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Summary

Stability domains computation and stabilization of nonlinear systems:
implications for biological systems

The research presented in this thesis considers the stability analysis and feedback stabiliza-
tion of nonlinear continuous time dynamical systems that arise in biomedical and biological
applications. In particular, these applications can be classified in two categories with respect
to the modelling approach. Thus, we consider evolutionary (population interaction) mod-
els, which are used for characterizing tumor or HIV dynamics and biochemical reactions
models, which are common for describing feedback loops in regulating organ functions, as
it is the case of the hypothalamic–pituitary–adrenal (HPA) axis, or the genetic toggle switch
in gene regulatory networks. These classes of models are either polynomial or rational
(involving Hill type of rational terms). Such nonlinear models exhibit multiple equilibria
corresponding to healthy or non–healthy clinical situations. The analysis of the stability
properties of these equilibria is useful for diagnosis and treatment assessment, while by
feedback stabilization an optimal personalized treatment strategy can be indicated to clini-
cians.

The stability analysis problem for the underlying classes of systems translates into com-
puting domains of attraction of equilibria of interest. The feedback stabilization problem is
aimed at either enlarging the domain of attraction or at destabilizing one equilibrium and
stabilizing another, i.e. by steering the system trajectories that are already converging to a
particular equilibrium to another equilibrium. The tool for answering the problems above
consists of Lyapunov functions. Despite the extensive ongoing research in the community
for providing either explicit forms of Lyapunov functions or constructive computational
methods aimed at estimating domains of attraction, a general, systematic methodology has
not yet been proposed for nonlinear systems. In order to use Lyapunov functions as a com-
putational tool for challenging, nonlinear dynamics arising in mathematical biology, draw-
backs of existing methods such as conservativeness and computational complexity need to
be addressed.

We proceed, in Chapter 1, by providing a motivating example relating biological pro-
cesses to aspects from nonlinear systems theory, together with an overview of the types of
dynamics considered and related Lyapunov stability theory concepts. The chapter concludes
with a summary of the contributions and corresponding publications.

In Chapter 2, one of the constructive results for computing domains of attraction based
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on rational Lyapunov functions will be described. Similar to other type of Zubov’s method
approaches, this result yields a recursive approach towards estimating a maximal Lyapunov
function. Based on this, we provide a procedure which generates a rational control Lya-
punov function and a polynomial stabilizer. For polynomial systems, we indicate that the
existence of a polynomial feedback stabilizer is guaranteed by the existence of a rational
control Lyapunov function. Furthermore, rational Lyapunov functions lead to a Lyapunov
condition that can be verified in a tractable manner. We illustrate the proposed procedure
for the stabilization of the population co–existence equilibrium of a predator–prey model
describing tumor dynamics.

In Chapter 3, we derive a new stabilization approach which can be used for tumor im-
munotherapy and it is based on a switching control strategy defined on domains of attraction
of equilibria of interest. For this, we consider a recently derived model which captures the
interaction between the tumor cells and immune system through predator–prey competition
terms. Additionally, it incorporates the immune system’s mechanism for producing hunt-
ing immune cells, which makes the model suitable for immunotherapy strategies analysis
and design. For computing the domain of attraction of an equilibrium of interest, maximal
rational Lyapunov functions are employed, which can be systematically computed for non-
linear systems as shown in Chapter 2. The proposed procedure confirms observations from
medical practice and provides a useful support tool for model–based cancer therapy design
and testing. The analysis and stabilization methods described above, which are based on
rational Lyapunov functions are tailored to provide nonconservative results for polynomial
systems.

To address nonpolynomial nonlinear dynamics, in Chapter 4, we derive a new, Massera–
type Lyapunov converse construction which can be applied to systems with any type of non-
linearity, as long as some regularity conditions are satisfied. This construction is enabled
by imposing a finite–time criterion on the integrated function. Compared to standard con-
verse theorems, which either integrate up to infinity or assume global exponential stability
and integrate over a finite time interval, we relax the assumption of exponential stability
to KL–stability, while still allowing integration over a finite time interval. The resulting
Lyapunov function can be computed based on any K∞–function of the norm of the solution
of the system. In addition, we show how the developed converse theorem can be used to
construct an estimate of the domain of attraction. A similar Yoshizawa–type construction
which offers a computationally attractive alternative to the Massera construction, as there is
no integral to compute, is also developed. The freedom to choose any norm as a candidate
function, which is allowed by the finite–time criterion, in turn, requires knowledge of the
system’s solution over a finite period of time. This offers a trade–off between the classical
Lyapunov construction, where the solution is not needed, but the candidate function cannot
be chosen as freely.

To enable construction of Lyapunov functions via the converse results proposed in Chap-
ter 4, in Chapter 5 two finite–time verification and computation methods are proposed. The
first one is based on piecewise affine approximations of the solution of the system and nu-
merical approximations of the Massera–type Lyapunov function. This leads to continuous
and piecewise affine Lyapunov function candidates, for which an optimization problem is
solved to validate the obtained domain of attraction estimate. When obtaining a numerical
approximation of the solution is computationally tedious, as it can be the case for higher
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order nonlinear systems, then we propose an indirect type of approach, starting from the
linearized dynamics, however in terms of the finite–time Lyapunov function concept.

In Chapter 6, the nonevolutionary biological applications are considered. More specif-
ically, the tools developed in Chapters 4 and 5 are used to compute domains of attraction
for models which are aimed at describing the HPA axis behavior and genetic regulatory
networks such as the toggle switch and the represillator. The toggle switch is characterized
by bistability, while bistability in the case of the HPA corresponds to hypocortisolic or hy-
percortisolic equilibria and relates to disorders such as type 2 diabetes. The stabilization
problem for this class of systems is also addressed, via the Massera construction.

Since biological systems are subject to uncertainties coming from parameter estimation
errors, for example, and disturbances, in Chapter 7, we address robustness issues when
computing Lyapunov functions as developed in Chapter 4, by means of the (input to state
stability) ISS framework. As such, we provide an ISS LF construction procedure and we
consider the problem of ISS stabilization by using Sontag’s universal controller formula.

Chapter 8 concludes the thesis with a concise overview of the main achievements and
an outlook to open problems, relevant future research directions and possible implications
for medical practice of the developed tools and results.
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Basic notation and definitions

Sets, set operations and real numbers

The following standard sets and set operations are considered:

N, R, R≥0, R>0,
Z, Z≥0, Z>0

The set of natural numbers, real numbers, of nonnegative reals, of
positive reals, of integers, of nonnegative integers and of positive
integers;

Rn+ The positive orthant;
S◦, ∂S, S The interior, boundary and closure of S;
N[a:b] The set defined by {a, a+ 1, . . . , b− 1, b}, a, b ∈ N, a < b;
Z[a:b] The set defined by {a, a+ 1, . . . , b− 1, b}, a, b ∈ Z, a < b;
bxc The largest integer which is less or equal than x.

• A subset S of a topological space X is called compact if every open cover of S has a
finite subcover. Every closed, bounded subset of Rn is compact.

• A set S ⊆ Rn is called proper if it contains the origin in its interior.

• By p ∈ R[x1, x2, . . . , xn] we say that p belongs to the set of all polynomials in
x1, . . . , xn with coefficients in R. A subset of Rn is called semialgebraic [63] if it
is a finite union of finite intersections of sets defined by a polynomial equation or
inequality.

Vectors, matrices and norms

The following definitions regarding vectors and matrices are used:

λmax(Z), λmin(Z) The largest and the smallest eigenvalue of the symmetric matrix Z;
‖x‖, ‖A‖ An arbitrary norm of x ∈ Rn and the induced norm of A, i.e.,

max{‖Ax‖ : x ∈ Rn, ‖x‖ = 1};
‖x‖p, ‖x‖∞ The p-norm, p ∈ Z≥1 and the infinity-norm of the vector x, i.e.,

(
∑n
i=1 |[x]i|p)

1
p and maxi∈Z[1,n]

|[x]i|, respectively;
µ(A) The logarithmic norm of a matrix (or the matrix measure), i.e.,

µ(A) = lim
h→0+

‖I+hA‖−1
h ;

µ2(A), µ2,P (A) The logarithmic norm induced by the 2–norm, and by the 2–
weighted norm, i.e., µ2(A) = λmax( 1

2 (A + A>)), µ2,P (A) =

λmax(
√
PA
√
P
−1

+(
√
PA
√
P
−1

)>

2 );
Z � 0, Z � 0 The symmetric matrix Z ∈ Rn×n is positive definite and positive

semidefinite.
Furthermore, let Bρ(p) denote the ball of radius ρ centered in p ∈ Rn, defined as Bρ(p) =
{x ∈ Rn | ‖x − p‖ ≤ ρ}. Given a point p ∈ Rn we define a neighborhood of p, N (p), as
the ball Bρ(p) for some radius ρ. By N (p)+ the projection of N (p) on Rn≥0 is denoted.
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Basic functions and classes of functions

The following definitions and classes of functions are distinguished:

id The identity function, i.e., id : R → R, such that id(s) = s.
α ◦ α̃(·) The composition of α : R → R with α̃ : R → R, i.e., such that

α ◦ α̃(r) := α(α̃(r)) for all r ∈ R;
K, K∞ The class of all functions α : R[0,a) → R≥0, a ∈ R>0 that are

continuous, strictly increasing and satisfy α(0) = 0 and the class of
all functions α ∈ K with a =∞ and such that limr→∞ α(r) =∞;

L The class of all continuous functions σ : R≥0 → R≥0 which are
strictly decreasing and lims→∞ σ(s) = 0;

KL The class of all continuous functions β : R[0,a) × Z≥0 → R≥0,
a ∈ R>0 such that for each fixed s ∈ Z≥0, β(r, s) ∈ K with respect
to r and for each fixed r ∈ R[0,a), β(r, s) is decreasing with respect
to s and lims→∞ β(r, s) = 0.

• A function V : A → R, where A ⊆ Rn is a proper set, is called positive definite
(positive semidefinite) on A if

V (0) = 0 and V (x) > 0 (V (x) ≥ 0),

for any x ∈ A\{0}. V (x) is called negative definite (negative semidefinite) if−V (x)
is positive definite (positive semidefinite).

• A function f : Rn → Rn is called K–bounded if there exists a function α ∈ K such
that

‖f(x)‖ ≤ α(‖x‖), ∀x ∈ Rn.
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List of abbreviations
The following abbreviations are used throughout this thesis:

AS asymptotically stable
GAS globally AS
LF Lyapunov function
CLF control Lyapunov function
RCLF rational control Lyapunov function
DOA domain of attraction
PWA piecewise affine
CPA continuous piecewise affine
FTLF finite time Lyapunov function
ISS input to state stable
HPA hypothalamic-pituitary-adrenal
RNA ribonucleic acid
mRNA messenger RNA
SOS sum of squares
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Chapter 1

Introduction

1.1 Background
Mathematical biology can be essentially defined as the research field of applied mathematics
to the biomedical sciences including biology, biotechnology, medicine and even psychol-
ogy. Mathematical models have as main purpose the deductive explanation of the under-
lying biological processes that occur in a particular observed phenomenon. Consequently,
models which are able to capture the essence of various interactions, whether occurring in
competing populations in evolutionary processes or in biochemical reactions, provide an
understanding and predictions of the outcome of these interactions. For a comprehensive
overview of problems arising in biology which can be addressed and understood by means
of deterministic dynamical models (i.e., continuous–time differential equations) see for ex-
ample, [94] and [73]

When the purpose of studying biological processes is to facilitate societal tasks such
as: disease diagnosis, disease monitoring and predictions, and ultimately, optimal treatment
design and biotechnologies, the a very suitable approach is to analyze their dynamical mod-
els. Whether these processes are inherently occurring in nature, or they are synthetically
engineered to generate new systems or to mimic existing ones, they often lead to complex,
nonlinear system descriptions.

The nonlinear differential equations models which arise from biological processes are
most often derived from applying the following principles. Generally, for systems regu-
lating a certain substance, the law of mass action is applied for the biochemical reaction
networks characterizing the process, which together with the involved feedback loops lead
to Hill function types of nonlinearities [36]. When population interactions are involved,
a population ecology perspective is used for deriving evolutionary models with predator–
prey/competing type of dynamics. As for systems used to model and design synthetic gene
networks, biochemical rate equations formulations of gene expressions provide models with
Hill–type nonlinearities.

Although biological processes are relevant in a broad range of application areas, i.e.,
from the (bio)medical domain to synthetic fuel production, in this thesis the focus is on
biomedical systems. Namely, a nonlinear systems theory approach is considered for es-
tablishing supporting tools for disease diagnosis and qualitative predictions, as well as for
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treatment design.
In the recent years, with the exponential increase in incidence cases of chronic diseases

like type two diabetes or becoming chronic diseases such as cancer, mathematical tools have
become more and more popular in the study of such diseases [88], [38]. This is because
mathematical models can provide information beyond sequential diagnostics or check-ups,
which is concerned with the dynamical evolution of a disease or dysfunction.

The human body is the most complex and efficient existing control system. It is com-
posed of switching positive and negative feedback loops which act at maintaining opti-
mal organ functioning and optimal hormone values, fast response to stress and rejection of
viruses and bacteria; thus, maintaining homeostasis [116]. At a cellular level, immune cell
populations are constantly competing with invader populations such as tumor cells or bacte-
ria in a predator–prey type of interaction [93]. All of these functions, but also corresponding
disorders, can be described by nonlinear dynamics. Take for example the Hypothalamus–

CRH 

ACTH 

Cortisol 

Metabolic effects 

+ 

GR 

MR 

_ 

_ 

Adrenal gland 

Hypocortisolism 

Adrenal fatigue(burnout) 

Hypercortisolism 

Insuline resistance 

Type 2 diabetes 

Hippocampus 

Pituitary gland 

Hypothalamus 

_ 

Figure 1.1: The HPA axis and disorder effects.

Pituitary–Adrenal Axis (HPA) system depicted in Figure 1.1. The three components inter-
act via three hormones: corticotropin release hormone (CRH), adrenocorticotropic hormone
(ACTH) and cortisol. While the secretion of CRH in the hypothalamus is stimulated by the
hippocampus, cortisol inhibits the secretion of CRH with a negative feedback both at the hy-
pothalamus level, as well as through a negative feedback with the glucocorticoid receptors
(GR) in the hypothalamus. In turn, the hypothesis that cortisol exhibits a positive feedback
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1.1. Background

with the mineralcorticoid receptors (MR) in the hippocampus has led to better patient data
fit in the literature [6]. Cortisol also inhibits the secretion of ACTH in the pituitary gland,
which is stimulated by CRH. All these feedback mechanisms work simultaneously in the
HPA axis to maintain an optimum level of cortisol. Whenever the HPA axis is not func-
tioning properly, too high or too low levels of cortisol have many metabolic effects that can
lead to insulin resistance and diabetes, as an example in the case of hypercortisolism, or
to adrenal fatigue, as an example in the case of hyporcortisolism. Other consequences are
related to heart diseases or tyroid disfunctions.

