here: Born [16] tried to replace mercury with zinc. Sulfur lamps

Submitted as: J.F.J. Janssen, J.L.G. Suijker, K.S.C. Peerenboom, J. van Dijk, Modeling of
Diffusive LTE Plasmas with Integral Constraints: Application to mercury-free lamp mixtures.
to Journal of Physics D: Applied Physics
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[18] operated with a microwave discharge showed a promising luminous efficacy.
Although promising results were obtained the lamp performance of the lamps
using zinc or sulfur never reached the level of a comparable mercury containing
lamp. Recently Käning [17] tried to remove mercury completely by using molecular
species. The voltage that was previously generated by the high pressure of mercury
is in these lamps produced by arc contraction. The molecular radiation in the
colder mantle decreases the temperature of the discharge. As a result the core
temperature must increase in order to transport a given amount of current.

In this work the molecular species that is responsible for arc contraction is
InI. This species is known for its large amount of continuum radiation in both the
visible and infrared (IR) ranges. Previously, in chapter 10 a simulation model for
such a discharge has been presented. In that model radial diffusion was neglected.
In this work the method for describing diffusive fluxes proposed by Peerenboom et
al. [133] or described in chapter 10 is applied and extended with conservation rules.
These conservation rules can be used to impose two types of constraints. The first
constraint corresponding to unsaturated species can be used to fix the amount
of mass of a particular element in the entire discharge. The second constraint
models saturated species in the cold spot by adjusting the elemental pressure
on the boundary. Additionally, more molecular transitions have been taken into
account as radiative association processes and the number of associated molecules
is calculated in a different way. As a result, the strong absorption of ultraviolet
(UV) radiation can now be reproduced in the model. The number of atomic
transitions of indium in the IR has also been increased.

11.2 Model

The plasma simulation model PLASIMO [25] is used to model the lamp. The
lamp is considered to be radially symmetric and uniform in the axial direction.
A cylindrical geometry with a radius of R=2.6 mm and an electrode separation
of Lel=14 mm is used. Based on an electrode simulation program [192] the power
dissipated in the electrodes is in the order of 10 % for an input power of 70 W. Ad-
ditionally, LTE [172, p. 187] is assumed. A wall temperature of 1.4 kK is assumed
based on wall temperature measurements of similar Hg lamps. The composition
is calculated based on a solution of the Stefan-Maxwell equations for the elements
as described in section 11.3. By using the Guldberg-Waage equations the com-
position in terms of the elemental species can be calculated. A plasma mixture
containing the following 12 species has been considered: In, In+, I−, I, I+, I2, InI,
InI2, InI3, Xe, Xe+, e. The energy balance that is considered in this work is given
by

− 1

r

∂

∂r

(
rλ
∂T

∂r

)
= σE2 − qrad, (11.1)

with λ the thermal conductivity, σ the electrical conductivity, E the electric field
and qrad the radiated power. The electric field is calculated from the total dissi-
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pated power in the plasma. The dissipated power is

Pin − Pel =

∫
σ (r)E2dV = 2πE2Lel

∫ R

0

σ (r) rdr, (11.2)

with Pin the total input power, Pel the power dissipated in the electrodes. The
electric field is assumed to be uniform in axial direction. The radiative energy is
calculated from

qrad =

∫∫∫
Iν~s · ~ndAdΩ

V
dν, (11.3)

with Iν the spectral radiance, ~s the direction vector for the radiation, ~n the normal
vector to the surface area dA, V the volume corresponding to the local cylindrical
shell and ν representing the frequency of the emitted radiation. For more de-
tails related to the calculation procedure of the transport coefficients, the energy
balance or the calculation of qrad the reader is referred to [152] or chapter 10.

11.2.1 Radiation

The model accounts for atomic, molecular and Bremsstrahlung radiation. The
atomic emission can be calculated from [172, p. 226]

jν =
hν

4π
nuAulφν , (11.4)

with nu the density of the upper level, Aul the transition probability between states
u and l and φν represents the line profile. The atomic line profile is calculated
using the convolution of the Lorentz and van der Waals profiles according to
Stormberg [30, 159]. The broadening constants were adjusted to approximate
the red and blue self-reversal widths of the resonant lines. The consequence is
that the large C6 parameter produces an unrealistically large red wing. This red

wing is damped by multiplying the line profile with exp
(
− [ν − ν0]

2
/C2

)
with

C corresponding to a 6 nm offset from the line center. Such a strategy is similar
to the method described by Wharmby [187]. The broadening constants for these
processes are given in Table 11.1. The absorption is calculated using the cross
sections for absorption and stimulated emission

κ = σabsnl − σstimnu. (11.5)

These cross sections are given by

σabs =
c2

8πν2
Aul

gu
gl

Zu
Zl

exp

(
h (ν − ν0)

kBT

)
φν , (11.6)

σstim =
c2

8πν2
Aulφν , (11.7)

with Zi the internal partition sum of state i and ν0 the unperturbed frequency.
The molecular emission is calculated using

jν =
hν (r)

4π
Aul (r)

∣∣∣∣drdν

∣∣∣∣nufu, (11.8)
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with nu the total amount of radiators and fu the spatial distribution is derived
from (11.50). Absorption and stimulated emission due to molecules is taken into
account with

σabs =
c2

8πν (r)
2Aul

gu
gl

∣∣∣∣drdν

∣∣∣∣ fl, (11.9)

σstim =
c2

8πν (r)
2Aul

∣∣∣∣drdν

∣∣∣∣ fu. (11.10)

Numerical instabilities can occur when these classical expressions are used, since∣∣ dr
dν

∣∣ =∞ is possible. Szudy and Bayliss [213] solved this problem by noting that
the semiclassical Franck-Condon points interfere. This interference amounts to a
multiplication of the line profile with

|36πzc|1/2 L (zc) , (11.11)

where

zc =
1

2

(
µ

kBT

)1/3(
2π

h̄

)2/3 [
dν

dr

]2 ∣∣∣∣d2ν

dr2

∣∣∣∣−4/3

, (11.12)

L (zc) =

∫ ∞
0

ξ−2 |Ai (−zcξ)|2 exp
(
−ξ−3

)
dξ. (11.13)

This multiplication ensures that close to the singularity the line profile drops to
zero. Further away this term can be approximated with 1.

Additionally, electron-atom Bremsstrahlung is accounted for with [163,164]

jν = Ceacnena (kBT )
3/2

Qm,ea (T )

[(
hν

kBT
+ 1

)2

+ 1

]
exp

(
− hν

kBT

)
, (11.14)

with Cea = 2
3

√
2 e2

ε0c2m
3/2
e π5/2

W m2 J−3/2 sr−1, ne is the electron density, na

the neutral density and Qm,ea (T ) is the momentum transfer cross section. The
momentum transfer cross sections for e-InI, e-Xe, e-I and e-In are obtained from
[201–205,214].

11.3 Diffusion

In previous work by Gnybida et al. [152] (or chapter 10 in this chapter) the ele-
mental mass fractions were kept constant. Now the elemental mass fractions are
calculated self-consistently using the method developed by Peerenboom et al. [133]
(or chapter 7 in this thesis). In this section the method is extended by using inte-
gral boundary conditions. These integral conditions can be used to impose a cold
spot (vapor) pressure for saturated species or the total mass in the discharge for
unsaturated species. First a short introduction to the solution procedure for the
system of equations is given. After that the boundary conditions will be discussed.
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Table 11.1: The properties of the atomic lines included in the simulation. The
data for the lines in the UV and visible has been taken from the NIST database
and the data for the IR lines was taken from Safronova et al. [215]

λ (nm) El (eV) Eu (eV) Aul
(
s−1
)

C3

(
m3s−1

)
C6

(
m6s−1

)
256.02 0.00000 4.84139 4.00 ·107 1.00 ·10−15 6.00 ·10−42

271.03 0.27432 4.84758 4.00 ·107 1.00 ·10−15 6.00 ·10−42

303.94 0.00000 4.08099 1.30 ·108 1.00 ·10−15 6.00 ·10−42

325.61 0.27432 4.08099 1.30 ·108 1.00 ·10−15 6.00 ·10−42

325.86 0.27432 4.07810 3.77 ·107 1.00 ·10−15 6.00 ·10−42

410.18 0.00000 3.02185 5.60·107 1.00 ·10−13 6.00 ·10−42

451.13 0.27432 3.02185 1.02·108 1.00 ·10−13 6.00 ·10−42

1291.61 3.02183 3.98174 1.57·107 1.00 ·10−13 0
1343.36 3.02183 3.94476 1.43·107 1.00 ·10−13 0
1382.83 3.94476 4.84135 7.35·106 1.00 ·10−13 0
1432.02 3.98174 4.84753 9.12·106 1.00 ·10−13 0
1442.32 4.98174 4.84135 1.54·106 1.00 ·10−13 0
1467.27 4.07808 4.92306 1.32·107 1.00 ·10−13 0
1472.31 4.08097 4.92306 9.46·105 1.00 ·10−13 0
1472.31 3.08097 4.92306 1.42·107 1.00 ·10−13 0
2229.71 3.94476 4.50081 3.48·106 1.00 ·10−13 0
2388.57 3.98174 4.50081 6.36·106 1.00 ·10−13 0

11.3.1 System of equations

The Stefan-Maxwell equations can be written in species form or in elemental form.
In this work the elemental form is used. The elemental form can be derived from
the species formulation. Therefore the species formulation is discussed first.

Species form

The continuity equations for the species are given by

∂ρyi
∂t

+∇ ·
(
ρ~vyi + ~Ji

)
= miωi, (11.15)

with ρ the mass density, yi the mass fraction of species i, ~v the flow velocity, ~Ji
the diffusive mass flux of species i, mi the mass of species i and ωi the volume
production processes. The diffusive mass fluxes can be obtained by solving the
Stefan-Maxwell equations [128,143–146]. This set of equations is given by∑

j

Hij
~Jj = −~di ⇔ HJ = −d, (11.16)

with H = (Hij) the mass flux based friction matrix, J =
(
~Ji

)
the vector of

diffusive mass fluxes and d =
(
~di

)
the driving forces for species i. The diffusive
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mass fluxes can be obtained as

~Ji = −
∑
j

Lij ~dj ⇔ J = −Ld, (11.17)

with L the multicomponent flux diffusion matrix. The elements Hij are obtained
from

Hij =

{
1
ρ
σm
mj

∑
l 6=j

xl
Dij

if i = j

− 1
ρ
σm
mj

xi
Dij

if i 6= j
, (11.18)

with σ =
∑
i yi, xi the mole fraction of species i and Dij the binary diffusion

coefficient. The driving forces can be written as

~di = ∇xi − zi ~E/p ⇔ d = ∂x− z ~E/p, (11.19)

with x (xi) the vector of mole fractions and z = (zi) the vector of charge densities,
~E the ambipolar electric field and p the pressure. There are two constraints that
apply to the diffusive mass fluxes. There should be no net mass transport∑

i

~Ji = 0, (11.20)

and the diffusive fluxes should not transport any net current:∑
i

riyi = 0, (11.21)

with ri = qi/mi the ratio of the charge over the mass of species i. Under influence
of ambipolar fields, the calculation of the diffusive fluxes (11.17) is modified to

J = −
(

L− LzrTL

rTLz

)
∂x = −L̂∂x. (11.22)

The second term in this equation represents the diffusive flux induced by the
ambipolar field. Since L is singular it must be regularized as

L = (H + αy ⊗ u)
−1 − α−1y ⊗ u, (11.23)

with ui = 1.

Elemental form

The elemental mass fraction can be expressed in terms of the species mass fractions
as ∑

i

φiαyim{α}/mi = y{α}, (11.24)

with φiα the stoichiometric coefficient, which indicates the number of particles of
element α are used to ‘construct’ species i. The elemental continuity equation
can be obtained by multiplying (11.15) with φiαm{α}/mi and summing over all
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species. The elemental diffusive mass flux can be obtained by writing the driving
forces in elemental form as

∂x =
∂x

∂T

∣∣∣∣
p,{y}

∂T +
∂x

∂ {y}

∣∣∣∣
p,T

∂ {y} . (11.25)

The first term can be obtained from the Nr independent reactions. The second
term ensures elemental conservation. It is now possible to rewrite the driving
forces as

∂x = A−1

(
∂θ
∂ {y}

)
, (11.26)

with ∂θr = ∆hr
RuT 2 ∂T , ∆hr the molar enthalpy of reaction r and Ru the universal

gas constant. The elemental mass fluxes are thus given by

{J} = − diag ({m})φ diag−1 (m) L̂A−1

(
∂θ
∂ {y}

)
=
(
Γθ Γ

)( ∂θ
∂ {y}

)
. (11.27)

Regularization of the elemental flux diffusion matrix Γ gives

Γ̃ = Γ + α {y} ⊗ {u}+ β {z} ⊗ {r} . (11.28)

A possible choice for the regularization constants is α = max (Γ) / 〈y,u〉 and
β = max (Γ) / 〈z, r〉. For more details related to the diffusive algorithm the reader
is referred to [133] or chapter 7.

11.3.2 Integral boundary conditions

In closed vessels there are no natural boundary conditions for the pressure or for
the elemental mass fractions. In at least one point these values should be fixed in
order to have a unique solution. In the case of the elemental mass fractions these
boundary values must be chosen such that the constraint

∑
α yα = 1 is respected.

These boundary conditions come from integral constraints on the amount of
building blocks of type α, say, in the system (for unsaturated species) and from
local constraints on the pressures of species β at the ‘cold spot’ of the system
(for saturated species). For given pressure and elemental mass fraction fields, the
idea is to calculate a set of offset values δp and δyα in such a way that these
constraints are satisfied. These corrections must be chosen such that

∑
α δyα = 0,

so the constraint on the sum of the mass fractions continues to be satisfied. Once
the adjustments have been satisfied, these can be applied in the entire system,
or only at the cold spot boundary point. This algorithm seems similar to what
is called a ‘naive’ algorithm in [216], where the convergence of the algorithm is
proven.

The elemental mass density of element α can be expressed in terms of the
pressure, temperature and elemental mass fractions as

ρα(p, T, {y}) = ρ(p, T, {y})yα = n(p, T )m(y(p, T, {y}))yα =
p

kT
m(y(p, T, {y}))yα,

(11.29)
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where n(p, T ) is the particle density and m(y) is the mixture mass, representing
the local average mass of a particle. In the derivations below we investigate the
change of the elemental mass density as a result of applying a uniform pressure
offset δp and elemental mass fraction offsets δyα. To that end the effects of such
changes on the mixture mass should also be taken into account, since m = m(y)
and the composition itself depend on the elemental mass fractions and pressure.
From experience we have learned that the variations of m can be disregarded in
the formulation of the corrections. Since iterations are needed anyway, and the
mixture mass is updated every cycle, this does not influence the final results.

Unsaturated elements

For unsaturated elements the total amount of mass, Mα, is fixed. This quantity
can be calculated from

Mα =

∫
nαmαdV =

∫
pm

kBT
yαdV, (11.30)

with m = 1∑
j yj/mj

the average mass. Possible causes for an incorrect total mass

are an incorrect pressure or incorrect elemental mass fractions. The total elemental
mass can be corrected with

δMα = Mf
α −Mα =

∫
(p+ δp)m

kBT
(yα + δyα) dV −Mα, (11.31)

where Mf
α is the desired elemental mass. Expanding this equation and neglecting

quadratic corrections gives

δMα =

∫
pm

kBT
δyαdV +

∫
δpm

kBT
yαdV

= Mδyα +Mαδp/p, (11.32)

with M the current total mass in the system. This equation can be rewritten as

δpPα + δyαYα + Cα = 0, (11.33)

with

Pα =

∫
m

kBT
yαdV = Mα/p

Yα =

∫
pm

kBT
dV = M

Cα = Mα −Mf
α

Mα =

∫
pm

kBT
yαdV. (11.34)

In order to ensure that the mass fractions still sum up to one after applying the
corrections there is an additional constraint given by∑

α

δyα = 0. (11.35)
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The pressure correction can be used to modify the constant total pressure and the
boundary conditions for the mass fractions can be calculated from

yBCnew,α = yBCα + δyα. (11.36)

Such a solution procedure is similar to the first algorithm described in [216].

Saturated elements

For saturated elements the pressure on the cold spot is fixed. It is given by

pα =
pmyα
mα

. (11.37)

The elemental pressure can again be written in terms of the current value and a
correction. Ignoring the quadratic corrections gives

yαp+ yαδp+ δyαp =
mαp

f
α

m
, (11.38)

with yα and p evaluated on the cold spot and pfα the desired elemental pressure.
Multiplying (11.38) with M

p , the constants Pα, Yα and Cα are now given by

0 = δpPα + δyYα + Cα

Pα = yα
M

p

Yα = M

Cα = M

(
yα −

mαp
f
α

mp

)
. (11.39)

Solution procedure

The elemental correction equations can be solved for the pressure correction by
summing over all elements

δp
∑
α

Pα +
∑
α

δyαYα +
∑
α

Cα = 0

δp
∑
α

Pα +M
∑
α

δyα +
∑
α

Cα = 0

δp
∑
α

Pα +
∑
α

Cα = 0. (11.40)

The pressure correction is then given by

δp =
−
∑
α Cα∑
α Pα

. (11.41)

Thus the correction for the elemental mass fraction can be expressed as

δyα =
−Cα − δpPα

Yα
(11.42)
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11.4 An improved model for the calculation of the
population of molecular states

The calculation of the molecular continuum is improved with respect to [152]
(chapter 10 of this thesis) by including more molecular transitions. A meaningful
calculation of the continuum radiation also requires an accurate spatial distribu-
tion of the perturbers relative to the emitters. Such a distribution is obtained
from thermodynamics [156, eq. A.10]

nmol,j = nradnpert
Zt,mol

Zt,radZt,pert

Zint,mol,j

Zint,radZint,pert
= nmol

Zint,mol,j

Zint,mol
, (11.43)

with nmol,j referring to both the bound and free energy levels of state j, Zt,x =(
2πmxkBT

h2

)3/2
the translational partition sum and Zx the internal partition sum.

Classically the internal partition sum of the combined bound and free states is
given by [156, p. 1541]

Zint,mol,j =

(
2πµkBT

h2

)3/2 ∫ R

0

4πr2 exp

(
−Vj (r)− Vj (∞)

kBT

)
dr, (11.44)

with R the interatomic separation corresponding to the transition to the atomic
system and µ the reduced mass. This expression is valid for low perturber densities,
4
3πR

3npert � 1. For larger densities the excluded volume of the perturbed atoms
becomes significant in comparison to the total volume. In the next section an
expression is derived that accounts for this excluded volume.

11.4.1 Distribution function

The probability of finding an In particle somewhere in the volume, Vr, is propor-
tional to [156, p. 1520]

P (r) = ñ exp (−βV (r)) , (11.45)

with β = 1/ (kBT ), V (r) the potential and ñ a normalization constant. The
probability of finding such a radiating particle within a radius R of a perturbing
particle is given by

Pinside = ñNpert

∫ R

0

4πr2 exp (−βV (r)) dr, (11.46)

with Npert the number of perturbing particles (iodine in this case). The probability
of a radiating particle not being inside a sphere of radius R is given by

Poutside = ñ exp (−βV (∞))

[
Vr −

4

3
NpertπR

3

]
, (11.47)

where it is assumed that the radius R is large enough to make sure that V (R) ≈
V (∞). The normalization constant can be obtained from

Pinside + Poutside = 1, (11.48)
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which gives

ñ =
1

Npert

∫ R

0

4πr2 exp (−βV (r)) dr + exp (−βV (∞))

[
Vr −

4

3
πNpertR

3

] .
(11.49)

By dividing ñ, Pinside and Poutside by the volume, expressions in terms of the
number densities can be obtained. The perturber density is taken as the atomic
perturber density corresponding to a given atomic limit. Similarly the radiator
density is taken as the atomic radiator density. For r ≤ R the potential curves
belonging to atomic limit k are summed to get the total probability as

Pinside,k = ñ
∑
j

npert,ajδaj ,ak

∫ R

0

4πr2 exp (−βVj (r)) dr

Poutside,k = ñgrad,akgpert,ak exp (−βVk (∞))

[
1− 4

3
npert,akπR

3

]
1 = Pinside,k + Poutside,k, (11.50)

with aj describing the atomic limit of molecular state j.

