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Chapter 1

Introduction

Most of us are used to the sounds we hear in everyday life, for example music, tele-
vision, people talking on their phone, the traffic and industrial noise. All of these
sounds have become a part of the urban culture/lifestyle and rarely disturb us. How-
ever, when the noise emission level exceeds a certain limit called Exposure Action
Value, EAV (about 85dB) like aircraft takeoff/landing, it turns into noise pollution.
The United States department of labour has made mandatory regulations to limit the
noise level that the employees can be exposed to in working conditions considering
the occupational safety and health standards [62]. For most of us, the concept of pol-
lution is limited to nature and resources like water, air etc. However, noise that tends
to disrupt the natural rhythm of life makes up for one important pollutant. By defin-
ition, noise pollution takes place when there is either excessive or unpleasant sound
that causes temporary disruption in the natural balance and distract the surrounding
fauna. A few general causes of the noise pollution are industrialization, poor urban
planning, social events, transportation, construction activities, excessive crowd and
household chores like microwave, air conditioning, fan etc. While this form of pollu-
tion may seem harmless, it has, in fact far reaching consequences. The adverse effects
of an excessively noisy environment on human health are quite severe. Noise can cause
hearing impairment by long-term exposure above the Exposure Action Value limit,
and it also acts as a causal factor for stress and raises systolic blood pressure. Long -
terms exposure can also cause health issues such as sleeping disorders, cardiovascular
disease etc. Those who are exposed to noise for longer duration of time, like those
who work in an industrial environment or live close to the airport, tend to have severe
health issues. Apart from the health problems, the environment is submitted to nat-
ural disorder with excessive sound emission and the overall behaviour of surrounding
changes. In order to revert this, one must first understand the sources of sound, the
way it propagates and economic methods to absorb it.

1



2 1.1. Aircraft and industrial noise

1.1 Aircraft and industrial noise

Out of all the noise sources mentioned above, the sound emissions from aircraft en-
gines, ventilation ducts and manufacturing industries are of concern for the current
work. The industrial power machines produce sound that is generally passed to the
environment through ducted outlets. Same is the case with aircraft engines where the
sound propagates through the inlet or outlet ducts in to the environment. Aircraft
noise has long been a major concern to residents around airports. The severity of
regulations on community noise near airports, and the imposed heavy penalty if the
regulations are not met, have ensured that the reduction of noise generated by aircraft
at take-off and approach conditions remains an essential consideration in the design
of new commercial aircrafts.

The scale of the challenge that is faced by the aviation industry is alarming. In
the United Kingdom, air traffic has increased five times in the last 30 years. Half
the population enjoy air travel once a year and crowd flux passing through airports
doubles every ten years. Such statistics will be eclipsed in the coming decades by the
expansion of civil aviation. If these benefits continue to be enjoyed in a sustainable
environment, expansion in aircraft size, seat capacity and aircraft movements must
be accompanied by a commensurate reduction in the environmental cost. If this is to
be achieved, it will require innovative technology solutions for noise and emissions.

The environmental impact of commercial aircraft noise is a local problem because
it arises at take off and landing and affects populated areas close to airports, but
it is not generally an issue at cruise. Especially with the emerging economies like
India and China, the aerospace sector has to expand accordingly so that the benefits
and comfort of the air travel is enjoyed by the emerging economies at the cost of low
fuel consumption and hence carbon emission. Thus the paradigm of aviation sector
has moved from the jet engines in the past to the turbo fan engines in the present
because of the fuel efficiency gain. In a broader context, the environmental impact
of air transport as a whole poses a major threat to its continued expansion. The
reduction of noise and emissions is now critical to the continued prosperity of the
aerospace sector and an essential prerequisite for the successful development of new
aircraft.

The popularity of turbofan engines for civil aviation, due to low operational cost,
has changed the prominent source of emitted sound to fan noise rather than jet noise.
The current work pertains more to the civil aircraft engines rather than the military
aircrafts because the latter are build to have maneuverability at the cost of fuel
efficiency to some extent and hence, the jet propulsion system is used widely.

Characterizing the noise emission by an aircraft for certification and regulatory
purposes became necessary afterwards 1960 as the use of commercial jet aircraft
became widespread and contributed to a growing noise pollution near airports. The
US Federal Aviation Administration issued a noise certification regulation, Federal Air
Regulation, part 36 [1], mostly known as FAR36. The International Civil Aviation
Organisation (ICAO) subsequently issued an annex (Annex 16) [64] about the noise
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regulations to the Convention on International Civil Aviation. Annex 16 and FAR36
were essentially equivalent and remain so although both have been modified from time
to time to make the requirements even more stringent. In FAR36 and Annex16, the
metric used to measure public annoyance response to aircraft noise is the Effective
Perceived Noise Level (EPNL) measured in decibels (0.1 bel) dB. This is determined
by the spectral frequency content and duration of emission of the noise in addition to
overall sound pressure level. The EPNL for an aircraft entering service is calculated
from sound pressure recordings taken at three certification points known as take off,
sideline and approach conditions. An EPNL figure is obtained at each of these three
points and rated against prescribed maximum values which vary with takeoff weight
i.e. the size of aircraft or seat capacity and number of engines.

More often, the sound emitted in the considered cases has a sharp spectrum such
that one (or several) prominent frequencies can be identified. Such prominent fre-
quencies are then tried to be attenuated with the sound absorbing devices called
liners. Shown in Fig. 1.1 is the layout of a typical modern turbofan aircraft engine.
On broader scale, the total noise recorded at the 3 points mentioned before can be
divided into fan noise and jet noise. For high bypass ratio engines, the jet speed is
relatively low and, the overall noiseness is dominated by fan noise. The fan noise can
again be classified into the following categories owing to the regulations

• Rotor - alone tones

• Buzz saw tones

• Rotor - stator interaction tones

• Broadband noise.

The rotor alone tones sound field arises because of the rotating field associated
with the fan hence is emitted over the range of frequency that are integral multiples
of the shaft passing frequency and travel upstream of the fan and pass to the en-
vironment through the inlet duct [51]. Buzz saw noise arises at take off when the
engines operate at high speed and the blade tip Mach number enters the supersonic
regime and produces shock waves that travel upstream and interact with each other
and produce a field in the form of N wave [50]. Since shock waves move with the blade
tip speed, the buzz saw sound is produced at integral multiple of the blade passing
frequency BPF. The rotor-stator interaction tones, also called Fan-OGV (outlet guide
vanes) tones [89] are produced when the wakes from the fan impinge on the stator
and produce a dipole source of sound at OGV surface. Again, the emitted sound
frequency is an integral multiple of the BPF and the noise field passes through the by
pass duct. The remaining broadband noise [97, 42] is caused by the random turbu-
lence and installation effects and is emitted at all frequencies of the spectrum, more
concentrated at the BPFs. The first three sources of sound always propagate through
the duct, whether the intake or bypass duct, hence a meticulous design of the duct
wall has a strong impact on the overall environmental noise generated by the engine.

Similarly, the industrial noise is more often emitted at the characteristic frequency
of the power units and is taken outside to the open atmosphere through duct walls.



4 1.2. Noise absorbing devices - liners

Figure 1.1: Layout of modern turbofan engine [81].

1.2 Noise absorbing devices - liners

The walls of the ducts through which the unpleasant sound propagates are often
lined with sound absorbing material, called liners. Depending upon their structure
and conditioning in which they are used, there are mainly two kinds of liners, known
as locally reacting and non locally reacting liners, shown in Fig. 1.2. Typically, the
duct has a long radius compared to the typical acoustic wavelength and hence, a 2D
modelling approach is appropriate to describe the behaviour of the acoustic lining.
Moreover, the presence of a high Mach number flow in the duct forces one to include
the Doppler effect due to convection of the wave and the models including the mean
flow have been introduced [37]. The mean flow in the inlet and bypass duct is almost
uniform with a thick boundary layer hence, a linear shear model could be appropriate
to understand the lining behaviour.

1.2.1 Locally reacting liners

This type of liner is very common in aircraft engines [37], industry power buildings,
roof wall and theatres. Such type of acoustic liner for aero-engine inlet and exhaust
ducts constitutes of a honeycomb array of small cells called Helmholtz resonators.
The Helmholtz resonator is a cavity filled with air having a small opening called the
neck. When excited with a fluctuating external sound pressure, the mass of air plug
inside the neck moves against the large volume of compressible air inside the cavity,
which acts as a spring, while viscous forces and vortex shedding generate dissipation
of energy. Altogether this establishes a mass-spring-damper system. The damping
is normally relatively small such that a resonance frequency can be identified. At
and near resonance, the dissipation is largest and so narrow band sound absorption is
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Figure 1.2: General locally reacting and non locally reacting liners respectively.

k̂ k̂ · n̂ k̂

Figure 1.3: Locally reacting and non locally reacting liners respectively.

achieved for frequencies close to resonance. This process is the basic design criterion
for the liners, shown in Fig. 1.2 left. The depth L and diameter of individual cavity of
these honey comb structures are of the order of a few centimetres and one centimetre
respectively and the efficiency is maximum close to the frequency with wavelength 4L.
The name is derived from the fact that these liners react locally to the external sound
field. Suppose a wave vector k̂ is hitting the liner at an angle as shown in Fig. 1.3,
only the normal component k̂ · n̂ of the wave amplitude is allowed to interact with the
resonator cavity and there is no interaction between the individual cells. Hence, the
liner can be modelled with a single point value called impedance Z which is a complex
number that denote the negative of the ratio of acoustic pressure and velocity at the
particular frequency.

The above liners are very effective when acted upon a sound field that has a
sharp frequency content [37]. However, if the noise is emitted over a wider spectrum,
another type of liner, usually made of porous material, shown in Fig. 1.2, is useful.

1.2.2 Non locally reacting liners

Porous absorbers fall into this category of liners and are made up of metallic foam
or porous materials, Fig. 1.2 right and are used in many situations to achieve the
absorption of sound, e.g., in ventilation ducts, in power plants, and in the exhaust
systems of cars and trucks. As shown in Fig. 1.3 right, the wave is allowed to enter
the surface at any angle it chooses and propagates inside the layer. Hence the surface
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does not interact locally. Because of the fluctuating wave amplitude, the air inside
the surface moves against the solid foam and energy is dissipated in the form of heat
that leads to the attenuation of the wave. Since the minute spaces inside the foam
vary over a wider length scale, the surface is efficient to attenuate a wider spectrum of
the noise. However, the porous material can not be used in aircraft engines because
of it’s weight and the constraint that the atmospheric humidity can fill the pores and
make the liner ineffective. So the choice of liner that can be used to absorb particular
sound is determined by the external factors like the weight and operating conditions.

Since the wave is permitted to travel in the direction parallel to the wall of the
liner, the acoustic field inside and outside the liner are coupled [72] and hence the liner
can not be classified with a single point number impedance. The usual way to model
these liners is to solve the convective (if mean flow is present outside the liner) wave
equation and wave equation outside and inside the liner respectively and applying the
continuity of pressure and velocity at the lining wall. The density of the air inside
the liner is a function of foam parameters and small vibrations in the minute foam
structures could affect the sound attenuation. Hence, the mathematical modelling of
these liners is more challenging and we have to rely more on the experiments in order
to understand the behaviour of these surfaces.

1.3 Hard wall - soft wall discontinuities and liner

repairs

Hard wall Soft wall

U

y

U = σy

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

Figure 1.4: The hard soft discontinuties at liner repairs.

The acoustic liners used in aircraft engines are made in the form of rectangular
sheets which are folded and carved at the inner surface of the duct with the help of
splices [10, 52]. The splices generally have hard surfaces because they have to support
the liner. The other components of the aircraft engines like spool and vanes also need
support and hence the liners can not have a continuous porosity and there are always
some regions where the wall is completely hard. Also during the operation for a larger
period of time, some part of the liner is inevitably damaged leaving behind hard wall
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patches. These hard wall patches that are present between the continuous soft lining
are called liner repairs. The liner repairs introduce hard - soft or soft - hard transition
points. Such non uniformity of the duct surface introduces modal scattering. Modal
scattering is particularly relevant when a cut off wave mode scatters into other modes
that are cut on. This behaviour makes the lining inevitably less efficient. The modal
scattering is out of the scope of the current work.

The flow inside the duct has a boundary layer, Fig. 1.4, of thickness that may vary
between very thin and several wavelengths. Within the boundary layer, the turbulence
is prominent. In 2D, the turbulence can be represented as layers of vorticity. Such
vortices decay exponentially away from their position and do not radiate any sound.
However, because of the presence of the wall discontinuity, the vortices can use it and
radiate sound and could become an important source of radiated noise [4]. Therefore,
a discontinuity in the boundary may act as a ”wave number converter” to produce the
scattered far field noise. So the main production of sound due to vortex scattering
concentrates at discontinuities of the boundary . This was confirmed by Crighton
[27] who studied in detail the radiation from the flow over 2 semi-infinite planes that
differ in their inertia and elastic properties with vortex near the edges. He formulated
set of equations which are sufficient to find the radiated sound field entirely in terms
of Lighthill’s quadrupole strength and then argued about the scattered sound field
based upon dimensional reasoning. Thus, the influence of boundaries, in particular
soft or flexible boundaries, on the aerodynamic noise generated by turbulent flows in
general and vortical perturbations in particular have been a noise problem which has
been studied for decades. Some more examples are given in [38, 27, 24, 28, 96, 95].
That is why there is a need for canonical model problems that allow analytically exact
solutions of vorticity in shear flow scattering at hard-soft transitions of a liner wall
and this is one of the main topics in the current work. This behavior may also be
relevant for the case of non locally reacting liners but this appears more difficult to
model mathematically.

1.4 Outline of the thesis

In this section, we will go through the outline of the work presented in the current
document in chronological order. In a broader context, we will study the interaction
of sound and vorticity (or vice versa) at or along a liner, both mathematically and
experimentally. After the introduction in the first Chapter 1, we will derive the basic
governing equations in Chapter 2. The subsequent chapters are then grouped together
for convenience and touched minutely in the next sections.

1.4.1 Non linear impedance modelling of the Helmholtz res-

onator liner

The Helmholtz type resonator shown in Fig. 1.2 left, as seen from the outside, is
characterized by its impedance Z = Z(ω), relating (spatially averaged) pressure and
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velocity at the wall. Ideally, Z is a wall property and independent of the acoustic
field. However, in particular near resonance, when the frequency of the external sound
field is close to the eigenfrequency of the cavity, Z is amplitude dependent for high
but relevant amplitudes, for example, the buzz saw noise in a turbofan engine due to
the shocks produced in front of the fan at take off and the blade tips operate in a
supersonic regime [19, 3]. Since liners are designed to operate at resonance because of
the highest achieved attenuation of the sound, it is important to know quantitatively
and understand qualitatively such impedances Z with good precision. In Chapter
3, a systematic derivation of the asymptotic solution of the non linear Helmholtz
resonator equation is performed to obtain an analytic expression of the impedance
for near resonance frequencies. The obtained analytic expression is then compared
with existing experimental data. In the modeling assumptions, the cavity length is
considered to be smaller than to the acoustic wavelength so that the pressure inside
is uniform and the exit velocity is given by the time derivative of the pressure. In this
way, the cavity behaves like a spring, subjected to the external excitation.

This model is then improved in Chapter 4 to accommodate the waves inside the
cavity, and is extended to resonators of large depth. The pressure inside the cavity
is then no longer uniform and the relation between pressure and velocity is obtained
by solving the wave equation inside the cavity. In this way, the model captures more
physics of the problem and the results are indeed improved as we will see later. Also,
in the limit of a low excitation frequency, the results converge to the previous model
as expected.

1.4.2 Vorticity scattering at hard - soft wall transition

In the subsequent chapters, we study the vorticity scattering phenomenon introduced
earlier at a hard - soft wall transition and vice versa. An artistic impression of the
problem is shown in Fig. 1.5. The Reynolds number is large so that viscous effects are
negligible. We consider a low Mach numbers to stay within the incompressible limit.
Under these condition, the flow is governed by the linearised Euler’s equations. The
flow is modeled with a linear shear profile shown in Fig. 1.4 and 1.5 which enables us to
obtain the exact analytic solution. The incident field (vorticity field) of perturbations

Vorticity Source at −∞

Shear Layer

Hard- Soft Transition

Radiated Sound

Figure 1.5: Artistic impression of the vorticity scattering problem.
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in the case of linear shear may be considered as being produced by a monopole
type mass source placed far upstream in the flow and is assumed to be vanishing at
infinity. The initial field satisfies the hard wall boundary condition. The effect of
the soft wall and hence the scattering is captured by the Wiener-Hopf method by
exploiting analytic continuation properties of half range Fourier transform to obtain
the solution in the form of Fourier integrals. This incompressible problem is a small
part of a larger compressible problem and is referred as the inner solution. Next we
derive the acoustic outer solution by solving the Helmholtz equation. In order to
obtain the scattered sound field, we match the outer limit of our inner solution with
the inner limit of our outer solution.

We start in Chapter 5 with a simplified case of pressure release wall which has zero
impedance (Z = 0). The advantages of this limit are considerable. The inner solution
that we obtain in the form of Fourier integrals is analytically integrable which yields
valuable insight in to the problem. An explicit analytic expression of our solution
and it’s outer limit is easy to interpret and understand. In Chapter 6, we extend
this analysis to a general wall impedance Z. Here we rely on the asymptotic limit
of our inner solution integrals in the far field to match to the outer solution. This
matching is validated against the explicit results of a pressure release wall. Based
upon the frequency of the incoming wake ω and the shear parameter σ, the problem
appears to split up into two different classes. In the low shear case when σ < ω, the
inner solution matches with the outer solution and we obtain the radiating acoustic
pressure varying as r− 1

2 where r is the distance from the hard soft transition point.
In the high shear case when σ > ω, the radiating pressure behaves as a constant
without possible matching with outerfield and the linear shear profile is found to be
an inconsistent modeling assumption.

1.4.3 Vorticity scattering at soft - hard wall transition

We subsequently study the above problem when the transition is from soft to hard i.e.

opposite to the previous chapters. Because of the presence of the shear, the problem
is not symmetric and also, the initial field is different here because it satisfies the
soft wall boundary condition rather than the hard wall condition of previous case.
In particular, the Wiener-Hopf solution differs in a subtle way. In Chapter 7, we
start with the Z = 0 limit again and conclude the analysis for the finite impedance
case. For the low and high shear cases, the behavior of the outer sound field pressure
is again found to be varying as r− 1

2 and as a constant respectively. Apart from
the confirmation of the previous hard-soft analysis, the effect of boundary condition
reversal is found to be insignificant to the scattering process. The radiated sound
field differs only by a constant and has similar functional behaviour.
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1.4.4 Experimental observation of hydrodynamic wave in a

flow duct with porous walls

When the acoustic wave superimposed on a mean flow passes along any wall transition,
it may excites a hydrodynamic instability or hydrodynamic mode. This instability
can exchange energy with the sound field and can amplify the radiated noise. This
behaviour was known in the case of locally reacting liners [75]. In Chapter 8, we will
find experimental evidence of this wave along the porous material triggered by acoustic
waves. A swept sound wave with frequency range varying from 100Hz to 3000Hz is
superimposed on a fully developed mean flow in a rectangular channel. The amplitude
and phase are acquired in front of the lining surface using the Agilent VXI 1432
hardware platform which drives the source excitation synchronously with the acoustic
pressure signals recording. Using this data, the properties of the hydrodynamic wave
are extracted. It is found that the excitation and properties of the instability are
highly dependent on the Mach number in the channel, amplitude and frequency of
the sound wave. The convection velocity of the hydrodynamic wave was found to
be close to half of the mean flow speed. Otherwise, it is difficult to claim any firm
conclusions about the amplitude growth rate of this mode because of the non linear
behavior that indicates a saturation of this hydrodynamic wave.

The above experiments were conducted in Université du Maine, France under the
supervision of Yves Aurégan and the work has been published in [13].

The individual Chapters 3, 4, 5, 6, 7 and 8 of the book are published as papers in
[84, 83, 30], [85], [76], [77], [82] and [13] respectively.

The work reported in this book was funded by European Union through ITN-
project FlowAirS (contract no. FP7-PEOPLE-2011-ITN-289352), with coordinator
Yves Aurégan.



Chapter 2

Derivation of the basic

equations

In this chapter, we will derive and understand the basic governing equations to be
used later in this thesis. We will start from the basic governing conservation equations
of mass, momentum and energy in compressible form. Coupled with two constitutive
equations that result from the assumptions that local thermodynamic equilibrium
holds in the fluid and that it behaves in viscous or Newtonian way, we obtain a set of
five equations known as the Navier Stokes equations. Since the sound propagation is
a fast process, the heat does not get enough time to conduct while the friction effects
remain small. Hence, it is reasonable to assume the absence of friction and thermal
conduction and the fluid being a perfect gas to have a possible acoustic model. Next,
we will scale the variables in the equations to understand the relative importance
of various terms under different modeling assumptions used in the current work so
that we can determine the terms that can be neglected to obtain the simpler models.
Such a trade-off is very common in applied analysis. The simpler models are easier
to analyze mathematically and give more insight in the problem.

2.1 Conservation laws and constitutive equations

The laws of mass, momentum and energy conservation in terms of the flow variables
pressure p, density ρ, velocity v, viscous stress tensor τ , internal energy e and heat
flux vector q are given by [81]

∂ρ

∂t
+ ∇·(ρv) = 0 (2.1)

∂(ρv)
∂t

+ ∇·(ρvv) = −∇p+ ∇·τ (2.2)

∂(ρE)
∂t

+ ∇·(ρEv) = −∇·q − ∇·(pv) + ∇·(τ v) (2.3)

11
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with the specific total internal energy given as E = e+ 1
2 v2, i.e. the summation of

specific internal energy and specific kinetic energy.
Introducing the enthalpy function h = e+ p

ρ , we have the fundamental law of
thermodynamics for reversible processes as

Tds = de+ pdρ−1 = dh− ρ−1dp (2.4)

where T and s are temperature and entropy of the system, respectively. If we rewrite
the above equation using convective derivative d

dt = ∂
∂t + v ·∇, we have

dρ
dt

= − ρ∇·v (2.5)

ρ
dv

dt
= − ∇p+ ∇·τ (2.6)

ρ
de
dt

= − ∇·q − p∇·v + τ :∇v (2.7)

where τ :∇v = ∇·(τ ·v) − v ·(∇·τ ) is the viscous dissipation term.

2.1.1 Viscous stress tensor τ and heat flux vector q, con-

stitutive equations

In most of the applications, the viscous stress is neglected in the modelling assump-
tions. If this is not the case, a relation between τ and the fluid deformation rate
(∇v + (∇v)T ) is assumed because unlike solids, the stress is related to rate of strain
in fluids rather than strain directly. When this relationship is linear, the fluids are
called Newtonian fluids and the resulting equations are termed as Navier Stokes equa-
tions. Another simplification comes from the Stokes hypothesis that the fluid is in
local thermodynamic equilibrium, hence the pressure p and the thermodynamic pres-
sure are equivalent. In such case, we have

τ = η(∇v + (∇v)T ) − 2
3η(∇·v)I (2.8)

where I is the unit tensor and the viscosity η is determined experimentally. Equation
(2.8) is called a constitutive equation. The assumption of thermodynamic equilibrium
fails partially at high frequencies and results in a dissipation related to the volume
change ∇·v which is described with a volume viscosity parameter not simply related
to η [67, 93] like in (2.8).

Another constitutive equation comes from the Fourier law which states a linear
relationship between the heat flux vector q and the temperature gradient ∇T

q = −K∇T (2.9)

where K is the thermal conductivity that depends on the pressure p and temperature
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T . Using (2.4) and the equation for mechanical energy, obtained by taking the inner
product of (2.2) with v, we obtain the energy conservation law (2.3) written in two
alternative forms

ρ
dh
dt

=
dp
dt

− ∇·q + τ :∇v (2.10)

ρT
ds
dt

= − ∇·q + τ :∇v (2.11)

with (2.11) being the most convenient in acoustic applications because more often,
the acoustic phenomena are isentropic since the right hand side of (2.11) is negligible.

For an ideal gas, we have the following relations

p = ρRT, de = CV dT, dh = CP dT (2.12)

where CP and CV are the specific heat capacities at constant pressure and volume
respectively that are functions of temperature only and R is the gas constant, R =
CP − CV . The ratio γ = CP /CV is called the specific heat ratio which is practically
constant and independent of temperature for perfect gases. From (2.4), we have for
ideal gases,

ds = CV
dp
p

− CP
dρ
ρ
. (2.13)

The isentropic perturbations ds = 0, like sound, propagates with the sound speed c

given by

c2 =
(

∂p

∂ρ

)

s

=
γp

ρ
= γRT. (2.14)

In the incompressible limit, we see that the speed of sound approaches infinity.

2.2 Acoustic approximations

In this section, we will study the various acoustic modelling assumptions made in
the current work. The modelling assumptions are taken based upon the knowledge
of the ’importance’ of the various terms in the compressible Navier Stokes equations
determined after scaling. Suitable reference scales are needed to scale the variables
and each scale is determined by the order of magnitude of the respective variable in
the problem. For example, if the typical value of a variable y of a problem varies
over a range y0, we would scale it as y = y0y

′, where y′ ∼ O(1). Once we scale all
the variables such that the resulting unknowns are O(1) like y′, we feed the variables
back in the modeling equations and then determine the relative importance of various
terms. That is how one generally approach to a suitable modeling assumption.
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2.2.1 Non viscous and isentropic

In the considered cases, the viscous or turbulent shear stress terms will be assumed
to play a role only in the aerodynamic source region while any perturbation is too
fast to be affected by heat conduction. Hence, for the acoustic applications as we will
see, the viscous shear stress term τ and thermal heat conduction q are ignored. We
conclude these assumptions as follows.

Suppose that we have a typical length L, velocity v0, density ρ0, temperature T0

and temperature difference ∆T in the problem. In (2.4), (2.8) and (2.9), we introduce
the following hydrodynamic scaling to make the variables dimensionless

x := Lx, v := v0v, t :=
L

v0
t, ρ = ρ0ρ,

dp := ρ0v
2
0dp, τ :=

µv0

L
τ , q =

κ∆T
L

q

T := T0T, dT = ∆TdT, ds :=
CP ∆T
T0

ds.

This results in
dρ
dt

= −ρ∇·v

ρ
dv

dt
= −∇p+

1
Re

∇·τ

ρT
ds
dt

= − 1
Pe

∇·q +
Ec

Re
τ :∇v

(2.15)

where Re = ρ0v0L
µ , Pe = ρ0CP v0L

κ and Ec = v2
0

CP ∆T denote the Reynolds number, Peclet
number and Eckert number respectively and κ is the heat conductivity per unit length.
The Reynolds number and Peclet number are related by the relation Pe = PrRe where
the Prandtl number Pr ∼ O(1) for most fluids and gases. Hence if the Reynolds
number approach to infinity, usually the Peclet number also does. If we assume that
the Reynolds number is large enough so that the viscous and heat conduction terms
are small compared to other terms and the Eckert number is not too large, we obtain

dρ
dt

= −ρ∇·v (2.16)

ρ
dv

dt
= −∇p (2.17)

ds
dt

= 0 (2.18)

which means that the entropy is preserved along a streamline and hence from (2.4),
dh = ρ−1dp. If we assume that the gas is perfect (constant CP and CV ), we have the
following thermodynamic closure relationship in dimensional form

CV
dp
p

− CP
dρ
ρ

= 0, c2 =
γp

ρ
, (2.19)
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where c appears to be the speed of sound. Substituting (2.19) into (2.18), we obtain
the isentropic relation between pressure and density in dimensional form,

dp
dt

= c2 dρ
dt
. (2.20)

If s is uniformly constant i.e. homentropic flow, p = p(ρ) and so

p ∝ ργ . (2.21)

2.2.2 Perturbations of a mean flow

When we have a stationary mean flow with instationary perturbations, given in di-
mensional form by

v = v0 + v′, p = p0 + p′, ρ = ρ0 + ρ′, s = s0 + s′

and linearize (2.16), (2.17) and (2.18) for small amplitude, we obtain for the mean
flow

∇·(ρ0v0) = 0

ρ0(v0 ·∇)v0 = −∇p0

(v0 ·∇)s0 = 0

while

ds0 = CV
dp0

p0
− CP

dρ0

ρ0
, c2

0 =
γp0

ρ0
.

The perturbations satisfy the following relations

∂ρ′

∂t
+ ∇·(v0ρ

′ + v′ρ0) = 0

ρ0

(

∂

∂t
+ v0 ·∇

)

v′ + ρ0(v′
·∇)v0 + ρ′(v0 ·∇)v0 = −∇p′

(

∂

∂t
+ v0 ·∇

)

s′ + v′
·∇s0 = 0

(2.22)

while assuming the initial entropy perturbation s′
ini = 0,

s′ =
CV

p0
p′ − CP

ρ0
ρ′ =

CV

p0
(p′ − c2

0ρ
′).
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2.2.3 Incompressible limit

Introducing the 3 useful numbers in acoustic and fluid dynamics

Mach number: M =
v0

c0
(2.23)

Helmholtz number: He =
ωL

c0
(2.24)

Strouhal number: St =
He

M
=
ωL

v0
, (2.25)

we see that in the incompressible limit, when the sound speed approaches to infinity,
we may have the small Mach number M and Helmholtz number He such that the
ratio being the Strouhal number St is O(1). In such limit, waves such as sound waves
can not be represented because the medium is incompressible and we see a uniform
pressure of infinite wavelength in the system. However, such limits are quite useful
when we perform a Matched Asymptotic Expansion MAE analysis for example. If an
incompressible problem acts as an inner problem of an outer compressible problem
and we obtain the solutions separately, MAE could be used to formulate a global
solution that we might use later. Note that in the incompressible limit, the density
perturbations in (2.22) vanish.

2.2.4 Time harmonic perturbations and mean flow in 2D

Suppose that we have an incompressible mean shear flow (u0 = U(y), v0 = 0, ρ0) in
2D as shown in Fig. 1.4 superimposed with time harmonic perturbations of the form
u = Re(û eiωt), v = Re(v̂ eiωt) and p = Re(p̂ eiωt). From (2.22), we obtain

ρ0

(

∂û

∂x
+
∂v̂

∂y

)

= 0,

ρ0

(

iω + U
∂

∂x

)

û+ ρ0
dU
dy

v̂ +
∂p̂

∂x
= 0,

ρ0

(

iω + U
∂

∂x

)

v̂ +
∂p̂

∂y
= 0.

(2.26)

This set (2.26) will be used later when we study the vortical perturbations in a linear
shear flows.

2.3 Wave equation and acoustic compactness

By subtracting the time derivative of the linearised mass conservation (2.22) from the
divergence of momentum conservation, neglecting the viscosity and having vanishing
mean flow, we obtain the wave equation

1
c2

∂2p

∂t2
− ∇2p = 0. (2.27)
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If we assume time harmonic perturbations as earlier, we obtain the Helmholtz equation

∇2p+ κ2p = 0, κ = ω/c. (2.28)

The solution of (2.28) with point source in the origin in 2D polar coordinates con-
sists of Bessel functions or combinations of Bessel functions called Hankel function.
The Hankel functions H(1)

ν (κr) and H
(2)
ν (κr) are used for incoming and outgoing

wave solutions respectively with eiωt convention. In the low frequency limit (large
wavelength), κ → 0, we again enter in the incompressible regime and (2.28) reduces
to Laplace equation

∇2p = 0. (2.29)

The solution of (2.29) are harmonic functions. The solution for a point source in the
origin that we are interested in is proportional to log r, r =

√

x2 + y2.
For small values of argument (κr) i.e. in the innerfield, the Hankel function behaves

like e±iκr /
√
r that we need to match with the logarithm function in order to perform

the asymptotic matching.
If we scale the space in (2.28) using a length parameter L , we have

∇2p+ (He)2 p = 0, He = ωL/c. (2.30)

If the Helmholtz number is small (He ≪ 1), the wave would not see the details of
any object of lengthscale less than L in the domain and we say that the domain is
acoustically compact. This way, we can determine the lengthscale of the object that
could potentially tamper with the properties of the waves.





Chapter 3

Systematic non linear

impedance model for a

Helmholtz resonator type

liner

3.1 Introduction

An important type of acoustic liner for aero-engine inlet and exhaust ducts consti-
tutes of a honeycomb array of small cells called Helmholtz resonators. The Helmholtz
resonator is a cavity filled with air and having a small opening called the neck. When
excited with a fluctuating external pressure, the mass of the air plug inside the neck
moves against the large volume of compressible air inside the cavity, which acts as
a spring, while viscous forces and vortex shedding cause dissipation of energy. Al-
together this establishes a mass-spring-damper system. The damping is normally
relatively small such that a resonance frequency can be identified. At and near reson-
ance, the dissipation is largest and so narrow band sound absorption is achieved for
frequencies close to resonance. This process is the basic design criterion for the liners.
The resonator, as “seen” from outside, is characterized by its impedance Z = Z(ω),
relating (spatially averaged) pressure and velocity at the wall. Ideally, Z is a wall
property and independent of the acoustic field. However, in particular near resonance
Z is amplitude dependent for high but relevant amplitudes, for example, the “buzz
saw” noise in a turbofan engine due to the shocks produced in front of the fan at take
off when the blade tips operate in a supersonic regime [19, 3]. Since liners are de-
signed to operate at resonance, it is important to know quantitatively and understand
qualitatively such impedances Z with good precision.

The non linear effects are mainly of hydrodynamical origin, due to the resistive

19
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losses and vortex shedding at inflow/outflow from the opening. This is physically a
process of great complexity [39, 81] which has indeed exacerbated the possibility to
obtain the impedance with an accurate model based on first principles. Ingard and
Labate [92] investigated the motion of air associated with sound waves at audio fre-
quencies in the neighbourhood of an orifice and proved a quantitative connection with
the non linearities of the impedance of orifices. Guess [6] developed a semi empirical
method for calculating the parameters of a perforate in order to achieve a specified
acoustic impedance for single-frequency excitation. Zinn [15] proposed a resistance
formulation with the aid of conservation equations. Cummings and Eversman [2]
demonstrated theoretically, with some approximations that the net acoustic energy
dissipation can occur when sound waves interact with free shear layers and compared
the predicted and measured net energy loss in the transmission of high amplitude
impulsive acoustic waves. Hersh and Walker [36] proposed a non linear differential
equation as a model for Helmholtz resonator response to a sound wave in the pres-
ence of a grazing mean flow and provided a semi empirical solution of the problem.
The fundamental nature of their problem is the very high amplitude excitation of the
resonator in the presence of a grazing flow and hence a differential equation (slightly)
different from ours. Innes and Crighton [29] obtained a complete systematic solution
to this model equation using matched asymptotic expansions.

In these examples, the non linear corrections of the impedance are based on phys-
ically inspired modelling assumptions, but otherwise do not aim to solve the equations
of the non linear resonator [87, 35, 5]. In contrast, the properties of the Helmholtz
resonator have been obtained from the full equations in [22, 23, 19, 20, 40, 21, 68],
but these are all fully CFD (for example DNS or LES) simulations which do not give
information for the simpler models.

The present work focuses on a systematic derivation of an asymptotic solution of a
stand-alone non linear Helmholtz resonator equation from first principles. The extra
complication of grazing flow along the liner wall will not be considered here. This
effect is important if the mean flow boundary layer is thin enough and the resonator
outflow velocity is comparable to or higher than the mean flow velocity.

We start with the classical modelling of the Helmholtz resonator and formulate a
perturbation problem in terms of a small parameter ε which is based on the excitation
amplitude of a given pressure of fixed frequency. The stationary solution of this prob-
lem is solved asymptotically up to second order. Secular effects of the external forcing
are treated in the usual way by a suitable Lindstedt-Poincaré type transformation. A
non standard problem was the presence of a modulus term |u| involving the velocity.
This prohibits a standard asymptotic expansion because the location of the zeros of
u are a priori unknown. This problem has been tackled by adding an unknown shift
of the origin, to be determined along with the construction of the solution, and using
the fact that the stationary solution has the same periodicity as the driving force.

A more complete model that capture more physics of this damping phenomenon
is derived in the next Chapter, 4.
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3.2 Mathematical formulation

A sketch of the Helmholtz resonator considered is shown in Fig. 3.1. A simple and
classic model (in various forms presented in the previously mentioned literature),
that includes non linear separation effects for the air flow in and out the neck, is
derived as follows. If the cross-sectional area Sb of the bottle is large compared to

Sb

V pin

uin

un

ℓ

pex

Sn

Figure 3.1: Helmholtz resonator

the cross sectional area Sn of the neck, the acoustic velocities in the bottle will be
small compared to those in the neck. Hence we may assume that the pressure and
density perturbations pin and ρin in the bottle are uniform. It should be noted that
the neck area Sn is to be interpreted as the effective cross section. In other words,
the geometric cross section multiplied by a discharge coefficient, to include what is
commonly known as the vena contracta effect (due to separation of the streamlines
at the opening edge). This will normally be a weak function of the amplitude [88],
but is assumed to be constant here.

If the cavity neck is acoustically compact, i.e. kℓ ≪ 1 for a typical wave number
k = ω/c0, we can neglect compressibility in the neck and determine the line integral
of the momentum equation from (2.1), (2.2) and (2.8)

ρ0

(∂v

∂t
+ v ·∇v

)

+ ∇p = µ∇2v

along a typical streamline with velocity v from a point (just) inside to a point (just)
outside the neck. We obtain the relation

ρ0

ˆ ex

in

∂v

∂t
·ds + 1

2ρ0(v2
ex − v2

in) + (pex − pin) =
ˆ ex

in

µ∇2v ·ds, (3.1)

with v = ‖v‖ and µ denoting the viscosity. Following Melling [87] we average pressure
and velocity along the neck’s cross section, assume that the averaged squared velocity
is approximately equal to the squared averaged velocity, and obtain

ρ0

ˆ ex

in

∂v̄

∂t
·ds + 1

2ρ0(v̄2
ex − v̄2

in) + (pex − pin) =
ˆ ex

in

µ∇2v ·ds. (3.2)

Assuming that the streamline does not change in time, we have
ˆ ex

in

∂v̄

∂t
·ds =

d
dt

ˆ ex

in

v̄ ·ds. (3.3)
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The velocity line integral evidently scales on a typical length times a typical velocity. If
end effects are minor, we can use the neck flux velocity v̄ = unex with a corresponding
length being the neck length ℓ, added by a small end correction δ to take into account
the inertia of the acoustic flow at both ends just outside the neck (inside and outside
the resonator). Then we have

ˆ ex

in

v̄ ·ds = (ℓ+ 2δ)un. (3.4)

End corrections δ for various geometries are given by Ingard [90]. For a circular
orifice, for example, we may use

δ = 0.85
(

Sn

π

)
1
2

, (3.5)

although one should be aware of the fact that this suggests an accuracy, totally
incompatible with the modelling assumptions necessary for (3.4). Experiments show
that δ weakly depends on the excitation amplitude [88], however, it is not a problem
parameters for the current model.