The correspondence between problems in biological systems and nonlinear systems the-
ory is summarized in Table 1.1 and will be elaborated as follows. Maintaining homeostasis
in certain systems in the body, or at a tissue level in the case of diseases such as cancer,
translates to maintaining a stable, “healthy” equilibrium of their corresponding dynamical
models. Information about the set of all possible initial states which converge to the stable
equilibrium is relevant for diagnosis but also for predictions. This set is called the domain of
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(b)

Figure 1.2: HPA axis: (a) - unique stable equilibrium marked with black and a set of trajec-
tories, bistability; (b) - bistability: hypercortisolic (upper red) stable equilibrium, hypocor-
tisolic (lower red) equilibrium and healthy cortisol value unstable equilibrium (black).

stability or the domain of attraction (DOA) of the equilibrium of interest. Throughout this
thesis, the diagnosis and prediction problem is closely related to the problem of computing
the DOA. For example, in Figure 1.2(a) we illustrate the case when the HPA axis system
has a healthy cortisol level as the only stable equilibrium, shown with black in the plot.
This stable equilibrium value corresponds to a well functioning HPA axis, which is able to
maintain homeostasis. Specifically, this means that if the body is subject to stress (physical
or psychological) the homeostasis state is disrupted and the cortisol level is affected, but
the HPA axis is able to bring the cortisol value back to normal. The trajectories displayed
in Figure 1.2(a) correspond to a set of initial states from which the HPA axis will always
converge to the healthy equilibrium. Thus, the displayed set of initial states is a subset of
the DOA of the black equilibrium.

In general, nonlinear systems exhibit multiple stable and unstable equilibria. In the

15



case of nonlinear biological systems, bistability, i.e., two stable equilibria, is most often en-
countered. For the particular case of the HPA system introduced above, the hypercortisolic
and hypocortisolic case correspond to two stable equilibria with high/low cortisol values
as shown in Figure 1.2(b). In this case the black (healthy) equilibrium is unstable. Some
trajectories will converge to the hypercortisolic equilibrium and some to the hypocortisolic
one, depending on the initial state. However, for certain initial conditions, the correspond-
ing trajectories will first converge to the healthy equilibrium state (black), and since this one
is unstable, they will further converge to either one of the nonhealthy ones. Therefore, if
a patient is to be diagnosed based only on measuring the level of cortisol, that patient may
appear to be healthy (while the HPA axis is dysfunctional), and after some time he/she will
become hypocortisolic depressed, for example, and cannot be treated without drug influ-
ence.

The switch to bistability occurs in the case of HPA axis dysfunction and it is related to
changes in the parameter values of its corresponding model. In such cases, the purpose of
the treatment is to either control the states of the system to the DOA of the healthy equi-
librium, or to prevent trajectories from converging to an undesired equilibrium. Thus the
treatment design problem translates into a stabilization problem for the considered models.

In Table 1.1 we summarize the key aspects from biological systems, described above,
which can be best understood by investigating their dynamical models. In particular, we
map concepts and problems from the biological domain to corresponding concepts and
problems in the nonlinear systems theory area.

Mapping of research problems
Biological systems Nonlinear systems theory

predator–prey models polynomial nonlinearities

biochemical reaction networks rational nonliniearities (Hill type)

maintaining homeostasis stable equilibrium

diagnosis and prediction compute the DOAs and stability boundary

treatment design case 1 stabilization of unstable equilibrium

treatment design case 2 enlarge DOA of stable equilibrium

Table 1.1: A summary of problems in the biological domain which can be addressed by
means of dynamical systems.

1.2 Research objectives
Lyapunov functions (LFs) are the main tool for nonlinear systems stability analysis. The
construction or computation of LFs has been long studied in the literature since they were
first introduced in [84] as they provide information about the solution of a nonlinear system
without computing it. See in Figure 1.3(a) an illustration of the LF concept, with respect to
the time evolution of the states of a second order dynamical system. Specifically, a given
candidate function is a LF if it decreases in time with respect to the system’s solutions for
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1.2. Research objectives

all positive time values. In Figure 1.3(b) we show an example of a function which is not a
LF with respect to the shown system’s solutions. Naturally, the decrease condition should
hold for all initial conditions in some set around the origin when we talk about local LFs,
and for all initial conditions in Rn when we talk about global LFs. Formally, we say that a
function W : Rn → R≥0 is a LF for a system ẋ = f(x) if

a) W (x) is positive definite and radially unbounded on Rn, and,

b) its derivative along the trajectories of ẋ = f(x), Ẇ (x) = ∇W>f(x), is negative defi-
nite on some proper set A ∈ Rn.

Computing LFs is relevant for the problems in Table 1.1 because their level sets provide
approximations of the DOA of an equilibrium. Generally, in the case of nonlinear systems
a given function is a valid LF for that system only in a region around the equilibrium where
the function is decreasing with respect to the system’s solutions, i.e. Ẇ (x) < 0. This region
will be defined by the largest level set of the LF such that the decrease condition is satisfied.
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Figure 1.3: Illustration of the Lyapunov function concept.

Often, computing LFs is very difficult if not impossible for nonlinear systems. We refer
to the books [77] and [80] for an extensive introduction, and to [60], [121], [122] for a more
in depth exposition of the LF concept and related methods. For systems which are subject
to control inputs, control Lyapunov functions (CLFs) enable the computation of feedback
stabilizers. While LFs based tools are useful for analysis and stabilization of nonlinear
systems without knowledge of the system’s solutions, constructing such functions is a very
challenging problem. In particular, when the computed LFs should lead to nonconservative
DOA estimates.

By nonconservative DOA estimates, in this thesis, it is meant that the resulting DOA
estimate generated by the LF satisfies one of the following criteria. In the case of an unique
stable equilibrium, the estimate captures the largest state space region when a comparison is
possible, or its boundary is sufficiently close to possibly existing unstable equilibria [28]. In
the bistability case, as shown in Figure 1.2(b), the DOA estimates of the two stable equilibria
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are called nonconservative if their boundaries are sufficiently close to the separating unstable
equilibrium [29].

Local stability of equilibria can be easily inferred based on Lyapunov’s indirect method
which uses the system’s linearization around the equilibria, or even by the Lyapunov di-
rect method. The latter guarantees stability in the set where there exists a valid LF. Albeit
a quadratic LF can be computed for a general nonlinear system, it will provide stability
guarantees (DOA estimate) only in a small area around the origin. In turn, converse Lya-
punov theorems are concerned with the construction and computation of LFs under stability
assumptions.

For the class of biological systems considered in this thesis, as good as possible DOA
estimates are needed both for accurate diagnosis and prediction and for control design.
Consider again the HPA example. If a patient’s measured cortisol level is outside of the
healthy range, but it belongs to the DOA estimate of a healthy equilibrium, then it is known
that the HPA axis will naturally regulate the cortisol level after some time, without the
influence of treatment. While, without this information, applying treatment might in fact
destabilize the healthy equilibrium and have the opposite effect.

In this thesis, the focus is on the construction of LFs such that they lead to noncon-
servative DOA estimates and facilitate the computation of feedback stabilizers, when local
stability properties are known. As such, we consider results based on the converse of Lya-
punov’s second method (or direct method) for general nonlinear systems. Work on converse
based constructions has started around the 1950s with the crucial results in [90] and later
the alternative [121], which led to a considerable amount of subsequent work, out of which
we point out to the more recent contributions in [87], [115] and [76]. As for existing results
which are specifically aimed at providing relevant DOA estimates while computing a LF,
we refer to the approach of Zubov in [122], which yields an analytic formula for a LF. Stem-
ming from Zubov’s method, a recursive procedure for constructing a rational LF, which has
computational advantages with respect to the one in [122], was proposed in [118].

In the case of nonlinear systems which are polynomial, a significant amount of research
has been dedicated for computing polynomial LFs. We refer to [96] and developments of
the authors of [96]. The therein developed tools were enabled by the fact that polynomial
nonlinearities in the systems allow to formulate the LF computation problem in terms of
sum–of–square inequalities. However, the applicability of sum–of-square tools is limited
even within the polynomial systems class, since there exist polynomial systems which are
stable and do not admit a polynomial LF [3]. The advantage of sum–of–square type of
methods is that they allow to formulate the involved optimization problems as Linear Ma-
trix Inequalities [25], [26], [61]. Nevertheless, similarly to Zubov type of approaches, for
general nonlinear systems, conservativeness is introduced in the computations due to Taylor
approximations of the dynamics.

For what concerns state–of–the–art LF numerical, constructive methods, see the recent
developments of the author of [57] and subsequent works, out of which we single out [12]
and the subsequent [15], where the Massera construction is exploited for generating piece-
wise affine LFs and [59] and the subsequent [58] where the Yoshizawa construction is used.
These constructions do not depend on the type of nonlinearity, however they rely on state
space simplicial partitions which can lead to a heavy computational load for higher order
complex systems.
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Despite the extensive work on the topic of providing a converse to Lyapunov’s theorem,
the existing constructive approaches have two main drawbacks. Either they are specific to
classes of systems, e.g. polynomial or homogeneous [97], which renders them unapplicable
to other classes, or they will provide conservative results, due to approximations. In the case
of general computational approaches, the most recent ones involve state space partitions
and, thus either scalability with the state space dimension might be problematic, or for more
complex systems, such as those from with biological applications, very fine partitions are
needed, leading to high computational demands.

For the problem of stabilization, in [7] it was shown that the existence of a smooth
stabilizer is equivalent with the existence of a smooth CLF for a given nonlinear control
system, thus allowing for computing feedback stabilizers by means of CLFs. Consequently,
in [106] a general formula for computing the stabilizer was provided. However, either the
CLF or the stabilizer need to be known to compute a stabilizer or a CLF, respectively.

As for the underlying application, there is more and more research oriented at us-
ing mathematical or system theory based tools for answering problems in biology and/or
biomedical systems. A more comprehensive overview will be given in the corresponding
chapters. However, we single out here the opinion papers [42] and [67], which advocate the
need for integrating control theory and information from dynamical models when design-
ing treatment strategies for cancer. The relevance of computing trapping regions (DOAs)
in the case of HPA dysfunctions related to diseases such as adrenal fatigue and diabetes is
promoted in [6] and [54].

1.2.1 Research question

If mathematical tools, and in particular dynamical models are to be considered for providing
an understanding of the underlying biological processes behind certain diseases, dysfunc-
tions or when engineering genetic systems with specific properties, then nonlinear systems
specific concepts and problems need to be addressed.

For the biomedical subclass of biological systems, the problems of diagnosis, treatment
evaluation or disease evolution prediction correspond to the problem of analysis of proper-
ties of equilibria of their dynamical descriptions. The corresponding task is the computa-
tion of DOAs. Since diseases can be related to stability properties of equilibria of nonlinear
models, the treatment design problem is related to the problem of feedback stabilization. In
view of the fact that in this thesis we divide the considered biological models into polyno-
mial (evolutionary models) and rational (biochemical reactions models), for these classes of
systems we formulate the following research question.

Can we compute nonconservative DOAs and stabilizing feedback laws in a systematic,
reasonably computationally manner for nonlinear polynomial and rational systems?

In order to provide an answer to the research question the following subproblems are
addressed in the thesis.

Since a large set of biological systems can be described by polynomial models, Zubov
method type of approaches which rely on polynomial approximations of the dynamics, such
as the one in [118], are good candidates. Moreover, the procedure yielding a RLF is sys-
tematic, works at maximizing the estimate of the DOA in an iterative manner and it is not
computationally demanding. Furthermore, the polynomial models of the considered bi-
ological applications are rendered by evolutionary arguments, which often lead to a low
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number of interacting populations, ergo low system dimension. The drawback of this type
of approaches, and in fact of any constructive procedure, is that in most cases the level set
value of the resulting LF candidate which is included in the true DOA of the system, is not
known. Usually it is computed a posteriori via a nonlinear optimization problem. Compared
to other methods specifically developed for polynomial systems, such as those relying on
SOS formulations which yield a polynomial LF, the RLFs are more advantageous because
they are specifically constructed to provide approximates of the true DOA of the system.
Nonetheless, often for assessing the stability properties of biological/biochemical systems,
LF candidates which take into account the physical structure of the systems are considered.
Such functions are the Gibbs free energy functions [117]. The drawback of these functions
is that they rely on very good knowledge of the physical properties of the system.

RLFs enable two stabilization procedures derived in this thesis. Firstly, due to the it-
erative constructive property of the computation algorithm, a feedback stabilizer can be
simultaneously computed with the RLF. This will address the problem of enlarging the
DOA of an equilibrium, and consequently, the treatment design case 2 research problem in
Table 1.1. Secondly, a switching control law defined on DOAs of successive equilibria is
developed in order to steer trajectories from an unhealthy equilibrium to a healthy one, and
thus addressing the treatment design case 2 research problem in Table 1.1.

As for models describing biological systems which are not polynomial, they cannot be
studied by means of the same tools as those mentioned above without having to deal with
approximation errors. The alternative is to use constructions which are based on functions
of the state of the system, similar to Massera/Yoshizawa formulations [90], [121], computed
over finite or infinite time intervals. To allow computability, often such methods are based
on estimates of the solution which in turn reduce the class of systems that can be considered
in terms of the stability type (e.g. exponential). This problem is addressed in the thesis and
alternative constructions are proposed.

When the framework for computing LFs relies on the solutions of the system, the ob-
servation that a given function need not be strictly decreasing to ensure stability (as shown
in Figure 1.3(b)) is in order. In [2] and [71] this observation was exploited to derive alter-
native “Lyapunov” conditions for stability. In fact, when the purpose is to compute non-
conservative DOAs, the very strict decrease condition V̇ < 0 might introduce conservative-
ness [22], [4] when constructing a function of a certain type which iteratively expands the
DOA estimate. The key problem to be addressed here is the relaxation of the LF decrease
condition such that it allows for true LF constructions (of Massera/Yoshizawa type) and a
systematic verification approach which is applicable to the considered class of biological
systems.

Lastly, as one of the broad scopes of the mathematical biology area, and also of this
thesis to a certain extent, is to provide information about biological processes which can be
used for predictions and support (treatment) design, the developed tools should accommo-
date modelling uncertainties and disturbances. To this end, the ISS framework is considered.

1.3 Outline of the thesis
The research framework and objectives formulated in Section 1.2 can be decomposed in
terms of the following problems: construction of LFs, computation/verification of LFs,
stabilization by means of CLFs and applicability of the above to the considered biological
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1.3. Outline of the thesis

applications. Consequently, the answer to the research question posed in Section 1.2.1 will
be elaborated in the remainder of this thesis following the outline below.

