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Enhancement of contact line mobility by means of infrared laser illumination.
II. Numerical simulations
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A droplet that moves on a solid substrate with a velocity higher than a certain critical velocity

disintegrates, i.e., leaves behind residual droplets. Infrared laser illumination can be used to

increase the droplet mobility and suppress the shedding of droplets. By means of two-dimensional

numerical simulations, we studied the effect of a non-uniform temperature distribution on the

dynamics of straight receding contact lines. A streamfunction-vorticity model is used to describe

the liquid flow in the vicinity of the receding contact line. The model takes into account the

thermocapillary shear stress and the temperature-dependent liquid viscosity and density. A second,

coupled model describes the laser-induced displacement of the contact line. Our results show that

the reduction of the liquid viscosity with increasing temperature is the dominant mechanism for

the increase of the critical velocity. Thermocapillary shear stresses are important primarily for low

substrate speeds. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941438]

I. INTRODUCTION

The motion of droplets moving along solid surfaces1–9

is important for many technological applications. Usually, a

high droplet mobility is desirable, which can be increased in

various ways. Ogawa et al. and many others rendered sub-

strates superhydrophobic.10–13 Similar to lotus leaves, the

liquid-solid interfacial area is substantially reduced, thereby

only few degrees of inclination are sufficient to make a drop-

let slide.10 A prominent application is self-cleaning surface

coatings.12 Smith et al. impregnated topologically patterned

surfaces with lubricant oils in order to enhance the droplet

mobility.14 Other techniques for droplet mobilization include

substrate vibrations15,16 or A.C. electrowetting.17 Many

authors have studied droplet actuation by means of thermo-

capillary stresses as a consequence of localized heating18–28

and specifically the effect of thermocapillary stresses on the

dynamics of the moving contact lines.29–36 If either the driv-

ing force or the imposed speed exceeds a critical limit, com-

monly residual liquid is left behind on the substrate.37–44 Our

study is motivated by immersion lithography, where the

occurrence of such residual liquid is undesirable.45,46

In this manuscript, we study the increase of mobility of

a stationary contact line on a moving, partially wetting sub-

strate by means of localized infrared (IR) laser irradiation. In

Paper I,69 we presented corresponding experimental results.

In the following, we present two coupled numerical models

that allow us to identify the dominant mechanism of the

mobility enhancement and to detail the influence of both

thermocapillary shear stresses and viscosity reduction.

In the first model, we solve the coupled problem of

heat-transfer and fluid flow near the receding contact line in a

two-dimensional geometry. Anderson and Davis presented an

analytical model accounting for heat conduction and the effect

of thermocapillary stresses on the convection pattern.34 Our nu-

merical model, in addition, takes into account the convection

of heat as well as the effect of temperature induced reductions

of density and viscosity. In the second model, the one-

dimensional lubrication equation is solved to describe the con-

tact line displacement in response to the thermocapillary stress

and the variation of the liquid material properties. The stress

singularity at the moving contact line is resolved using a

disjoining pressure model.47–51

In Section II, the details of the two models are presented.

Section III presents results from the heat-transfer model

alone. In Section III, we consider the coupling between the

two models. We study the dynamic receding contact angle as

a function of substrate speed and laser power and determine

the corresponding increase in critical velocity.

II. NUMERICAL MODELS

In order to study the effect of a non-uniform temperature

distribution on a receding contact line, we couple a model

for the heat-transfer in the vicinity of the contact line (CL)

with a separate model for the displacement of the contact

line. Figure 1 shows how the two models are coupled. First,

we start with a certain receding contact angle hr and a certain

distance between the contact line and the point of maximum

FIG. 1. Iteration diagram illustrating the coupling of the heat-transfer model

and the contact line displacement model.

0021-8979/2016/119(8)/084905/10/$30.00 VC 2016 AIP Publishing LLC119, 084905-1
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laser intensity, d. We then solve the heat-transfer model for

the temperature distribution around the contact line. This

temperature distribution is used in the contact line displace-

ment model to update hr and d. The two models are solved

iteratively until a self-consistent receding contact angle

results. In Subsections II A–II C, the details of the two mod-

els are presented.