For the stress term line integral we observe that, apart from un itself, it will
depend on flow profile, Reynolds number, wall heat exchange, turbulence, separation
from sharp edges, and maybe more. Following Melling [87], we will take these effects
together in a resistance factor R, which will be assumed relatively small, in order to
have resonance and a small decay per period to begin with. We thus have

ˆ ex

in

µ∇2v ·ds = −Run. (3.6)

(Note that this form is exact for a Poiseuille flow with parabolic profile). Due to
separation from the outer exit, we have with outflow v̄in ≃ 0 with v̄ex = un jetting
out, while similarly during inflow, v̄ex ≃ 0 with v̄in = un jetting into the cavity; see
Fig. 3.2. The pressure in the jets, however, has to remain equal to the surrounding
pressure (pex and pin respectively) because the boundary of the jet cannot support a
pressure difference. Therefore, we have altogether

ρ0(ℓ+ 2δ)
d
dt
un + 1

2ρ0un|un| +Run = pin − pex. (3.7)

The second equation between pn and un is obtained by applying the integral
mass conservation law on the volume V of the cavity. The change of mass must be
equal to the flux through the cavity neck, which is in linearised form for the density
perturbation ρin

V
dρin

dt
= −ρunSn ≈ −ρ0unSn. (3.8)

Assuming an adiabatic compression of the fluid in the cavity, we have pin = c2
0ρin.
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out-flow phase in-flow phase

Figure 3.2: Separation and vortex shedding during the out-flow and in-flow phase

Elimination of ρin and un from (3.7) by using (3.8) and redefining (ℓ+ 2δ) =: ℓ yields
the non linear Helmholtz resonator equation

ℓV

c2
0Sn

d2pin

dt2
+

V 2

2ρ0c4
0S

2
n

dpin

dt

∣

∣

∣

∣

dpin

dt

∣

∣

∣

∣

+
RV

ρ0c2
0Sn

dpin

dt
+ pin = pex. (3.9)

For a proper analysis it is most clarifying to rewrite the equation into non dimensional
variables. For this we need an inherent timescale and pressure level. For vanishing
amplitudes and negligible dissipation the equation describes a harmonic oscillator, so
the reciprocal of its angular frequency

ω0 =
c0

ℓ

(

ℓSn

V

)1/2

is a suitable timescale of the problem. By dividing the non linear damping term by
the acceleration term we find the pressure level 2ρ0c

2
0ℓSn/V at which the non linear

damping would be just as large as the other terms. So for a pressure that is a small
fraction, say ε, of this level we have a problem with only little non linear damping.
In addition we assume that the linear damping is small and of the same order of
magnitude as the non linear damping (that is to say: near resonance. Away from
resonance the non linear term will be relatively smaller). Also, the driving amplitude
pex will be an order smaller than pin. In order to make all this explicit we introduce
a small parameter ε (via the external forcing amplitude), and make dimensionless

τ = ω0t, pin = 2ερ0c
2
0

(ℓSn

V

)

y, pex = 2ε2ρ0c
2
0

(ℓSn

V

)

F, R = ερ0c0

(ℓSn

V

)1/2

r,

(3.10)
where 0 < ε ≪ 1 and r, y, F = O(1).

Suppose that we excite the Helmholtz resonator harmonically, such that pex =
C cos(ωt) +H(t) consists of a time-harmonic component of frequency ω plus a small
contribution of higher harmonics H due to the interaction with the resonator1. In

1H will play no role in the results, but appears from the liner application of section 3.5. Here,
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the scaled variables τ and F this becomes

F = F0 cos(Ωτ) + ενh(τ), Ω =
ω

ω0
, (3.11)

where ν = 1 in the resonant case and ν = 2 in the non resonant case.
Note that ε is a bookkeeping parameter, meant to measure the “smallness” of the

various parameters and variables. In practice it is determined by the external forcing
pex, so in the simple case of a harmonic excitation we can take F0 = 1, and this will
be done in any example below. Hence we have, for a case with harmonic excitation
at a pressure level given by SPL dB, an equivalent value of ε given by

ε =

(

2 · 10−5 · 10
SPL
20

2ρ0c2
0

ℓSn

V
1
2

√
2

)
1
2

. (3.12)

Finally we arrive at the weakly non linear forced oscillator as given by (3.13). The
initial conditions are not important as we are interested only in the stationary state2

of the oscillator synchronised with the forcing.

d2y

dτ2
+ ε

dy
dτ

∣

∣

∣

∣

dy
dτ

∣

∣

∣

∣

+ εr
dy
dτ

+ y = εF0 cos(Ωτ) + ε1+νh(τ). (3.13)

We note in passing that the problem considered by Innes and Crighton[29] relates to
ours if we replace y′|y′| by y′|y|, assume y = O(ε−2) and F = O(ε−4), and neglect r.

3.3 Asymptotic analysis

3.3.1 Non resonant case

Away from resonance, when 1 − Ω2 = O(1), the perturbation problem is regular and
relatively straightforward. We will include it here for reference.

We look for solutions of

y′′ + εy′|y′| + εry′ + y = εF0 cos(Ωτ) + ε3h(τ) (3.14)

that are only caused by the external forcing. Since this forcing term is O(ε) and
we are not near resonance, the response is of the same order of magnitude, and we
transform y = εY , where Y = O(1).

Y ′′ + ε2Y ′|Y ′| + εrY ′ + Y = F0 cos(Ωτ) + ε2h(τ). (3.15)

the external forcing field is a combination of incident and reflected waves, say pex = f(t) + g(t)
and vex ∝ f(t) − g(t). If incident part f is harmonic, reflected part g will be harmonic plus higher
harmonics. We will see, however, that these higher harmonics are one or two orders of magnitude
smaller, and therefore play no role in y1, eq. (3.34), resp. Y1, eq. (3.19).

2In the appendix it is proved that solutions of this equation (3.13) are stable, so the stationary
solution exists.
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After substituting the assumed expansion Y (τ ; ε) = Y0(τ) + εY1(τ) + ε2Y2(τ) + . . .

and collecting the coefficients of O(1), we have

Y ′′
0 + Y0 = F0 cos(Ωτ). (3.16)

The solution that follows the driving force is periodic with frequency Ω and so

Y0 =
F0

1 − Ω2
cos(Ωτ), (3.17)

Next we collect the coefficients of O(ε) to obtain

Y ′′
1 + Y1 = −rY ′

0 =
rF0Ω

1 − Ω2
sin(Ωτ) (3.18)

with solution

Y1 =
rF0Ω

(1 − Ω2)2
sin(Ωτ). (3.19)

We may go on to O(ε2) and find the appearance of higher harmonics. Efficiently
collecting terms together, we obtain for the full solution

y = εF0
(1 − Ω2) cos Ωτ + εrΩ sin Ωτ

(1 − Ω2)2 + ε2r2Ω2
+O(ε3) (3.20)

showing that the response is indeed O(ε) and follows the excitation almost in phase
(1 − Ω2 > 0) or anti-phase (1 − Ω2 < 0). This is not the case anymore near resonance
when 1 − Ω2 = O(ε).

3.3.2 Resonant case

Near resonance when 1 − Ω2 = O(ε), it was assumed and indeed confirmed by (3.20)
that the amplitude y rises to levels of O(1), and the assumption that the non linear
damping is negligible to leading orders is not correct. As the physics of the problem
essentially change when Ω = 1+O(ε), we introduce a parameter σ = O(1) and assume
that

Ω = 1 + εσ. (3.21)

However, posed in this form we obtain secular terms in the expansion cos(τ + εστ) =
cos(τ)−εστ sin(τ)+ . . . of the driving force, which prohibits a uniform approximation
of y later [70, sec 15.3.2]. Therefore we remove the ε-dependence from the driving
force by absorbing Ω into a new time coordinate.

Moreover, the asymptotic expansion of the modulus |y′| introduces difficulties near
the ε-dependent (and unknown) zeros of y′. This will be tackled by a translation of
the origin by an amount θ(ε), such that the locations of the sign change of y′ are
fixed (as y is synchronised with the driving force) and independent of ε. (Of course,
a certain amount of smoothness is anticipated such that y′ has the same number of
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zeros per period as the forcing term). So we introduce

τ̃ = Ωτ − θ(ε)

to obtain

Ω2 d2y

dτ̃2
+ εΩ2 dy

dτ̃

∣

∣

∣

∣

dy
dτ̃

∣

∣

∣

∣

+ εΩr
dy
dτ̃

+ y = εF0 cos(τ̃ + θ) + ε2h, (3.22)

where θ is to be chosen such that y′(τ̃ ) = 0 at τ̃ = Nπ. In other words, Ωτ = ωt = θ

corresponds with the phase lag of response pin to excitation pex.

When we substitute the following (assumed uniform) asymptotic expansions for y
and θ [69]

y(τ̃ ; ε) = y0(τ̃ ) + εy1(τ̃ ) + ε2y2(τ̃ ) + . . . , and θ(ε) = θ0 + εθ1 + . . . ,

and collect like powers of ε, we find for y0

d2y0

dτ̃2
+ y0 = 0, y′

0(Nπ) = 0. (3.23)

This has the general solution

y0(τ̃ ) = A0 cos(τ̃ ), (3.24)

with A0 and θ0 to be determined. Although y0 is the result of driving force F , at this
level we don’t have any information about their relation yet, so we can’t determine
the integration constants A0 and θ0. Therefore, we continue with the next order y1.

d2y1

dτ̃2
+ y1 = F0 cos(τ̃ + θ0) − 2σ

d2y0

dτ̃2
− dy0

dτ̃

∣

∣

∣

∣

dy0

dτ̃

∣

∣

∣

∣

− r
dy0

dτ̃

= F0 cos(τ̃ + θ0) + 2σA0 cos(τ̃ ) +A0|A0| sin(τ̃ ) |sin(τ̃ )| + rA0 sin(τ̃ ) (3.25)

From the arguments that y is the stationary solution and its asymptotic expansion is
uniform in τ̃ , it follows that no resonant excitation is allowed in the right hand side
of the equation for y1. This means that we should suppress the cos- and sin-terms,
including the first term of the Fourier expansion of

sin(τ̃ ) |sin(τ̃ )| = − 1
π

∞
∑

n=0

sin(2n+ 1)τ̃
(n2 − 1

4 )(n+ 3
2 )

= 8
3π sin τ̃ + . . . (3.26)

to obtain
F0 cos θ0 = −2σA0, F0 sin θ0 =

(

8
3π |A0| + r

)

A0 (3.27)

or
[

(

8
3π |A0| + r

)2
+ (2σ)2

]

A2
0 = F 2

0 , tan(θ0) = −
8

3π |A0| + r

2σ
. (3.28)
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In general, the equation for A0 has to be solved numerically, from which θ0 follows.
There exist two (real) solutions, while if (A0, θ0) is a solution, then also (−A0, θ0 +π).
So, if convenient, we could assume that A0 is positive and maintain |A0| = A0, but
this depends on θ0.

The next order y1 is then given by

y1(τ̃ ) = A1 cos τ̃ +B1 sin τ̃ +
1

4π
A0|A0|

∞
∑

n=1

sin(2n+ 1)τ̃
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

(3.29)

with derivative

y′
1(τ̃ ) = −A1 sin τ̃ +B1 cos τ̃ +

1
4π
A0|A0|

∞
∑

n=1

(2n+ 1) cos(2n+ 1)τ̃
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

(3.30)

and so the boundary condition

y′
1(Nπ) = −A1 sin(Nπ) +B1 cos(Nπ)

+
1

4π
A0|A0|

∞
∑

n=1

(2n+ 1) cos((2n+ 1)Nπ)
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

= (−1)NB1 +
(−1)N

4π
A0|A0|

∞
∑

n=1

2n+ 1
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

= (−1)N
[

B1 + 2
9πA0|A0|

]

= 0

(3.31)

is satisfied by

B1 = − 2
9π
A0|A0|, because

∞
∑

n=1

2n+ 1
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

=
8
9
.

The sum of the telescoping series is easily found by partial fractions and noting the
terms cancelling in pairs. Altogether we have

y1(τ̃ ) = A1 cos τ̃ − 2
9π
A0|A0| sin τ̃ +

1
4π
A0|A0|

∞
∑

n=1

sin(2n+ 1)τ̃
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )
. (3.32)

The amplitude A1 is to be determined in a similar way as with y0 by suppressing
resonant terms in y2. The next order term y2 is obtained from (3.22) when it is
expanded to O(ε2) and terms of O(ε2) are collected

y′′
2 +y2 = −σ2y′′

0 −2σy′′
1 −2σy′

0|y′
0|−2y′

1|y′
0|−ry′

1 −rσy′
0 −θ1F0 sin(τ̃+θ0)+h. (3.33)

After substituting y0 and y1, and considering only the terms on the right hand side
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that are possibly in resonance with the left hand side, we obtain

y′′
2 + y2 =σ2A0 cos τ̃ + 2σA1 cos τ̃ − 4

9πσA0|A0| sin τ̃

+
(

2σA0 sin τ̃ + 2A1 sin τ̃ + 4
9πA0|A0| cos τ̃

)

|A0 sin τ̃ |

− 1
π
A0|A0|

∞
∑

n=1

cos(2n+ 1)τ̃
n(n+ 1)(n− 1

2 )(n+ 3
2 )

|A0 sin τ̃ |

+ rA1 sin τ̃ + 2
9π rA0|A0| cos τ̃ + rσA0 sin τ̃

− θ1F0 cos θ0 sin τ̃ − θ1F0 sin θ0 cos τ̃ + . . .

(3.34)

By Fourier expansion it can be found that

cos τ̃ | sin τ̃ | =
4

3π
cos τ̃ + . . . ,

∞
∑

n=1

| sin τ̃ | cos(2n+ 1)τ̃
n(n+ 1)(n− 1

2 )(n+ 3
2 )

=
1
π

(80
27

− π2

3

)

cos τ̃ + . . .

(3.35)
and only higher harmonics otherwise. Suppressing the cos- and sin-terms of (3.34)
thus results into

2σA1 − θ1F0 sin θ0 = −σ2A0 −
(

1
3

− 64
27π2

)

A3
0 − 2

9π
rA0|A0|

(

16
3π

|A0| + r

)

A1 − θ1F0 cos θ0 = −
(

44
9π

|A0| + r

)

σA0

(3.36)

By solving the linear system (3.36), we can obtain A1 and θ1.

3.4 Time-domain solution

The solution y = y0 + εy1 + O(ε2) ascertains in principle (for small ε) a better ap-
proximation of y than the leading order approximation y0, which would later provide
a better approximation of the impedance. We have this full solution as

y(τ̃ ; ε) = (A0 + εA1) cos τ̃− 2
9π
εA0|A0| sin τ̃

+
1

4π
εA0|A0|

∞
∑

n=1

sin(2n+ 1)τ̃
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

+ . . . .
(3.37)

where τ̃ = ωt − θ and θ = θ0 + εθ1 + . . . . The constants A0, θ0 and A1, θ1 can be
determined from (3.27) and (3.36) respectively.

Consider first the leading order approximation. Equation (3.28) for A0 has 2 real
symmetric solutions (of which we normally need to consider only the positive one),
but solving A0 = A0(σ) is not straightforward. Therefore, it is useful to consider the
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Figure 3.3: Solution of amplitude (A0, A1) and phase (θ0 , θ1) as a function of σ,
while r = F0 = 1

inverse, σ = σ(A0), given by

4σ2 =
F 2

0

A2
0

−
(

8
3π

|A0| + r

)2

(3.38)

Since σ2 > 0 we see immediately that solutions exists only for a finite interval in A0,
while σ → ∞ only when A0 → 0. In particular, we have

A0 ≃ F0

2|σ| , tan θ0 ≃ − r

2σ
or θ0 ≃ − r

2σ
+ nπ, (3.39)

which is in exact agreement with the asymptotic behaviour for Ω = 1 + εσ, σ large,
corresponding to the linear solution (3.17). In fact, by tracing the solution paramet-
rically as a function of σ, we can see that if we start with θ0 = 0 for σ → −∞, we
end with θ0 = π for σ → ∞. In this way, we have obtained the expression for A0 and
θ0; see Fig. 3.3 for an example.

Substituting the obtained value of A0 and θ0 in (3.36), we can solve the linear
algebraic system to obtainA1 and θ1. This way, we have determined all the coefficients
in (3.37); hence, the solution y is known which, when used with (3.10), gives pin

pin = 2ερ0c
2
0

ℓSn

V

[

(A0 + εA1) cos(ωt− θ)

− 2
9π
εA0|A0| sin(ωt− θ) +

1
4π
εA0|A0|

∞
∑

n=1

sin(2n+ 1)(ωt− θ)
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

+ . . .

]

. (3.40)
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Figure 3.4: Comparison of solution y0 and y0 + εy1 for r = 0.2, σ = 1 and ε = 0.28
(left) and ε = 0.88 (right) with a fully numerical solution.

From this solution and (3.8) we may determine the neck velocity un

un = 2εωℓ

[

(A0 + εA1) sin(ωt− θ)

+
2

9π
εA0|A0| cos(ωt− θ) − 1

4π
εA0|A0|

∞
∑

n=1

(2n+ 1) cos(2n+ 1)(ωt− θ)
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

+ . . .

]

,

(3.41)

which will be used to obtain the impedance of the resonator in a later section.

3.4.1 Comparison in time-domain with a fully numerical solu-

tion

The solution (3.37), correct till O(ε) (y0) and O(ε2) (y0 + εy1), are compared with a
fully numerical solution of (3.13), obtained by Mathematica with a standard Runge-
Kutta routine, see Fig. 3.4. In both cases r = 0.2, σ = 1, while ε = 0.28 in the left
figure and ε = 0.88 in the right. Note that this last case is added to see how the
solution behaves for values of ε that are really not small anymore. The one with
ε = 0.28 is indeed remarkably accurate for y0 + εy1, and we may observe an error of
y0 and y0 + εy1 compared to y that follows indeed the predicted behaviour of O(ε)
and O(ε2). The one with ε = 0.88 cannot be expected to be really accurate, but
surprisingly the results are still of the right order of magnitude.

We note, however, that there is always the assumption that σ = O(1) and 1−Ω2 =
O(ε). In other words, the validity of the resonance solution is for an interval in
frequency of ω = ω0(1+O(ε)). When we leave this interval, the non resonant solution
(3.20) should gradually become applicable.
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3.5 Impedance calculation

In order to obtain realistic numbers, we will consider the impedance Z as the effective
impedance of an array of Helmholtz resonators, where the spatially averaged neck
velocity is identified to the external acoustic velocity. Therefore, we add a porosity
factor Sn/Sb to un and obtain

vex =
Sn

Sb
un. (3.42)

Then we have to define what we mean with impedance for a sound field that is not
entirely harmonic anymore. The natural choice is to define the impedance as the
ratio of the Fourier transforms of the external pressure pex and (minus) the external
velocity vex at excitation frequency ω.

Z(η) =
p̂ex(η)

−v̂ex(η)
=

1
2π

∞́

−∞
pex(t) e−iηt dt

− 1
2π

∞́

−∞
vex(t) e−iηt dt

(η = ω). (3.43)

3.5.1 Non resonant impedance

Taking the Fourier transforms of pex and vex, we have, from (3.14), (3.8), (3.10), for
η > 0

p̂ex(η) =
1

2π

ˆ ∞

−∞
pex(t) e−iηt dt =

1
2π
ε2ρ0c

2
0

ℓSn

V
F0δ(η − ω) (3.44)

and

v̂ex(η) =
1

2π

ˆ ∞

−∞
vex(t) e−iηt dt = − 1

2π
Sn

Sb
εωℓ×

[

− ε
F0

1 − Ω2

1
i
δ(η − ω) + ε2 rF0Ω

(1 − Ω2)2
δ(η − ω)

]

, (3.45)

and so (with V = LSb) we obtain

Z(ω) = − p̂ex(ω)
v̂ex(ω)

=
ερ0c

2
0F0

Lω
·
(

ε2rΩ
(1 − Ω2)2

+ i
ε

1 − Ω2

)−1

. (3.46)

To leading order in ε, we obtain the usual expression for the linear impedance of a
mass spring damper type system as

Z(ω) ≃ Sb

Sn

(

R+ iρ0ℓω0

(

ω

ω0
− ω0

ω

))

. (3.47)
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3.5.2 Resonant impedance

Taking the Fourier transforms of pex and vex, we have for η > 0

p̂ex(η) =
1

2π

ˆ ∞

−∞
pex(t) e−iηt dt =

1
2π
ε2ρ0c

2
0

ℓSn

V
F0δ(η − ω) (3.48)

and

v̂ex(η) =
1

2π

ˆ ∞

−∞
vex(t) e−iηt dt =

1
2π

Sn

Sb
εωℓ e−iθ

[

− i(A0 + εA1)δ(η − ω)

+
2

9π
εA0|A0|δ(η − ω) − 1

4π
εA0|A0|

∞
∑

n=1

(2n+ 1)δ(η − (2n+ 1)ω)
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

+ . . .

]

, (3.49)

and so (with V = LSb) we obtain

Z(ω) = − p̂ex(ω)
v̂ex(ω)

=
ερ0c

2
0F0

Lω
· −i eiθ

A0 + εA1 + i 2
9π εA0|A0| . (3.50)

It is interesting to consider Z to leading order in ε

Z(ω) ≃ ερ0c
2
0F0

Lω

−i eiθ0

A0
= ρ0c0

c0

ωL

(

R

ρ0ω0ℓ
+

4
3π

‖un‖
ωℓ

+ 2i
ω − ω0

ω0

)

(3.51)

(where ‖un‖ denotes the amplitude of un) and observe that indeed Re(Z) is of the
often assumed form a+ b‖un‖. Although our a and b are no constants and depend on
ω, this is a higher order effect because ω = ω0(1 +O(ε)). To leading order in ε they
are constant. Im(Z) is independent of the excitation amplitude.

In order to illustrate formula (3.50), we have plotted in Fig. 3.5 resistance Re(Z)
and reactance Im(Z) as a function of Ω, obtained for a typical geometry at different
driving amplitudes, corresponding with ε varying from 0.05 to 0.28. As may be
expected from (3.51), the main effect of the forcing amplitude is in the resistance. The
reactance is practically independent of it. Typically, the resistance, being highest at
or near the resonance frequency and decaying along both sides, increases everywhere
with the amplitude, but more for frequencies less than resonance.

3.5.3 Comparison with Motsinger and Kraft

The behaviour in (3.50) may be compared in Fig. 3.6 with the measurements and
predictions given by Motsinger and Kraft in [35]. Their predictions are (a.o.) based
on a resistance of the form R = ρ0c0(a+ b|v|) with suitably chosen a and b and |v|
corresponding to ‖un‖ of our model. Unfortunately, only little experimental data
for the higher amplitudes are available. The parameter values we used are based on
ω0/2π = 2200 Hz, ℓ = 0.001 m, L = 0.035 m, Sn/Sb = 0.05, r = 0.1.

The agreement is reasonable, taking into account that the ε’s are not very small
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Figure 3.5: Real and imaginary parts of impedance Z for a Helmholtz resonator
as a function of nondimensional frequency at different driving amplitudes. The
realistic configuration that is chosen corresponds with Sn/Sb = 0.05, r = 0.2,
ω0/2π = 1447 Hz, L = 0.035 m, ℓ = 0.002 m.
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Figure 3.6: Comparison of (3.50) (solid line, left) with measurements and predictions
of Re(Z)/ρ0c0 given in [35], right. The markers in the right figure represent the
measured values which were used, by adopting the relation R = ρ0c0(a + b|v|), to
predict the resistance in solid curves. The dashed line, left, represents the resistance
obtained from another asymptotic form (3.52) which is apparently more accurate.

and no experimental data are available in this frequency range for the higher amp-
litudes. Especially the increase of the maximum with the amplitude is confirmed.
Only for the higher amplitudes (with value of ε = 0.99 or higher, that is far bey-
ond what could be considered asymptotically “small”) and frequencies well above
resonance the decay suggested by [35] is not confirmed.
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3.5.4 Comparison with Hersh et al. measurements

The Hersh et al. model [5] to predict the impedance is based on the experimental
calibration of empirical parameters that were derived in the formulation. They intro-
duced six assumptions, mostly inspired from measurements, to model the non linear
terms. Shown in Fig. 3.7 is the comparison of our non resonant and resonant imped-
ance values with 2 model configurations which have different value of ℓ. The maximum
of 120dB curve was used for calibration and find r, and the same value of r was used
for other amplitudes. The non linear curves asymptotically match with the linear
curve and this transition is quite smooth for lower ǫ such that we can go from one
model to the other. The resistance compares nicely at the near resonance frequencies
when σ = O(1) with ones amplitude fitted. Away from resonance (εσ = O(1)) we
see a considerable overprediction of the resistance. The reactance shows a good com-
parison across the range of frequencies. The same comparison was done with other
experimental configurations from [5] and a reasonably good agreement is found for
the near resonance frequencies.

3.5.5 Comparison with Ingard and Ising

Ingard and Ising [91] measured simultaneously fluctuating velocity and pressure, using
hot wire measurements, followed by the exploitation of their phase relation to obtain
the impedance at relatively high amplitudes. The chosen amplitudes were relatively
high and in the domain of Innes and Crighton theoretical model [29]. The comparison
shown in Fig. 3.8 is very accurate. This is a fortuitous result because we can not expect
correct behaviour of the asymptotic analysis at such high ε = O(1). It is a general
observation that the predicted impedance in the close neighbourhood of resonance
frequency is always agreeable even with higher values of ε.

3.5.6 Comparison with Melling

The measurements of Melling were used to further validate the model. Melling meas-
ured the impedance of a series of resonators constructed with multiple orifices backed
by a cavity. Fig. 3.9 shows that the model predicted non linear resistance of a res-
onator constructed with an orifice diameter (4Sn/π)

1
2 = 0.127 cm, ℓ = 0.056 cm,

L = 7.5 cm and (Sb/π)
1
2 = 3.46(Sn/π)

1
2 cm. The value of r is calibrated by its value

giving the 143.5dB amplitude. The first 3 points of the measurements, being equal in
magnitude, are apparently in the linear (non resonant) range. The model prediction
is quite reasonable over the full amplitude regime.
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Figure 3.7: Comparison of the resonant ( ) and non resonant ( ) resistance
with Hersh and Walker measurements ( b ). Configuration 1 (top): The cavity para-
meters are ℓ = 5.08 cm, (4Sn/π)

1
2 = 0.635 cm, L = 2.54 cm and (4Sb/π)

1
2 = 5.08 cm.

The desired resistance is obtained for r = 0.65. ǫ = 0.0455, 0.0809 and 0.1439
respectively. Configuration 2 (bottom): The cavity parameters are ℓ = 0.635 cm,
(4Sn/π)

1
2 = 0.635 cm, L = 2.54 cm and (4Sb/π)

1
2 = 5.08 cm. The desired resist-

ance is obtained for r = 1. ǫ = 0.1021, 0.1815 and 0.3228 respectively.

3.5.7 Comparison of impedances based on y0 and y0 + εy1 ap-

proximations

It is of interest to know when the driving amplitude becomes large enough to warrant
the extra term εy1 in the approximation of Z. Shown in Fig. 3.10 is the comparison
of the impedance values obtained from y0 and y0 + εy1 approximations for different
values of ε. Taking the same realistic geometry as above (Fig. 3.5), the value of ε
varies from ∼ 0.05 to 0.28 as the external driving amplitude is changed from 100 dB
to 130 dB. We see that O(ε) correction in the resulting resistance (the reactance is
practically independent, especially near resonance) can be neglected for the lower
amplitudes, but is indeed essential for the higher amplitudes.
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Figure 3.9: Comparison of the resistance with the measurements of Melling. The
cavity parameters are ℓ = 0.056 cm, (4Sn/π)

1
2 = 0.127 cm, L = 7.5 cm and (Sb/π)

1
2 =

3.46(Sn/π)
1
2 cm. The desired resistance is obtained for r = 1. 0.0705516 < ε <

0.705516

3.5.8 Another asymptotic form

It is interesting to note that another asymptotic form of the impedance expression
(3.50),

Z(ω) =
ερ0c

2
0F0

Lω0

−i eiθ

A0(1 + εσ) + iε 2
9πA

2
0 + εA1

(3.52)

by luck, produce better results for higher ε. We will derive and go through (3.52)
in next chapter, where we improve the current model to capture more physics of the
problem. For the time being, a comparison of the impedance obtained from (3.50) and
(3.52) is shown in Fig. 3.11. Clearly, the asymptotic form (3.52) produces accurate
predictions, especially at higher ε and decays away from resonance to match with the
linear resistance. Comparison with the experimental data of [35], shown in Fig. 3.6
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Figure 3.10: Comparison of the impedance obtained from the y0 and y0 +εy1 approx-
imations for 100 dB, 110 dB, 120 dB and 130 dB. Same configuration as in Fig. 3.5
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Figure 3.11: Comparison of resistance, Re(Z) based upon the two asymptotic form
of our impedance expressions, (3.50) and (3.52) and external excitations, same as
Fig. 3.5. The realistic configuration that is chosen corresponds with ℓ = 0.005 m,
L = 0.035 m and Sn/Sb = 0.05 that gives κ0 = 0.55 and ω0 = 5367 rad/sec, while
r = F0 = 1

reveals highly accurate predictions even at very high value of ε. Thus, the asymptotic
form in (3.52) is more promising.

3.6 Extension to the N wave source

In this section, we will carry forward the impedance analysis when the resonator is
driven by an N wave3 type source, instead of harmonic source. Since the current

3The N wave sound also called as buzz-saw noise is very common in practise e.g. the current
typical Dutch electronic dance music, EDM. Of particular interest and concern, is the buzz-saw
sound produced by aircraft engine while take off when the blade tip Mach number exceeds unity
that evolves a shock wave pattern at the blade leading edge close to the duct wall. Since the geometry
of each blade is not ideally same, the shock waves are not parallel and interact with each other in
the upstream of the intake duct. This interaction which is (highly) non linear in nature results in
a sound field that is not only the first harmonic of the blade passing frequency but also contains
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model does not permit to have the higher harmonics of wave inside the cavity, the
resonator is not valid for the higher harmonics of resonance frequency and the model
that we will study in next Chapter is more suitable for this analysis.

Typically, we can describe an N wave pressure field in time by the series

pex = pex = 2ε2ρ0c
2
0

(ℓSn

V

)

F0

∞
∑

n=1

sin(nωt)
n

(3.53)

where ω is the blade passing frequency, 1BPF and F0 is the amplitude of nondimen-
sional excitation. The liners are usually constructed in such a way that the resonance
frequency corresponds to 1BPF to absorb the dominant sound spectrum and the im-
pedance is usually obtained after ignoring the non linear effects. A time harmonic
non linear model to predict the tone noise from the turbofan engine was constructed
by [19]. In the frequency domain, the impedance information is vital to model the
boundary condition. Hence a model which could describe the relationship between
acoustic pressure and velocity is useful to maintain the understanding of the behavior
of wall at the higher harmonics of N wave. In this section, we extend our model from
harmonic source to N wave source and start the derivation from (3.22),

Ω2 d2y

dτ̃2
+ εΩ2 dy

dτ̃

∣

∣

∣

∣

dy
dτ̃

∣

∣

∣

∣

+ εΩr
dy
dτ̃

+ y = εF0

∞
∑

n=1

sinn(τ̃ + θ)
n

. (3.54)

where θ is to be chosen such that y′(τ̃ ) = 0 at τ̃ = (2N + 1)π/2. When we substitute
the assumed Poincaré expansions y(τ̃ ; ε) = y0(τ̃ ) + εy1(τ̃ ) + ε2y2(τ̃ ) + . . . and θ(ε) =
θ0 + εθ1 + . . . , and collect like powers of ε, we find for y0

d2y0

dτ̃2
+ y0 = 0, y′

0(
(N + 1)π

2
) = 0 (3.55)

with general solution y0(τ̃ ) = A0 sin(τ̃). The next order y1 is

d2y1

dτ̃2
+ y1 = F0

∞
∑

n=1

sinn(τ̃ + θ0)
n

− 2σ
d2y0

dτ̃2
− dy0

dτ̃

∣

∣

∣

∣

dy0

dτ̃

∣

∣

∣

∣

− r
dy0

dτ̃

= F0

∞
∑

n=2

sinn(τ̃ + θ0)
n

+ 2σA0 sin(τ̃ ) −A0|A0| cos(τ̃ ) |cos(τ̃ )| − rA0 cos(τ̃ ).

When we suppress the cos- and sin-terms, including the first term of the Fourier
expansion of cos(τ̃ ) |cos(τ̃ )|, we obtain the equation set (3.27) and (3.28), solving

several other harmonics [3]. The amplitude of each harmonic is inversely proportional to the it’s
frequency. Typically, there is a difference of about 6 dB between 1BPF and 2BPF and a difference of
about 9.5 dB between 1BPF and 3BPF. Also, the shock interaction is much stronger in the upstream
of the fan hence, the buzz-saw sound increases a bit when we move away from the fan and gains
maturity at the shock interaction region and later starts to decrease.
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which, we can determine A0 and θ0. The next order y1 equation

d2y1

dτ̃2
+ y1 =

∞
∑

n=1

[

F0
sin(n+ 1)(τ̃ + θ0)

(n+ 1)
+A0|A0| (−1)n cos(2n+ 1)τ̃

π(n2 − 1
4 )(n+ 3

2 )

]

has the general solution

y1(t) = A1 cos τ̃ +B1 sin τ̃

−
∞
∑

n=1

[

F0 sin(n+ 1)(τ̃ + θ0)
n(n+ 1)(n+ 2)

+
A0|A0|

4π
(−1)n cos(2n+ 1)τ̃

n(n+ 1)(n2 − 1
4 )(n+ 3

2 )

]

. (3.56)

With the condition that y′
1( (2N+1)π

2 ) = 0, the constant A1 is determined. Next, we
move to the next order asymptotic analysis from (3.54), collecting the like coefficients
of ǫ2, we have

y′′
2 + y2 =σ2A0 sin τ̃ + 2σA1 cos τ̃ + 2σB1 sin τ̃ + ..

+
[

2σA2
0 cos2 τ̃ − 2A0A1 sin τ̃ cos τ̃ + 2A0B1 cos2 τ̃

]

sign(A0 cos τ̃)

+ rA1 sin τ̃ − rB1 cos τ̃ − rσA0 cos τ̃ + · · · + θ1F0(cos τ̃ cos θ0 − sin τ̃ sin θ0)

− 2A0F0

∞
∑

n=1

cos τ̃ cos(n+ 1)(τ̃ + θ0)
n(2n+ 1)

sign(A0 cos τ̃ )

− 2A3
0

4π

∞
∑

n=1

(−1)n(2n+ 1) sin(2n+ 1)τ̃ cos τ̃
n(n+ 1)(n2 − 1

4 )(n+ 3
2 )

sign(A0 cos τ̃ ).

Suppressing the coefficients of the sine and cosine terms as done previously, we can
obtain the value of B1 and θ1 from the linear equations

(16
A0

3π
− r)B1 + (F0 cos θ0)θ1 = − 2σA1 − 16σA2

0

3π
+ rσA0

− 2A0F0

π

∞
∑

n=1

6 cos(nπ
2 ) + 2 cos(3nπ

2 )
n(n2 − 1)(n+ 3)

cos(n+ 1)θ0

(2σ)B1 − (F0 sin θ0)θ1 = − σ2A0 +
8A0A1

3π
− A3

0

27π2
(80 − 9π2) − rA1

+
2A0F0

π

∞
∑

n=1

3 cos(nπ
2 ) + cos(3nπ

2 )
n(n+ 1)(n2 − 1)(n+ 3)

sin(n+ 1)θ0.

The series we see are truncated for a finite summation and can be evaluated numeric-
ally. This way, we know the asymptotic solution y = y0 + εy1 correct till O(ε). Next
we formulate the impedance calculation.
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Figure 3.12: Impedance at observed frequency η = nω and N wave excitation Ω = 1.
Sn

Sb

= 0.5, r = 0.2, ω0

2π = 1447Hz, L = 0.035m and ℓ = 0.002 m.

3.6.1 Impedance calculation

We define the impedance, same as in (3.43), as the negative of the ratio of the Fourier
transform of the external pressure pex to the Fourier transform of the external velocity
uex. The Fourier transform is taken over the frequency of interest, which happen to
be the integral multiple of the resonance frequency ω0 in our case i.e.

Z(η) = −

1
2π

∞́

−∞
pexe

−iηtdt

1
2π

∞́

−∞
vexe−iηtdt

, (η = nω0). (3.57)

Defined in this way, the impedance gives an understanding of the behavior of the wall
for different harmonics of the N wave. In other words, it is the response of the wall
(acoustic velocity) to a particular pressure component of the source, characterized by
its frequency. Of most importance are the first three harmonics of N wave because
the later harmonics are practically cut off.

3.6.2 Results

The acoustic pressure and velocity are Fourier transformed to obtain the impedance,
using (3.57), for a typical geometry with Sn/Sb = 0.5, r = 0.2, ω0/2π = 1447 Hz, L =
0.035 m and ℓ = 0.002 m. Shown in Fig. 3.12 is the dimensional impedance for different
harmonics of the resonant frequency calculated for different driving amplitudes. We
notice that at ω = ω0, the impedance has the same value as if the Helmholtz resonator
is driven by the harmonic source and increases for higher harmonics. The resistance
Re(Z) term is strongly dependent on the driving amplitude and grows much higher
for higher amplitudes. The reactance Im(Z) term on the contrary, is practically
independent of the driving amplitude. Essentially, the wall behaves like hard wall for
very high harmonics of the resonant frequency ω0.
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3.7 Conclusions

A systematic approximation of the solution of the hydrodynamically non linear Helm-
holtz resonator equation is obtained, including the resulting impedance if the reson-
ator is applied in an acoustic liner. To leading order, the usually assumed form of
the resistance, a + b|v|, is recovered. The only unknown parameter that we need to
adapt is resistance factor r, although in many cases the effective neck length ℓ is also
unknown and has to be estimated. Comparisons with measurements prove that the
model predicts the near resonance impedance at σ = O(1) to a good accuracy.

Our approach, based on systematic use of asymptotic analysis, allows higher or-
der corrections, which indeed are shown to be important and relevant for practical
configurations involving high amplitudes.

The real part of the found impedance (the resistance) shows the usual character-
istic behavior as a function of frequency, namely a maximum at or near the resonance
frequency and a decay along both sides. All values increase with the amplitude, but
slightly more for the frequencies less than resonance. The imaginary part of the im-
pedance (the reactance) is linear in frequency in a way that it vanishes at resonance
and is practically independent of the amplitude.

The current model is based upon the assumption that the pressure inside the cavity
is uniform and the exit velocity is given by the time derivative of this uniform pressure.
In reality, standing waves are developed inside the cavity and the relationship between
velocity and pressure is given by the solution of the wave equation, inside the cavity.
This is what we aim for, in the next Chapter, to capture more physics of the damping
phenomenon.





Chapter 4

An asymptotic model for non

linear Helmholtz resonator of

finite depth

4.1 Introduction

The Helmholtz resonator equation which describes the neck region flow (Fig. 4.1) can
be solved asymptotically with the boundary condition that relates the pressure and
velocities inside the cavity (left of the neck in Fig. 4.1). This was done in the previous
Chapter 3 and the formulated impedance was compared with the existing experi-
mental data favourably. The considered cavity was acoustically compact, i.e. the
length of the cavity considered was much smaller compared to the acoustic wavelength
L ≪ λ so that the pressure inside was nearly uniform for simplicity and the neck velo-
city was simply given by the time derivative of the pressure. Hence the resonator acts
like a spring to the external force. This modelling assumption could be improved and
extended to cavities of large lengths by solving the wave equation inside the cavity to
obtain a relationship between pressure and velocity that allows the waves to develop
inside the cavity. In this way, we capture more physics of the problem and the fidelity
of the model is improved.