In Chapter 2 we consider one of the constructive results for computing LFs, which then
leads to computing domains of attraction. We rely on a procedure based on constructing
a rational LF, iteratively (similarly to the Zubov method) with the purpose of estimating a
maximal LF. The latter function converges to infinity when the state is close to the boundary
of the DOA. Furthermore, it is based on polynomial approximations of the function describ-
ing the system. Following a similar reasoning, for addressing the stabilization problem we
propose a procedure which generates a rational control LF and a polynomial stabilizer. For
polynomial systems, we indicate that the existence of a polynomial feedback stabilizer is
guaranteed by the existence of a rational control Lyapunov function. Two examples, the
Van der Pol oscillator and the stabilization of the population co–existence equilibrium and
of the healthy state equilibrium (in the case of bistability) of a tumor dynamics model, are
shown for illustration purposes. This procedure, in general, is guaranteed to yield the best
results in terms of DOA computation and feedback stabilization for polynomial systems.
Whilst the same procedure can be applied to nonpolynomial systems, the resulting DOA
estimates will be highly dependent on the type of nonlinearity in the dynamics, and thus,
the approximating error terms in Taylor series expansion.

For polynomial models describing tumor growth, we make use of the RLF as a tool
for analysis and immunotherapeutic strategies design in Chapter 3. We propose a multiple
LFs approach for stabilizing the tumor dormancy equilibrium of evolutionary tumor growth
models, with emphasis on tumor immunotherapy considerations. The stabilizing control
law is based on a switching control strategy defined on domains of attraction of equilib-
ria of interest. We consider two evolutionary tumor growth models from the literature and
we point out their drawbacks with respect to treatment design considerations. As such,
by similar evolutionary considerations, we derive a new model which captures the mutual
effects of the tumor cells immune system interactions, through predator–prey competition
terms. Additionally, it incorporates the immune system’s mechanism for producing hunting
immune cells, which makes the model suitable for immunotherapy strategies analysis and
design. The advantage of considering RLF for analysis and treatment synthesis is that they
can be systematically computed. The proposed procedure confirms observations from med-
ical practice and provides a possibly useful supporting tool for cancer therapy design and
testing.

The analysis and stabilization methods described above, which are based on RLFs are
tailored to provide nonconservative results for polynomial systems. Many biological appli-
cations are not modelled by polynomial functions or their dynamics cannot be captured by
relatively low order polynomial functions. Therefore, in Chapter 4, we revisit constructions
stemming from Lyapunov converse results. Specifically, we look at Massera and Yoshizawa
type of LFs, enabled by imposing a finite–time decrease criterion on the involved function
of the state. This function will be called a finite time LF (FTLF). For a graphical illustra-
tion see Figure 1.3(b); the function V whose values in time, with respect to the depicted
solutions are plotted in blue, is a FTLF, which decreases after a finite time interval, unlike
a LF, which decreases at all times. By means of this approach, we relax the assumptions of
exponential stability on the system dynamics, while still allowing computation over a finite
time interval. The resulting LF can be computed based on any K∞–function of the norm
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of the solution of the system, in contrast with classical LFs which are generally defined by
special, complex functions. In addition, we show how the developed converse theorem can
be used to construct an estimate of the DOA. However, for either constructions the solution
needs to be known up to some finite time value.

The freedom in construction allowed by the finite–time criterion in turn, requires knowl-
edge of the system’s solution over a finite period of time in order to verify the finite–time
condition. In Chapter 5, we develop two options to address the verification problem. One
is based on linearization of the system around the equilibrium and computing a finite–time
integral/maximum of an “expanded” FTLF. The other option relies on previously introduced
ODE solutions approximation techniques by means of piecewise affine (PWA) approxima-
tions of the dynamics over a state space region. While the linearization approach leads to
an analytical form of a LF, the second case results in values of a LF which are interpolated
towards constructing a continuous PWA (CPA) LF.

In Chapter 6 the nonevolutionary biological applications are considered. More specifi-
cally, the tools developed in Chapters 4 and 5 are used to compute DOAs for models which
are aimed at describing the HPA axis behavior and genetic regulatory networks such as the
toggle switch and the represillator. The toggle switch is characterized by bistability, while
bistability in the case of the HPA corresponds to hypocortisolic or hypercortisolic equilibria
and relates to disorders such as type 2 diabetes. The stabilization problem for this class of
systems, via the Massera construction can be essentially addressed via the universal con-
troller proposed by Sontag in [106].

Since biological systems are subject to uncertainties coming from parameter estimation
errors, for example, and disturbances, in Chapter 7, we address robustness issues when
computing LF based on FTLFs by means of the (input to state stability) ISS framework. We
show that existence of ISS FTLFs implies ISS and it is equivalent with existence of ISS LFs.
As such, we provide an ISS LF construction procedure and we consider the problem of ISS
stabilization by using Sontag’s universal controller formula. The computational aspects are
handled via inherent (FT) ISS LF considerations.

Finally, in Chapter 8 a discussion on the developments in the thesis, applicability to real–
life applications from the biological and biomedical fields, drawbacks and future prospects
is reported.

1.4 Summary of publications
The results that are presented in this thesis have appeared in the publications listed below.

Chapter 2 contains results that were presented in:

• A.I. Doban and M. Lazar, “Domain of attraction computation for tumor dynamics”,
in the proceedings of the 53rd IEEE Conference on Decision and Control (CDC), Los
Angeles, 2014, pp. 6987-6992;

• A.I. Doban and M. Lazar, “Feedback stabilization via Rational Control Lyapunov
functions”, in the proceedings of the 54th IEEE Conference on Decision and Control
(CDC), Osaka, 2015, pp. 1148-1153.

Chapter 3 contains results that were presented in:
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• A.I. Doban and M. Lazar, “A switched systems approach to cancer therapy”, in the
proceedings of the 14th annual European Control Conference (ECC), Linz, 2015, pp.
2723-2729;

• A.I. Doban and M. Lazar, “An evolutionary-type model for tumor immunotherapy”,
in the proceedings of the 9th IFAC Symposium on Biological And Medical Systems
(BMS), Berlin, 2015, pp. 575-580;

• A.I. Doban and M. Lazar, “A Lyapunov-methods approach for tumor immunother-
apy”, accepted for publication in Mathematical Biosciences, submitted 2016.

Chapter 4 and Chapter 6 contain results that were presented in:

• A.I. Doban and M. Lazar, “Computation of Lyapunov functions for nonlinear dif-
ferential equations via a Massera-type construction”, submitted for publication to a
journal, 2016; online version can be found at http://arxiv.org/abs/1603.03287.

• A.I. Doban, M. Lazar, “Computation of Lyapunov functions for nonlinear systems
via a Yoshizawa-type construction”, accepted for publication in the proceedings of
the 10th IFAC Symposium on Nonlinear Control Systems (NOLCOS) 2016.

Chapter 5 contains results that were presented in:

• T.R.V. Steentjes, A.I. Doban and M. Lazar, “Construction of continuous and piece-
wise affine Lyapunov functions via a finite-time converse”, accepted for publication in
the proceedings of the 10th IFAC Symposium on Nonlinear Control Systems (NOL-
COS) 2016.

A discrete–time counterpart of the results in Chapter 4 where presented in:

• A.I. Doban and M. Lazar, “Stability analysis of discrete-time general homogeneous
systems”, in IFAC 19th Triennial World Congress, Cape Town, South Africa, 2014,
pp. 8642–8647.
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Chapter 2

Analysis and feedback stabilization
via rational Lyapunov functions

In this chapter, we consider the problem of computing nonconservative domains of attrac-
tion and feedback stabilizers for polynomial systems. One of the constructive results for
computing domains of attraction based on rational Lyapunov functions is presented. Simi-
lar to other type of Zubov’s method approaches, this result yields a recursive routine towards
estimating a maximal Lyapunov function. Based on this, we provide a procedure which gen-
erates a rational control Lyapunov function and a polynomial stabilizer for nonlinear sys-
tems described by analytic functions satisfying some regularity conditions. Furthermore, an
improved estimate of the domain of attraction of the closed–loop system can be computed
by means of previously introduced rational Lyapunov functions. For polynomial systems,
we show that the existence of a polynomial feedback stabilizer is guaranteed by the exis-
tence of a rational control Lyapunov function. We illustrate the proposed procedure for the
stabilization of the population co–existence equilibrium of a predator–prey model describ-
ing tumor dynamics.

2.1 Introduction
Computing an estimate of the DOA for general nonlinear systems is a very complex prob-
lem, as indicated in Chapter 1. For some of the existing approaches, we refer to the work
in [29], where the computation of the DOA is based on some topological considerations, or
the work in [30], where some gridding techniques are used. Some other works include [47],
where ellipsoidal estimates of the DOA of second order nonlinear systems with certain
model properties are considered. Except for the method proposed in [29], the above cited
papers are based on the use of quadratic LFs. Often the level sets of these functions are un-
able to capture the nonlinear behavior of the system outside a small region around the origin.
The difficulty in computing DOA estimates for nonlinear systems is inherited from the prob-
lem of finding an explicit form of a suitable LF. We single out, Zubov’s method [122] for
providing an analytic expression of a LF, which is iteratively updated towards improving
the DOA estimate that it generates. Stemming from this method, in [118], the concept of
a maximal LF has been introduced, which can be used to estimate the DOA exactly, and
an iterative procedure based on RLFs has been developed. This approach is particularly
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advantageous because it can provide an analytic expression of the boundary of the DOA
(estimate) and it converges after very few iterations.

As introduced in Chapter 1, the problem of computing the DOA is aimed at answering
the analysis problem for the class of systems considered in this thesis, namely nonlinear
systems describing biological and biomedical processes. However, for enlarging the com-
puted DOA or for destabilizing one equilibrium and stabilizing another, the computation of
feedback stabilizers is considered.

The classical problem of stabilization of nonlinear systems has been substantially stud-
ied in the control theory community. We refer to [107] for a review of some of the main
stabilization techniques. One of the major results was established in [7], where it was shown
that the existence of a smooth stabilizer is equivalent with the existence of a control Lya-
punov function (CLF) for a given nonlinear control system, thus allowing for computing
feedback stabilizers by means of LFs. Stemming from this result, in [106] a general for-
mula for computing the stabilizer by using a CLF is given. However, the CLF needs to be
known in advance, which again requires LF computing/constructing techniques for general
nonlinear systems. Nonetheless, certain properties of the system dynamics can be exploited
to establish general results. In [97] it has been shown that a homogeneous vector field ad-
mits a homogeneous LF. In [53] it has been shown that there exists a homogeneous CLF for
any asymptotically controllable (AC) control system, and this result can be applied to check
local AC for nonlinear systems which can be approximated by AC homogeneous systems.
In [101] a condition for stabilization of nonlinear systems has been derived, provided that
there exists a homogeneous LF for the closed–loop system. Recently, a procedure by which
a continuous piecewise affine parametrization for CLFs is computed for nonlinear systems
on a simplicial triangulation of the state space was proposed in [9], however it leads to a
mixed integer linear program.

For polynomial vector fields, the usual go–to approach is to use sum–of–squares (SOS)
techniques to compute a polynomial LF, [96]. Using similar techniques, in [27], rational
LFs defined as the fraction between polynomial expressions computed using SOS methods
have been derived. Some novel results [102], consider for the computation of polynomial
LFs/polynomial feedback law the Bernstein polynomial basis, as it allows for checking
positivity of polynomials on simplices simply by checking positivity of some coefficients.
However, there exist asymptotically stable polynomial systems which do not admit a poly-
nomial LF [3].

When the purpose of computing LFs is to estimate the DOA of a given nonlinear system,
a LF which generates the best estimate of the DOA is needed. For nonautonomous systems,
a CLF needs to be constructed such that the DOA of the closed loop system satisfies certain
requirements. For example, in constrained stabilization it should cover the constraint set
as good as possible. As for existing Zubov type results, CLFs can also be constructed as
the solution to a generalized version of the Zubov equation as proposed in [24] and the
references therein.

In this chapter, we consider the problem of feedback stabilization for continuous–time
nonlinear systems by means of rational control Lyapunov functions (RCLFs) of the form

V (x) =

∑∞
i=2Ri(x)

1 +
∑∞
i=1Qi(x)

,
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2.2. Computation of DOAs based on RLFs

where Ri and Qi are homogeneous polynomials of order i. We develop a recursive proce-
dure that generates simultaneously the coefficients of the polynomials in the RCLF V , and
the coefficients of a polynomial feedback stabilizer

k(x) =

∞∑
i=1

Ki(x),

provided that the system to be stabilized is described by an analytical, sufficiently regular
function and it is affine in the control input. Analytical functions can be expressed as infinite
sums of homogeneous polynomials (as for example Taylor series expansion), thus allowing
for the constraints in the above mentioned recursive procedure to be linear. For polynomial
systems, it will be shown that if the system admits a RCLF, then there always exists a
polynomial feedback stabilizer for that system.

The introduced approach yields a feedback stabilizer while computing a RCLF. Then,
by computing a RLF for the controlled system in closed loop with the stabilizer, the best
DOA estimate for that k(x) will be produced.

The proposed procedure will be illustrated first on the Van der Pol oscillator and then
on a model from biomedical systems which describes the predator–prey type of interaction
between normal cell and cancer cells in tumor development. This model has three equilibria,
and depending on the model parameters one or two of the equilibria are stable. We will
consider computing a feedback stabilizer for the tumor dynamics model, with respect to
a desired healthy equilibrium. From a biomedical interpretation, the role of the stabilizer
could be represented, for example, by immunotherapy in clinical treatment.

2.2 Computation of DOAs based on RLFs
Consider the continuous–time nonlinear autonomous system

ẋ = f(x), (2.1)

where f : X → Rn is a locally Lipschitz map from the domain X ⊂ Rn into Rn.

Definition 2.1 The origin is an asymptotically stable (AS) equilibrium for the system (2.1)
in the proper set S ⊆ Rn, if, for each ε > 0, there exists δ = δ(ε) > 0 such that x(0) ∈ S
and:

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ∈ R≥0, (2.2)

and for all x(0) ∈ S it holds that lim
t→∞

x(t) = 0. If the set S = Rn, then we say that the
origin is globally AS (GAS).

Definition 2.2 The origin is a KL–stable equilibrium for the system (2.1) in the proper set
S ⊆ Rn, if there exists a function β ∈ KL such that for all x(0) ∈ S,

‖x(t)‖ ≤ β(‖x(0)‖, t), ∀t ∈ R≥0. (2.3)

If the set S = Rn, then we say that the origin is globally KL–stable.
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In [87, Proposition 2.5] (see also [77, Lemma 4.5]) it was shown that uniform AS is equiv-
alent with KL–stability in the set S. This also holds for autonomous systems of the type
(2.1), i.e. f is not time dependent, since for these systems AS of the origin is uniform with
respect to the initial time t0.

In the remainder of the thesis we will use KL–stability to refer to KL–stability in S
or, equivalently to AS, as defined above. When S = Rn, then we use the term global
KL–stability.

Assumption 2.1 x = 0 is an asymptotically stable equilibrium point of the system (2.1).

Consider the concept of domain of attraction introduced for example in [60].

Definition 2.3 The domain of attraction of the origin for the system (2.1) is the set

S := {x0 ∈ Rn : lim
t→∞

x(t, x0) = 0}, (2.4)

where x(·, x0) denotes the solution of (2.1) corresponding to the initial condition x0.

