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2D Phase field modeling of sintering of silver
nanoparticles

K. Chockalingama, V. G. Kouznetsovaa,∗, O. van der Sluisa,b, M.G.D. Geersa

aDepartment of Mechanical Engineering, Eindhoven University of Technology, 5612 AZ,
Eindhoven, The Netherlands

bPhilips Research Laboratories, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands

Abstract

The sintering mechanism of silver nanoparticles is modelled by incorporating sur-
face, volume and grain boundary diffusion in a phase field model. A direction-
dependent tensorial mobility formulation is adopted, capturing the fact that diffu-
sion mainly occurs along the directions tangential to the surface of the particle. A
finite element framework is applied to solve the governing equations in a fully cou-
pled implicit manner, and the developed framework is demonstrated for particle
sintering of equal and unequal sizes as well as at different temperatures. The ob-
tained results are compared with experimental observations, whereby it is shown
that the developed material model adequately describes the sintering mechanism
of silver nanoparticles.

Keywords: sintering, Cahn-Hilliard, Allen-Cahn, phase field, silver particles,
finite elements, tensorial mobility

Dedicated to Professor Christian Miehe on the occasion of his 60th birthday

As one of the leading scientists in the world in computational mechanics, profes-
sor Christian Miehe greatly influenced our work. Many of his contributions to the
field are groundbreaking, and of great interest for the entire community. Professor
Miehe always showed great interest for multi-scale models, micromechanics and
advanced computational approaches for damage and fracture. Among these, he
pioneered phase field approaches to fracture. Phase field approaches are intrin-
sically made to deal with problems characterized by non-convexity or to regular-
ize ill-posed problems. Our contribution focuses on the sintering process, which
lends itself excellently to phase field modelling. Moreover, sintering defines the
microstructural defects and is therefore determinant for the damage and fracture
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behaviour. With this open-minded view on this special issue, we dedicate this
paper in honor of professor Christian Miehe.

1. Introduction

There is an ever increasing need to enhance the performance of electronic
devices as their size is getting smaller and smaller. Improving the heat dissipa-
tion mechanism is one of the ways to significantly enhance the performance of
electronic devices. Proper heat transfer prevents the occurrence of excessive tem-
peratures thereby increasing the lifetime and reliability of electronic components
[1]. In electronic devices, heat is evacuated from an electronic component via an
interconnect material to the substrate on which the component is mounted [2]. In-
terconnect materials are typically referred to as thermal interface materials (TIM).
The focus here is on TIMs that are composed of silver nanoparticles. The sinter-
ing process used in the making of this TIM has impact on the resulting material
structure, and is thus essential to reduce the heat resistance of TIMs to guaran-
tee its reliability [3]. Quantitative modelling of the sintering process is therefore
essential in prediction and control of the processing-structure-property-lifetime
performance of TIMs

The process of mass transport in solid state sintering is highly complex, and
depends on many physical mechanisms, including, but not limited to, viscous flow,
vapor transport, surface diffusion, volume diffusion, grain boundary diffusion, and
plastic flow [4]. It also depends on processing conditions such as the applied pres-
sure and temperature-time profile. In the present work, only the most dominant
mechanisms are considered, which are the surface, volume and grain boundary
diffusion under isothermal conditions at different temperatures with no external
pressure. Given the fragile nature of the attached micro-electronic components,
the considered sinter paste is processed under pressureless conditions.

To model sintering, appropriate choices for the numerical scheme and material
parameters are essential. Up to date, the majority of papers in the literature on the
modelling of solid state sintering [5–7] have essentially focused on the develop-
ment of numerical schemes and their qualitative analysis, and have not directly
been applied to a realistic material system to make quantitative predictions. This
paper tends to close this gap by applying the developed numerical model to study
the sintering mechanism of silver nanoparticles. It is thereby illustrated that the
material model adequately captures the sintering behavior in a quantitative manner
by comparing it with small scale experiments [8].

One of the earliest works on modeling surface and grain boundary diffusion
was performed by Zhang and Schneibel [9], who studied the sintering of two equal
circular particles, while monitoring the growth rate exponent and change in neck
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size. Later, Pan et al. [10] proposed a numerical scheme to model sintering of par-
ticles of different sizes and found that the particle size can influence grain growth
and densification. Since then, considerable efforts have been made to model solid
state sintering, especially using sharp interface models. Bruchon et al. [5] used a
level-set approach to track particle boundaries and demonstrated surface transport
in 3D. A discrete element formulation was adopted by Wakai and Brakke [11] to
capture surface and grain boundary diffusion. Probabilistic methods have been
used by Tikare et al. [12] using a kinetic Monte Carlo model for the sintering of
three particles.