A. Heat-transfer model

Figure 2 shows the 2D computational domain for the

thermal model. It consists of three separate geometries: the

wedge represents a receding meniscus of ethylene glycol

(EG), the upper rectangle the polycarbonate (PC) substrate,

and the lower rectangle the glass plate. The coordinates

ðx; yÞ ¼ ð0; 0Þ correspond to the receding contact line posi-

tion. We assume that the shape of the liquid-air interface is

given by a straight line, the slope of which is determined

by the value of hr. The thickness of the PC substrate in the

y-direction is dPC ¼ 0:5 mm and that of the glass plate

dglass ¼ 3:9 mm. The height of the wedge at xL is determined

by the value of hr. The left boundaries of the three domains

are located at xL ¼ �16 mm. The right boundaries of the PC

substrate and the glass plate are located at xR ¼ 16 mm.

The steady-state temperature distribution T(x,y) is

described by the heat-transfer equation

qcp~u � rT ¼ kr2T þ _q : (1)

The liquid velocity ~u in the EG wedge is calculated using a

separate model, as outlined in Section II A 1. The PC sub-

strate and the glass plate are moving in the x-direction with a

constant velocity ~u ¼ ðUsub; 0Þ. The density q, specific heat

capacity cp, and thermal conductivity k of EG, PC, and

glass are listed in Appendix B. The density of EG, qðTÞ,
depends on the local temperature and is given by Eq. (B3)

of Appendix B. The term _q � aI represents a heat source

due to absorption of the IR laser beam.52–54 We assume the

following IR absorption coefficients: aEG ¼ 700 m�1,

aPC ¼ 30 m�1, and aglass ¼ 100 m�1. The intensity distribu-

tion I(x,y) of the IR laser beam is discussed in Section II A 2.

The initial condition is a uniform temperature T0 ¼ 293 K.

The boundary conditions that we used are given by

@T

@x
x ¼ xL; y > 0ð Þ ¼ 0; (2)

@T

@x
x ¼ xR; y � 0ð Þ ¼ 0; (3)

Tðx ¼ xL; y � 0Þ ¼ T0; (4)

�kPC

@T

@y
x > 0; y ¼ 0ð Þ ¼ /loss; (5)

kglass

@T

@y
y ¼ �dPC � dglassð Þ ¼ /loss; (6)

�~n � kEGrTðx < 0; y ¼ �tanðhrÞxÞ ¼ /loss: (7)

The temperature of the PC substrate and the glass plate at

x¼ xL is kept at T0 [Eq. (4)]. We assume that heat losses

occur at the top boundary of the PC substrate (at x> 0), at

the bottom boundary of the glass plate, and at the liquid-air

interface [Eqs. (5), (6), and (7)], which are a superposition of

Newtonian convective cooling and thermal radiation

/loss ¼ hNðT � T1Þ þ rBðT4 � T4
1Þ : (8)

Here, hN ¼ 5 W/(m2 K) is the convective heat transfer coeffi-

cient,55 rB ¼ 5:67� 10�8 W/(m2 K4) the Stefan-Boltzmann

constant, and T1 ¼ T0 ¼ 293 K the ambient temperature.

For the boundaries at x¼ xR and the boundary of the EG

wedge at x¼ xL, we use so-called convective boundary con-

ditions [Eqs. (2) and (3)]. In the expression for the total heat

flux ~n �~q ¼ ðqcp~u T � krTÞ �~n, we assume that the diffu-

sive flux �~n � krT is negligible compared to the convective

flux~n � qcp~u T (where~n is the unit normal vector of the com-

putational domain).

1. Streamfunction-vorticity model

For the liquid velocity in the EG wedge, we estimate the

typical values of the Reynolds number ReL ¼ qLUsub

l � 2, where

we use the maximum height of the wedge L ¼ xL tanðhdÞ
� 5 mm and Usub � 5 mm=s. Consequently, the inertial terms

in the Navier-Stokes are negligible. In the following, we solve

the Stokes equation using a streamfunction-vorticity formalism.