Definition 2.4 A set S ∈ Rn is called a forward invariant set w.r.t. (2.1) if for any initial
condition x0 = x(0) ∈ S, it holds that x(t, x0) ∈ S for all t > 0.

In the remainder of this thesis, for simplicity, we will use invariant set to refer to a forward
invariant set. The DOA of an equilibrium for a given system is inherently an invariant set.

Definition 2.5 Let V : A† → R, with A† ⊆ Rn containing the origin, be a continuously
differentiable function with V (0) = 0 and the following properties:

a) V (x) is positive definite on A† and radially unbounded, i.e. V (x)→∞ as ‖x‖ → ∞

b) its derivative along the trajectories of (2.1), V̇ (x) = ∇V >f(x), is negative definite on
A†.

Then V is called a Lyapunov function for the system (2.1).

The following result is a consequence of [80, Theorem 1] and will be instrumental in the
procedure for estimating the DOA of the origin of the system (2.1).

Theorem 2.1 Let V (x) be a Lyapunov function for the system (2.1) and consider the region

A = {x : V̇ (x) ≤ 0}. (2.5)

Furthermore, let C∗ be the largest positive value such that the level set V (x) = C∗ is
contained in A. Then, the set

SA = {x ∈ A : V (x) < C∗} (2.6)

is contained in the DOA of the origin of (2.1), S.
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2.2. Computation of DOAs based on RLFs

Proof: The proof is based on the following steps. First, since V̇ (x) is negative semidefinite
on SA ⊂ A it implies that SA is an invariant set for (2.1), which means that the solution
x(t, x0) of (2.1), x0 ∈ SA, will stay in SA for all times. Furthermore, it will not escape
to infinity since SA is bounded (included in A). Finally, x(t, x0) → 0 as t → ∞, which
follows from the fact that V̇ (x) < 0, for x ∈ SA\{0} via the Asymptotic Stability Theorem
from [80, page 37].

In [118], it is shown that if f is continuously differentiable in a neighborhood of the
origin, then there exists a maximal LF which can be used to estimate the DOA exactly [118,
Theorem 2]. This function tends to infinity as x approaches the boundary ∂S of the DOA
S.

Definition 2.6 [118] A function Vm : Rn → R+ ∪ {∞} is called a maximal Lyapunov
function for the system (2.1) if

a) Vm(0) = 0, Vm(x) > 0, for any x ∈ S \ {0}

b) Vm(x) <∞ if and only if x ∈ S

c) Vm(x)→∞ as x→ ∂S and/or ‖x‖ → ∞

d) V̇m is well defined and negative definite over S.

When f is continuously differentiable, then Vm(x) → ∞ as x → ∂S. If f is Lipschitz
continuous on S, then Vm can be taken continuously differentiable on S and then Vm(x)→
∞ as ‖x‖ → ∞.

Remark 2.1 In [118, Theorem 1] it is shown that if it is possible to find a set A containing
the origin in its interior and a continuous function satisfying the properties of a maximal LF
on that set, thenA is the same as the DOA S defined in (2.4). This result implicitly assumes
that there does not exist a ξ ∈ S◦ such that lim

x→ξ
V (x) = ∞. For any proper candidate LF,

i.e. radially unbounded, thus which is upper and lower bounded by class K∞ functions, this
property obviously holds. As such, we consider in the definition above of a maximal LF,
item c) the case when both Vm(x)→∞ as x→ ∂S and as ‖x‖ → ∞ hold.

Thus, the DOA can be computed if a function V which is a maximal LF for the considered
system can be constructed, since the boundary of the DOA is defined by V (x) → ∞.
In [118], in order to satisfy the condition (c), rational LFs were considered as candidates.
More specifically, functions of the form

V (x) =
N(x)

D(x)
, (2.7)

with N(x) and D(x) polynomials in x, were considered. Thus, when D(x) = 0, x →
∂S. Therein, a recursive procedure is proposed, to construct both an approximation of the
maximal LF, which is shown to be a true LF, and based on its level set to provide a close
approximation of the DOA, based on the result in Theorem 2.1.
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The steps of the procedure in [118] have been addressed in detail in [99], [95], [56].
They are based on expressing f as

f(x) =

∞∑
i=1

Fi(x), (2.8)

where Fi (·) is a homogeneous function of degree i and V as

V (x) =

∑∞
i=2Ri(x)

1 +
∑∞
i=1Qi(x)

, (2.9)

where Ri, Qi are homogeneous functions of degree i. The procedure results in an approxi-
mation of V of the form:

Vn(x) =

∑n
i=2Ri(x)

1 +
∑n−2
i=1 Qi(x)

, (2.10)

and it was shown that Vn(x) is a Lyapunov function for all n ≥ 2.
More details related to the computation of the coefficients of the polynomials in (2.10)

will be given in Section 2.2.1. The main attribute of the procedure is that it converges in a
rather small number of steps, usually n = 4 is sufficient.

Next, we shall focus on the steps to determine the maximal level set of Vn which renders
the approximation of S.

2.2.1 DOA computation

Consider the RLF candidate as defined in (2.10). From Theorem 2.1 we have that the interior
of the largest level set of Vn which is included in the state space area where its derivative is
negative definite is a subset of the DOA of the considered system. This translates into the
optimization problem:

max
c,x

c

subject to Vn(x)− c = 0

V̇n(x) ≤ 0

c > 0,

or equivalently, from [60]:
min
c,x

c

subject to Vn(x)− c = 0

V̇n(x) = 0

c > 0.

(2.11)

The formulation in problem (2.11) is based on a result from [60], which says that if the level
set V (x) = c lies entirely on the closed hypersurface where V̇ (x) = 0, i.e. the level set
V̇ (x) = 0, then the domain defined by V (x) ≤ c is a subset of the DOA.

For the considered RLFs the above optimization problem turns out to be nonconvex,
which means that local optima need to be avoided when searching for the best DOA ap-
proximation. The problem (2.11) was considered in [56] where an LMI estimation method
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2.2. Computation of DOAs based on RLFs

based on the theory of moments was proposed. Therein the problem was re-written by
means of a polynomial objective function and constraints as:

min
c,x

c

subject to Nn(x)− cDn(x) = 0

N̂n(x) = 0, D̂n(x) 6= 0, x 6= 0

c > 0,

(2.12)

where Vn(x) = Nn(x)
Dn(x)

and V̇n(x) = N̂n(x)

D̂n(x)
(from the derivation of fractions rule). Fur-

thermore, in order to avoid dummy solutions of the above problem, in [91], additional con-
straints have been proposed. As such, the problem in (2.12) becomes:

min
c,x,ε

c

subject to Nn(x)− cDn(x) = 0

N̂n(x) = 0

∇(Nn(x)− cDn(x)) = ε∇(N̂n(x))

Nn(x) > 0, Dn(x) > 0, x 6= 0

c > 0.

(2.13)

In problem (2.13), the estimation of the DOA is obtained by minimizing the level set of Vn
until it is tightly included in the level set V̇ (x) = 0. This reasoning is based on the assump-
tion that one can find a closed surface where V̇ (x) = 0. However this is not generally valid.
For the tumor growth system it turned out that solving the optimization problem to find the
DOA estimate with a less restrictive formulation is more stable numerically. It is then more
numerically robust to maximize c as long as the level set of Vn remains included in the set
A defined in (2.5). In this way irregularities in the level set surface of V̇4 = 0, such as
corresponding to singularity points of V̇4 (see the empty areas within the interior of the red
surface plotted in Figure 3.1(b) are avoided. The optimization problem then becomes:

max
c,x,ε

c

subject to Nn(x)− cDn(x) = 0

N̂n(x) ≤ 0

∇(Nn(x)− cDn(x)) = ε∇(N̂n(x))

Nn(x) > 0, Dn(x) > 0, x 6= 0

c > 0.

(2.14)

In what follows the procedure proposed in [118] for constructing a RLF and an approx-
imation of the DOA of the origin equilibrium of (2.1) will be recalled.

• n = 2
V2(x) = R2(x),
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from (2.8), F1 = Ax, where A is the linearization matrix around the origin and the
matrix P � 0 is computed as the solution of A>P + PA = −Q, Q � 0. Typically,
Q is taken as the identity matrix of corresponding size.

• n = 3

V3(x) =
R2(x) +R3(x)

1 +Q1(x)
,

the recursive relation in [118, (60)] needs to be satisfied, i.e.:

(∇R2)>F2 + ((∇R3)> + Q1(∇R2)> − (∇Q1)>R2)F1 = −x>Qx(2Q1).
(2.15)

• n = 4

V4(x) =
R2(x) +R3(x) +R4(x)

1 +Q1(x) +Q2(x)
,

the recursive relation is:

(∇R2)>F3 + ((∇R3)> +Q1(∇R2)> − (∇Q1)>R2)F2 + ((∇R4)>+

Q1(∇R3)>−(∇Q1)>R3+Q2(∇R2)>−(∇Q2)>R2)F1 = −x>Qx(2Q2+Q2
1).

(2.16)

For each step n ≥ 3 a constrained minimization problem is solved in order to obtain the
coefficients of the polynomials in the RLF. The constraints are linear equalities in terms of
the coefficients of the polynomials in Vn and come from the recursive relations above. The
cost function to minimize comes from the expression of the derivative of Vn. It is shown
in [118] that V̇n can be written as:

V̇n = −x>Qx+
{terms of degree ≥ n+ 1}

(1 +
∑n−2
i=1 Qi)

2
, (2.17)

which implies that V̇n is negative definite in a small region around the origin. The error/cost
function to minimize is then defined as:

en = ‖coefficients of the numerator terms in (2.17)‖22, (2.18)

which allows to maximize the estimate of the DOA, by the choice of the coefficients of the
polynomials in Vn. Once the homogeneous polynomials Rn and Qn−2 are chosen from the
constrained minimization problem, an estimate of the DOA can be computed by solving the
problem (2.14).

2.3 Stabilizability of polynomial systems
2.3.1 Instrumental concepts

Consider continuous–time nonlinear control systems described by

ẋ = f̂(x, u), (2.19)
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2.3. Stabilizability of polynomial systems

where x ∈ X ⊆ Rn denotes the state, u ∈ U ⊆ Rm denotes the input and f̂ : X×U → Rn
is a sufficiently regular map from the domain X× U ⊂ Rn into Rn with f(0, 0) = 0.

We are concerned with systems where f̂(x, u) is defined as f̂(x, u) = f(x) + g(x)u,
thus (2.19) becomes

ẋ = f(x) + g(x)u. (2.20)

Let x(t, x0, u) denote the solution of (2.20) corresponding to the initial value x0 and
control u.

Definition 2.7 Let k : Rn → U be a mapping, smooth on Rn with k(0) = 0. k is called a
feedback stabilizer for the system (2.19), with u = k(x), if the closed–loop system

ẋ = f(x) + g(x)k(x) (2.21)

is asymptotically stable (AS) on X.

We define the set of stabilizers for the system (2.19) as:

K := {k : Rn → U : f̂(x, k(x)) is AS on X}. (2.22)

Definition 2.8 The domain of attraction (DOA) of the origin for the system (2.19) where
u = k(x), k ∈ K is the set defined by:

Sk := {x0 ∈ Rn : lim
t→∞

x(t, x0, k(x)) = 0}. (2.23)

Definition 2.9 The domain of stabilizability (DOS) of the origin for the system (2.19) is the
set defined by

S :=
⋃
k∈K

Sk. (2.24)

Next we recall the concept of a control Lyapunov function (CLF), as defined in [106].

Definition 2.10 Let V : Rn → R≥0 be a continuously differentiable function with V (0) =

0 and the following properties:

a) V (x) is positive definite and radially unbounded, i.e. V (x)→∞ as ‖x‖ → ∞1, for all
x ∈ Rn;

b) its derivative along the trajectories of (2.19), V̇ (x) = ∇V >f̂(x, u), is negative definite,
i.e.

∇V (x)>f(x) +∇V (x)>g(x)u < 0, ∀x ∈ Rn, x 6= 0. (2.25)

Then V is a CLF for the system (2.19).

1This condition corresponds to condition (4.2) in Chapter 4.
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The condition (b) above is equivalent with the statement that

∇V (x)>g(x) = 0⇒ ∇V (x)>f(x) < 0, ∀x ∈ Rn.

As indicated in Theorem 2.1, CLFs enable the computation of a DOA estimate, Sk for a
given k ∈ K for (2.20).

Similarly, the concept of a maximal Lyapunov function for the closed loop system (2.19)
with u = k(x), k ∈ K is defined as in Definition 2.6, but with respect to the set Sk.

In [7] it has been shown that the existence of a smooth feedback stabilizer is equivalent
with the existence of a smooth CLF. Further, in [106] an explicit proof of the fact that
the existence of a smooth CLF implies the existence of a smooth feedback stabilizer was
given. A “universal” formula for the stabilizer has been used. Furthermore, it has been
shown that if the considered system is described by a rational map and there exists a RCLF
for that system, then there exists a rational feedback stabilizer [106, Theorem 2]. In what
follows we will establish that for polynomial systems, if there exists a RCLF, then there
exists a polynomial feedback stabilizer. For this purpose, we recall the following algebraic
geometry result proposed in [106, Lemma 3.1].

Lemma 2.1 Consider a closed semialgebraic subset of Rn, T and two polynomials β, a
belonging to R[x1, x2, . . . , xn] so that β(x) > 0 on T . Then there exists a polynomial
d ∈ R[x1, x2, . . . , xn] such that

β(x)d(x) > a(x), x ∈ Rn. (2.26)

2.3.2 Existence result

Theorem 2.2 Consider the system (2.20), where f(x) and g(x) are polynomial functions.
If there exists a RCLF for (2.20), then there exists a polynomial feedback stabilizer k ∈ K ,

k =
(
k1 k2 . . . km

)>
, for (2.20).

Proof: Let V = N(x)
D(x) , well–defined on Rn (D(x) has no poles in zero), be a rational CLF

for (2.20). Then it holds that

(D∇N> −∇D>N)f + (D∇N> −∇D>N)gu

D2
< 0,

which is equivalent to

(D∇N> −∇D>N)f + u1(D∇N> −∇D>N)g1 + u2(D∇N> −∇D>N)g2+

. . .+ um(D∇N> −∇D>N)gm < 0,

since D2 is always positive and u1, . . . , um are the components of u and g1, . . . , gm are
the components of g. Denote by a(x) := (D∇N> −∇D>N)f and bi(x) := (D∇N> −
∇D>N)gi and let ki(x) be of the polynomial form

ki(x) = −c(x)bi(x), (2.27)
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2.4. Rational Control Lyapunov Functions

where c(x) is a polynomial function, i = 1, . . . ,m. We need to prove that

a(x)− c(x)β(x) < 0, (2.28)

for all x 6= 0 with β(x) :=
∑m
i=1 b

2
i (x). We follow the same reasoning as used in proving

Theorem 2 in [106]. Since β(x) > 0, (2.28) is equivalent to

c(x) >
a(x)

β(x)
.