Departing from the aforementioned methods, progress has been made in dif-
fuse interface models, e.g. using a phase field approach. Jing et al. [13] used a
phase field method to capture pore spheroidization between four particles. The
system was solved using a semi-implicit Fourier-Spectral method. A vacancy dif-
fusion approach to model sintering was proposed by Asp and Agren [14], where
the solid fraction contained little vacancies and the voids were considered as va-
cancy rich; this approach can serve as a generic scheme that can be extended to
multiphase materials. Wang [6] also incorporated rigid body translation and ro-
tation in the phase field model to capture solid state sintering. Sintering of two
unequal-size particles was studied by Kumar et al. [7], who particularly moni-
tored the grain boundary migration during different stages of sintering. A phase
field approach has the ability to model complex geometries without the need to
explicitly track the interface as in sharp interface models. On the other hand, one
of the main limitations of the phase field method over sharp interface models is
the diffuse nature of its interface. Grain boundaries are an example of such in-
terfaces, which are rather sharp, whereby a diffuse interface approximation can
have a quantitative effect on grain growth prediction [15]. In the case of surface
diffusion, this limitation can be partially mitigated through the introduction of an
anisotropic tensorial mobility that better approximates the sharp interface equa-
tions, as demonstrated by Gugenberger el al. [16]. A similar tensorial mobility
correction for grain boundary diffusion is proposed by Moelans et al. [17]. These
modifications have been successfully adopted by Deng [18] for two particle sin-
tering, who has highlighted the significance of direction-dependent tensorial mo-
bility effects.

In this work, a finite element based phase field method is used as the numerical
scheme for spatial discretization as it offers a large flexibility in capturing the com-
plex nature of sintering. Moreover, finite elements are not restricted to geometries
of rectilinear simulation domains. Finite elements have previously been employed
[15] to solve well-known phase field equations, i.e. the fourth-order Cahn-Hilliard
equation and the second-order Allen-Cahn equation to study spinodal decomposi-
tion and grain growth, respectively. The chemical diffusion mobilities used were
constant scalars with no directional dependence. The phase field module was
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programmed within MOOSE [19], an object oriented finite element based non-
linear solver. The current work also employs MOOSE to incorporate the sintering
module in order to capture the three dominant diffusion mechanisms and grain
boundary migration. The chemical diffusion mobilities are taken as functions of
the conserved concentration field and the non-conserved order parameter. Ten-
sorial mobility effects are included as a part of the formulation, so that diffusion
occurs only along the tangential direction of the particle thereby producing the
correct neck growth between sintered particles. In a recent paper by Tonks et al.
[20] a finite element scheme including tensorial mobility was employed to study
grain boundary pinning and pore interaction.

Most of the above mentioned sintering models rely on a qualitative verifica-
tion of the sintering process with little emphasis on the material model. Muñoz
et al. [21, 22] have proposed a Eulerian finite element framework based level-set
method to model multi-particle sintering of alumina particles in 3D, but without
any experimental validation. In case of silver, the surface diffusion coefficient
[23, 24] and grain boundary mobility coefficient [25, 26] reported in the literature
differ by many orders of magnitude, and without proper validation quantitative
predictions using the developed numerical scheme would not be possible. After
an extensive literature study to identify all necessary material parameters, the re-
sults from the model proposed in this paper are in good agreement with theoretical
predictions on sintering [4] and experimental observations on silver nanoparticles
[8]. Apart from a molecular dynamics simulation by Alarifi et al. [27], the litera-
ture does not seem to report other modelling work on sintering of silver particles.
Molecular dynamics simulations are highly limited by their length and time scales
to simulate any realistic neck growth. The phase field model developed here can
be readily extended to continuum length and time scales as required for practical
purposes.

In section 2, the phase field model is outlined and all the related quantitative
material parameters used in the free energy functional are identified. In section 3,
the finite element framework for the fully coupled implicit system of governing
equations is presented. In section 4, the developed model is tested for sintering
two particles of unequal size. In section 5, the choice of material parameters is
discussed and the quantitative results on sintering of silver particles are presented.
The paper closes with a discussion and conclusions.

2. Phase field model

In this work, diffusional mass transport and grain boundary migration between
sintered silver particles are modeled using the phase field method. For this pur-
pose, a conserved field parameter c and a non-conserved order parameter ηα are
introduced, where α is the index of a particle. The conserved field c describes
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the concentration of silver, and it takes a value of 1 in the solid phase and 0 in
the “void” phase. Here, the conserved concentration field c corresponds to the
mass density ρ. The morphological evolution of the particles is described by the
non-conserved order parameter ηα. The parameter ηα equals 1 at the αth particle
and zero elsewhere in the system. The microstructural evolution is driven by the
minimization of the free energy functional which is given by

F =

∫
v

 f (c, ηα) +
1
2
κc |∇c|2 +

1
2

N∑
α=1

κη |∇ηα|
2

 dv, (1)

where f (c, ηα) is the bulk free energy energy, κc is the gradient energy parameter
for the conserved field, κη is the gradient energy parameter for the non-conserved
field and N is the total number of order parameters. The following form for the
bulk free energy contribution is adopted [6]

f (c, ηα) = ωc2 (1 − c)2 + ζ

c2 + 6 (1 − c)
N∑
α=1

η2
α − 4 (2 − c)

N∑
α=1

η3
α + 3

 N∑
α=1

η2
α

2 ,
(2)

where ω and ζ are constants. The bulk energy adopted in (2) is the chemical free
energy describing homogeneous coexisting phases (solid and pore) and multiple
solid domains (nanoparticles). The above Landau-type potential ensures that sta-
ble minima in both the solid and void phase are achieved. The constants ω and ζ
define the grain boundary energy γgb and surface energy γs f , as will be specified
in the following.

x

0 +1�1

l

x

0 +1�1

c, ⌘�

c, ⌘� = 0

c, ⌘� = 1

⌘↵, ⌘�
⌘� = 1

⌘� = 0 ⌘↵ = 0

⌘↵ = 1

Figure 1: The variation of the non-conserved and conserved parameter at the grain
boundary and surface.