Although we assume the liquid to be incompressible, we take

into account temperature variations of the density leading to

the steady-state continuity equation

r � ðq~uÞ ¼ 0: (9)

For this reason, we incorporate the variable density in the

definition of the streamfunction w. The Cartesian velocity

components~u ¼ ðux; uyÞ are given by

ux ¼
1

q
@

@y
qwð Þ; (10)

uy ¼ �
1

q
@

@x
qwð Þ: (11)

The viscosity of EG, l ¼ lðTÞ, also depends on the tempera-

ture according to Eq. (B1) (see Appendix B). Introducing xz

FIG. 2. Schematic representation of the computational domain and boundary

conditions of the heat-transfer model (not to scale).
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as the z-component of the vorticity ~x � r�~u, the Stokes

equation results in the following coupled second-order

equations:

xz ¼ �r2w�r � w
q
rq

� �
; (12)

lr2xz ¼ g
@q
@x
þ � � �

þ r r2w
� �� �

� rlþr2 w
q
rq

� 	
� rl : (13)

For a uniform density, Equations (10)–(13) reduce to

ðux; uyÞ ¼ ð@w=@y;�@w=@xÞ and

xz ¼ �r2w; (14)

r2xz ¼
1

l
r r2w
� �� �

� rl ¼ � 1

l
rlð Þ � rxz: (15)

The flow in the liquid wedge is driven by the motion of the

PC substrate and the thermocapillary shear stress along the

liquid-air interface. The boundary conditions in case of uni-

form density are given by

w ¼ 0;
@w
@y
¼ Usub for x < 0; y ¼ 0ð Þ; (16)

w ¼ 0; xz ¼ �
s0

l
x < 0; y ¼ �tan hrð Þxð Þ; (17)

@w
@x
¼ 0;

@xz

@x
¼ 0 for x ¼ xL; y > 0ð Þ: (18)

The solid-liquid interface at y¼ 0 is a streamline, where the

value of w is arbitrarily set to zero. The horizontal velocity

@w=@y is given by Usub [Eq. (16)]. At the left boundary of

the liquid wedge at x¼ xL, we assume that @xz=@x and the

vertical velocity @w=@x are equal to 0 [Eq. (18)]. These cor-

respond to mirror-symmetry conditions for the scalar fields

w and wz, which strictly speaking do not apply to the system

studied.56 However, we chose the value of xL (and similarly

of xR) sufficiently large such that there is no influence of this

boundary condition neither on the temperature distribution

nor on the velocity field near the contact line. We note that

this boundary condition implies the streamlines to be hori-

zontal, i.e., parallel to ~n at x¼ xL. The liquid-air boundary is

also a streamline for a non-volatile liquid. The non-uniform

temperature along this boundary results in a thermocapillary

shear stress57

s0 ¼ dc
dT

~t � rT; (19)

due to the temperature dependence of the surface tension. Here,
~t is the tangential unit vector of the computational domain and

dc=dT ¼ �0:089 mN/(m K) the temperature dependence of the

surface tension of EG. We take this shear stress into account by

setting the vorticity58 to xz ¼ �s0=l [Eq. (17)].

2. Intensity distribution of infrared laser beam

The angle of incidence of the IR laser beam with respect

to the PC substrate is kept fixed at b ¼ 45� as illustrated in

Fig. 2. We define the intensity profile of the IR laser beam in

a separate beam coordinate system ðxb; ybÞ illustrated sche-

matically in Fig. 10

xb � ðx� dÞ cos b� y sin b; (20)

yb � ðx� dÞ sin bþ y cos b: (21)

The intensity profile of the IR laser beam is given by

I ¼
ffiffiffi
2
p

Pffiffiffi
p
p

w
exp �2

x2
b

w2

� 	
exp Fð Þ: (22)

The width w is given by

w ¼ w0 þ jybj tan hd; (23)

where w0 ¼ 0:6 mm is the minimum waist width and

hd ¼ 8� quantifies the divergence of the laser beam. P is

the power per unit length in the z-direction. The last term of

Eq. (22), exp ðFÞ, represents the absorption of the beam in

the EG wedge, the PC substrate, and the glass plate. The

parameter F ¼ Fða; xb; yb; d; hr; b; dPCÞ describes the optical

path length through these different domains (see Appendix

A). Refraction effects and partial reflections at the dielectric

interfaces are not taken into account.

B. Contact line displacement model

In order to model the IR laser induced displacement of

the contact line, we use the classical, well-studied Landau-

Levich59 dip-coating geometry where a substrate is with-

drawn vertically from a liquid bath.60 Figure 3 shows the 1D

computational domain for the CL model. The liquid film

profile h(x) is governed by the so-called lubrication

equation61

@h

@t
þ @

@x

h2

2l Tð Þ s�
h3

3l Tð Þ
@P
@x
þ Usubh

 !
¼ 0: (24)

The augmented pressure

P � �c Tð Þ @
2h

@x2
þ q Tð Þgx�P hð Þ; (25)

represents the influence of capillary pressure, hydrostatic

pressure, and the disjoining pressure62 P. As the x-depend-

ence of the hydrostatic pressure term in Eq. (25) indicates,

FIG. 3. For x> xCL, the film thickness is approximately equal to h*.