Consider the closed semialgebraic set

T := {(x, y) ∈ Rn+1 : a(x) ≥ 0 and y − ‖x‖22 = 0}. (2.29)

The CLF condition (2.25) is equivalent with requiring that b(x) = 0 implies that a(x) < 0,
for all nonzero x. The rational function a(x)

β(x) is well–defined in T . This follows from the fact
that if there exists some y so that (x, y) ∈ T , then for x 6= 0, a(x) ≥ 0 and from the CLF
condition this implies that β(x) 6= 0. Therefore, we can now use the result in Lemma 2.1,
which guarantees that there exists a polynomial function d : Rn+1 → R, so that d > 0
everywhere and

d(x, y) ≥ a(x)

β(x)
,

for (x, y) ∈ T . Consider now
c(x) := d(x, ‖x‖22).

If we assume that β(x) > 0 for x 6= 0, and a(x) ≥ 0, then (x, ‖x‖2) ∈ T and therefore
(2.28) holds.

Remark 2.2 If the semialgebraic set T is defined by

T := {(x, y) ∈ Rn+1 : a(x) ≥ 0 and ‖x‖22y = 1},

as it was defined in [106], then c(x) becomes rational and thus leading to a rational feedback
stabilizer k(x).

2.4 Rational Control Lyapunov Functions
In this section we consider a particular form of CLFs, namely described by rational functions
as introduced in [118]. Let V be of the form:

V (x) =

∑∞
i=2Ri(x)

1 +
∑∞
i=1Qi(x)

. (2.30)

Further, let f and g in (2.20) be analytical, thus the system (2.20) can be written as:

ẋ =

∞∑
i=1

Fi +

∞∑
i=1

Giu, (2.31)
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where Fi, Gi are homogeneous polynomials of order i.
Let u be a feedback stabilizer u = k(x), k ∈ K . Then V is a CLF for (2.30) if

∇V (x)>f(x) + k(x)∇V (x)>g(x) = −x>Qx < 0, (2.32)

holds for some fixed matrix Q � 0. In this section we consider the case when m = 1,
thus u in (2.31) is scalar. However, all the derivations that follow can be mutatis mutandis
extended to the multivariable case.

By the result in Theorem 2.2, we know that if V is a RCLF, then there exists a polynomial
feedback stabilizer k ∈ K for (2.31). Let k be described by

k(x) =

∞∑
i=1

Ki(x), (2.33)

where Ki(x) are homogeneous polynomials of order i. Since k(x) needs to satisfy k(0) =
0, we do not consider the case when i = 0, i.e., k(x) = constant, in the expression above,
as it would lead k(0) = K0(0) +K1(0) +K2(0) + . . . = constant + 0 6= 0.

Then, by applying the standard derivation rules, equation (2.32) can be written as follows
(similarly to equation (42) in [118]):

∞∑
i=2

∞∑
k=1

∇R>i Fk +

∞∑
i=1

∞∑
j=2

∞∑
k=1

Qi∇R>j Fk −
∞∑
i=1

∞∑
j=2

∞∑
k=1

∇Q>i RjFk+

∞∑
i=1

∞∑
j=2

∞∑
k=1

Ki∇R>j Gk +

∞∑
i=1

∞∑
j=1

∞∑
k=2

∞∑
l=1

KiQj∇R>k Gl−

∞∑
i=1

∞∑
j=1

∞∑
k=2

∞∑
l=1

Ki∇Q>j RkGl = −x>Qx(1 + 2

∞∑
i=1

Qi +

∞∑
i=1

∞∑
j=1

QiQj).

(2.34)

For equality (2.34) to hold, the left hand side and right hand side coefficients corresponding
to each order term in the polynomials should be equal. By equating the coefficients of the
same degrees on the left and right hand side of the equality, we obtain:

∇R>2 F1 = −x>Qx, for k = 2 (2.35)
k∑
i=2

∇R>i Fk+1−i +

k−2∑
i=1

k−1∑
j=2

(Qi∇R>j −∇Q>i Rj)Fk+1−i−j+

k−2∑
i=1

k−1∑
j=2

Ki∇R>j Gk−i−1 +

k−3∑
i=1

k−2∑
j=2

Ki(Qi∇R>j −∇Q>i Rj)Gk−i−j

= −x>Qx(2Qk−2 +

k−3∑
i=1

QiQk−2−i), for k ≥ 3.

(2.36)
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2.4. Rational Control Lyapunov Functions

We can further re–write (2.35) as

∇R>2 Fk−1 +

k∑
j=3

(
∇R>j +

j−2∑
i=1

(Qi∇R>j−1 −∇Q>i Rj−1)

)
Fk−j+1+

k−2∑
i=1

Ki∇R>2 Gk−1−i +

k−1∑
j=3

(
j−2∑
i=1

Ki∇R>j +

j−1∑
i=1

Ki(Qi∇R>j−1 −∇Q>i Rj−1)

)
Gk−j

= −x>Qx(2Qk−2 +

k−3∑
i=1

QiQk−2−i), for k ≥ 3.

(2.37)

Next, we will show that by using the above recursive relations, approximations of V and k
can be computed which will satisfy the RCLF conditions.

Theorem 2.3 Consider the system defined in (2.31). Let ẋ = F1 = Ax be AS and let the
polynomials Ri, Qi, Ki satisfy the equations (2.35) and (2.37), where Q � 0 is a fixed
matrix. Then Vn(x) =

∑n
i=2 Ri

1+
∑n−2
i=1 Qi

is a CLF for (2.31) for all n ≥ 2 and with u = k(x) =∑n−2
i=1 Ki(x).

Proof: Denote U = (1 +
∑n−2
i=1 Qi)

2. With u = k(x) =
∑n−2
i=1 Ki, we can write the

expression of V̇n as follows:

V̇n =
1

U

(
∇R>2 +∇R>3 + . . .+∇R>n +

n−2∑
i=1

n∑
j=2

(Qi∇R>j −∇Q>i Rj)
) ∞∑
k=1

Fk+

1

U

n−2∑
i=1

Ki

(
∇R>2 +∇R>3 + . . .∇R>n +

n−2∑
i=1

n∑
j=2

(Qi∇R>j −∇Q>i Rj)
) ∞∑
k=1

Gk

=
1

U

[
∇R>2 F1 +

n∑
k=3

∇R>2 Fk−1+

k∑
j=3

(
∇R>j +

j−2∑
i=1

(Qi∇R>j−1 −∇Q>i Rj−1)
)
Fk−j+1 +

n∑
k=3

k−2∑
i=1

Ki∇R>2 Gk−1−i+

k−1∑
j=3

( j−2∑
i=1

Ki∇R>j +

j−1∑
i=1

Ki(Qi∇R>j−1 −∇Q>i Rj−1)
)
Gk−j

]
+

1

U

[ ∞∑
k=n+1

∇R>2 Fk−1
k∑
j=3

(
∇R>j +

j−2∑
i=1

(Qi∇R>j−1 −∇Q>i Rj−1)
)
Fk−j+1+

∞∑
k=n+1

k−2∑
i=1

Ki∇R>2 Gk−1−i+
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k−1∑
j=3

( j−2∑
i=1

Ki∇R>j +

j−1∑
i=1

Ki(Qi∇R>j−1 −∇Q>i Rj−1)
)
Gk−j

]
.

We can substitute equations (2.35) and (2.37) above and we obtain:

V̇n =
1

U

[
− x>Qx− x>Qx

(
2Qk−2 +

k−3∑
i=1

QiQk−2−i
)]

+

1

U

[
terms of degree ≥ n+ 1

]
.

Notice that in
(
2Qk−2 +

∑k−3
i=1 QiQk−2−i

)
terms of U appear, thus, we further obtain

V̇n =
1

U

[
− x>Qx− x>Qx

(
U − 1−

n∑
k=3

k−3∑
i=1

QiQk−1−i
)]

+

1

U

[
terms of degree ≥ n+ 1

]
=

1

U

[
− x>Qx

(
1 + U − 1−

n∑
k=3

k−3∑
i=1

QiQk−1−i
)]

+

1

U

[
terms of degree ≥ n+ 1

]
= −x>Qx+

1

U
(−x>Qx)

(
−

n∑
k=3

k−3∑
i=1

QiQk−1−i
)

︸ ︷︷ ︸
terms of degree ≤ n− 1

+

1

U

[
terms of degree ≥ n+ 1

]
= −x>Qx+

1

U

[
terms of degree ≥ n+ 1

]
.

(2.38)

From (2.38), we get that V̇n is negative definite over a small neighborhood around the origin,
thus Vn is a Lypunov function for the closed loop system with u = k(x), and further it is a
CLF function for (2.31).

When the error to be minimized during the recursive procedure for computing the coef-
ficients of Vn is defined as

en = ‖coeffs of terms of numerator in (2.38)‖2, (2.39)

then the region where V̇n is negative definite is maximized.

Remark 2.3 In Theorem 2.3, it has been required that ẋ = F1 = Ax is asymptotically
stable. However the above procedure for computing RCLF can also be applied for systems
for which this assumption does not hold. Then a pre–stabilizing step is required, for example
by computing a state feedback u′ = Kx, K ∈ R1×n for the linearization of (2.20). Then
F1 = (A + BK)x, where A and B are matrices resulting from the linearization of (2.20)
around a fixed point.
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2.5. Illustrative applications

As a result of Theorem 2.3, the maximal approximation order for k(x) is n − 2. The
recursive procedure that is generated by (2.35), (2.37) and (2.39) usually converges after a
few iterations, i.e. the error becomes small enough for n = 4. Thus, terms of order up to
n− 2 = 2 appear in the constraints expressions, even if k(x) would be defined up to order
n. The result of Theorem 2.3 still holds for k(x) =

∑n
i=1Ki(x).

Remark 2.4 By applying the result in Theorem 2.3, a RCLF and a feedback stabilizer are
generated during the same optimization procedure. While allowing this, although Vn is
a valid RCLF, it will not be the maximal one. Once a k(x) is computed, a RLF can be
computed for the closed–loop system to obtain a better estimate of the DOA of the closed
loop system, Sk.

2.5 Illustrative applications

2.5.1 Van der Pol oscillator

Let us consider the Van der Pol oscillator described by

ẋ1 = −x2
ẋ2 = x1 + (1 + u)x2(x21 − 1), (2.40)

so that when u = 0 the origin is locally stable equilibrium, with the estimate of the DOA
depicted in Figure 2.1(a) in blue and defined by V4 = 3.8. The derivative level set V̇4 = 0
is shown in red. By applying the procedure in Section 2.4, we obtained the RCLF
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Figure 2.1: Vector fields, RLF–blue level set and derivative–red level set for autonomous–
(a) and controlled–(b) case.

V4 =
1.5x21 + 0.0394355x41 − x1x2 + 0.451638x31x2 + x22 + 0.0856408x21x

2
2−

1 + 0.023885x21 + 0.317015x1x2 − 0.0735786x22
+

0.0132402x1x
3
2 − 0.0290605x42

1 + 0.023885x21 + 0.317015x1x2 − 0.0735786x22
,
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and the polynomial feedback stabilizer

k(x) = 0.0361545x21 + 0.262089x1x2 + 0.112881x22.

The level sets V4 = 2.65–blue and V̇4 = 0–blue are shown in Figure 2.1(b). An improved
approximation of the DOA for the Van der Pol system was obtained by computing a RLF
for the closed–loop system with k(x) defined above. The improved DOA is described by
V4,k = 2, where
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Figure 2.2: Phase plot and new DOA estimate for the closed–loop system.

V4,k =
1.5x21 − 0.209208x41 − x1x2 + 0.556388x31x2 + x22/2 + 0.0418157x21x

2
2

1 + 0.0435481x21 + 0.399957x1x2 − 0.00857623x22
+

0.043728x1x
3
2 + 0.00220517x42

1 + 0.0435481x21 + 0.399957x1x2 − 0.00857623x22
,

and it is plotted in Figure 2.2–blue.

2.5.2 Tumor dynamics

We will consider the model proposed in [41] to describe the tumor–host interaction dynam-
ics. The principles of population ecology are exploited in this model, namely to describe
population interactions between tumor and normal cells. As such, we consider the tumor
dynamics system to be defined as follows:

ṄN = RNNN −
RN
KN

N2
N −

RNαNT
KN

NTNN

ṄT = RTNT −
RT
KT

N2
T −

RTαTN
KT

NTNN , (2.41)

where NN represents the normal cells population and NT represents the tumor cells popu-
lation. The system above has three possible equilibria (if we eliminate the one in the origin
since it doesn’t make sense from a biological perspective) corresponding to extinction of the
normal cells, extinction of the tumor cells and coexistence of the two species, or so–called
tumor dormancy. The stability properties of equilibria depend on the parameters, allowing
for local bistability of the extreme equilibria or local stability of each of the three. The pa-
rameters in (2.41) which have an impact on the stability of the equilibria and can be directly
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2.5. Illustrative applications

influenced through treatment (drugs or immunotherapy) are αNT , which represents the ef-
fect that the tumor cells have on the normal cells, and αTN , which represents the predation
rate of the tumor cells by the normal cells.
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Figure 2.3: Vector fields, RLF–blue level set and derivative–red level set for autonomous–
(a) and controlled–(b) case.
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Figure 2.4: Phase plot and new DOA estimate for the closed–loop system.

Let the controlled tumor system be:

ṄN = RNNN −
RN
KN

N2
N −

RN
KN

(αNT + u)NTNN

ṄT = RTNT −
RT
KT

N2
T −

RTαTN
KT

NTNN . (2.42)

For u = 0 and the parameter values RN = RT = 0.9, KT = KN = 10 and αNT =
αTN = 0.5, the equilibria of the system are E1 = (0, 10), E2 = (6.66667, 6.66667)
and E3 = (10, 0). The only stable equilibrium is E2. See a plot of the DOA estimate
using a RLF for E2, which was computed in [35], in Figure 2.3(a). The zero level set of
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the derivative of the RLF is shown in red. In what follows we will compute a feedback
stabilizer u = k(x) as shown in Section 2.4 such that E2 is a stable equilibrium on the
positive orthant for (2.42). Naturally, first a state transformation is required for (2.42) with
respect to E2, such that the new system has the equilibrium in the origin. Let x1 denote NN
and x2 denote NT . For the transformed system, by applying the procedure in Section 2.4,
the RCLF

V4(x) =
R2 +R3 +R4

1 +Q1 +Q2
,

with

R2 = 49.3827− 7.40741x1 + 1.11111x21 − 7.40741x2 − 1.11111x1x2 + 1.11111x22

R3 = 6.48163 + 0.813352x1 + 0.411231x21 − 0.0188696x31 − 3.73008x2−
1.06647x1x2 − 0.00507587x21x2 + 1.09275x22 + 0.0850609x1x

2
2 − 0.0829909x32

R4 = 0.901174 + 1.8253x1 − 0.250225x21 + 0.0134279x31 − 0.0000345885x41−
2.366x2 − 0.320935x1x2 + 0.0347837x21x2 − 0.00187583x31x2 + 0.692818x22+

0.0133567x1x
2
2 + 0.000204973x21x

2
2 − 0.0737341x32 − 0.000804481x1x

3
2+

0.00296615x42

Q1 = − 0.535414 + 0.0632948x1 + 0.0170173x2

Q2 = − 0.124567− 0.0102211x1 + 0.0000549605x21 + 0.0475912x2+

0.00142325x1x2 − 0.00428096x22,

has been obtained together with the feedback stabilizer

k(x) =0.00162532 + 0.0704234x1 + 0.00408656x21 − 0.0704234x2+

0.00230886x1x2 − 0.00643199x22.