We follow much of the derivation done in Chapter 3, and focus on a systematic
derivation of an asymptotic solution of a stand-alone non linear Helmholtz resonator
equation from first principles. Again, the extra complication of grazing flow along
the liner wall will not be considered here. This effect is important if the mean flow
boundary layer is thin enough and the resonator outflow velocity is comparable to (or
higher than) the mean flow velocity.

We start with the classical modeling of the Helmholtz resonator and formulate a
perturbation problem in terms of a small parameter ε which is based on the excitation
amplitude of a given pressure of fixed frequency. The stationary solution of this

43



44 4.2. Mathematical formulation

SnSb

L ℓ

V
pin

vin

un

pext

Figure 4.1: Organpipe resonator cavity and neck

problem is solved asymptotically. Secular effects of the external forcing are treated
in the usual way by a suitable Lindstedt-Poincaré type approach. A non standard
problem is the modulus term |u| of the velocity. This prohibits a standard asymptotic
expansion because the location of the zeros of u are a priori unknown. This problem
has been tackled by adding an unknown shift of the origin, to be determined along
with the construction of the solution, and using the fact that the stationary solution
has the same periodicity as the driving force.

4.2 Mathematical formulation

The organ pipe type extended resonator considered is shown in Fig 4.1. The frequency
of the external excitation is assumed to be low enough that crosswise higher order
modes are cut off in the cavity region of length L and we have only plane waves inside.
Considering that the cavity neck is acoustically compact i.e. kℓ ≪ 1 for a typical
wavenumber k = ω/c0, we can neglect compressibility in the neck and determine the
line integral of the momentum equation, from (2.1), (2.2) and (2.8),

ρ0

(∂v

∂t
+ v ·∇v

)

+ ∇p = µ∇2v

along a streamline from a point inside to a point outside to obtain the relation

ρ0

ˆ ex

in

∂v

∂t
·ds + 1

2ρ0(v2
ex − v2

in) + (pex − pin) =
ˆ ex

in

µ∇2v ·ds, (4.1)

with v = ‖v‖ and µ denoting the viscosity. Following Melling [87] we average pressure
and velocity along the neck’s cross section, assume that the averaged squared velocity
is approximately equal to the squared averaged velocity, and obtain

ρ0

ˆ ex

in

∂v̄

∂t
·ds + 1

2ρ0(v̄2
ex − v̄2

in) + (pex − pin) =
ˆ ex

in

µ∇2v ·ds. (4.2)

Assuming that the streamline does not change in time, we have
ˆ ex

in

∂v̄

∂t
·ds =

d
dt

ˆ ex

in

v̄ ·ds. (4.3)
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out-flow phase in-flow phase

Figure 4.2: Separation and vortex shedding during the out-flow and in-flow phase

The velocity line integral evidently scales on a typical length times a typical velocity. If
end effects are minor, we can use the neck flux velocity v̄ = unex with a corresponding
length being the neck length ℓ, added by a small end correction δ to take into account
the inertia of the acoustic flow at both ends just outside the neck (inside and outside
the resonator). Then we have

ˆ ex

in

v̄ ·ds = (ℓ+ 2δ)un. (4.4)

End corrections δ for various geometries are given by Ingard [90]. For a circular
orifice, for example, we may use δ = 0.85(Sn/π)1/2.

For the stress term line integral we observe that, apart from un itself, it will
depend on flow profile, Reynolds number, wall heat exchange, turbulence, separation
from sharp edges, and maybe more. Following Melling [87], we will take these effects
together in a resistance factor R, which will be assumed relatively small, in order to
have resonance and a small decay per period to begin with. We thus have

ˆ ex

in

µ∇2v ·ds = −Run (4.5)

(Note that this form is exact for a Poiseuille flow with parabolic profile). Due to
separation from the outer exit, we have with outflow v̄in ≃ 0 with v̄ex = un jetting
out, while similarly during inflow, v̄ex ≃ 0 with v̄in = un jetting into the cavity; see
Fig. 4.2. The pressure in the jets, however, has to remain equal to the surrounding
pressure (pex and pin respectively) because the boundary of the jet cannot support a
pressure difference. Therefore, we have altogether (redefining ℓ+ 2δ =: ℓ)

ρ0ℓ
d
dt
un + 1

2ρ0un|un| +Run = pin − pex. (4.6)

The second equation between pin and un is obtained by solving the wave equation
in the attached cavity (organ pipe) of uniform cross section Sb and length L, varying
along −L 6 x 6 0 where x = 0 is the position where the cavity connects to the neck.
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Inside the cavity, we have
∂p

∂t
+ ρ0c

2
0

∂u

∂x
= 0

ρ0
∂u

∂t
+
∂p

∂x
= 0,

(4.7)

assuming an adiabatic compression of the fluid in the cavity p = c2
0ρ. The end

conditions are then
u(−L, t) = 0

p(0, t) = pin(t)

Sbu(0, t) = Snun(t).

(4.8)

Using d’Alembert’s solution we can solve (4.7) to obtain

p(x, t) = ρ0c
2
0

(

f(c0t− x− L) + f(c0t+ x+ L)
)

u(x, t) = c0

(

f(c0t− x− L) − f(c0t+ x+ L)
) (4.9)

so
pin(t) = ρ0c

2
0

(

f(c0t− L) + f(c0t+ L)
)

Snun(t) = Sbc0

(

f(c0t− L) − f(c0t+ L)
)

.
(4.10)

After the Fourier transform of (4.7) using (4.8), we have

û(x) = Ac0 sin(kx+ kL) p̂(x) = iAρ0c
2
0 cos(kx+ kL),

hence Snûn = SbAc0 sin(kL) p̂in = iAρ0c
2
0 cos(kL).

For the linear harmonic case, we have from (4.6)

iωρ0ℓûn +Rûn = p̂in − p̂ex, (4.11)

p̂ex = −iωρ0ℓ
Sb

Sn
Ac0 sin(kL) −R

Sb

Sn
Ac0 sin(kL) + iAρ0c

2
0 cos(kL). (4.12)

The neck velocity û is averaged over the whole surface and can be multiplied by the
porosity factor to obtain

ûex =
Sn

Sb
ûn = û(0) = Ac0 sin(kL). (4.13)

Combining (4.13) with (4.12), we obtain the standard expression of the linear imped-
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ance [80]

Z =
p̂ex

−ûex

=
−iωρ0ℓ

Sb

Sn
Ac0 sin(kL) −R Sb

Sn
Ac0 sin(kL) + iAρ0c

2
0 cos(kL)

Ac0 sin(kL)

=
Sb

Sn

(

R+ iωρ0ℓ
)

− iρ0c0 cot(kL). (4.14)

The resistance R averaged over the surface becomes the resistance term of linear
impedance. Close to resonance, the expression (4.14) is no longer valid because the
non linear term in (4.6) is of same order of magnitude as the other terms, as the
problem is formulated in that way. It will become more clear in the next section.
In order to proceed further, it is important to scale the variables in (4.6) which we
introduce in the next section.

4.3 Scaling

For a proper analysis, it is most clarifying to rewrite the equation into non dimensional
variables. For this we need an inherent timescale and pressure level. The resonance
frequency ω0 for the linearised case and R = 0 is evidently given by the solution of

κ0 tanκ0 =
LSn

ℓSb
, κ0 =

ω0L

c0
. (4.15)

The reciprocal of this angular frequency is a suitable timescale of the problem. By
dividing the non linear damping term by the acceleration term we find the pressure
level at which the non linear damping would be just as large as the other terms. So
for a pressure that is a small fraction, say ε, of this level we have a problem with only
little non linear damping. In addition we assume that the linear damping is small
and of the same order of magnitude as the non linear damping (that is to say: near
resonance. Away from resonance the non linear term will be relatively smaller). Also,
the driving amplitude pex will be an order smaller than pin. In order to make all this
explicit we introduce a small parameter ε (via the external forcing amplitude), and
make dimensionless

τ = ω0t pin(t) = 2ερ0c
2
0

(

ω0ℓ

c0

)2

y(τ) pex(t) = 2ε2ρ0c
2
0

(

ω0ℓ

c0

)2

F (τ)

R = ερ0c0

(

ω0ℓ

c0

)

r un(t) = 2εc0

(

ω0ℓ

c0

)

v(τ) f(c0t) = 2ε
(

ω0ℓ

c0

)2

φ(τ).

(4.16)
It should be noted that in practice the parameter R is usually a constant and not
dependent of the excitation amplitude (ε). So the used scaling ∼ εr should not be
interpreted in that way, and is only meant to select out a certain class of problems with
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a relatively small linear friction and similarly small non linear effects. If we consider
a particular configuration for varying ε but otherwise fixed, we should preserve the
product εr and adapt r, but never such that r is unacceptably large and we would
enter a physically different regime.

Coupled with (4.6) and (4.9), we obtain the final non linear differential equation

dv
dτ

+ εv|v| + εrv − y = −εF (4.17)

with conditions
φ(τ − κ0) + φ(τ + κ0) = y(τ)

φ(τ − κ0) − φ(τ + κ0) = tanκ0 v(τ)
(4.18)

that we need to solve asymptotically. Note that in case of small length L (the condition
of Chapter 3), we have a small κ0, and so

κ0 tanκ0 ∼ κ2
0.

With (4.15), we obtain the same resonance frequency of the cavity used in Chapter 3.
Also note that with positive ω0, κ0 > 0, and since the product k0 tan κ0 = LSn/ℓSb >

0, we have tan κ0 > 0.

4.4 Asymptotic solution away from resonance ω 6= ω0

Away from resonance ω 6= ω0 and

F (τ) = cos(Ωτ), Ω =
ω

ω0
, (4.19)

our solution follows the external excitation in time, phase and order of magnitude.
Hence we assume y = O(ε) and expand the variables as

y = εy0 + ε2y1 + . . . , v = εv0 + ε2v1 + . . . , φ = εφ0 + ε2φ1 + . . . . (4.20)

Collecting the like powers of ε, we obtain

dv0

dτ
− y0 = − cos(Ωτ)

φ0(τ − κ0) + φ0(τ + κ0) = y0(τ)

φ0(τ − κ0) − φ0(τ + κ0) = tanκ0 v0(τ)

(4.21)

and
dv1

dτ
− y1 = −rv0

φ1(τ − κ0) + φ1(τ + κ0) = y1(τ)

φ1(τ − κ0) − φ1(τ + κ0) = tan κ0 v1(τ).

(4.22)
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Assuming a slight amount of damping, the homogeneous solution of (4.21) and (4.22)
given by appendix [B.1(B.1)] will dissipate for large time. The particular solution
that remains, can be obtained as shown in appendix B.2. Using (B.9), we obtain

v = ε
− tan(Ωκ0)

Ω tan(Ωκ0) − tan κ0
sin(Ωτ) − ε2r

[

tan(Ωκ0)
Ω tan(Ωκ0) − tanκ0

]2

cos(Ωτ). (4.23)

which is asymptotically equivalent to the solution

v = −ε tan(Ωκ0)
(Ω tan(Ωκ0) − tan κ0) sin(Ωτ) + εr tan(Ωκ0) cos(Ωτ)

(Ω tan(Ωκ0) − tanκ0)2 + (εr tan(Ωκ0))2
+O(ε3).

(4.24)
We see that the response v is indeed O(ε) and follows the excitation almost in phase
(Ω tan(Ωκ0) − tanκ0 > 0) or antiphase Ω tan(Ωκ0) − tan κ0 < 0. Close to resonance
when Ω = 1 + O(ε), the term (Ω tan(Ωκ0) − tanκ0) = O(ε), so v = O(1) and the
assumption that the response v has the same order as the excitation O(ǫ) is not
correct. Therefore the solution (4.24) is not valid close to resonance.

4.5 Asymptotic solution close to resonance ω ≈ ω0

Near resonance, the amplitude y in (4.17) rises to levels of O(1) with O(ε) forcing
and the assumption that the non linear damping is negligible to leading orders is not
correct. As the physics of the problem essentially change when Ω = 1 + O(ε), we
introduce a parameter σ = O(1) and assume that

Ω = 1 + εσ. (4.25)

However, posed in this form we obtain secular terms in the expansion cos(τ + εστ) =
cos(τ)−εστ sin(τ)+ . . . of the driving force, which prohibits a uniform approximation
of v later [70, sec15.3.2]. Therefore, we remove the ε-dependence from the driving
force by absorbing Ω into a new time coordinate τ̃ = Ωτ . Moreover, the asymptotic
expansion of the term v|v| introduces difficulties near the ε-dependent (and unknown)
zeros of v. This will be tackled by a translation of the origin by an amount θ(ε), such
that the locations of the sign change of v are fixed (as v is synchronised with the
driving force) and independent of ε. (Of course, a certain amount of smoothness is
anticipated such that v has the same number of zeros per period as the forcing term).
So we introduce

τ̃ = Ωτ − θ(ε) (4.26)

where θ is to be chosen such that the response v vanishes at integral multiples of π.
This fixes the points along the time τ̃ axis where v changes sign i.e.

v(τ̃ ) = 0 at τ̃ = Nπ. (4.27)
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In other words, Ωτ = ωt = θ corresponds with the phase lag of response vex to
excitation pex like in Chapter 3.

Consider Ω = 1 +O(ε) and introduce the transformation

F = F0 cos(τ̃+θ), Ω = 1+εσ, τ̃ = Ωτ−θ, y(τ) = ỹ(τ̃ ), v(τ) = ṽ(τ̃ ) and φ(τ) = φ̃(τ̃ ),
(4.28)

to obtain the following set of equations

Ω
dṽ
dτ̃

+ εṽ|ṽ| + εrṽ − ỹ = −εF (4.29)

with
φ̃(τ̃ − Ωκ0) + φ̃(τ̃ + Ωκ0) = ỹ(τ̃ )

φ̃(τ̃ − Ωκ0) − φ̃(τ̃ + Ωκ0) = tanκ0 ṽ(τ̃ ).
(4.30)

Now we expand the variables as follows

ỹ = ỹ0 + εỹ1 + . . . , ṽ = ṽ0 + εṽ1 + . . . , φ̃ = φ̃0 + εφ̃1 + . . . , θ = θ0 + εθ1 + . . . ,

φ̃(τ̃ ± Ωκ0) = φ̃0(τ̃ ± κ0) + ε
[

φ̃1(τ̃ ± κ0) ± σκ0φ̃
′
0(τ̃ ± κ0)

]

+ ε2
[

φ̃2(τ̃ ± κ0) + 1
2 (σκ0)2φ̃′′

0 (τ̃ ± κ0) ± σκ0φ̃
′
1(τ̃ ± κ0)+

]

+ . . . .
(4.31)

Next we collect the terms of the same order of ε and construct our solution in the
form of an asymptotic series.

Order ε0 analysis:

Substituting (4.31) in (4.30) and afterwards in (4.29) and collecting the terms of
O(ε0), we have

dṽ0

dτ̃
− ỹ0 = 0

φ̃0(τ̃ − κ0) + φ̃0(τ̃ + κ0) = ỹ0(τ̃ )

φ̃0(τ̃ − κ0) − φ̃0(τ̃ + κ0) = tan κ0 ṽ0(τ̃ ).

(4.32)

At large times, assuming a little damping, the cavity is driven by the external force in
such a way that a steady state is reached and the initial conditions are not important.
Hence from (B.1), we choose the steady solution and obtain, using (4.27),

φ̃0 = 1
2A0 cos τ̃ , (4.33)

and hence
ỹ0 = A0 cosκ0 cos τ̃ and ṽ0 = A0 cosκ0 sin τ̃ , (4.34)

where A0 and θ0 are to be determined from the regularity condition (absence of secular
terms (B.10)) in the next order ε1.
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Order ε1 analysis:

Collecting the terms of O(ε) from (4.29), we obtain

dṽ1

dτ̃
− ỹ1 = −σṽ′

0 − ṽ0|ṽ0| − rṽ0 − F0 cos(τ̃ + θ0)

φ̃1(τ̃ − κ0) + φ̃1(τ̃ + κ0) = σκ0φ̃
′
0(τ̃ − κ0) − σκ0φ̃

′
0(τ̃ + κ0) + ỹ1(τ̃ )

φ̃1(τ̃ − κ0) − φ̃1(τ̃ + κ0) = σκ0φ̃
′
0(τ̃ − κ0) + σκ0φ̃

′
0(τ̃ + κ0) + tanκ0 ṽ1(τ̃ ).

(4.35)

From (4.33), (4.34) and (4.35), we have after eliminating ỹ1 and ṽ1

1
tanκ0

[

φ̃′
1(τ̃ − κ0) − φ̃′

1(τ̃ + κ0)
]

−
[

φ̃1(τ̃ − κ0) + φ̃1(τ̃ + κ0)
]

=

− σ
κ0

tanκ0
A0 cosκ0 cos τ̃ + σκ0A0 sin κ0 cos τ̃ − σA0 cosκ0 cos τ̃

−A0|A0| cos2 κ0 sin τ̃ | sin τ̃ | − rA0 cosκ0 sin τ̃ − F0 cos τ̃ cos θ0 + F0 sin τ̃ sin θ0.

(4.36)
From the arguments that we just have the stationary solution and its asymptotic
expansion is uniform in τ̃ , it follows that no resonant excitation is allowed in the right
hand side of the equation (4.36). This means (see (B.10)) that we should suppress
the cos- and sin-terms including those in the Fourier expansion of

sin(x)| sin(x)| ∼ 8
3π

sin(x) − 8
15π

sin(3x) − . . . .

Hence we obtain the algebraic equations

F0 cos θ0 = −σA0

[

κ0

tanκ0
cosκ0 + cosκ0 − κ0 sin κ0

]

F0 sin θ0 = A0

[

8
3π

cos2 κ0|A0| + r cosκ0

]

.

(4.37)

In general, A0 has to be solved numerically, from which θ0 follows. There exist
two (real) solutions, while if (A0, θ0) is a solution, then also (−A0, θ0 + π). So, if
convenient, we could assume that A0 is positive and maintain |A0| = A0, but this
depends on θ0. Solving (4.37), we can obtain A0 and θ0 as plotted in Fig. 4.3. We
notice that the amplitude rises to O(1) at resonance and decays when σ → ±∞.

If we take the low frequency limit (κ0 → 0) in (4.37), we obtain exactly the
same equations as in Chapter 3 (3.27). Physically, in this limit, the cavity length L

would be asymptotically smaller than the acoustic wavelength 2πc0/ω0 and hence the
wave would feel a uniform pressure inside the cavity and thus the current modelling
assumption converges to the one in Chapter 3.
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Figure 4.3: Solution of amplitude (A0, A1) and phase (θ0, θ1) as a function of σ, with
κ0 = 0.55, and r = F0 = 1

From (4.36), we have

1
tanκ0

[

φ̃′
1(τ̃ − κ0) − φ̃′

1(τ̃ + κ0)
]

−
[

φ̃1(τ̃ − κ0) + φ̃1(τ̃ + κ0)
]

=
A2

0 cos2(κ0)
π

∞
∑

n=1

sin(2n+ 1)τ̃
(n2 − 1

4 )(n+ 3
2 )

which can be solved term-wise using (B.1), similar to (4.33), to obtain

φ̃1(τ̃ ) =1
2A1 cos τ̃ + 1

2B1 sin τ̃ +
A2

0 cos2 κ0 tanκ0

2π
×

∞
∑

n=1

sin(2n+ 1)τ̃
cos(2n+ 1)κ0 [(2n+ 1) tan(2n+ 1)κ0 − tan κ0] (n2 − 1

4 )(n+ 3
2 )

(4.38)

which upon substituting in (4.35) gives

ṽ1(τ̃ ) = A1 cosκ0 sin τ̃ −B1 cosκ0 cos τ̃ + σκ0A0
cosκ0

tanκ0
sin τ̃

− A2
0 cos2 κ0

π

∞
∑

n=1

cos(2n+ 1)τ̃
[

(2n+ 1) − tan κ0

tan(2n+1)κ0

]

(n2 − 1
4 )(n+ 3

2 )
.

(4.39)

Using the condition (4.27), i.e. ṽ1(τ̃ = Nπ) = 0, we find

B1 = −A2
0 cos2 κ0

π

∞
∑

n=1

1
[

(2n+ 1) − tan κ0

tan(2n+1)κ0

]

(n2 − 1
4 )(n+ 3

2 )
. (4.40)

Note that in the limit κ0 → 0, we have B1 = − 2
9πA

2
0, which is useful for later. The

other two unknowns A1 and θ1 are to be determined from the regularity condition at
next order (ε2).
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Order ε2 analysis:

Collecting the terms of O(ε2) from (4.29), we obtain

ṽ′
2 − ỹ2 = − σṽ′

1 − 2ṽ1|ṽ0| − rṽ1 + θ1 sin(τ̃ + θ0)

φ̃2(τ̃ − κ0) + φ̃2(τ̃ + κ0) = − 1
2 (σκ0)2

[

φ̃′′
0 (τ̃ − κ0) + φ̃′′

0 (τ̃ + κ0)
]

+ σκ0

[

φ̃′
1(τ̃ − κ0) − φ̃′

1(τ̃ + κ0)
]

+ ỹ2(τ̃ )

φ̃2(τ̃ − κ0) − φ̃2(τ̃ + κ0) = − 1
2 (σκ0)2

[

φ̃′′
0 (τ̃ − κ0) − φ̃′′

0 (τ̃ + κ0)
]

+ σκ0

[

φ̃′
1(τ̃ − κ0) + φ̃′

1(τ̃ + κ0)
]

+ tanκ0 ṽ2(τ̃ ).
(4.41)

Substituting ỹ2 and ṽ2 in the first equation of (4.41), we obtain

1
tanκ0

[

φ̃′
2(τ̃ − κ0) − φ̃′

2(τ̃ + κ0)
]

−
[

φ̃2(τ̃ − κ0) + φ̃2(τ̃ + κ0)
]

=

1
2 (σκ0)2

[

φ̃′′
0 (τ̃ − κ0) + φ̃′′

0 (τ̃ + κ0)
]

− (σκ0)2

2 tanκ0

[

φ̃′′′
0 (τ̃ − κ0) − φ̃′′′

0 (τ̃ + κ0)
]

− σκ0

[

φ̃′
1(τ̃ − κ0) − φ̃′

1(τ̃ + κ0)
]

+
σκ0

tanκ0

[

φ̃′′
1(τ̃ − κ0) + φ̃′′

1 (τ̃ + κ0)
]

− σṽ′
1 − 2ṽ1|ṽ0| − rṽ1 + θ1 sin(τ̃ + θ0),

(4.42)
in which we have to suppress the sine - cosine terms to obtain A1 and θ1. Using (4.33),
(4.34), (4.38), (4.39) and (4.40) with (4.42), (see appendix [B.3]) and collecting the
coefficients of cosine and sine terms and equating them to zero, we obtain a set of 2
linear equations with variables A1 and θ1

[

σκ0 sinκ0 +
σκ0

tan κ0
cosκ0 + σ cosκ0

]

A1 − θ1 sin θ0 =
(

r cosκ0 +
8

3π
A0 cos2 κ0

)

B1 − σ2κ0
cosκ0

tan κ0
A0

− 2A3
0 cos3 κ0

π2

∞
∑

n=1

1
[

(2n+ 1) − tan κ0

tan(2n+1)κ0

]

(n2 − 1
4 )(n+ 3

2 )(n− 1
2 )(n+ 3

2 )

[

r cosκ0 +
16
3π
A0 cos2 κ0

]

A1 − θ1 cos θ0 =

−
(

σκ0 sinκ0 +
σκ0

tanκ0
cosκ0 + σ cosκ0

)

B1 − rσκ0
cosκ0

tanκ0
A0 − 16

3π
σκ0

cos2 κ0

tan κ0
A2

0.

(4.43)
Solving (4.43), we can determine A1 and θ1 as shown in Fig. 4.3. Hence we have the
solution correct till O(ε). In the limit κ0 → 0 and noting that

∞
∑

n=1

(2n+ 1)
4n(n+ 1)(n2 − 1

4 )(n+ 3
2 )2(n− 1

2 )
=

9π2 − 80
54

,
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we obtain from (4.43)

2σA1 − θ1 sin θ0 = −σ2A0 −
[

1
3

− 64
27π2

]

A3
0 − 2

9π
rA2

0

[

16
3π
A0 + r

]

A1 − θ1 cos θ0 = −rσA0 − 44
9π
σA2

0

(4.44)

which is exactly the equation set of Chapter 3 (3.36), as expected. This confirms the
consistency of the current and previous solutions. Using (4.39), (4.31), (4.28) and
(4.16), we finally obtain

un =2εℓω0

[

(A0 cosκ0 + εA1 cosκ0 + εσκ0A0
cosκ0

tan κ0
) sin(ωt− θ)

]

− 2εℓω0 [εB1 cosκ0 cos(ωt− θ)]

− 2ε2ℓω0
A2

0 cos2 κ0

π

∞
∑

n=1

cos(2n+ 1)(ωt− θ)
[

(2n+ 1) − tan κ0

tan(2n+1)κ0

]

(n2 − 1
4 )(n+ 3

2 )
.

(4.45)

The velocity in (4.45) after averaging over the surface (multiplying with Sn/Sb) can
be used with the external excitation in (4.16) to obtain the impedance that we will
derive in the next section. It is interesting to note that, to the leading orders,

un(t) = 2εℓω0A0 cosκ0 sin(ωt− θ0). (4.46)

If we expand the function φ̃(τ̃ − Ωκ0) about Ωκ0 in (4.30) assuming small κ0, we
obtain

ỹ(τ̃ ) = 2φ̃(τ̃ ) and ṽ(τ̃ ) = −2Ωφ̃′(τ̃ ), (4.47)

that can be substituted back in (4.29) to obtain

Ω2ỹ′′(τ̃ ) + εΩ2ỹ′(τ̃ )|ỹ′(τ̃ )| + εΩrỹ′(τ̃ ) + ỹ(τ̃ ) = εF (4.48)

which is exactly the equation analysed in Chapter 3 in the non linear regime with
the condition that the pressure inside the cavity is uniform and the velocity inside is
given by the time derivative of pressure i.e.

V
dpin

dt
= −ρ0c

2
0unSn (4.49)

where V = SbL is the volume of the cavity. From (4.34) and (4.16), we obtain

pin(t) = 2ερ0ℓ
2ω2

0A0 cos(ωt− θ0) (4.50)

which upon substituting in (4.49) gives

un(t) = 2εωℓA0 sin(ωt− θ0). (4.51)
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The neck velocity un(t) in (4.51) is exactly the one obtained in Chapter 3 (3.41) with
the term ω instead of ω0 like in (4.45). Note that close to resonance Ω = ω/ω0 ≈ 1,
ω and ω0 are asymptotically equivalent. However, the two different approaches of
cavity modeling produce different, but asymptotically equivalent forms of solutions.

4.6 Impedance calculation

In order to obtain realistic numbers, we will consider the impedance Z as the effective
impedance of an array of Helmholtz resonators, where the spatially averaged neck
velocity is identified to the external acoustic velocity. Therefore, we add a porosity
factor Sn/Sb to un and obtain

vex =
Sn

Sb
un. (4.52)

Then we define the impedance as the ratio of the Fourier transforms of the external
pressure pex and (minus) the external velocity vex at excitation frequency ω.

Z(η) =
p̂ex(η)

−v̂ex(η)
=

1
2π

∞́

−∞
pex(t) e−iηt dt

− 1
2π

∞́

−∞
vex(t) e−iηt dt

(η = ω). (4.53)

4.6.1 Non resonant impedance

Taking the Fourier transformation of pex(t) from (4.16) and Fourier transformation
of vex(t) = (Sn/Sb)un(t) from (4.24), we obtain for η > 0,

p̂ex(η) =
1

2π

ˆ ∞

−∞
pex(t) e−iηt dt =

1
2π
ε2ρ0ℓ

2ω2
0 F0δ(η − ω)

v̂ex(η) =
1

2π

ˆ ∞

−∞
vex(t) e−iηt dt

=
1

2π
Sn

Sb
ε2ω0ℓ

[

− tan(Ωκ0)
Ω tan(Ωκ0) − tanκ0

1
i

− εr

(

tan(Ωκ0)
Ω tan(Ωκ0) − tanκ0

)2
]

δ(η − ω)

(4.54)
with the negative of the ratio of above two in (4.54) being the impedance, given by

Z(ω) =
Sb

Sn
ρ0ℓω0

[

tan(Ωκ0)
Ω tan(Ωκ0) − tan κ0

1
i

+ εr

(

tan(Ωκ0)
Ω tan(Ωκ0) − tan κ0

)2
]−1

. (4.55)

To leading orders in ε, the impedance expression in (4.55) indeed becomes the one in
(4.14) as expected.
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4.6.2 Resonant impedance

Taking the Fourier transformation of pex from (4.16) and Fourier transformation of
vex(t) = (Sn/Sb)un(t) from (4.45), we have for η > 0

p̂ex(η) =
1

2π

ˆ ∞

−∞
pex(t) e−iηt dt =

1
2π
ε2ρ0ℓ

2ω2
0 F0δ(η − ω), (4.56)

v̂ex(η) =
1

2π

ˆ ∞

−∞
vex(t) e−iηt dt

=
−i
2π

Sn

Sb
εω0ℓ e−iθ

[

A0 cosκ0 + εA1 cosκ0 + εσκ0A0
cosκ0

tanκ0
− iεB1 cosκ0

]

δ(η − ω).

(4.57)

Substituting (4.56) and (4.57) in (4.53), we obtain

Z(ω) = ερ0ℓω0
Sb

Sn

−i eiθ F0

A0 cosκ0 + ε(A1 cosκ0 + σA0 cosκ0
κ0

tan κ0
− iB1 cosκ0)

. (4.58)

In order to illustrate formula (4.58), we have plotted in Fig. 4.4 resistance Re(Z) and
reactance Im(Z) as a function of Ω, obtained for a typical geometry at different driving
amplitudes, corresponding with ε varying from 0.03 to 0.19. As may be expected from
(4.58), the main effect of the forcing amplitude is in the resistance. The reactance
is practically independent of it. Typically, the resistance increases everywhere with
the amplitude, being highest at or near the resonance frequency and decaying along
both sides, but more for frequencies less than the resonance frequency. Away from the
resonance, if we take the limit σ → ±∞, in (4.58), we obtain the linear impedance
described by (4.14). Hence, the non linear impedance matches asymptotically to the
linear impedance which confirms the consistency of our non linear solution.

Effect of second order approximation and organ pipe cavity on the resist-

ance

In order to understand the effect of the second order approximation on the resistance,
the resistances obtained from the first (ṽ0) and second (ṽ0 +εṽ1) order approximations
are shown in Fig. 4.5 (left). As we can see, for lower driving amplitudes, the second
order correction is not necessary. It is, however, essential for higher amplitudes. In
order to understand the effect of the organ pipe type cavity on the resistance term,
we take the limit κ0 → 0 in (4.58) and obtain the expression

Z(ω) ∼ ερ0ℓω0
Sb

Sn

−i eiθ F0

(A0 + εA1 + εσA0 + iε 2
9πA

2
0)

=
ερ0c

2
0F0

Lω0

−i eiθ

A0(1 + εσ) + iε 2
9πA

2
0 + εA1

.

(4.59)
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Figure 4.4: Real and imaginary parts of impedance Z for an extended Helmholtz
resonator as a function of non dimensional frequency at different driving amplitudes.
The realistic configuration that is chosen corresponds with ℓ = 0.005 m, L = 0.035 m
and Sn/Sb = 0.05 that gives κ0 = 0.55 and ω0 = 5367 rad/sec, while F0 = 1. The
dashed line represents the linear resistance which is obtained by multiplying R = 3.5
with porosity factor i.e. (Sb/Sn)R = 70. Note: r is adapted such that εr is kept
fixed.

The plots of resistance obtained with finite κ0 (4.58) and κ0 → 0 (4.59) are shown in
Fig. 4.5 (right). For very low amplitudes, this effect is minor, but it is quite essential
for higher amplitudes. Also, we notice that a finite κ0 resistance curve has a better
behavior away from the resonance frequency when compared with the experimental
data curve in Fig. 4.7 (right).

Comparison with previous model, Chapter 3

The impedance expression found in Chapter 3 (3.50),

Z(ω) =
ερ0c

2
0F0

Lω

−i eiθ

A0 + iε 2
9πA

2
0 + εA1

=
ερ0c

2
0F0

Lω0

−i eiθ

A0(1 + εσ) + iε 2
9πA

2
0 + εA1 + εσ(iε 2

9πA
2
0 + εA1)

,

(4.60)

is asymptotically equivalent to (4.59) (note that ω = ω0(1 + εσ)). Shown in Fig. 4.6
is the plot of the resistance obtained from (4.60), (4.58) and (4.59), for a typical geo-
metry and external excitation, varying from 100dB to 130dB. The current model with
finite κ0 (4.58) indeed predicts the near resonance behavior to a better accuracy and
decays away from the resonance to match with the linear resistance. The resistance
predicted by the (4.59) follows the same. The near resonance behaviour of Chapter
3 is similar to previous ones, however, with higher ε and away from the resonance,
the resistance does not decay. It turns out just by sheer luck that the asymptotic-
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Figure 4.5: Resistance, Re(Z) as a function of non dimensional frequency at different
driving amplitudes. The configuration of the resonator and driving amplitudes are
the same as in Fig. 4.4.
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Figure 4.6: Comparison of resistance, Re(Z) based upon the current model and that of
Chapter 3, as a function of non dimensional frequency at different driving amplitudes.
The configuration of the resonator and deriving amplitudes are the same as in Fig. 4.4,
except that r = 1 is kept constant.

ally equivalent form (4.59) of (4.60) gives good prediction at higher ε. There can be
many asymptotically equivalent possible form of impedance solution, valid close to
the resonance. However, (4.59) works better even away from the resonance. Hence,
as a concluding remark, we suggest to use the asymptotically equivalent form (4.59)
as the impedance expression derived in Chapter 3.

4.7 Comparison with Motsinger and Kraft

The behavior in (4.58) may be compared in Fig. 4.7 with the measurements and
predictions given by Motsinger and Kraft in [35]. Their predictions are (a.o.) based
on a resistance of the form R = ρ0c0(a+ b|v|) with suitably chosen a and b while |v|
corresponds to ‖un‖. The parameter values we used are based on ω0/2π = 2209.1Hz,
ℓ = 0.002 m, L = 0.014 m, Sn/Sb = 0.05, r = 0.26 and κ0 = 0.5715. Unfortunately,
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Figure 4.7: Comparison of (4.58) with measurements and predictions of Re(Z)/ρ0c0

given in [35]. The solid lines in the left corresponds to the resistance values produced
by (4.58) while the dotted lines corresponds to the previous model, Chapter 3. The
markers in the right figure represent the measured values which were used, by adopting
the relation R = ρ0c0(a+ b|v|), to predict the resistance in solid curves.

only little experimental data for the higher amplitudes are available. However, the
agreement is remarkably good, even when ε is relatively large for higher amplitudes.
The impedance for higher amplitude (ε) at and near resonance is predicted much
more accurately compared to the previous model, which is plotted by dotted lines. So
we conclude that the current model has indeed a better accuracy and could be used
to predict the impedance for resonators of small or big lengths.

4.8 Conclusions

A systematic approximation of the hydrodynamically non linear Helmholtz resonator
equation that includes higher order axial modes in the cavity is obtained, including
the resulting impedance if the resonator as applied in an acoustic liner. The only
unknown parameter that we need to adapt is resistance factor r, and sometimes the
effective neck length ℓ is also unknown and has to be estimated. Comparisons with
measurements show that the model predicts the near resonance impedance behaviour
at σ = O(1) to a good accuracy and a better resemblance is found (especially for
higher excitation amplitudes) compared to the previous model of Chapter 3.

The real part of the found impedance (the resistance) shows the usual charac-
teristic behavior as a function of frequency, namely a maximum at the resonance
frequency and a decay along both sides. All values increase with the amplitude. The
imaginary part of the impedance (the reactance) is linear in frequency in a way that it
vanishes at resonance and is practically independent of the amplitude. The non linear
solution asymptotically matches smoothly with the linear solution, which confirms the
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consistency of our solution.



Chapter 5

Vorticity scattering at hard

wall - pressure release wall

transition in shear flows

An extensive analysis of the isolated Helmholtz resonator has been performed in the
previous chapters. Locally reacting liners consist of many of such small tiny resonators
and the lining surface acts as a sound absorbing device to the external sound field.
As stated earlier in Chapter 1, the liners are characterized by their impedance Z and
are manufactured in the form of rectangular sheets. When such liners are placed
in the inlet or bypass duct of aircraft engines or in the ventilation ducts, there are
always some hard wall surfaces where the acoustic lining treatment is not possible.
Some other reasons why hard wall surfaces are often associated close to the acoustic
lining are explained in Chapter 1. Due to the presence of such hard - soft or soft -
hard discontinuities, the vorticity present in the flow is scattered and causes far field
sound radiations. This scattering process will be studied in detail in the subsequent
chapters.

5.1 Introduction

The theory of aerodynamic noise, first introduced by Lighthill [44] and based upon
the equations of fluid motion, was devoted to the noise generated by incompressible
turbulence, in the absence of boundaries behaving acoustically as compact sources
of the quadrupole type. This lead to the celebrated Lighthill estimate of radiated
acoustic intensity being ∼ M8

0 , where M0 is the typical flow Mach number. Curle
[26] subsequently showed that (large) rigid boundaries increase the efficiency of the
noise process by turning the neighbouring turbulent noise sources from quadrupole
into dipole type, leading to a radiated intensity varying as ∼ M6

0 . Ffowcs Williams
and Hall [34] later on showed that turbulence passing an edge are even more efficient
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sources of noise. The singularity of the scattering field near the edge creates an
equivalent source distribution that leads to a radiated intensity ∼ M5

0 .
Powell [4] formulated this process as follows. If the Mach number of the flow is

small, the spectral component of the boundary layer pressure perturbations, i.e. the
Fourier transform of pressure in the plane of boundary layer, have subsonic phase
velocities which constitute a strong local field but decays exponentially with the dis-
tance from the flow and hence, can not propagate as sound. The presence of an infinite
homogeneous boundary must facilitate some interaction with the flow in order to scat-
ter the subsonic nearfield to far field sound. However, this boundary responding to
the turbulent vibrations of small amplitude is inefficient and hence, the flow can not
use such a boundary to improve its radiation and the sound field must be essentially
that due to the inefficient quadrupole type turbulence sources. On the other hand,
if there is a discontinuity in the boundary, the flow may use it as a “wave number
converter” to amplify the scattered far field noise. So the main sound production of
sound concentrates at discontinuities of the boundaries.

This was confirmed by Crighton who studied in detail the radiation from flow
passing a transition of two semi-infinite planes that differ in their inertia and elastic
properties [27] , and the passage of a 2D vortex along the edge of a semi-infinite plane
[24]. More examples may be found in [38, 28, 96, 95].

Thus, the influence of discontinuities in boundaries on the aerodynamic noise
generated by turbulent flows in general and vortical perturbations in particular have
been shown to be relevant in aerodynamic noise. The available theory is limited to
the scattering of vortices in vanishing or uniform mean flow. However, if the vorticity
is convected by, and to a certain extent part of the mean flow, the role of shear may be
essential, since the sound producing vorticity may be just perturbations of the mean
shear [86]). This is the problem that we will address here, and in particular sheared
mean flow along a wall that is partly solid and partly soft.