Schematic representation of the computational domain and boundary condi-

tions of the contact line model.
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the direction of the gravitational acceleration is in the

negative x-direction. The viscosity lðTÞ, density qðTÞ, and

surface tension cðTÞ are given in Appendix B. We use a phe-

nomenological expression for the disjoining pressure63 P

P hð Þ ¼ c 1� cos heq

� � n� 1ð Þ m� 1ð Þ
n� mð Þh	

h	

h

� 	n

� h	

h

� 	m
" #

:

(26)

The parameters ðn;m; h	Þ are chosen as (6, 4, 20 nm). The

contact angle heq is fixed at 20�.
We used the following boundary conditions:

hðx ¼ x1Þ ¼ h0; Pðx ¼ x1Þ ¼ P0; (27)

@h

@x
x ¼ x2ð Þ ¼ 0;

@P
@x

x ¼ x2ð Þ ¼ qg: (28)

The width of the computational domain x2 � x1 ¼ 1 mm is

chosen sufficiently large so that it does not influence the CL

dynamics. At x ¼ x2, the gradient of the film thickness,

@h=@x, is set to 0 and the gradient of the augmented pressure

@P=@x is set equal to qg [Eq. (28)]. At x ¼ x1, the film thick-

ness is fixed at h0¼ 50 lm [Eq. (27)]. The pressure is fixed

at the reservoir pressure

P0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cqgð1� sin hÞ

p
: (29)

C. Coupling of the two models

We extract the temperature T(x) and the temperature

gradient @T
@x xÞð along the liquid-air interface and the PC-air

boundary (as indicated with the green line in Fig. 2) from the

heat-transfer model. From the temperature and the tempera-

ture gradient, we obtained the temperature dependent

material parameters and the thermocapillary shear stress

s ¼ ðdc=dTÞð@T=@xÞ, respectively, for the CL model. The

new resulting location of the contact line xCL is defined as

the position of maximum curvature @2h=@x2. This position

corresponds to x¼ 0 in the heat-transfer model. The parame-

ter xCL is used in the heat-transfer model to update the dis-

tance d between the CL and the position of maximum laser

intensity xIR. It is also used to update the approximate reced-

ing contact angle hr

hr ¼ arctan
h0

xCL � x1

� 	
: (30)

III. RESULTS FROM HEAT-TRANSFER MODEL

In order to illustrate typical behavior, we first present

results of the heat-transfer model alone, i.e., we keep the val-

ues of d and hr fixed and do not consider the coupling with

the CL model. Moreover, we first solved Eqs. (1), (12), and

(13) for several representative cases. It turned out that the

effect of thermal expansion, i.e., a non-uniform density qðTÞ,
was negligibly small. Consequently, we assumed q to be

constant and all results presented correspond to solutions of

Eqs. (1), (14), and (15). Figure 4(a) shows the magnitude of

the velocity vector j~uj in the liquid wedge, in the absence of

laser illumination, i.e., P ¼ 0 W=m. The white lines repre-

sent the streamlines of the flow field. For validation, we com-

pared our numerical results with the analytical solutions for

the isothermal flow in a corner by Moffatt64 with and without

the presence of a constant shear stress along the liquid-air

interface, s0, and obtained perfect agreement. The black lines

in Figs. 4(a) and 4(b) represent the locations where the radial

velocity vanishes ur¼ 0, i.e., the turning points of the

streamlines. The radial velocity is defined as ur ¼ ux cos u
þuy sin u, where u is the polar angle.