11.4.2 Molecular properties

The molecular potential curves and transition dipole moments are recalculated
with the relativistic ab-initio calculation program DIRAC [107]. The excited states
are approximated by Kramers Restricted configuration interaction calculations
according to the generalized active space concept. The 5s and 5p electrons form the
active space with up to two excitations. Note that Gnybida et al. [152] incorrectly
state that the 4d electrons are included in the active space. Another error in that
paper is the fact that only one excitation is taken into account instead of two
excitations. The current calculation includes transitions to states up to 1 Hartree.
The Quadruple-Zeta Basis set from K.G. Dyall that is built in into Dirac14 [210]
has been used for the calculations.

The calculated potential curves that are involved in a transition that is used
in the model are shown in figure 11.1. The ground state of InI has a dissociation
energy of 3.68 eV. The ground state reaches this maximum at r = 7.4 Å. After
this maximum the potential energy decreases to V = 3.50 eV. Barrow obtained
a dissociation energy of 3.50 eV [217] using thermodynamic data. Allowing two
excitations instead of one excitation thus increases the dissociation energy from
3.25 eV to 3.68 eV. These energies are not achieved at r = ∞, but at r ≈ 7 Å.
It is therefore expected that for 6 Å≤ r ≤ 11 Å the ground state is not fully
relaxed to the lowest energy. If the dissociation energy is measured between the
potential minimum and r =∞ the values are 3.13 eV and 3.50 eV for the previous
and the current simulation, respectively. Thus, in comparison to the calculations
presented in [152] and [218] the calculated dissociation energy of the ground state
has improved considerably.
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Figure 11.1: The molecular states that are included in the
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The model only includes molecular transitions towards the ground state. The
optical depth measured along a ray through the center is displayed in figure 11.2.
The figure shows that for λ > 440 nm the transition that contributes most to
the IR radiation is Ω = 0 #7−X. For 387 ≤ λ ≤ 440 nm the A−X transition
dominates. Below 380 nm the optical depth increases rapidly due to the overlap
of various transitions. At 220 nm the optical depth decreases again because other
transitions have been neglected.

11.4.3 Results

A cylindrical discharge vessel with a radius of 2.6 mm and an electrode separation
of 14 mm has been considered. The total power dissipated in the lamp is 70 W.
Three different dosages of In and I are considered. The dosages are listed in table
11.2. The masses of the species are conserved due to an unsaturated boundary
condition in the diffusion algorithm. In and I are assumed to be fully evapo-
rated. This is confirmed by calculations using Gibbs free energy minimization
with a cold spot temperature of 1.2 kK. The program used for the Gibbs energy
minimization is based on Schnedler’s methods [212]. The calculated temperature
profile is shown for multiple dosages of InI in figure 11.3. The figure shows that
for increasing InI dosage the temperature profile is more contracted. Close to the
wall the impact on the temperature profile is very small. One of the advantages
of using the self-consistent diffusion method is that the total pressure is automat-
ically adjusted. For low, medium and high dosages of InI the calculated total
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pressures are 6.7 bar, 9.1 bar and 17.2 bar, respectively. For a pressure of 9.1 bar
the calculation is repeated using fixed elemental mass fractions (y{Xe} = 0.1739,
y{In} = 0.3569 and y{I} = 0.4692); (11.44) for the population of molecular states;
the broadening constants as given in this paper and the two association transitions
from [152]. The results of that calculation are indicated with ‘med cy’ in 11.3.
This comparison shows that the temperature profile is more contracted in the case
of the new calculation.

The impact on the elemental mass fractions of demixing are shown in figure
11.4. The build up of {In} and {I} at r = 0.5 mm is caused by the smaller
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Table 11.2: Composition of the three considered lamps.

Dosage mIn(mg) mI(mg) mXe(mg)
low 0.513 0.801 0.542
med 1.11 1.46 0.542
high 2.39 2.88 0.542
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Figure 11.5: Comparison of the densities of radiating
species by including demixing and 6 association transi-
tions using (11.50) with the calculation that uses the two
transitions from [152] with (11.43) and constant elemen-
tal mass fractions (indicated with cy). In both cases the
medium InI dosage is considered.

diffusive flux of InI that is moving inwards in comparison to the outward flux of
In and I. This accumulation continues until a balance is achieved. The larger
density of In and I is responsible for the removal of Xe. For r > 0.5 mm the
decreasing temperature flattens the gradients of In and I until the inward flux of InI
is balanced. For 0 ≤ r ≤ 0.5 mm the {In} mass fraction decreases. This is caused
by the ambipolar flux of In+. In the center this ion reaches a mass fraction of
y ≈ 0.02. In the same area a small inward flux of {I} occurs due to I− which reaches
y ≈ 0.0025 at r ≈ 0.2 mm. The void created by {In} is compensated by {Xe}
and {I}. The resulting species densities are compared with the results from the
‘med cy’ calculation in figure 11.5. In comparison to the ‘med cy’ calculation the
amount of InI has increased considerably between 0.2 ≤ r ≤ 1.5 mm. Additionally,
using ‘med cy’ the fractions of In and I are equal or larger in comparison to the
calculation proposed in this paper.

Another cause for the more contracted temperature profile are the additional
transitions that have been included in the model. Similarly to the transitions that
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were already included by Gnybida [152] these transitions also are predominantly
emitting radiation via radiative association. A comparison with a measured spec-
trum of a lamp operated at a 120 Hz square wave current is shown in figure 11.6.
The continuum radiation is well reproduced. The experimental spectrum shows
a self reversal gap at 399.6 nm which is related to the A−X transition. In the
simulation this gap occurs at 387 nm. This offset provides an indication of the
accuracy of the difference potential by the ab initio calculations.

The emission of the resonant atomic lines and the IR peaks suggest that the
peak temperature has been underestimated. The broadening constants of the
resonant lines were adjusted to obtain the same self-reversal width as in in the
experiment. It is therefore expected that the radiative thermal conduction is com-
parable. Using these broadening constants the predicted self-reversal peaks are
about twice as high compared to the measured spectrum indicating that the opti-
cally thin losses related to this atomic line are overestimated. The losses related
to the IR lines are underestimated. Additionally, the width of the resonant lines
is significantly larger than the validity of the impact regime [159, eq. 11]. Empiri-
cally Lawler [180] showed that a linear relation between HWHM and pressure was
to be expected up to 2× 1026 m−3 of Hg. It is not clear whether this can also be
expected for In. Other possible errors can be caused by the assumption of LTE.
In a large part of the lamp the gas temperature and thus the electron density
is quite low. The momentum transfer collision frequency between electrons and
heavy particles may not be able to compensate for all of the radiative losses at
every location in the discharge. The reaction rates for In are largely unavailable.
A solution could be the usage of empirical formulas as was done by Ögun [219].
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An error in the temperature profile is also possible for other reasons. Since a
1D model has been used end-losses and convection are neglected. Additionally,
the accuracy of the transition rate for the radiative association processes can not
be checked. The transition dipole moments have been compared to the results of
Banerjee et al. [218] for A−X and show a good agreement. However, Banerjee et
al. only calculated the transition dipole moment for a small number of transitions
in a limited range of interatomic separations. The transition probability is depen-
dent on the square of the transition dipole moments which demonstrates that a
small error in the transition dipole moments can have an appreciable effect on the
emission via the radiative association process.

Another possible improvement can be obtained from a more accurate calcula-
tion of the rate of association. Gustafson [220] [221] suggests a calculation based
on

ε = g

∫
A (r) dt, (11.51)

which is proportional to the time spent of In and I at a given interatomic sepa-
ration. The excess radiation around 400-500 nm may disappear when accounting
for the lower amount of time spent in the attractive potential well.

In figure 11.7 the calculated spectra are for the three dosages are compared
to the ‘med cy’ calculation. The difference in the continuum radiation is mainly
caused by the self-consistent calculation of the diffusive mass fluxes. The ‘med cy’
calculation strongly underestimates the InI population. A result of the demixing
is that a larger amount of continuum radiation is emitted and that the arc is
more contracted. The consequence is that the path length of the UV radiation
through InI and therefore the optical depth is now sufficiently large to absorb the
UV radiation. In figure 11.8 the evolution of the spectrum through the plasma
is shown for a ray passing through the center of the discharge (−R ≤ s ≤ R).
The figure shows that the association radiation is produced in the center of the
discharge (most visible at λ ≈ 400 nm) and is absorbed on the way out of the
plasma. The association continuum is optically thin starting from λ ≈ 550 nm.
For molecules like SnI and TlI a similar process occurs. Calculations for these
molecules are shown in appendix 11.A.

11.5 Conclusions

The lamp model described by Gnybida [152] has been improved considerably by
including self-consistent diffusion with conservation equations Additionally, an
improved calculation for the population of associating atoms is used. One of the
major advantages of the self-consistent diffusion is that the pressure is adapted via
the boundary conditions. The boundary conditions are a specification of the total
amount of mass for {Xe}, {In} and {I}. Alternatively it is possible to specify
an elemental pressure which represents the cold spot. Additionally, due to the
improved calculation of the associative continuum and including more association
transitions the contraction in the temperature profile is more pronounced. The
agreement of the shape of the continuum radiation with the measured continuum
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Figure 11.8: For the medium InI dosage the evolution
of the spectrum is shown for a ray passing through the
center of the discharge (bottom to top).
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has therefore improved. It has been observed that due to the enhanced contraction
the optical depth for the UV radiation has been increased considerably. As a result
the absorption of the UV radiation is now correctly modeled.
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11.A Ab initio curves

The recombination continuum observed for InI is not unique. A similar contin-
uum is observed for TlI and SnI. The potential curves for these interactions are
discussed in this section.

For TlI the potential curves are shown in figure 11.9 and the emitted wave-
lengths are shown in figure 11.10. The asymptotic limits for these curves are
0.92 eV, 0.96 eV and 1.88 eV. These values are the result of the first excited states
of I and Tl. In the last limit both atoms are in the first excited state. These limits
correspond to the values reported by NIST [53] within 0.03 eV. The predicted dis-
sociation energy for the molecule in the ground state is 3.08 eV. Schlie [222] reports
two experimental values of 2.7 eV and 2.83 eV. This indicates that the accuracy of
the potential curves as a function of the interatomic separation is not constant.
The included transitions cover the spectral band from 200 nm till 1500 nm. The
transition Ω = 0,#3 even reaches 7µm near the avoided crossing.

The simulated spectrum of a lamp containing TlI and Hg is shown in figure
11.13. The elemental pressures are set to 7 bar for Tl and I. Such a pressure cor-
responds to a cold spot of 1.2 kK. The elemental Hg is set to 20 bar. The atomic
transitions with a known transition probability from NIST [53] are included. These
transitions cover mainly the UV part of the spectrum. The only visible transition
included is the 535.05 nm line. Several other lines are not included. Despite the
missing atomic lines a relatively good agreement is obtained. Again the spectrum
is dominated by continuum radiation. The optical depth is correctly modeled for
wavelengths up to approximately 550 nm. In this spectral band the large optical
depth ensures a thermal spectrum. For wavelengths larger than 550 nm the decay
of the optical depth is too slow. For that reason the simulated spectrum still
resembles the shape of a thermal radiator for these wavelengths. The overesti-
mated optical depth for those wavelengths is the consequence of small errors in
the potential curve. This can be understood based on the fact that the absorption
is proportional to the transition probability. The transition probability scales as
A ∝ |D|2 /λ3 with D the dipole transition strength and λ the wavelength emitted
at the local interatomic separation.

The SnI potential curves are shown in figure 11.11 and the wavelengths of the
included transitions are shown in figure 11.12. The asymptotic limits of these
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potential curves correspond to 0.23 eV, 0.46 eV and 1.17 eV. According to NIST
[53] these levels have an energy of 0.21 eV, 0.42 eV and 1.15 eV. The atomic limit of
the highest energy is a combination of the excited states I2 P1/2 and Sn 3P1. The
predicted dissociation energy of SnI is 2.57 eV. NASA’s thermodynamic database
[223] suggests a dissociation energy of 2.41 eV. The calculated potential curves
thus contain an error in the order of 0.1-0.2 eV at small interatomic distances.

The simulated spectrum of a lamp containing SnI and Xe is shown in figure
11.14. The lamp contains 340µg of Sn, 720µg of I and 542µg of Xe. All of these
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Figure 11.13: The calculated spec-
trum for a lamp containing TlI and
Hg.
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Figure 11.14: The calculated spec-
trum for a lamp containing SnI and
Xe.

species are assumed to be completely evaporated. Again the atomic transitions
with a known transition probability from NIST [53] are included. The dataset for
the Sn transitions is also not complete, since many transitions in the IR are miss-
ing. However, also for this lamp the continuum radiation remains the dominant
radiative loss process. In this spectrum the absorption of the UV radiation is not
modeled correctly. The reason is that only a limited amount of transitions are
included that are capable of absorbing this radiation. Additionally, the number of
molecules that can absorb the UV radiation is too low due to the relatively broad
temperature peak which reaches 7 kK. The consequence is a low optical depth in
the UV. The broad temperature peak is a result of the underestimated contrac-
tion. A stronger contraction can be obtained by including more transitions that
emit in the visible or IR spectral bands. The larger optical depth in this spectral
area will increase the emission. Additionally, the wavelength for which τ = 1 is
reached will shift from 375 nm to larger wavelengths. As a consequence the same
will happen for the peak of the continuum emission. Currently it is located at
525 nm in the simulations and at 680 nm in the measurement.



Chapter 12

The effect of resonant Ar-lines on
metastable densities

Global models are very popular to describe the chemistry of various discharges.
Their advantage is that they are relatively simple which allows them to provide
results quickly. However, the simplification often means that some physical pro-
cesses are not fully captured. One of those processes is the absorption of radiation.
In a global model, optically thick radiative transitions are modeled with an escape
factor. The escape factor describes the net amount of radiation that is emitted
from the plasma. Since global models only describe average densities the effect of
non-local absorption cannot be accounted for. In real plasmas the emitted radia-
tion can be absorbed both locally and non-locally. The amount of radiation that
is absorbed non-locally depends on the species and temperature profiles.

In this work an argon plasma containing seven species is studied. This system
is suggested to the author by Emile Carbone and Nader Sadeghi after reading Gol-
ubovskii’s paper [224]. They propose an effective transport of metastable species
directly from the center to the outer parts of the plasma. This scheme includes
the production of a resonant state in the center of the discharge from a metastable
state. The resonant state produces a photon that is eventually reabsorbed in the
outer parts of the plasma. Thus in that area another resonant state is created.
Via collisional coupling a new metastable state can be produced. The effect of this
effective transport mechanism on the metastable 4s densities is investigated using
a 1D model. Two cases are investigated: in the first case the non-local absorption
is included and in the second case only escape factors are used.

12.1 Introduction

Holstein [31, 225] investigated the effect of resonant radiation quantitatively. He
derived analytical expressions for the escape factors for an infinite slab and an
infinitely long cylinder. Additionally, the line profiles corresponding to Doppler,
impact and statistical broadening were considered [31, p. 1166]. The final ex-
pressions are derived by assuming that stimulated emission can be neglected and
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Figure 12.1: The considered energy levels and the proposed transport mechanism
for the metastable species.

by assuming a parabolic profile for the radiating species. Additionally, only the
asymptotic forms of the line profiles are included and the absorption is considered
to be constant in space.

Golubovskii et al. [224] also looked into radiation transport by considering a
low pressure (0.5-7 Pa) discharge in Ar generated by RF (radio-frequency) pulses
for power densities between 3.8× 104 and 5.8× 105 W/m3. The assumptions re-
lated to the usage of a parabolic profile for the radiating species (an asymptotic
line profile and a constant absorption) are removed. They consider species vari-
ations in the axial direction between the two disks that generate the RF pulses.
Comparisons with experiments showed that the model that accounts for radiative
transport self-consistently, agreed better with experiments than the model that
used an escape factor. For the displayed results, the differences between the den-
sities of the resonant Ar species is in the order of a factor 1-80 while the impact on
the metastable species is much smaller with factors ranging between 1-1.5. The
large differences for the resonant states are mainly reached near the wall where
absorption strongly influences the plasma. Due to the low pressure the coupling
between the resonant and the metastable species is limited.

In this work the effect of resonance radiation is investigated for an Ar discharge
with pressures ranging from 40 to 4000 Pa. The considered Ar system consists of 7
species, i.e., the ground state, the four 4s-states, the lumped 4p-states and the ion
level. A 1D cylindrically symmetric model is used to investigate whether resonant
radiation emitted in the center of the plasma can contribute to an increased den-
sity of Ar metastable species. In order to contribute to an enhanced metastable
density the radiation must be absorbed in the outer regions of the cylinder by
resonantly coupled levels. These resonant levels can create metastable species via
collisions. In figure 12.1 the considered energy levels and the proposed mechanism
are displayed schematically.

Due to the higher pressure the effect of the radiation on the metastable densities
is expected to be larger in comparison to Golubovskii’s observations. Additionally,
using this simplified chemistry a comparison is made between the self-consistent
calculation of the radiation transfer and the simplified approach that approximates
the radiation as optically thin by using escape factors. The result of the self-
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consistent calculation is used to calculate the escape factor. This escape factor
is compared with the one that is obtained from Holstein’s result for an infinitely
long cylinder.

12.2 Model

The considered discharge vessel is cylindrically symmetric. Only variations in
the radial dimension are taken into account. This makes the model 1D. In the
next sections the transport equations are discussed. These equations are the mass
balances, the coupled system of equations for diffusion and the equations for the
electron and heavy particle temperatures. Subsequently, Holstein’s analytical ex-
pressions for the escape factor are considered. The used rate constants for the
chemical reactions are given in the last section.

12.2.1 Transport balances

In this section the mass balances, diffusion and the temperature balances for the
electrons and the heavy particles are discussed. The mass balance is given by
(3.17)

∇ · (ρyi~ui) = miωi,

with ρ the mass density, yi the species mass fraction, ~vd,i the diffusive velocity and
ωi the species production rate. The species production rate is calculated from

ωi =
∑
j

νjiRj , (12.1)

with νji the stoichiometry coefficient and Rj the chemical rate. The chemical rate
of reaction j can be calculated from

Rj = kj
∏
i,LHS

n
νji
i , (12.2)

with kj the rate coefficient given by (3.42). The indices i only include species on
the left hand side of the reaction.

The velocities ~vd,i introduced in the mass balance are obtained from a reduced
set of coupled momentum balances. This system of equations for the diffusive
velocities can be written as (6.11)

Fv = −d,

with the elements of F given by fij = zizj/Dij , zi the pressure fractions, Dij the
diffusion coefficient, v a vector containing the diffusive velocities and d the driving
forces. The included driving forces are given by (6.36)

d = ∂z− ρcEamb

p
,
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with ρc the charge density, p the pressure and Eamb the ambipolar field. The
solution procedure is discussed in more detail in chapter 6. The final expression
for the diffusive flux is given in (6.41).

