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DESIGN IMPERFECTIONS FOR STEEL BEAM LATERAL
TORSIONAL BUCKLING

H.H. Snijder, R.P. van der Aa, H. Hofmeyer, B.W.E.M. van Hove

Eindhoven University of Technology (TU/e), Department of the Built Environment, The Netherlands

Abstract: To perform geometrically and materially nonlinear analyses including imperfec-
tions for steel beam lateral torsional buckling, the size and shape of the geometric imperfec-
tion can be obtained from EN 1993-1-1. The shape is prescribed as an initial bow along the
weak axis of the section, excluding torsion of the cross-section. The shape of the imperfection
can alternatively be taken equal to the lateral torsional buckling mode, including torsion. Sev-
eral tables and formulas exist to determine the size of the imperfection. Different imperfection
approaches were applied in finite element simulations to evaluate the lateral torsional nonlin-
ear buckling resistances and to compare them to the results obtained with design rules.

1. Introduction

Eurocode 3 provides design rules for the assessment of lateral torsional buckling (LTB) in
clause 6.3.2 of EN 1993-1-1 [1]. Alternatively, the code allows LTB to be assessed by per-
forming Geometrically and Materially Nonlinear Analyses with Imperfections of beams. For
carrying out such GMNIA calculations, the size and shape of the equivalent geometric imper-
fection is given in clause 5.3.4(3) of EN 1993-1-1. The shape is prescribed as an equivalent
initial bow of the weak axis of the profile considered, excluding torsion of the cross-section.
This comes down to the weak axis flexural buckling (FB) mode. The size is prescribed as
kepy where k is a factor having as recommended value £ = 0.5 and ey 4 is the initial local bow
imperfection given in Table 5.1 of EN 1993-1-1. As an alternative, the initial local bow im-
perfection ey s can be based on eq. (5.10) of EN 1993-1-1:

ey = a7 - 0.2)% (D
Y Rk

where « is the imperfection factor according to Table 6.1 of EN 1993-1-1, 1 is the non-
dimensional slenderness for weak axis buckling, Mg is the characteristic moment resistance,
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and Npy is the characteristic normal force resistance. In case of class 1 and 2 cross-sections
Mpe = My, and Nz = N,y where M, is the plastic moment resistance of the cross-section and
N,y is its plastic normal force resistance.

In line with clause 5.3.2(11) of EN 1993-1-1, the shape of the imperfection can also be
taken according to the LTB mode, including torsion of the cross-section. For the size of the
imperfection, Eq. (1) can be used. However, for the next generation of Eurocodes, new LTB
design rules [2,3] have been derived as an alternative to those of the current EN 1993-1-1. Us-
ing these new LTB design rules and their derivation, a formula has been obtained which, for
an LTB mode, describes explicitly the imperfection size:

epa =y (T-02) M2 @)
Ny
where ¢, is the imperfection factor according to Table 1. In Table 1 / is the section height, &
is the section width and W, respectively I, . are the strong and weak axis section modulus.

The three different imperfection approaches for LTB as shown in Table 2 have been con-

sidered in this paper.

Table 1: Imperfection factors for Eq. (2)
Cross-section Limits a7

hib>12 QI2,W, (W, <034

Rolled I-section
hlb<12 016, W, <0.49

Table 2: Three imperfection approaches

Approach Imperfection shape Imperfection size
1 Weak axis FB mode, excluding torsion Eq. (1)
2 LTB mode, including torsion Eg. (1)
3 LTB mode. including torsion Eq.(2)

A finite element model for LTB was developed and verified using several other models in
literature. With that model, the different approaches for imperfection shape and size were ap-
plied to evaluate the LTB resistances. Subsequently, these LTB resistances were compared
with the LTB resistances according to the appropriate design rules. For the approaches 1 and
2 the design rules according to the clauses 6.3.2.1 and 6.3.2.2 for the so called ‘general case’
were used as reference while for approach 3 the newly developed design rules according to
[2,3] was used. This paper is based on research work as reported in [4].

2. Scope

The impertection study in this paper is carried out for hot-rolled class 1 and 2 IPE, HEA, and
HEB sections. However, the fillet radius between web and flanges is neglected: therefore the
sections are denoted by adding an asterisk: e.g. I[PE* sections. The section properties have
been modified accordingly. Three load cases have been considered as indicated in Fig. 1.

i
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(a) load case 1 — constant (b) load case 2 — concentrated  (c) load case 3 — uniformly
bending moment load distributed load
Fig. 1: Three load cases (LC) considered
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3. Finite element model

For the finite element model, so-called "S8R" Mindlin-Reissner elements are used within
Abaqus. These are quadrilateral eight node shell elements with six degrees of freedom per
node, four integration points in surface direction, and five integration points in thickness di-
rection. The elements require a regular mesh and are suitable for thick shell applications.
Eight elements over the width of the flanges and 16 elements over the height of the web are
applied. A b]llnear stress-strain diagram, neglecting s‘uam hardening, is used with yield stress
|fy =235 N/mm’, Young’s modulus £ = 2.1 x 10° N/mm?, and Poisson’s ratio 0.3. The Von
Mises yield criterion was applied. With respect to the boundary conditions, Fig. 2 shows the
end fork conditions of the beam.

b

(/

S

Fig. 2: End fork conditions of the beam

Distortion of the end cross-section is prevented by applying kinematic coupling con-
straints. This results in an in-plane stiff cross-section (as &, and é. of all nodes are coupled),
which cannot rotate along the beam axis (as ¢, = 0 for all nodes), but warping is still allowed.
Since beam geometry, load cases, imperfection shapes, and failure modes are symmetrical,
only half the beam is modelled applying symmetry conditions d, =0, ¢, = 0, and ¢- = 0.