Figure 4(b) shows an example of the temperature

increase DTðx; yÞ � Tðx; yÞ � T0 in the liquid wedge for a

low substrate speed Usub ¼ 0:1 mm=s. The white lines repre-

sent the streamlines of the flow field. The temperature

increases along the liquid-air boundary towards the CL. We

observed that the point of maximum temperature rise

FIG. 4. Numerical results of the heat-transfer model for parameters

Usub ¼ 0:1 mm=s, d ¼ 0:2 mm, and hr ¼ 15�. For simplicity, we set the

angle of incidence b and the divergence angle hd to 0. Furthermore, we

assumed that the thickness of the PC substrate is dPC ¼ 4:4 mm and that the

glass plate is absent, i.e., dglass ¼ 0 mm. (a) Pseudo-color plot of the magni-

tude of the velocity j~uj in the liquid wedge for P ¼ 0 W=m. (b) Pseudo-color

plot of the temperature increase DTðx; yÞ ¼ Tðx; yÞ � T0 in the liquid wedge

for P ¼ 500 W=m. The white lines in (a,b) represent the streamlines. (c)

Pseudo-color plot of the magnitude of the velocity j~uj in the liquid wedge

for P ¼ 500 W=m.
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(indicated with a circle in Fig. 4(b)) coincides with the CL

position up to a speed of approximately 0.4 mm/s. The spac-

ing of the streamlines indicates that the flow speed along the

liquid-air boundary is larger than the flow speed along the

liquid-substrate boundary. As a consequence, the position of

the ur¼ 0 line is elevated compared to Fig. 4(a). This is illus-

trated more clearly in Fig. 4(c), where we present the magni-

tude of the velocity vector j~uj in the liquid wedge. It shows a

thin region with an increased flow speed adjacent to the

liquid-air boundary. The maximum speed in this region

jujmax � 1:7 cm/s (indicated with a circle in Fig. 4(c)), while

the substrate speed is only Usub ¼ 0:1 mm=s. The amplified

flow in this region is induced by the thermocapillary shear

stress, due to the high temperature gradient along the liquid-

air boundary.

Fig. 5(a) shows the temperature increase DT for a higher

substrate speed Usub ¼ 3:2 mm=s. The temperature rise is

now much smaller. The point of maximum temperature rise

(indicated with a circle in Fig. 5(a)) is still located along the

liquid-air boundary, but now left of the contact line. The

streamline pattern is very similar to the isothermal case in

Fig. 4(a). Figure 5(b) indicates that the flow speed along the

liquid-air boundary is of the same order as Usub. The flow

induced by the thermocapillary shear stress at the liquid-air

boundary is clearly visible, in the vicinity of the point of

maximum j~uj (indicated with a circle in Fig. 5(b)).

The red circles in Fig. 6 (left axis) show the ratio

jujmax=Usub as a function of Usub, where jujmax is the maxi-

mum speed along the liquid-air boundary. The blue diamonds

(right axis) indicate the maximum temperature rise DTmax

along the liquid-air boundary. For “low” values of the

substrate speed Usub � 0:05 mm=s, DTmax is approximately in-

dependent of Usub. Since the position of maximum tempera-

ture rise is the CL position for low Usub, the relevant velocity

scale is Usub and the relevant length scale is determined by

the heat source, i.e., 2w. Therefore, the appropriate definition

of the Peclet number is given by Pew ¼ 2UsubqEGcp;EGw=
kEG. Pew assumes a value of 1 for Usub ¼ 0:08 mm=s, which

agrees well with the transition value of 0.05 mm/s observed in

Fig. 6. For low Usub, the thermocapillary shear stress s0 also

does not depend on Usub. This shear stress is the dominant

driving force for the flow, since jujmax=Usub 
 1. As a result,

also jujmax is constant in this regime and jujmax=Usub scales as

1=Usub. For “intermediate” values of Usub, both DTmax and s0

decrease with increasing Usub. In this regime, jujmax decreases

with increasing Usub and thus jujmax=Usub scales as U�n
sub with

n > 1. For “high” values of Usub; jujmax=Usub approaches a

steady-state value �, i.e., jujmax ¼ �Usub. In this regime, the

motion of the substrate is the dominant driving force for the

flow in the wedge and not the temperature gradient along the

liquid-air boundary. In general, the thermocapillary flow

speed Utc can be estimated as

h

2l
s � w tan hr

2l
dc
dT

DTmax

w
� 1

2l
tan hr

dc
dT

DTmax: (31)

Since Pew 
 1 in this regime, the maximum temperature rise

is determined by convective effects and scales approximately

as 1=Usub. Approximating the typical temperature rise with

DTmax � C=Usub, we can estimate the value of the constant to

be C � 40 K mm/s from the blue curve in Fig. 6. At the transi-

tion point where jujmax=Usub approaches the constant �, Utc

and Usub by definition are of the same order. Therefore, Eq.

(31) results in Usub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2lÞ tanhrðdc=dTÞC

p
� 5mm=s.