The grain boundary energy γgb at the interface between two particles ηα and
ηβ in an idealised system of infinite length as seen in Figure 1 can be defined as
[17]

γgb =

∞∫
−∞

 f
(
c = 1, ηα, ηβ

)
+
κη

2


(
dηα
dx

)2

+

(
dηβ
dx

)2

 dx. (3)
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Likewise, the surface energy γs f at the interface between solid and void phases
can be defined as [28]

γs f =

∞∫
−∞

 f
(
c, ηβ

)
+
κc

2

(
dc
dx

)2

+
κη

2

(
dηβ
dx

)2 dx. (4)

Ahmed et al. [28] used a quantitative analysis procedure [17] to relate the
gradient energy parameters and the constants in the free energy functional (1) to
material properties. The analysis is carried out such that the relations between the
parameters minimize (3) and (4). The relationships presented in [28] are adopted
here

γgb =
2
√

3

√
ζκη, (5)

γs f =

√
2

6
√
κc + κη

√
ω + 7ζ, (6)

l =

√
4κη
3ζ

, (7)

where l is the width of the grain boundary.
For the sake of completeness (5) and (7) are derived here and (6) can be ob-

tained following the same procedure. For a grain boundary in local equilibrium,
the profiles ηα (x) and ηβ (x) adopt a shape that minimizes functional (3) and sat-
isfies the boundary conditions

nα = 1 and nα = 0 for x→ −∞, (8a)
nβ = 0 and nβ = 1 for x→ +∞, (8b)

dηα
dx

=
dηβ
dx

= 0 for x→ ±∞. (8c)

According to principles of calculus of variation, the Euler equations of (3)
must be satisfied

∂ f
(
c = 1, ηα, ηβ

)
∂ηα

− κη

(
d2ηα
dx2

)
= 0, (9)

∂ f
(
c = 1, ηα, ηβ

)
∂ηβ

− κη

(
d2ηβ

dx2

)
= 0. (10)

Making use of the Beltrami identity (see Appendix A), (9) and (10) can be written
as

f −
κη

2

(dηα
dx

)2

+

(
dηβ
dx

)2 = 0. (11)
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Since the free energy functional (1) is symmetric with respect to ηα(x) and ηβ(x)
the profiles satisfy

ηβ = 1 − ηα, (12)

which in turn gives the following the relation

dηα
dx

= −
dηβ
dx

, (13)

and equivalently,
dηα
dηβ

= −1. (14)

Rearranging (11) and using boundary conditions (8a) to (8c) yields

dηα
dx

= −

√√√ 2 f

κη

[
1 +

( dηβ
dηα

)2
] , (15)

dηβ
dx

=

√√√ 2 f

κη

[
1 +

(
dηα
dηβ

)2
] . (16)

Substituting (11) into (5) gives

γgb =

∫ +∞

−∞

2 f
(
c = 1, ηα, ηβ

)
dx. (17)

The bulk free energy is obtained by substituting (12) in (2)

f
(
c = 1, ηα, ηβ = 1 − ηα

)
= 12ζη2

α (1 − ηα)2 . (18)

Changing the independent variable in (17) from x to ηα and making use of (15)
results in

γgb = 2
∫ 1

0
f
(
ηα, ηβ (ηα)

) dx
dηα

dηα

=
√

2κη

∫ 1

0

√
f
(
c = 1, ηα, ηβ (ηα)

)√
1 +

(
dηβ (ηα)

dηα

)2

dηα

= 2
√

12Cκη

∫ 1

0
ηα (1 − ηα) dηα =

2
√

3

√
ζκη.

(19)

The width of the grain boundary can be calculated by making use of the abso-
lute value of the gradient of ηα(x) at x = 0

l =

∣∣∣∣∣∣
(
dηα
dx

)
x=0

∣∣∣∣∣∣−1

=

√
κη

f (ηα = 0.5)
=

√
4κη
3ζ

.

(20)
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According to [28], the following relationship must also be satisfied

6ζ/κη = (ω + ζ) /κc, (21)

so that all the free energy functional parameters in (1) are uniquely determined.
The conserved field c is evolved using the Cahn-Hilliard equation

∂c
∂t

= ∇ ·

(
M · ∇

δF
δc (x, t)

)
= ∇ ·

(
M · ∇

(
∂ f
∂c
− κc∇

2c
))
,

(22)

where M is the concentration mobility tensor, x is the spatial position vector and t
is the time. The concentration mobility is defined such that Fick’s law of diffusion
is recovered in the bulk [29]. This can be achieved by defining the concentration
mobility as

M = D/
∂2F
∂c2

∣∣∣∣∣∣
c=1

= D/ (2 (ζ + ω)) , (23)

where D is the diffusivity tensor. It is defined as the sum of the contributions from
volume, surface, and grain boundary diffusion [20]