- :
7 i
” =
!
(a) load case 1 — constant (b) load case 2 — concentrated (¢) load case 3 — uniformly
bending moment load distributed load

Fig. 3: Application of loads

Loads are applied as shown in Fig. 3. For the GMNIA, two types of imperfection shapes,
i.e. the weak axis FB mode excluding torsion and the LTB mode including torsion are applied
after performing the relevant linear buckling analysis (LBA). In Fig. 4 these shapes are shown
in the cross-section at mid-span of the beam. For the LTB mode the size of the imperfection is
measured at the heart of the top flange.
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As a validation of the finite element model, its results obtained from GMNIA calculations
were compared with numerical results of [2, 5] and were found to be in good agreement [4].
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(a) FB mode (b) LTB mode

Fig. 4: Two imperfection shapes at cross-section halfway the beam

4. Simulation and comparison procedure

The comparison of simulations with the finite element method (FEM) and EN 1993-1-1 de-
sign rule results is illustrated for an IPE240* section with a length of 3400 mm for load case 1
(constant bending moment) and imperfection approach 2: LTB shape and size of the imper-
fection according to Eq. (1). First an LBA is performed resulting in an elastic critical bending
moment M., = 84.1 kNm. See Fig. 5 for the corresponding buckling mode which is also used
for the shape of the imperfection.

Fig. 5: Half buckling mode shape of 3400 mm long IPE240% beam

The plastic resistance can be calculated as My = Wpiy'fy = 353.9-103-235-10-6 = 83.0
kNin. The non-dimensional slenderness then becomes:

/TITFEU = m: o

TS T Ve

First the non-dimensional slenderness 7 for weak axis buckling needs to be determined us-
ing the elastic critical force for weak axis buckling V,.._:

_7°El._ x".2.1-10°-282.7-10*

=0.99

N : - =506.9-10°N
T 3400°
N . [3779-235
e 0 B0y
N,.. V5069-10°

In these calculations 7. is the weak axis second moment of area, L., is the buckling length
for weak axis buckling and A is the area of the cross-section. Since hib=2401120=2>1.2
and the flange thickness 7 = 9.8 mm is smaller than 40 mm, buckling curve ‘b’ applies for
weak axis buckling according to Table 6.2 of EN 1993-1-1 and the imperfection factor o =

w
=]
(3]
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0.34 according to Table 6.1 of EN 1993-1-1. The imperfection size is then determined using
Eq. (1):

L A o W

epa =0l 70.2)%3‘—'%(/1 ~02) 22 =034(1.32-02)

a2
Rk o

VTS
7'779' =7.33mm

With & = 0.5 the final imperfection size becomes: 3.67 mm. With this imperfection size and

the imperfection shape of Fig. 5, a GMNIA is performed, for which load-displacement curves
are shown in Fig. 6.

70

60
_.50
S
2 30
= 20

10 —»— In-plane

—¢~ Qut-of-plane
0
0 5 10 15 20 25

Displacement [mm]
Fig. 6: Load-displacement diagram obtained with GVMNIA for a 3400 mm long IPE240* beam

The ultimate load is reached at Mz = 57.6 kNm. The reduction factor can then be calculat-
ed as:

M, 576
e P
T T

The combination of Z;; 4y =0.99and 7,7 ), = 0.694 is compared with the current lateral
torsional buckling curve of clause 6.3.2.2 of EN 1993-1-1 as shown in Fig. 7 (black arrows).
More results for other non-dimensional slendernesses (beam lengths) and other load cases are

10
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0.2 || —¢— Loadcasel o X Load case 1
——g-— Load case 2 @” < Load case 2
—©— Load case 3 1 < Load case 3
0.0 0.2 =
0.0 0.5 1.0 15 2.0 0.2 0.4 0.6 0.8 1.0

A = My /Mer XLr,EC

Fig. 7: Comparison of ,; -;,, With 7, . for imperfection approach 2 for an IPE240* beam
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also included in Fig. 7. In the left part of Fig. 7 a direct comparison is made between the FEM
results and buckling curve of EN 1993-1-1. FEM results above the buckling curve are on the
unsafe side, i.e. they are calculated using a too small imperfection size so that £ > 0.5 should
have been chosen. In the right part the reduction factors calculated by FEM are compared
with those calculated with EN 1993-1-1, Eurocode 3 (EC3). The diagonal black line repre-
sents a perfect match between both reduction factors. If ;; 7, > #,; x then the FEM results

are on the unsafe side. The two dashed lines represent a 5% over- or underestimation.