This agrees well with the transition observed in Fig. 6.

Using the analytic solution for the flow in the wedge (in

case of constant viscosity and no shear stress),64 it can be

shown that

FIG. 5. Numerical results of the heat-transfer model (Usub ¼ 3:2 mm=s,

P ¼ 500 W=m, d ¼ 0:2 mm, hr ¼ 15� , b¼ 0, hd ¼ 0; dPC ¼ 4:4 mm, and

dglass ¼ 0 mm). (a) Pseudocolor plot of the temperature increase DTðx; yÞ in

the liquid wedge (the white lines represent the streamlines). (b) Pseudo-

color plot of the magnitude of the velocity j~uj in the liquid wedge.

FIG. 6. Left axis: jujmax=Usub as a function of Usub, where jujmax is the

maximum speed along the liquid-air boundary. The dashed, horizontal line

represents Eq. (32). Right axis: Maximum temperature rise DTmax along the

liquid-air boundary as a function of Usub.
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� ¼ sin hrð Þ � hr cos hrð Þ
hr � sin hrð Þcos hrð Þ

: (32)

The dashed line in Fig. 6 represents Eq. (32).

Figure 7(a) shows the temperature distribution DT along

the liquid-air boundary and the top boundary of the PC sub-

strate (indicated by the green line in Fig. 2) for different val-

ues of d. When d � w0, there is no absorption of the IR laser

intensity in the EG wedge. In this case, the temperature

increases smoothly with x and reaches a steady value when

x > d þ w0. When d � w0, part of the IR laser intensity is

directly absorbed in the liquid. The temperature rise increases,

since aEG 
 aPC. The temperature distribution displays a

local maximum along the liquid-air boundary left of the con-

tact line, for d < 0:4 mm.

Figure 7(b) shows the temperature distribution DTðxÞ
for different values of the absorption coefficient of the liquid

aliq (d ¼ 0:2 mm). For comparison, the absorption coefficient

of water65 for an IR wavelength k ¼ 1470 nm is aH2O

¼ 3100 m�1. When aliq�aPC, the temperature smoothly

increases towards the contact line along the liquid-air boundary.

For higher values of aliq, the temperature distribution again dis-

plays a local maximum along the liquid-air boundary.

Figure 7(c) shows the temperature distribution DTðxÞ for

different values of the laser power P. The temperature rise is

approximately linear with the laser power.

For “high” values of Usub (i.e., when the flow induced

by the thermocapillary shear stress is negligible), the temper-

ature rise increases with increasing hr (data not shown). With

increasing hr, the liquid wedge absorbs a larger fraction of

the incident IR laser intensity. For “low” values of Usub (i.e.,

when the flow induced by the thermocapillary shear stress is

dominant), the temperature rise decreases with increasing hr

(data not shown). The convection of heat away from the

contact line increases with increasing hr, thus lowering the

temperature rise.

IV. RESULTS FROM COUPLED MODELS

In this section, we present results from the coupled heat-

transfer and CL displacement models. Figure 8(a) shows the

receding contact angle hr (determined from the moving con-

tact line model) as a function of Usub. The red circles are

obtained for the case of no laser heating, i.e., P ¼ 0 W=m.

We assume that the temperature and thus the material param-

eters are uniform and s¼ 0. hr decreases with increasing

Usub. Beyond a critical value of Usub � ð1:6560:05Þmm=s,

it is no longer possible to find a steady state value of hr. For

substrate speeds higher than this value, a Landau-Levich

film is deposited on the substrate. When the laser is switched

on, we assume that the material parameters lðTÞ; qðTÞ, and

cðTÞ depend on the local temperature and we include the

thermocapillary shear stress s from the heat-transfer model.

The location of maximum laser intensity in the contact line

model is xIR � x1 ¼ 0:43 mm. When the laser power is

increased to P ¼ 500 W=m, the green triangles in Fig. 8(a)

FIG. 7. Temperature distribution DT ¼ TðxÞ � T0 along the liquid-air

boundary and the top boundary of the PC substrate. (a) DTðxÞ for different

values of d (with Usub ¼ 0:8 mm=s, P ¼ 500 W=m, and hr ¼ 15� ). (b)

DTðxÞ for d¼ 0.2 mm and different values of the absorption coefficient aliq.

(c) DTðxÞ for d¼ 0.2 mm and different values of the laser power P.