Note that the above polynomials are not homogeneous, since we are reporting the results
with respect to the nonzero equilibrium E2. In Figure 2.3(b) the level sets defined by
V4(x) = 23–blue and V̇ = 0–red are shown. As a consequence of Remark 2.4, see in
Figure 2.4 a plot of the level set V4,k = 50–blue and V̇4,k = 0–red, with

V4,k =(53.6869− 8.45252x1 + 1.8274x21 − 0.113701x31 + 0.00284881x41−
8.73687x2 − 1.63786x1x2 + 0.027169x21x2 + 0.000838963x31x2+

1.40989x22 + 0.138567x1x
2
2 − 0.00354257x21x

2
2 − 0.0963518x32−

0.00145082x1x
3
2 + 0.00280129x42)/(0.346669 + 0.0252582x1−

0.00166945x21 + 0.0748148x2 + 0.00442781x1x2 − 0.00306936x22).

The invasive tumor growth equilibrium E1 of the uncontrolled tumor system (2.41) remains
an (unstable) equilibrium of (2.42) in closed–loop with k(x). The zero level set of V̇4,k is
tangent to the Ox2 axis in E1, V̇4,k(E1) = −8.3904×10−14. This implies that the distance
between the DOA estimate Sk of E2 and E1 is infinitesimally small. In consequence, all
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2.6. Conclusions

trajectories which are on the stable manifolds of E1 and get sufficiently close to the bound-
ary of the DOA of E2 will converge to E2 instead of E1, via the unstable directions of E1.
This is particularly relevant from a clinical perspective, as it implies that critical states can
be steered to dormancy.
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Figure 2.5: (a): Vector fields, DOA estimate ofE1–red countour, DOA estimate ofE3–black
contour. (b): Stabilized E3 equilibrium and corresponding DOA estimate–blue contour.

Now consider the case when u = 0 and the parameter values RN = RT = 0.9, KT =
10, KN = 10 and αNT = 1.5, αTN = 0.9. The equilibria of the system are E1 = (0, 10),
E2 = (8.5714, 2.28571) and E3 = (12, 0). For this set of parameters, E1 and E3 are
stable and E2 is unstable. See a plot of the DOA estimates using RLFs for E1, and E3 in
Figure 2.5(a). The zero level set of the derivative of the RLF is shown in red. A feedback
stabilizer u = k(x) was computed for stabilizing the healthy state equilibrium E3. The
vector field plot of the controlled system is shown in Figure 2.5(b) together with the DOA
estimate generated by the corresponding RLF. Note that in this case, the intersection of the
estimated DOAs, computed via RLFs, with the positive orthant are the biologically realistic
sets to consider. This is allowed due to the fact that the positive orthant is invariant for the
tumor system (see also Theorem 5.1).

2.6 Conclusions
In this chapter, a new approach to compute RCLFs and polynomial stabilizers for nonlin-
ear continuous–time systems has been introduced. The approach is based on a recursive
procedure in which at each step an optimization problem with linear constrains is solved,
generating coefficients of polynomials in the rational function and the coefficients of the
polynomial feedback. For polynomial systems, it was shown that there always exists a
polynomial feedback stabilizer, provided that there exists a RCLF. This procedure should
generally, yield the best results in terms of DOA computation and feedback stabilization
for polynomial systems due to the fact that Taylor approximations are exact for polyno-
mial functions. Nonetheless, the same procedure can be applied to nonpolynomial systems,
however it will be highly dependent on the type of nonlinearity and how much of the dy-
namics information can be captured by low order approximations, for initial states far from
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the equilibrium. A very high order approximation might be problematic in terms of com-
putational effort. However, since the central objective of the feedback law is stabilization
whether it is based on a CLF valid in a larger or smaller area around the origin is not very
relevant, as long as the system is stabilized. This will not be the case when the purpose of
the stabilization control law is to enlarge the DOA estimate.

44



Chapter 3

Switching control strategies
with a perspective on tumor immunotherapy

In this chapter we investigate the problem of stabilizing an unstable equilibrium by means
of a switching control strategy defined on domains of attraction of equilibria of interest.
In particular, we consider polynomial systems describing tumor dynamics, therefore the
implications of the proposed stabilization strategy on tumor immunotherapy are also ana-
lyzed. For this, we derive a new model which captures the effects of the tumor cells on the
immune system and viceversa, through predator–prey competition terms. Additionally, it
incorporates the immune system’s mechanism for producing hunting immune cells, which
makes the model suitable for immunotherapy strategies analysis and design. For comput-
ing domains of attraction for the tumor nonlinear dynamics, and thus, for indicating im-
munotherapeutic strategies we employ rational Lyapunov functions. Finally, we apply the
switching control strategy to destabilize an invasive tumor equilibrium and steer the system
trajectories to tumor dormancy.

3.1 Introduction
Developing dynamical models which can be employed to describe and predict tumor evo-
lution has been the focus of a considerable amount of research work in the past decades.
The majority of this work is based on capturing the competition interaction between the
immune cells and cancer cells, which turns out to be dynamical and nonlinear. See [1] for
a collection of such models, or the more recent [38] for a more specific survey focused on
tumor dormancy. This interaction is best understood if seen from an evolutionary perspec-
tive, as the competition of two populations for space in the tissue. Such models have been
developed and studied in [41] and [43]. Although the model proposed therein is a two states
Lotka–Volterra model, it is able to effectively capture certain phases in tumor development
and growth. Some other type of models take into account also the immune system’s mecha-
nism of producing hunting immune cells (killer T–cells) by conversion from resting immune
cells (helper T–cells). See for example the model proposed in [100]. This type of models is
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particularly interesting for immunotherapy.
Immunotherapy is a type of treatment which uses certain parts of the immune system

to fight tumor growth and can act towards boosting the immune system in a general way or
by helping it to attack cancer cells specifically. If the mechanism which produces hunting
immune cells acts optimally, this has great influence on helping eradicating cancer or at least
on driving it to dormancy. The usefulness of a dynamical model which incorporates this
mechanism comes from the fact that such a model allows for assessment of immunotherapy
effectiveness and for designing new strategies.

In this chapter, we consider three different evolutionary models for describing tumor
dynamics. Two of the models have been introduced in the literature to study different mech-
anisms in tumor growth. Starting from the literature, we developed a model which also
incorporates the dynamics driving the immune system itself, i.e. the conversion of resting
cells to hunting ones, and the mutual effects the immune cells and the tumor cells have on
each other. For predicting treatment outcome or designing treatment strategies, it is not suf-
ficient to assess whether a certain equilibrium becomes stable or unstable under treatment.
On one hand, it is also necessary to be able to say from which set of initial conditions the
system will converge to that certain equilibrium, i.e. by computing the domain of attraction.
And on the other hand, treatment strategies should take into account destabilizing unhealthy
equilibria and adapting therapies until the desired equilibrium is reached, with minimal side
effects to the patient. Thus, the focus on immunotherapies, and consequently on the model
parameters which are responsible for boosting the immune response against cancer.

The idea that maintaining a stable dormant tumor might actually increase a patient’s
survival chances more than by trying to completely eradicate the tumor was proposed, for
example, in [42]. In terms of tumor dynamical models, this implies that the optimal treat-
ment tactic would be to try to maintain the stable tumor dormancy equilibrium. Therefore,
the goal of the proposed DOA based immunotherapy strategy is to steer the tumor growth
dynamics to the tumor dormancy equilibrium of the proposed model.

The tools developed in Chapter 2 in Section 2.2 will be used to compute estimates of
the DOAs in the control strategy. This proposed switching strategy comes as an alternative
to the feedback stabilization law developed in Chapter 2 in Section 2.4 based on RCLFs,
which was applied on the tumor dynamics model from [41]. The switching strategy will
also be illustrated on this model in the current chapter. We refer to the control strategy
developed in this chapter as a switching control strategy because it involves switching the
parameters of the system, thus the system dynamics, when the solution trajectory crosses to
the DOA corresponding to the next systems parameters in a predefined parameter sequence.
The motivation for considering the switching strategy comes from clinical arguments. It is
expected that treatment will be applied at certain time moments, thus in a discrete manner,
affecting the model’s parameters and equilibria, and will have a continuous influence on the
dynamics until the next treatment instance.

Maximal Lyapunov functions approximated by RLFs have been considered due to the
fact that predator–prey type of considerations when developing tumor growth models lead
to polynomial systems. These models are exactly approximated by Taylor series expansions
which are at the basis of the RLF computation procedure.

When the purpose of analyzing such biological systems, resulting from applying the
laws of mass action kinetics for biochemical reaction networks and/or competing popula-
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3.2. Tumor growth dynamical models

tions principles, is to assess their stability properties, often LF candidates which take into
account the physical structure of the systems are considered. Such functions are the Gibbs
free energy functions [117]. These functions represent a thermodynamical potential that
is minimized when a system reaches chemical equilibrium, at a constant temperature and
pressure. Although Gibbs free energy functions define global LFs on the positive orthant,
constructing such functions requires knowledge of the physical properties of the system. In
turn, RLFs can be applied directly to the differential equations describing the system.

3.2 Tumor growth dynamical models
In this section we will first present two models of interacting populations from the literature
(proposed in [41] and [100]), which have led to a new developed model in this thesis [34].
We will briefly analyze these models and their parameters and equilibria together with their
clinical interpretations.

3.2.1 An immune cells–tumor cells competition model with 3 states

Consider the prey–predator type model proposed in [100] for the spontaneous regression
and progression of a malignant tumor:

Ṁ = q + rM(1− M

k1
)− αMN

Ṅ = βNZ − d1N (3.1)

Ż = sZ(1− Z

k2
)− βNZ − d2Z.

For this type of models, the prey population is represented by the malignant cells (M ), which
is attacked by the predator cells (N and Z). The latter ones perform the immune response
against the tumor and they are of two types: resting predator cells (Z) and hunting predator
cells (N ). The predator cells consist of cytotoxic T–lymphocytes and macrophages and the
prey cells consist of the malignant cells. The macrophages detect and absorb tumor cells, eat
them and release cytokines which activate the resting T–lymphocytes, which coordinate the
counter attack. The resting cells are converted to a special type of T–lymphocytes, natural
killers/hunting cells, and begin to multiply and release other cytokines which stimulate more
resting cells. In this model, the hunting cells are the cytotoxic T–lymphocytes and the resting
cells are the T–helper cells. The resting predator cells can become active predators when an
activation signal is sent. The state variables in the model (3.1) represent densities of cells,
therefore number of cells per unit volume of tissue.

Due to biological considerations, all the states and parameters in the model are in the
positive real orthant. The parameters represent the following: r–the growth rate of tumor
cells, q–the conversion of normal cells to malignant cells, k1–the maximum carrying or
packing capacity of tumor cells, k2–the maximum carrying capacity of resting cells (k1 >
k2), α–the rate of predation/destruction of tumor cells by the hunting cells, s–the growth
rate of resting predator cells, d1–the natural death of hunting cells, d2–the natural death of
resting cells. The system described in (3.1) has three equilibrium points, E1, E2, E3, which
correspond to zero N and Z cell populations and nonzero M cell population, i.e., E1 =
(M∗, 0, 0), nonzero M and Z populations and zero N population, i.e., E2 = (M∗, 0, Z∗),
and all nonzero populations, i.e., E3 = (M∗, N∗, Z∗), respectively. The local stability
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properties of the equilibria are described in more detail in [100] and in [92]. The following
cases can occur:

(i) E1 is stable if there exists no E2 and no E3.

(ii) E1 is unstable, then there exists E2, which if stable then there is no E3.

(iii) E1 unstable, then if E2 is unstable, there exists E3 which is stable.

We say that a certain equilibrium does not exist when it has values which are not in R>0,
and, therefore, are not biologically admissible. In order to study the regression and progres-
sion of the tumor, it is of interest to consider the cases whenE3 exists, as for this equilibrium
all cell populations are present. This means that information on the DOA of E3 could then
be used twofold. On one hand, for diagnosis or treatment assessment, i.e. is the tumor in re-
gression or progression mode, and on the other hand to design optimal treatment strategies.
The latter can be achieved through the interaction with the immune cell populations.

In what follows we consider the parameter values given in [92], q = 10, r = 0.9,
α = 0.06, k1 = 0.8, β = 0.1, d1 = 0.02, s = 0.8, k2 = 0.7 and d2 = 0.03. For
these parameter values E1 and E2 are unstable and E3 is stable. Furthermore, let x1 denote
M , x2 denote N and x3 denote Z. This system was studied in detail in [32], where the
procedure in Chapter 2 was applied to compute a RLF V4 and estimate the corresponding
DOA estimate for E3. It resulted that the set SA = {x : V (x) < C∗} for C∗ = 4.21466,

belongs to the true DOA of the equilibrium E3, which is equal to
(

3.25 5.41 0.2
)>

for
the considered parameter values. A plot of the level set V4(x) = 4.21466 in a neighborhood
around E3 is shown in Figure 3.1(a). In Figure 3.1(b), the level set V̇4 = 0, which includes
the level set V4(x) = 4.21466, is also shown. Although the proposed procedure can be

(a) (b)

Figure 3.1: Estimation of the DOA of (3.3) bounded by the level set V4(x) = 4.21466–(a)
and together with the level set V̇4 = 0–(b).

extended to designing a control strategy which can parameterize, for example the predation
rate of the tumor cells by the hunting cells α, the influence on the dynamics would not be
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3.2. Tumor growth dynamical models

significant. This is due to the fact that the model (3.1) does not incorporate the influence of
the malignant cells on the immune cells. Therefore, the model needs to be modified if the
purpose is to use α as a control parameter. Otherwise, if for example, the growth rate of
the resting immune cells s, can be considered for control, the parametrization should be a
function also of the tumor population state.

3.2.2 An immune cells–tumor cells competition model with 2 states

This model, proposed in [41] was further studied in [43] with the purpose to gain insight
into the effectiveness of certain treatment approaches and the limitations of therapies based
only on cytotoxic drugs aimed at killing the cancer cells, as well as to suggest new therapy
strategies. Similarly to other models proposed in the literature such as (3.1), proposed
in [100], the principles of population ecology are exploited also in this case, namely to
describe population interactions of predator–prey type, i.e. by Lotka–Volterra models [62].
The difference is that in this model the effects of the tumor cells on the immune cells are also
incorporated. As such, we consider the tumor dynamics system to be defined as follows:

ṄN = RNNN −
RN
KN

N2
N −

RNαNT
KN

NTNN

ṄT = RTNT −
RT
KT

N2
T −

RTαTN
KT

NTNN , (3.2)

where NT represents the dominant tumor cells population which interacts with the normal
cells population NN . The model parameters have biological significance as follows. αTN
represents a variety of host defenses, including the immune response, that have as effect
the decrease of the growth of the tumor populations, while αNT represents the negative
effect of the tumor on normal tissue. RN and RT are the maximum growth rates of normal
and tumor cells, respectively, and KN and KT denote the maximal normal and tumor cells
densities. The latter parameters correspond to the so–called carrying capacity terms in the
model. This term represents the maximum population size that the tissue can sustain.