5. Results
5.1 Imperfection approach 1: weak axis FB mode with Eq. (1) size
The results for imperfection approach 1, with the imperfection shape based on the weak axis

FB mode and the imperfection size determined with Eq. (1), are shown in Fig. 8 for an
IPE600* beam. Similar results were obtained for IPE240* and HEA300* beams [4].

1.0 1.0
/ /-4 ’
038 8y 7,
08 X
= unsafe o
= 06 X 2
~ = o
= 206
i S
504
= Curve b o safe
—i—=Euler 0.4
02 || —3¢—loadcase1 2. % Load case 1
——¢— Load case 2 7 +Load case 2
—&— Load case 3 O Load case 3
0.0 02 &
0.0 0.5 1.0 15 2.0 0.2 0.4 0.6 0.8 1.0

oy XLt EC
Air = ’Mpi/Mcr

Fig. 8: Comparison of y;; 1z, with 7, ;- for imperfection approach 1 for an IPE600* beam

As can be seen, load case 2 (concentrated load) gives the largest discrepancies between
FEM and EC3 results. All FEM results are largely on the unsafe side of EC3 results meaning
that £ = 0.5 is a far too small value. Therefore, it was decided to determine the 4-value more
accurately, such that the FEM results are within the 3% limits. The analyses concentrated on
load case 2 and on relative slenderness 0.9 where the influence of imperfections is substantial.
Fig. 9 shows for IPE beams the required k-values to get 7, ., to the target value z,; ..as a

function of /,/I-, where I, is the strong axis second moment of area. These k-values range
from 2.4 to 1.1 and are summarized in Table 3, 3™ column. In a similar way required k-values

for HEA beams were obtained [4], also summarized in Table 3.
5.2 Imperfection approach 2: LTB mode with Eq. (1) size

Fig. 7 shows the results for an [PE240* beam for imperfection approach 2, with the imperfec-
tion shape based on the LTB mode, and the imperfection size determined with Eq. (1). Similar

Ln
Ln
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Fig. 9: Required k-values to get ,; r¢, to the target value for IPE beams with Ay =09

Table 3: Required k-values for rolled sections

Section Limits Imperfection approach 1 Imperfection approach 2
I L,
hib<2.0 k:70.34]—-‘+5.60 k:—0_13]_-‘+2.44
IPE I I
hilb>2.0 Ir:—0.0171—y+2.§5 k=—0_017‘l_-"+1_44
I, I,
hib<1.0 k:—6.907‘—+20.40 k=—1.69]—'+5.39
I, e 2!
1.0<h/b<12 k:-0.117+1_63 sz(}_l}]f";.}_()j
HEA = z

i
1.2<h/b<20 f(:vO.{)411;'+1.70

I
k=-0.027 }‘— +0.94

I,
hib>2.0 k:—o.oosj—-‘+i‘21

Ly
k= 70,0087‘—-& 2.20

results were obtained for IPE600* and HEA300* beams [4]. In a similar way as described in
section 5.1, required k-values were obtained [4], see Table 3, last column. The required -
values for IPE beams range now from 1.2 to 0.7 [4], still substantially greater than 0.5, but far

better than for imperfection approach 1 when neglecting torsion, see Fig. 9.
3.3 Imperfection approach 3: L'TB mode with Eq. (2) size

Fig. 10 shows the results for IPE240* and HEA300* beams for imperfection approach 3, with
the imperfection shape based on the LTB mode, and the imperfection size determined by Eq.
(2). For TPE240% beams, all results are satisfactory below the 5% upper limit. For HEA300*
beams with #/b<1.2, the results are close to or even slightly above the 5% upper limit. More
beams have been investigated to find similar results [4]. It can be concluded that this imper-
fection approach, as perhaps may have been expected, leads to consistent results, with the ad-
ditional benefit that no k-value is needed.
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0.2 ¥ 02 &
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Xer[2,3] Xt j2,3]
IPE240% HEA300%
Fig. 10: Comparison of ;7 g, With 7, 1, ;) for imperfection approach 3
.onclusions

.ree different imperfection approaches were studied to be used in GMNIA calculations for
LTB of beams in bending. It is shown that imperfection approach 1, using the FB buckling
mode as imperfection shape and Eq. (1) for obtaining the imperfection size, requires k-values
far greater than the recommended value k= 0.5 in cl. 5.3.4(3) of EN 1993-1-1. Also imperfec-
tion approach 2, using the LTB buckling mode as imperfection shape and Eq. (1) for the im-
perfection size, requires k-values substantially greater than k = 0.5, the greatest value being
1.2, indicating that this approach is far better than imperfection approach 1. Consistent results
were obtained for imperfection approach 3, using the LTB buckling mode as imperfection
shape and Eq. (2) for the imperfection size. This imperfection approach does not need a k-
value and is advised to be used in the next version of EN 1993-1-1.
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