Such hard-soft wall transition points are common for example in lined flow ducts
of aircraft engines, or ventilation ducts. Since little is known about any functional
relationships of the radiated sound field, there is a need for canonical model problems
that allow analytically exact solutions of vorticity in shear flow scattering at hard-
soft transitions of a liner wall. In the current work, the scattering of 2D vorticity
perturbations in an inviscid low Mach number shear flow (with vanishing velocity at
the wall) passing over a hard to soft transition of this wall has been examined. The
analysis is divided into two chapters. In the current Chapter, 4, the mathematical
limit of impedance Z = 0 is considered which enables us to obtain the hydrodynamic
solution analytically exactly and the explicit estimates of the radiated sound field. In
Chapter 5, the extension of the analysis to a finite impedance Z wall is considered,
while we use the insight obtained from the Z = 0-problem of this chapter.

The method we will employ is the Wiener-Hopf method combined with Fourier
transformation in space. In acoustics this is a common approach, especially when we
deal with configurations of semi-infinite geometries. The present problem of incom-
pressible flow, however, is considerably different from the usual acoustic problems, and
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the application of the Wiener-Hopf method is not straightforward. This is mainly due
to the solutions diverging at infinity and not being standard Fourier transformable.
Careful regularisation of the associated singularity in the origin of the Fourier domain
are necessary.

5.2 Model

The incident field is assumed to be produced by a source far upstream, for example
a mass source. Following [86], a 2D vorticity χ with mass source Q, satisfying

ρ
( ∂

∂t
+ v ·∇

)(χ

ρ

)

= −χ

ρ
Q. (5.1)

is considered. A non conservative force field f would also produce similar results [81].
If the source is small enough for linearisation, located in a bounded region G, and
induces harmonic isentropic perturbations of frequency ω > 0 to a parallel sheared
flow U with otherwise constant density ρ0 and sound speed c0 given by

v = U(y)ex + v̂ eiωt, χ = −U ′(y) + χ̂ eiωt, ρ = ρ0 + c−2
0 p̂ eiωt, Q = q̂ eiωt, (5.2)

then we have after linearisation1

ρ0

(

iω + U(y)
∂

∂x

)(

χ̂+
U ′(y)
ρ0c2

0

p̂
)

= ρ0U
′′(y)v̂ + U ′(y)q̂. (5.3)

For a linear profile U(y) = σy, with σ > 0, U(y0) = σy0 = U0, U ′ = σ and U ′′ = 0,
we have

ρ0

(

iω+U(y)
∂

∂x

)(

χ̂+
σ

ρ0c2
0

p̂
)

= σq̂ = σ

¨

G

[

q̂(x0, y0)δ(x−x0)δ(y−y0)
]

dx0dy0. (5.4)

This has, under causal free field conditions (allowing only perturbations generated by
the source) and U0 > 0, the solution [86]

χ̂+
σ

ρ0c2
0

p̂ =
σ

ρ0U0

¨

G

[

q̂(x0, y0)H(x− x0) e−ik0(x−x0) δ(y − y0)
]

dx0dy0, k0 =
ω

U0
.

(5.5)
where H(x) denotes Heaviside’s function. Downstream the source we have just H(x−
x0) = 1. Utilising linearity we will consider a single (x0, y0)-component with unit
amplitude and phase factor eik0x0 = 1, in the incompressible limit, leading to the
oscillatory vortex sheet

χ̂ =
σ

ρ0U0
e−ik0x δ(y − y0). (5.6)

1This corrects an unfortunate error in the introduction of [86], where in equation (1.7) the term
ρ0U ′′v̂ is missing. The suggested generality of result (1.10) is therefore not correct. However, for
the linear mean flow U(y) = σy, assumed everywhere else, this missing term vanishes and all results
remain valid.
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Figure 5.1: Sketch of the problem

With uniform boundary conditions along the wall y = 0, the velocity and pressure
fields associated with this vortex sheet are easily determined. Technically speaking,
this is not exactly the same as the downstream limit of the field from a point mass
source [86, eqs. 3.18,19,24] due to the source associated logarithmic divergence of the
pressure, inherent to two-dimensional incompressible flow. By postulating the source
far enough away (in the acoustic outer field), it is justified to ignore this part of the
field.

In summary, we consider the two-dimensional incompressible inviscid problem
of perturbations of a linearly sheared mean flow U(y) = σy, with harmonic time
dependence (eiωt) and a vortex sheet along y = y0 in y > 0. The flow is along a
wall at y = 0 which is hard for x < 0 and soft (a vanishing impedance) for x > 0 ;
see Fig. 5.1. In this configuration we will have no contribution of a critical layer or
an instability like in [33]. The linear flow profile is considered to be found at the
bottom of a mean flow boundary layer, thick enough to neglect any finite thickness
effects, but this assumption is not a trivial one. We will see that only under certain
conditions the interaction with the top of the boundary layer can be ignored and a
mean flow profile U(y) = σy is a consistent modelling assumption.

The associated field of the downstream travelling vorticity decays exponentially
away from the line y = y0 in the order ∼ e−k0|y−y0|−ik0x. When this field hits the
hard-to-soft wall transition point x = 0, it is scattered into a local field that will
radiate, at least for a part, as sound into the far field.

The flow in the domain shown in Fig. 5.1 is governed by the linearised incompress-
ible Euler equations with mixed boundary conditions (a vanishing normal velocity for
x < 0 and a vanishing pressure for x > 0), which makes the Wiener-Hopf technique
[14, 28] a natural choice for obtaining the solution. Once this solution is obtained,
we can try to determine the corresponding acoustic source strength and assess the
produced sound. For this we will try to match the incompressible inner solution to a
compressible (acoustic) outer solution.
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It will appear that the analysis is segregated in two different branches depending
upon the parameters σ and ω. For brevity, we use the term low shear case when
0 < σ < ω and high shear case when 0 < ω < σ.

5.3 Mathematical formulation

The governing equation of mass and momentum conservation, written in frequency
domain (and ignoring the hats) expressed in the variables introduced in (5.2), are

ρ0

(

∂u

∂x
+
∂v

∂y

)

= 0,

ρ0

(

iω + U
∂

∂x

)

u+ ρ0
dU
dy

v +
∂p

∂x
= 0,

ρ0

(

iω + U
∂

∂x

)

v +
∂p

∂y
= 0.

(5.7)

For later reference we note that, analogous to equation (5.3), the perturbation vorti-
city χ = vx − uy satisfies

ρ0

(

iω + U(y)
∂

∂x

)

χ = ρ0U
′′(y)v. (5.8)

So vorticity is convected but remains the same as long as U ′′ = 0. For now, we will
assume a mean flow U = σy, with indeed U ′′ = 0. However, in the far field there is
inevitably a region where the real U must be curtailed in order to have the postulated
compressible (acoustic) field with small mean flow Mach number, and so there will
be a transitional region where U ′′ is non zero.

Boundary conditions at half planes y = 0 are vanishing velocity and pressure
respectively, i.e.

v = 0 if x < 0, p = 0 if x > 0 (5.9)

and an edge condition of vanishing energy flux from (0, 0). The far field boundary
conditions will be of vanishing velocity, but maybe not of vanishing pressure. The
incident field (of the undulating vortex sheet at y = y0 = U0/σ) is given by

uin = U0 e−ik0x
[

− sign(y − y0) e−k0|y−y0| + e−k0(y+y0)
]

,

vin = iU0 e−ik0x
[

e−k0|y−y0| − e−k0(y+y0)
]

,

pin =
σ

ω
ρ0U

2
0 e−ik0x

[

(1 + k0|y − y0|) e−k0|y−y0| − (1 + k0(y − y0)) e−k0(y+y0)
]

,

(5.10)
with k0 = ω/U0, k0y0 = ω/σ and assumed to be scaled by a small amplitude. Note
that along the wall,

uin(x, 0) = 2U0 e−ik0x−k0y0 , vin(x, 0) = 0, pin(x, 0) = 2ρ0U
2
0 e−ik0x−k0y0 , (5.11)
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Figure 5.2: The initial field uin, vin and pin respectively. ω = 5, σ = 4, U0 = 5, k0 =
1, y0 = 1.25, (hard wall).

so for any interaction between vorticity and wall to happen, k0y0 should not be too
large. Fig. 5.2 shows pressure and velocities of a typical case.

The triple (uin, vin, pin) satisfies the differential equation, continuity of pin and vin

across y = y0, and the hard-wall boundary condition vin = 0 at y = 0. The scattered
perturbations are due to the non vanishing pin along y = 0, x > 0.

We split up the field in the incident part and the scattered part as follows

u = uin + u, v = vin + v, p = pin + p. (5.12)

After Fourier transformation in x (assuming, at least formally, the existence of the
integrals)

p(x, y) =
1

2π

ˆ ∞

−∞
p̃(y, k) e−ikx dk, (5.13)

the same for u and v, we obtain the following set of equations

ρ0(−ikũ+ ṽ′) = 0, iρ0Ωũ+ ρ0σṽ − ikp̃ = 0, iρ0Ωṽ + p̃′ = 0, (5.14)

where Ω = ω − kU . The system of equations has two independent solutions, namely
∼ e±ky [45, 65]. The one, bounded for y → ∞ (and a possible singularity at k = 0),
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is then
ũ(y) = kA(k) e−|k|y,

ṽ(y) = −i|k|A(k) e−|k|y,

p̃(y) = ρ0(Ω − sign(Re k)σ)A(k) e−|k|y,

(5.15)

where A(k) is to be determined. |k| =
√
k2 and sign(Re k) = k/|k|, where

√
denotes

the principal value square root. |k| has thus branch cuts along the imaginary axis
given by (−i∞, 0) and (0, i∞). This definition of sign(Re k) will be maintained with
the regularisation of |k| later.

5.4 Wiener-Hopf procedure

The method of Wiener and Hopf [57] was initially devised to solve certain type of
integral equations in complex the domain. By introducing suitable half range Fourier
transforms, Jones [41] was able to apply the method to problems written as partial
differential equations in domains with semi-infinite boundary conditions, which is
typically the situation here. To facilitate the application of the Wiener-Hopf method
in the complex k-plane of the Fourier transform introduced above, we introduce a
regularising small positive parameter ε and have an upper and a lower half plane, and
an overlapping strip as follows.

C
+ = {k ∈ C | Im k > −ε}, C− = {k ∈ C | Im k < ε}, S = {k ∈ C | −ε < Im k < ε}.

The physical problem will be the limit ε → 0 of a regularised problem with k0 replaced
by λ0 = k0−iε 6∈ C

+ (such that we have an incident field ∼ e−iλ0x = e−ik0x−εx slightly
decaying with x) and |k| replaced by the smoother function

|k| ≃ µ(k) =
√

k2 + ε2,

with a principal value square root and branch cuts (−i∞,−iε) ∪ (iε, i∞) avoiding
strip S (cf. [79]).

Introduce the half-range Fourier transforms

F−(k) =
ˆ 0

−∞
p(x, 0) eikx dx, G+(k) =

ˆ ∞

0

v(x, 0) eikx dx, (5.16)

that are assumed to be analytic in C
+ and C

− respectively, as explained in appendix
C.1. Then we have for G+

G+(k) =
ˆ ∞

0

v(x, 0) eikx dx =
ˆ ∞

−∞
v(x, 0) eikx dx = −iµA(k), (5.17)
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Figure 5.3: Contour C and zeros of L(k).

and for F−

F−(k) =
ˆ 0

−∞
p(x, 0) eikx dx =

ˆ ∞

−∞
p(x, 0) eikx dx+

ˆ ∞

0

pin(x, 0) eikx dx

= ρ0A(k)
ωµ− σk

µ
+ 2iρ0U

2
0

e−λ0y0

k − λ0
= ρ0A(k)µL(k) + 2iρ0U

2
0

e−λ0y0

k − λ0
, (5.18)

with Wiener-Hopf kernel

L(k) =
ωµ− σk

k2 + ε2
, K(k) = lim

ε↓0
L(k). (5.19)

So the limit of L(k) for ε ↓ 0 will be indicated by K(k). With ε = 0 and ω 6= σ,
L(k) = K(k) is free from zeros outside k = 0, and singular at k = 0. However, for
ε > 0 there are zero’s, as indicated in Fig. 5.3, namely

k±
l = + 0 ± iε

ω√
ω2 − σ2

if σ < ω,

kh = ε
ω√

σ2 − ω2
if σ > ω.

In the low-shear case σ < ω, |k±
h | > ε, so the zeros are imaginary, outside S and

located on the right side of the branchcuts of µ. In the high-shear case σ > ω, on the
other hand, there is only one zero. This zero is real and therefore always inside the
strip. This is relevant when we construct splitfunctions (below) and this zero calls for
a slight change in the procedure (Appendix C.4).

From (5.18), we arrive at the Wiener-Hopf equation

F−(k) = iρ0G+(k)L(k) + 2iρ0U
2
0

e−λ0y0

k − λ0
, (5.20)

which is to be solved in the standard way [14] by writing

L(k) =
L+(k)
L−(k)

, (5.21)

where splitfunction L+ is analytic and non zero in C
+ and L− is analytic and non
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zero in C
−.

If the function to be split is well behaved at infinity, free of zero’s in the strip,
and we can define its logarithm such that no branch cuts cross the strip, then the
construction of the splitfunctions is classic [57, 14]. We consider k ∈ S inside a large
rectangular contour C ⊂ S between k = −N − iηε and k = N + iηε, where η is small
enough, as shown in Fig. 5.3. Then by Cauchy’s integral representation theorem,
limits taken for N → ∞, and taking the upper and lower contour apart, we obtain
(for a generic function F(k))

log F±(k) =
1

2πi

ˆ ∞

−∞

log F(ξ ∓ iηε)
ξ ∓ iηε− k

dξ, k ∈ C
±. (5.22)

If ε → 0, the representations of F+ and F− become the same, in the sense that it is
F+ if k ∈ C

+ and F− if k ∈ C
−.

Since L(k) may have a zero in the strip, and L(k) 6→ 1 at infinity, we cannot apply
the above recipe directly, and we have to modify the procedure in a way similar to
Noble [14, example 1.12, page 41-42]. This modification is essentially different for the
low shear (σ < ω) and the high shear (σ > ω) cases and is explained in Appendix
C.4. We find splitfunctions L±, which are for ε = 0 indicated by K± and analytically
exactly given by

σ < ω : K+(k) = (ω − σ)(k)
− 1

2
−iδ

+ , K−(k) = (k)
1
2

−iδ
− ,

δ =
1

2π
log
∣

∣

∣

ω + σ

ω − σ

∣

∣

∣
.

σ > ω : K+(k) = (ω − σ)(k)−iδ
+ , K−(k) = (k)1−iδ

− ,
(5.23)

(k)α
+ denotes the complex power function kα with (1)α

+ = 1 and the branch cut along
the negative imaginary axis, and is thus analytic in C

+. (k)α
− denotes the complex

power function kα with (1)α
− = 1 and the branch cut along the positive imaginary axis,

and is thus analytic in C
−. These exact splitfunctions will allow explicit solutions

later. Once we have the split function L+(k) and L−(k), we can conclude that in S

L−(k)F−(k) − iρ0L+(k)G+(k) = 2iρ0U
2
0 e−λ0y0

L−(k)
k − λ0

= 2iρ0U
2
0 e−λ0y0

L−(k) − L−(k0)
k − λ0

+ 2iρ0U
2
0 e−λ0y0

L−(k0)
k − λ0

, (5.24)

where we isolated pole λ0 ∈ C
− from L−. The parts that are analytic in C

+ and
in C

− respectively, are via their equivalence in S each other’s analytic continuations,
and define an entire function E(k)

E(k) = L−(k)F−(k) − 2iρ0U
2
0 e−λ0y0

L−(k) − L−(λ0)
k − λ0

= iρ0L+(k)G+(k) + 2iρ0U
2
0 e−λ0y0

L−(λ0)
k − λ0

.

(5.25)
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E can be determined from the condition for k → ∞, related to the edge condition for
(x, y) → 0. Following Appendix C.3, we conclude that |G+(k)| = O(k−α) for some
α > 0, so that E is bounded and thus (according to Liouville’s theorem) a constant
which is for both low and high shear E = 0. Finally, for ε ↓ 0 and λ0 replaced by k0

and L± by K±, we can write from (5.18) and (5.25)

F−(k) = 2iρ0U
2
0 e−k0y0

K−(k) −K−(k0)
(k − k0)K−(k)

,

G+(k) = −2U2
0 e−k0y0

K−(k0)
(k − k0)K+(k)

,

A(k) = −2iU2
0 e−k0y0

K−(k0)
|k|(k − k0)K+(k)

.

. (5.26)

A(k) obtained from (5.26) can be substituted back into (5.15). This gives, with the
inverse Fourier transform from (5.13) added to the initial field (5.10), the formal
solution u, v and p

u = uin + U2
0 e−k0y0 K−(k0)

1
πi

$ ∞

−∞

sign(Re k)
(k − k0)K+(k)

e−|k|y−ikx dk,

v = vin − U2
0 e−k0y0 K−(k0)

1
π

$ ∞

−∞

1
(k − k0)K+(k)

e−|k|y−ikx dk,

p = pin + ρ0U
2
0 e−k0y0 K−(k0)

1
πi

$ ∞

−∞

Ω − σ sign(Re k)
|k|(k − k0)K+(k)

e−|k|y−ikx dk.

(5.27)

where k0 is captured from above, i.e. k0 ∈ C
−. The behaviour of the K+(k) function

in (5.27) is different for the low shear (C.9) and high shear (C.10) cases, and hence the
solution u, v, p differs likewise, as announced earlier. The Fourier integrals in (5.27)
can be evaluated analytically. The process differs slightly whether x ≷ 0 due to the
existence of the pole k = k0, which corresponds to trailing vorticity of the hard-soft
discontinuity [86]. From (5.27) and (5.23), we have for the low shear case

u =
U2

0 e−k0y0 k
1
2

−iδ
0

(ω − σ)πi

$ ∞

−∞

sign(Re k)
k − k0

(k)
1
2

+iδ
+ e−|k|y−ikx dk,

v = −U2
0 e−k0y0 k

1
2

−iδ
0

(ω − σ)π

$ ∞

−∞

1
k − k0

(k)
1
2

+iδ
+ e−|k|y−ikx dk,

p =
ρ0U

2
0 e−k0y0 k

1
2

−iδ
0

(ω − σ)πi

$ ∞

−∞

Ω − σ sign(Re k)
|k|(k − k0)

(k)
1
2

+iδ
+ e−|k|y−ikx dk.

(5.28)
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and for the high shear case

u =
U2

0 e−k0y0 k1−iδ
0

(ω − σ)πi

$ ∞

−∞

sign(Re k)
k − k0

(k)iδ
+ e−|k|y−ikx dk,

v = −U2
0 e−k0y0 k1−iδ

0

(ω − σ)π

$ ∞

−∞

1
k − k0

(k)iδ
+ e−|k|y−ikx dk,

p =
ρ0U

2
0 e−k0y0 k1−iδ

0

(ω − σ)πi

$ ∞

−∞

Ω − σ sign(Re k)
|k|(k − k0)

(k)iδ
+ e−|k|y−ikx dk.

(5.29)

From (5.28) and (5.29), we notice that the high shear case has a stronger singularity
at k = 0 than the low shear case and hence we may expect a stronger far field, because
k → 0 in Fourier domain relates to r → ∞ in physical domain. In some sense this will
indeed be the case and the consequences are important. The high shear solution will
not decay fast enough to provide a matching with any proper outer field, leading to
the conclusion that the present high shear solution is inconsistent with the modelling
assumptions.

For the time being, we will not draw this conclusion yet, and continue with our
derivation. In the next section, we will evaluate the integrals in (5.28) and (5.29)
analytically.

5.5 Analytical solution

5.5.1 Solutions in the form of integrals

In contrast to the accompanying problem with a general impedance, the Fourier
integral representations (5.28) and (5.29) of the present problem can be evaluated
completely analytically. The evaluation is pursued by first transforming the integrals
using k = k0κ. For the low shear case this amounts to

u = U0 e−k0y0
ω

ω − σ

1
πi

$ ∞

−∞

sign(Re κ)
κ− 1

(κ)
1
2

+iδ
+ e−|κ|k0y−iκk0x dκ,

v = −U0 e−k0y0
ω

ω − σ

1
π

$ ∞

−∞

1
κ− 1

(κ)
1
2

+iδ
+ e−|κ|k0y−iκk0x dκ,

p = ρ0U
2
0 e−k0y0

1
πi

$ ∞

−∞

ω − σ sign(Reκ) − κk0σy

(ω − σ)|κ|(κ− 1)
(κ)

1
2

+iδ
+ e−|κ|k0y−iκk0x dκ.

(5.30)
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x < 0

x > 0

k0

b

Figure 5.4: Deformed paths of the integration contour. The residue of k0 is to be
included if x > 0.

and for the high shear case,

u = U0 e−k0y0
ω

ω − σ

1
πi

$ ∞

−∞

sign(Reκ)
κ− 1

(κ)iδ
+ e−|κ|k0y−iκk0x dκ,

v = −U0 e−k0y0
ω

ω − σ

1
π

$ ∞

−∞

1
κ− 1

(κ)iδ
+ e−|κ|k0y−iκk0x dκ,

p = ρ0U
2
0 e−k0y0

1
πi

$ ∞

−∞

ω − σ sign(Reκ) − κk0σy

(ω − σ)|κ|(κ− 1)
(κ)iδ

+ e−|κ|k0y−iκk0x dκ.

(5.31)

The integration contour along the real k axis can be folded around the lower and
upper branch cut for x > 0 and x < 0 respectively (Fig. 5.4). The contribution of the
real pole at κ = 1 should be included whenever x > 0. The integrals can be further
evaluated as shown in Appendix C.5. For the low shear case we obtain the integrals
(C.14) and (C.15) corresponding to x > 0 and x < 0 respectively. Similarly, for the
high shear case we obtain the integrals (C.16) and (C.17) corresponding to x > 0 and
x < 0, respectively.

Note that the solution is singular for ω = σ, due to the factor ω−kσy−σ = −kσy
which vanishes at y = 0.

The pressure integrals in (C.16) and (C.17) diverge at k = 0 in Fourier space. Due
to their origin as Fourier transforms of non integrable functions, the singular integrals
have to be considered in generalised sense by introducing the generalised derivative
[86, 31, 47]

H(t)t−1+iδ def

=
d
dt

(

H(t)
iδ

tiδ
)

.

When we consider the incompressible problem as an inner problem of a larger com-
pressible problem, as in [28, 46, 81], this divergent behaviour should disappear and
change into an outward radiating acoustic wave (this will be true for low shear, but
not for high shear). In the next section, we will express the found expressions in terms
of the regular and incomplete Gamma functions, Γ(α) and Γ(α, z) respectively [63].
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5.5.2 Explicit evaluation of the integrals

We introduce the notation

z = x+ iy, z∗ = x− iy,

and use (C.14) , (C.18) and (C.15) , (C.19) for x > 0 and x < 0 respectively. This
yields the following solution for low shear

u =
U0

π
e−k0y0 Γ(3

2 + iδ)
(ω + σ

ω − σ

)
1
2

[

ω

ω + σ
e−ik0z Γ(− 1

2 − iδ,−ik0z) +















(x < 0) +
ω

ω + σ
e−ik0z∗

Γ(− 1
2 − iδ,−ik0z

∗)
]

(x > 0) − ω

ω − σ
e−ik0z∗

Γ(− 1
2 − iδ,−ik0z

∗)
]

− 2U0
ω

ω − σ
e−k0y0−ik0z∗

(5.32)

v = i
U0

π
e−k0y0 Γ(3

2 + iδ)
(ω + σ

ω − σ

)
1
2

[

ω

ω + σ
e−ik0z Γ(− 1

2 − iδ,−ik0z) +















(x < 0) − ω

ω + σ
e−ik0z∗

Γ(− 1
2 − iδ,−ik0z

∗)
]

(x > 0) +
ω

ω − σ
e−ik0z∗

Γ(− 1
2 − iδ,−ik0z

∗)
]

+ 2iU0
ω

ω − σ
e−k0y0−ik0z∗

(5.33)

p = −ρ0U
2
0

π
e−k0y0 Γ(1

2 + iδ)
(ω + σ

ω − σ

)
1
2

[

e−ik0z Γ(1
2 − iδ,−ik0z) + (1

2 + iδ)
k0σy

ω + σ
e−ik0z Γ(− 1

2 − iδ,−ik0z)


























































(x < 0) +
ω − σ

ω + σ
e−ik0z∗

Γ(1
2 − iδ,−ik0z

∗)

+ (1
2 + iδ)

k0σy

ω + σ
e−ik0z∗

Γ(− 1
2 − iδ,−ik0z

∗)

]

(x > 0) − e−ik0z∗

Γ(1
2 − iδ,−ik0z

∗) − (1
2 + iδ)

k0σy

ω − σ
e−ik0z∗

Γ(− 1
2 − iδ,−ik0z

∗)

]

− 2ρ0U
2
0

(

1 − k0σy

ω − σ

)

e−k0y0−ik0z∗

.

(5.34)

The behaviour near the edge r = 0 is indeed p = O(r
1
2 ) and u, v = O(r− 1

2 ). Further-
more, the field is not discontinuous across the line x = 0, since we have to account
for the jumps across the branch cuts of the various log, power and Gamma functions
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(Appendix C.6).

Similarly, using (C.16), (C.18) and (C.17) and (C.19) , for x > 0 and x < 0
respectively, we obtain the following solution for high shear

u = i
U0

π
e−k0y0 Γ(1 + iδ)

(σ + ω

σ − ω

)
1
2

[

ω

σ + ω
e−ik0z Γ(−iδ,−ik0z) +















(x < 0) +
ω

σ + ω
e−ik0z∗

Γ(−iδ,−ik0z
∗)
]

(x > 0) +
ω

σ − ω
e−ik0z∗

Γ(−iδ,−ik0z
∗)
]

+ 2U0
ω

σ − ω
e−k0y0−ik0z∗

(5.35)

v = −U0

π
e−k0y0 Γ(1 + iδ)

(σ + ω

σ − ω

)
1
2

[

ω

σ + ω
e−ik0z Γ(−iδ,−ik0z) +















(x < 0) − ω

σ + ω
e−ik0z∗

Γ(−iδ,−ik0z
∗)
]

(x > 0) − ω

σ − ω
e−ik0z∗

Γ(−iδ,−ik0z
∗)
]

− 2iU0
ω

σ − ω
e−k0y0−ik0z∗

(5.36)

p = −i
ρ0U

2
0

π
e−k0y0 Γ(iδ)

(σ + ω

σ − ω

)
1
2

[

e−ik0z Γ(1 − iδ,−ik0z) + iδ
k0σy

σ + ω
e−ik0z Γ(−iδ,−ik0z)











































(x < 0) − σ − ω

σ + ω
e−ik0z∗

Γ(1 − iδ,−ik0z
∗) + iδ

k0σy

σ + ω
e−ik0z∗

Γ(−iδ,−ik0z
∗)

]

(x > 0) − e−ik0z∗

Γ(1 − iδ,−ik0z
∗) + iδ

k0σy

σ − ω
e−ik0z∗

Γ(−iδ,−ik0z
∗)

]

− 2ρ0U
2
0

(

1 +
k0σy

σ − ω

)

e−k0y0−ik0z∗

.

(5.37)

The behaviour near the edge r = 0 is indeed p = O(r) and u, v = O(1) and the
solutions are continuous across x = 0.

The expressions (5.32), (5.33), (5.34) added to the initial field (5.10) give the final
solution of the low shear case shown in Fig. 5.5 (left). Similarly, the expressions (5.35),
(5.36), (5.37) added to the initial field (5.10) gives the final solution of the high shear
case shown in Fig. 5.5 (right).



Vorticity scattering at hard wall - pressure release wall transition in shear flows 75

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

u

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

u

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

v

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

v

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

p

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

p

Figure 5.5: The solution fields u, v and p for low shear (left: σ = 4 < ω = 5, y0 =
1.25, k0 = 1 and U0 = 5) and high shear ( right: σ = 5 > ω = 4, y0 = 1, k0 = 0.8 and
U0 = 5)
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5.5.3 Far field behaviour of the incompressible solution

When we are interested in the produced sound field it is necessary to consider the
incompressible far field |z| → ∞. Again we consider the low and high shear cases
separately.

Low shear case

Using the asymptotic forms from (C.20), (C.21) in (5.32), (5.33), (5.34), we obtain
single expressions for |z| → ∞ (in particular, for |x| → ∞ and y → ∞)

u ∼ i
U0

π
e−k0y0 e

1
4

πi Γ(3
2 + iδ)

(ω + σ

ω − σ

)
1
4

[

ω

ω + σ
(k0z)− 3

2
−iδ − ω

ω − σ
(k0z

∗)− 3
2

−iδ

]

,

v ∼ − U0

π
e−k0y0 e

1
4

πi Γ(3
2 + iδ)

(ω + σ

ω − σ

)
1
4

[

ω

ω + σ
(k0z)− 3

2
−iδ +

ω

ω − σ
(k0z

∗)− 3
2

−iδ

]

,

p ∼ − ρ0U
2
0

π
e−k0y0 e

1
4

πi Γ(1
2 + iδ)

(ω + σ

ω − σ

)
1
4

[

(k0z)− 1
2

−iδ − (k0z
∗)− 1

2
−iδ

+ (1
2 + iδ)

ik0σy

ω + σ
(k0z)− 3

2
−iδ − (1

2 + iδ)
ik0σy

ω − σ
(k0z

∗)− 3
2

−iδ

]

(5.38)
Note that both pressure and velocity decay, namely p = O(r− 1

2 ) and u, v = O(r− 3
2 ),

which will appear to be important for the consistency of the modelling assumption
that U = σy. In particular, any coupling (via reflection or any other back reaction)
with an interface between the shear flow and a (uniform, or otherwise bounded)
outerflow can be made as small as desired.

Being away from the incident vortices near y = y0, there is no other cause for
vorticity, and, in agreement with equation (5.8), the velocity far field is irrotational
and has a potential φ with (u, v) = ∇φ, which is easily found to satisfy

φ ∼ U2
0

iωπ
e−k0y0 e

1
4

πi Γ(1
2 + iδ)

(ω + σ

ω − σ

)
1
4

[

ω

ω + σ
(k0z)− 1

2
−iδ − ω

ω − σ
(k0z

∗)− 1
2

−iδ

]

.

(5.39)
If we postulate a mean flow profile U(y) which very slowly changes from linear σy
to a constant U∞, such that U ′′ remains small, and noting equation (5.8), it seems
reasonable to assume that the voricity χ remains small, and the velocity potential φ
remains valid also where U = U∞. As a result we obtain for the pressure p, satisfying

p = −ρ0

(

iω + U ∂
∂x

)

φ ≃ −iρ0ωφ, (5.40)

the result

p ∼ −ρ0U
2
0

π
e−k0y0 e

1
4

πi Γ(1
2 + iδ)

(ω + σ

ω − σ

)
1
4

[

ω

ω + σ
(k0z)− 1

2
−iδ − ω

ω − σ
(k0z

∗)− 1
2

−iδ

]

.

(5.41)
Of course, the argument is heuristic and not very systematic, but we will see that it
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is remarkably close to a more systematic result derived with an assumed piecewise
continuous profile in the next section. Here, the mean flow will be taken equal to U =
σy for 0 6 y 6 h and U = σh = U∞ for y > h, while h is big enough to assume that the
back-interaction (reflection) from the interface to the wall is negligible. Furthermore,
the resulting pressure can indeed be matched to an outward radiating sound field.
For want of a strict proof, we will consider these evidences of consistency suffient
argument to trust the physical relevance of expression (5.41).

High shear case

Using the asymptotic behaviour from (C.20), (C.21) in (5.35), (5.36), (5.37), we obtain
a single expression for the high shear case continuous across x = 0

u ∼ − U0

π
e−k0y0 Γ(1 + iδ)

(σ + ω

σ − ω

)
1
4

[

ω

σ + ω
(k0z)−1−iδ +

ω

σ − ω
(k0z

∗)−1−iδ

]

v ∼ − i
U0

π
e−k0y0 Γ(1 + iδ)

(σ + ω

σ − ω

)
1
4

[

ω

σ + ω
(k0z)−1−iδ − ω

σ − ω
(k0z

∗)−1−iδ

]

p ∼ − i
ρ0U

2
0

π
e−k0y0 Γ(iδ)

(σ + ω

σ − ω

)
1
4

[

(k0z)−iδ − (k0z
∗)−iδ

− δ
k0σy

σ + ω
(k0z)−1−iδ − δ

k0σy

σ − ω
(k0z

∗)−1−iδ

]

(5.42)
Finally, like in the low shear case, we use the irrotational character of the velocity
and define a potential function

φ =
U2

0

ωπ
e−k0y0 Γ(iδ)

(σ + ω

σ − ω

)
1
4

[

ω

σ + ω
(k0z)−iδ +

ω

σ − ω
(k0z

∗)−iδ

]

(5.43)

and obtain (at least, that is what we aim for) the pressure in the uniform flow region
as

p ∼ −iρ0ωφ ∼ −i
ρ0U

2
0

π
e−k0y0 Γ(iδ)

(σ + ω

σ − ω

)
1
4

[

ω

σ + ω
(k0z)−iδ +

ω

σ − ω
(k0z

∗)−iδ

]

(5.44)
This result is much less reliable, because the high-shear pressure – (5.42) as well as
(5.44) – does not decay with distance. Hence, the coupling between the wall and any
transition region between the linear shear flow and the uniform flow will be strong and
cannot be neglected. We give the present result for the record, because up to now there
was no reason to dismiss it. However, in the following we will see that the problem is
serious. The high shear far field will not match with any outward radiating acoustic
field. Therefore, equation (5.44), and by extension the whole high-shear solution, is
most likely not correct, in the sense that with high shear a linear (unbounded) mean
flow profile has to be considered as an inconsistent modelling assumption.
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Figure 5.6: Inner pressure reflected and transmitted at interface y = h.

5.6 Far field of inner solution – outside shear layer

In order to approximate the solution outside the shear layer we assume a piecewise
linear mean flow, with continuous transition of the shear layer at y = h where it
becomes straight as shown in Fig. 5.6, i.e.

U = σy, y < h,

U = U∞, y > h.

Assume that k0h ≫ k0y0, so that the incident vorticity does not interfere with the
transition layer, and the above linear shear solution can be used as incident to the
interface. This assumption is based on the physical understanding that incident field
pin is negligible near the interface, while the inner pressure field p is reflected back as
pref with negligible interaction with the wall, and transmitted as ptra into the uniform
mean flow field. This scenario is justified for low shear, where p = O(r− 1

2 ), but not
for high shear with p = O(1).

We will find this transmitted field to differ only just a little from the approximation
(5.44) based on a negigible vorticity. This confirms the conclusion that (5.44) is a
reasonable representation to match with an outward radiating acoustic field.

In order to obtain ptra, we apply the continuity of pressure p and v velocity at
the boundary y = h. In the Fourier domain, we have for y < h representation (5.27),
which is for the Fourier transforms

p̃(k, y) = ρ0D
(

Ω∞ − sign(Re k)σ
)

e−|k|(y−h), ṽ(k, y) = −iD|k| e−|k|(y−h),

D = −i2U2
0

e−k0y0

k − k0

K−(k0)
|k|K+(k)

e−|k|h, Ω∞ = ω − kU∞.

The reflected and transmitted variables are given as

p̃ref(k, y) = ρ0R(Ω∞ + sign(Re k)σ) e|k|(y−h), p̃tra(k, y) = ρ0TΩ∞ e−|k|(y−h),

ṽref(k, y) = iR|k| e|k|(y−h), ṽtra(k, y) = −iT |k| e−|k|(y−h),
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where reflection and transmission coefficients R and T are obtained from the condi-
tions of continuity of pressure and velocity at y = h

p̃(k, h) + p̃ref(k, h) = p̃tra(k, h),

ṽ(k, h) + ṽref(k, h) = ṽtra(k, h).

The two linear equations in variables T and R

ρ0D
(

Ω∞ − sign(Re k)σ
)

+ ρ0R(Ω∞ + sign(Re k)σ) = ρ0TΩ∞,

−iD|k| + iR|k| = −iT |k|,

can be solved to yield

T = D
Ω∞

Ω∞ + 1
2 sign(Re k)σ

, R = D
1
2 sign(Re k)σ

Ω∞ + 1
2 sign(Re k)σ

.

The inner variables u, v and p transmitted outside the shear, i.e. for y > h, are then

ūtra(x, y) =
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dk
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ˆ ∞

−∞
−U2

0

π
e−k0y0

K−(k0)
k − k0

· Ω∞
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dk
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(5.45)

In order to evaluate the above integrals, we define

q1 =
ω − 1

2σ

U∞
and q2 =

ω + 1
2σ

U∞
.

and break the integrals about k = 0 to obtain for p̄tra for example,

p̄tra(x, y) = −iρ0
U2

0

π
e−k0y0

K−(k0)
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×
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1
q1 − k0
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· e−ikx−|k|y

|k|K+(k)
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· e−ikx−|k|y
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dk
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q2 − k0
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0
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k − q2
· e−ikx−|k|y

|k|K+(k)
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]

.

The poles in q1 and q2 relate to the production of vorticity at the interface (where
U ′′ has the form of a delta-function in y and provides a source of vorticity). So they
are, like k0 to be considered as part of the lower half plane.
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5.6.1 Low shear

The above integral can be evaluated in the same way as (5.27) with the limit h fixed
and z → ∞ to obtain the low shear case solution as

utra ∼ i
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1
4
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4
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· ω
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ptra ∼ − ρ0U
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(5.46)
The exponentially small contributions of the poles in k0, q1 and q2 disappear for
y → ∞. Since ω > σ, we have ω − 1

2σ > 0. The solution in (5.46) is remarkably
similar to (5.41). In particular the functional relationship in x and y is entirely the
same. Only the coefficients of (k0z)− 1

2
−iδ and (k0z

∗)− 1
2

−iδ differ a little, but not in
orders of magnitude. It confirms our previous arguments leading to expression (5.41).

5.6.2 High shear

A similar result can be constructed for the high shear case, namely

ptra ∼ −i
ρ0U

2
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π
e−k0y0 Γ(iδ)

(σ + ω

σ − ω

)
1
4

[

ω

ω − 1
2σ

· ω

σ + ω
(k0z)−iδ

− ω

ω + 1
2σ

· ω

σ − ω
(k0z

∗)−iδ

]

.

(5.47)

This result, however, is inconsistent because the reflected field will not decay and
therefore will not be negligible at the wall. The only systematic approach would be
to include the interface and its reflected field right from the start. This complicates
the Wiener-Hopf problem considerably and has not been done here. We will show
later that, apart from this inconsistency, also the impossibility to match with an
acoustic field adds to the conclusion that the high shear solution, and therefore the
model, is not physically acceptable.
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Figure 5.7: The acoustic pressure for low shear case when matched with p of (5.41).
(σ = 4 < ω = 5, y0 = 1.25, k0 = 1 and U0 = 5).