The system (3.2) can exhibit multiple fixed points which, depending on conditions on
the parameters, have different stability properties. These aspects have been analyzed in [43]
and will be briefly recalled next.

1. E = (0, 0) will always be an equilibrium for the system, independently of parameter
values, however it is not biologically relevant.

2. E = (KN , 0), which corresponds to normal tissue with no tumor cells present. This is
an asymptotically stable equilibrium if αTNKNKT

> 1 and αNTKT
KN

< 1 are satisfied.

3. E = (KN−αNTKT1−αNTαTN , KT−αTNKN1−αNTαTN ), which corresponds to a stable coexistence of both
tumor and normal cells, i.e. a benign, noninvasive tumor. This is an asymptotically
stable equilibrium if αTNKNKT

< 1 and αNTKT
KN

< 1.

4. E = (0,KT ), which corresponds to an invasive cancer, with the normal cells being
completely overgrown by the tumor cells. This is an asymptotically stable equilibrium if
αTNKN
KT

< 1 and αNTKT
KN

> 1 are satisfied.
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A detailed analysis of this model was carried in [35] and it resulted that mainly depending
on the competition parameters, αTN and αNT , the tumor dynamics system may exhibit dif-
ferent stable equilibria (corresponding to different tumor dynamics situations) which then
naturally change the vector field of the system. These equilibria correspond to either an in-
vasive tumor, no tumor, or tumor dormancy (stable, noninvasive tumor) behavior. Naturally,
the invasive tumor case will be favored if KT > KN . For the sake of illustration of the
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Figure 3.2: Estimates of DOA’s of equilibria of (3.2) for different parameter values.

three behaviors or stages of tumor development let us consider the fixed parameters to have
values KN = KT = 10 and RN = RT = 0.9 and the following cases for αTN and αNT :

• Case 1: αNT = 2, αTN = 0.5, when the stable equilibrium is E1 = (0, 10) and the
vector fields are as shown in Figure 3.2(a);

• Case 2: αNT = 0.847, αTN = 0.163, with the stable equilibrium E2 = (1.76, 9.71)
and the vector fields are as shown in Figure 3.2(b);
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3.2. Tumor growth dynamical models

• Case 3: αNT = 0.5, αTN = 0.5, with the stable equilibrium E3 = (6.67, 6.67) and
the vector fields are as shown in Figure 3.2(c);

• Case 4: αNT = 0.5, αTN = 2, when the stable equilibrium is E4 = (10, 0) and the
vector fields are as shown in Figure 3.2(d).

Each of the above cases corresponds to a different dynamical behavior of the tumor–normal
cells interaction, out of which cases 1, 3 and 4 represent the extremes. In this work we
consider the tumor dormancy equilibrium,E3 to be the desired equilibrium, thus the therapy
strategy should meet the following specifications. Firstly, as discussed above, the treatment
needs to steer the system trajectories to the DOA of E3 and, secondly, to maintain this
stable coexistence of tumor and cancer cells [42]. To design the control law achieving the
above therapy strategy, the best possible approximation of the DOA of a given equilibrium
is needed. To compute the closest DOA approximation, the results in Chapter 2 will be
employed. For the system (3.2), when the maximal Lyapunov function is taken as a RLF,
we obtained the following results for the Cases 1–4 in Figure 3.2. For the computational
details we refer to the paper [35].

All biological systems are positive systems. We cannot allow the trajectories to become
negative while initiated in the positive orthant, because this would imply that the states,
which represent population densities or concentrations of substances become negative. A
formal definition of a positive system is given below [11].

Definition 3.1 A system defined as in (2.1) is called positive if for any initial state x0 in
Rn+, the solution x(t, x0) will remain in Rn+, for any t > 0.

Therefore, the positive orthant is an invariant set for a positive system. Furthermore, a
system is positive if the vector field at any state on the boundary of the positive orthant
points into the interior of the positive orthant or along the boundary of the positive orthant.
Notice that in Figure 3.2(d) for example, the computed level set of the LF V4 is intersecting
with the positive orthant boundary and contains states outside the positive orthant. In that
case, the valid DOA estimate consists of the intersection of the corresponding level set of
V4 with the positive orthant. This is allowed by Theorem 5.1.

While the model (3.2) is suitable for designing a treatment strategy in terms of the inter-
influence parameters αTN and αNT between the two competing cell populations, it does not
include the mechanism that drives resting immune cells to convert to hunting immune cells.
As this process is relevant for immunotherapy the model in the next section was developed.

3.2.3 A hunting–resting immune cells–tumor cells competition model

Let the system below describe the hunting–resting immune cells–tumor cells competition:

Ṫ = RTT − (RT /KT )T 2 − (RT /KT )αTNNT

Ṅ = −αNTNT + βNZ (3.3)
Ż = RZZ − (RZ/KZ)Z2 − (RZ/KZ)βNZ.

In this model, the tumor cells population T and the immune cells, N and Z, are in a
predator–prey type of interaction. The same interpretation for the states variable from (3.1)
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stands valid for this model. The proposed model (3.3) can be seen as an extension of the
model (3.2), in the sense that the proposed model also incorporates the conversion mecha-
nism of the T–cells from resting to hunting. A similar reasoning was applied when deriving
the model in [100] (3.1). However, the model in [100] is conservative since the effect of
the tumor cells on the immune cells is not illustrated in the differential equations. This ef-
fect is particularly important, since it can be related to treatment resistance. In many cases,
whether the treatment is specifically targeted to destroy the cancer cells or whether it is
aimed at stimulating the immune cells to either multiply faster or to strengthen the immune
response, the tumor is resisting the treatment. This is due to the fact that the tumor cells
also have a mechanism to fight back, which is illustrated in the model (3.3) by the term
−αNTNT .

The parameters in (3.3) have the following interpretations. RT and RZ , represent, re-
spectively, the growth rate of the tumor cells and the resting immune cells, while KT and
KZ are their respective carrying capacities. The parameter αTN illustrates the effect of
the immune cells on the tumor cells, while αNT represents the effect of the tumor cells on
the immune cells. Finally, β represents the conversion rate of the resting immune cells to
hunting immune cells. This parameter is of interest, particularly for treatment evaluation
and treatment design, since on one hand, it controls the immune system dynamics and on
the other hand, along with αTN it defines the aggressiveness of the immune response and/or
drugs against the invader cells, which in this case are the cancer cells.

The system (3.3) has multiple equilibrium points, including the one in the origin which
is irrelevant from a biological perspective. The other equilibria are given by:

E1 =
(

0 p 0
)>

, p ∈ R>0, E2 =
(
E1

2 E2
2 E3

2

)>
, E1

2 = −β2KT−αTNβKZ
αNTαTN−β2 , E2

2 =

− αNTKT−βKZ
−αNTαTN+β2 ,E3

2 = −αNT (βKT−αTNKZ)
αNTαTN−β2 ,E3 =

(
0 0 KZ

)>
,E4 =

(
KT 0 KZ

)>
and E5 =

(
KT 0 0

)>
.

In all the computations in the remainder of this chapter, we will denote T by x1, N

by x2 and Z by x3. The Jacobian matrix is A =

(
a11 −αTNRT x1KT

0

−αNT x2 −αNT x1+βx3 βx2

0 − βRZx3KZ
a33

)
, where

a11 = RT − 2RT x1

KT
− αTNRT x2

KT
, and a33 = RZ − βRZx2

KZ
− 2RZx3

KZ
. Based on the Jacobian

matrix, we can directly assess the local stability properties of some of the equilibria, as
follows.

• E1 corresponds to a healthy equilibrium situation, however it doesn’t make sense
from a biological point of view, since it contains nonzero hunting cells populations,
whereas the tumor and resting cells populations are zero. For this reason, it will be
discarded from the analysis.

• The eigenvalues of the Jacobian matrix for E3 are:

λ3 = (βKZ , RT ,−RZ) ,

thus E3 is always unstable since RT > 0.
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• The eigenvalues of the Jacobian matrix for E4 are:

λ4 = (−αNTKT + βKZ ,−RT ,−RZ) .

If β > αNTKT
KZ

, then E4 is unstable.

• The eigenvalues of the Jacobian matrix for E5 are:

λ5 = (−αNTKT ,−RT , RZ) ,

thus E5 is always unstable since RZ > 0.

• The eigenvalues of the Jacobian matrix for E6 are:

λ6 =

(
0, 0,

(−βKT + αTNKZ)RZ
αTNKZ

)
,

thus E6 is always unstable.

Immunotherapy acts mainly towards boosting the body’s immune response to fight dis-
eases such as cancer. Specifically, immunotherapy targets certain proteins in cells which are
stimulated so that the immune response against cancer is stronger. If we consider the model
(3.3), the key parameters in boosting the response of the immune cells against cancer are
αTN , αNT and β. Therefore, one strategy for immunotherapy is to target the above men-
tioned parameters. How these parameters influence the immune response, and therefore the
dynamical behavior of the tumor–immune cells interaction, can be determined by looking
into stability of equilibria of interest. Moreover, for treatment purposes it is not sufficient to
have only information on the equilibria of the tumor dynamics and their respective stabil-
ity. It is of crucial importance to be able to assess whether from a certain initial condition,
the trajectory of the tumor dynamics will converge to a specific equilibrium. This can help
making the distinction from a patient which is on the path of being cured, or who is con-
verging towards a stable, noninvasive tumor, or one which has a tumor that will malignantly
grow. This distinction can be done or estimated, by computing the DOA of an equilibrium
of interest.

In this chapter, we consider the analysis of the tumor dormancy equilibrium (E2) and
the invasive tumor equilibrium (E4) of the proposed model (3.3). More specifically, first we
focus on how their properties are influenced by the relevant parameters which can be driven
through immunotherapy. This will be addressed by means of computing the DOAs of these
equilibria. Then, we develop a switching strategy design for immunotherapy, when the goal
is to steer the states to tumor dormancy (E2) and maintain this equilibrium.

3.3 Therapy strategy design methods
3.3.1 Parameter analysis for immunotherapy

In what follows we will make use of the tools in Chapter 2 for computing RLFs and corre-
sponding DOA estimates. Further, we will focus on analyzing the properties of the tumor
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dormancy and invasive tumor equilibria of the system (3.3). To this end, we recall three
possible cases with respect to the effects that the immune cells and the tumor cells have
on each other, and analyze the influence of the rate of conversion of hunting immune cells
from resting ones on the overall dynamics [34]. More specifically, we consider β as the
parameter which can be driven by immunotherapy and we look into how β influences the
two equilibria of interest.

3.3.1.1 Case I: influence of tumor cells on immune cells is equal to the influence of im-
mune cells on tumor cells: αTN = αNT = 0.5.

For the known parameter values, the eigenvalues of E4 as a function of the β parameter will
become λ4 = (−0.9,−0.9,−5 + 10β), therefore for values of β < 0.5, E4 will be stable.
If we evaluate the eigenvalues of the Jacobian for β < 0.5 and E2, it results that E2 will be
unstable. For β > 0.5, E4 becomes stable, and the corresponding Jacobian will have com-
plex eigenvalues. Therefore, if the conversion rate from resting predators to hunting preda-
tors is high enough, this will lead to a stable confined tumor. Let β be equal to 0.9. Then

E2 =
(

6.42857 7.14286 3.57143
)>

is stable and E4 =
(

10 0 10
)>

is unstable.
For E2 a RLF of order 4 was computed and an approximation of the DOA of E2 defined by
the level set value C∗ = 83.102 of V4 is shown in Figure 3.3 together with a left–angle view
of the set and a vector field plot of (3.3). The value ofC∗ was computed via the optimization

problem (15) in [32]. Let now β = 0.2. Then E2 =
(

2.85714 14.2857 7.14286
)>

is

an unstable dormancy equilibrium, while E4 =
(

10 0 10
)>

is stable. By a similar pro-
cedure, an approximation of the DOA of E4 was computed for the level set value C∗ = 36.
This is shown in Figure 3.4 together with a left–angle view of the set and a vector field
plot of (3.3). Note that for this case the realistic DOA approximation is a subset of the set
displayed in Figure 3.4 which results from its intersection with the positive axes. This is
allowed by Theorem 5.1, since the tumor system (3.3) is positive and the positive axes are
an invariant set for this system.

(a) (b)

Figure 3.3: Case I: Level set plot V4(x) = 83.102 for β = 0.9, i.e. stable tumor dormancy–
(a) and with vector fields–(b).
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(a) (b)

Figure 3.4: Case I: Level set plot V4(x) = 36 for β = 0.2, i.e. stable invasive tumor–(a)
and with vector fields–(b).

(a) (b)

Figure 3.5: Case II: Level set plot V4(x) = 5.2 for β = 1.2, i.e. stable tumor dormancy–(a)
and with vector fields–(b).

(a) (b)

Figure 3.6: Case II: Level set plot V4(x) = 40 for β = 0.2, i.e. stable invasive tumor–(a)
and with vector fields–(b).
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3.3.1.2 Case II: influence of tumor cells on immune cells is stronger than the influence of
immune cells on tumor cells: αTN = 0.2; αNT = 0.9.

Similarly as in the previous case, we get λ4 = (−0.9,−0.9,−9 + 10β), therefore for
β < 0.9, E4 will be stable and E2 unstable. For β = 0.91, the Jacobian correspond-
ing to E2 has stable, real eigenvalues and complex for β > 0.91, thus we pick β = 1.2
to illustrate the complex eigenvalues case as well. The DOA of the stable equilibrium

E2 =
(

9.52381 2.38095 7.14286
)>

is shown in both plots from Figure 3.5. In Fig-
ure 3.5(b) a left angle view of the set is shown together with the corresponding vector field

plots. For β = 0.2, the stable equilibrium is E4, while E2 =
(

0 50 0
)>

–unstable can
be discarded since it is not realistic. The corresponding DOA is displayed in Figure 3.6.
The same set is plotted from a left angle view together with the system’s vector fields in
Figure 3.6(b).

3.3.1.3 Case III: influence of tumor cells on immune cells is weaker than the influence of
immune cells on tumor cells: αTN = 0.9; αNT = 0.2.