The heavy particle temperature is calculated from (3.22)

∇ ·

(∑
i

niEivd,i

)
−∇ · λh∇Th = Qeh −Qrad +Qinel,e, (12.3)

with λh the thermal conductivity of the heavy particles, Qeh the energy trans-
ferred from the electrons to the heavy particles via elastic collisions, Qrad the
energy emitted as radiation and Qinel,e the energy gained from chemical reactions
involving the electron as a reactant. The electron temperature is calculated from
(3.23)

−∇ · λe∇Te = σE2 −Qeh −Qinel,eh, (12.4)

with λe the thermal conductivity of the electrons, σ the electrical conductivity,
E the electric field and Qchem,eh the energy transferred from the electrons to the
heavy particles via inelastic collisions. The calculation of the thermal and electrical
conductivity is discussed in more detail in section 5.2. A constant electric field is
assumed. It is obtained from

Pin =

∫
σ (r)E2dV = E2L

∫ R

0

2πrσ (r) dr, (12.5)

with Pin the input power, L the length of the plasma column and R the radius
of the cylinder. The energy transfer from the electrons to the heavy particles is
calculated from (3.43) [54, p. 34,45,51]

Qeh =
∑
h6=e

3

2
kB (Te − Th) 2

me

mh
neνeh,

with ni the number density of particle i, νeh the elastic collision frequency given
by (3.44) [54, p. 45]. Contributions from chemical reactions to the energy balance
can be calculated from

Qinel,e =
∑
j

∆hjRj , (12.6)

with j the reaction index (summed over all reactions with the electrons as a
reactant) and ∆hj the reaction enthalpy. The radiation losses are calculated using

Qrad =

∫∫∫
d2Φν
V

dν, (12.7)

with d2Φ the spectral radiative flux that passes through the local volume V . The
radiative flux can be calculated from

d2Φν = Iν~s · d ~AdΩ, (12.8)

with Iν the spectral radiance probed in the direction ~s. By using a set of probe
lines the radiation losses can be estimated. More details can be found in section
8.4.
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12.2.2 Escape factor

Holstein [31,225] derived the following expression for the escape factor correspond-
ing to an infinitely long cylinder1

Λ =
1.115√
πκpR

, (12.9)

with κp the absorption (integrated over the line profile). Note that this expression
is derived by assuming a parabolic profile for the densities of the radiating particle.
The two coefficients that describe the species profile are chosen in such a way that
the escape factor reaches a minimum. The absorption κp is given by [31, eq. 3.4]

κp =
λ2nl
2π

gu
gl

Aul
γp

, (12.10)

with gu and gl the degeneracies of the upper and lower states, Aul the transition
coefficient and γp = γL

4π where γL is the Lorentzian half-width at half-maximum
(HWHM). The escape factor derived by Holstein can be compared to the result
of the 1D model. The escape factor for line x that describes the net radiative
emission for the entire plasma volume can be defined as

Λx =
Ps,x
Pt,x

, (12.11)

with Ps,x the total power emitted as radiation in spectral line x obtained from the
self-consistent model. It is given by Ps,x =

∫∫∫
QraddV . Pt,x is the total power

emitted if an optically thin plasma is considered. In that case the emitted power
is calculated from Pt,x =

∫
hνnuAuldV .

The escape factor can also be calculated locally using [19, p. 50]

Λ =

∫
(jν − Jνκν) dν∫

jνdν
, (12.12)

with jν the local emission, κν the local absorption and the local mean radiance is
given by [166, p. 6]

Jν =
1

4π

∫
IνdΩ. (12.13)

The local escape factor can be calculated from a self-consistent solution of the
radiation losses. Such a method is described in chapter 8.

12.2.3 Chemistry

A 7 species Ar system is considered. The included species are given in table 12.1.
The list of reactions along with the rate coefficient is given in table 12.2. Ionization

1 Note that the escape factor for an infinite slab rather than an infinite cylinder is obtained
using [31, eq. 5.32, 5.33]. By using m = 1/2 a prefactor of 1.125 can be found. This value is close
to the value for an infinite cylinder. Additionally, the radius must be replaced by the thickness
of the slab.
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Table 12.1: The included species and their properties.

Name Full name g E(eV)
Ar Ar1S0 1 0

Ar[m1] 4s[3/2]2 5 11.5484
Ar[r1] 4s[3/2]1 3 11.6236
Ar[m2] 4s′[1/2]0 1 11.7232
Ar[r2] 4s′[1/2]1 3 11.8281
Ar[4p] Ar[4p] 36 13.170535
Ar+ Ar+ 6 15.759

e electron 2 0

reactions starting from a 4s or 4p level are taken from Vlček [226]. The reverse
reactions are included according to Carbone [227]. Carbone determined the total
recombination rate. In this work the assumption is made that the recombination
products are 4s states. The total rate is distributed according to the statistical
weight over the 4s states. In [227] Carbone determined the reaction coefficients for
four of the six 4s–4s transitions via the accurate laser pump-probe technique. The
remaining two transitions are taken from the ab initio calculations of Zatsarinny
and Bartschat [32]. The rates of Carbone are preferred over the theoretical results
from Zatsarinny, since Carbone notices that the theoretical results are at least
a factor two smaller in comparison to his experimental results. At the wall all
species follow the reaction Arx + e↔ Ar + e, with x representing an excited or an
ionic state. The reaction rate is calculated from the thermal flux to the wall. It is

given by ΓW = 1
4nx

√
8kBTh
πmx

. Note that the flux for the ions is calculated with Te

instead of Th.

12.3 Spectral lines

The radiative flux is calculated based on 31 atomic transitions. These transitions
are listed in table 12.3. The 10 4p-states are included via a lumped state. The
result is that transitions involving this state are multiplied with the fractional
statistical weight gj/

∑
j gj to ensure that the correct amount of energy is emit-

ted. Additionally, an energy offset is taken into account to correct for the energy
difference between the energy level of the lumped state and the individual state.

Line broadening is discussed in sections 8.1 and 9.3 of this thesis. The non-
resonant transitions are included in the ray tracing calculation with a Doppler
profile. This profile is given by

φG =
1

σDop

√
2π

exp

(
− (ν − ν0)

2

2σ2
Dop

)
, (12.14)

with the full width at half maximum (FWHM) given by ∆νFWHM = σDop

√
8 ln 2 =

ν0

(
8kBT ln 2/mc2

)1/2
and ν0 the unperturbed frequency. The resonant lines are
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Table 12.2: The list of reactions along with their rates for the 7 species Ar system.
Using a σ in the column ‘Rate’ indicates that the cross section is taken from
a tabulation. The column ‘DB’ indicates whether the reverse reaction is also
included via detailed balancing. Note that Te is specified in eV.

Reaction Rate(m3/s) Reference DB
Ar + e↔ Ar[m1] + e σ [228] Yes
Ar + e↔ Ar[r1] + e σ [228] Yes
Ar + e↔ Ar[m2] + e σ [228] Yes
Ar + e↔ Ar[r2] + e σ [228] Yes
Ar + e↔ Ar[4p] + e σ [228] Yes
Ar[m1] + e↔ Ar[4p] + e σ [32, 229] Yes
Ar[r1] + e↔ Ar[4p] + e σ [32, 229] Yes
Ar[m2] + e↔ Ar[4p] + e σ [32, 229] Yes
Ar[r2] + e↔ Ar[4p] + e σ [32, 229] Yes
Ar + e↔ Ar+ + 2e σ [228] Yes
Ar[m1] + e↔ Ar+ + 2e σ [226] No
Ar+ + 2e↔ Ar[m1] + e 5

121.29× 10−38neT
−4.5
e [230] No

Ar[r1] + e↔ Ar+ + 2e σ [226] No
Ar+ + 2e↔ Ar[r1] + e 3

121.29× 10−38neT
−4.5
e [230] No

Ar[m2] + e↔ Ar+ + 2e σ [226] No
Ar+ + 2e↔ Ar[m2] + e 1

121.29× 10−38neT
−4.5
e [230] No

Ar[r2] + e↔ Ar+ + 2e σ [226] No
Ar+ + 2e↔ Ar[r2] + e 3

121.29× 10−38neT
−4.5
e [230] No

Ar[4p] + e↔ Ar+ + 2e σ [226] No
Ar[m1] + e↔ Ar[r1] + e 1.9× 10−13 [227] Yes
Ar[m1] + e↔ Ar[m2] + e σ [32, 229] Yes
Ar[m1] + e↔ Ar[r2] + e σ [32, 229] Yes
Ar[r1] + e↔ Ar[m2] + e σ [32, 229] Yes
Ar[m2] + e↔ Ar[r2] + e 9× 10−13 [227] Yes
Ar[r1] + e↔ Ar[r2] + e 2.1× 10−13 [227] Yes

calculated using a Voigt profile. This profile is obtained as the convolution of a
Lorentzian and a Gaussian profile. It is given by [160–162]

φV (z) =
√

2
R [w (z)]√

πγG
, (12.15)

with w (z) the Faddeeva function, z =
√

ln 2 (ν − ν0 + iγL) /σDop and σDop and γL
the Gaussian standard deviation and the Lorentzian HWHM, respectively. The
Lorentzian HWHM is calculated by including resonance broadening only as

γL =
π

2
C3nAr. (12.16)

The broadening constants are given by C3 = 1.95× 10−15 Hz m3 for the transition
from Ar[r2] and C3 = 4.84× 10−16 Hz m3 for the transition from Ar[r1] [231, eq. 1].
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Table 12.3: The included transitions are listed with the wavelength, transition
probability and the fraction of the upper state that is participating in the transi-
tion. The data are taken from NIST [53].

Initial state Final state λ(nm) A(s−1) gu
Ar[r2] Ar 104.8 5.1× 108 1
Ar[r1] Ar 106.7 1.19× 108 1
Ar[4p] Ar[r1] 667.7 2.36× 105 1/36
Ar[4p] Ar[m1] 696.5 6.39× 106 1/12
Ar[4p] Ar[m1] 706.9 3.8× 106 5/36
Ar[4p] Ar[m1] 714.7 6.25× 105 1/12
Ar[4p] Ar[r1] 727.3 1.83× 106 1/12
Ar[4p] Ar[r1] 738.4 8.47× 106 5/36
Ar[4p] Ar[r1] 747.1 2.2× 104 1/12
Ar[4p] Ar[r2] 750.4 4.45× 107 1/36
Ar[4p] Ar[r1] 751.5 4.02× 107 1/36
Ar[4p] Ar[m1] 763.5 2.45× 107 5/36
Ar[4p] Ar[m1] 772.4 5.18× 106 1/12
Ar[4p] Ar[m2] 772.4 1.17× 107 1/12
Ar[4p] Ar[m2] 794.8 1.86× 107 1/12
Ar[4p] Ar[r1] 800.6 4.9× 106 5/36
Ar[4p] Ar[m1] 801.5 9.28× 106 5/36
Ar[4p] Ar[r1] 810.4 2.5× 107 1/12
Ar[4p] Ar[m1] 811.5 3.31× 107 7/36
Ar[4p] Ar[r2] 826.5 1.53× 107 1/12
Ar[4p] Ar[r2] 840.8 2.23× 107 5/36
Ar[4p] Ar[r1] 842.5 2.15× 107 5/36
Ar[4p] Ar[r2] 852.1 1.39× 107 1/12
Ar[4p] Ar[m2] 866.8 2.43× 106 1/12
Ar[4p] Ar[m1] 912.3 1.89× 107 1/12
Ar[4p] Ar[r2] 922.4 5.03× 106 5/36
Ar[4p] Ar[r2] 935.4 1.06× 106 1/12
Ar[4p] Ar[r1] 965.8 5.43× 106 1/12
Ar[4p] Ar[r2] 978.5 1.47× 106 5/36
Ar[4p] Ar[m2] 1047.8 9.8× 105 1/12
Ar[4p] Ar[r2] 1148.8 1.9× 105 1/12

By only including resonance broadening in (12.10) the escape factor can be written
as

Λ =
1.115√

4λ2 gu
gl
Aul
C3
R
. (12.17)
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12.4 Results

In order to investigate the effect of the self consistent calculation of the radiation
losses, multiple Ar plasmas are simulated with and without ray tracing. The
investigated cases are

• case 1: self-consistently. The radiation is included using the ray tracing
procedure described in chapter 8. The results can be converted to a local
escape factor using (12.12).

• case 2: Holstein. A global escape factor is obtained from (12.17). An
effective transition probability is introduced as A′ul = ΛAul.

• case 3: Adjusted escape factor. A global escape factor is obtained from
(12.11). An effective transition probability is introduced as A′ul = ΛAul.

The next sections evaluate the spatial dependency of the escape factor for case 1,
the shape of the resonant lines and the impact on the species profiles. A reference
model is considered with a radius of 2.5 cm, a power density of 2.0× 104 W/m3

and a pressure of 400 Pa. The impact of the power density and pressure are
investigated. Additionally, the effect of the radius of the cylinder is considered.
The radius and pressure can be varied in such a way that the optical depth remains
constant.

12.4.1 Escape factor and resonant lines

A comparison of the escape factors for case 2 and case 3 is given in table 12.4.
In all cases the escape factor for case 3 is about a factor 10 larger in comparison
to the escape factor for case 2. The main reason for the discrepancy is caused
by the specific parabolic profile that is assumed by Holstein [31, p. 1165]. He
assumes the following profile for the radiating species n (r) = a0 + a1

(
1− r2/R2

)
with a0/a1 = 0.31. This profile is not in agreement with the profile that follows
from the self-consistent simulation. Due to the presence of wall reactions the ratio
between n (0) /n (R) = 1 + a1/a0 ≈ 4.2 is significantly larger in the self-consistent
model.

One of the reasons for the differences between the species densities is the spatial
variation of the escape factor for case 1. For the reference model the escape factors
of the resonant lines are displayed in figure 12.2. The profiles typically have a peak
in the center and decay towards the wall. This is related to the species profiles as
shown in figure 12.3. Due to wall reactions the species profiles also decay towards
the wall. The result is that Iν from (8.38) also decreases for larger r. In places
where a strong gradient of Iν occurs, Jν is dominated by the contribution from
the center. A value of Jν that is larger than the local equilibrium value decreases
the escape factor. Since all rays are initialized with Iν = 0 at the wall, the average
over the solid angle Jν decreases significantly. For that reason, the escape factor
increases near the wall. For transitions other than the resonant transitions the
radial evolution of the escape factor depends on the evolution of the ratio of the
resonant and metastable densities over the 4p densities.
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Table 12.4: The escape factor for various models using the self-consistent approach
from ray tracing (sc) or an escape factor from Holstein(12.17).

λ=104.8 (nm)
Model P (W/m3) R(mm) p(Pa) Λ (12.17) Λsc

Model 1 2.0× 104 25 400 3.77× 10−5 4.41× 10−4

Model 2 2.0× 105 25 400 3.77× 10−5 4.28× 10−4

Model 3 2.0× 104 25 40 3.77× 10−5 4.78× 10−4

Model 4 2.0× 104 2.5 400 1.19× 10−4 1.51× 10−3

Model 5 2.0× 104 2.5 4000 1.19× 10−4 1.48× 10−3

Model 6 2.0× 106 25 400 3.77× 10−5 5.08× 10−4

Model 7 2.0× 106 2.5 400 1.19× 10−4 1.52× 10−3

Model 8 2.0× 106 2.5 4000 1.19× 10−4 1.43× 10−3

λ=106.7 (nm)
Model P (W/m3) R(mm) p(Pa) Λ (12.17) Λsc

Model 1 2.0× 104 25 400 3.85× 10−5 4.63× 10−4

Model 2 2.0× 105 25 400 3.85× 10−5 4.47× 10−4

Model 3 2.0× 104 25 40 3.85× 10−5 4.23× 10−4

Model 4 2.0× 104 2.5 400 1.22× 10−4 1.49× 10−3

Model 5 2.0× 104 2.5 4000 1.22× 10−4 1.49× 10−3

Model 6 2.0× 106 25 400 3.85× 10−5 5.46× 10−4

Model 7 2.0× 106 2.5 400 1.22× 10−4 1.53× 10−3

Model 8 2.0× 106 2.5 4000 1.22× 10−4 1.45× 10−3

In Fig 12.4 the resonant lines are shown for the Ar model. The central part of
the lines is solely determined by nl (R) /nu (R). It can be calculated from (8.38).
The ratio is then given by

nl (R)

nu (R)
=

(
2hν3

0

c2I (ν0)
− 1

)
gl
gu
. (12.18)

The positions of the self-reversal maxima for both resonant lines for these condi-
tions occur roughly at τ = 2.6. For larger optical depths the net emitted radiation
decreases due to absorption and for lower optical depths the spectral radiance is
below its maximum value.

12.4.2 Species profiles

The models using ray tracing (case 1) are compared to two different models that
use escape factors for the resonant lines. The escape factors for the remaining
transitions are set to 1. The determination of the escape factors is described in
the beginning of section 12.4 with case 2 and case 3. The escape factors are listed
in table 12.4. The relative species profiles for models 1–5 are shown in figure 12.5.

The results from model 1 show that using the escape factor from Holstein
produces species densities for the excited states that are in the order of 2–4 times
larger than the results for case 1. The ion density is only moderately affected by
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Figure 12.4: The spectral radiance and the optical depth for a ray passing through
the center of the discharge using the density profiles from model 1.
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the larger excited state densities. Its density is only increased by a factor of about
1.3. As a result the energy transferred from the electrons to the heavy particles is
also affected and Te is reduced by about 1.2 kK to 10.9 kK. Closer to the wall the
importance of radiation transport increases. The escape factors in the ray tracing
model decrease as indicated in figure 12.2. The relative densities are approaching
one for r = R, since the escape factor is getting closer to the value predicted by
Holstein. The 4p state is an exception, since this density reaches a ratio of 0.35
relative to model 1. The reason for the larger density in the ray tracing model
is the absorption of radiation from the 811.5 nm line. Interestingly, Holstein’s
expression for a Gaussian line profile2 produces an escape factor larger than 1 for
this transition. For this reason, all non-resonant transitions have an escape factor
of 1 for all simulations using the conditions described in case 2. Between r/R =
0.6–0.9 the species ratios for the resonant and metastable species increase briefly.
This is related to the wall reactions and the lower escape factors for case 2. The
species with the lowest escape factor require a shorter distance measured from the
wall to reach the chemical equilibrium in the bulk.

Using a global escape factor (case 3) deduced from the ray tracing model, pro-
duces relative densities in the center between 0.84 and 1.15 for the excited species.
The reason for these discrepancies is partially caused by the fact that the global
escape factor is smaller than the local escape factor at r = R. Other causes are
the not-fully optically thin non-resonant transitions. The Ar[r2] state is signifi-
cantly more affected by the radiation than the Ar[r1] state. This is caused by the
escape factor for the 104.8 nm transition that is already changing at smaller radii
than the escape factor for the 106.7 nm transition. The result is that the Ar[r2]
state density increases in case 1 and that the metastable densities are following
this trend. Due to the smaller volume where the escape factor for the 104.8 nm
transition significantly deviates from the value at r = 0 the impact on the species
profile is also smaller for the Ar[r1] state. The decaying species ratios confirm the
metastable transport mechanism.

In model 2 the power input is 10 times larger. The profiles of the escape factors
are similar to model 1. However, due to the larger power input the electron density
is more than a factor 10 larger in comparison to model 1. The result is that in
the center the relative deviations between cases 1, 2 and 3 are smaller due to the
fact that the plasma is more collisionally dominated. Near the wall a peak can be
observed in the relative species profiles for case 2. This is also related to the wall
reactions. Due to the larger electron density it occurs closer to the wall. For the
case 2 the relative densities for the metastable and resonant states are between
1.28 and 1.55 near the wall. At the same location the species ratios for case 3 are
between 0.62 and 0.90. The decreasing trend near the wall again confirms that
the metastable species are affected by the resonant radiation. The species ratios
for the 4p states in the center deviate from 1 due to absorption from non-resonant
lines. This is not included in cases 2 or 3.