5.7 Acoustic outer field and asymptotic matching

By assuming the mean flow Mach number small (the initially linear shear profile has
evidently to be curtailed by a smooth transition to a uniform profile), as well as the
local Helmholtz number (the ratio between the hydrodynamic wave number k0 =
ω/U0 and the acoustic wave number κ = ω/c0) U0/c0 being small, the hydrodynamic
inner problem is incompressible. This inner field, however, produces an acoustic
outer field, which is compressible but with negligible mean flow. Then we have the
Helmholtz (= reduced wave) equation for p (or u or v)

∇2p+ κ2p = 0, κ =
ω

c0
. (5.48)

With a point source in x = y = 0, assuming a certain symmetry in r and θ (where
x = r cos θ and y = r sin θ), we search for solutions of the form

p(r, θ) = B0γ(r)β(θ). (5.49)

If we substitute this in the equations we find

γ′′ +
1
r
γ′ + κ2γ − ν2

r2
γ = 0, β′′ + ν2β = 0, (5.50)

such that β(θ) = B1 e−iνθ −B2 eiνθ. Furthermore, due to the radiation condition,

γ(r) = mH(2)
ν (κr) + nH

(2)
−ν (κr) = mH(2)

ν (κr) + n e−νπi H(2)
ν (κr) = H(2)

ν (κr), (5.51)

with the relationship H
(2)
−ν (κr) = e−iνπ H

(2)
ν (κr) [63]. Clearly, n can be taken zero

and m equal to unity. The constants B0, B1, B2 and ν are to be determined from the
matching condition at κr → 0 where the Hankel function has the following asymptotic
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behaviour [63]

H(2)
ν (κr) ≃ iπ−1Γ(ν)(1

2κr)
−ν + i1+2νπ−1Γ(−ν)(1

2κr)
ν = αr−ν + α̃rν . (5.52)

The second term ∼ rν can be ignored if Re(ν) > 0, but is essential if ν is imaginary.
We aim to match our outer solution (5.49) with the inner solutions (5.41) or (5.46),
and (5.44). This, however, is only possible for the low shear case.

5.7.1 Low shear case matching

From (5.52), (5.41) and (5.46), we have ν = 1
2 + iδ, and

B0 = ρ0U
2
0 e−k0y0 e

3
4

πi
(ω + σ

ω − σ

)
1
4
( U0

2c0

)ν

B1 =
ω

ω + σ
and B2 =

ω

ω − σ
matched with p (5.41)

B1 =
ω

ω − 1
2σ

· ω

ω + σ
and B2 =

ω

ω + 1
2σ

· ω

ω − σ
matched with ptra(5.46)

(5.53)
and hence for pressure p and radial velocity w

p = B0H
(2)
ν (κr)

(

B1 e−iνθ −B2 eiνθ
)

w =
i

ρ0c0
B0H

(2)
ν

′(κr)
(

B1 e−iνθ −B2 eiνθ
) (5.54)

Since the two different expressions of the constants B1 and B2 in (5.53) differ only
slightly, we continue with the configuration that matches with (5.41). For example in
Fig. 5.7 we have the acoustic pressure field for a model case.

From the far field behaviour

H(2)
ν (κr) ∼

( 2
πκr

)
1
2

e−iκr+ 1
2

iνπ+ 1
4

iπ, H(2)
ν

′(κr) ∼ −i
( 2
πκr

)
1
2

e−iκr+ 1
2

iνπ+ 1
4

iπ

(5.55)
we obtain the time averaged radial acoustic intensity in the far field as

1
2 Re(p w∗) ≃ ρ0κ

2πr
U5

0 e−2k0y0

(

e2δθ

(ω + σ)2
+

e−2δθ

(ω − σ)2
− 2 cos θ
ω2 − σ2

)

(5.56)

Integrated over 0 < θ < π we obtain an explicit expression of the radiated acoustic
power

ˆ π

0

1
2 Re(p w∗)r dθ = ρ0c

3
0 y0

(U0

c0

)4 e−2ω/σ

πδ

(ω

σ
− σ

ω

)−2

, (5.57)

to be multiplied by the square of the small dimensionless amplitude of the incident
vorticity (5.10).
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5.7.2 High shear case matching

The successful matching of the low shear case cannot be continued for the high shear
case. As announced in (5.52), the acoustic field behaves like αr−ν + α̃rν when ν = iδ
is now imaginary. The second term is essentially missing in our inner solution (5.44),
where the pressure p behaves like r−iδ only.

5.8 Conclusion

A systematic and analytically exact solution is obtained by means of the Wiener-Hopf
technique of the problem of vorticity, convected by a linearly sheared mean flow and
scattered by a hard wall - pressure-release wall transition. A qualitatively different
behaviour of the hydrodynamic and far field sound is found for low and high shear
cases. A particular feature of the simplification Z = 0 is the fact that the Wiener-Hopf
kernel can be split exactly and the solution integrals can be evaluated analytically
exactly, which allows deeper insight into the problem. In particular, it enables us to
find in detail the functional relationship of the hydrodynamic far field and hence the
associated acoustic source strength.

If the mean shear is relatively weak (σ < ω), the hydrodynamic far field varies as
the inverse square root of the distance from the hard-soft edge. The radiated acoustic
power is found to vary with U4

0 where U0 is the mean flow velocity at the source
position. If the mean shear is relatively strong (σ > ω), two features are striking. (i)
The hydrodynamic far field tends (in modulus) to a constant, what implies a strong
back reaction to the wall from any uniform or otherwise bounded part of the mean
flow, and (ii) the hydrodynamic field can not be matched to an acoustic outer field.

This impossible matching and the (here not included) strong back reaction to
the wall, leads to the conclusion that the unbounded linear mean shear flow is an
inconsistent modeling assumption in the case of high shear.

In the next chapter, we will continue the analysis for a general impedance Z wall.





Chapter 6

Vorticity scattering at hard-

wall - soft wall transition in

shear flows

6.1 Introduction

In the previous chapter, we studied the vorticity scattering in shear flows at the
hard wall - pressure release wall transition. In the current chapter, the analysis will
be continued to the transition between a hard and a general impedance Z wall. In
this case, the Wiener-Hopf solution in terms of Fourier integrals is too complex to
be evaluated analytically and we have to rely upon the asymptotic behavior of the
Fourier integrals in order to estimate the far field behavior of the solution. Such limits,
although quite common in scattering problems are too complex to trust completely
because of various regularizations involved in the Wiener-Hopf process. Such problems
could be apprehended with the help of the pressure release wall solution of previous
Chapter 5 where the solution is analytically integrable and could be used for further
insight.

The initial field of the current problem is based upon the hard wall boundary
condition and can be borrowed directly from the previous chapter (5.10). Similar to
the previous chapter, we start with the formulation of the two auxiliary functions,
that are analytic in the upper and lower half of the complex plane respectively with
a finite strip S of overlap. Then we obtain the Wiener-Hopf equation and once we
split the Wiener-Hopf kernel with the Cauchy integral theorem, we obtain eventually
the inner solution. Later, this inner solution will be matched with the outer acoustic
solution to know the far field sound behavior.
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y0

x = 0

U(y) = σy

Zhard

incident vorticity perturbations

Figure 6.1: Sketch of the problem

6.2 Model

Consider the two-dimensional incompressible inviscid problem of perturbations of a
linearly sheared mean flow with time dependent (eiωt) vortex sheet along y = y0 in
y > 0 and a wall at y = 0 which is hard for x < 0 and soft (impedance) for x > 0
with U(y) = σy ; see Fig. 6.1. In this configuration we will have no contribution of a
critical layer hc or an instability like in [33].

As described above, we have a mass source placed at x = x0 → −∞, y = y0 which
produce the downstream travelling vorticity that decays exponentially away from the
line y = y0 in the order ∼ e−k0|y−y0|−ik0x. When the convected vorticity field hits the
hard-to-soft wall transition point x = 0, it is scattered into a local pressure field that
will radiate as sound into the far field.

The flow in the domain shown in Fig. 6.1 is governed by the linearised Euler
equations with mixed boundary conditions (hard for x < 0 and of impedance type
for x > 0), which makes the Wiener-Hopf technique [14, 28] a natural choice for
obtaining the solution. Once we obtained this (in the context of the acoustic field)
inner solution, we can determine the source strength at the singularity x = 0. In
order to assess the produced sound, the incompressible inner solution will be matched
with a compressible (acoustic) outer solution. The artistic impression of this process
is shown in Fig. 1.5.
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v = 0 p = −Zv or iωp = ζpy

Figure 6.2: Boundary conditions at x = 0.

6.3 Mathematical formulation

The governing equations of mass and momentum conservation written in the frequency
domain are (2.26),

ρ0

(

∂u

∂x
+
∂v

∂y

)

= 0,

ρ0

(

iω + U
∂

∂x

)

u+ ρ0
dU
dy

v +
∂p

∂x
= 0,

ρ0

(

iω + U
∂

∂x

)

v +
∂p

∂y
= 0.

(6.1)

Boundary conditions at y = 0, Fig. 6.2, are

v = 0 if x < 0,

an edge condition of vanishing energy flux from (0, 0), and a wall of impedance Z = ρ0ζ

with
p = −Zv or iωp = ζpy if x > 0.

The far field boundary conditions will be of vanishing velocity, but maybe not of
vanishing pressure. The incident field (of the undulating vortex sheet at y = y0 =
U0/σ) is given by

uin = U0 e−ik0x
[

− sign(y − y0) e−k0|y−y0| + e−k0(y+y0)
]

,

vin = iU0 e−ik0x
[

e−k0|y−y0| − e−k0(y+y0)
]

,

pin =
σ

ω
ρ0U

2
0 e−ik0x

[

(1 + k0|y − y0|) e−k0|y−y0| − (1 + k0(y − y0)) e−k0(y+y0)
]

,

(6.2)
with k0 = ω/U0, and so k0y0 = ω/σ. Fig. 5.2 shows pressure and velocities of a
typical case. The triple (uin, vin, pin) in (6.2) satisfies the differential equation (6.1) ,
continuity of pin and vin across y = y0 and the hard-wall boundary condition vin = 0
at y = 0. The scattered perturbations are due to the non vanishing pin + Zvin along
y = 0, x > 0 and are found through the Wiener-Hopf analysis.

We split up the field in the incident part and the scattered part as follows

u = uin + u, v = vin + v, p = pin + p. (6.3)
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After Fourier transformation in x (formally assuming the convergence of the integrals)

p(x, y) =
1

2π

ˆ ∞

−∞
p̃(y, k) e−ikx dk, (6.4)

(the same for u and v) we obtain the following set of equations

ρ0(−ikũ+ ṽ′) = 0, iρ0Ωũ+ ρ0σṽ − ikp̃ = 0, iρ0Ωṽ + p̃′ = 0, (6.5)

where Ω = ω − kU . The system of equations has two independent solutions, namely
∼ e±ky [45, 65]. The one, bounded for y → ∞, is then

ũ(y) = kA(k) e−|k|y,

ṽ(y) = −i|k|A(k) e−|k|y,

p̃(y) = ρ0(Ω − sign(Re k)σ)A(k) e−|k|y,

(6.6)

with amplitude A(k) to be determined, and

|k| = sign(Re k)k =
√
k2, (6.7)

where
√

denotes the principal value square root, and |k| has thus branch cuts along
the imaginary axis given by (−i∞, 0) and (0, i∞). The definition of sign(Re(k)) in
(6.7) will be maintained throughout the work.

6.4 Wiener-Hopf procedure

To facilitate the following Wiener-Hopf procedure, we introduce a small positive para-
meter ε and have an upper and a lower half plane, and a strip of overlap

C
+ = {k ∈ C | Im k > −ε}, C

− = {k ∈ C | Im k < ε}, S = {k ∈ C | −ε < Im k < ε}.

The physical problem will be the limit ε → 0 of a regularised problem with k0 replaced
by k0 − iε (an incident field ∼ e−ik0x slightly decaying with x) and |k| replaced by
the smoother function

|k| =
√

k2 + ε2

with branch cuts (−i∞,−iε) ∪ (iε, i∞) avoiding strip S (cf. [79]).
Introduce the auxiliary functions

F−(k) =

0
ˆ

−∞

[

p(x, 0) + Zv(x, 0)
]

eikx dx, G+(k) =

∞̂

0

v(x, 0) eikx dx (6.8)

which are analytic in Im(k) < 0 and Im(k) > 0 respectively, and assumed to be
analytic in C

+ and C
−, as explained in appendix C.1 and shown in Fig. 6.3.
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case σ − ω Im ζ k1 = −a+ b k2 = −a− b

1 + + k = k1 ∈ I no solution

2 + − no solution k = k2 ∈ II

3 − + no solution no solution

4 − − k = k1 ∈ IV k = k2 ∈ II

Table 6.1: Roots of non regularised WH kernel K(k) in (6.11)

2 ǫ

Re

Im

b

b

G+(k)

F−(k)

√
k branch

Figure 6.3: F− and G+ functions and their regions of analyticity

Then we have for G+

G+(k) =

∞̂

0

v(x, 0) eikx dx =

∞̂

−∞

v(x, 0) eikx dx = −i|k|A(k). (6.9)

Furthermore, we have for F−

F−(k) =

0
ˆ

−∞

[

p(x, 0) + Zv(x, 0)
]

eikx dx

=

∞̂

−∞

[

p(x, 0) + Zv(x, 0)
]

eikx dx+

∞̂

0

pin(x, 0) eikx dx

= −ρ0A(k) sign(Re k)
(

ikζ + σ − sign(Re k)ω
)

+ 2iρ0U
2
0

e−k0y0

k − k0

= −iρ0ζA(k)|k|K(k) + 2iρ0U
2
0

e−k0y0

k − k0

(6.10)

with Wiener-Hopf kernel

K(k) = 1 +
a

k
− b

|k| , a =
σ

iζ
, b =

ω

iζ
. (6.11)

With ε = 0, K(k) has 0, 1, or 2 zeros in the 1st, 2nd, or 4th quadrant, as shown in
table 6.1, depending on the signs of σ−ω and Im ζ, and assuming that σ, ω,Re ζ > 0.
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case σ − ω Im ζ k1 ≃ −a+b+iε a
a−b k2 ≃ −a − b +

iε a
a+b

k3 ≃
−iεa2+b2

a2−b2 +

ε2 8a3b2

(a2−b2)3

1 + + k ≃ −a+ b ∈ I no solution no solution

2 + − no solution k ≃ −a− b ∈ II no solution

3 − + no solution no solution k ≃ −iεa2+b2

a2−b2

4 − − k ≃ −a+ b ∈ IV k ≃ −a− b ∈ II k ≃ −iεa2+b2

a2−b2

Table 6.2: Roots of the regularised WH kernel K(k) in (6.12)

The Kernel K(k) should be free from all poles and zeros and since our K(k) has a
singularity in k = 0, which is inside strip S, we follow D.1 and consider the regularised
version

K(K) = 1 +
a

k − iε
− b√

k2 + ε2
. (6.12)

The regularized K(k) has 3 zeros, which for small ε are approximated as shown in
table 6.2. So in general the zeros and singularities of K are not real and there is a
neighbourhood of the real axis where K(k) is analytic.

Hence from (6.4), we arrive at the Wiener-Hopf equation

F−(k) = ρ0ζG+(k)K(k) + 2iρ0U
2
0

e−k0y0

k − k0
(6.13)

which is to be solved in the standard way [14] by writing

K(k) =
K+(k)
K−(k)

(6.14)

where splitfunction K+ is analytic in C
+ and K− is analytic in C

−. These splitfunc-
tions are constructed in the usual way [57] as follows.

Consider k ∈ S inside a large rectangular contour C ⊂ S between k = −L − iηε
and k = L + iηε, where η is small enough that we remain within the strip of width
2ε as shown in Fig. 6.4. In general K has no zeros k1,2,3 (if any) within C and we
assume a definition of logK(k) with branch cuts not crossing S. As it happens, with
the present choice of the regularised K, this is achieved by taking the principal value
logarithm. Then by Cauchy’s integral representation theorem,

logK(k) = lim
L→∞

1
2πi

ˆ

C

logK(ξ)
ξ − k

dξ

=
1

2πi

∞̂

−∞

logK(ξ − iηε)
ξ − iηε− k

dξ − 1
2πi

∞̂

−∞

logK(ξ + iηε)
ξ + iηε− k

dξ, (6.15)
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2 ηǫ
Re(k)

Im(k)

Figure 6.4: Contour C

where it may be noted that the integrals converge at infinity since

logK(ξ)
ξ − k

= O(1/ξ2) (ξ → ∞).

Considered as a function of k, the first integral can be analytically continued to C
+,

and the second integral can be analytically continued to C
−. So we can identify

logK+(k) =
1

2πi

ˆ ∞

−∞

logK(ξ − iηε)
ξ − iηε− k

dξ, k ∈ C
+, (6.16)

logK−(k) =
1

2πi

ˆ ∞

−∞

logK(ξ + iηε)
ξ + iηε− k

dξ, k ∈ C
−. (6.17)

If ε → 0, the representations of K+ and K− become the same, in the sense that it
becomes K+ if k ∈ C

+ and K− if k ∈ C
−.

Although the splitfunctions for ε > 0 are only available numerically, it appears
(see Appendix D.2) that for ε = 0 they can be given analytically exactly, by equation
(D.3), albeit by using the somewhat unusual dilogarithm function. Furthermore, by
extensive comparison with the numerical versions for very small but non zero ε, we
could verify that the analytical splitfunctions as defined above are indeed the proper
limit for ε → 0. This remarkable result will be important later for the far field analysis
of the physical solution represented by a Fourier integral.

Altogether, we can conclude from (6.13) that in S

F−(k)K−(k) − ρ0ζG+(k)K+(k) = 2iρ0U
2
0

e−k0y0

k − k0
K−(k)

= 2iρ0U
2
0 e−k0y0

K−(k) −K−(k0)
k − k0

+ 2iρ0U
2
0

e−k0y0

k − k0
K−(k0), (6.18)

where we isolated pole k0 ∈ C
− from K−. The parts that are analytic in C

+ and
in C

− respectively, are via their equivalence in S each other’s analytic continuations,
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and define an entire function E

E(k) = F−(k)K−(k) − 2iρ0U
2
0 e−k0y0

K−(k) −K−(k0)
k − k0

= ρ0ζG+(k)K+(k) + 2iρ0U
2
0

e−k0y0

k − k0
K−(k0).

(6.19)

E can be determined from the condition at k → ∞, related to the edge condition
for (x, y) → 0. Following Appendix D.4, we have E ≡ 0, consistent with the Part 1
pressure release wall. Hence we can write from (6.4) and (6.19)

F−(k) = 2iρ0U
2
0 e−k0y0

K−(k) −K−(k0)
(k − k0)K−(k)

,

G+(k) =
−2iU2

0

ζ

e−k0y0

k − k0

K−(k0)
K+(k)

,

A(k) =
2U2

0

ζ

e−k0y0

k − k0

K−(k0)
|k|K+(k)

.

. (6.20)

A(k) obtained from (6.20) can be substituted back into (6.6). This gives, with the
inverse Fourier transform from (6.4) added to the initial field (6.2), the formal solution
u, v and p of the problem.

u = uin +
1

2π

$ ∞

−∞
sign(Re k)

2U2
0

ζ

e−k0y0

k − k0

K−(k0)
K+(k)

e−|k|y e−ikx dk

v = vin +
1

2π

$ ∞

−∞
−i

2U2
0

ζ

e−k0y0

k − k0

K−(k0)
K+(k)

e−|k|y e−ikx dk

p = pin +
1

2π

$ ∞

−∞
ρ0(Ω − sign(Re k)σ)

2U2
0

ζ

e−k0y0

k − k0

K−(k0)
|k|K+(k)

e−|k|y e−ikx dk.

(6.21)

We notice that the expressions of u and v are integrable at k = 0, while the pole k = k0

is included if x > 0. Indeed it corresponds to a trailing vorticity [86] of the hard-soft
discontinuity. The singularity at k = 0 is, unlike the one at k = k0, not a pole and has
a different origin. Due to this singularity, if not integrable, the Fourier transformation
of the pressure in (6.21) becomes too singular to be interpreted normally and diverges,
away from the edge, for r → ∞. When we consider the incompressible problem as an
inner problem of a larger compressible problem, as in [46, 28, 94, 81], this divergent
behavior disappears as it changes into an outward radiating acoustic wave. The
inverse Fourier transform for pressure p is then calculated by splitting off the singular
part and interpreting the singular integral in generalized sense [31, 47, 86].

6.5 Hydrodynamic solution

The solution set u, v and p in (6.21) is the solution of incompressible inner problem of
a larger compressible acoustic problem and is referred as inner solution that contains
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the hydrodynamic characters of the problem. The hydrodynamic characters (inner
solution) interacts with the acoustic characters (outer solution) and this information
is passed through the asymptotic matching of the inner and outer solutions. This
matching is accomplished by comparing term-wise the outer limit (r → ∞) of the
inner solution to the inner limit (r → 0) of the outer solution.

The K+ function in (D.3) if substituted back in (6.21) renders the integral function
too difficult to evaluate analytically like in Z = 0, Chapter 5. However the integrals
can be evaluated in the limit k → 0 which corresponds to the limit r → ∞ and that is
exactly what we need. This way, the problem is curbed. The fidelity of this process is
checked by comparing the behaviour of the solution with the Z = 0 analysis, Chapter
5, where the integrals were analytically integrable and it was precisely the reason to
conduct the pressure release analysis in Chapter 5.

In order to evaluate the solutions, in the form of Fourier integrals (6.21), numer-
ically or asymptotically in the far field, we need to know the behaviour of K+(k) at
k = 0. The following asymptotic behaviour ofK+(k → 0) can be confirmed from D.3.1
and D.3.2

K+(k) ≃ c1k
− 1

2
−iδ for σ < ω and K+(k) ≃ c1k

−iδ for σ > ω, (6.22)

where c1 is a complex constant given by (D.5), (D.7) and δ = 1
2π log | σ+ω

σ−ω | is real
positive. Since the behavior of the K+ function in (6.22) differs essentially for (σ < ω)
and (σ > ω), we shall refer to (σ < ω) and (σ > ω) as low shear and high shear case
respectively. Please note that the K+(k) function in (D.3) assumes the asymptotic
form in (6.22) which is practically equal to the K+ (5.23) of the Z = 0, up to a
constant which does not matter because the Wiener-Hopf kernel split functions are
unique up to a constant [25].

6.5.1 Solution of velocities u and v

We see by combining (6.22) and (6.21) that in either case, the velocities u and v are
integrable at k = 0. Shown in Fig. 6.6 (top and middle) are the numerical solutions of
the velocity integrals (6.21) added to the initial field (6.2) to obtain the full solution
(6.3) of velocities for a typical representative case. Apparently, the high mean shear
intensifies the velocity field especially downstream the edge. The solution converges
at infinity and behaves like ∼ r− 3

2
−iδ and ∼ r−1−iδ for the low and high shear cases

respectively which is consistent with the Z = 0 analysis, Chapter 5. The difference in
the low and high shear cases arises because of the different K+(k) function that results
from the boundary conditions along y = 0 in combination with the edge condition at
origin.

6.5.2 Solution of pressure p

As we have noticed, the behaviour of the singularity at k = 0 is different for the low
and high shear which splits our problem into 2 different cases in terms of radiated
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Re k

Im k

b

k0

b
1 2

Figure 6.5: Integration contour

pressure. They are discussed in separate sections below.

Low shear

The low shear case corresponds with σ < ω, i.e. k0y0 > 1. The behaviour of K+ ∼
k− 1

2
−iδ in the limit k → 0 weakens the non integrable singularity |k|−1 to an integrable

singularity k− 1
2

+iδ of the integrand in (6.21). Hence the pressure solution can be
obtained by direct integration like the velocities. For a typical case, this is shown in
Fig. 6.6 (bottom left). It can be predicted even at this stage that a weaker singularity
at k = 0 produces a weaker far field sound.

High shear

The high shear case corresponds with σ > ω, i.e. k0y0 < 1. The behaviour of K+ ∼
k−iδ in the limit k → 0 does not weaken the singularity in this case and the integral
function behaves as ∼ |k|−1+iδ as k → 0 and hence diverges. The divergent behaviour
at k = 0 in Fourier space suggests a strong far field at r =

√

x2 + y2 → ∞ in the
physical plane. The Fourier representation of pressure is too singular to interpret and
hence should be regularised, using generalised functions, by splitting off the singular
part and the part which is integrable. From (6.21), we have

p(x, y) =
ρ0U

2
0

ζπ
e−k0y0 K−(k0)

ˆ 0

−∞

(

Ω + σ

(k − k0)|k|K+(k)

− ω + σ

−k0|k|c1k−iδ

)

e−ikx−|k|y dk

+
ρ0U

2
0

ζπ
e−k0y0 K−(k0)

$ ∞

0

(

Ω − σ

(k − k0)|k|K+(k)

− ω − σ

−k0|k|c1k−iδ

)

e−ikx−|k|y dk

+
ρ0U

2
0

ζπ
e−k0y0

K−(k0)
−c1k0

[
ˆ 0

−∞

ω + σ

|k|k−iδ
e−ikx−|k|y dk

+
ˆ ∞

0

ω − σ

|k|k−iδ
e−ikx−|k|y dk

]

(6.23)

The separated singularity renders the integrals of p(k, y) to be O(1) at k = 0
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Figure 6.6: The solution fields u, v and p for low shear σ = 4 < ω = 5, y0 = 1.25
(left) and high shear σ = 5 > ω = 4, y0 = 1 (right), while ζ = 1

2 (1 + i), U0 = 5.

and hence integrable. In (6.23), the first 2 integrals have a finite limit at k = 0
and therefore can be evaluated along the integration contour 1 and 2 respectively, as
shown in Fig. 6.5. The last integrals in (6.23) are those which carry the singularity
and diverge at k = 0 which makes them difficult to interpret. They can be evaluated
as generalised functions [31, 47]. With Appendix D.5, we have

ρ0U
2
0

ζπc1
e−k0y0

K−(k0)
−k0

[
ˆ 0

−∞

ω + σ

|k|k−iδ
e−ikx−|k|y dk +

ˆ ∞

0

ω − σ

|k|k−iδ
e−ikx−|k|y dk

]

=
ρ0U

2
0

ζπc1
e−k0y0

K−(k0)
−k0

i−iδΓ(iδ)
[

(ω + σ)z−iδ + (ω − σ)z∗ −iδ
]

, (6.24)

where z = x + iy and z∗ = x − iy. The results from (6.24) used with the first two
integrals in (6.23) added to the initial field pin gives the final solution of the inner
pressure p (6.21). Shown in Fig. 6.6 (bottom right) is the pressure for a typical case.
The pressure field is clearly more intense for high shear than for low shear.
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6.5.3 Far field of inner solution p – inside shear layer

In order to have an estimate of the far field radiated pressure, we need the asymptotic
evaluation of the pressure integral (6.21) in the limit k → 0 because small k in Fourier
space relates to large r =

√

x2 + y2 ∼ ∞ in the physical plane.

(a) Low shear, σ < ω :

From (6.21) and (6.22), we have in the limit k → 0,

p(x, y)σ<ω ∼ pinner (σ<ω)

≃ ρ0U
2
0

ζπc1
e−k0y0

K−(k0)
−k0

[

(ω + σ)
ˆ 0

−∞

e−ikx−|k|y

|k|k− 1
2

−iδ
dk + (ω − σ)

ˆ ∞

0

e−ikx−|k|y

|k|k− 1
2

−iδ
dk
]

=
ρ0U

2
0

ζπc1
e−k0y0

K−(k0)
−k0

[

(−1)( 1
2

+iδ)(ω + σ)
ˆ ∞

0

eikz

k
1
2

−iδ
dk + (ω − σ)

ˆ ∞

0

e−ikz∗

k
1
2

−iδ
dk
]

(6.25)

where z = x+ iy . The integrals converge, and can be evaluated like

ˆ ∞

0

eikz

k
1
2

−iδ
dk =

Γ(1
2 + iδ)

(−iz)
1
2

+iδ
. (6.26)

The net radiated innerfield pressure is then given by

pinner (σ<ω) ≃ i−( 1
2

+iδ)Γ(1
2 + iδ)

ρ0U
2
0

ζπc1
e−k0y0

K−(k0)
−k0

×

(

(ω + σ)z− 1
2

−iδ + (ω − σ)z∗ − 1
2

−iδ

) (6.27)

with z = r eiθ and z∗ = r e−iθ. The pressure decays as r− 1
2 , which thus limits its

effective acoustic source strength. In the hard wall limit ζ → ∞, the radiated pressure
disappears as expected. Also, the solution (6.27) resembles (5.41) and converges to
the later in small k0 limit.

(b) High shear, σ > ω :

The singularity in this case is stronger than the one in the previous case, which
enables us to assess that the radiated pressure pinner (σ>ω) field must be stronger.
The asymptotic behaviour of the integral (6.21) at k → 0 is essentially the singularity
taken out from the integral in (6.23). Hence the outer limit r → ∞ of the inner
pressure field p (with z = r eiθ) is given by (6.24) as:

pinner (σ>ω) ≃ i−iδΓ(iδ)
ρ0U

2
0

ζπc1
e−k0y0

K−(k0)
−k0

[

(ω + σ)z−iδ + (ω − σ)z∗ −iδ
]

. (6.28)



Vorticity scattering at hard wall - soft wall transition in shear flows 97

h p in
n
er

p̄
ref

p̄tra

U∞ = σh

Figure 6.7: Inner pressure reflected and transmitted at interface y = h.

An important difference is that the modulus of the pressure field varies with r like
|r−iδ| = 1, i.e. remains constant rather than decaying, and is therefore much stronger
than in the previous case. Physically, it means that there is a strong interaction
between the edge and the interphase. In case of low shear, this interaction is weak so
that the reflected waves are order of magnitude smaller than the transmitted waves.
But in the case of high shear, this interaction is strong hence the acoustic energy is
contained in the boundary layer. Hence we conclude that an infinite linear shear and
unbounded flow profile is an inconsistent modelling assumption for the high shear case.
In the hard wall limit ζ → ∞, the radiating pressure (6.28) disappears as expected.
Also, the solution (6.28) resembles (5.44) and converges to the later, considering the
small k0 limit on K−(k0).

The above far field limit is taken inside the uniform shear flow, which means that
we have a diverging mean flow velocity U = σy → ∞ as y → ∞ which is not very
physical. Although both (6.27) and (6.28) do satisfy the prevailing equations, we just
want to make sure that no unphysical artefacts are created. So we curtail the shear
at height h and define the mean flow being a constant U∞ beyond y > h. This is
explained in the next section.

6.5.4 Far field of inner solution – outside shear layer

In order to approximate the solution outside the shear layer, we assume a piecewise
smooth transition of the shear layer at y = h where it becomes straight as shown in
Fig. 6.7, i.e.

U = σy, y < h,

U = U∞, y > h.

Let us assume that h ≫ y0, so that the source does not interfere with the transition
layer. The assumption is based on the physical understanding that the vortical field
decays exponentially off the line y = y0. Under this assumption, the incident field pin

is negligible near the interface, while the inner pressure field pinner is reflected back



98 6.5. Hydrodynamic solution

as pref without further interaction with the wall, and transmitted as ptra into the far
field. Hence, we may match the outer acoustic field to ptra in order to obtain a more
realistic value of the far field sound. In order to obtain ptra, we apply the continuity
of pressure and v velocity at the boundary y = h. In the Fourier domain, we have for
y < h representation (6.21), which is for the Fourier transforms

p̃(k, y) = ρ0D
(

Ω∞ − sign(Re k)σ
)

e−|k|(y−h), ṽ(k, y) = −iD|k| e−|k|(y−h),

D =
2U2

0

ζ

e−k0y0

k − k0

K−(k0)
|k|K+(k)

e−|k|h, Ω∞ = ω − kU∞.

The reflected and transmitted variables are given by

p̃ref(k, y) = ρ0R(Ω∞ + sign(Re k)σ) e|k|(y−h), p̃tra(k, y) = ρ0TΩ∞ e−|k|(y−h)

ṽref(k, y) = iR|k| e|k|(y−h), ṽtra(k, y) = −iT |k| e−|k|(y−h)

where reflection and transmission coefficients R and T are obtained from the condi-
tions of continuity of pressure and velocity at y = h

p̃(k, h) + p̃ref(k, h) = p̃tra(k, h)

ṽ(k, h) + ṽref(k, h) = ṽtra(k, h).

The two linear equations in variables T and R

ρ0D
(

Ω∞ − sign(Re k)σ
)

+ ρ0R(Ω∞ + sign(Re k)σ) = ρ0TΩ∞,

−iD|k| + iR|k| = −iT |k|,

can be solved to yield

T = D
Ω∞

Ω∞ + 1
2 sign(Re k)σ

, R = D
1
2 sign(Re k)σ

Ω∞ + 1
2 sign(Re k)σ

.

The inner pressure transmitted outside the shear is then

p̄tra(x, y) =
1

2π

$ ∞

−∞

2ρ0U
2
0

ζ

e−k0y0 K−(k0)
k − k0

[

Ω2
∞

Ω∞ + 1
2 sign(Re k)σ

]

e−ikx−|k|y

|k|K+(k)
dk.

(6.29)
If we write Ω∞ = ω − kσh, the outer limit of the inner pressure can be obtained by
the asymptotic evaluation of the integral (6.29) in the limit k → 0,

p̄tra(x, y) =
ρ0U

2
0

πζ

e−k0y0

−k0
K−(k0)

(
ˆ 0

−∞

[

ω2

ω − 1
2σ

]

e−ikx−|k|y

|k|K+(k)
dk

+
ˆ ∞

0

[

ω2

ω + 1
2σ

]

e−ikx−|k|y

|k|K+(k)
dk
)

.

(6.30)
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In the case of σ < ω, using (6.22) and (6.26), we obtain

p̄tra (σ<ω) = i−( 1
2

+iδ)Γ(1
2 + iδ)

ρ0U
2
0

ζπc1
e−k0y0

K−(k0)
−k0

[

ω2

ω − 1
2σ
z− 1

2
−iδ

+
ω2

ω + 1
2σ
z∗ − 1

2
−iδ

]

.

(6.31)

In the other case, i.e. σ > ω, using (6.22) and (6.24), we have

p̄tra (σ>ω) = i−iδΓ(iδ)
ρ0U

2
0

ζπc1
e−k0y0

K−(k0)
−k0

[

ω2

ω − 1
2σ
z−iδ +

ω2

ω + 1
2σ
z∗ −iδ

]

. (6.32)

where z = r eiθ. We conclude from (6.27), (6.28), (6.31) and (6.32) that the inclusion
of the transition layer does not change the functional relationship of the sound radiated
to far field and differ by only a constant. We will match the outerfield acoustic solution
to both inner fields in the next section.

6.6 Outer solution and asymptotic matching (low

shear case only)

Since the mean flow Mach number is small, the inner problem is incompressible. We
assume the outer acoustic field, where the mean flow velocity profile changed from
linear U(y) = σy to a constant, compressible but with negligible mean flow. Then we
have the Helmholtz (= reduced wave) equation for p (or u or v)

∇2p+ κ2p = 0, κ =
ω

c0
. (6.33)

With a point source in x = y = 0, assuming a certain symmetry in r and θ (where
x = r cos θ and y = r sin θ), we search for solutions of the form

p(r, θ) = B0γ(r)β(θ). (6.34)

If we substitute this in the equations we find

γ′′ +
1
r
γ′ + κ2γ − ν2

r2
γ = 0, β′′ + ν2β = 0,

such that β(θ) = B1 eiνθ +B2 e−iνθ. Furthermore due to the radiation condition,

γ(r) = mH(2)
ν (κr) + nH

(2)
−ν (κr) = mH(2)

ν (κr) + n e−νπi H(2)
ν (κr) = H(2)

ν (κr) (6.35)

with the relationship H
(2)
−ν (κr) = e−iνπ H

(2)
ν (κr) [63]. Clearly, n can be taken zero

and m equal to unity. The constants B0, B1, B2 and ν are to be determined from the
matching condition at r → 0 where the Hankel function has the following asymptotic
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behaviour [63]

H(2)
ν (κr) ≃ iπ−1Γ(ν)(1

2κr)
−ν + i1+2νπ−1Γ(−ν)(1

2κr)
ν = αrν + α̃r−ν , (6.36)

the second term of which can be ignored if Re(ν) > 0, but is essential if ν is imaginary.
We wish to match (6.36) with the outer limit of the inner solution. This however, is
possible only for the low shear case i.e. (6.27) and (6.31).

6.6.1 Far field sound, low shear case

The matching of (6.36) with (6.27) or (6.31) leads to

ν = 1
2 + iδ, B0 = i− 3

2
−iδ ρ0U

2
0

ζc1
e−k0y0

K−(k0)
−k0

(

1
2κ
)

1
2

+iδ
, (6.37)

while B1 and B2 represent the different matching with the inner pressure pinner (σ<ω)

inside, or p̄tra (σ<ω) outside the shear layer.

B1 = ω − σ and B2 = ω + σ matched with pinner (σ<ω)

B1 =
ω2

ω + 1
2σ

and B2 =
ω2

ω − 1
2σ

matched with p̄tra (σ<ω) (6.38)

and hence the acoustic pressure p and radial velocity w are given by

p = B0H
(2)
ν (κr)

(

B1 eiνθ +B2 e−iνθ
)

w =
i

ρ0c0
B0H

(2)
ν

′(κr)
(

B1 eiνθ +B2 e−iνθ
) (6.39)

This effect of the reflection at the transition layer is for the type of sound field of
rather little concern. Eventually, the far field sound is given by

p(r, θ) = i− 3
2

−iδ ρ0U
2
0

ζc1
e−k0y0

K−(k0)
−k0

(1
2κ)( 1

2
+iδ)×

H(2)
ν (κr)

(

(ω + σ) e−i( 1
2

+iδ)θ +(ω − σ) ei( 1
2

+iδ)θ
)

(6.40)

when matched with the inner pressure pinner (σ<ω) inside the shear layer, or

p(r, θ) = i− 3
2

−iδ ρ0U
2
0

ζc1
e−k0y0

K−(k0)
−k0

(1
2κ)( 1

2
+iδ)×

H(2)
ν (κr)

(

ω2

ω − 1
2σ

e−i( 1
2

+iδ)θ +
ω2

ω + 1
2σ

ei( 1
2

+iδ)θ

)

(6.41)

when matched with the inner pressure p̄tra (σ<ω) transmitted outside the layer. Shown
in Fig. 6.8 is the far field sound obtained by above two different matchings. Since the
two different matching differ slightly, we choose the first expression coupled with the
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Figure 6.8: Far field sound obtained from (6.40) and (6.41) respectively. σ = 4 <
ω = 5, ζ = 1

2 (1 + i), U0 = 5, k0 = 1, y0 = 1.25.

far field behaviour

H(2)
ν (κr) ∼

( 2
πκr

)
1
2

e−iκr+ 1
2

iνπ+ 1
4

iπ, H(2)
ν

′(κr) ∼ −i
( 2
πκr

)
1
2

e−iκr+ 1
2

iνπ+ 1
4

iπ

(6.42)

to obtain the time averaged radial acoustic intensity in the far field as

1
2 Re(p w∗) ≃ ρ0κk0

2πc2
1ζ

2r
U5

0 e−2k0y0

(

K−(k0)
−k0

)2

×
(

(

ω + σ

ω

)2

e2δθ +
(

ω − σ

ω

)2

e−2δθ −2
(

ω2 − σ2

ω

)2

cos θ

)

(6.43)

Integrated over 0 < θ < π we obtain the interesting expression of the radiated acoustic
power

ˆ π

0

1
2 Re(p w∗)r dθ = ρ0c

3
0

(U0

c0

)4 e−2ω/σ

πδc2
1ζ

2

(

K−(k0)
k0

)2
ωσ(ω2 + σ2)

(ω2 − σ2)
, (6.44)

to be multiplied by the square of the small dimensionless amplitude of the incident
vorticity (6.2). In high shear case, the second term in (6.36) is essentially missing
in the inner solution, hence the matching of the pressure is not possible. However,
it is found that the outer solution does match with the velocities and integral of the
pressure rather than pressure itself.