D = Dv + Ds + Dgb. (24)

The diffusivity tensors for volume, surface and grain boundary are defined as

Dv = Dv
e f f I, (25)

Ds = Ds
e f f c

2
(
1 − c2

)
Ts, (26)

Dgb = Dgb
e f f

N∑
α=1

N∑
β,α

ηαηβTgb, (27)

where Dv
e f f , Ds

e f f , and Dgb
e f f are the volume, surface and grain boundary diffusion

coefficients, respectively, I is the identity tensor, Ts is the projection tensor for
surface diffusion and Tgb is the projection tensor for grain boundary diffusion,
defined in [18] as

Ts = I −
∇c
‖∇c‖

⊗
∇c
‖∇c‖

, (28)

Tgb = I −
∇ηα − ∇ηβ∥∥∥∇ηα − ∇ηβ∥∥∥ ⊗ ∇ηα − ∇ηβ∥∥∥∇ηα − ∇ηβ∥∥∥ , (29)
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respectively, where ‖.‖ is the Euclidean norm and ⊗ represents the dyadic product.
The bulk diffusion is assumed to be constant in the entire domain, any contribu-
tion to the surface and grain boundary diffusion is negligible as the surface and
grain boundary diffusion coefficients are typically many orders larger than that
of bulk diffusion coefficient. The surface diffusion is only present at the surface
of the particle as the function in (26) is zero in the interior of the solid and void
phase. Likewise, grain boundary diffusion is activated if the particles are touching
each other as the summation on ηαηβ in (27) is non-zero only in that case. The
projection tensor negates any normal component and projects only the tangential
components of the diffusion tensor to the surface of the particle.

The non-conserved field ηα is evolved using the Allen-Cahn equation

∂ηα
∂t

= −L
δF

δηα (x, t)

= −L
(
∂ f
∂ηα
− κη∇

2ηα

)
,

(30)

where L is the order parameter scalar mobility, which can be defined as [17]

L =
ϑgbγgb

κη
, (31)

where ϑgb is the grain boundary mobility.
It is noted that the kinetic equations (22) and (30) do not incorporate the rigid-

body motion as suggested by Wang [6]. Rigid body motion and rotation of parti-
cles accompany the shrinkage due to sintering and its effect may be significant in
the presence of grain anisotropy and free surfaces. Sintering of thin-films mounted
on a substrate, which is of primary interest for the application considered here,
constrains the shrinkage, rendering the rigid body motion of the particles to a
minimum [30]. Hence, rigid body motion is not included in this work, but should
certainly be considered in future extensions of the model.

3. Finite element formulation

In this section, the finite element formulation to solve the Cahn-Hilliard and
Allen-Cahn equations is presented. The derivation takes into account that the con-
centration mobility tensor is a function of both the conserved and non-conserved
fields. From here onwards, the abstract tensorial representation used in the previ-
ous section is replaced by the index presentation on the spatial domain.

The Cahn-Hilliard equation (22) is a fourth-order equation and can be solved
by splitting the equation into two second-order equations [31–33]. This introduces
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an additional field variable µ. The following two second-order equations result

∂c
∂t

=
∂

∂xi

(
Mi j

∂µ

∂x j

)
, (32)

µ =
∂ f
∂c
− κc

∂2c
∂xi∂xi

. (33)

The weak forms of the residuals Rc and Rµ for (32) and (33), respectively,
are obtained by the introduction of the respective trial functions ψc and ψµ and
integration by parts over the volume v of the domain, resulting in

Rc =

∫
v

∂c
∂t
ψcdv +

∫
v

Mi j
∂µ

∂x j

∂ψc

∂xi
dv −

∫
Γ

Mi j
∂µ

∂x j
ψcnidΓ, (34)

Rµ =

∫
v

∂ f
∂c
ψµdv −

∫
v

µψµdv +

∫
v

κc
∂c
∂xi

∂ψµ

∂xi
dv −

∫
Γ

κc
∂c
∂xi

ψµnidΓ, (35)

where ni is the normal vector to the boundary Γ of the domain.
The second-order Allen-Cahn equation (30), which governs the evolution of

the non-conserved field, can be rewritten in the index form as

∂ηα
∂t

= −L
(
∂ f
∂ηα
− κη

∂2ηα
∂xi∂xi

)
, (36)

giving the weak form of the residual

Rηα =

∫
v

∂ηα
∂t
ψηdv+L

∫
v

∂ f
∂ηα

ψηdv+L
∫
v

κη
∂ηα
∂xi

∂ψη

∂xi
dv−L

∫
Γ

κη
∂ηα
∂xi

ψηnidΓ, (37)

with ψη the corresponding test function.
The unknown fields c, µ and ηα are discretized within the finite element setting

as
c = N I

ccI , µ = N I
µµ

I , ηα = N I
ηη

I
α, (38)

where I denotes the node index and summation on a repeated index is implied;
cI , µI and ηI

α are the nodal values and N I
c , N I

µ and N I
η are the corresponding shape

functions. Following the standard Galerkin approach, the test functions are dis-
cretized as

ψc = N I
cψ

I
c, ψµ = N I

µψ
I
µ, ψη = N I

ηψ
I
η, (39)