The model 3 results are more in line with model 1. The escape factors are com-

2 For a cylinder it is given by Λ = 1.60/
(
κ0R

√
π ln (κ0R)

)
with κ0 =

λ3
0nl
8π

gu
gl

A√
2πkBTh

m

.
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parable to model 1. This is in agreement with Holstein’s expression which states
that the escape factors do not depend on the density for resonant broadening. The
small differences are caused by the higher Te and the lower Th which affect the
species profiles. The resonant and metastable species reach relative ratios between
1.69 and 3.10 near the wall for case 2. In the center the ratios are between 3.08 and
3.67. For case 3 the species ratios near the wall for the metastable and resonant
states increase. In the center they range from 0.90 to 1.143 while the ratios reach
1.01 to 1.25 close to the wall. This increase is related to the fact that the escape
factors for case 1 slowly increase for larger r. Near the wall the net escape factor
for case 1 is therefore larger than the average value. The decrease of the species
ratio near the wall for case 2 can not be explained using the spatial variation of
the escape factor. In this case, the wall reactions are determining the local species
densities near the wall for case 2. The fact that the wall reactions can cause such a
profile suggests that it is difficult to distinguish the effects from the wall chemistry
from the effects induced by radiation in the comparison between case 1 and case
2.

The simulations for model 4 use a radius that is decreased by a factor ten in
comparison to model 1 while the same power density is used. The escape factors
in case 1 slowly decay towards the wall. The consequence is that the species ratios
for case 2 also decay towards the wall. In the center the metastable and resonant
densities reach a ratio of 1.90 to 14.3 while this decreases near the wall to 1.41 to
6.10. For the same reason the simulation for case 3 shows a decrease from 0.98 to
1.10 in the center to 0.80 to 1.055 close to the wall. In this case the impact on
the ratio of the Ar[r1] state is again smaller than the impact on the Ar[r2] level.
Under these circumstances the Ar[m2] ratio remains approximately constant while
the Ar[m1] ratio is most strongly affected with a decrease from 1.06 to 0.80. The
metastable transport mechanism is not as visible as was the case in the previous
models. This is related to the larger impact of the wall reactions on the bulk
chemistry caused by the smaller radius.

In addition to decreasing the radius and keeping the power density constant,
the simulations for model 5 also maintain the same optical depth in comparison to
model 1. The results for this model for case 2 are similar to model 4. For case 3,
the species ratios of the metastable and resonant densities are close to one. Most
species ratios remain within the range given by 0.93 to 1.10. Exceptions are the
ratio for Ar[r2] and Ar[m1] which decrease near the wall due to a strongly decreas-
ing escape factor for Ar[r2]. Another species that is strongly affected is Ar[4p].
In the center the ratio is smaller than 1 because in the ray tracing calculation
an escape factor smaller than 1 is obtained for the 811.8 nm line. Near the wall
the escape factor for this line decreases even further which should result in a de-
creasing species ratio. However, due to the chemical coupling to the species Ar[r2]
and Ar[m1] and the wall reactions the opposite trend occurs. In comparison to
model 4 the higher optical depth increases the impact of the metastable transport
mechanism.

The effect of a self-consistent calculation of the radiation is also investigated
for the same conditions at a higher power density. The results for these models
are shown in figure 12.6. The power density in model 6 is 100 times larger in com-
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Figure 12.5: Relative species ratios of the density profiles normalized to the densi-
ties of the self-consistent calculation of radiation transport (case 1). Dashed lines
use the escape factor from the self-consistent calculation (case 3) and the full line
represents the escape factor obtained from Holstein, (12.17) (case 2). Legend: m1

; r1 ; m2 ; r2 ; 4p ; Ar+ .
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parison to the power density in model 1. The consequence is that Th increased
from 0.43 kK to 3 kK and that Te increased from 12.1 kK to 13.1 kK. In spite of
the large variation of the temperature and species profiles the escape factor for
the resonant lines only increased by 15-20 %. This result is close to Holstein’s pre-
diction which states that the escape factors are independent of the power density
and the species and temperature profiles. The species ratios for the metastable
and resonant species for case 2 and 3 cover the range from 0.91 to 1.02 at the
axis. This indicates that the plasma composition is mostly determined by colli-
sions with electrons. Near the wall these ratios are between 1.22 and 1.34 for case
3 and between 1.67 and 1.82 for case 2. The curves for the species ratios increase
near the wall, because the escape factors monotonically increase for larger r. The
effective metastable transport is thus still visible, but its impact is reduced. The
main reason for this effect is the increased impact of the chemistry due to the
increased electron densities in comparison to model 1.

The power density in model 7 is 100 times larger than in model 4. Since this
model uses a smaller radius, the gas heating is limited to about 330 K for the
heavy particle temperature and the electron temperature reaches 15.6 kK. Due to
the smaller impact of the wall reactions, a peak is visible again in the species ratios
for case 2. For the metastable and resonant species these ratios are in the range
of 1.86 to 2.15 in the center and 1.48 to 1.65 near the wall. The species ratios
for case 3 exhibit smaller spatial variations, because the escape factors obtained
from the self-consistent approach also show small variations. The resonant and
metastable species ratios still vary between 0.93 and 1.25. In this particular case
the metastable transport mechanism thus cannot occur.

Similarly, the power density in model 8 is 100 times larger than in model 5.
Due to the higher pressure, the heavy particle temperature reaches 440 K while
the electrons reach a temperature of 11.5 kK. The increased importance of the
chemistry also limits the species ratios of the metastable and resonant species for
this model. For case 2 the species ratios for the metastable and resonant species
are between 0.87 and 2.50. Case 3 gives species ratios between 0.24 and 1.03. The
lower species ratios are reached near the wall where the escape factor in the self
consistent calculation is decreasing due to the higher optical depth. In comparison
to model 5, the metastable transport mechanism for m2 is now also visible.

12.5 Conclusion

We confirmed that Nader Sadeghi and Emile Carbone indeed proposed an effective
transport mechanism for the metastable species. The strong impact of radiation
transport thus not only impacts the resonant levels, but is also passed on to the
metastable species via collisional coupling. The mechanism is more important for
cylinders with small radii, while the effect of the pressure is limited. Additionally,
the usage of Holstein’s expression for the escape factor for an infinite cylinder has
been investigated. In all simulations the global escape factor that can be derived
from a self-consistent treatment of radiation (ray tracing) is about a factor 10
larger in comparison to Holstein’s estimate.
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Figure 12.6: Relative species ratios for the density profiles normalized to the
densities from the self-consistent calculation of radiation transport (case 1) for
a power density of 2× 106 W/m3. Dashed lines use the escape factor from the
self-consistent calculation (case 3) and the full line represents the escape factor
obtained from Holstein (12.17) (case 2). In figure 12.6a the effects of the increased
power density on the excited and ionic molar fractions is shown. Legend: m1 ;
r1 ; m2 ; r2 ; 4p ; Ar+ .
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The ratios of the metastable and resonant species relative to the densities pre-
dicted by the self-consistent radiation transport model are compared. For escape
factors predicted by Holstein these ratios vary in the order of 1-4 for cylinders
that have a radius of 2.5 cm. The species ratios can increase up to 16 for cylin-
ders with a radius of 2.5 mm. Near the wall these ratios decay as a result of wall
reactions and the radiative transport of resonant and indirectly the metastable
species. Simulations using a self consistent calculation of the radiation transport
are necessary to reduce the error in the predicted species profiles.

More accurate escape factors are obtained by using a global average of the
escape factor predicted by the self consistent model. In that case the species
ratios reach approximately 1 on the axis. However, near the wall, absorption is
not included in the global escape factor. In that area the ratio of species densities
ranges between 0.2 and 1.4. When the power density is increased from 2× 104

to 2× 106 W/m3 the species ratios show smaller variations on the axis due to the
larger impact of electron collisions. However, the impact of absorption near the
wall is still significant. Thus, even when a correct global escape factor is known
the local errors in the species densities can be considerable. For accurate results,
self-consistent radiation transport is therefore recommended.





Chapter 13

Surfatron plasmas in mixtures
containing SiCl4

Microwave discharges are used for the production of glass fibers [3, 4, 232]. A
schematic representation of such a setup is shown in figure 13.1. These setups con-
sist of a dielectric tube with a surfatron launcher placed around it. The launcher
can move back and forth in the direction of the tube. A mixture of O2 and SiCl4 is
introduced in the tube at the inlet side. The absorption of microwaves induces the
formation of a plasma in the launcher. One of the reactions that will take place
is the formation of quartz according to SiCl4 + O2 ↔ SiO2 + 2Cl2. The SiO2 is
deposited on the wall. The moving launcher guarantees a homogeneous deposition
of quartz across the entire tube. After sufficient deposition of quartz the diameter
of the tube has shrunk considerably. In order to produce an optical fiber two
successive production steps are required: collapsing and drawing.

13.1 Introduction

The setup that is used for deposition of SiO2 is not suitable for an experimental
study, since the presence of the furnace makes the reactor difficult to access for
diagnostic purposes. For that reason a surfatron reactor is built that is more
easily studied [232]. In this work a computer model of that setup is discussed. An
image of this surfatron is shown in figure 13.2. The surfatron launcher’s position
is fixed and the chemistry is reduced by using an inlet mixture of Ar + SiCl4.
Additionally, the design of the launcher is simplified since there are no chokes to
confine the electromagnetic waves to the launcher. In section 13.2 the surfatron
model is discussed in more detail.

This setup has been studied before by Jiménez [3] for a mixture containing
only Ar. Recently, Kemaneci [4, ch. 5] studied the SiCl4 + O2 chemistry in a
global model. That model contained 37 species and 175 volume reactions. A
part of this chemistry is validated with experiments. These are the O2 and Cl2
reaction subsets. In this study the reaction subsets [4, Table. 5.A.5,5.A.8] related
to reactions involving Clx and SiClx species are studied for the first time in a 2D

255
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Figure 13.1: A schematic representation of the setup that is used for the production
of glass fibers. The image is taken from Jiménez [3, p. 17].

Figure 13.2: A picture of the surfatron setup built at
the TU/e that is studied in this chapter. The image is
taken from the PLASIMO website [233] and is originally
produced by Bart van Overbeeke.



13.2. Model 257

model. A comparison is made between simulation results of mixtures containing
pure Ar and mixtures that also contain SiCl4 to evaluate the impact of SiCl4.

Experiments on this surfatron provided an absolutely calibrated spectrum of
the molecular emission of the B–X transition in SiCl. The modeling results can
be used to predict a spectrum. Since the considered set of reactions does not
contain any excited states of SiCl an additional model is required to estimate
the population of the B state. The excited state is assumed to be coupled to
the ground state via electron collisions. It is assumed that the rate is given by
an Arrhenius’s law. The proportionality factor of this rate is adjusted to obtain
agreement with the measured spectrum.

13.2 Model

In the following sections the numerical representation of the surfatron geometry
and the most important physical aspects are considered. The physical modules
that are considered are the electromagnetic, chemistry and transport modules.
These modules are briefly discussed.

13.2.1 Geometry

The modeled surfatron is depicted in figure 13.3. It is the same setup that Jiménez
[3, p. 167-169] used to model the Ar surfatron plasmas. The metal walls of the
surfatron launcher form a concentric cylindrical cavity. Electromagnetic waves are
fed to this cavity via a waveguide. A gap is created in the cavity on the pump
side. The dimensions of the surfatron are chosen to maximize the electric field
in the gap. The electric field is used to excite the transversal magnetic surface
waves [4, p. 32-33].

13.2.2 Electromagnetic module

The electromagnetic waves that are produced by the launcher are partially ab-
sorbed by the plasma. The energy obtained from the field sustains the plasma.
In order to describe the power absorption, the electromagnetic waves must be
calculated first. These waves are described by Maxwell’s equations. A few ap-
proximations are made to simplify this system of equations:

• Harmonic fields: By assuming harmonic fields the field intensities ~F can be
written as a complex amplitude ~F multiplied by a common time dependent

term as ~F = R
(
~F exp (iωt)

)
.

• Non-magnetic media: In this work only non-magnetic media are con-
sidered. The consequence is that the relative magnetic permeability has a
uniform value of µr = 1.

• Steady-state: The temporal variations of the plasma are neglected. The
species densities and therefore parameters like the electric relative permit-
tivity εr are assumed to be independent of time.
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Figure 13.3: The numerical representation of the surfatron is similar to the surfa-
tron considered by Jiménez [3, p. 169]. The variables are defined as: Rp = 3.1 mm;
Rg = 4.4 mm; Rgap = 5.7 mm; Rc,l = 13 mm; Rc,u = 52 mm; Rm = 66 mm;
Zs,l = 72 mm; Zc,l = 87 mm; Zgap,l = 105 mm; Zgap,r = 108 mm; Zs,r = 111 mm

Maxwell’s equations can then be expressed as [4, p. 29]

∇ ·
(
ε0εr ~E

)
= ρc (13.1)

∇ · ~H = 0 (13.2)

∇× ~E = −iωµ0
~H (13.3)

∇× ~H = ~J + iωε0εr ~E, (13.4)

with the electric field ~E, magnetic field intensity ~H and the current density ~J the
complex amplitudes of ~E , ~H and ~J , respectively. Additionally, µ0 is the magnetic
permeability of vacuum, ε0 the electric permittivity of vacuum and εr the relative
permittivity of the local medium. Ohm’s law ~J = σ̂ ~E with a complex electrical
conductivity σ̂ can be used to rewrite (13.4) as

∇× ~H = iωε0ε̂r ~E, (13.5)

with ε̂r the complex relative permittivity given by

ε̂r = εr +
σ̂

iωε0
. (13.6)

The wave that is considered is a TM wave that propagates in the axial direction.
Near the surfatron the wave can also propagate in the radial direction. The non-
zero components of the electric and magnetic field are thus Er, Ez and Hφ. The
coupled system of equations is solved using the Yee algorithm [4, p. 31] [3, p. 48-
54]. In the cylindrical grid defined in figure 13.3 the component Hφ is solved
on the nodal points using a coupled system of (13.5) and (13.3). The Er and
Ez components are evaluated on the cell interfaces. The electric flux is thus
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guaranteed to be continuous on interfaces that contain no charge. Additionally,
the staggered grid is ideal for dealing with the gradients that occur in the described
system.

The boundary conditions for the electromagnetic waves are described in detail
by Jiménez [3, p. 52-54,123-125]. At the metal interfaces a homogeneous Dirichlet
condition is applied, since metal is considered as a perfect electrical conductor. At
the axis, homogeneous Neumann conditions are applied. The electric field at the
excitation boundary is scaled to obtain the correct power dissipation in the entire
numerical domain. The boundary conditions at z = 0 and z = Lz are propagation
conditions determined from ∂Er

∂z = −ikEr with k = ω
√
µ0ε0εr. Similarly at r =

Rm the propagation condition is derived from ∂Ez
∂r = −kH

{2}
1 (kr)

H
{2}
0 (kr)

Ez with H
{2}
x a

Hankel function.

13.2.3 Transport equations

The various transport balances are discussed in this section. These are the species
particle balance, the bulk momentum balance and the energy balances of the
electrons and the heavy particles. The model is based on the previous work of
Kemaneci [4, p. 90-93] and Jiménez [3, p. 166-171]. Due to the instabilities that
occur in the current self-consistent diffusion algorithm (see chapter 6) the diffusion
is included using Fick’s law1. Note that in comparison to the work of Kemaneci
the particle balances are solved in terms of fractions rather than densities. The
consequence of using this diffusion model is that a change in the temperature
profile does not initiate diffusion if the species fractions remain constant2.

In PLASIMO’s implementation of Fick’s law one particle is considered as the
background particle. For all other species the following stationary species balance,
deduced from (3.17), is solved3

∇ ·
(
ρyi~u− ρ

yi
zi
Di∇zi

)
= miωi, (13.7)

1In the surfatron plasma Ar is the dominant species. In that case the coupled system pre-
sented in (6.11) reduces to a diagonally dominant system if zizAr

DiAr
�
∑
j 6=i

zizj
Dij

for every i. This

can be rewritten as zAr
zj
� DiAr

Dij
. For neutral-neutral and neutral-ion interactions the ratio of the

diffusion coefficients is expected to be close to one. Having a dominant background gas is there-
fore sufficient to use Fick’s law. If i and j correspond to charged-charged interactions Dij can
become very small due to the large Coulomb collision integrals (see figure 4.2). The inequality
may be violated for a few charged species. However, Fick’s law remains a good approximation.
As shown by Rahimi [234, p. 101-106] the deviations between results for Fick’s diffusion model
and the self-consistent model remain small when the mole fraction of the negatively charged
species is smaller than the mole fraction of positively charged species.

2In Kemaneci’s case [4, eq. 2.14] the second term in D∇xi = 1
n
D∇ni − ni

n2D∇n is not
included. Additionally, he uses ∇xi rather than ∇zi which neglects the contribution from the
temperature.

3Note that the diffusive mass flux has been substituted with ρyi~vd,i = −ρ yi
zi
Di∇zi =

−ρmiT
mTi

Di∇zi. The only driving force that is included is ordinary diffusion (6.9). This ex-

pression is derived from [234, p. 99] by approximating the fractions of the dominant background
gas with one. Ambipolar diffusion is included by changing the coefficients Di.
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with yi the species mass fraction, zi the species pressure fraction, ~u the bulk
velocity, Di the effective diffusion coefficient, mi the species mass and ωi the
production rate per unit volume due to chemical reactions. The effective diffusion
coefficient is given by [4, p. 91]

Di = p

∑
j 6=i

pj
Dij

−1

, (13.8)

note that in the case of a dominant background gas this expression reduces to
Di ≈ Dib with b the index of the dominant background gas. In that case the
diffusion model is equivalent to Fick’s limit. For positively charged species a
correction factor is applied to account for the ambipolar electric field. In that case
the effective diffusion coefficient is given by [4, p. 91]

Di = p

∑
j 6=i

pj
Dij

−1(
1 +

qi
qe

Te
Th

)
, (13.9)

with qi the charge of particle i and Ti and Te the heavy particle and electron
temperatures. The correction term follows from the solution of a system containing
an atom, an ion and an electron [6, p. 51,52]. The approximation is valid when the
neutral particle is dominant. In plasmas with multiple ions such an expression can
not be derived. The approximation can still be used if the additional requirement
for the species densities ∇ni/ni ≈ ∇ne/ne is satisfied [235, p. 420]. Equations of
the type (13.7) are not used for the electrons and the background species. The
electron mass fraction is calculated from quasi-neutrality

ye =
me

qe

∑
i 6=e

qi
mi

yi. (13.10)

The density of the background species is calculated from

nb = p−
∑
i 6=b

nikBTi, (13.11)

to ensure that the correct pressure is obtained. Homogeneous Neumann (HN)
boundary conditions are applied for all species at the inlet, outlet, quartz wall
and at the axis. Kemaneci and Jiménez used a flux condition. A flux boundary
condition can be derived from

− ni
zi
Di∇zi = γi

ni
4

√
8kBT

πmi
, (13.12)

with γi the reaction probability. The usage of this condition introduced large
gradients directly near the wall. In order to improve the stability of the model
this condition is replaced by a HN condition.
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The sum of all species mass balances (13.7) gives the continuity equation (3.18)

∇ · (ρ~u) = 0.

The bulk velocity is solved from the stationary Navier-Stokes equations (3.20)

∇ · (ρ~u~u) = −∇p+∇ · ¯̄τ,

with p the pressure and ¯̄τ the viscous stress tensor. The gravitational forces
are neglected. The SIMPLE algorithm is used to solve for the bulk velocity.
It is described in more detail by Peerenboom [6, p. 69-73]. HN boundary con-
ditions are also used for the pressure and the axial and radial velocity com-
ponents. Exceptions are the no slip condition uz (Rp) = 0 at the wall and
ur (0) = ur (Rp) = ur (r) |z=0 = 0. Other deviating conditions are the inlet
and outlet pressure which are pin = 40.02 mbar and pout = 40 mbar. The pressure
difference approximately compensates the viscous losses4.