6.7 Conclusions

A systematic and analytically exact solution is obtained by means of the Wiener-
Hopf technique of the problem of vorticity, convected by a linearly sheared mean
flow, is scattered by the hard-soft transition of the wall. It is illustrated by numerical
examples. A particular feature is the fact that the Wiener-Hopf kernel can be split
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exactly. This enables us to find in rather detail the functional relationship of the
hydrodynamic far field and hence the associated acoustic source strength.

The problem appears to be distinguished into two different classes, based upon the
relative size of problem parameters σ (the mean flow shear U ′) and ω (the perturbation
frequency), and not (for example) of the impedance of the wall. If the mean shear is
relatively weak, i.e. if σ < ω, the hydrodynamic far field varies as the inverse square
root of the distance from the hard-soft singularity. If the mean shear is relatively
strong, i.e. if σ > ω, the hydrodynamic far field tends (in modulus) to a constant
which confirms a strong interaction between the edge and the interphase that leads
to the linear infinite shear as an inconsistent modelling assumption.

The far field and resulting sound field are based upon the asymptotic behaviour
of the Fourier integrals and the reliability is confirmed by the limiting case Z = 0
where the solution is explicit.



Chapter 7

Vorticity scattering at soft

wall - hard wall transition in

shear flows

The scattering of 2D vorticity perturbations in an inviscid low Mach number shear flow
with vanishing velocity at the wall passing over a hard to soft transition of this wall
has been examined in previous two chapters 5 and 6. The current chapter extends the
analysis to a soft to hard transition i.e. reversal of the boundary condition. Because of
the presence of the shear layer, the problem is non symmetric and demands an analysis
from scratch. The soft hard transition is as important as the hard soft transition and
is very common in aircraft engines and ventilation ducts and hence, it is important
to analyse the scattering process associated with such boundary condition reversal
that is reported in this chapter. The Wiener-Hopf method in the incompressible limit
poses some mathematical intricacies that are tackled with the help of the physical
limit Z = 0. The solution confirms that a soft -hard singularity behaves as the hard
soft singularity in low and high shear case and the resulting sound field is similar in
behaviour.

The schematic scheme of the problem we consider is shown in Fig. 7.1. The mod-
eling assumptions are similar to the previous chapters except that the boundary con-
ditions are reversed. The initial field of the problem satisfies the soft wall boundary
condition at y = 0 and is derived in a similar fashion as the previous initial field
(5.10).

103
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y0

x = 0

U(y) = σy

Z hard

incident vorticity perturbations

Figure 7.1: Sketch of the problem

b

p = −Zv or iωp = ζpy v = 0

Figure 7.2: Boundary conditions at y = 0

7.1 Mathematical formulation

Like the previous formulations, we start from the governing equations of mass and
momentum conservation in the frequency domain (2.26)

ρ0

(

∂u

∂x
+
∂v

∂y

)

= 0,

ρ0

(

iω + U
∂

∂x

)

u+ ρ0
dU
dy

v +
∂p

∂x
= 0,

ρ0

(

iω + U
∂

∂x

)

v +
∂p

∂y
= 0.

(7.1)

Boundary conditions for finite impedance and hard wall at y = 0, as shown in Fig. 7.2,
are

v = 0 if x > 0, p = −Zv or iωp = ζpy if x < 0. (7.2)

Similarly, the boundary conditions for the pressure release and hard wall are

v = 0 if x > 0, p = 0 if x < 0. (7.3)

Apart from (7.2) and (7.3), we have an edge condition of vanishing energy flux from
(0, 0). The far field boundary conditions will be of vanishing velocity, but maybe not of
vanishing pressure. The incident field of the undulating vortex sheet at y = y0 = U0/σ

is determined by the soft wall boundary condition at y = 0.
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Figure 7.3: The initial field pin and vin respectively. ω = 5, σ = 4, U0 = 5, k0 = 1, y0 =
1.25.

Typically, there are infinitely many possible solutions. We choose the one with
real k0 and satisfying Myer’s energy condition [48, 54, 56] and is given as

uin = U0 e−ik0x
[

λ sign(y − y0) e−k0|y−y0| + e−k0(y+y0)
]

,

vin = iU0 e−ik0x
[

−λ e−k0|y−y0| − e−k0(y+y0)
]

,

pin =
σ

ω
ρ0U

2
0 e−ik0x

[

−λ(1 + k0|y − y0|) e−k0|y−y0| − (1 + k0(y − y0)) e−k0(y+y0)
]

,

(7.4)
with k0 = ω/U0, and so k0y0 = ω/σ. The effect of the soft wall is contained in
dimensionless constant λ = λ−/λ+ where λ+ = (ω+σ+ik0ζ) and λ− = (ω−σ− ik0ζ)
respectively. In the limit ζ → ∞, λ = −1, hence the initial field converges to the
hard wall initial field in (6.2). In case of the pressure release wall, we have λ0 =
(ω − σ)/(ω + σ). Fig. 7.3 shows the initial field for a typical case of low shear.

The triple (uin, vin, pin) satisfies the differential equations (7.1), continuity of pin

and vin across y = y0, and the soft-wall boundary condition pin +Zvin at y = 0. The
scattered perturbations are due to the vanishing velocity vin = 0 along y = 0, x > 0.

We split up the field in the incident part and the scattered part as follows

u = uin + u, v = vin + v, p = pin + p. (7.5)

After Fourier transformation in x (formally assuming the convergence of the integrals)

p(x, y) =
1

2π

ˆ ∞

−∞
p̃(y, k) e−ikx dk, (7.6)
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(the same for u and v) we obtain the following set of equations

ρ0(−ikũ+ ṽ′) = 0, iρ0Ωũ+ ρ0σṽ − ikp̃ = 0, iρ0Ωṽ + p̃′ = 0, (7.7)

where Ω = ω − kU . The system of equations has two independent solutions, namely
∼ e±ky [45, 65]. The one, bounded for y → ∞, is then

ũ(y) = kA(k) e−|k|y,

ṽ(y) = −i|k|A(k) e−|k|y,

p̃(y) = ρ0(Ω − sign(Re k)σ)A(k) e−|k|y,

(7.8)

with amplitude A(k) to be determined, and

|k| = sign(Re k)k =
√
k2, (7.9)

where
√

denotes the principal value square root, and |k| has thus branch cuts along
the imaginary axis given by (−i∞, 0) and (0, i∞).

7.2 Wiener-Hopf procedure

To facilitate the following Wiener-Hopf procedure, we introduce a small positive para-
meter ε and have an upper and a lower half plane, and a strip of overlap

C
+ = {k ∈ C | Im k > −ε}, C

− = {k ∈ C | Im k < ε}, S = {k ∈ C | −ε < Im k < ε},

The physical problem will be the limit ε → 0 of a regularised problem with k0 replaced
by k0 − iε (an incident field ∼ e−ik0x slightly decaying with x) and |k| replaced by
the smoother function

|k| =
√

k2 + ε2

with branch cuts (−i∞,−iε) ∪ (iε, i∞) avoiding the strip S. In this way, we removed
the branches of |k| away from the strip (cf. [79]).

Introduce the auxiliary functions F−(k) and G+(k) that are analytic in lower
Im(k) < ε and upper Im(k) > −ε half of the complex plane respectively, as shown in
Fig. 6.3 and explained in appendix C.1.

F−(k) =
ˆ 0

−∞
v(x, 0) eikx dx, G+(k) =

ˆ ∞

0

[

p(x, 0) + Zv(x, 0)
]

eikx dx (7.10)
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F−(k) =
ˆ 0

−∞
v(x, 0) eikx dx

=
ˆ 0

−∞
[vin(x, 0) + v(x, 0)] eikx dx−

ˆ 0

−∞
vin(x, 0) eikx dx

=
ˆ ∞

−∞
[vin(x, 0) + v(x, 0)] eikx dx−

ˆ 0

−∞
vin(x, 0) eikx dx

=
ˆ ∞

−∞
v(x, 0) eikx dx+

ˆ ∞

0

vin(x, 0) eikx dx

= −i|k|A(k) + (λ+ 1)U0
e−k0y0

(k − k0)

(7.11)

Furthermore, we have

G+(k) =

∞̂

0

[

p(x, 0) + Zv(x, 0)
]

eikx dx =

∞̂

−∞

[

p(x, 0) + Zv(x, 0)
]

eikx dx

= −iρ0ζ|k|A(k)K(k) (7.12)

with the previous Wiener-Hopf kernel of Chapter 6,

K(k) = 1 +
a

k
− b

|k| , a =
σ

iζ
, b =

ω

iζ
. (7.13)

With ε = 0, K(k) has 0, 1, or 2 zeros in the 1st, 2nd, or 4th quadrant, as shown in
table 6.1, depending on the signs of σ−ω and Im ζ, and assuming that σ, ω,Re ζ > 0.
As K(k) has a singularity in k = 0, which is inside strip S, we follow (6.12) and
consider the regularized version

K(k) = 1 +
a

k − iε
− b√

k2 + ε2
. (7.14)

This K(k) has 3 zeros, which are for small ε approximated as shown in table 6.2. So
in general the zeros and singularities of K are not real and there is a neighbourhood
of the real axis where K is analytic.

Hence we arrive at the Wiener-Hopf equation

F−(k) =
G+(k)
ρ0ζ

1
K(k)

+ (λ+ 1)U0
e−k0y0

(k − k0)
.

=
G+(k)
ρ0ζ

K ′(k) + (λ+ 1)U0
e−k0y0

(k − k0)
. (7.15)

We notice from (7.15) that the new kernel K ′(k) is inverse of the previous kernel
K(k), (6.13), hence the poles and zeros of the previous kernel turn into the zeros
and poles of the new kernel respectively. Since the strip S, after regularization, is
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free from all poles are zeros, the inverse kernel follows the same. However, there is
a subtle difference that we will encounter later in the high shear case. As stated in
Chapter 5 that there is a real zero within the strip S in the high shear case that we
regularized with an imaginary component to absorb it in the numerator of Wiener-
Hopf equation. However, now that zero turns into a pole and can not be regularized
in the denominator and must be multiplied out across the Wiener-Hopf equation, as
we will see later. For now, we proceed with our derivation and define by writing

K(k) =
K+(k)
K−(k)

(7.16)

where splitfunction K+ is analytic in C
+ and K− is analytic in C

−. Altogether, we
conclude that in S,

F−(k)
K−(k)

− G+(k)
ρ0ζK+(k)

= (λ+ 1)U0
e−k0y0

k − k0

1
K−(k)

= (λ + 1)U0
e−k0y0

k − k0

[

1
K−(k)

− 1
K−(k0)

]

+ (λ+ 1)U0
e−k0y0

k − k0

1
K−(k0)

(7.17)

where we have isolated the pole k0 ∈ C
− from K− and write

F−(k)
K−(k)

− (λ+ 1)U0
e−k0y0

k − k0

[

1
K−(k)

− 1
K−(k0)

]

=
G+(k)

ρ0ζK+(k)
+ (λ+ 1)U0

e−k0y0

k − k0

1
K−(k0)

(7.18)

The left and right side of (7.18) that are analytic in C
+ and in C

− respectively, are
via their equivalence in S each other’s analytic continuations, and define an entire
function E

E(k) =
F−(k)
K−(k)

− (λ+ 1)U0
e−k0y0

k − k0

[

1
K−(k)

− 1
K−(k0)

]

=
G+(k)

ρ0ζK+(k)
+ (λ+ 1)U0

e−k0y0

k − k0

1
K−(k0)

.

(7.19)

Following E.3, we have E ≡ 0, hence we can write from (7.12) and (7.19)

F−(k) = (λ+ 1)U0
e−k0y0

k − k0

[

1 − K−(k)
K−(k0)

]

,

G+(k) = −(λ+ 1)ρ0ζU0
e−k0y0

K−(k0)
K+(k)

(k − k0)
,

A(k) = −i(λ+ 1)U0
e−k0y0

K−(k0)
K−(k)

|k|(k − k0)
.

(7.20)
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A(k) obtained from (7.20) can be substituted back into (7.8). This gives, with the
inverse Fourier transform from (7.6) added to the initial field, the formal solution of
the problem

u = uin − 1
2π

$ ∞

−∞
i sign(k)(λ + 1)U0

e−k0y0

K−(k0)
K−(k)
k − k0

e−|k|y e−ikx dk

v = vin − 1
2π

$ ∞

−∞
(λ+ 1)U0

e−k0y0

K−(k0)
K−(k)
k − k0

e−|k|y e−ikx dk

p = pin − 1
2π

$ ∞

−∞
i(λ + 1)ρ0U0

e−k0y0

K−(k0)
(Ω − sign(Re k)σ)

K−(k)
|k|(k − k0)

e−|k|y e−ikx dk.

(7.21)
The pole k = k0 is to be included when x > 0 and corresponds to the trailing vorticity.
The other singularity at k = 0 is the one responsible for the far field sound. The
integrals in (7.21) can be evaluated numerically and depend on the K−(k) function
which is essentially different for the low and high shear cases. Please note that in the
hard wall limit λ → −1, the scattering field (7.21) will vanish as expected.

7.3 Hydrodynamic solution

The solution set u, v and p is the solution of incompressible inner problem of a larger
compressible acoustic problem. Although a strict Matched Asymptotic Expansion
analysis has not been laid out here in detail, we will refer to it as the inner solution.
The outer limit of this inner solution r =

√

x2 + y2 → ∞ is used to match it with the
inner limit of the outer compressible solution. In order to evaluate the solutions, in
the form of Fourier integrals (7.21), numerically or asymptotically in the far field, we
need to know the behaviour of K−(k) at k = 0. The following asymptotic behaviour
of K−(k → 0) can be confirmed from E.2.2 and E.2.3

K−(k) ≃ c1

a− sign(Re k)b
k

1
2

−iδ for σ < ω

K−(k) ≃ c1

a− sign(Re k)b
k−iδ for σ > ω, (7.22)

where c1 is a complex constant and δ = 1
2π log | σ+ω

σ−ω | is real positive.

7.3.1 Solution of velocities u and v

We see by combining (7.22) and (7.21) that in either case, the velocities u and v are
integrable at k = 0. In the far field, the u and v solution behaves like r− 3

2
+iδ and

r−1+iδ for low and high shear cases respectively. Shown in Fig. 7.5 (top and middle)
are the solutions (total = incident + scattered) of velocities for a typical representative
case. Apparently, the high mean shear weaken the velocity field especially downstream
of the edge. In the hard-soft transition case, chapter 6, similar behaviour of the
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velocities was found hence, the boundary condition reversal has no change on the
behaviour of velocities except that the new δ is negative of the previous one.

7.3.2 Solution of pressure p

As we noticed, the behaviour of the singularity at k = 0 is different for the cases
σ < ω and σ > ω. Hence, the far field solution in pressure is different for these cases.
This splits our problem into 2 different cases in terms of radiated pressure. We will
discuss them in separate sections.

Low shear

The low shear case corresponds with σ < ω, i.e. k0y0 > 1. The behaviour of K−(k) ∼
k

1
2

−iδ in the limit k → 0 weakens the non integrable singularity |k|−1 to an integrable
singularity k− 1

2
−iδ of the integrand in (7.21). Hence the pressure solution can be

obtained by direct integration along the contour shown in Fig. 7.4, like the velocities.
For a typical case, this is shown in Fig. 7.5 (bottom left). It can be predicted, for
example by invoking a version of Watson’s Lemma, even at this stage that a weaker
singularity at k = 0 produces a weaker far field sound that decays like r− 1

2
+iδ. Please

note that we found similar behaviour in the case of hard-soft wall transition as well
except that the new δ is negative of the previous one.

High shear

The high shear case corresponds with σ > ω, i.e. k0y0 < 1. The behaviour of K−(k) ∼
k−iδ in the limit k → 0 does not weaken the singularity in this case and the integral
function behaves as ∼ |k|−1−iδ as k → 0 and hence diverges. The divergent behaviour
at k = 0 in Fourier space suggests a strong far field at r =

√

x2 + y2 → ∞ in the
physical plane. The Fourier representation of pressure is too singular to interpret and
hence should be regularised, using generalised functions, by splitting off the singular
part and the part which is integrable. From (7.21) and (7.22) , we have

p(x, y) = − i(λ+ 1)
ρ0U0

2π
e−k0y0

K−(k0)

ˆ 0

−∞

(

(Ω + σ)K−(k)
(k − k0)|k|

− c1(ω + σ)
−(a+ b)k0|k|kiδ

)

e−ikx−|k|y dk

− i(λ+ 1)
ρ0U0

2π
e−k0y0

K−(k0)

$ ∞

0

(

(Ω − σ)K−(k)
(k − k0)|k|

− c1(ω − σ)
−(a− b)k0|k|kiδ

)

e−ikx−|k|y dk

− i(λ+ 1)
ρ0U0

2π
c1 e−k0y0

−k0K−(k0)

[
ˆ 0

−∞

iζ
|k|kiδ

e−ikx−|k|y dk

+
ˆ ∞

0

−iζ
|k|kiδ

e−ikx−|k|y dk
]

(7.23)
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Figure 7.4: Integration contour

The separated singularity renders the pressure integral of O(1) at k = 0 and hence
integrable. In (7.23), the first two integrals have a finite limit at k = 0 and therefore
can be evaluated along the integration contour 1 and 2 respectively, as shown in
Fig. 7.4. The last integrals in (7.23) are those which carry the singularity and diverge
at k = 0 which makes them difficult to interpret. They can be evaluated as generalised
functions [31, 47]. With Appendix E.4, we have

− i(λ+ 1)
ρ0U0

2π
c1 e−k0y0

−k0K−(k0)

[
ˆ 0

−∞

ω + σ

|k|kiδ
e−ikx−|k|y dk +

ˆ ∞

0

ω − σ

|k|kiδ
e−ikx−|k|y dk

]

= i(1+iδ)Γ(−iδ)
ζc1

2π
(λ+ 1)ρ0U0

e−k0y0

−k0K−(k0)

(

ziδ − z∗ iδ
)

(7.24)

where z = x + iy and z∗ = x − iy. The results from (7.24) used with the first two
integrals in (7.23) added to the initial field pin gives the final solution of the inner
pressure p (7.21). Shown in Fig. 7.5 (bottom right) is the pressure for a typical case.
The pressure field is clearly more intense for high shear than for low shear. This
behaviour was found similar in the hard-soft transition case where the singularity at
k = 0 was behaving like |k|−1+iδ and hence the far field pressure was behaving as a
constant in modulus ∼ r−iδ (6.24).

7.3.3 Far field of inner solution p – inside shear layer

In order to have an estimate of the far field radiated pressure, we need the asymptotic
evaluation of the pressure integral (7.21) in the limit k → 0 because small k in Fourier
space relates to large r =

√

x2 + y2 ∼ ∞ in the physical plane.



112 7.3. Hydrodynamic solution

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

u

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

u

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

v

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

v

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

p

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

p

Figure 7.5: The solution fields u, v and p for low shear σ = 4 < ω = 5, y0 = 1.25
(left) and high shear σ = 5 > ω = 4, y0 = 1 (right), while ζ = 1

2 (1 + i), U0 = 5.

(a) Low shear, σ < ω :

From (7.21) and (7.22), we have in the limit k → 0,

p(x, y)σ<ω ∼ pinner (σ<ω)

≃ − 1
2π

i(λ+ 1)ρ0U0
e−k0y0

K−(k0)
1

−k0

[

c1
ω + σ

a+ b

ˆ 0

−∞

e−ikx−|k|y

|k|k− 1
2

+iδ
dk

+
ω − σ

a− b

ˆ ∞

0

e−ikx−|k|y

|k|k− 1
2

+iδ
dk
]

=
ζc1

2π
(λ+ 1)ρU0

e−k0y0

−k0K−(k0)

[

(−1)(− 1
2

+iδ)

ˆ ∞

0

k− 1
2

−iδ eikz dk

(7.25)
where z = x+ iy . The integrals converge, and can be evaluated like

ˆ ∞

0

eikz

k
1
2

+iδ
dk =

Γ(1
2 − iδ)

(−iz)
1
2

−iδ
. (7.26)
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The net innerfield pressure is then given by

pinner (σ<ω) ≃ i−( 1
2

−iδ)Γ(1
2 − iδ)

ζc1

2π
(λ+ 1)ρ0U0

e−k0y0

−k0K−(k0)

(

z− 1
2

+iδ − z∗ − 1
2

+iδ
)

(7.27)
with z = r eiθ and z∗ = r e−iθ. The pressure decays as r− 1

2 , which thus limits its
effective acoustic source strength.

(b) High shear, σ > ω :

The singularity in this case is stronger than the one in the previous case, which
enables us to assess that the radiated pressure pinner (σ>ω) field must be stronger.
The asymptotic behaviour of the integral (7.21) at k → 0 is essentially the singularity
taken out from the integral in (7.23). Hence the outer limit r → ∞ of the inner
pressure field p (with z = r eiθ) is given by (7.24) as:

pinner (σ>ω) ≃ i(iδ)Γ(−iδ)
ζc1

2π
(λ+ 1)ρ0U0

e−k0y0

−k0K−(k0)

(

ziδ − z∗ iδ
)

. (7.28)

An important difference is that the modulus of the pressure field varies with r like
|r−iδ| = 1, i.e. remains constant rather than decaying, and is therefore much stronger
than in the previous case. Physically, it means that there is a strong interaction
between the edge and the interphase. In case of low shear, this interaction is weak so
that the reflected waves have small order of magnitude compared to the transmitted
waves. But in the case of high shear, this interaction is strong hence the acoustic
energy is contained in the boundary layer. Hence we conclude that an infinite linear
shear profile model is an inconsistent modelling assumption for high shear case.

The above far field limit is taken inside the uniform shear flow, which means that
we have a diverging mean flow velocity U = σy → ∞ as y → ∞ which is not very
physical. Although both (7.27) and (7.28) do satisfy the prevailing equations, we
have to make sure that no unphysical artefacts are created. So we curtail the shear
at height h and define the mean flow being a constant U∞ beyond y > h. This is
explained in the next section.

7.3.4 Far field of pressure release wall solution - inside shear

layer

The solution set (7.21) is valid for the pressure release wall case as well and the integ-
rals in (7.21) can be analytically evaluated like in C.5. Once the analytic evaluation
is done, we can take the far field limit z → ∞ as in C.6 and obtain the outer limit.
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Low shear case

Substituting (E.6) into (7.21) coupled with the contour integral C.5 and far field limit
C.6, we obtain the low shear case solution continuous across x = 0

u ∼ (λ + 1)
U0

2π
e−k0y0− 1

4
πi Γ(3

2 − iδ)
(ω − σ

ω + σ

)
1
4

[

(k0z)− 3
2

+iδ + (k0z
∗)− 3

2
+iδ

]

,

v ∼ i(λ+ 1)
U0

2π
e−k0y0− 1

4
πi Γ(3

2 − iδ)
(ω − σ

ω + σ

)
1
4

[

(k0z)− 3
2

+iδ − (k0z
∗)− 3

2
+iδ

]

,

p ∼i(λ+ 1)
ρ0U

2
0

2πω
e−k0y0− 1

4
πi Γ(1

2 − iδ)
(ω − σ

ω + σ

)
1
4

[

(ω + σ)(k0z)− 1
2

+iδ

+ (ω − σ)(k0z
∗)− 1

2
+iδ + ik0σy(1

2 − iδ)
(

(k0z)− 3
2

+iδ + (k0z
∗)− 3

2
+iδ

)]

.

(7.29)
Also,

p(x < 0, 0) = 0 ⇒ pin(x < 0, 0) + p(x < 0, 0) = 0

v(x > 0, 0) = i(λ+ 1)U0 e−k0y0−ik0x ⇒ vin(x > 0, 0) + v(x > 0, 0) = 0. (7.30)

Hence, the boundary conditions are satisfied by the solution. The velocities (u, v)
and pressure p decays as ∼ r− 3

2
−iδ and ∼ r− 1

2
−iδ respectively similar to the finite

impedance case. Similar to (5.40), consider the potential function with (u, v) = ∇φ
given by

φ = −(λ+ 1)
U2

0

2πω
e−k0y0 e− 1

4
πi Γ(1

2 − iδ)
(ω − σ

ω + σ

)
1
4

[

(k0z)− 1
2

+iδ + (k0z
∗)− 1

2
+iδ

]

.

(7.31)

From (5.40) and (7.31), we have

p = i(λ+ 1)
ρ0U

2
0

2π
e−k0y0 e− 1

4
πi Γ(1

2 − iδ)
(ω − σ

ω + σ

)
1
4

[

(k0z)− 1
2

+iδ + (k0z
∗)− 1

2
+iδ

]

,

(7.32)

which is not exactly same as the p in (7.29) because in the far field with uniform
flow, the linear velocity profile term σy in (7.29) will disappear and an expression
similar to (7.32) is retrieved. The pressure release wall solution satisfies the boundary
conditions and is analytically exact. It resembles with the finite impedance solution,
(7.27) as well. Hence we conclude that the asymptotic limit k → 0 of (7.21) is most
reasonable to obtain the outer limit of the pressure solution and the regularizations
so far, are correct.
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High shear case

Similar to the previous case, substituting (C.10) into (7.21) coupled with the contour
integral C.5 and far field limit C.6, we obtain the high shear case solution continuous
across x = 0

u ∼ (λ+ 1)
U0

2π
e−k0y0 Γ(1 − iδ)

(σ − ω

σ + ω

)
1
4

[

(k0z)−1+iδ + (k0z
∗)−1+iδ

]

,

v ∼ i(λ+ 1)
U0

2π
e−k0y0 Γ(1 − iδ)

(σ − ω

σ + ω

)
1
4

[

(k0z)−1+iδ − (k0z
∗)−1+iδ

]

,

p ∼i(λ+ 1)
ρ0U

2
0

2πω
e−k0y0 Γ(−iδ)

(σ − ω

σ + ω

)
1
4

[

(ω + σ)(k0z)iδ

+ (ω − σ)(k0z
∗)iδ + k0σyδ

(

(k0z)−1+iδ + (k0z
∗)−1+iδ

)]

.

(7.33)

Also

p(x < 0, 0) = 0 ⇒ pin(x < 0, 0) + p(x < 0, 0) = 0

v(x > 0, 0) = i(λ+ 1)U0 e−k0y0−ik0x ⇒ vin(x > 0, 0) + v(x > 0, 0) = 0. (7.34)

Hence, the boundary conditions are satisfied by the solution. The velocities (u, v) and
pressure p decays as ∼ r−1+iδ and ∼ riδ respectively, similar to the finite impedance
wall. Finally, like the low shear case, we define a potential function and obtain the
pressure in the uniform flow region as

φ = −(λ+ 1)
U2

0

2πω
e−k0y0 Γ(−iδ)

(σ − ω

σ + ω

)
1
4

[

(k0z)iδ + (k0z
∗)iδ

]

(7.35)

p = i(λ+ 1)
ρ0U

2
0

2π
e−k0y0 Γ(−iδ)

(σ − ω

σ + ω

)
1
4

[

(k0z)iδ + (k0z
∗)iδ

]

. (7.36)

The expression in (7.36) is similar to the finite impedance solution (7.28) and thus,
we conclude that the limit k → 0 in (7.21), in order to know the far field behaviour
works precisely and the regularizations of poles and zeros so far, are correct.

7.4 Outer solution and asymptotic matching - (low

shear case only)

The outer solution, derived in (6.34) is to be matched with the outer limit of our
inner solution (7.27), (7.28), (7.32) and (7.36). This, however is possible only for low
shear case, like chapters 5 and 6.
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7.4.1 Far field sound - impedance wall

For low shear, σ < ω, the asymptotic matching of (6.34) with (7.27) leads to the
following expression of ν and B0, given by

ν = 1
2 − iδ, B0 = i− 3

2
+iδ(λ+ 1)

ζc1

2
ρ0U0

e−k0y0

−k0K−(k0)

(

1
2κ
)

1
2

−iδ
, (7.37)

while B1 and B2 are given as

B1 = −1 and B2 = 1. (7.38)

Eventually, the far field sound is given by

p(r, θ) = i− 3
2

+iδ(λ+ 1)
ζc1

2
ρ0U0

e−k0y0

−k0K−(k0)

(

1
2κ
)

1
2

−iδ ×
H(2)

ν (κr)
(

− ei( 1
2

−iδ)θ + e−i( 1
2

−iδ)θ
)

. (7.39)

Shown in Fig. 7.6 left is the far field sound obtained for a typical representative case
of low shear. The sound field behaves like r− 1

2
+iδ and is absolutely similar to the

hard-soft case except that the δ becomes −δ now which is the effect of the boundary
condition reversal.

7.4.2 Far field sound - pressure release wall

Similar to previous matching, the pressure release wall solution (7.29) can be also
matched with (6.34) to obtain ν = 1

2 − iδ, and

B0 =(λ+ 1)
ρ0U

2
0

2
e−k0y0− 1

4
πi
(ω − σ

ω + σ

)
1
4
( U0

2c0

)ν

,

B1 =1 and B2 = 1,
(7.40)

and hence
p = B0H

(2)
ν (κr)

(

B1 eiνθ +B2 e−iνθ
)

,

w =
i

ρ0c0
B0H

(2)
ν

′(κr)
(

B1 eiνθ +B2 e−iνθ
)

,
(7.41)

H(2)
ν (κr) ∼

( 2
πκr

)
1
2

e−iκr+ 1
2

iνπ+ 1
4

iπ, H(2)
ν

′(κr) ∼ −i
( 2
πκr

)
1
2

e−iκr+ 1
2

iνπ+ 1
4

iπ,

(7.42)
we can obtain the time averaged radial acoustic intensity in the far field as

1
2 Re(p w∗) ≃ (λ+ 1)2ρ0

8πc2
0κr

U5
0 e−2k0y0

(

e2δθ + e−2δθ −2 cos θ
)

. (7.43)



Vorticity scattering at soft wall - hard wall transition in shear flows 117

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

(i)

543210-1-2-3-4-5
0

1

2

3

4

5

x

y

(ii)

Figure 7.6: Far field sound obtained from (7.39) and (7.41) respectively. σ = 4 <
ω = 5, U0 = 5, k0 = 1, y0 = 1.25. (i) ζ = 1

2 (1 + i), (ii) ζ = 0.

Integrated over 0 < θ < π we obtain the interesting expression of the radiated acoustic
power

ˆ π

0

1
2 Re(p w∗)r dθ = ρ0c

3
0 y0

(U0

c0

)4 e−2ω/σ

2πδ
ω2σ2

(ω2 − σ2)(ω + σ)2
, (7.44)

to be multiplied by the square of the small dimensionless amplitude of the incident
vorticity (7.4). The radiating acoustic power behaves as ∼ U4

0 . Shown in Fig. 7.6
right the the sound field obtained for a typical representative case.

7.5 Conclusions

A systematic and analytically exact solution is obtained by means of the Wiener-
Hopf technique of the problem of vorticity, convected by a linearly sheared mean
flow, scattered by the soft-hard transition of the wall and the resulting sound field
associated to the scattering process. It is illustrated by numerical examples. A
particular feature is the fact that the Wiener-Hopf kernel can be split exactly. This
enables us to find in rather detail the functional relationship of the hydrodynamic far
field and hence the associated acoustic source strength. The far field and resulting
sound field are based upon the asymptotic behaviour of the solution in terms of Fourier
integrals and the reliability is confirmed by the limiting case Z = 0 where the solution
is explicit and exact.

Like the hard-soft transition, The problem appears to be distinguished into two
different classes, based upon the relative size of problem parameters σ (the mean
flow shear U ′) and ω (the perturbation frequency), and not (for example) of the
impedance of the wall. If the mean shear is relatively weak, i.e. if σ < ω, the
hydrodynamic far field varies as the inverse square root of the distance from the
hard-soft singularity including U4

0 relation for radiated acoustic power, consistent to
the hard-soft transition, chapter 6. If the mean shear is relatively strong, i.e. if σ > ω,
the hydrodynamic far field tends (in modulus) to a constant which confirms a strong
interaction between the edge and the interphase that leads to the linear infinite shear
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as an inconsistent modelling assumption.
The functional relationship of the solution of soft - hard transition is similar to the

hard - soft transition. The only difference is that the imaginary part of the powers z−iδ

changes to ziδ and same follows for z∗ −iδ. This evidently results from the boundary
condition reversal. Consistent to the hard - soft transition, the high shear case is
found to be inconclusive. A more realistic flow boundary layer profile could be useful
to model this case.



Chapter 8

Experimental observation of

hydrodynamic modes in flow

duct with porous lining

So far, we have been investigating the interaction of vorticity with the wall transition
from hard to soft or vice versa. Such interaction results in the scattering of the
vorticity into acoustic waves which radiate away from the transition point. The soft
wall in question was composed of a locally reacting liner that has fixed boundary
condition at a point relating the acoustic pressure and velocity.

Acoustically treated ducts with flow are widely used to reduce noise emission. The
calculation of the sound propagation in such devices is, however, difficult because of
the complexity of the sound and flow interactions. The coupling between acoustics
and flow vorticity can be especially important in the vicinity of a treated wall [12].
Very often, in existing models, the flow is simplified and the complexity due to the
vortex sound interaction is only taken into account in the Myers condition at the wall
[55]. In the case of a perfect fluid with Myers wall condition, it has been shown [73]
that the modes in a flow duct can be classified into three different types:

• Infinite set of acoustic waves

• Two surface waves, with and without flow

• Two hydrodynamic surface waves, only with flow.

The first two surface waves exist only for specific values of the wall impedance. When
the hydrodynamic surface waves exist, one of these waves is unstable. This instabil-
ity can exchange energy with the acoustic waves. Over the locally reacting liners,
the existence of this instability is studied widely and some mathematical models are
made [74, 17] to understand the behaviour of this instability. Such instabilities are
observed experimentally as well and their characteristic properties have been isolated

119



120 8.1. Introduction

[11]. These experimental investigations demonstrate an increment in the acoustic
transmission with flow, only in the vicinity of the liner resonance. The transmission
coefficient can become larger than one i.e. sound amplification. This effect is asso-
ciated with a variation of the static pressure drop leading to the possibility of a flow
control by the acoustical waves.

In the current chapter, we will study this phenomenon, experimentally, for the
case of non locally reacting liners. The mathematical modelling of this behaviour is
indeed challenging because unlike the locally reacting liner, the boundary condition
at the porous surface is not fixed at a point and the acoustic propagation inside the
porous material and inside the duct/channel flow is coupled. We will first report
the existence of hydrodynamic instability in case of porous absorbers with grazing
flow inside a channel. Then the properties of this wave are extracted with a simple
mathematical model.

8.1 Introduction

Porous absorbers are used in many situations to achieve the absorption of sound, e.g.
in ventilation ducts, in power plants and in the exhaust systems of cars and trucks.
To obtain the largest attenuation of sound in a duct by using an appropriate acoustic
treatment is a problem of high practical concern.

A satisfactory understanding of the acoustic behavior of homogeneous porous ma-
terials, in term of fluid equivalent models, has been achieved by the current models
[43, 8, 7]. The benefits of the porous materials on the sound attenuation can be
masked and even destroyed by the presence of a grazing flow. The thin flow boundary
layer along the material plays a crucial role as it is involved in the interface condition
between the propagation in air and propagation in the porous material. Furthermore,
this boundary layer may be unstable in the presence of a lined wall. This effect has
been seen on locally-reacting liners [96] and optical measurements have shown that
this instability is convective [49].

The current chapter gives the experimental evidence of the existence of a hydro-
dynamic instability along the porous material triggered by the acoustic waves. The
hydrodynamic waves are those that are convected in the flow direction and are nearly
incompressible. These waves can be unstable over a liner [73]. The presence of such
hydrodynamic waves along a porous material has not been reported previously. This
chapter only attends to demonstrate the existence of such waves. Further physical
and mathematical investigations are needed to model this phenomena that can have
important practical consequences by changing the transmission losses of porous ab-
sorbers.

This chapter describes the behavior of a porous material with a rigid frame (metal-
lic foam) under grazing flow. After a short description of the setup (section 8.2), the
experimental scattering coefficients in a flow duct are presented (section 8.3) which
show that an unstable hydrodynamic mode is present. The accessible characteristics
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Figure 8.1: Schematic view of the experimental setup. 1: Porous material, 2a: 4
upstream microphones, 2b: 4 downstream microphones, 2c: array of 11 microphones,
3a: Upstream source, 3b: Downstream source.

of this hydrodynamic mode are extracted from the measurement of the scattering
matrix (section 8.4). The characteristics are compared to the results of 11 micro-
phones located in front of the porous material in section 8.5. Then the static pressure
drop is measured with and without acoustical excitation of the material (section 8.6).

8.2 Set up description

The test facility is schematically depicted in Fig. 8.1. A complete description of this
setup and of the used method have been reported previously [96, 71] and hence, only
the key points are presented here.

The setup allows acoustic propagation in a rectangular duct (width A= 100 mm
× height H = 15 mm) superimposed to a grazing flow over an acoustic liner. The
turbulent flow is assumed to be fully developed in the liner test section. At each
end of the duct, acoustic source and anechoic termination are found. According to
the duct dimensions and to the position of the microphones (at mid-width), only the
plane waves are considered in the rigid parts of the duct for the frequency range of
interest (100 Hz to 3000 Hz).

The scattering matrix for the plane waves relates the scattered pressure amplitudes
p+

2 and p−
1 (see Fig. 1) to the incident pressure amplitudes p+

1 and p−
2 by

(

p+
2

p−
1

)

=
[

T+ R−

R+ T−

](

p+
1

p−
2

)

where T+ and T− are the anechoic transmission coefficients, R+ and R− are the
anechoic reflection coefficients. The superscript ’+’ refers to an incident wave in the
flow direction and the superscript ’−’ to an incident wave against the flow. The scat-
tering matrix is measured by means of 2×4 flush mounted microphones in the lower
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hard wall downstream and upstream of the liner test section, respectively. It follows
that the transmitted and reflected waves can be measured with over-determination in
order to avoid inaccurate measurements when the acoustic wavelength is close to half
the distance between two microphones. The two sources method is applied by con-
ducting two measurements where the upstream and downstream sources are switched
on successively.

On the other hand, an array of eleven flush mounted microphones is located in
the wall in front of the porous material in order to measure the pressure evolution
along the material. These microphones are evenly distributed along the x-axis spaced
out by 2 cm. Please note that the presence of these 11 microphones can affect the
propagation in the treated region. This effect is supposed to be small and thus,
disregarded.

The acquisition of signals is performed by Agilent VXI 1432 hardware platform
which drives the source excitation synchronously with the acoustic pressure signals
recording. A swept-sine over the frequency range 100–3000 Hz is used with a frequency
increment of 5 Hz. The amplitude of the excitation is automatically adapted to give
a constant pressure, independently the frequency, on the microphone just in front of
the transition hard duct/material (on the upstream side when the upstream source is
on and on the downstream side when the downstream source is on).

Experiments were carried out on a metallic foam (RECEMAT, NC4753.05 Nickel-
Chromium alloy). This material has been chosen to be as rigid as possible in order to
avoid any skeleton vibrations and was supplied as plates (L = 200mm × A= 100mm)
of thickness 5 mm. Five of these plates have been assembled such that the total
thickness of the material is B = 25 mm. The parameters of this foam used in the
fluid equivalent model have been measured on another setup. The values are: porosity
Φ = 0.99, tortuosity α∞ = 1.17, viscous length Λ = 1 × 10−4 m, thermal length Λ′ =
2.45×10−4 m, resistivity σ = 6916 kg m−3 s−1. Although, it is not very relevant here,
the normal impedance of this porous material sample with a rigid backing is given in
Fig.8.2 for a comparison with locally reacting liners. This impedance can be computed
using in the fluid equivalent model [7] by Zn = −i(Zeq(f)/Zc)/ tan(keq(f)B) where
Zeq(f) is the equivalent characteristic impedance of the porous material, Zc is the
air characteristic impedance and keq(f) is the equivalent wavenumber in the porous
material . Zeq and keq are frequency dependent.