This leads to the discretized residuals

RI
c =

∫
v

∂c
∂t

N I
cdv +

∫
v

Mi j
∂N J

µ

∂x j
µJ ∂N I

c

∂xi
dv −

∫
Γ

Mi j
∂N J

µ

∂x j
µJN I

cnidΓ, (40)
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RI
µ =

∫
v

∂ f
∂c

N I
µdv−

∫
v

N J
µµ

JN I
µdv+

∫
v

κc
∂N J

c

∂xi
cJ
∂N I

µ

∂xi
dv−

∫
Γ

κc
∂N J

c

∂xi
cJN I

µnidΓ, (41)

RI
ηα

=

∫
v

∂ηα
∂t

N I
ηdv+L

∫
v

∂ f
∂ηα

N I
ηdv+L

∫
v

κη
∂N J

η

∂xi
ηJ
α

∂N I
η

∂xi
dv−L

∫
Γ

κη
∂N J

η

∂xi
ηJ
αN I

ηnidΓ.

(42)
The system of non-linear equations (40)-(42) is solved in a fully-coupled im-

plicit manner using the non-linear solver PETSc [34], which is embedded within
the MOOSE [19] framework. The linearization of the residuals (40)-(42) gives for
the iterative corrections of the nodal values δcJ, δµJ and δηJ

1, ..., δη
J
N

∂RI
c

∂cJ
∂RI

c
∂µJ

∂RI
c

∂ηJ
1
· · ·

∂RI
c

∂ηJ
N

∂RI
µ

∂cJ

∂RI
µ

∂µJ

∂RI
µ

∂ηJ
1
· · ·

∂RI
µ

∂ηJ
N

∂RI
η1

∂cJ

∂RI
η1

∂µJ

∂RI
η1

∂ηJ
1
· · ·

∂RI
η1

∂ηJ
N

...
...

...
. . .

...
∂RI

ηN
∂cJ

∂RI
ηN

∂µJ

∂RI
ηN

∂ηJ
1
· · ·

∂RI
ηN

∂ηJ
N




δcJ

δµJ

δηJ
1
...

δηJ
N


= −



RI
c

RI
µ

RI
η1
...

RI
ηN


, (43)

with the terms of the Jacobian matrix given in Appendix B.
All simulations were performed using nine-node quadratic elements, which

have richer interpolation property compared to computationally cheaper eight-
node quadratic elements. Moreover, the use of nine-node elements in combination
with operator split version of Cahn-Hilliard equation, instead of Hermite elements
used to solve the full Cahn-Hilliard equation, has been recommended by Zhang
et al. [31]. Periodic boundary conditions have been applied on all the discretized
fields. In the present implementation, the implicit Euler time integration scheme
has been used.

4. Test case

To qualitatively validate the model and its implementation, the classical bench-
mark problem of sintering two particles of unequal size is considered. In this case
we set ω = 11ζ and κc = 2κα. The chosen values satisfy relation (21) and give
γs f /γgb to be 1.5. The surface diffusion coefficient Ds

e f f is taken as 10−16m2s−1.
The Dgb

e f f /D
s
e f f and Dv

e f f /D
s
e f f are taken as 10−1 and 10−3, respectively. The grain

boundary scalar mobility is taken as ϑgb = 10−15m4J−1s−1.
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4.1. Sintering of unequal size particles
The particles are initially touching each other and the diameter of the smaller

particle is half that of the larger particle as shown in Figure 2a. The evolution of
both particles during sintering is shown in Figure 2 as a function of relative time.
The evolution of the particles is plotted by computing

∑α=N
α=1 η

2
α in every point of

the domain, which takes a value of one at the grains and zero in the voids.

(a) 0.0 (b) 0.01 (c) 0.30

(d) 0.75 (e) 0.99 (f) 1.0

Figure 2: The evolution of two unequal sized particles during sintering at relative
times.

The relative neck growth and grain area of the smaller particle are plotted with
respect to relative time in Figure 3. The grain area is computed using

∫
ηαdA and

the neck growth between particles is approximated as

X =

∫ {(
ηαηβ

)
/l
}

dA, (44)

which is non-zero only at the grain boundary. It can be seen that initially there
is a rapid neck growth compared to grain growth until time 0.2. After time 0.2
the neck growth continues whereas the smaller grain shrinks. The neck grows to
a maximum at approximatively 0.99 relative time, followed by an instantaneous
drop to zero neck at time 1.0, corresponding to the disappearance of the smaller
grain. These results are consistent with the observations of other phase field mod-
els on sintering [7, 28].
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Figure 3: Relative grain area and neck growth as a function of relative time.

4.2. Effect of directional dependent chemical mobility
The same problem with two particles of unequal size as discussed in Section

4.1 is considered but with twice the interface phase width in order to illustrate
the effect of the surface projection tensor. In Figure 4 the concentration field for
the model with tensor concentration mobility and scalar concentration mobility is
plotted for the relative time 0.01. The model with the surface projection tensor,
which suppresses any material fluxes perpendicular to the surface of the parti-
cle, results in diffusion only tangential to the surface of the particle compared to
the model with a scalar concentration mobility that has no directional dependent
diffusion. This was also observed by Deng [18].