FIG. 8. (a) Receding contact angle hr as a function of Usub for P ¼
500 W=m and xIR � x1 ¼ 0:43 mm. Red circles: Constant material parame-

ters, thermocapillary effects not included, s¼ 0. Green triangles: Variable

material parameters, s 6¼ 0. Blue triangles: Constant material parameters,

s 6¼ 0. Black squares: Variable material parameters, s¼ 0. (b) Receding con-

tact angle hr as a function of CaCL.
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are obtained. The critical speed Usub � ð2:5760:06Þmm=s is

now more than 50% higher. Moreover, hr strongly increases

for low Usub compared to the case of P ¼ 0 W=m.

In order to identify the dominant mechanisms behind

the increase in critical speed and the overall increase in hr,

we performed separate series of simulations where we

neglected either the temperature dependency of the viscosity

or the effect of the thermocapillary shear stress s. The blue

triangles in Fig. 8(a) correspond to the case of uniform vis-

cosity, l ¼ lðT0Þ but the influence of s is taken into account

in the CL model. The black squares in Fig. 8(a) correspond

to the case of temperature dependent viscosity, l ¼ lðTÞ but

the influence of s is not taken into account in the CL model.

In the heat-transfer model, however, we include s0 and

assume the material parameters are variable in all cases.

The comparison of the green and black, as well of the

blue and red curves, shows that the increase in hr for low

Usub is caused by the thermocapillary shear stress. For the

black squares, we do not include s and we retrieve the same

hr as for the red circles in the limit Usub ! 0. For low Usub,

the maximum temperature rise occurs at the location of the

contact line. The shear stress is thus always directed away
from the contact line, which causes the increase of hr for low

Usub. The blue triangles show that for increasing Usub the

effect of the thermocapillary shear stress diminishes, since

the magnitude of s itself decreases. For sufficiently high

speeds, hr can even be lower than the laser-off case

(P ¼ 0 W=m, red line). In this regime, the maximum temper-

ature rise occurs left of the location of the contact line. The

shear stress is thus directed towards the contact line, which

decreases hr. A steady-state value of hr can be found up to

Usub � 1:5 mm=s. The influence of the shear stress on the

critical speed is thus quite small.

The black squares show the effect of temperature

dependent viscosity. In this case, a steady-state value of hr

was found up to Usub � 2:5 mm=s. The critical speed

increased by more than 50% relative to the red curve.

Figure 8(b) shows the receding contact angle hr as a

function of the capillary number of the contact line CaCL

� lðTCLÞUsub=cðTCLÞ. Here, TCL is the temperature at the

contact line. The curves correspond to the same contact

angle data sets hr as the curves in Fig. 8(a), but plotted as a

function of CaCL. For the red circles and blue triangles, TCL

corresponds to the initial temperature T0. The curves essen-

tially overlap for sufficiently high values of Usub, corroborat-

ing the conclusion that reduction of viscous friction is the

dominant phenomenon in this regime. The fact that utiliza-

tion of the capillary number at the CL position collapses

the curves is a consequence of the fact that the viscous stress

exhibits a strong local maximum there.

An equivalent point of view is provided by a comparison

of the magnitudes of the thermocapillary and the total

viscous shear stress

l
@ux

@y
y ¼ 0ð Þ ¼ � @P

@x
hþ s : (33)

In the limit Usub ! 0, the total viscous shear stress is domi-

nated by the thermocapillary contribution. In contrast, for

Usub � 1 mm=s in Fig. 8(a), the first term on the right hand

side of Eq. (33) by far exceeds s.

Figure 9(a) shows the receding contact angle hr as a

function of Usub for different values of the laser power P. In

all cases, the temperature dependence of the material param-

eters and the thermocapillary shear stress are taken into

account. The increase of hr at low values of Usub, caused by

the shear stress s, becomes more prominent for increasing P.

The largest value of Usub at which a stationary value of hr

can be found increases with increasing P. The dotted lines

represent polynomial fitting functions of the form

C0 þ C1hr þ C2h
2
r þ C3h

3
r ¼ Usub: (34)

The values of hr for low Usub, where the thermocapillary

shear stress is dominant, are not included for the fit. We

define the critical velocity Uc as the value of Usub where the

fitting function has a vertical tangent line, i.e., where

@Usub=@hr ¼ 0. Figure 9(b) presents the relative enhance-

ment of the critical speed Uc=UcðP ¼ 0Þ as a function of

laser power P. Despite the 3D-nature of the experiments and

the 2D-nature of the simulations, the relative increase of Uc

is of comparable magnitude66 (see Fig. 7 of Paper I).