A two temperature plasma is considered. The temperature of the electrons is
calculated from (3.23)

∇ ·
(

5

2
nekBTe~u

)
+∇ · ~qe − ~u · ∇pe = Qohm −Qelas,eh −Qinel,e,

with ~qe = −λe∇Te the conductive heat flux of the electrons, λe the electronic
thermal conduction coefficient, Qohm the ohmic dissipation, Qelas,eh the elastic
energy transfer and Qinel,eh the inelastic energy transfer to the heavy particles.
The ohmic dissipation is calculated from

Qohm =
1

2
Re (σ̂) |E|2 , (13.13)

with E the electric field and σ̂ the complex electrical conductivity. This complex
conductivity is derived in appendix 13.A and is given by

σ̂ =
ε0ω

2
p

νeh + iω
, (13.14)

with ωp =
neq

2
e

meε0
the plasma frequency, νeh =

∑
j 6=e νej the elastic collision fre-

quency between electrons and heavy particles, νij = 16
3 njΩ

(1,1)
ij is taken from

(3.44) and ω the microwave frequency. The elastic energy transfer is given by
(3.43) [54, p. 34,45,51]

Qelas,eh =
∑
i 6=e

3

2
neνei

me

mj
kB (Te − Th) . (13.15)

4The momentum balance is simplified by assuming that the velocity most important com-

ponent is uz (r) which gives ∂p
∂z

= η ∂
2uz
∂r2

. The solution of the Hagen-Poiseuille equation is

uz = 1
4
η ∂p
∂z

(
R2 − r2

)
. The mass flow rate is obtained from Q =

∫Rp
0 ρuz2πrdr. Solving for

the pressure gradient gives ∂p
∂z

= 8ηQ/
(
ρπR4

)
. Using ηAr = 2× 10−5 kg/m/s, Q = ρCslm kg/s

with Cslm = 2× 10−4 m−3/(60 s) and ρ = p
kBTh

mAr with Th = 300 K produces the value for

the pressure gradient.
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The inelastic energy transfer is obtained from

Qinel,e =
∑
i

Ri∆hi, (13.16)

with Ri the reaction rate and ∆hi the reaction enthalpy. This term only includes
the reactions that involve electrons as a reactant. The energy balance for the
heavy particles is obtained from (3.22)

∇ ·

∑
i 6=e

5

2
nikBTh~u+ niEi~ui

+∇ · ~qh − ~u · ∇
∑
i 6=e

nikBTh − τ : ∇~u

= Qelas,eh +Qinel,e +Qrad,

with the heat flux given by ~qh = −λh∇Th and λh the thermal conductivity of the
heavy particles. The contributions to the energy balance from viscous dissipation
and expansion work are small. At the inlet, outlet and axis of the surfatron HN
conditions are used for the heavy particle temperature. At the quartz boundary
the heat flux is assumed to be continuous5. For the electron temperature HN
boundary conditions are applied at the inlet, outlet, axis and the quartz wall.

13.2.4 Chemistry

A total of 20 species is included in the model. An overview of the included species
and their energy level is given in table 13.1. The energy levels of the SiClx and
SiCl+x species deviate significantly from the values that are reported in [4, p. 79].
For example, the energy of SiCl4 is listed as 6.17 eV while analysis of thermody-
namic data [223] suggests a value of -11.45 eV. A discrepancy of several eV has
also been observed for other species. The consequence is that the reaction energy
for dissociation and ionization of SiClx is also strongly affected. These reactions
impact Te and Th via the inelastic energy transfer. In comparison to the chem-
istry described by Kemaneci, Cl+2 and vibrational excitation of Cl2 are neglected.
The reaction kinetics are taken from Kemaneci [4, p. 83,85] for the Cl2 and SiCl4
related reactions. Reaction number 175 in that work for SiCl4 ↔ SiCl3 + Cl con-
tains a reaction rate of k = 1.7× 1014 exp

(
−3.5764× 10−4 K/Th

)
/s. This rate

is not in agreement with the indicated reference and is therefore corrected to
k = 1.7× 1014 exp (−48 229 K/Th) /s. Additionally, a typing mistake occurred in
the documentation of reaction number 152 where the prefactor had an exponent
of 10−3 which should be 10−13 (the input file contained the correct value). The
Cl2 chemistry is modified by adding Cl + 2e↔ Cl− + e with an assumed rate of
1× 10−60. The Ar chemistry is taken from Gudmundsson [236]. This chemistry is
modified by adding detailed balancing to the reactions 2Ar [4p]↔ Ar + Ar+ + e

5 By using ∇ · qh = λw
r

∂
∂r

(
r ∂T
∂r

)
= 0 and −λh ∂Th∂r |r=Rp = −λw ∂T∂r |r=Rp the heat flux

through the wall is given by −λw ∂T∂r |r=Rp = −λw(T0−Th(Rp))

Rp ln
Rg
Rp

. Note that λw is assumed to be

constant and T0 is the temperature of the environment.
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Table 13.1: The list of included species. The data for the atomic ions and neutrals
is derived from NIST [53]. The neutral molecular data is obtained from NASA
[223] and the data for the molecular ions is taken from Kothari [237].

Species Energy(eV) Species Energy(eV)
Ar 0 Ar [m] 11.57

Ar [r] 11.73 Ar [4p] 13.17
Ar+ 15.76 Cl2 0
Cl 1.24 Cl− -2.44

Cl+ 14.27 Si 0
Si+ 8.15 SiCl -3.16

SiCl+ 7.77 SiCl2 -6.31
SiCl+2 4.04 SiCl3 -8.09
SiCl+3 4.21 SiCl4 -11.45
SiCl+4 0.33 e 0

and Ar [4p] + e↔ Ar+ + 2e. The purpose of these modifications is to prevent the
depletion of Cl− and Ar [4p] in specific locations of the plasma. For Cl− this mod-
ification is required because of reactions of the type SiCl+x + Cl− ↔ SiClx + Cl
which are included with a constant rate coefficient. Due to the stable density
of the SiCl+x species exponential decay6 occurs for Cl−. The modification for
Ar [4p] is required since at low Te the production is severely limited by terms like
exp (−C/Te). These terms are absent in the most important destructive reactions.
This is related to range of validity for the Gudmundsson rates. These fitted rates
are valid in the range between 1–7 eV.

13.3 Results

In the following sections a comparison is made between an Ar plasma and an
Ar + SiCl4 plasma. Additionally the simulated densities are used to predict an ab-
solutely calibrated spectrum. This spectrum is compared to a measured spectrum
for the purpose of verifying the SiCl4 chemistry. Experiments using the surfatron
depicted in figure 13.3 used a mass flow rate of 210 sccm of Ar and 10 sccm of
SiCl4. A pressure of 40 mbar and an input power of 100 W were used. Due to
instabilities in the 2D model the simulated input power is reduced to 10 W. The
flow rate has also been decreased in order to improve the stability. The elemental
flow rates used in the model correspond to an influx of 0.5 sccm of SiCl4.

13.3.1 Influence of SiCl4 chemistry

In this section simulations are compared for an Ar and a Ar + SiCl4 chemistry.
The impact on the temperature profile and the species densities is shown.

6The decay rate can be derived from
∂n

Cl−
∂t

= −n
SiCl+x

nCl−k ,where k is the rate coefficient.
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(a) Te for the Ar + SiCl4 mixture. (b) Te for the Ar mixture.

(c) Th for the Ar + SiCl4 mixture. (d) Th for the Ar mixture.

(e) ne for the Ar + SiCl4 mixture. (f) ne for the Ar mixture.

Figure 13.4: The electron density and the electron and heavy particle temperatures
for the Ar + SiCl4 and Ar mixtures.
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(a) SiCl. (b) SiCl+4 .

Figure 13.5: Species densities in the Ar + SiCl4 mixture.

The electron density, Te and Th for both simulations are shown in figure 13.4.
The electron temperature in the Ar plasma reaches a maximum value of 11.5 kK.
A stable plateau of about 10 kK is maintained for about 20 cm in axial direc-
tion. After that it decays towards the pump side via elastic collisions with the
heavy particles. The electron temperature in the Ar + SiCl4 plasma reaches an
equilibrium that is in the range of 4-5.9 kK. In this case the elastic collisions are
also the dominant loss process. The electron temperature is lower in the mixture
with Ar + SiCl4 due to the higher electron density. The electron density in the
Ar + SiCl4 mixture reaches a peak value right below the gap of the surfatron where
the power coupling is largest. The heavy particle temperature in the Ar mixture
is larger in comparison to the Ar + SiCl4 mixture in spite of the lower peak value
of ne (Te − Th). This is related to the very narrow peak in the Ar + SiCl4 plasma.

One of the most interesting results of the SiCl4 chemistry is the small vari-
ation of SiClx and SiCl+x in terms of species densities. The species densities of
SiCl and SiCl3 vary in the order of 1018.2–1019.4 m−3 and 1016.4–1020.1 m−3, re-
spectively. The neutral species SiCl2 and SiCl4 are larger and vary in the range of
1019.2–1020.5 m−3 and 1018.5–1020.4 m−3. The ion densities show an even smaller
variation. Again the species containing one or three Cl atoms have the lowest den-
sities. These densities vary in the range of 1018.4–1019.1 m−3 and 1018.7–1019.3 m−3,
respectively. The species SiCl+2 and SiCl+4 are the most important ions in the
discharge. They cover the ranges 1019.4–1020.3 m−3 and 1019.1–1019.6 m−3, respec-
tively. The species profiles for SiCl and SiCl+4 are shown in figure 13.5. The
validation of the SiClx species densities is difficult due to the limited amount of
data available. Most reactions for the SiClx chemistry are taken from Lee [238]
who based the reaction rates on cross sections of SiFx species. The pressure that
was used in those models is a factor 104 smaller. In spite of the large differences
in pressure, the observation that the molecules are more important than atomic
Si species is also made in Lee’s model. Additionally, the resulting SiClx neutral
species densities differ by only one order of magnitude. Lee does not mention the
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species densities of the SiCl+x species.

One of the current limitations of the model is that all species are assumed to
bounce back from the quartz wall into the plasma. This assumption is currently
required to ensure the stability of the Ar + SiCl4 model. In reality the wall reac-
tions have a strong impact on the concentration profiles near the wall. In order
to test the influence of the wall reactions the Ar chemistry is extended with a
flux condition given by (13.12). The reaction probability is set to γi = 1 for all
reactions. The results are shown in figure 13.6. Recombination reactions at the
wall do not modify the electron density in the core of the plasma. Near the wall
the density decreases about two orders of magnitude in comparison to the bulk
value. Due to the wall reactions also a lower peak value is reached at z = 9 cm.
The modified profile of the electron density ensures that the largest power density
due to ohmic heating is now reached on the axis rather than near the wall. The
overall lower number of electrons decreases the elastic energy losses to the heavy
particles and therefore increases the electron temperature by about 4 kK. When
wall reactions are included in the Ar + SiCl4 mixture the electron density is also
expected to decrease several orders of magnitude near the wall. Its value on the
axis is expected to be slightly lower as well. The decreased electron density will
cause a similar increase in the electron temperature.

Currently, the wall chemistry is only dependent on the fluxes towards the wall.
The model can further be improved by allowing species to be deposited on the
quartz wall. Similarly to Lee [238] the wall chemistry is then dependent on the
fractional coverage of the surface.

One of the main reasons for the instabilities in the model is the implementation
of the current diffusion model. Since the background and electron species are not
explicitly treated one of these quantities can reach negative values due to chemical
reactions of other species. A self-consistent-diffusion model (see [6] or chapter 6)
can prevent the occurrence of negative densities and will conserve mass.

Additionally, the model requires many iterations to converge. This is partially
unavoidable due to the coupled nature of the modules for the chemistry, flow,
electromagnetics and the energy balances. However, a decrease in calculation time
can be obtained by making the code parallel or by using an adaptive grid. Also
the chemistry can be simplified further using chemical reduction techniques. Two
of the possible methods are ILDM (intrinsic low dimensional manifold, [4, ch. 7])
or PCA (principal component analysis [239]).

13.3.2 Spectral comparison

In order to obtain an estimate of the population of SiCl [B] an absolutely calibrated
spectrum can be used. The vibrational spectrum measured in the experiment is
integrated to obtain

L =

∫ νb

νa

Iνdν. (13.17)
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(a) Electron density. (b) Electron temperature.

Figure 13.6: Ar mixture with wall reactions.

The radiance from the vibrational spectrum is calculated using the optically thin
limit

L =
∑
v′

∑
v′′

∑
s

jν,v′,v′′∆s

=
∑
v′

∑
v′′

∑
s

hνv′,v′′

4π
nB,s,v′qv′,v′′ABX∆s, (13.18)

with v′ the upper vibrational level, v′′ the lower vibrational level and qv′,v′′ the
Franck-Condon factor7. In order to simplify the calculation, Kogelschatz is fol-
lowed considering a single electro-vibrational transition and by neglecting the spa-
tial variation of the species profile [241]. The transition probability is taken from
Kogelschatz [241, p. 1959] as ABX =108 s−1. Based on the emission of visible light
∆s is about 10 cm. The population of the first three vibrational states is then in the
range of 1.0× 1014–2.5× 1014 m−3. The measured radiance is 2.7× 104 W/m2/sr.

In principle the simulation results from the 2D model can be used to predict
a spectrum. Since wall reactions have been neglected the 2D results have a weak
dependency on the radial coordinate. Therefore a simpler 1D model is considered
by averaging the 2D profiles in radial direction. The species density is now only
dependent on the axial coordinate. The following particle balance is considered

nenXKXB − nenBKBX − nBABX + n2
enSiCl+K1 = 0, (13.19)

with X referring to the ground state and B referring to the excited state. The rate

7In this case the Franck-Condon factors are calculated for the harmonic oscillator potential,
see Chang [240].
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coefficient for excitation is assumed to be given by the Arrhenius law

KXB = C exp

(
− EBX

kBTe

)
m3/s (13.20)

KBX = C
ZX

ZB
m3/s (13.21)

K1 = 7.54× 10−14 ZB

2ZSiCl+

(
h2

2πmekBTe

)3/2

, (13.22)

with C an adjustable constant and KBX the de-excitation rate calculated using
detailed balancing. The partition sums are calculated by assuming that the vibra-
tional temperature is equal to the heavy particle temperature.The rate coefficient
K1 is based on Lee’s rate [238, table. 4] with an adjusted energy threshold. The
rate is calculated by applying detailed balancing. In the current chemistry the
most important production mechanism of SiCl is the reaction of electrons with
SiCl2. For SiCl [B] the increased threshold energy makes this reaction less impor-
tant.

The calculated density profile of SiCl [B] is shown in figure 13.7. The most
important production reactions are the direct excitation from SiCl and the re-
combination from SiCl+. The dominant production reaction is dependent on the
chosen value for C. For small values of C the recombination determines the equi-
librium density while for large values of C the LTE value is approached. Neither
of these limits is capable of reaching the spectral radiance measured in the exper-
iment. This is related to the limitations of the 2D model where the influx of SiCl4
and the input power where reduced to obtain a stable model. When the stability
of the model is improved such a procedure can be used to gain more insight in the
internal chemistry of SiClx species. For now the density profile corresponding to
C = 1 m3/s is scaled to match the measured spectrum. The results are shown in
figure 13.8. When more accurate modeling results are available such a procedure
can be used to verify the predicted species and temperature profiles.

13.4 Conclusion

A 2D model of a surfatron plasma with an Ar + SiCl4 chemistry is made. The
chemistry is compared to a pure Ar plasma. The presence of SiClx increases the
electron density with a factor 10 due to the lower ionization potential. In both
plasmas it is observed that the dominant energy loss process for electrons is elastic
energy transfer. The increased electron density decreases the maximum value for
the electron temperature from 11.5 kK in pure Ar to 5.9 kK in Ar + SiCl4. The
effect on the heavy particle temperature is smaller since the larger electron density
is accompanied by a smaller volume with a significant difference between Te and
Th. Additionally, it is observed that SiClx and SiCl+x with x = 2 and x = 4 are
the most important species. They reach densities in the order of 1019-1020 m−3.

The experimental conditions could not be modeled and therefore a simplified
system was considered. These simplifications are necessary since the current dif-
fusion algorithm (Fick’s law) does not conserve mass. For that reason negative
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Figure 13.7: The estimated density
profile of SiCl [B] in the two limits for
C. For C = 0 m3/s the recombina-
tion from SiCl+ determines the equi-
librium. For C = 1 m3/s the excita-
tion from the ground state of SiCl de-
termines the equilibrium density.
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Figure 13.8: The density profile cor-
responding to C = 1 m3/s (see figure
13.7) is scaled to match the measured
spectrum.

densities are not strictly forbidden for the background gas or the electron density.
It is expected that the self-consistent diffusion algorithm described in chapter 6
will improve the stability. Other improvements are related to a reduction of the
calculation time. This could be achieved by parallelizing the code or using an
adaptive grid. Chemistry reduction techniques can also be used to improve the
convergence rate of the model.

In the future the model can be used as a diagnostic tool for the interpretation
of spectra. An automatic routine should be developed that adjusts the predicted
species densities in such a way that the simulated spectrum matches with the
experimental spectrum. Such a routine uses integral quantities like the optical
depth or

∫
jνds to optimize the species densities. In order to approach a unique

solution the spectrum should be measured and compared to the modeling results
for multiple different viewing angles.

13.A Complex electrical conductivity

The derivation of the complex electrical conductivity is based on the work of
Jiménez [3, p. 71,72]. In this section the vector nature is indicated with a bold
font rather than the ~x notation. In the first step the momentum balance for the
electrons is written as

mene
ũe
∂t

= −∇p̃e − eneẼ + R̃e, (13.23)

with a tilde indicating that the parameter is time dependent. The time dependency
of the electron density during one pulse is neglected. Additionally the inertial term
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and the viscosity are neglected. The friction of the electrons can be described with

R̃e = −meneνehũe, (13.24)

with νeh the total collision frequency for electrons with heavy particles. In the
cold plasma approximation the assumption is made that p̃e = 0. By additionally
assuming a harmonic time dependency the momentum balance is rewritten as

iωue + νehue = − e

me
E, (13.25)

which gives

ue =
−qeE

me (νeh + iω)
. (13.26)

By introducing the current density J = qeneue = σ̃E the conductivity can be
derived as

σ̃ =
e2ne

me (νeh + iω)
=

ε0ω
2
p

νeh + iω
, (13.27)

with ωp the plasma frequency.



Chapter 14

Evaluation of angular scattering
models for electron-neutral
collisions in Monte Carlo
simulations

In Monte Carlo simulations of electron transport through a neutral background
gas, simplifying assumptions related to the shape of the angular distribution of
electron-neutral scattering cross sections are usually made. This is mainly be-
cause full sets of differential scattering cross sections are rarely available. In this
work simple models for angular scattering are compared to results from the recent
quantum calculations of Zatsarinny and Bartschat for differential scattering cross
sections (DCSs) from zero to 200 eV in argon. These simple models represent in
various ways an approach to forward scattering with increasing electron energy.
The simple models are then used in Monte Carlo simulations of range, straggling,
and backscatter of electrons emitted from a surface into a volume filled with a
neutral gas. It is shown that the assumptions of isotropic elastic scattering and
of forward scattering for the inelastic collision process yield results within a few
percent of those calculated using the DCSs of Zatsarinny and Bartschat. The
quantities which were held constant in these comparisons are the elastic momen-
tum transfer and total inelastic cross sections.

14.1 Introduction

In Monte Carlo simulations of electron transport in low temperature plasmas, it
is commonly assumed that the elastic momentum transfer cross section and the
total cross sections for the inelastic scattering processes and for ionization provide
sufficient information about electron interactions with the neutral background gas.