(a) Tensorial concentration mobility (b) Scalar concentration mobility

Figure 4: The concentration field evolution of two unequal sized particles during
sintering at 0.01 relative time, showing the effect of surface diffusion: (a) with
tensorial concentration mobility and (b) with scalar concentration mobility.
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4.3. Adaptive meshing and time stepping
Adaptive meshing and time stepping schemes were adopted to reduce com-

putational costs. The mesh is adapted to the gradient of the solution variables
(c, µ, ηα). The mesh depicted in Figure 5 has an initial unadapted mesh size of 2
nm x 2 nm and an interface width of 2 nm. The problem is tested for three lev-
els of h-adaptivity with adaptivity primarily concentrated at the interface. It was
found that except for the model with h-level 1 the other two models converged to
the expected final solution, i.e. a perfect circle with no smaller grain. Therefore,
it has been concluded that the interface has to be resolved by a minimum of four
elements to capture any jump in the gradient of the solution variables in order to
achieve convergence.

(a) h-level 1 (b) h-level 2 (c) h-level 3

Figure 5: Concentration field of two unequal sized particles at 0.0 time with an
initial unadapted mesh size of 2 nm x 2 nm and an interface width of 2 nm: (a)
h-level 1, (b) h-level 2 and (b) h-level 3.

The adaptive time step corresponding to the two particle system in Section 4.1
is shown in Figure 6. Initially, the time step is small to capture the rapid increase
in neck growth followed by an increase of several orders of magnitude, facilitated
by the implicit time integration scheme. As there is swift movement of the grain
boundary closer to time 1.0 there is again a sudden drop in time step to capture the
grain boundary migration. A detailed analysis of the adopted adaptive meshing
and time stepping schemes is provided in [15].

5. Sintering of silver particles

In the previous section the model and its finite element implementation were
presented and the model was qualitatively verified. Next, the method will be ap-
plied to quantitatively study the sintering of silver particles. First, the material
model used for silver is presented followed by the results for sintering of silver
particles of equal size.
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5.1. Material model
The material parameters required to model sintering of silver particles are the

surface diffusion coefficient Ds
e f f , the volume diffusion coefficient Dv

e f f , the grain
boundary diffusion coefficient Dgb

e f f , the grain boundary mobility ϑgb, the grain
boundary energy γgb and the surface energy γs f . The reported grain boundary
mobility data of silver in the literature [35–37] reveals a wide range of values with
little consistency. The grain boundary mobility for silver is taken from [26], which
has a similar order of magnitude compared to other FCC metals like aluminum
[38] and copper [39], although the grain boundary mobility is highly dependent
on the grain boundary structure which can vary for different metals. The diffusion
coefficient De f f obeys the Arrhenius equation

De f f = Doe−
Q

kbT , (45)

where T is the temperature, kb is Boltzmann constant, Do is a temperature indepen-
dent constant and Q is the activation energy. The values for Do and Q for surface
and volume diffusion are listed in Table 1. According to [40] the grain boundary
diffusion coefficient is typically in between the surface and volume diffusion co-
efficient and is here taken as 0.1 times surface diffusion coefficient [6, 7, 18]. This
is valid for temperatures above 150◦C; below 150◦C the surface diffusion coef-
ficient tends to approach the volume diffusion coefficient. The material parame-
ters for silver are listed in Table 1. The remaining parameters were determined
by solving the systems of equations (5), (6), (7) and (21), which gave the values
ω = 4.08×109J/m3, ζ = 3.95×108J/m3, κc = 2.24×10−9J/m, κη = 1.19×10−9J/m.
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Table 1: Material parameters for silver

Propery Value Units Reference
ϑgb 10−16 m4J−1s−1 [26]
γgb 0.79 Jm−2 [41]
γs f 1.14 Jm−2 [25]
Qs (3.84 ± 0.24) × 10−19 J [24]
Ds

o 102±1 m2s−1 [24]
Qv (3.15 ± 0.16) × 10−19 J [42]
Dv

o 0.67 × 10−4 m2s−1 [42]

5.2. Sintering of equal size particles
Two particles of 40 nm diameter are sintered at 400◦C and the width of the

grain boundary is taken as l = 2 nm. The phase field model approaches the sharp
interface model if the grain size is much larger than the grain boundary width.

The evolution of the silver particles during sintering is compared to the exper-
imental work of Asoro et al. [8]. The comparison is shown in Figure 7 from time
0 to 15 minutes. The phase field plots shown in Figure 7 represent the (conserved)
concentration field. An adequate agreement is achieved between the behavior pre-
dicted by the phase field model and the experimental observations. A difference,
however, can be noticed in the dihedral angle subtended between the particles: as
can be seen from Figure 7, the experimental results show that the sintered parti-
cles produce an acute dihedral angle [43], whereas the phase field model predicts
an obtuse dihedral angle. In the next subsection, it will be investigated which
material property influences the dihedral angle. Note, that the presence of carbon
impurities on the surface of the silver particle as reported in [8] is not included in
the phase field model, even though this may well affect the diffusion coefficient.
Moreover, the 2D approximation used in the model may also be responsible for
the slight discrepancy between the naturally 3D experiments and the simulation
results.