V. SUMMARY

We studied the increase in mobility of stationary contact

lines on a moving, partially wetting substrate by using infra-

red laser illumination of its receding contact line. Below a

certain critical speed, the receding contact angle maintains a

finite, i.e., non-zero value, and no liquid is entrained on the

substrate. The transition towards a Landau-Levich film, i.e.,

residual liquid left behind on the substrate, occurs at the criti-

cal speed. We were specifically interested in the increase in

critical speed due to the laser irradiation.

We developed a model for the liquid flow and heat

transfer in the vicinity of the contact line, where we take into

account thermocapillary shear stresses and the temperature

induced variation of the liquid density and viscosity. For

FIG. 9. (a) Receding contact angle hr as a function of Usub for different val-

ues of the laser power P. The dotted lines represent fitting functions, given

by Eq. (34). (b) Relative enhancement of the critical speed Uc as a function

of laser power.
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values of the substrate speed higher than the critical speed,

the flow near the contact line is primarily driven by the

motion of the substrate. For values significantly lower than

the critical speed, the thermocapillary shear stress is the

dominant driving mechanism of the flow.

We developed a second, coupled model to describe the

displacement of the receding contact line as a consequence

of the laser-induced non-uniform temperature distribution.

We found that the thermocapillary shear stress at low sub-

strate speeds is directed away from the contact line and

increases the receding contact angle. However, its effect on

the critical speed is minimal since the magnitude of the ther-

mocapillary stress diminishes with increasing substrate

speed. Thus, the temperature induced decrease of viscosity,

i.e., the reduction of the viscous friction, is identified as the

dominant mechanism for the increase in critical speed.

The experiments described in Paper I are intrinsically

three-dimensional in nature. The receding contact develops

a pointed shape for sufficiently high substrate speeds.

Although our two-dimensional model does not include this

effect, the relative increase in critical speed that we found in

the simulations agrees reasonably well with the experimental

results for comparable laser intensities.
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APPENDIX A: OPTICAL PATH LENGTH

Figure 10 shows a schematic illustration of the laser

beam coordinate system ðxb; ybÞ and its relation to the coor-

dinate system (x, y) expressed by Eqs. (20) and (21).

In the EG wedge ðxb < �d cos bÞ, the parameter F in

Eq. (22) is given by

FEG ¼ aEGðyb � h1Þ; (A1)

where h1 is given by

h1 ¼ ðxb þ d cos bÞ tanðb� hrÞ � d sin b: (A2)

In the PC substrate, F is given by

FPC ¼ aEGðh2 � h1Þ þ aPCðyb � h2Þ; (A3)

where h1 for xb < �d cos b is given by Eq. (A2) and for

xb � �d cos b by

h1 ¼ xb tan b; for xb � �d cos b; (A4)

and h2 is given by

h2 ¼ xb tan b: (A5)

In the glass plate, F is given by

Fg ¼ aEG h2 � h1ð Þ � aPC
dPC

cos b
þ aglass yb � h3ð Þ; (A6)

where h1 is given by Eqs. (A2) or (A4), h2 is given by Eq.

(A5), and h3 is defined as

h3 ¼ xb tan b� dPC

cos b
: (A7)

APPENDIX B: MATERIAL PARAMETERS

We assume the following material parameters: density

qPC ¼ 1200 kg/m3, qglass ¼ 2550 kg/m3, specific heat

capacity cp;EG ¼ 2300 J/(kg K), cp;PC ¼ 1240 J/(kg K), cp;glass

¼ 750 J/(kg K), and thermal conductivity kEG ¼ 0:24 W/

(m K), kPC ¼ 0:22 W/(m K), kglass ¼ 1:0 W/(m K). The tem-

perature dependent material parameters of EG are given

by67,68

l mPa s½ � ¼ exp �3:61þ 986:52

DT þ 127:86

� 	
; (B1)

c½mN=m� ¼ 50:21� 0:09DT; (B2)

q½kg=m3� ¼ 1127:68� 0:66DT � 6:2 � 10�4ðDTÞ2; (B3)

where DT � T � 273 K is the temperature in degrees Celsius

and T is the absolute temperature in Kelvin.
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