Published as: J.F.J. Janssen, L.C. Pitchford, G.J.M. Hagelaar, J. van Dijk, Evaluation of
angular scattering models for electron-neutral collisions in Monte Carlo simulations in PSST

271



272
Chapter 14. Evaluation of angular scattering models for electron-neutral

collisions in Monte Carlo simulations

The approach to forward scattering with increasing energy in electron-neutral
collisions is usually not taken into account although some authors have done so by
using simplified models for the angular scattering based on classical theory using a
screened Coulomb potential or purely empirical formulae (see, for example, Boeuf
& Marode [85]; Kushner [242]; Surendra et al. [243]; Belenguer & Pitchford [84]).
The absence of detailed knowledge about the differential scattering cross sections
(DCS) for electron-neutral collisions generally precludes more precise calculations.

Previous work suggests that the additional information about the DCS’s is not
very important in electron swarm conditions (low degree of excitation and ioniza-
tion, uniform field [244]) except for high values of reduced electric field strength,
E/N, the ratio of the electric field strength to the neutral density or when high
precision is required. See for example, discussions in Haddad et al. [245]; Phelps
and Pitchford [246]; Thomas & Thomas [247]; Reid [248]; Kunhardt & Tseng [249],
Stojanovic and Petrovic [86]; among others. The conclusion from this literature is
that the elastic momentum transfer cross section and total cross sections for exci-
tation and ionization provide sufficient information for calculations of reasonably
accurate swarm parameters up to E/N values of some 1000 Td. Note that assump-
tions related to the exact treatment of ionization processes are also important at
high values of E/N. For example, assumptions related to growth renormaliza-
tion [250, p. 724,725,729] and energy sharing in ionization can impact the swarm
parameters significantly [246,251]. In this work we are mainly interested in effects
of anisotropy on parameters that are more sensitive to the shape of the DCS at
small scattering angles. For that purpose a special test case is developed where
the impact on the range and straggling of an electron beam is considered.

Recently Zatsarinny and Bartschat (ZB) calculated the DCSs for elastic and a
number of inelastic processes in argon for electron energies ranging from threshold
to 200 eV [32]. These results are available through the LXCat website [252]. These
calculated cross sections are in excellent agreement with recent high-precision mea-
surements (Allan et al. [33]) Thus, these calculations provide an opportunity to
benchmark assumptions commonly made about the influence of anisotropic scat-
tering in Monte Carlo simulations in conditions where the electron energy dis-
tribution function is not in equilibrium with the local value of E/N. The work
presented in this paper is a step towards this objective.

In section 14.2 of the following, several models for angular scattering are de-
scribed, and the extent to which these models accurately represent the approach
to forward scattering with increasing incident electron energy is evaluated by com-
paring with the DCSs from Zatsarinny and Bartschat for elastic scattering and for
excitation of the upper resonance level, 4s[1/2]1, with a threshold at 11.828 eV.
The DCS for this process is representative of most of the other allowed transi-
tions. The accuracy of simple fitting formulas is evaluated in section 14.3. In
Section 14.4, we present results using the different models for anisotropy in Monte
Carlo simulations of range, straggling and backscatter of electrons injected from
a surface with a given energy into a background gas. An electron beam with an
initial energy of 500-1000 eV is considered in section 14.5 by extrapolating the
cross sections beyond 200 eV. In section 14.6, conclusions and a discussion about
the relevance of this work to more general discharge situations are presented.
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14.2 Differential scattering cross sections

The total cross section, Qt (ε), is defined by integrating the DCS over all scattering
directions Ω. By assuming azimuthal symmetry the scattering directions can be
calculated from dΩ = 2π sinχdχ. The relation between the cross section and the

DCS, dσ(ε,χ)
dΩ , is then given by

Qt (ε) = 2π

∫
dσ (ε, χ)

dΩ
sinχdχ, (14.1)

with ε the energy and χ the angle between the velocity vectors of the incident
particle before and after the collision. The angular distribution, I (ε, χ), can be
obtained by normalizing the DCS with the total cross section

I (ε, χ) =
1

Qt (ε)

dσ (ε, χ)

dΩ
↔ dσ (ε, χ)

dΩ
= Qt (ε) I (ε, χ) . (14.2)

A consequence of this definition is that the angular distribution has the property

2π

∫
I (ε, χ) sinχdχ = 1. (14.3)

Equation 14.2 is a convenient formulation for our purposes because the shape of
the cross section can be changed while keeping the total cross section, Qt, con-
stant. This is an important consideration when comparing results using different
scattering models for the inelastic cross sections. For elastic collisions the constant
quantity should be the elastic momentum transfer cross section so as to maintain
the same momentum and energy loss in elastic scattering. This is easily accom-
plished in Monte Carlo simulations by setting the total elastic cross section equal
to the momentum transfer cross section and thereafter assuming isotropic elastic
scattering. The momentum transfer cross section Qm can be calculated from

Qm (ε) = Qt (ε) 2π

∫
I (ε, χ) (1− cosχ) sinχdχ. (14.4)

Three types of analytical models for the angular distribution I (ε, χ) will now be
discussed. The first is derived from classical theory screened Coulomb scattering,
and the second is from the Born approximation for inelastic scattering. These are
all dependent on a single parameter. Thirdly, purely empirical formulae have also
been proposed to describe the approach to forward scattering and these will also
be briefly discussed.

In all cases, for numerical convenience in Monte Carlo simulations these ana-
lytical models are kept simple. In that case it is possible to obtain an analytical
expression for the scattering angle in terms of a random number R by inverting

R =

2π
χ∫
0

I (ε, χ′) sinχ′dχ′

2π
π∫
0

I (ε, χ) sinχdχ

. (14.5)

The denominator in this expression is equal to one.
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14.2.1 Elastic screened Coulomb scattering

Expressions for the angular distribution for elastic scattering have been derived
for screened Coulomb scattering and presented previously in the low temperature
plasma literature as discussed in references [84,253,254].

Belenguer & Pitchford [84] based their work on the screened Rutherford for-
mula for differential scattering cross section given by Strickland et al. [255] who
express the angular distribution as,

I (ε, χ) =
η (η + 1)

π (2η + 1− cosχ)
2 , (14.6)

where η is the Coulomb screening parameter. According to Mott, the screening
parameter can be calculated theoretically as [256, p. 463] 1

η =
1.89eVZ2/3

ε
, (14.7)

with Z the atomic number of the colliding particle and ε the energy. Strickland et
al. refer to Jacob [257] for the screening parameter, who gives an expression similar
to eq. 14.7 but with a prefactor of 10.9. The differences in the prefactor are not
critical for the discussion here. Let us simply point out that several previous works
have used the larger prefactor (references [258, p. 70] [259, p. 34] [121, p. 610]).
Note that a higher prefactor causes the DCS to change from an isotropic to a
forward directed distribution at a much higher energy.

The ratio of elastic momentum transfer to total elastic cross section, Qm/Qt,
from the data compiled by Hayashi [260] in argon for energies up to 10 keV is not
consistent with screened Coulomb scattering with a screening parameter depend-
ing on 1/ε. In an attempt to improve the accuracy of the angular distribution
in eq. 14.6, Belenguer and Pitchford let η be a fitting function determined by
matching to the Hayashi data for Qm/Qt. Although there is no reason to suppose
that an angular distribution yielding a good representation of Qm/Qt will also
represent well the forward peak. Nevertheless, we use this ratio to fix η because
these data are sometimes available for elastic scattering of electrons and atoms
or simple molecules whereas there are very few other data related to the angular
distributions.

A similar approach was taken by Okhrimovskyy [253] et al. who proposed a
generalized expression for the angular distribution for screened Coulomb scatter-
ing:

I(ε, χ) =
1

4π

1− ξ2 (ε)

(1− ξ (ε) cosχ)
2 , (14.8)

1Mott uses η = α2 =
(

0.565Z1/3s 2πe2

hv

)2
= 0.5652Z2/3s2 2π2e4me

h2ε
with s dimensionless.

Note that a factor 1
(4πε0)2

is required to convert to SI units. Mott uses s = 0.66 to get agreement

with the high energy limit of the Thomas-Fermi function. Additionally, Mott mentions that in
order to get agreement with the DCS from Hartree-Fock calculations for Z > 10 the values cover
the interval between 0.46 ≤ s ≤ 0.68
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where ξ (ε) is a fitting function. Equation 14.8 reduces to the angular distribution
for conventional screened Coulomb scattering when [253,254]

ξ =
4ε/EH

1 + 4ε/EH
, (14.9)

with EH representing one Hartree. Equations 14.6 and 14.8 are identical for
ξ = 1/ (2η + 1) and so the screening length in eq. 14.6 can be formally identified
as

η =
EH

8ε
≈ 3.4eV

ε
(14.10)

This expression differs again from eq. 14.7 in the prefactor but also by the lack of
dependence on Z. Note that this relation is purely formal because η can no longer
be identified with the physical concept of a screening length for the Coulomb
potential. We will henceforth not use the term screening length, but will retain
the symbol η and allow it to depend more generally on energy. As mentioned
above, an alternate approach for estimating the energy dependence of the angular
distribution is to choose η or ξ so that the ratio Qm/Qt is well represented by eq.
14.6 or eq. 14.8, respectively. However, in order to use this method, both Qm and
Qt must be known. The ratio can be calculated analytically from

Qm
Qt (ε)

= 2η (η + 1) ln

(
1 +

1

η

)
− 2η, (14.11)

where −∞ < η < −1 for Qm
Qt(ε)

> 1 and 0 < η <∞ for Qm
Qt(ε)

< 1.

Okhrimovskyy et al. provide estimates of ξ (ε) (and hence η) for Ar, N2 and
CH4 based on the data compiled by Hayashi for the ratio Qm/Qt. As noted by
Okhrimovskyy, a form for the angular dependence based on a screened Coulomb
potential is not expected to be valid for polar molecules or other systems without
spherical symmetry. Note, too, that many people use the formula for the scattering
angle derived by Okhrimovskyy from the theory of screened Coulomb scattering for
both elastic and inelastic scattering whereas inelastic scattering tends to be more
peaked in the forward direction for a given energy (see for example, [256, p. 483]
or the data from Zatsarinny and Bartschat on LXCat [252]).

Scattering angles can be related to a random number via

cosχ =
η + 1−R (1 + 2η)

η + 1−R
. (14.12)

14.2.2 Inelastic scattering

An expression for the angular distribution of inelastic scattering can be derived
from Mott et al. [256] and Massey et al. [261]. Interestingly this formula appears
to be identical to an empirical formula suggested by Surendra. Surendra [243]
used this formula for the elastic and inelastic scattering cross section of electrons
and atoms. Surendra’s expression is given by

I (ε, χ) =
ε/eV

4π
[
1 + ε/eV sin2

(
χ
2

)]
ln (1 + ε/eV)

, (14.13)
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with eV used to obtain a dimensionless expression. Okhrimovskyy [253] and
Khrabrov [254] note that this expression does not reduce to the correct limit
for screened Coulomb interactions at high energies. Additionally, Okhrimovskyy
observed that the energy normalization is arbitrary (for example 1 eV or 1 Hartree)
and has no scientific background.

Based on the work of Mott et al. [256, p. 477,493] and Massey et al [261, p. 437]
an expression for excitation can be obtained from

I (K)KdK ∝ 1

K2
, (14.14)

with
K2 = k2

0 + k2
n − 2k0kn cosχ, (14.15)

representing the momentum change of the scattered electron [256, p. 476]. The
relation between momentum and energy is given by

εk =
h̄2k2

2m
. (14.16)

This approximation uses the expansion exp (iKz)
.
= 1 + iKz and is therefore not

valid when the momentum exchange is large. Note that the momentum exchange
is largest for backscattering. The formula is therefore most accurate for small
angles. Additionally, the assumption is made that the relative energy transfer in
collisions is small. Substituting this result in the DCS and changing variables from
K to χ gives

I (ε, χ) sinχdχ ∝ sinχdχ

K2
. (14.17)

After normalization the DCS is given by [262] 2

I (ε, χ) =
β

2π ln
(

1+β
1−β

)
(1 + β2 − 2β cosχ)

, (14.18)

with

β =

√
1− εn0

εn
, (14.19)

where εn0 is the atomic transition energy and εn the initial energy of the electron.
By applying the substitution ε/eV = 4β

(β−1)2
it can be shown that the inelastic

formula is identical to Surendra’s formula.
Alternatively, the parameter β can be determined from Qt and Qm as was done

by Surendra [243]. In terms of the inelastic formula this ratio can be expressed as

Qm
Qt (ε)

= 1− 1 + β2

2β
− 1

ln
(

1+β
1−β

) . (14.20)

2Based on the theory of the generalized oscillator strength [256, p. 478] [263] the same angular
distribution is obtained.
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The momentum transfer cross section for inelastic processes are rarely available
and so this approach is of limited utility. For this DCS the scattering angle is
related to a random number via

cosχ =
1 + β2 − (1 + β)

2
exp (R)

2β
. (14.21)

14.2.3 Empirical formulae

In this section various empirical formulae and the corresponding relations between
scattering angle and random number are discussed. The considered DCS are
isotropic scattering, forward scattering and empirical formulae given by Kushner,
Longo et al. and Belenguer et al.

Isotropic scattering is often used to describe the angular behavior of elastic
collisions. The angular distribution is constant

I (ε, χ) =
1

4π
, cosχ = 1− 2R. (14.22)

The ratio of the momentum transfer cross section and the total cross section
reveals that for an isotropic DCS the momentum transfer cross section is equal
to the total cross section (Qt = Qm). Inelastic processes are sometimes modeled
with forward scattering. In that case the electron continues in the same direction
without being scattered

I (ε, χ) =
δ (χ)

2π sinχ
, cosχ = 1. (14.23)

Longo and Capitelli [264] propose another way of using Qt and Qm for elastic
scattering, when both are available, in Monte Carlo codes. Their idea is to model
the DCS as the sum of two terms one representing isotropic scattering in the
forward direction (χ ≤ π/2) and the other isotropic scattering in the backward
direction (χ ≥ π/2). The magnitudes of each of the two terms are adjusted
for consistency with known values of Qt and Qm. Kushner [242] introduced an
empirical expression for forward scattering which is given by

I (ε, χ) =
n+ 2

8π
cosn

(χ
2

)
, (14.24)

with n an energy dependent fitting parameter. Kushner suggests to set n = 3 when
no experimental data are available. This parameterization contains no dependence
on the initial kinetic energy and thus will not be able to reproduce the DCS for
a large spectrum of energies. In this case the connection between the scattering
angle and a random number is given by

cosχ = 2 (1−R)
2/(n+2) − 1. (14.25)

Another empirical formula has been suggested by Belenguer and Pitchford [84]
and is given by

I (ε, χ) = I0 (ε) + I1 (ε) cosχ+ I2 (ε) cos2 χ. (14.26)



278
Chapter 14. Evaluation of angular scattering models for electron-neutral

collisions in Monte Carlo simulations

Table 14.1: Definition of the labels that have been used in the figures 14.1a-14.2b.

Label Explanation
ZB Quantum mechanical calculation of DCS data

from Zatsarinny and Bartschat
Mott Elastic screened Coulomb (14.6) with

η from (14.7) for the screening parameter
SC Elastic screened Coulomb (14.6) with η from (14.10)

SC Qm/Qt Elastic screened Coulomb (14.6) with
η from the ratio Qm/Qt (14.11) using
the data from ZB for elastic scattering

SCI Inelastic screened Coulomb (14.18) with β from (14.19)
SCI Qm/Qt Inelastic screened Coulomb (14.18) with

β from the ratio Qm/Qt (14.20) using
the data from ZB for inelastic scattering

Surendra Empirical formula proposed by Surendra (14.13)
for elastic and inelastic processes.

Kushner Empirical formula (14.24) suggested by Kushner
with n = 3.

CUS Direct fit using (14.28) for optically allowed inelastic
transitions with C given by (14.29) and η given by (14.30).

This method requires Qt (ε), Qm (ε) and Qv (ε) (the viscosity cross section, ob-
tained by multiplying the DCS by

(
1− cos2 χ

)
and integrating over all angles)

to obtain the values of I0 (ε), I1 (ε) and I2 (ε). The calculations reported by Be-
lenguer and Pitchford used data from Hayashi [260] for these quantities for elastic
scattering.

14.2.4 Comparison to the ab initio DCS

This section contains an evaluation of the theoretical estimates of the DCS’s given
in the previous sections. Only the results for the excitation from the ground state
to 4s’[1/2]1 are shown since the results of the other optically allowed transitions
are very similar. The results for incident energies of 25, 80 and 200 eV for the
inelastic process and the 200 eV for the elastic process are shown in figures 14.1a-
14.1d. The half-width-at-half-maximum (HWHM) for the angular distribution of
both processes is shown in figures 14.2a and 14.2b. The labels in the figures are
explained in table 14.1.

The excitation process is not well described by any of the generalized models.
The best results are obtained by using the ratio Qm

Qt(ε)
to estimate η in the elastic

screened Coulomb formula. This approach roughly describes the increased prob-
ability at small angles and the subsequent decay for larger angles. The HWHM
of the angular distribution is also roughly described accurately by this approach.
However, the oscillations at larger angles found by Zatsarinny and Bartschat are
of course not reproduced. Especially the probability for backscattering is underes-
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timated. The inelastic formula with the analytical parameterization gives the best
agreement with the HWHM derived from the data of Zatsarinny and Bartschat.
However, the angular distribution does not describe the peak well and significantly
overestimates the probability for large angle scattering. Similarly a fit of Qm/Qt
using the inelastic formula underestimates the peak and its width while it de-
scribes the large angle scattering relatively well. The remaining methods describe
neither the peak nor the width accurately.

For elastic collisions the theoretical expressions perform better. The model
SC which uses the parameterization given by Okhrimovskyy performs well for the
probability at small angles. The HWHM of the angular distribution approaches
the correct value for energies above 60 eV. The decreasing trend for the probabil-
ity at larger angles is also reproduced. However, the oscillations in the angular
distribution which lead to a considerably larger backscattering probability are not
captured by the model. Interestingly the model proposed by Surendra and the
SCI fit of Qm/Qt also produces a reasonable agreement with the scattering prob-
ability at small angles. The backscattering probability is slightly underestimated.
Additionally, the width of the angular distribution follows a similar behavior as
the SC model for energies above 100 eV. In comparison to the SC model the de-
caying trend for the probability of scattering is much smaller. This trend is more
in agreement with the large angle behavior of Zatsarinny and Bartschat, but still
cannot capture the various oscillations.

In summary, the simple models aim only to capture the approach to forward
scattering with increasing energy. They are not intended to reproduce the struc-
ture at low energy or the backscatter at intermediate energies. The inelastic
processes are approximated most accurately with the SC Qm/Qt model where
“accuracy” is evaluated by comparing the probability at small angles and the
HWHM of the forward peak in the calculations. This approximation still under-
estimates the scattering probability at small angles by a factor in the order of
2 at 200 eV. Additionally, the width of the angular distribution is overestimated
by this formula. The inelastic processes are therefore not accurately represented
with the theoretical formulae. The elastic cross sections are most accurately rep-
resented by the SC model. Both the probability for small angles and the width of
the distribution are described accurately. However, the large angle scattering is
underestimated.

14.3 Direct fits

The analytical formulas for representing the DCS are not easily modified to ac-
count for the quantum mechanical oscillations that are significant at low energies.
Additionally, the DCS at low scattering angles for multiple processes may not be
captured by a single parameterization. In order to avoid these difficulties a fit is
used for individual collision processes. Two fit functions are considered. The first
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(a) Inelastic DCS at 25 eV. (b) Inelastic DCS at 80 eV.

(c) Inelastic DCS at 200 eV. (d) Elastic DCS at 200 eV.