The sintering of particles of equal size can be analyzed in relation to the gov-
erning equations for neck growth. The theoretical prediction of neck growth obeys
a power law form [4, 6] given by ( X

D

)r

= Kt, (46)

where r is the growth exponent, D is the particle size and K is a term related to
the material properties. The power law is fitted on the computational results, to
extract K and r. The relative neck growth and the respective power law fit are
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(a) 0 min (b) 3 mins (c) 15 mins

(d) 0 min (e) 3 mins (f) 15 mins

Figure 7: The evolution of two equal sized silver particles of 40 nm in diameter
sintered at 400◦C for 15 mins. The experimental images shown in (a) through
(c) are taken from [8] (reproduced with permission from Elsevier) and the phase
field concentration plots are shown in (d) through (f). An adequate comparison
between the experimental results and the phase field simulation is established.

shown in Figure 8. As noted in [6] the phase field model at the initial stages of
neck growth, may produce certain anomalies due to the large surface curvature
involved, and hence the first 1 sec of the neck growth data were not taken into
account to prevent any bias. An early stage fit is made for a time less than 2
minutes, and a later stage fit is taken for time instances greater than 2 mins. The
growth exponent r is found to be 6.9 for the early stage fit and 7.2 for the later
stage fit. Depending on the type of diffusion mechanism, the theoretical value for
r can range from 3 to 7 [4] and for certain type of surface diffusion models r can
take a value up to 7.5 [4]. Hence, the growth exponent is within the theoretical
range.

5.2.1. Dihedral angle
The dihedral angle φ subtended between two particles can be defined as [4]

γs f = 2γgb cos
(
φ

2

)
. (47)

Thereby changing the γs f /γgb ratio, the dihedral angle subtended between the
particles can be controlled. In Figure 9 two particles of 15 nm with different
γs f /γgb ratios sintered at 400◦C for 4 mins are shown. In Figure 9a, a γs f /γgb
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Figure 8: Relative neck growth ratio X/D as a function of time and power law fit
for different simulation times.

ratio of 1.44 obtained from the grain boundary energy and surface energy values
listed in Table 1 for silver is shown to produce a dihedral angle of 139◦, whereas
a hypothetical γs f /γgb ratio of 0.66 is shown to produce a dihedral angle of 83◦.
Thus, the γs f /γgb ratio could have possibly contributed to the difference in the
dihedral angle predicted by the phase field model compared to the experimental
observation as seen in Figure 7.

(a) γs f /γgb = 1.44 (b) γs f /γgb = 0.66

Figure 9: Two 15 nm particles with different γs f /γgb ratio sintered at 400◦C for 4
mins: (a) for a dihedral angle of 139◦ and (b) for a dihedral angle of 83◦.

5.2.2. Size effect
In order to demonstrate the effect of the absolute size on particle sintering,

sintering of particles with a diameter 40 nm and 15 nm at 400◦C for 4 mins is
simulated. The sintered particles are shown in Figure 10. The relative neck size(

X
D

)
ratio for the 15 nm particle is higher than for the 40 nm particle, clearly
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revealing a size effect. This is due to the higher surface area per unit volume
for the smaller particles compared to the larger particles [44], resulting in faster
sintering of nanoparticles compared to microparticles.

(a) 40 nm particle (b) 15 nm particle

Figure 10: Two particles of equal size (a) having a size of 40 nm and (b) having a
size of 15 nm sintered at 400◦C for 4 mins. Note that the relative neck size (X/D)
ratio for the 15 nm particle is larger than for the 40 nm particle, revealing a size
effect.

5.2.3. Temperature influence
Finally, the effect of temperature on sintering is analyzed. The technologically

relevant temperature range of interest to sinter silver particles is below 400◦C.
Two silver particles of 15 nm size sintered at 400◦C, 300◦C and 250◦C for four
minutes are shown in Figure 11. It can be seen that particles sintered at higher
temperatures sinter faster, which is in accordance with the higher diffusion values
obeying the Arrhenius equation.

(a) 400◦C (b) 300◦C (c) 250◦C

Figure 11: Two 15 nm particle sintered for 4 mins at three different temperatures
at (a) 400◦C, (b) 300◦C and (c) 250◦C. Particles sintered at higher temperature
sinter faster.

6. Discussion

The diffusion model (25)-(27), diffusion parameters, energy parameters and
grain boundary mobility all influence the diffusion process, rate of diffusion, grain
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coarsening, grain boundary migration and the shape of the sintered silver parti-
cles. Since the diffusion parameters along with the choice of diffusion model can
influence the rate of diffusion, experimental verification of a sintering model is a
necessity. As has been shown in section 5.2 there is a good agreement between
the experimental observations and the results of the simulations based on the ma-
terial parameters from the literature, without any fitting parameters. Yet, these
material parameters may still be inconsistent with the actual experimental condi-
tions. This may have led to a difference in the dihedral angle predicted by the
model compared to the experimental observations, as discussed above. Moreover,
other physical processes not accounted for in the model may contribute as well.
According to [8, 45], a dislocation-driven plastic flow contribution to neck growth
in nanoparticles is not significant as it would require a large stress for plastic flow.
Such effects are presently not incorporated. In addition, the effect of the dimen-
sionality, i.e. 2D model versus 3D reality, requires a careful study as well.