8.3 Experimental results for transmission and re-

flection coefficients

The experimental results for transmission (T+ and T−) and the reflection (R+ and
R−) coefficients are given in Fig. 8.3 and Fig. 8.4 respectively. T+ and T− corresponds
to the transmission coefficient for anechoic pipe terminations when the sound source
is placed upstream and downstream respectively and same for R+ and R−. The
curves in red circles represents the results without flow. Due the reciprocity principle
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Figure 8.2: Real and imaginary parts of the normal impedance of the porous material
(B =25 mm) computed with the fluid equivalent model. The foam parameters are
given in the text.
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Figure 8.3: Absolute values of the transmission coefficients of the metallic foam sample
without flow and for Mach number M = 0.2. The source level is 134 dB SPL.
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Figure 8.4: Absolute values of the reflection coefficients of the metallic foam sample
without flow and for Mach number M = 0.2. The dashed lines represent R0 = 0.41,
R0(1 −M)/(1 +M) and R0(1 +M)/(1 −M). The source level is 134 dB SPL.

that exists without flow, the transmission coefficients are equal in both directions.
The transmission coefficient for this case without flow decreases smoothly from lowest
frequency up to the maximum measured frequency. The reflection coefficient oscillates
about a value of R0 = 0.41 which is close to the value (1 − α)/(1 + α) = 0.45, where
α = H/(H + B), valid at low frequencies for an area expansion without porous
material. The oscillations in the reflection coefficient are linked to the wave reflection
at the end of the material (x = L).The reflection coefficients without flow are not
strictly identical in both direction. The difference (<10%) may be caused by some
inhomogeneity of the material proprieties inducing a small breaking of symmetry.

The reflection coefficients for the waves propagating along the flow and against
the flow differ significantly. The reflection coefficient against the flow R− is close to
the value R− ≃ R0(1 − M)/(1 + M) where M is the Mach number. The reflection
coefficient in the flow directionR+ is between R0 andR0(1+M)/(1−M) (see Fig. 8.4).
The transmission coefficients are also different when the direction of wave propagation
with respect to direction of flow is changed. Due to convection effects, the wavenumber
increases when the wave propagates against the flow and the sound is more attenuated
against the flow than in the case without flow. The overall attenuation in the flow
direction is of the same order as that in the case without flow. Large oscillations in
the frequency range 600-1600 Hz can be observed. It will be shown in the following
that these oscillations result from the interference of the acoustic and hydrodynamic
waves. The observation of these oscillations is the main result of this chapter and will
be studied in detail in the next section.
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Figure 8.5: Plot of the measured transmission coefficient at different Mach numbers
with the source level kept at 134dB SPL.

The measured transmission coefficient T+ (when the incident sound and the flow
are in the same direction) is shown in Fig. 8.5 for two Mach numbers. The amplitude
of the oscillations due to the interference of acoustic and hydrodynamic modes is
higher for high Mach numbers. It is also interesting to see that the oscillations are
prominent only in a certain frequency band which changes depending on the Mach
number.

The amplitude of the oscillations changes with the sound source amplitude as well.
Shown in Fig. 8.6 is the transmission coefficient T+ for 3 different upstream source
amplitudes keeping the flow Mach number fixed at M = 0.3. It can be observed
that the amplitude of the oscillations of the absolute value of T+ increases when the
source level decreases. It must be kept in mind that the oscillations in pressure is the
product of T+ and the incident pressure. This value is increasing with the level but
a clear saturation of the hydrodynamic effect can be observed.

8.4 Extraction of the hydrodynamic wave charac-

teristics

To fit the transmission coefficient in flow direction T+, it can be seen as the sum of
a contribution due to the "acoustic" transmission T+

a and a contribution due to the
"hydrodynamic" effects T+

h . These two contributions propagate at different velocities
and the net oscillations in |T+| can be seen as interference between these two waves.
The acoustic contribution is supposed to be smooth and hence, T+

a is obtained by a
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Figure 8.6: Plot of the measured transmission coefficient at different source amplitude
with Mach number kept at M = 0.3.

fit of T+ in order to filter the oscillations. To obtain a better fit, T+
a is searched under

the form T+
a = e−ikaL and the value of ka is approximated by a complex polynomial

of degree 7 that fits the data best in a least-square sense. The result of the fit is
displayed in 8.7(a). This fit gives good results because the effect of the acoustic wave
propagating against the flow is weak. It should be noted that this fit includes all the
entrance and exit effects and that ka is not the wave number of the least attenuated
mode for 0 < x < L. Nevertheless, the real part of ka is linked to the velocity of the
acoustical wave for 0 < x < L because the the entrance and exit effects can induce
a small phase lag in the transmission coefficient. The equivalent acoustic velocity
ca = ω/ka is shown in Fig. 8.7(b). Its value is around the sound velocity in air and
takes into account the opposite effects of the convection (increase in the velocity) and
of the porous material (slowing of the wave).

The hydrodynamic contribution is obtained by subtracting the acoustic transmis-
sion T+

a from the total transmission T+. The amplitude and the phase of the hydro-
dynamic transmission T+

h is given in Fig. 8.8. It can be seen that the hydrodynamic
transmission can be sought under the form T+

h = He−i(θ0+ωL/ch) where ω = 2πf is
the pulsation, ch is the velocity of the hydrodynamic wave, θ0 is the phase lag between
the acoustic and the hydrodynamic waves and H = |T+

h | is the amplitude of the effect
of the hydrodynamic wave on the transmission coefficient called for simplicity in the
following as "hydrodynamic wave amplitude".

The amplitude of the hydrodynamic transmission |T+
h | is given in Fig. 8.8(a). It has

a significant amplitude value on a limited frequency range (in this case 1000 to 2000
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M 0.15 0.2 0.25 0.3
ch (m/s) 30 35 44 49
fm (Hz) 770 950 1220 1470
λh(mm) 39 37 36 33
fPD (Hz) 1020 1280 1500 1820

Table 8.1: Velocity of the hydrodynamical wave ch, frequency for maximum amp-
litude of the hydrodynamic mode fm, hydrodynamical wave length λh = ch/fm and
frequency for maximum increasing of the pressure drop fPD for various Mach numbers.

Hz). A frequency fm at which the hydrodynamic mode has a maximum amplitude
may be identified. This frequency depends on the Mach number but not on the level
of the source. Shown in table 8.1 are the obtained values of fm for different Mach
numbers. On the other hand, the amplitude of this maximum depends on the Mach
number as well as the source level. Thus, it is linked to the non linear saturation of
the hydrodynamic wave.
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Figure 8.7: (a) Absolute value of T+ (con-
tinuous line) and of the fit T+

a (dashed
line). (b) Velocity of the acoustic wave
computed by ca = Re(ω/ka) (continuous
line) and fit of the velocity (dashed line)
(M = 0.3 and 134 dB SPL).

The angle of the hydrodynamic
transmission T+

h is given in Fig. 8.8(b).
It is supposed that the slope of this angle
is directly related to the velocity of the
hydrodynamic wave. In Fig. 8.8(b), it
can be seen that this velocity can be
considered as constant in the frequency
range of interest. The angle of T+

h is
then fitted by a straight line over the fre-
quency range where the amplitude has a
significant value. The value of the hy-
drodynamic wave velocity ch depends on
Mach number but not on the incident
sound pressure level (SPL). The value of
Mh = ch/c0, where c0 is the sound velo-
city, is given in Fig. 8.9 as a function of
the Mach number. It could be seen that
the velocity of the hydrodynamic wave
is nearly equal to half of the mean flow
velocity. It can also be observed that the
wavelength of the hydrodynamic per-
turbation for the maximum amplitude is
nearly constant λh = ch/fm ≃ 35 mm
(see table 8.1). Based on the above res-
ults, the following scenario can be ima-
gined to explain the oscillating behavior
of the transmission coefficient. An in-
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Figure 8.8: (a) absolute value of T+
h and (b) angle of T+

h (in degrees) as a func-
tion of frequency (M = 0.3 and 134 dB SPL). The straight line in (b) is the linear
approximation used to compute the velocity of the hydrodynamical wave.
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Figure 8.9: Velocity of the hydrodynamical wave Mh = ch/c0 as a function of flow
Mach number M . (134 dB SPL ). The straight line corresponds to Mh = 0.5M0

coming acoustic wave from the upstream
side of the porous material triggers a hydrodynamic wave on a limited range of fre-
quencies. The acoustic wave propagates in the flow and in the material while the
hydrodynamic wave is convected at half of the flow velocity. During the convection,
the hydrodynamic wave is amplified and then its amplitude is saturated by non linear
effect. The interference between these two synchronized waves at the downstream
side of the porous material induces oscillations in the transmission coefficient.
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Figure 8.10: Pressure normalized by the pressure at x = 0 on the wall opposite to
the porous material (M = 0.3 and 134dB SPL) given in amplitude (a) and phase
(b). f = 2500Hz circle: measurements, dashed line: fitted. f = 1600Hz, square:
measurements, continuous line: fitted.

Figure 8.11: Measured (a) and calculated, using the fit (b) pressure in front of the
porous material for M = 0.3 and 134 dB SPL. The source is located upstream and
the effect of the downstream reflection has been removed. The white lines represents
the condition: ωx/ch = 2nπ.
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8.5 Microphone measurements on the wall opposite

to the porous material

The transmission coefficient describes in the previous section links the incident plane
wave at x = 0 to the out-coming plane wave at x = L when the downstream duct
is supposed to be anechoic. To gain a deeper insight of what happens between the
entrance x = 0 and the exit x = L and validate the scenario described previously, the
measurements of the array of eleven flush mounted microphones located on the wall
opposite to the porous material are used.

Once again, these measurements will be fitted taking into account the above scen-
ario with a minimum of new parameters. The two waves are supposed to travel
between x = 0 and x = L with a constant velocity. The acoustic velocity is frequency
dependent (see Fig. 8.8(b)) and the value used in the following is the previously de-
termined value. To fit the x-dependence of the amplitude of the acoustic wave, it is
coherent to use also an exponential behavior p+

a (x)/p+
1 = e−ikax. Again, the ima-

ginary part of ka is the previously determined value. Then the x-dependence of the
acoustic part is supposed to be completely determined by the knowledge obtained
from the analysis of T+.

The hydrodynamic part is supposed to have a phase equal to θ0+ωL/ch where ch is
the velocity of the hydrodynamic wave, previously determined and θ0 is the phase lag
between acoustic and hydrodynamic waves determined by using the value for f = 0
in Fig.8.8(b). The value θ0 = −0.3π will be used in the following. The only quantity
that has not been determined previously is the x-dependence of the amplitude of the
hydrodynamic wave. This quantity cannot be described by an exponential behavior
because of the non linear saturation. A simple polynomial fitting h(x) = a(X/L)2 −
(a− 1)(X/L)4, with a = 30 is used.

Accordingly the pressure on the p(x) normalized by the pressure at x = 0 is written
as:

p(x)
p(0)

= e−ikax +Hh(x)e−i(θ0+ωx/ch), (8.1)

where H is the amplitude of the hydrodynamic transmission (Fig 8.8(a)). It should
be emphasize that the above expression is not a model of the behavior of the porous
liner with grazing flow but just a way to fit and understand the measurements.

A comparison between the measured pressure and the values given by (8.1) is
plotted in Fig. 8.10. It can be seen that the agreement is reasonable in phase when
the hydrodynamic wave is absent (f = 2500 Hz, circle) and it can be easily improved
by taking into account the entrance and exit effects and the reflected waves on the
material zone. When the hydrodynamic wave is present (f = 1600 Hz, square), the
spacing between the microphones (20 mm) is too large to give a precise outline of
the hydrodynamic wave (λh ≃ 35 mm). Again the phase agreement is reasonable.
Nevertheless, the 2D plot in Fig. 8.11 depicting the real part of the pressure as a
function of the position and frequency shows that the main tendencies are described
by the fit. In particular, the isolines in white in Fig. 8.11, representing the condition
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ωx/ch = 2nπ, confirm that the hydrodynamic wave is convected with velocity ch.
However, the progressive shifting of the experimental maxima relative to the maxima
of the fit suggests that the convection velocity of the hydrodynamic wave is not
constant along the material.

8.6 Pressure drop along the porous material
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Figure 8.12: (a): Pressure drop with
sound ∆P normalized by the pressure drop
without sound ∆P0 as a function of the in-
cident frequency. (b): Absolute value of
the normalized pressure on the wall oppos-
ite to the porous material for two positions.
M = 0.3 and 134 dB SPL.

It is known that a convected instabil-
ity can induced an increase of the static
pressure drop along the material [18, 96].
This added dissipation is due to an incre-
ment of the turbulent wall shear stress
induced by the hydrodynamic wave [49,
78]. ∆P0 is the static pressure differ-
ence between the start and the end of
the porous material without any acous-
tic excitation. For this porous mater-
ial, ∆P0 increases quadratically as a
function of Mach number. ∆P is the
same static pressure difference when the
sound source is on. Fig. 8.12(a) shows
the increment in pressure drop when the
acoustic source is turned on. It has been
measured that the pressure drop incre-
ment is nearly proportional to the in-
cident wave pressure amplitude above a
threshold level of 120 dB SPL. The rel-
ative increase is of the order of 20% to
40% irrespective of the Mach number for
a source level equal to 134 dB SPL. This increment is much smaller than the one ob-
served in locally reacting liners [96].

When the pressure drop is plotted against frequency (Fig. 8.12), it is expected
that the frequency at which the pressure drop is maximum fPD corresponds to the
frequency at which the amplitude of the hydrodynamic wave is maximum fm. It can
be seen in table 8.1 that these frequencies are not equal. A possible explanation of this
phenomena is that the frequency range where the the hydrodynamic wave has a large
amplitude is bigger for x ≃ L/2 than at the end of the material, x = L (see Fig. 8.12(b)
and Fig. 8.11(a)). It is unclear, at this point, to decide whether this corresponds to an
attenuation of the hydrodynamic wave in the region L/2 < x < L or to a diminution
of the pressure induced by the hydrodynamic wave in this region. Further studies
with optical measurements (particle image velocimetry or laser Doppler velocimetry)
are needed to clarify this point.
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It is confirmed by the PIV measurements conducted by [9] that the oscillations of
the transmission coefficient are indeed due to the interaction between the instability
wave and the acoustic wave at the liner end. The argument that the interaction obeys
a wave interference mechanism, quantified by the relative phase of the two waves is
also supported.

8.7 Conclusion

The existence of a hydrodynamic wave over a porous material with grazing flow has
been demonstrated. Its characteristic properties have been analysed experimentally.
This hydrodynamic wave has a significant effect on a limited band of frequencies.
When this wave is present, there are large oscillations in the transmission coefficient
in the flow direction coming from the interference between the transmitted acoustic
wave and this hydrodynamic wave that are propagating at different velocities. The
convection velocity of the hydrodynamic wave is close to half of the mean flow speed.
It is difficult to claim any firm conclusions about the amplitude of this mode because
of the non linear behavior that indicates a saturation of this hydrodynamic wave.
The hydrodynamic wave induces an increase of the pressure drop when it is created
by an acoustic wave. A peak frequency at which the pressure drop is maximum is
identified. Further investigations are needed to model the conditions of appearance,
amplification, and saturation of this new kind of hydrodynamic wave.



Chapter 9

Conclusion

In this chapter, we present concluding remarks and formulate some problems that
could potentially serve as the beginning of future work.

9.1 Helmholtz resonator type impedance modeling

In Chapter 3, a systematic approximation of the hydrodynamically non linear Helm-
holtz resonator equation is obtained, including the resulting impedance if the reson-
ator is applied in an acoustic liner. The only unknown parameter that we need to
adapt is resistance factor, r, which is O(1). Comparisons with measurements prove
that the model predicts the near resonance impedance to a good accuracy. This for-
mulation is useful to predict the impedance of the lining surface accurately, to be
used later, in the sound propagation calculations, in numerical simulations. Previous
non linear impedance formulations were mainly based upon the CFD calculations
and thus, our closed form solution saves plenty of computational time. On the other
hand, a closed form solution is useful to understand functional relationship of various
parameters that govern the impedance.

The impedance model in Chapter 3 is then refined further, in Chapter 4, to take
into account the development of waves inside the resonator cavity that are involved in
the damping phenomenon. This way, we capture more physics of the problem and the
fidelity of the model is improved. This improvement in the modelling assumptions
is clearly reflected by the found impedance formulation. Not only the comparison
with measurements improved, but also, the model is able to predict the impedance at
higher value of excitation amplitude. Even at 150 dB, the comparison is reasonably
accurate. The current and previous (ch. 3) impedance formulations are connected
by a low frequency excitation limit and this consistency is reflected in all equations.
Apart from this, the current impedance formulation is asymptotically equivalent to
the one in Chapter 3 and is more useful than the previous one for more accurate
results at higher amplitudes. The N wave problem fits better with the current model
because the cavity contains the information about the higher harmonics inside the

133
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U0

Figure 9.1: Sketch of the problem with a more realistic flow profile

cavity. This could serve as a potential topic for further work.

9.2 Vorticity scattering problem

After studying the Helmholtz resonators in non linear regime, we moved to the study
of interaction of vorticity with the lining surface in shear flow, in particular, the
interaction at hard wall - soft wall (or vice versa) transition that radiates acoustic
waves. This classical problem have been studied previously for uniform flows, in
particular, the Wiener Hopf method have been used to get the scattering behaviour
in case of bulk absorbing liners under uniform flows [58, 59, 60, 61]. We studied this
problem with a linear shear flow profile in incompressible limit and formulated the
solution in terms of Fourier integrals. The mathematical complexity of having a shear
layer is tackled with the help of the analysis for a pressure release wall, Chapter 5 in
case of which, the solution in terms of Fourier integrals is analytically integrable and
thus improves the fidelity of involved regularizations. The analysis is further continued
to the transitions involving a finite impedance wall, Chapter 6. The solution, although
not analytically integrable, allows to obtain the far field limit of the solution integrals.
The legitimacy of this limit is verified against the pressure release wall solution and
genuine consistency is confirmed. Once the incompressible solution is obtained, we
match it with the outer acoustic solution in order to obtain the far field sound.

Based upon the problem parameters ω and σ which represents the frequency of
the incoming wake and mean shear rate U ′, the problem degenerates into mainly
two cases. If the mean shear is relatively weak (σ < ω), the hydrodynamic far
field varies as the inverse square root of the distance from the hard-soft edge. The
radiated acoustic power is found to vary with U4

0 where U0 is the mean flow velocity
at the source position. If the mean shear is relatively strong (σ > ω), two features
are striking. (i) The hydrodynamic far field tends (in modulus) to a constant, that
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implies a strong back reaction to the wall from any uniform or otherwise bounded part
of the mean flow, and (ii) the hydrodynamic field can not be matched to an outward
radiating acoustic outer field. This impossible matching and the strong back reaction
to the wall, leads to the conclusion that the unbounded linear mean shear flow is an
inconsistent modeling assumption in the case of high shear. A more realistic flow
profile could give further insight in this problem, but this will inevitably rely more on
the numerical calculations. Another approach can be based upon using a piecewise
linear shear profile if the Wiener-Hopf kernel doesnt become too formidable.

As shown in Fig. 9.1, a more realistic flow profile, something of the type

U = U∞ tanh(y/L), U∞ ≪ c0, (9.1)

would connect the edge smoothly to the mean flow velocity U∞ at a height about
y ∼ L, while σ = U∞/L and can be superimposed over a vortex sheet at height
y0 ≪ L. In such modeling, the solution of LEE will not be so straight forward in
the closed form, however, the numerical solution can be useful to some extent. This
could be a potential point to start investigating the anomalous behavior of the high
shear case.

In Chapter 7, we conducted the above analysis for the soft to hard transition of
the wall and found that the scattering behavior remains the same. Thus we conclude
that the boundary condition reversal does not greatly affect the scattering process.
The resulting soundfield for low shear case behaves similar to the previous case and
the high shear case still remains inconclusive.

9.3 Experimental observation of hydrodynamic wave

over porous surface

In Chapter 8, we studied experimentally, the existence of a hydrodynamic wave over
a porous wall with grazing flow at various Mach numbers and extracted some inter-
esting properties of this instability with a crude model. This hydrodynamic wave is
found to have a significant effect on a limited range of sound frequencies. When this
wave is present, there are large oscillations in the transmission coefficient in the flow
direction resulting from the interference between the transmitted acoustic wave and
this hydrodynamic wave that are propagating at different velocities. The convection
velocity of the hydrodynamic wave is found to be close to half of the mean flow speed.

It is difficult to claim any firm conclusions about the amplitude decay of this mode
because of the non linear behavior that indicates a saturation of this hydrodynamic
wave. Also this wave induces an increment of the pressure drop when it is created by
an acoustic wave. A peak frequency at which the pressure drop is maximum is identi-
fied which is not equal to the frequency at which the amplitude of the hydrodynamic
wave is maximum. Studies with optical measurements (particle image velocimetry or
laser Doppler velocimetry) are needed to clarify this point. Further investigations are
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needed to model the conditions of appearance, amplification, and saturation of this
wave.

It is confirmed by the PIV measurements conducted by [9] that the oscillations of
the transmission coefficient are indeed due to the interaction between the instability
wave and the acoustic wave at the liner end. The argument that the interaction obeys
a wave interference mechanism, quantified by the relative phase of the two waves is
also supported.



Appendix A

Appendix to Chapter 3

A.1 Stability of stationary solution

From the physical origin of the problem, it is very likely that there exists a stable
steady solution for a steady external forcing, such that we are not approximating a
solution that just would not exist in any realisation. We have checked this mathem-
atically by proving the boundedness of a small perturbation ξ of our solution y in
(3.13), satisfying the following equation

(y′′ + ξ′′) + ε(y′ + ξ′)|y′ + ξ′| + εr(y′ + ξ′) + (y + ξ) = εF (τ). (A.1)
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Figure A.1: Amplitude ξ and mechanical energy 1
2 (ξ2 + ξ′2) of a superimposed per-

turbation when it starts from ξ(0) = 1 ξ′(0) = 0. The full solution was approximated
by y = A0 cos(Ωτ) with ε = 0.16, Ω = 1 and r = 0.2.
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Since, by assumption, y is any solution of the original equation, we have to linear
order for small ξ (and a slight error near the zero’s of y′ + ξ′)

ξ′′ + φ(τ)ξ′ + ξ = 0 (A.2)

where φ(τ) = ε(r + 2|y′|) > 0 (even strictly positive if r > 0). We assume an initial
condition with ξ(0)2 + ξ′(0)2 = E2

0 . From (A.2) we have for the mechanical energy
1
2 (ξ2 + ξ′2)

d
dτ

(

1
2 (ξ2 + ξ′2)

)

= ξ′ξ′′ + ξ′ξ = −φξ′2 6 −φ(ξ2 + ξ′2).

It follows that d
dτ ln(ξ2 + ξ′2) 6 −2φ. After integration and using the positivity of φ

we find eventually

ξ2 + ξ′2 6 E2
0 exp

(

−2
ˆ τ

0

φ(τ) dτ
)

.

Hence it follows that perturbations are bounded and will decay to zero, confirming
the existence of a stable stationary solution. Shown in Fig. A.1 is a plot of ξ and
1
2 (ξ2 + ξ′2).
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Appendix to Chapter 4

B.1 Solution of homogeneous problem

Consider the homogeneous equation

dv
dτ

− y = 0

φ(τ − κ0) + φ(τ + κ0) = y(τ)

φ(τ − κ0) − φ(τ + κ0) = tan κ0v(τ).

(B.1)

Assume for the homogeneous problem the trial solutions

y = A eiλτ , v = B eiλτ , φ = C eiλτ . (B.2)

Substituting (B.2) back into (B.1), we find

2C cos(λκ0) = A = iλB, −2iC sin(λκ0) = tanκ0B, (B.3)

leading to
λ tan(λκ0) = tanκ0. (B.4)

All solutions of (B.4) come in pairs. If λ is solution then −λ is also a solution. However
from (4.15), we notice that for a positive ω0, κ0 > and since product κ0 tanκ0 =
LSn/ℓSb is a positive constant, tan κ0 < 0 does not occur. For tanκ0 > 0, λ is given
as

λ1 = 1, λ2, λ3, . . . . (B.5)

For example: if κ0 = 1
4π and tan κ0 = 1, then

λ1 = 1, λ2 = 4.291488, λ3 = 8.1553478 etc. (B.6)
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So the general solution for tanκ0 > 0 is 1

y = a1 cos τ + b1 sin τ +
∞
∑

n=2

an cos(λnτ) + bn sin(λnτ).

B.2 Solution of inhomogeneous problem

Assume for the inhomogeneous problem

dv
dτ

= y + eiΩτ

φ(τ − κ0) + φ(τ + κ0) = y(τ)

φ(τ − κ0) − φ(τ + κ0) = tanκ0v(τ),

(B.7)

the trial solution
y = A eiΩτ , v = B eiΩτ , φ = C eiΩτ . (B.8)

Solving (B.7) with (B.8), we find

A =
tanκ0

Ω tan(Ωκ0) − tanκ0
,

B =
−i tan(Ωκ0)

Ω tan(Ωκ0) − tanκ0
,

C =
tan κ0

2 cos(Ωκ0)
· 1

Ω tan(Ωκ0) − tanκ0
.

(B.9)

From here we can construct solutions for inhomogeneous terms cos(Ωτ) and sin(Ωτ)
by taking the real or imaginary part of the solution (B.8) respectively. At resonance,
when Ω tan(Ωκ0) − tanκ0 = 0, we take the trial solution

y = Aτ eiΩτ , v = Bτ eiΩτ , φ = Cτ eiΩτ

hence A =
1

iΩ
, B = 1, C =

1
iΩ cos(Ωκ0)

.
(B.10)

1Although it is not relevant here, if tan κ0 < 0, λ is given by

λ0 = iµ0, µ0 tanh(µ0κ0) = − tan κ0, λ1 = 1, λ2, . . . .

For example, if κ0 = 3

4
π and tan κ0 = −1,

λ0 = i1.016743, λ1 = 1, λ2 = 2.505496, λ3 = 3.893295, λ4 = 5.253502 etc.

So for tan κ0 < 0, with the presence of diverging exponential terms,

y = a0 eµ0τ +b0 e−µ0τ +a1 cos τ + b1 sin τ +

∞
∑

n=2

an cos(λnτ) + bn sin(λnτ).

The diverging exponential terms in the solution (1) corresponds to the instability of mass - spring
system when the mass is negative so that at an applied (or no) force, there is infinite displacement.
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From (B.10), we see that the solution grows with time and secular terms appear.

B.3 Order ε2 equation

Using (4.33), (4.34), (4.38), (4.39) and (4.40) with (4.42), we obtain

1
tanκ0

[

φ̃′
2(τ̃ − κ0) − φ̃′

2(τ̃ + κ0)
]

−
[

φ̃2(τ̃ − κ0) + φ̃2(τ̃ + κ0)
]

=

− (σκ0)2

2
A0 cosκ0 cos τ̃ +

(σκ0)2

2 tanκ0
A0 sinκ0 cos τ̃

− σκ0A1 sin κ0 cos τ̃ − σκ0B1 sin κ0 sin τ̃

− σκ0
A2

0 cos2 κ0 tan κ0

2π
×

∞
∑

n=1

2(2n+ 1) sin(2n+ 1)κ0 sin(2n+ 1)τ̃
cos((2n+ 1)κ0) [(2n+ 1) tan(2n+ 1)κ0 − tanκ0] (n2 − 1

4 )(n+ 3
2 )

− σκ0

tan κ0
A1 cosκ0 cos τ̃ − σκ0

tanκ0
B1 cosκ0 sin τ̃

− σκ0
A2

0 cos2 κ0

2π
×

∞
∑

n=1

2(2n+ 1)2 cos(2n+ 1)κ0 sin(2n+ 1)τ̃
cos(2n+ 1)κ0 [(2n+ 1) tan(2n+ 1)κ0 − tan κ0] (n2 − 1

4 )(n+ 3
2 )

− rA1 cosκ0 sin τ̃ + rB1 cosκ0 cos τ̃ − rσκ0A0
cosκ0

tan κ0
sin τ̃

+ r
A2

0 cos2 κ0

π

∞
∑

n=1

cos(2n+ 1)τ̃
[

(2n+ 1) − tan κ0

tan(2n+1)κ0

]

(n2 − 1
4 )(n+ 3

2 )

− σA1 cosκ0 cos τ̃ − σB1 cosκ0 sin τ̃ − σ2κ0A0
cosκ0

tan κ0
cos τ̃

− σ
A2

0 cos2 κ0

π

∞
∑

n=1

(2n+ 1) sin(2n+ 1)τ̃
[

(2n+ 1) − tan κ0

tan(2n+1)κ0

]

(n2 − 1
4 )(n+ 3

2 )

+
[

−A1 cosκ0 sin τ̃ +B1 cosκ0 cos τ̃ − σκ0A0
cosκ0

tanκ0
sin τ̃

]

2A0 cosκ0| sin τ̃ |

+
A2

0 cos2 κ0

π

∞
∑

n=1

cos(2n+ 1)τ̃
[

(2n+ 1) − tan κ0

tan(2n+1)κ0

]

(n2 − 1
4 )(n+ 3

2 )
2A0 cosκ0| sin τ̃ |

+ θ1 sin τ̃ cos θ0 + θ1 cos τ̃ sin θ0.
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Appendix to Chapter 5

C.1 Properties of half range Fourier transforms

Wiener-Hopf method is based upon the properties of half range Fourier transforms.
A process p(t) that starts at a finite point t = 0 and vanishes for t < 0 has interesting
property [81] that the corresponding Fourier transform

p̂(ω) =
1

2π

ˆ ∞

0

p(t) e−iωt dt, (C.1)

is analytic in the lower half of the complex plane Im(ω) < 0. This analytic behaviour
of p̂(ω) in the lower half complex plane is a necessary condition on p̂(ω) for p(t) = 0,
for all t < 0. A sufficient condition can be found in [66]. In order to exemplify above,
consider the following Fourier transforms

1
2π

ˆ ∞

−∞
H(t) e−αt e−iωt dt =

1
2π(α+ iω)

, (C.2)

1
2π

ˆ ∞

−∞

H(t)√
t

e−αt e−iωt dt =
1

2
√
π

√
α+ iω

. (C.3)

The transformed functions are analytic only in the lower half of the complex plane
because of the existence of the pole ω = iα and branch cut from iα upto ∞ that breaks
the analyticity of (C.2) and (C.3) respectively in the upper half of the complex plane
as shown in Fig. C.1. Conversely, if we inverse Fourier transform, for example (C.2),
the term eiωt vanishes at infinity for t > 0 and ω in upper half of the complex plane.
This way, the contour can be closed at infinity, taking the contribution of the pole iα,
as shown in Fig. C.2. However, for t < 0, we have to close the contour from the lower
half of the complex plane, as shown in Fig. C.2, and that results with a zero, because
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b iα

√
ω branch cut

Re(ω)

Im(ω)

Figure C.1: The pole and branch cut of transformed function in (C.2) and (C.3)
respectively.

t > 0

t < 0

iαb

Re(ω)

Im(ω)

Figure C.2: Closure of the contour for inverse Fourier transform in (C.4).

the function is analytic there.

ˆ ∞

−∞

eiωt

2π(α+ iω)
dω =

{

(t > 0) : e−αt,

(t < 0) : 0.
(C.4)

This way, we verify that a function which is analytic in the lower half of the complex
plane could vanish for t < 0.

So, if we have 2 function F (t) and G(t) that vanish for t < 0 and t > 0 respectively,
their corresponding half range Fourier transforms are analytic in the lower and upper
half of the complex ω plane respectively. If we define a finite strip about Re(ω) axis
where both the function are same, then they are each other’s analytic continuation
and form an entire function.
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C.2 Behaviour near the edge

In this section, we study the behaviour of the flow variables (u, v, p) close to the edge
z = 0 in order to understand the difference in the high shear and low shear cases. The
only solutions of the form rαf(θ), and the behaviour near the edge of our solution, is

u(x, y) = Azα−1 +Bz∗β−1 = Arα−1 ei(α−1)θ +Brβ−1 e−i(β−1)θ

v(x, y) = iAzα−1 − iBz∗β−1 = iArα−1 ei(α−1)θ −iBrβ−1 e−i(β−1)θ

p(x, y) = −iρ0

[

ω + σ

α
Azα +

ω − σ

β
Bz∗β − iσy

(

Azα−1 +Bz∗β−1)
]

= −iρ0

[

Arα eiαθ
(ω + σ

α
− 1

2σ + 1
2σ e−2iθ

)

+Brβ e−iβθ
(ω − σ

β
+ 1

2σ − 1
2σ e2iθ

)

]

.

In order to satisfy the boundary conditions we choose α = β. We have the following
behaviour for y = 0, x < 0, i.e. θ = π

u(x, 0) = −rα−1(A eiαπ +B e−iαπ)

v(x, 0) = −irα−1(A eiαπ −B e−iαπ)

p(x, 0) = −i
ρ0

α
rα
[

(ω + σ)A eiαπ +(ω − σ)B e−iαπ
]

.

In order to have v(x, 0) = 0 for x < 0 we choose

A = A0 e−iαπ, B = A0 eiαπ

and obtain following behaviour for y = 0, x > 0, i.e. θ = 0

u(x, 0) = A0r
α−1(e−iαπ + eiαπ)

v(x, 0) = iA0r
α−1(e−iαπ − eiαπ)

p(x, 0) = −i
ρ0

α
A0r

α
[

(ω + σ) e−iαπ +(ω − σ) eiαπ
]

.

To have p(x, 0) = 0 for x > 0 requires

(ω + σ) e−iαπ +(ω − σ) eiαπ = 0.

This amounts to

e2πiα = eπi ω + σ

ω − σ
= eπi+2πδ (low shear) or e2πiα =

σ + ω

σ − ω
= e2πδ (high shear),

if we define
δ =

1
2π

log
∣

∣

∣

ω + σ

ω − σ

∣

∣

∣
.
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b

r

Figure C.3: Energy flux across a small semi-circle of radius r around the singularity.

With low shear we have the following possible solutions for α

α = n+ 1
2 − iδ, n ∈ Z,

and with high shear we have
α = n+ 1 − iδ

(where we write n + 1 instead of n for convenience later). Finally, not any n is
possible. Because of a vanishing power output from the edge (also known as the
Bouwkamp-Meixner edge condition [16, 53])

∼
ˆ π

0

Re(p w∗)r dθ ∼
ˆ π

0

rαr(α−1)∗

r dθ ∼ r2 Re(α) → 0 (r → 0) (C.5)

with radial velocity w = u cos θ + v sin θ, we have Re(α) > 0 and so n > 0.
We see that the difference in low and high shear cases arises essentially due to the

boundary conditions in relation to the behaviour near the edge.

C.3 Evaluation of the entire function E

Using Liouville’s theorem, entire function E can be determined from its behaviour for
k → ∞. For this we need the asymptotic behaviour of K+, k → ∞. From (C.9) and
(C.10), we have

lim
k→∞

K+(k) = 0 or bounded. (C.6)

The asymptotic behaviour of G+(k) in the limit k → ∞ is found from the analysis for
r → 0 given in Appendix C.2. A pressure distribution p at a small distance r from
the discontinuity at r = 0 behaves like a power of r, say p = O(rα). The velocity is
then O(rα−1). From (C.5) we know that Re(α) > 0. The function G+(k) from (5.16)
is therefore

G+(k → ∞) ∼
ˆ ∞

0

xα−1 eikx dx ∼ k−α. (C.7)

From (5.25), (C.6) and (C.7), we have

E(k) = iρ0G+(k)K+(k) +O(1/k) . k−α +O(1/k) → 0 (k → ∞). (C.8)

So the function E(k) vanishes at k → ∞. Since it is an entire function, it should
vanish everywhere, in other words E(k) = 0.
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C.4 Evaluation of the split functions

We introduce two complex power functions, one analytic in the upper and the other
analytic in the lower half plane, They are defined with branch cuts along the negative,
respectively positive, imaginary axis, and equal to its principal branch at the right
complex half plane. In order to be as explicit as possible we define the functions via
principal value logarithms log( · ) as follows.

(z)a
+

def

= ea log(−iz)+ 1
2

πia

(z)a
−

def= ea log(iz)− 1
2

πia

This amounts to

(z)a
+ =

{

za if Re z > 0,

(−z)a eπia if Re z < 0,

(z)a
− =

{

za if Re z > 0,

(−z)a e−πia if Re z < 0.

Note that we can create a function, discontinuous across the imaginary axis, by the
quotient

(z)a
+

(z)a
−

=

{

1 if Re z > 0,

e2πia if Re z < 0.
.

and
(z)

1
2

+a
+

(z)
1
2

+a
−

=

{

1 if Re z > 0,

− e2πia if Re z < 0.
.

C.4.1 Low-shear case σ < ω

Now we rewrite

L(k) =
ωµ− σk

k2 + ε2
= L(k, ε)(ω − σ)(k + iε)− 1

2
−iδ

+ (k − iε)− 1
2

+iδ
− ,

where
δ =

1
2π

log
∣

∣

∣

ω + σ

ω − σ

∣

∣

∣
,

Hence we have

L(k, ε) =
ωµ− σk

ω − σ
(k + iε)

iδ− 1
2

+ (k − iε)
−iδ− 1

2

− .

It is convenient later to write this in the scaled variable t = k/ε by G(t) = L(εt, ε),
such that parameter ε divides out into

G(t) =
ω

√
t2 + 1 − σt

ω − σ
(t+ i)iδ− 1

2

+ (t− i)−iδ− 1
2

− ,
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and G is independent of ε. Note that G(t) → 1 for t → ±∞. More in particular

log G(t) = log
(

1 − 2δ
t

+ . . .
)

= −2δ
t

+ . . . , t → ±∞.

As a result we have (assume Im z > 0) for a L+ function

2πi log L+(z, ε) =
ˆ ∞

−∞

log L(x, ε)
x− z

dx =
ˆ ∞

−∞

log G(t)
t− z/ε

dt

For the limit of ε → 0 we split the integral into

ˆ −1/
√

ε

−∞
+
ˆ 1/

√
ε

−1/
√

ε

+
ˆ ∞

1/
√

ε

log G(t)
t− z/ε

dt ≃
ˆ −1/

√
ε

−∞

−2δ
t(t− z/ε)

dt+
ˆ ∞

1/
√

ε

−2δ
t(t− z/ε)

dt− ε

z

ˆ 1/
√

ε

−1/
√

ε

log G(t) dt ≃

− 4δε
ˆ ∞

0

1
x2 − z2

dx− ε

z

ˆ 1/
√

ε

−1/
√

ε

log G(t) dt → 0

Since the integral tends to zero we have to conclude that

L+(z, 0) = 1 and L−(z, 0) = 1.

As a result we have thus for K = K+/K− (the limit ε → 0 of L)

K+(k) = (ω − σ)(k)
− 1

2
−iδ

+ , K−(k) = (k)
1
2

−iδ
− . (C.9)

C.4.2 High-shear case σ > ω

Now we rewrite

L(k) = −σk − ωµ

k2 + ε2
= −(σ − ω)L(k, ε)(k − kh)(k + iε)−1−iδ

+ (k − iε)−1+iδ
− ,

where (k − kh) divides out the real zero of L in the strip:

kh = εt0, t0 =
ω√

σ2 − ω2
.