Figure 14.1: The DCS for various angular distributions and initial kinetic ener-
gies. The inelastic process refers to excitations towards 4s’[1/2]1. The labels are
explained in table 14.1. Legend: ZB ; Mott ; SC ; SCI ; Surendra

; Kushner ; SC Qm/Qt ; SCI Qm/Qt .

fit function is given by

2πI (ε, χ) sinχ =

C
2

+ (1− C)
β

ln
(

1+β
1−β

)
(1 + β2 − 2β cosχ)

 sinχ. (14.27)

and the second fit function is given by

2πI (ε, χ) sinχ =

(
C

2
+ 2 (1− C)

η (η + 1)

(2η + 1− cosχ)
2

)
sinχ. (14.28)

The DCS thus consists of two contributions. The first function is responsible
for the large angle scattering. All structure that is present in the quantum me-
chanical calculations is approximated with an isotropic scattering function. The
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(a) Excitation from the ground state to
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(b) Elastic collisions.

Figure 14.2: The HWHM for various angular distributions. The labels are ex-
plained in table 14.1. Legend: ZB ( ), Mott ( ), SC ( ), SCI ( ), Surendra
( ), SC Qm/Qt ( ) and SCI Qm/Qt ( ).

second function is included for fitting the angular distribution for small scattering
angles at high energies. The parameter C should be considered as the probabil-
ity of a collision with an isotropic angular distribution. In this case the quan-
tity 2πI (ε, χ) sinχ rather than I (ε, χ) was fitted, because the former quantity
is directly proportional to the angular distribution that is used in Monte Carlo
simulations. The fit results using both quantities deviate in the order of a few
percent.

In principle it is possible to determine the parameters analytically by using
(14.3) and an additional criterion. These criteria can for example be the value

at I (ε, χx), the width at r = I(ε,χr)
I(ε,0) , the ratio Qm

Qt(ε)
[84, 253, 254] or the ratio of

forward over backward scattering [265] fb =
2π
∫ π/2
0 I(ε,χ) sin(χ)dχ

2π
∫ π
π/2

I(ε,χ) sin(χ)dχ
. The drawback of

most of these methods is that knowledge of the DCS is required in order to use
these methods. However, when such data are available a direct fit is superior. The
method that uses the ratio of the momentum transfer cross section and the total
cross section can be used without knowing the DCS. However, the previous sections
have shown that the results are not very accurate for the inelastic processes.

The fitted DCS and the ab initio results are compared in figures 14.3 and 14.4
for the inelastic transition from the ground state to 4s’[1/2]1. The images show
that the overall agreement between (14.28) and the ab initio results is better than
the overall agreement with (14.27). This behavior is similar for different energies
and different excitation processes. For this reason only fit function (14.28) is
considered in the remainder of this section. Surendra already noted that the
inelastic DCS is approximately similar to the elastic DCS when the energy of the
electron after the inelastic process is used to calculate the DCS [243, p. 1118]. He
based his conclusion on data provided by Massey and Burhop. The similarity is
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a1(1/eV) a2

p1 -24(±30) 2.5× 102 (±400)
p2 -0.22(±0.3) 3.9 (±4)
d1 0.37(±0.4) -3.1 (±5)
d2 0.053(±0.08) 0.77 (±1)

Table 14.2: Fit parameters for the parameters pi and di that are used to calculate
C and η. The values indicated in brackets define a 95% confidence interval.

confirmed by the fact that the fitted elastic screened Coulomb formula gives the
best description of the calculated DCS. However, the inelastic optically allowed
processes seem to converge to limε→∞ η = 0 while the data up to 200 eV suggests
an asymptote for η corresponding to the elastic process.

The usage of the parameters C and η as a function of ε is a simplification of
the original large lookup table obtained from LXCat. Another simplification is
possible by using a fit function for these parameters. These formulas are given by

C (ε) =
ε

p1
+ p2, (14.29)

and

η (ε) =

(
d1

ε

)d2
, (14.30)

with pi and di fit parameters. Note that C is should not exceed the range 0 ≤ C ≤
1. In figure 14.5 the fit for C is shown. This figure shows that for low energies
the DCS reduces to an isotropic angular distribution. In figure 14.6 the fit for η is
shown. When η approaches 0 at high energies the angular distribution is strongly
peaked at small angles. For lower energies the quality of the fit decreases. Since
the DCS becomes isotropic at these energies a decreased accuracy in the fit for η
is less of a concern in this energy range.

Another generalization is possible by writing the parameters di and pi as

xi = a1∆ε+ a2, (14.31)

with ai a fit parameter and ∆ε the excitation energy obtained from the ab initio
calculations. The values obtained by including the excitations from the ground
state to 4s[3/2]1, 4s’[1/2]1, 5s[3/2]1, 3d[3/2]1, 5s’[1/2]1 and 3d’[3/2]1 are shown in
Table 14.2. The fit parameters have a 95% confidence interval. The confidence
interval is of the order of magnitude of the magnitude of the fit parameters. Such
an error can be expected since the data points at ∆ε ≈ 14 eV cover a wide range of
values as is shown in figures 14.7-14.8. Since the confidence intervals are significant
the fit is not able to reproduce the DCS of all the included excitation processes
accurately. Due to the limited applicability of the general fit from now on only
the specific fits are considered for the excitation processes.
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Figure 14.3: For the excitation from
the ground state to 4s’[1/2]1 and an
incident energy of 100 eV the fit func-
tions (14.27), Fit 1, and (14.28), Fit 2,
are compared with the ab initio results
of Zatsarinny and Bartschat.

Figure 14.4: For the excitation from
the ground state to 4s’[1/2]1 and an
incident energy of 200 eV the fit func-
tions (14.27), Fit 1, and (14.28), Fit 2,
are compared with the ab initio results
of Zatsarinny and Bartschat.

Figure 14.5: For the excitation from
the ground state to 4s’[1/2]1 the re-
sults of the fit using (14.28) for pa-
rameter C are shown in blue. These
results are fitted with (14.29) as shown
in red.
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Figure 14.6: For the excitation from
the ground state to 4s’[1/2]1 the re-
sults of the fit using (14.28) for param-
eter η are shown in blue. These results
are fitted with (14.30) as shown in red.
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Figure 14.7: Fit of the coefficients d1.
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Figure 14.8: Fit of the coefficients d2.

14.4 Quantification of anisotropy using Monte Carlo

The effects of the different scattering models are investigated for Monte Carlo
simulations of a very simple model system using the modeling platform PLASIMO
[25, 259]: a 50-200 eV electron beam injected into a background gas of simplified
argon atoms. Electrons in this energy range occur in negative glows near the
cathode in DC gas discharges and constitute perhaps the most basic system in
which effects of anisotropic scattering are expected to show up. The simplified
argon atoms that are considered can interact with an electron according to the
following processes:

• An elastic process.

• An excitation process. The angular distribution is taken from the excitation
from the ground state towards 4s’[1/2]1. The cross section of the inelastic
process is scaled to vary the importance of the inelastic collisions.

This two-level system is sufficient for the purpose of comparing quantities calcu-
lated with different models for the angular scattering for both processes individ-
ually3. The scattering of the elastic process is approximated with two different
models. These are isotropic scattering and the DCS calculated by Zatsarinny and
Bartschat. Different scattering models are considered for the inelastic process.

The scale factors that are considered are based on the sum of all cross sections.
These cross sections are given in figure 14.9. The data for the excitation processes
are obtained by integrating the DCS provided by Zatsarinny and Bartschat. The
DCS for the ionization process was not calculated so the total scattering from other
calculations of Zatsarinny and Bartschat is considered here in calculating the sum

3The data set provided by Zatsarinny and Bartschat does not contain the ionization process.
An improved model can be made if the DCS for the ionization process is more accurately known.
Additionally, when ionization processes are included other choices impact the model as well. One
of these choices is the energy sharing ratio. In this work only the impact of the DCS on the
range and straggling is evaluated.
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of the total cross sections [32, 33, 229]. The strongest excitation process is the
transition towards 4s’[1/2]1. However, the ionization process has an even larger
cross section. In order to represent approximately the sum of all inelastic and
ionization processes, the transition towards 4s’[1/2]1 should be scaled by a factor
of about 10 as indicated in figure 14.10. An overestimate of the importance of
the inelastic DCS can be obtained by scaling the inelastic process with a factor of
100. Both cases are investigated. The total cross sections and momentum transfer
cross section for the elastic and inelastic processes considered are displayed in figure
14.11. For ε > 50 eV the elastic and the inelastic processes have approximately
equal probabilities when isotropic scattering is used with Qt = Qm for elastic
scattering.

The simulated geometry consists of an infinite half-space (z ≤ 0). This plane
represents a cathode. Electrons are emitted with a given energy from the center
of the cathode at r = 0 with a velocity directed normal to the surface. Electrons
backscattered to the cathode are removed from the simulation. In this test the
focus lies on the distribution of the inelastic scattering events. Electrons that do
not have enough energy left for another excitation process are therefore removed.
Two statistics related to this position are collected

• Range: It is defined as the average position in space where electrons are
removed from the simulation, i.e., where their energy drops below the exci-
tation threshold. These electrons will be referred to as ‘stopped’ electrons.
The range can thus be calculated from

Rz = 〈z〉 =

∫ ∞
0

zP (r, z) dV, (14.32)

with P (r, z) the probability density function of stopped electrons per volume
V .

• Straggling: It is a measure of the spread in the range. It is defined as the
standard deviation of the range and can be calculated from

Sz =
〈

(z −Rz)2
〉

=

∫ ∞
0

z2P (r, z) dV −R2
z. (14.33)

Analogous expressions can be derived for the radial direction. A total number of
1× 108 electrons is considered. The Monte Carlo code used for these simulations
is described by Brok [259] The standard deviation of the mean (range) is then
given by [266]

SR =
S√
n

=
S

104 , (14.34)

with R representing the range and S the straggling. Similarly the standard devi-
ation of the straggling is approximated with

SS =
S√

2 (n− 1)
≈ 7× 10−5S. (14.35)
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Figure 14.9: Cross sections obtained by integrating the
DCS from [252]. The ionization cross section is taken
from [32, 33, 229]. The excitation cross sections deviate
slightly between both datasets.

Figure 14.10: The ratio of the sum of
all inelastic processes (including ion-
ization) relative to the excitation pro-
cess towards 4s′[1/2]1.
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Figure 14.11: The total and momen-
tum transfer cross section for the elas-
tic and the inelastic 4s′[1/2]1 transi-
tion are shown. The inelastic cross
sections are scaled by a factor of 10.
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Since the straggling is of the same order of magnitude as the range the relative
accuracy of both quantities is in the order of 10−4.

For an initial energy of 200 eV and a scale factor of 10 the distribution of
stopped electrons is shown for different elastic and inelastic scattering models in
figures 14.14a, 14.14e and 14.14e. The spatial profile of stopped electrons using
the data from Zatsarinny and Bartschat is similar to the profile obtained using
forward scattering (FOR). The calculated range using isotropic scattering (ISO) is
significantly reduced in comparison to the other models. These differences can be
explained by noting that the probabilities for an inelastic collision are in the order
of 50 % for ε > 100 eV. For isotropic inelastic collisions all collisions are isotropic
while for forward scattering only half of the collisions are isotropic. The differences
between FOR and the ab initio results are much smaller since for ε > 100 eV the
ab initio results converge to the FOR model. The differences between FOR and
the data from Zatsarinny and Bartschat are more pronounced on the axis since
the probability of forward scattering decreases for lower energies in the ab initio
results. Further away from the axis the discrepancies between the two sets are
smaller, since electrons that can reach these positions encountered at least one
(random) large angle collision.

The data for all considered models is shown in Table 14.3. The table shows
that the CUS model, given by eq. 14.28, and the elastic screened Coulomb fit
using SC Qm

Qt
provide an accurate description of the range and straggling. In

comparison with the ab initio data the relative errors for the axial range are in the
order of 1 %. The elastic screened Coulomb model (SC) and the inelastic screened
Coulomb model (SCI) are less accurate with relative errors ranging from 5 to
10 %. In the absence of any DCS or Qm data the CUS and SC Qm

Qt
models cannot

be used. The best approximation in such a situation is the FOR model with a
relative error of 2.4 % in comparison to the ab initio data. The backscattering
for most models is predicted correctly within 2 % of the data from Zatsarinny and
Bartschat. The exceptions are the isotropic and SCI models which differ more from
the baseline case (ZB) than the other models do. Similar conclusions can be made
when the DCS calculated by Zatsarinny and Bartschat is used for elastic collisions.
In fact the results only differ up to 2 % in comparison to the simulation that uses
isotropic scattering for elastic collisions with the same momentum transfer cross
section. The results confirm that the elastic collisions are approximated well with
isotropic scattering. This is expected since figure 14.1d shows a DCS at 200 eV
that decays slowly as a function of scattering angle.

The influence of use of different models for anisotropic scattering can be em-
phasized by using a scaling factor of 100 for the inelastic process. These results
are shown in figures 14.14b, 14.14d and 14.14f. The spatial profile of stopped
electrons using the FOR model is still quite similar to the results of the ab initio
calculations. The main differences are visible on the axis. Due to the increased
cross section of the inelastic collision the probability of an inelastic collision is
larger than two times the probability of an elastic collision for ε > 20 eV. As a
result many electrons in the FOR model did not have a single elastic encounter.
These electrons are still on the axis when their energy drops below the threshold
energy. Another effect of the increased probability of the inelastic process is that
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Table 14.3: Results for a scale factor of 10 and an input energy of 200 eV. ‘R’
represents the range, ‘S’ the straggling and ‘B’ the electrons backscattered to the
cathode. The top section shows the results by assuming an isotropic DCS for the
electrons with the elastic Qm from ZB. The bottom section shows the results by
using the elastic DCS calculated by ZB. The labels are defined in Table 14.1.

Simulation Rz(m) error(%) Sz(m) error (%) Sx(m) B(%)
Isotropic elastic scattering with Qm from ZB

ZB 1.98e-02 0.0 1.16e-02 0.0 1.50e-02 51.6
CUS 2.00e-02 1.3 1.18e-02 1.1 1.53e-02 51.1
FOR 2.03e-02 2.4 1.19e-02 2.3 1.53e-02 51.0
ISO 1.45e-02 -26.7 8.74e-03 -25.0 1.19e-02 65.1

SC Qm/Qt 1.97e-02 -0.5 1.16e-02 -0.7 1.51e-02 51.4
SC 1.87e-02 -5.3 1.10e-02 -5.2 1.48e-02 52.6
SCI 1.79e-02 -9.6 1.06e-02 -8.9 1.43e-02 55.2

Anisotropic elastic scattering from ZB
ZB 2.01e-02 0.0 1.18e-02 0.0 1.51e-02 50.8

CUS 2.03e-02 1.3 1.19e-02 1.1 1.53e-02 50.4
FOR 2.06e-02 2.5 1.20e-02 2.3 1.54e-02 50.3
ISO 1.45e-02 -27.5 8.77e-03 -25.4 1.20e-02 64.7

SC Qm/Qt 1.99e-02 -0.6 1.17e-02 -0.7 1.52e-02 50.6
SC 1.89e-02 -5.8 1.11e-02 -5.3 1.49e-02 51.9
SCI 1.80e-02 -10.3 1.07e-02 -9.1 1.43e-02 54.6

the differences between the ab initio results and the ISO model are much more
pronounced in the spatial profile of stopped electrons.

The data for all considered models is shown in Table 14.4. Again the CUS and
SC Qm/Qt model give the best reproduction of the axial range. The relative errors
are 7.1 % and 4.1 % respectively. Even for these extreme conditions the FOR model
produces a relative error of only 15.6 %. These errors are mainly caused by the fact
that the ab initio data contain a small probability for large angle scattering. This
effect is more pronounced for a DCS at lower energies. The predictions for the axial
range by the SC and SCI models are off by 24.7 % and 36.1 %, respectively. Thus
for an initial kinetic energy of 200 eV the FOR model also requires no additional
input and performs better. The backscattering is not well predicted with such
large cross sections. Most models make an error in the order of 14-22 %. Larger
errors are made for the ISO and the SCI models. The impact on the results
induced by changing the elastic cross section to the calculated cross section by
Zatsarinny and Bartschat now is a bit stronger. However, the impact is restricted
to about 5 % and is therefore still relatively small.

Similar tests have been made for input energies of 50 eV. The results of these
tests are shown in Table 14.5. For a scale factor of 10 the results are similar to
the ab initio results, since the probability for an inelastic process is low. The ISO
model produces the largest relative error with 9 %. The errors for the FOR model
is in the order of 2-3 %. The usage of forward scattering as an approximation for
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Table 14.4: Results for a scale factor of 100 and an input energy of 200 eV. ‘R’
represents the range, ‘S’ the straggling and ‘B’ the electrons backscattered to the
cathode. The top section shows the results by assuming an isotropic DCS for the
electrons with the elastic Qm from ZB. The bottom section shows the results by
using the elastic DCS calculated by ZB. The labels are defined in 14.1.

Simulation Rz(m) error(%) Sz(m) error (%) Sx(m) B(%)
Isotropic elastic scattering with Qm from ZB

ZB 5.01e-03 0.0 2.59e-03 0.0 2.27e-03 18.6
CUS 5.37e-03 7.1 2.59e-03 0.0 2.35e-03 14.9
FOR 5.79e-03 15.6 2.79e-03 7.8 2.18e-03 14.6
ISO 1.98e-03 -60.5 1.26e-03 -51.5 1.64e-03 58.6

SC Qm/Qt 4.80e-03 -4.1 2.41e-03 -6.9 2.51e-03 16.0
SC 3.77e-03 -24.7 2.11e-03 -18.4 2.54e-03 22.0
SCI 3.20e-03 -36.1 1.93e-03 -25.4 2.34e-03 33.3

Anisotropic elastic scattering from ZB
ZB 5.13e-03 0.0 2.54e-03 0.0 2.25e-03 19.1

CUS 5.51e-03 7.3 2.52e-03 -0.9 2.33e-03 15.4
FOR 5.99e-03 16.8 2.67e-03 4.8 2.14e-03 15.5
ISO 1.98e-03 -61.4 1.26e-03 -50.6 1.64e-03 58.6

SC Qm/Qt 4.88e-03 -4.8 2.39e-03 -6.1 2.50e-03 16.1
SC 3.80e-03 -26.0 2.12e-03 -16.7 2.54e-03 21.8
SCI 3.21e-03 -37.4 1.94e-03 -23.8 2.35e-03 33.1

Table 14.5: Results for a scale factor of 10 and 100 and an input energy of 50 eV.
‘R’ represents the range and ‘S’ the straggling for a specific coordinate. The
definitions of the abbreviations for the simulations are given in the text.

Simulation Rz(m) error(%) Sz(m) error (%) Rx(m) Sx(m)
scale factor 10

ZB 6.62e-03 0.0 4.26e-03 0.0 -1.47e-07 5.04e-03
FOR 6.78e-03 2.5 4.33e-03 1.5 -3.77e-07 5.08e-03
ISO 6.02e-03 -9.0 4.04e-03 -5.3 -8.88e-07 4.90e-03

scale factor 100
ZB 1.62e-03 0.0 1.04e-03 0.0 1.46e-07 9.61e-04

FOR 1.87e-03 15.5 1.12e-03 7.6 -1.44e-07 8.89e-04
ISO 1.11e-03 -31.4 8.40e-04 -19.6 -1.15e-07 9.71e-04

inelastic processes thus appears to be very accurate. For a scale factor of 100 the
differences in results from the various models are more pronounced. Again the
ISO model has the largest relative error with 31.4 %. The FOR model reaches a
relative error of 15.5 %. The relative errors for predicting the range for a beam
of 50 eV are similar to the errors for the 200 eV beam. The relative error of the
predicted straggling is about 5 % larger for the 50 eV beam for a scale factor of 10.
The differences between the predictions for the beams are thus relatively small.
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14.5 Extrapolating the cross sections

Predictions of the range, straggling and backscattering for energies above 200 eV
are possible if the cross sections are extrapolated. The elastic cross section and
the inelastic total cross section are extrapolated with

Qt (ε) = c1
ln ε+ c2

ε
, (14.36)

which is based on a simplified Bethe formula for excitation cross sections [267,
eq. 10]. The high energy part of the momentum transfer cross section was fitted
with [246, eq. A.2]

Qm =
s1

(ε− s2)
2 , (14.37)

with ci and si fit parameters. The results using the extrapolated cross section
for a beam with an initial energy of 500 eV are given in table 14.6. Due to the
absence of a calculated DCS for ε ≥ 200 eV the accuracy of the individual models
cannot be evaluated. The reference for the calculations is therefore the FOR model
which would be used if no data are available. By using an isotropic elastic DCS
the results using CUS and SC Qm/Qt agree well with forward scattering with
differences below 1 %. These models gave the best reproduction of the ab initio
data below 200 eV. This is an indication that the FOR model results are a good
approximation for the real DCS. When the SC and SCI models are used the errors
increase up to 13 %. Using an isotropic model for the inelastic DCS results in large
errors again. The same calculations with the elastic cross section replaced by the
ab initio results show similar differences relative to the FOR case. The differences
between both sets are in the order of 1 %. Since the ab initio results above 200 eV
use the DCS at 200 eV the results may change when the correct DCS is used.
However, a fit using (14.28) shows that the parameters C and η seem to approach
an asymptote. This is an indication that the chosen extrapolation method could
be accurate. The results of this fit are displayed in 14.12 and 14.13.