7. Conclusion

The main contributions of this paper are:

• A finite element scheme is developed to incorporate the effects of surface,
volume and grain boundary diffusion in a phase field sintering model. The
implementation is demonstrated for the sintering of two unequal size parti-
cles, showing the initial neck growth, followed by coarsening with subse-
quent slow and rapid grain boundary migration. These observations are in
agreement with findings of other phase field sintering models presented in
the literature.

• The developed model adequately reproduces the evolution of two silver par-
ticles of 40 nm size sintered at 400◦ C, in close agreement with experiment
results. All material parameters used were based on values reported in the
literature.

• The model can be employed to make quantitative predictions to study multi-
particle interaction of silver across an industrially relevant range of length
and time scales, as required for practical applications.

A natural extension to the current study would incorporate transient tempera-
ture and mechanical effects on the diffusion for further understanding of sintering
process. It is noted that anisotropy between the grains is currently not consid-
ered and the effect of grain misorientation needs to be investigated in future work.
Moreover, the developed model and solution scheme can be applied to study sin-
tering of other materials, under the condition that the material parameters are care-
fully scrutinized in advance.
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Appendix A.

The Euler equation (9) of (3) is rewritten as

∂ f
(
c = 1, ηα, ηβ (ηα)

)
∂ηα

− κη

(
d2ηα
dx2

)
= 0. (A.1)

Multiplying (A.1) by (∂ηα
∂x ) gives

∂ f
∂ηα

∂ηα
∂x
− κη

∂ηα
∂x

(
d2ηα
dx2

)
= 0. (A.2)

The derivative of f with respect to x can be written as

d f
dx

=
∂ f
∂ηα

∂ηα
∂x

+
∂ f
∂x
. (A.3)

Making use of (A.3) in (A.2) we get(
d f
dx
−
∂ f
∂x

)
− κη

∂ηα
∂x

d
dx

(
dηα
dx

)
= 0. (A.4)

Taking there is no partial derivative of f with respect to x

d f
dx
− κη

∂ηα
∂x

d
dx

(
dηα
dx

)
= 0. (A.5)

results in
d
dx

(
f − κη

∂ηα
∂x

dηα
dx

)
= 0, (A.6)

which gives αct as the constant of integration

f − κη

(
dηα
dx

)2

= αct. (A.7)

Similarly,

f − κη

(
dηβ
dx

)2

= βct. (A.8)

Evaluating at ±∞ and using the boundary conditions (8a) to (8c) yields the con-
stant of integration to be zero.
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Appendix B.

The terms in the Jacobian matrix (43) is given by

∂RI
c

∂cJ =

∫
v

∂ċ
∂c

N J
c N I

cdv +

∫
v

∂Mi j

∂c
N J

c

∂NK
µ

∂x j
µK ∂N I

c

∂xi
dv −

∫
Γ

∂Mi j

∂c
N J

c

∂NK
µ

∂x j
µKN I

cnidΓ,

(B.1)

∂RI
c

∂µJ =

∫
v

Mi j
∂N J

µ

∂x j

∂N I
c

∂xi
dv −

∫
Γ

Mi j
∂N J

µ

∂x j
N I

cnidΓ, (B.2)

∂RI
c

∂ηJ
α

=

∫
v

∂Mi j

∂ηα
N J
η

∂NK
µ

∂x j
µK ∂N I

c

∂xi
dv −

∫
Γ

∂Mi j

∂ηα
N J
η

∂NK
µ

∂x j
µKN I

cnidΓ, (B.3)

∂RI
µ

∂cJ =

∫
v

∂2 f
∂c2 N J

c N I
µdv +

∫
v

κc
∂N J

c

∂xi

∂N I
µ

∂xi
dv −

∫
Γ

κc
∂N J

c

∂xi
N I
µnidΓ, (B.4)

∂RI
µ

∂µJ =

∫
v

∂2 f
∂c∂µ

N J
µN I

µdv −
∫
v

N J
µN I

µdv, (B.5)

∂RI
µ

∂ηJ
α

=

∫
v

∂2 f
∂c∂ηα

N J
ηN I

µdv, (B.6)

∂RI
ηα

∂cJ = L
∫
v

∂2 f
∂c∂ηα

N J
c N I

ηdv, (B.7)

∂RI
ηα

∂µJ = L
∫
v

∂2 f
∂µ∂ηα

N J
µN I

ηdv, (B.8)

∂RI
ηα

∂ηJ
α

=

∫
v

∂η̇α
∂ηα

N J
ηN I

ηdv+L
∫
v

∂2 f
∂η2

α

N J
ηN I

ηdv+L
∫
v

κη
∂N J

η

∂xi

∂N I
η

∂xi
dv−L

∫
Γ

κη
∂N J

η

∂xi
N I
ηnidΓ,

(B.9)

∂RI
ηα

∂ηJ
β

= L
∫
v

∂2 f
∂ηβ∂ηα

N J
ηN I

ηdv. (B.10)

where ċ = ∂c/∂t and η̇α = ∂ηα/∂t to which an appropriate time discretization
scheme should be applied.
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