Hence we have

L(k, ε) =
σk − ωµ

(σ − ω)(k − kh)
(k + iε)iδ

+(k − iε)−iδ
− .
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It is convenient later to write this in the scaled variable t = k/ε by G(t) = L(εt, ε),
such that parameter ε divides out into

G(t) =
σt− ω

√
t2 + 1

(σ − ω)(t− t0)
(t+ i)iδ

+(t− i)−iδ
− ,

and G is independent of ε. Note that

G(t) → 1 for t → ±∞

More in particular we have

log G(t) = log
(

1 +
t0 − 2δ

t
+ . . .

)

=
t0 − 2δ

t
+ . . . , t → ±∞

An interesting property is

G(−t) =
1

G(t)
.

As a result we have (assume Im z > 0) for a L+ function

2πi log L+(z, ε) =
ˆ ∞

−∞

log L(x, ε)
x− z

dx

=
ˆ 0

−∞

− log L(−x, ε)
x− z

dx+
ˆ ∞

0

log L(x, ε)
x− z

dx

=
ˆ ∞

0

log L(x, ε)
( 1
x− z

+
1

x+ z

)

dx

=
ˆ ∞

0

log L(x, ε)
2x

x2 − z2
dx =

ˆ ∞

0

log G(t)
2t

t2 − (z/ε)2
dt.

For the limit of ε → 0 we split the integral into

ˆ 1/
√

ε

0

log G(t)
2t

t2 − (z/ε)2
dt+

ˆ ∞

1/
√

ε

log G(t)
2t

t2 − (z/ε)2
dt ≃

− 2ε2

z2

ˆ 1/
√

ε

0

t log G(t) dt+ 2(t0 − 2δ)
ˆ ∞

1/
√

ε

1
t2 − (z/ε)2

dt

From noting that t log G(t) tends to a constant so the first integral is O(ε
√
ε), which

is smaller than the second of O(ε), we have

≃ 2(t0 − 2δ)
ˆ ∞

1/
√

ε

1
t2 − (z/ε)2

dt ≃ 2(t0 − 2δ)ε
ˆ ∞

0

1
x2 − z2

dx = (t0 − 2δ)ε
πi
|z| → 0.

We have to conclude that
L+(z, 0) = 1.
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This leads to also
L−(z, 0) = 1.

As a result we have thus for K = K+/K− (the limit ε → 0 of L)

K+(k) = (ω − σ)k(k)−1−iδ
+ = (ω − σ)(k)−iδ

+ , K−(k) = (k)1−iδ
− (C.10)

where the factor k− kh is thus absorbed by K+. Note that this is subtle. The factor
corresponds to a zero in the strip and therefore does not intervene with the argument
of analytic continuation across the strip later. This is different for the scattering at a
soft-hard transition where the kernel is reciprocal 1/K(k) of our kernel K(k). In this
case the factor k−kh is a pole, which does affect analyticity. Therefore, it cannot be
left in the equation and has to be multiplied away, effectively by absorbing it in K−.

As a result we would expect for K = K+/K− (the limit ε → 0 of L)

K+(k) = (ω − σ)(k)−1−iδ
+ , K−(k) = (k)−iδ

− . (C.11)

C.5 Contour integrals

The integration contour in (5.28) and (5.29) is along the real k axis. For x > 0 it can
be folded down around the lower branch cut, Fig. 5.4 (the negative imaginary axis)
including the contribution of the real pole in k = k0. We have already transformed
the variable k = k0κ to obtain the integrals in the form shown in (5.30) and (5.31).
Next, we need the following identities (C.12) for κ = −it ± 0 (t > 0 real) assuming
ω ≷ σ as relevant

| − it± 0| = ∓it,

(−it+ 0)
1
2

+iδ
+ = e− 1

4
πi
(ω − σ

ω + σ

)− 1
4

t
1
2

+iδ, (−it− 0)
1
2

+iδ
+ = e

3
4

πi
(ω − σ

ω + σ

)
3
4

t
1
2

+iδ,

(−it+ 0)iδ
+ =

(σ − ω

σ + ω

)− 1
4

tiδ, (−it− 0)iδ
+ =

(σ − ω

σ + ω

)
3
4

tiδ.

(C.12)
For x < 0 the integration contour can be folded up around the upper branch cut (the
positive imaginary axis) Fig. 5.4 , using the following identities (C.13) for κ = it± 0
(t > 0 real) and assuming ω ≷ σ as relevant.

|it± 0| = ±it, (it± 0)
1
2

+iδ
+ = e

1
4

πi
(ω − σ

ω + σ

)
1
4

t
1
2

+iδ, (it± 0)iδ
+ =

(σ − ω

σ + ω

)
1
4

tiδ.

(C.13)
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Thus, for the low shear case and x > 0 with κ = −it± 0 (t > 0 real), from (5.30),

u =
U0

π
e−k0y0 e

1
4

πi
(ω + σ

ω − σ

)
1
4

[

ω

ω + σ

ˆ ∞

0

t
1
2

+iδ

t− i
e−tk0z dt

− ω

ω − σ

ˆ ∞

0

t
1
2

+iδ

t− i
e−tk0z∗

dt
]

− 2U0
ω

ω − σ
e−k0y0−ik0z∗

v =i
U0

π
e−k0y0 e

1
4

πi
(ω + σ

ω − σ

)
1
4

[

ω

ω + σ

ˆ ∞

0

t
1
2

+iδ

t− i
e−tk0z dt

+
ω

ω − σ

ˆ ∞

0

t
1
2

+iδ

t− i
e−tk0z∗

dt
]

+ 2iU0
ω

ω − σ
e−k0y0−ik0z∗

p = − ρ0U
2
0

π
e−k0y0 e

1
4

πi
(ω + σ

ω − σ

)
1
4

[
ˆ ∞

0

t−
1
2

+iδ e−tk0z dt−
ˆ ∞

0

t−
1
2

+iδ e−tk0z∗

dt

−
(

1 − k0σy

ω + σ

)

ˆ ∞

0

t
1
2

+iδ

t− i
e−tk0z dt+

(

1 − k0σy

ω − σ

)

ˆ ∞

0

t
1
2

+iδ

t− i
e−tk0z∗

dt
]

− 2ρ0U
2
0

(

1 − k0σy

ω − σ

)

e−k0y0−ik0z∗

(C.14)
For the low shear case and x < 0 with κ = it± 0 (t > 0 real), from (5.30)

u =
U0

π
e−k0y0 e− 1

4
πi
(ω + σ

ω − σ

)− 1
4 ω

ω − σ

ˆ ∞

0

t
1
2

+iδ

t+ i

(

etk0z + etk0z∗)

dt

v =
U0

π
e−k0y0 e

1
4

πi
(ω + σ

ω − σ

)− 1
4 ω

ω − σ

ˆ ∞

0

t
1
2

+iδ

t+ i

(

etk0z − etk0z∗)

dt

p =
ρ0U

2
0

π
e−k0y0 e

3
4

πi
(ω + σ

ω − σ

)
3
4

[
ˆ ∞

0

t−
1
2

+iδ etk0z dt+
ω − σ

ω + σ

ˆ ∞

0

t−
1
2

+iδ etk0z∗

dt

−
(

1 − k0σy

ω + σ

)

ˆ ∞

0

t
1
2

+iδ

t+ i
etk0z dt−

(ω − σ

ω + σ
− k0σy

ω + σ

)

ˆ ∞

0

t
1
2

+iδ

t+ i
etk0z∗

dt
]

.

(C.15)
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For the high shear case and x > 0 with κ = −it± 0 (t > 0 real), from (5.31)

u = i
U0

π
e−k0y0

(σ + ω

σ − ω

)
1
4

[

ω

σ + ω

ˆ ∞

0

tiδ

t− i
e−tk0z dt

+
ω

σ − ω

ˆ ∞

0

tiδ

t− i
e−tk0z∗

dt
]

+ 2U0
ω

σ − ω
e−k0y0−ik0z∗

v = − U0

π
e−k0y0

(σ + ω

σ − ω

)
1
4

[

ω

σ + ω

ˆ ∞

0

tiδ

t− i
e−tk0z dt

− ω

σ − ω

ˆ ∞

0

tiδ

t− i
e−tk0z∗

dt
]

− 2iU0
ω

σ − ω
e−k0y0−ik0z∗

p = − i
ρ0U

2
0

π
e−k0y0

(σ + ω

σ − ω

)
1
4

[
ˆ ∞

0

t−1+iδ e−tk0z dt−
ˆ ∞

0

t−1+iδ e−tk0z∗

dt

−
(

1 − k0σy

σ + ω

)

ˆ ∞

0

tiδ

t− i
e−tk0z dt+

(

1 +
k0σy

σ − ω

)

ˆ ∞

0

tiδ

t− i
e−tk0z∗

dt
]

− 2ρ0U
2
0

(

1 +
k0σy

σ − ω

)

e−k0y0−ik0z∗

.

(C.16)
For the high shear case and x < 0 with κ = it± 0 (t > 0 real), from (5.31)

u = i
U0

π
e−k0y0

(σ + ω

σ − ω

)− 1
4 ω

σ − ω

ˆ ∞

0

tiδ

t+ i

(

etk0z + etk0z∗)

dt

v = − U0

π
e−k0y0

(σ + ω

σ − ω

)− 1
4 ω

σ − ω

ˆ ∞

0

tiδ

t+ i

(

etk0z − etk0z∗)

dt

p = − i
ρ0U

2
0

π
e−k0y0

(σ + ω

σ − ω

)− 1
4

[

σ + ω

σ − ω

ˆ ∞

0

t−1+iδ etk0z dt−
ˆ ∞

0

t−1+iδ etk0z∗

dt

−
(σ + ω

σ − ω
− k0σy

σ − ω

)

ˆ ∞

0

tiδ

t+ i
etk0z dt+

(

1 +
k0σy

σ − ω

)

ˆ ∞

0

tiδ

t+ i
etk0z∗

dt
]

.

(C.17)

C.6 Incomplete Γ function

For Re(a) > 0 the Gamma and incomplete Gamma functions are given by

Γ(a) =
ˆ ∞

0

ta−1 e−t dt, Γ(a, z) =
ˆ ∞

z

ta−1 e−t dt.

Note the recurrence relations

Γ(a+ 1) = aΓ(a) and Γ(a+ 1, z) = aΓ(a, z) + za e−z .
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The power series expansion of Γ(a, z) in z is

Γ(a, z) = Γ(a)−
∞
∑

n=0

(−1)nza+n

n!(a+ n)
= Γ(a)− za

a
+O(za+1) = Γ(a)+za ·(entire function).

Γ(a, z) has a branch cut along negative real axis. Across the branch cut is

eπia Γ(a,−y − i0) − e−πia Γ(a,−y + i0) =
2πi

Γ(1 − a)
.

By transforming t = zτ with Re(z) > 0 and relocating the integration contour we
obtain

ˆ ∞

0

τa−1 e−zτ dτ = z−aΓ(a), resp.
ˆ ∞

0

τa−1 e−z∗τ dτ = z∗ −aΓ(a).

If Re(z) < 0 we transform t = −zτ and (noting that y > 0) we obtain

ˆ ∞

0

τa−1 ezτ dτ = z−a eaπi Γ(a), resp.
ˆ ∞

0

τa−1 ez∗τ dτ = z∗ −a e−aπi Γ(a).

(This remains the same if a = iδ.) Furthermore, we have from [63, eq. 8.6.4]

ˆ ∞

0

ta e−t

t+ b
dt = eb baΓ(a+ 1)Γ(−a, b), (| arg(b)| < π, Re(a) > −1).

Now replace b by −iz with Re(z) > 0 such that arg(−iz) = arg(z)− 1
2π, | arg(−iz)| <

π, and (−iz)a = e− 1
2

πai za. Then by transforming t = zτ and relocating the integra-
tion contour we obtain

ˆ ∞

0

τa e−zτ

τ − i
dτ = e− 1

2
πai Γ(a+ 1) e−iz Γ(−a,−iz). (C.18)

In the same way we can replace b = i(−z) and t = (−z)τ with Re(z) < 0 leading to

ˆ ∞

0

τa ezτ

τ + i
dτ = e

1
2

πai Γ(a+ 1) e−iz Γ(−a,−iz). (C.19)

The above remains the same for z replaced by z∗. Finally we note that for |z| → ∞
we use [63, eq. 8.11.2]

Γ(−a, z) = z−a−1 e−z
(

1 +O(1/z)
)

This leads for both x > 0 and x < 0, and y > 0, to

e−iz Γ(−a,−iz) ∼ (−iz)−a−1 = i e
1
2

πai z−a−1 (C.20)
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However, for z replaced by z∗ we have

e−iz∗

Γ(−a,−iz∗) ∼ (−iz∗)−a−1 =

{

i e− 3
2

πai z∗ −a−1 if x < 0 and y > 0

i e
1
2

πai z∗ −a−1 if x > 0 or y = 0.
(C.21)
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Appendix to Chapter 6

D.1 Regularising Wiener-Hopf kernel K

The singularity at k = 0 of the Wiener-hopf kernel (6.11)

K(k) = 1 +
a

k
− b√

k2

is regularised by assuming a small ε > 0 with (6.12)

K(k) = 1 +
a

k − iε
− b√

k2 + ε2

with in either case the principal value square root assumed. There is a certain amount
of arbitrariness in the way we push the pole at k = 0 down (to k+iε) or up (to k− iε),
since the singularity encountered in logK(k) is a logarithmic one and hence integrable
in (6.16). Whatever we choose, pushing the pole up or downwards, the logarithm has
to be defined such that log(1) = 0 and that none of the branch cuts, emanating
from the zeros and poles of K, cross the real axis. This is not easy to achieve in
general. However, it appears that if we choose for the pole being pushed upwards,
K(k) for k ∈ R always, i.e. for all 4 cases of table 6.2, avoids the negative real axis
(see Fig. D.1), so the standard principal value logarithm is sufficient to take, in which

case σ ω ζ σ − ω Re(ζ)

1 15 2 1 + i + +

2 15 2 1 − i + −
3 4 10 1 + 10i − +

4 4 10 1 − 10i − −

Table D.1: 4 cases considered

155



156 D.2. Analytical evaluation of the split integral
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Figure D.1: Trace of K(k), k ∈ R, for all cases of table D.1 when the pole at k = 0 is
regularized with k = k − iε. |k| =

√
k2 + ε2, ε = 10−3

case we have an analytically exact expression (D.3) for the ε = 0 limit. This is fully
confirmed by numerically obtained K+-integrals for small ε approximating correctly
the analytical expression.

It is worth noting that the same happens in case 3 with the pole pushed down

(i.e. with k + iε taken). Also here the trace of K avoids the negative real axis, the
principal value log can be taken, and the result approximates the exact expression
(D.3). In conclusion: whenever the principal value log can be taken, there is no
difference between the pole being pushed up or downwards.

Consider representative examples of the 4 cases as given in table D.1 and graph-
ically displayed in Fig. D.1, where the trace of K(k) is shown for k ∈ R.

D.2 Analytical evaluation of the split integral

For Im(k) > 0, the principal value logarithm, and ε → 0 we have

2πi logK+(k) = I =
ˆ ∞

−∞

f(x)
x− k

dx, f(x) = log
(

1 +
a

x
− b

|x|

)

, a =
σ

iζ
, b =

ω

iζ
.
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Im

Re

q

b

q
k

Figure D.2: Closure of the integral contour

We distinguish

ˆ ∞

−∞

log(1 + a/x− b/|x|)
x− k

dx

=
ˆ ∞

0

log(1 + (a− b)/x)
x− k

dx−
ˆ ∞

0

log(1 − (a+ b)/x)
x+ k

dx,

here referred to as I1 and I2 respectively. Consider the first integral

I1 =
ˆ ∞

0

log(1 + q/x)
x− k

dx

where k, q ∈ C. We transform x → 1/x and then qx = y, to have

I1 =
ˆ ∞

0

log(1 + qx)
x(1 − kx)

dx =
ˆ q·∞

0

log(1 + y)
y(1 − ky/q)

dy

=
ˆ q·∞

0

log(1 + y)
(

1
y

− 1
y − q/k

)

dy

We close the contour (Fig. D.2) from y = q · ∞ to the real axis at y = ∞. Denote
α = q/k and β = 1 + q/k. By defining

C(k, q) = −1 if 0 < arg(q/k) < arg q,

C(k, q) = 1 if arg q < arg(q/k) < 0,

C(k, q) = 0 otherwise,

we indicate the captured pole in y = α. In particular for k is real in the limit from
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C
+:

k ∈ (0,∞) & Im q > 0 ⇒ C = −1,

k ∈ (−∞, 0) ∨ Im q < 0 ⇒ C = 0.

We thus find

I1 =
ˆ ∞

0

log(1 + y)
(

1
y

+
1

α− y

)

dy − 2πiC(k, q) log β.

With the use of the following definition of the dilogarithm [63] (with a branch cut
along the negative real axis), related to the polylogarithm of order 2,

dilog(z) =
ˆ z

1

log t
1 − t

dt = Li2(1 − z),

we write our integral as a limit

I1 = lim
N→∞

N̂

0

log(1 + y)
(

1
y

+
1

α− y

)

dy (D.1)

= lim
N→∞

N̂

0

log(1 + y)
y

dy + lim
N→∞

N̂

0

log(1 + y)
α− y

dy. (D.2)

The first integral in (D.1) is therefore

ˆ N

0

log(1 + y)
y

dy = −
ˆ N+1

1

log z
1 − z

dz = − dilog(N + 1).

The second integral is

ˆ N

0

log(1 + y)
α− y

dy =
ˆ N+1

1

log z
β − z

dz =
ˆ (N+1)β−1

β−1

log t+ log β
1 − t

dt =

dilog((N + 1)β−1) − dilog(β−1) − log β log((N + 1)β−1 − 1) + log β log(β−1 − 1).

Altogether, and using the asymptotic behaviour dilog(z) ∼ − 1
2 (log z)2 + . . . for z →

∞, we have

I1 =
ˆ ∞

0

log(1 + q/x)
x− k

dx = lim
N→∞

[

− dilog(N +1)+dilog((N +1)β−1)−dilog(β−1)

− log β log((N + 1)β−1 − 1) + log β log(β−1 − 1)
]

− 2πiC(k, q) log β =

− dilog(β−1) + 1
2 log2(β) + log β log(β−1 − 1) − 2πiC(k, q) log β.

The second integral I2 can be performed in the same fashion to obtain the overall
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b b(a) (b)

Re

Im

Figure D.3: Path of k ↑ 0 and k ↓ 0, with Im k = +0.

expression of logK+ for k ∈ C
+ and ε → 0 as

2πi logK+(k) = I = − dilog
( k

k + a− b

)

+ dilog
( k

k + a+ b

)

+ 1
2 log2

(k + a− b

k

)

− 1
2 log2

(k + a+ b

k

)

+ log
(k + a− b

k

)

log
( b− a

k + a− b

)

− log
(k + a+ b

k

)

log
( −b− a

k + a+ b

)

− 2πiC1 log
(k + a− b

k

)

+ 2πiC2 log
(k + a+ b

k

)

, (D.3)

where C1 = C(k, a− b) and C2 = C(−k,−a− b). If required, logK−(k) with k ∈ C
−

is similar.

D.3 Asymptotic analysis of the split integral I for

k near 0

The behaviour for k → 0 of the integral I(k) and hence K+(k) is distinct for high
shear (σ > ω) or low shear (σ < ω). In particular, we will show that K+ ∼ k−iδ and
K+ ∼ k− 1

2
−iδ, respectively. Hence we break this analysis into 2 parts. Also, we will

assume the natural condition Re(ζ) > 0. The limit k → 0 is taken from below and
from above, along but just above the real axis, as shown in Fig. D.3. In all cases we
use the fact that [63]

dilog(z) = 1
6π

2 +O(z log z) for z → 0,

making in general the dilog-parts unimportant to leading orders.

D.3.1 High shear case

This analysis for k → 0 and Im k = +0 relates to the high shear (σ > ω) cases 1 and
2 in table 6.2. There is no contribution of the pole q/k, whether we approach from
left or right, hence C1 = C2 = 0.
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Figure D.4: Comparison of the I calculated from analytical, asymptotic and numerical
methods for σ = 5 > ω = 4 and ζ = 1

2 (1 + i).

Case (a): k ↑ 0

With the principal value logarithm and k ↑ 0, we have

log
(k + a+ b

k

)

≃ log(a+ b) − log(k) + 2πi, log
( −b− a

k + a+ b

)

≃ −πi.

log
(k + a− b

k

)

≃ log(a− b) − log(k) + 2πi, log
( b− a

k + a− b

)

≃ −πi.

From (D.3) we have then

I ∼ log(k) log
∣

∣

∣

a+ b

a− b

∣

∣

∣
+ 1

2 log2(a− b) − 1
2 log2(a+ b) + πi log

(a− b

a+ b

)

.

Case (b): k ↓ 0

For k ↓ 0, we have

log
(k + a+ b

k

)

≃ log(a+ b) − log(k), log
( −b− a

k + a+ b

)

≃ πi,

log
(k + a− b

k

)

≃ log(a− b) − log(k), log
( b− a

k + a− b

)

≃ πi.

From D.3, we have

I ∼ log(k) log
∣

∣

∣

a+ b

a− b

∣

∣

∣
+ 1

2 log2(a− b) − 1
2 log2(a+ b) + πi log

(a− b

a+ b

)

.

We see that the limits from left and right come down to the same expression. As a
result, the asymptotic behaviour of K+ becomes

K+ ∼ c1k
−iδ, δ =

1
2π

log
∣

∣

∣

σ + ω

σ − ω

∣

∣

∣
, (D.4)

where δ is real positive and c1 is a complex constant given by

c1 = e
1

2πi [ 1
2

log2(a−b)− 1
2

log2(a+b)+πi log( a−b

a+b
)] (D.5)

For illustration, Fig. D.4 shows a comparison of a numerically, analytically and asymp-
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Figure D.5: Comparison of I calculated numerically, analytically, and asymptotically
for σ = 4 < ω = 5 and ζ = 1

2 (1 + i).

totically obtained I.

D.3.2 Low shear case

The asymptotic analysis of (D.3) for k → 0 and Im(k) = +0 considers the low shear
(σ < ω) cases 3 and 4 of table 6.2. Here, we have a contribution of the q/k-pole when
we approach from the right.

Case (a): k ↑ 0

With the principal value logarithm and k ↑ 0, the following hold:

log
(k + a+ b

k

)

≃ log(a+ b) − log(k) + 2πi, log
( −b− a

k + a+ b

)

≃ −πi,

log
(k + a− b

k

)

≃ log(a− b) − log(k), log
( b − a

k + a− b

)

≃ πi.

From (D.3), we have with C1 = C2 = 0

I ∼ log(k)
[

log
∣

∣

∣

a+ b

a− b

∣

∣

∣
− πi

]

+ 1
2 log2(a− b) − 1

2 log2(a+ b) + πi log
(a− b

a+ b

)

.

Case (b): k ↓ 0

We have

log
(k + a+ b

k

)

≃ log(a+ b) − log(k), log
( −b− a

k + a+ b

)

≃ πi,

log
(k + a− b

k

)

≃ log(a− b) − log(k), log
( b− a

k + a− b

)

≃ −πi.

Because of the q/k-pole contribution we have C1 = −1 and C2 = 0. From (D.3), we
have

I ∼ log(k)
[

log
∣

∣

∣

a+ b

a− b

∣

∣

∣
− πi

]

+ 1
2

(

log2(a− b) − log2(a+ b)
)

+ πi log
(a− b

a+ b

)

.

We see that the limiting behaviours from the left and from the right are the same.
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b

r

Figure D.6: Energy flux across a small semi-circle of radius r around the singularity.

The asymptotic expression for K+ is then

K+ ∼ c1k
− 1

2
−iδ, δ =

1
2π

log
∣

∣

∣

σ + ω

σ − ω

∣

∣

∣
. (D.6)

where (the same as before) δ is real positive and c1 is a complex constant given by

c1 = e
1

2πi

[

1
2 (log2(a−b)−log2(a+b))+πi log( a−b

a+b )
]

(D.7)

For illustration, Fig. D.5 shows a comparison between numerically, analytically and
asymptotically obtained I.

D.3.3 Asymptotic analysis for k large

The analysis for k → ∞ is useful to derive the edge condition in the next section.
Again, we consider Im(k) = +0. Noting that for z → 0 we have dilog(1−z) ≃ z+O(z2)
and log(1 + z) = z +O(z2), we may obtain for k → ∞

I ≃ 2b
k

log k +
a− b

k

(

log(b − a) − 2πiC1

)

− a+ b

k

(

log(−b− a) − 2πiC2

)

.

Overall, the dominating term is 2b
k log k.

D.4 Evaluation of the entire function E

E can be determined from the condition at infinity. In order to obtain E(k) for
k → ∞, we need the asymptotic behaviour of K+, k → ∞. From D.3.3, we have

lim
k→∞

logK+(k) = lim
k→∞

2b
2πik

log k = 0 (D.8)

so K+(k) → 1.
The asymptotic behaviour of G+(k) in the limit k → ∞ is found from the so-called

edge condition for r → 0 where r is the distance from the edge. Consider a pressure
distribution p at a small distance r from the discontinuity at r = 0, such that p is
dominated by some power of r, say p = O(rα). From the momentum equation it
follows that the (radial) velocity, say w, should be w = O(rα−1). The outward energy
flux Φ(r) across a small circular arc, centred at the edge at radius r (see Fig. D.6) is
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then given by

Φ(r) ∼
ˆ π

0

pwr dθ ∼ πrαrα−1r ∼ r2α. (D.9)

In the absence of a physical source at r = 0, the energy flux should vanish for r ↓ 0.
Hence we must have α > 0.

The function G+(k) from (6.8) is therefore

G+(k → ∞) ∼
ˆ ∞

0

xα−1 eikx dx = k−αΓ(α) e
1
2

πiα (D.10)

From (6.19), (D.8) and (D.10), we have

E(k) = ρ0ζG+(k)K+(k) +O(1/k) ∼ k−α · 1 → 0 (k → ∞). (D.11)

Thus the function E(k) vanishes at k → ∞ and since it is an entire function, it should
vanish everywhere, i.e. E(k) = 0.

D.5 Regularisation of the diverging integral

We want to assign a meaning to

ψ(x, y) =
ˆ ∞

0

1
k1−iδ

eikz dk

where z = x + iy with y > 0 and δ is real and nonzero. The integral converges for
k → ∞ but not for k = 0. Following Lighthill - Jones [31, 47], we define the function
H(k)k−1+iδ as the generalised derivative

H(k)
k1−iδ

def

=
d
dk

(

H(k)
iδk−iδ

)

and the integral

ψ(x, y) =
ˆ ∞

−∞

d
dk

(

H(k)
iδk−iδ

)

eikz dk = −
ˆ ∞

−∞

zH(k)
δk−iδ

eikz dk =

− zδ−1

ˆ ∞

0

kiδ eikz dk = −iδ−1Γ(1 + iδ)(−iz)−iδ = Γ(iδ)(−iz)−iδ.

This result is unique and independent of scaling.
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Appendix to Chapter 7

E.1 Wiener-Hopf formulation of pressure release wall

Introduce the half-range Fourier transforms

F−(k) =
ˆ 0

−∞
v(x, 0) eikx dx, G+(k) =

ˆ ∞

0

p(x, 0) eikx dx (E.1)

that are analytic in Im(k) < ε and Im(k) > −ε and assumed to be analytic in C
+

and C
− respectively. We have

F−(k) = −i|k|A(k) + (λ+ 1)U0
e−k0y0

(k − k0)
.

Furthermore, we have

G+(k) =
ˆ ∞

0

p(x, 0) eikx dx =
ˆ ∞

−∞
p(x, 0) eikx dx = ρ0A(k)µK(k) (E.2)

with Wiener-Hopf kernel

K(k) =
ωµ− σk

k2 + ε2
, (E.3)

where µ = |k|. With ε = 0 and ω 6= σ, K(k) is free from zeros however, for ε > 0
there are zero’s as shown in Fig. 5.3, namely

k±
l = + 0 ± iε

ω√
ω2 − σ2

if σ < ω,

kh = ε
ω√

σ2 − ω2
if σ > ω.

In the low-shear case σ < ω, |k±
h | > ε, so the zeros are imaginary, outside S and

located on the right side of the branchcuts of µ. In the high-shear case σ > ω,
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however, there is only one zero, which is real and therefore always inside the strip and
is needed to be cancelled out as shown in Appendix C.4.2. From (E.2), we arrive at
the Wiener-Hopf equation

F−(k) = −i
G+(k)
ρ0

1
K(k)

+ (λ+ 1)U0
e−k0y0

(k − k0)
(E.4)

which is to be solved in the standard way [14] by writing

K(k) =
K+(k)
K−(k)

, (E.5)

where splitfunction K+ is analytic and nonzero in C
+ and K− is analytic and nonzero

in C
−. We notice from (E.4) that the new kernel is inverse of the previous one (5.20).

As a result, from (C.9) and (C.11), we have the following split functions

K+(k) = (ω − σ)(k)− 1
2

−iδ
+ , K−(k)= (k)

1
2

−iδ
− (σ < ω)

K+(k) = (ω − σ)(k)−1−iδ
+ , K−(k) = (k)−iδ

− (σ > ω).
(E.6)

The subtlety for high shear case can be easily overlooked in the case of finite impedance
kernel because of the complexity of the regularizations. That is why, the pressure
release wall limit analysis has been conducted here.

E.2 Analytic split functions and their asymptotic

behaviour

The analytic evaluation of the integral I is performed in D.2. The asymptotic beha-
viour of the split functions K+ and K− is presented here.

E.2.1 Asymptotic behaviour of the split functions for k near 0

The behaviour of the integral I(k) and K+(k) in the limit k → 0 is different for high
shear (σ > ω) and low shear (σ < ω) cases. hence, they are presented in separate
sections.

E.2.2 High shear case

The asymptotic analysis of (D.3) for k → 0 and Im k = +0 relates to the high shear
(σ > ω) cases 1 and 2 in table 6.2. The following asymptotic behaviour is confirmed
by D.4,

K+(k) ∼ c1k
−iδ and K−(k) ∼ c1

(a− sign(Re k)b)
k1−iδ (E.7)
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where δ is real positive constant and and c1 is a complex constant given by

δ =
1

2π
log
∣

∣

∣

σ + ω

σ − ω

∣

∣

∣
, c1 = e

1
2πi [ 1

2
log2(a−b)− 1

2
log2(a+b)+πi log( a−b

a+b
)] . (E.8)

We immediately notice that the expression in (E.7) is not analogous to (E.6). This
situation arises because the zero kh at k = 0 in (C.4.2) is contained by K+ rather
than K− because k = 0 was a zero in the H-S kernel rather than a pole and hence,
was regularized to stay within the numerator. However, since our kernel is inverse
of the previous kernel, the zero at k = 0 becomes the pole and should be cancelled
by multiplying it with K− to have the strip S free from poles in order to have the
analytic continuation of our split functions. We see from (C.4.2) that this pole must
be associated with K− to obtain

K+(k) ∼ c1k
−1−iδ and K−(k) ∼ c1

(a− sign(Re k)b)
k−iδ. (E.9)

E.2.3 Low shear case

The asymptotic analysis of (D.3) for k → 0 and Im(k) = +0 considers the low shear
(σ < ω) cases 3 and 4 of table 6.2. The following asymptotic behavior is confirmed
by D.6

K+(k) ∼ c1k
− 1

2
−iδ and K−(k) ∼ c1

(a− sign(Re k)b)
k

1
2

−iδ. (E.10)

where (same as before) δ is real positive and c1 is a complex constant given by

δ =
1

2π
log
∣

∣

∣

σ + ω

σ − ω

∣

∣

∣
, c1 = e

1
2πi

[

1
2 (log2(a−b)−log2(a+b))+πi log( a−b

a+b )
]

. (E.11)

In this case, all the zeros and poles are out of the strip S and that justifies that the
expression in (E.10) is analogous to (C.9).

E.3 Evaluation of the entire function E

E can be determined from the condition at infinity. In order to obtain E(k) for
k → ∞, we need the asymptotic behaviour of K+, k → ∞. From D.3.3, we have

lim
k→∞

logK+(k) = lim
k→∞

2b
2πik

log k = 0 (E.12)

so K+(k) → 1.
The asymptotic behaviour of G+(k) in the limit k → ∞ is found from the so-called

edge condition for r → 0 where r is the distance from the edge. Consider a pressure
distribution p at a small distance r from the discontinuity at r = 0, such that p is
dominated by some power of r, say p = O(rα). From the momentum equation it
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b

r

Figure E.1: Energy flux across a small semi-circle of radius r around the singularity.

follows that the (radial) velocity, say w, should be w = O(rα−1). The outward energy
flux Φ(r) across a small circular arc, centred at the edge at radius r (see Fig. E.1) is
then given by

Φ(r) ∼
ˆ π

0

pwr dθ ∼ πrαrα−1r ∼ r2α. (E.13)

In the absence of a physical source at r = 0, the energy flux should vanish for r ↓ 0.
Hence we must have α > 0.

The function G+(k) from (7.10) is therefore

G+(k → ∞) ∼
ˆ ∞

0

(xα +Zxα−1) eikx dx = k−1−αΓ(1 + α) e
1
2

πi(α+1) +k−αΓ(α) e
1
2

πiα

(E.14)
From (7.19), (E.12) and (E.14), we have

E(k) =
G+(k)
ρ0ζK(k)

+O(1/k) ∼ k−α → 0 (k → ∞). (E.15)

Thus the function E(k) vanishes at k → ∞ and since it is an entire function, it should
vanish everywhere, i.e. E(k) = 0.

E.4 Regularisation of the diverging integral

We want to assign a meaning to

ψ(x, y) =
ˆ ∞

0

1
k1+iδ

eikz dk

where z = x + iy with y > 0 and δ is real and nonzero. The integral converges for
k → ∞ but not for k = 0. Following Lighthill-Jones [31, 47], we define the function
H(k)k−1−iδ as the generalised derivative

H(k)
k1+iδ

def=
d
dk

(

H(k)
−iδkiδ

)
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and the integral

ψ(x, y) =
ˆ ∞

−∞

d
dk

(

H(k)
−iδkiδ

)

eikz dk =
ˆ ∞

−∞

zH(k)
δkiδ

eikz dk =

zδ−1

ˆ ∞

0

k−iδ eikz dk = iδ−1Γ(1 − iδ)(−iz)iδ = Γ(−iδ)(−iz)iδ.





Summary

In this thesis, ideas from applied mathematics are used to model system of equations
governing the sound and flow under certain circumstances. In particular, asymptotic
methods and complex analysis are used as tools to model the interaction of sound
and vorticity.

In Chapter 3, a systematic approximation of the hydrodynamically non linear
Helmholtz resonator equation is obtained, including the resulting impedance if the
resonator is applied in an acoustic liner. The only unknown parameter that we need to
adapt is resistance factor, r, which is O(1). Comparisons with measurements prove
that the model predicts the near resonance impedance to a good accuracy. This
formulation is useful to predict the impedance of the lining surface accurately, to be
used later, in the sound propagation calculations, in numerical simulations. Previous
non linear impedance formulations were mainly based upon the LES calculations and
thus, our closed form solution saves plenty of computational time. On the other
hand, a closed form solution is useful to understand functional relationship of various
parameters that govern the impedance.

The impedance model in Chapter 3 is then refined further, in Chapter 4, to take
into account the development of waves inside the resonator cavity that are involved in
the damping phenomenon. This way, we capture more physics of the problem and the
fidelity of the model is improved. This improvement in the modelling assumptions
is clearly reflected by the found impedance formulation. Not only the comparison
with measurements improved, but also, the model is able to predict the impedance
at higher value of excitation amplitude. Even at 150 dB, the comparison is accurate.
The current and previous (ch. 3) impedance formulations are connected by a low
frequency excitation limit and this consistency is reflected in all equations. Apart
from this, the current impedance formulation is asymptotically equivalent to the one
in Chapter 3 and is more useful than the previous one for more accurate results at
higher amplitudes. The N wave problem fits better with the current model because
the cavity contains the information about the higher harmonics inside the cavity. This
could serve as a potential topic for further work.

After studying the Helmholtz resonators in non linear regime, we moved to the
study of interaction of vorticity with the lining surface in shear flow, in particular,
the interaction at hard wall - soft wall transition that radiates acoustic waves. This
classical problem have been studied previously for uniform flows, in particular, the
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Wiener Hopf method have been used to get the scattering behaviour in case of bulk
absorbing liners under uniform flows. We studied this problem with a linear shear
flow profile in incompressible limit and formulated the solution in terms of Fourier
integrals. The mathematical complexity of having a shear layer is tackled with the
help of the analysis for a pressure release wall, Chapter 5 in case of which, the solution
in terms of Fourier integrals is analytically integrable and thus improves the fidelity of
involved regularizations. The analysis is further continued to the transitions involving
a finite impedance wall, Chapter 6. The solution, although not analytically integrable,
allows to obtain the far field limit of the solution integrals. The legitimacy of this
limit is verified against the pressure release wall solution and genuine consistency is
confirmed. Once the incompressible solution is obtained, we match it with the outer
acoustic solution in order to obtain the far field sound.

Based upon the problem parameters ω and σ which represents the frequency of
the incoming wake and mean shear rate U ′, the problem degenerates into mainly
two cases. If the mean shear is relatively weak (σ < ω), the hydrodynamic far
field varies as the inverse square root of the distance from the hard-soft edge. The
radiated acoustic power is found to vary with U4

0 where U0 is the mean flow velocity
at the source position. If the mean shear is relatively strong (σ > ω), two features
are striking. (i) The hydrodynamic far field tends (in modulus) to a constant, that
implies a strong back reaction to the wall from any uniform or otherwise bounded part
of the mean flow, and (ii) the hydrodynamic field can not be matched to an outward
radiating acoustic outer field. This impossible matching and the strong back reaction
to the wall, leads to the conclusion that the unbounded linear mean shear flow is an
inconsistent modeling assumption in the case of high shear. A more realistic flow
profile could give further insight in this problem, but this will inevitably rely more on
the numerical calculations. Another approach can be based upon using a piecewise
linear shear profile if the Wiener-Hopf kernel doesnt become too formidable.

In Chapter 7, we conducted the above analysis for the soft to hard transition of
the wall and found that the scattering behavior remains the same. Thus we conclude
that the boundary condition reversal does not greatly affect the scattering process.
The resulting soundfield for low shear case behaves similar to the previous case and
the high shear case still remains inconclusive.

In Chapter 8, we studied experimentally, the existence of a hydrodynamic wave
over a porous wall with grazing flow at various Mach numbers and extracted some
interesting properties of this instability with a crude model. This hydrodynamic wave
is found to have a significant effect on a limited range of sound frequencies. When this
wave is present, there are large oscillations in the transmission coefficient in the flow
direction resulting from the interference between the transmitted acoustic wave and
this hydrodynamic wave that are propagating at different velocities. The convection
velocity of the hydrodynamic wave is found to be close to half of the mean flow speed.

It is difficult to claim any firm conclusions about the amplitude decay of this mode
because of the non linear behavior that indicates a saturation of this hydrodynamic
wave. Also this wave induces an increment of the pressure drop when it is created
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by an acoustic wave. A peak frequency at which the pressure drop is maximum is
identified. Further investigations are needed to model the conditions of appearance,
amplification, and saturation of this wave.
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