The results for a beam with an initial energy of 1000 eV are given in table
14.7. The table shows similar relative differences from the FOR model as the
500 eV beam. This time the differences between both elastic cross section sets are
in the order of 2-3 %. A calculation of the elastic DCS for energies above 200 eV
is desirable to evaluate the accuracy of the used extrapolations. In that case it is
also possible to verify the trend suggested in 14.12 and 14.13.

14.6 Conclusions

Analytical formulae for the DCS have been compared with the DCS calculated
by Zatsarinny and Bartschat who used the B-spline R-matrix method for elastic
and inelastic collisions for electrons with argon. The forward scattering of the
elastic DCS can be approximated accurately by the screened Coulomb model that
uses the parameterization given in eq. 14.10. However, the large angle behavior
is not taken into account which makes the overall agreement rather poor. The
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Table 14.6: Results for a scale factor of 10 and an input energy of 500 eV. ‘R’
represents the range, ‘S’ the straggling and ‘B’ the electrons backscattered to the
cathode. The top section shows the results by assuming an isotropic DCS for the
electrons and using Qm. The bottom section uses the ZB DCS. Energies above
200 eV use the DCS at 200 eV. The labels are defined in 14.1. In this case the
errors are measured relative to forward scattering.

Simulation Rz(m) error(%) Sz(m) error (%) Sx(m) B(%)
Isotropic elastic scattering with Qm from ZB

CUS 5.64e-02 -0.5 3.21e-02 -0.5 4.48e-02 60.6
FOR 5.67e-02 0.0 3.23e-02 0.0 4.50e-02 60.6
ISO 3.76e-02 -33.6 2.14e-02 -33.6 3.11e-02 73.7

SC Qm/Qt 5.58e-02 -1.5 3.17e-02 -1.6 4.45e-02 60.7
SC 5.37e-02 -5.2 3.05e-02 -5.6 4.34e-02 61.4
SCI 4.98e-02 -12.1 2.83e-02 -12.2 4.07e-02 64.3

Anisotropic elastic scattering from ZB
CUS 5.61e-02 -0.5 3.20e-02 -0.5 4.48e-02 60.7
FOR 5.64e-02 0.0 3.21e-02 0.0 4.50e-02 60.7

SC Qm/Qt 5.55e-02 -1.5 3.16e-02 -1.6 4.45e-02 60.8

Table 14.7: Results for a scale factor of 10 and an input energy of 1000 eV. ‘R’
represents the range, ‘S’ the straggling and ‘B’ the electrons backscattered to the
cathode. The top section shows the results by assuming an isotropic DCS for the
electrons and using Qm. The bottom section uses the ZB DCS. Energies above
200 eV use the DCS at 200 eV. The labels are defined in 14.1. In this case the
errors are measured relative to forward scattering.

Simulation Rz(m) error(%) Sz(m) error (%) Sx(m) B(%)
Isotropic elastic scattering with Qm from ZB

CUS 1.33e-01 -0.2 7.43e-02 -0.3 1.08e-01 68.5
FOR 1.33e-01 0.0 7.45e-02 0.0 1.08e-01 68.5
ISO 8.50e-02 -36.1 4.72e-02 -36.6 7.03e-02 79.7

SC Qm/Qt 1.32e-01 -0.8 7.38e-02 -0.9 1.08e-01 68.5
SC 1.28e-01 -3.5 7.16e-02 -3.8 1.05e-01 68.9
SCI 1.17e-01 -11.7 6.55e-02 -12.0 9.70e-02 71.5

Anisotropic elastic scattering from ZB
CUS 1.29e-01 -0.2 7.26e-02 -0.2 1.06e-01 69.0
FOR 1.30e-01 0.0 7.28e-02 0.0 1.06e-01 69.0

SC Qm/Qt 1.29e-01 -0.7 7.22e-02 -0.8 1.06e-01 69.0
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Figure 14.12: For the elastic DCS the
results of the fit using (14.28) for pa-
rameter C are shown.

Figure 14.13: For the elastic DCS the
results of the fit using (14.28) for pa-
rameter η are shown.

inelastic DCS can not be accurately captured by any of the formulae that have
been considered. Due to the lack of good analytical formulae direct fits of the
DCS using eq. 14.28 have been considered as well.

The degree of anisotropy has been quantified by comparing the range, strag-
gling and backscattering of the various DCS models in a Monte Carlo simulation.
An imaginary atom has been considered were only one elastic and one inelastic
process is possible. The excitation process towards 4s′[1/2]1 is scaled by a factor
10 to approximately represent the total inelastic cross section of Ar. The simu-
lations indicate that the DCS from the calculations of Zatsarinny and Bartschat
can be approximated accurately. Errors in the order of one percent are obtained
by using a direct fit of the DCS or an analytical fit using the ratio of Qm

Qt
. For

a scale factor of 10 for the inelastic cross section the errors using pure forward
scattering are in the order of a 2-3 % which makes the forward model almost as
accurate as a direct fit. Additionally, replacing the isotropic elastic scattering by
the DCS calculated by Zatsarinny and Bartschat only modifies the results up to
2 %. This confirms that elastic scattering is accurately represented by the momen-
tum transfer cross section from Zatsarinny and Bartschat and assuming isotropic
scattering. It should be emphasized that the total elastic cross section and the
elastic momentum transfer cross section are different, as shown in figure 14.11. By
using scale factors for the inelastic process of 100 the total inelastic cross section
is overestimated by a factor 10 approximately. The relative errors for the direct
fit and the Qm

Qt
-method are in the order of 0-7%. The forward model gives relative

errors of 7-15%. Based on the considered tests the following recommendations are
given

• For inelastic collisions, assume forward scattering (i.e. do not change the
velocity angle)

• For elastic collisions, use the momentum-transfer cross section Qm (rather
than the total cross section) for the collision probability, combined with an
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(a) Elastic and inelastic scattering:
isotropic; scale factor: 10.

(b) Elastic and inelastic scattering:
isotropic; scale factor: 100.

(c) Elastic scattering: isotropic; Inelastic
scattering: forward; scale factor: 10.

(d) Elastic scattering: isotropic; Inelastic
scattering: forward; scale factor: 100.

(e) Elastic and inelastic scattering: ZB;
scale factor: 10.

(f) Elastic and inelastic scattering: ZB;
scale factor: 100.

Figure 14.14: Spatial profile of stopped electrons expressed as a density by dividing
the number of electrons removed by the local volume. The results are normalized
by ρ0 which is calculated as the total number of electrons divided by the displayed
volume. An input energy of 200 eV has been used in all cases. The scale factor
for the inelastic transition is varied and the DCS of the elastic and inelastic DCS
are varied.
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isotropic scattering angle from equation 14.22.

• This simple treatment performs better than any of the other theoretical/empirical
analytical formulae for the range of conditions considered in our analysis, and
we expect it to perform at least as well for general low-temperature plasma
modeling purposes. The only way to obtain more accurate results is to use
the full DCS, provided this is available.

There are a few caveats concerning these recommendations. The first is that
our analysis did not take into account ionization because the data set from Zat-
sarinny and Bartschat does not include the ionization DCS. Ionization involves
the additional question of how energy and momentum are shared between the
primary and secondary electrons, a question that is not directly related to the
anisotropy issue but can be equally important [251]. Secondly, in some molec-
ular gases, unlike the argon-like gas in our analysis, angular velocity scattering
by low-threshold rotational and vibrational processes can contribute significantly
to the overall electron momentum losses. We could imagine that treating such
low-threshold inelastic processes with forward scattering has consequences for the
electron swarm parameters [268].

Previous works [245, 246] suggest that anisotropic scattering effects on swarm
parameters are generally small. Calculations by Hagelaar of swarm parameters
in Ar using cross sections from Zatsarinny and Bartschat [229] have been made
for two types of scattering models (forward and isotropic) and two types of en-
ergy sharing models for ionization (50/50, the energy is split evenly between the
electrons; 100/0 the secondary electron gets no energy). A more realistic descrip-
tion of the energy redistribution [269] yields results intermediate between the two
limiting cases 50/50 and 100/0.

The calculations show that changing the DCS for the inelastic processes from
isotropic to forward scattering results in relative differences larger than 1 % for
E/N values above 100 Td for the mobility, average energy and the ionization rate.
For the transverse and longitudinal diffusion coefficients differences of the order of
1 % are already observed for 10 Td. At 1000 Td the relative differences increased
up to 29-32 % for the mobility µN . The impact of the energy sharing models is
shown to be of the order of 1-9 %. For the ionization rate coefficient the impact of
the anisotropy at 1000 Td appeared to be 21-24 % while the effect of the energy
sharing model was smaller with 1-10 %. For the mean energy at 1000 Td the
effect of both models is smaller with the inelastic scattering models changing the
results in the range of 13-15 % and the energy sharing models changing the results
only with 1-2 %. The longitudinal diffusion coefficient shows relative differences
up to 100 % at 1000 Td induced by the anisotropy. The energy sharing model
induces differences up to 35 % at 250 Td. These results confirm that anisotropy
is also important for swarm parameters and that over the E/N range considered
(10-1000 Td) its impact is comparable to the impact of the energy sharing models.

A more detailed study, that includes low-energy threshold processes, is required
to evaluate the effect of anisotropy on swarm parameters relative to other assump-
tions in swarm calculations related to how electron number changing processes are
taken into account.
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Conclusions

The work discussed in this thesis has resulted in a more accurate description of
collision integrals and transport coefficients. The more accurate transport models
have been applied in simulations of mercury-free HID lamps with the PLASIMO
platform. Simulations of these lamps have also been improved by using a self-
consistent diffusion algorithm and a corrected radiation transport module. Ab
initio calculations have been used successfully to predict the shape of the contin-
uum radiation of the considered mercury replacement candidates. Three other
topics are discussed in this thesis. The first topic is radiation transport as an ef-
fective particle transport mechanism in argon. Secondly, a comparison between an
argon mixture and an argon-silicon-tetrachloride mixture in a surfatron is made.
Thirdly, the impact of the particular choice of the angular distribution function
of the differential cross section for electron-argon collisions on the evolution of a
high energy electron beam is evaluated. The results and recommendations for all
of these topics are briefly summarized in the following sections.

Transport coefficients

• An improved method for estimating collision integrals is implemented in
PLASIMO and discussed in chapter 4. This new approach replaces the in-
accurate rigid sphere and Coulomb approximations. It now automatically
chooses the most accurate method available without requiring any specifica-
tions in the input file.

• More accurate expressions for the calculation of the transport coefficients
are used as discussed in chapter 5. These expressions are derived from the
Chapman-Enskog expansion. The improved estimates for the collision inte-
grals also improve the accuracy of the calculated transport coefficients.

• New methods for acquiring potential parameters are developed. The new
approach for calculating collision integrals requires knowledge of the polar-
izability of the species involved in the collision. Nowadays, the polarizability
of most atoms is well known. For ions and molecules this type of data is more
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scarce. Quantum mechanical software packages are used to obtain estimates
of the polarizability for the cases where it is not available. A small step
further is the direct calculation of the potential curves. Collision integrals
can be obtained directly from these calculated interaction potentials.

Currently, PLASIMO uses the collision integral for the ground state of a given
species also for all excited states. However, the potential curves for interactions
with the excited state can deviate significantly from the potential curves for in-
teractions with the ground state. By making polarizabilities or potential curves
available for excited species, more accurate estimates of these interactions can be
made.

Self-consistent diffusion

• The usage of more accurate collision integrals greatly improved the stability
of the self-consistent diffusion model. However, the self-consistent model
appeared to be unstable for certain conditions. In spite of the improved
stability, the model is still not stable for all conditions. It is observed that the
model is more stable for higher pressures and larger amounts of nodal points
as discussed in chapter 6. The exact origins of the numerical instabilities
are not yet understood. The self-consistent algorithm for the calculation
of the diffusive velocities was previously developed by Peerenboom. This
model is an improvement of Fick’s model which only takes interactions with
the background species into account while the self consistent model includes
interactions with all particles.

• When LTE conditions are valid, the system of equations is solved for the
elemental species and supplemented with elemental constraints. Solving the
species system in terms of elemental species, as described in chapter 7, re-
duces the number of coupled equations. Elemental constraints are used that
either guarantee a given amount of mass in the gas phase or specify a given
elemental pressure on one of the boundaries. The last condition resembles
the liquid-gas interface for species that are saturated. The instabilities that
can occur in the species system have not been observed in the elemental
system that is used in LTE.

Radiation transport

• A discretization error is found in the ray tracing algorithm developed by
Van der Heijden. In the central parts of cylindrical or spherical grids, the
radiation losses were calculated inconsistently. In chapter 8, an improved
discretization scheme is presented.

• The required time for the evaluation of the radiation losses is reduced by
parallelizing the code.
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A drawback of the current method is that the spectral grid has to be defined
prior to the simulation. The consequence is that the spectral grid in practice
contains more points than necessary due to the fact that this grid is used for every
ray. An adaptive grid may reduce the calculation time. The calculation time can
be reduced even further by only using ray tracing for the spectral points that have
an optical depth in a given range. This range should be chosen in such a way that
the error introduced by using a simpler calculation, using either the optically thin
or the optically thick calculation, is below a predefined tolerance.

One of the required inputs for the ray tracing model is the selection of a line
profile. Expressions for various line profiles are provided in chapter 8. A commonly
used model for the line profile that is obtained as the convolution of a van der
Waals and a Lorentzian profile is discussed in chapter 9.

• The expression given by Stormberg is numerically unstable and should there-
fore be replaced by the alternative expression presented in chapter 9.

In the ideal case the van der Waals profile is avoided since it only includes the
attractive part of the potential. Whenever possible the pressure broadening should
be calculated using a complete potential curve.

Mercury-free HID lamps

• Numerical models of mercury-free lamps are developed and discussed in
chapters 10 and 11. In both models, InI is considered as a replacement
candidate for mercury.

• The emitted continuum radiation is derived from the potential curves that
have been calculated using a quantum mechanical software package. These
data reveal that the broad continuum originates from recombining In and I
atoms. The model is able to describe the shape of the continuum quite well.
Specific features, like the absorption of the ultraviolet and the absorption
related to the A−X transition, are reproduced. A similar recombination
continuum is demonstrated in SnI and TlI mixtures.

• The models are able to explain that arc contraction is responsible for the
generation of the lamp voltage. The usage of InI as a buffer gas is not feasible,
since the pressure required to generate the lamp voltage by arc contraction
is accompanied by a strong infrared continuum. Such a continuum limits
the lamp’s efficiency.

Currently, the potential curves have an estimated error in the order of one or
two tenths of an electronvolt. This accuracy limits the precision of the reproduc-
tion of spectral features. Another improvement can be realized by describing the
plasma as a non-thermal plasma. The arc contraction limits the temperature and
therefore the electron density in the mantle. It is not clear whether in that area
the number of electron collisions is sufficient to enforce species densities that sat-
isfy LTE. The current simulations have been performed using a one-dimensional
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grid. The consequence is that the convective flow could not be modeled. In a
two-dimensional grid the convective flow, can be included.

Effect of resonant levels on the metastable levels in an
argon plasma

• The necessity of ray tracing is demonstrated for a low pressure argon plasma.
This is done by comparing results from models that use ray tracing with
models that use a uniform escape factor. The comparison shows that using
Holstein’s expression for the escape factors provides relative errors for the
species that can reach up to a factor 20. The relative errors can be reduced by
using an escape factor that is derived from the ray tracing result. However,
those simulations still show that the spatial dependency of the escape factor
is important. Near the wall, the relative errors of the species can still amount
to 80% of the results obtained in the model that uses ray tracing.

• The model demonstrates that the effects of including ray tracing are not
limited to the species that are directly involved in the transition. Due to
chemical reactions, the impact of adjusted resonant levels is also passed on
to the metastable species. The result is that metastable species in the center
of the discharge are effectively transported directly to the wall via chemical
and radiative coupling.

Surfatron plasmas

• For the first time, a mixture of argon and SiCl4 has been considered spatially
resolved in a surfatron plasma using a 2D cylindrically symmetric grid with
a self-consistent electromagnetic module.

In chapter 13, a comparison is made between a plasma in pure argon and a mixture
of argon and SiCl4. A few approximations were made to improve the stability of
the code. Firstly, Fick’s diffusion module rather than the self-consistent diffusion
module was used. Secondly, the input power and the flow rate of SiCl4 were
reduced in comparison to experimental conditions. By using the same conditions,
a comparison of a mixture containing Ar + SiCl4 and a mixture of pure argon
confirms that the electron temperature decreases significantly in the Ar + SiCl4
mixture. The effect on the heavy particle temperature is small. Additionally, the
electron density is about an order of magnitude larger in the mixture containing
Ar + SiCl4.

In order to make a comparison possible with experimental results, the stabil-
ity of the model must improve. It is expected that an improved self-consistent
diffusion module will provide the necessary stability. Currently, the convergence
rate is rather low. The usage of an adaptive grid may reduce the calculation time.
Chemistry reduction techniques can also reduce the calculation time.
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Differential cross sections

In chapter 14, the ab initio quantum mechanical calculations from Zatsarinny and
Bartschat for the differential cross section (DCS) for electron-argon collisions are
considered. The angular distribution function derived from these DCS is compared
to various analytical angular distribution functions.

• The agreement between analytical functions for the angular distribution
function and the distribution derived from ab initio results is rather poor.

In Monte Carlo simulations the range, straggling and backscattering are com-
pared for these distributions. The best reproduction of the angular distribution
predicted by Zatsarinny and Bartschat were obtained using the following DCS:

• isotropic scattering for elastic processes.

• forward scattering for inelastic processes.

Effects of ionization are neglected and should be included in a future study.

Ab initio calculations

• Two ab initio quantum mechanical software packages have been considered
in this work: DIRAC and DALTON. The main difference between the pack-
ages is the fact that DIRAC accounts for relativistic effects while DALTON
does not. DALTON has the advantage that it contains a potential energy
minimization routine.

• The minimization routine can be used to calculate polarizabilities of molecules
in their equilibrium positions. It is recommended that a database of this type
of data is built to ensure that the collision integrals are estimated with the
best available data.

• For species that are frequently considered in simulations, it is recommended
to calculate the potential curves and obtain the collision integrals from a
direct integration. Having access to the potential curves also opens up the
possibility to use more accurate collision integrals for excited species.

• The packages DIRAC and DALTON can also be used to calculate transition
dipole moments which are required to calculate the Einstein coefficients for
a specific transition.

In many cases, a theoretical estimate is becoming an accurate and affordable
addition to data obtained from experiments. In specific cases, such calculations
are already accurate enough to provide an alternative for experiments.
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that made me familiar with microwave plasmas. Also I want to thank Mathé van
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