By the same reasoning as in the previous two cases, it can be concluded that for β < 0.2,
E4 is stable. However, in this case, E2 will remain unstable, irrespective of the value of

β. For β = 0.05, E2 =
(

2.39437 8.4507 9.55746
)>

. We exclude here the cases
which generate stable E2, but with negative equilibrium values, which are not biologically
admissible. As such, an estimation of the DOA of E4 was computed for β = 0.05. The
computed set is shown in Figure 3.8(a) and in Figure 3.8(b) together with vector field plots.
As for what concerns E2, if we allow for the parameters KT and KZ to be different, we

can achieve stability. For example for KT = 10 and KZ = 5, then E4 =
(

10 0 5
)>

will be stable for β < 0.4 and E2 will be stable for β > 0.4. If β = 1.2, then E2 =(
7.14286 3.1746 1.19048

)>
with the estimated DOA shown in Figure 3.7.

(a) (b)

Figure 3.7: Case III: Level set plot V4(x) = 40 for β = 1.2, i.e. stable tumor dormancy–(a)
and with vector fields–(b).
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(a) (b)

Figure 3.8: Case III: Level set plot V4(x) = 60 for β = 0.05, i.e. stable invasive tumor–(a)
and with vector fields–(b).

3.3.2 Tools for therapy strategy design

From the above analysis it follows that the parameter β influences the stability of the equi-
libria of interest in different cases depending on the interinfluence parameters (αNT , αTN ).
Ideally, the treatment strategy should be able to steer the dynamics from Case 3.3.1.2 to
Case 3.3.1.3 with E2 stable, or worst case, to Case 3.3.1.1 with E2 stable, via a switching
sequence based on the parameters (β, αNT , αTN ). However, as it will be seen in the re-
mainder of this chapter, more (possibly all) model parameters need to be influenced for the
model (3.3).

Let
σi =

(
pi1 pi2 . . . pij

)>
, i = 1, . . . ,M, j = 1, . . . Q.

Each σi defines a new system of differential equations describing the tumor dynamics which
will have a corresponding stable equilibrium Ei. Q denotes here the number of system
parameters that define each σi and M denotes the number of needed switching parameter
sets. Let us denote the vector field describing the dynamics by fi, which will be a function
of the state vector xi and of the parameter vector σi. We define the finite sequence of
parameters Λ = {σ1, σ2, . . . , σM} such that

σM = σ∗, EM = E∗, fM = f∗,

where σ∗, E∗ and f∗ denote, respectively, the desired set of parameters which define the
desired equilibrium value and the desired dynamics. Furthermore, if we consider the cor-
responding DOAs for each of the equilibria above, then the sequence of DOAs should con-
verge to the DOA of EM = E∗, denoted by S∗. If we consider the worst case scenario,
when the system parameters correspond to the case which has as stable equilibrium the in-
vasive cancer state (with zero normal cells), then we also have information about σ1. There-
fore, the switching law is initiated by identifying the DOA where the initial state of the
system is to be considered. Furthermore, the overall cancer dynamics system, with varying
parameters σi is in fact an autonomous switched nonlinear system [19].

In what follows we will derive a therapy strategy for steering the parameters from the
invasive cancer dynamics to the dormant tumor dynamics, which is based on the DOAs of
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the individual corresponding dynamics. Equivalently, this implies that the switching rule
is designed based on DOAs of the switched system and the finite dynamics is defined on a
predefined finite set of values of parameters. Consider the following sets:

Λ = {σ1, σ2, . . . , σM} (3.4)
S = {S1,S2, . . . ,SM} (3.5)
E = {E1, E2, . . . , EM} (3.6)
I = {1, 2, . . . ,M}, (3.7)

whereM > 0, denotes the finite number of switchings among parameters and consequently,
among vector fields over DOAs, i.e. the subsets of S. E represents the set of equilibria of
the switching systems and I defines an index set.

Next, consider the following system

ẋ = f̃(x(t), σ(t))

σ(t) = ν(x(t)),
(3.8)

where x(t) ∈ Rn, σ(t) ∈ Λ. The maps f̃(·, σ) : Rn → Rn are Lipschitz continuous for
any σ ∈ Λ and f̃(·, σ) = fi(x), for any i ∈ I. For certain values of parameters of interest,
fi denotes the vector field describing dynamics of the form ẋ = fi(x). ν : Rn → Λ is the
discrete dynamics, which is defined as

ν(x(t)) = σi∗ , if x(t) ∈ Si∗ , (3.9)

for any σi ∈ Λ, with the switching rule

i∗ := max{i |x(t) ∈ Si}. (3.10)

Theorem 3.1 Consider the switched system described in (3.8)–(3.10) where Ei ∈ E are
such that for any i ∈ I, f̃(Ei, σi) = fi(Ei) = 0, and the sets Si ∈ S represent DOAs of the
equilibria Ei. Furthermore let the following conditions

N (Ei)
+ ⊆ Si ∩ Si+1 (3.11)

hold for all i ∈ I and define S̃ :=
⋃
i

Si. Then EM is an asymptotically stable equilibrium

for the switched system (3.8)–(3.10) with DOA S̃ .

Proof: Take any initial condition x0 ∈ S̃. Then according to (3.9) and (3.10) there exists
an index i such that x0 ∈ Si. Let i∗ = max{i |x0 ∈ Si}. Then we can have the next two
situations.

If i∗ = M , then SM is a DOA for the considered switched system with ν(x(t)) = σM .
This follows from the fact that for any x0 ∈ SM , max{i |x(t, x0) ∈ Si} = M , for any
t ≥ 0 and SM is a DOA for EM and the system ẋ(t) = f(x(t), σM ) = fM (x(t)) by
construction.
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If i∗ 6= M then it can only be that i∗ < M . Thus, let x0 ∈ Si∗ . This implies that
lim
t→∞

x(t, x0) = Ei∗ and x(t, x0) ∈ Si∗ ⊆ Rn+ for some t > 0, since Si∗ is a DOA defined

by the RLF Vi∗(x). Suppose there does not exist a ti∗+1 ∈ R>0 such that x(ti∗+1, x0) ∈
N (Ei∗)

+. Further, let Bρ(Ei∗)+ denote the projection on Rn+ of a ball of radius ρ > 0
and centered in Ei∗ which is contained in N (Ei∗)

+. Hence, ‖x(t, x0)−Ei∗‖ ≥ ρ, for any
t > 0, which contradicts the convergence to the equilibrium. Therefore, at ti∗+1 we have
that x(ti∗+1, x0) ∈ N (Ei∗)

+ ⊆ Si∗ ∩ Si∗+1, which implies that ν(x(ti∗+1, x0)) = σi∗+1.
By iterating the reasoning above, it results that there exists tM > 0, such that

ν(x(tM , x0)) = σM

and, moreover, that lim
t→∞

x(t, x0) = EM ∈ SM . Therefore, for any x0 ∈ S̃, x(t, x0) will

converge to EM , while never leaving S̃ since it will never leave
⋃
i

Si. This implies that EM

is an asymptotically stable equilibrium for the switched system (3.8)–(3.10) with DOA S̃.

Notice that the switching rule (3.10) together with condition (3.11) guarantee that Ei
is not an equilibrium of ẋ = f̃(x(t), σi+1), thus the trajectories of this system can never
converge to Ei in Si.

Remark 3.1 In order to ensure some robustness for the switching control law, i.e., to avoid
chattering around the switching boundary one can redefine the parametric switching func-
tion ν in (3.9) and the switching rule (3.10) as

ν(x(t)) = σi∗ , x(t) ∈ εSi∗ , (3.12)

and
i∗ = max{i |x(t) ∈ εSi}, (3.13)

for any σi ∈ Λ, with 0 < ε < 1 as scaling factor. However, it is possible that, for a certain
value of ε and for some initial conditions, the trajectories will never reach the boundary of
the set εSi+1 before converging to Ei. This implies that a trade–off between the degree
of robustness with respect to switching and certain restrictions with respect to the set of
possible initial conditions must be made.

3.3.3 Application of immunotherapeutic strategies design

In this section, the switching control law described in Section 3.3.2 will be applied to the
models (3.2) and (3.3).

3.3.3.1 Immune cells–tumor cells competition model

The parameter based switching control law described in Subsection 3.3.2 will be illus-
trated next for the tumor dynamics system (3.2) to design a therapy strategy for inva-
sive tumor growth. Thus, let the σ parameters in the model (3.2) be such that E1 =
(0, 10) is the asymptotically stable equilibrium and let the desired equilibrium be E3 =
(6.66667, 6.66667). As such, the set Λ is defined by the parameter pairs σ1 = (2, 0.5),
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σ2 = (0.847, 0.163), σ3 = (0.5, 0.5). With this sequence of parameters we can com-
pute the sequence of corresponding DOAs, S = {S1,S2,S3}. The sets are shown in Fig-
ure 3.9 with red, blue and black contour, respectively. As shown also in the plots, the
generated set sequence satisfies the condition (3.11) in Theorem (3.1). In particular, for
E1, N (Ei)

+ = [a1, b1], where a1 = (0, 6.06) and b1 = (0, 10.6), which are the intersec-
tion points of the set {x ∈ Rn |V2(x) ≤ C2} with the positive orthant, therefore (3.11)
holds. Note that E2 belongs to the interior of the set S2 and that Si, for any i ∈ I, are the
intersections of the sets with contours shown in Figure 3.9 with the positive orthant. In Fig-
ure 3.9(b), the trajectories corresponding to the initial conditions x10 = (1.35 21.26)> and
x20 = (7.429 19.91)> are shown. We considered the switching rule as defined by (3.12)
and (3.13) with ε = 0.8 when the trajectory switches from S1 to S2 and ε = 0.95 when the
trajectory switches from S2 to S3. For the first switch, due to the robustness condition, if in
the initial state the number of normal cells is too low, then it is possible that the trajectory
will never hit εS1. This means that it will converge toE1, therefore a safety initial condition
margin is required. In the illustrated case, the first element of x10 is equal to 1.35, which
suggests that this distance from zero on the x1 axis is safe.

In terms of clinical interpretation, the results shown above imply that pre–therapy, which
can allow the number of normal cells to grow, although the number of cancer cells will also
grow, is needed before the proposed therapy design procedure can be used. However, this
is only necessary if robustness is enforced. Moreover, a trade–off between the robustness
margin and the initial safety bound is required. Due to the condition in (3.11) if robustness
is not of interest, then for any initial state which belongs to S1 and it is arbitrarily close to
E1, the proposed switching rule will steer the trajectory to E4.
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(a) Estimation of the DOAs of E1–red, E2–
blue and E3–black together with correspond-
ing equilibrium values.
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(b) Estimation of the DOAs of E1–red, E2–
blue and E3–black together with correspond-
ing equilibrium values and two switched sys-
tems trajectories.

Figure 3.9: An example of applying the switching control law to the two states tumor dy-
namics model (3.2).
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3.3.3.2 Hunting–resting immune cells–tumor cells competition model

Let us apply the switching law described in Section 3.3.2 for the model (3.3). We consider
the following scenario. Let the parameters of the model correspond to Case 3.3.1.2, when
E4 is the stable equilibrium, i.e. β = 0.2. The goal is to steer the states away from this equi-
librium, and its corresponding DOA to a dormancy equilibrium, similar to the Case 3.3.1.1,
when the values of αTN and αNT are equal or very close to each other.

Although the major influence on immunotherapy is carried by the parameters αTN , αNT
and β, in order to shift the dynamics from one which exhibits a stable invasive tumor equi-
librium (E4) with zero hunting cells to one intermediate dynamics which exhibits a stable
equilibrium with nonzero hunting cells (E2), all model parameters need to be influenced.
Note that the growth rates RT and RZ do not have an influence on the values of E2 and E4,
however they come in play in the linearization matrix which determines the local stability
properties of these equilibria [34]. As such, let M = 6 and Q = 7 and

σi =
(
αiNT αiTN βi Ki

T Ki
Z RiT RiZ

)>
, i = 1, . . . ,M.

For

σ1 =
(

0.9 0.2 0.2 10 10 0.9 0.9
)>

,

the corresponding stable equilibrium E1
4 =

(
10 0 10

)>
has as corresponding DOA

estimate the set depicted in red in Figure 3.10(a).

Let the desired equilibrium be E6
2 =

(
6.74562 6.50877 4.07702

)>
, and the target

set of parameters

σ6 =
(

0.55 0.5 0.91 10 10 0.9 0.9
)>

,

for which the corresponding DOA estimate is shown in Figure 3.10(e) with green. In order
to steer the trajectories to the set S6, first we switch fromE1

4 to a lower x3 value equilibrium
E2

4 =
(

10 0 6.6
)

. Thus, for

σ2 =
(

0.9 0.2 0.5 10 6.6 0.9 0.9
)>

,

a new DOA estimate S2 is obtained, shown in yellow in Figures 3.10(a) and 3.10(b). In
Figure 3.10(a) a trajectory initiated in x0 = (20, 6, 7)>, x0 ∈ S1, is shown with red. When
the trajectory hits the boundary of S2, then the dynamics is switched to ẋ = f2(x), as shown
in Figure 3.10(b) with black.

In order to steer the trajectory away from the boundary of the positive orthant defined
by x2 = 0, a new equilibrium E3

2 needs to be assigned such that its corresponding DOA
estimate, S3 contains E2

4 , according to (3.11). For this to hold, E3
2 can’t be assigned with

the x2 value very far from x2 = 0 and there must exist a level set value C3 for V 3
4 (x) such

that S3 ∩ P ∩ N (E3
2)+ 6= ∅, where P denotes the positive orthant. However, for C3 to

exist, we must allow that the set S3 = {x ∈ Rn |V 3
4 (x) ≤ C3} intersects the zero level
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(a) Estimation of the DOAs of E1
4–red

and E2
4–yellow and a switched system

trajectory.

(b) Estimation of the DOAs of E2
4–

yellow and E3
2–blue and a switched sys-

tem trajectory.

(c) Estimation of the DOAs of E3
2–blue

and E4
2–black and a switched system tra-

jectory.

(d) Estimation of the DOAs of E4
2–black

and E5
2–cyan and a switched system tra-

jectory.

(e) Estimation of the DOAs of E5
2–cyan

and E6
2–green and a switched system tra-

jectory.

Figure 3.10: An example of applying the switching control law to the two states tumor
dynamics model (3.3).
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set of V̇ 3
4 (x), for x ∈ Rn \ P . This is allowed, since the positive orthant is an invariant

set for the tumor system. A formal proof can be found in [114, Theorem 2.3]. We consider

E3
2 =

(
10.6875 1.04151 5.02943

)>
, and

σ3 =
(

0.8 0.3 1.7 11 6.8 0.5 1
)>

,

with the corresponding DOA estimate shown in Figure 3.10(b) and Figure 3.10(c) with
blue. Note that, as expected the level of αTN is slightly increased, while αNT is slightly
decreased showing that the effect of the immune cells on the tumor cells is slightly stronger,
the carrying capacity of the resting immune cells, KZ is still close to the previous low value
while, rather unintuitively KT is increased. In turn, the conversion rate β is much higher.
As the growth rates RT and RZ have an influence on the eigenvalues of the linearization
matrix around E3

2 , decreasing RT and increasing RZ , have an influence on the shape of
the set S3, thus facilitating the inclusion of the unhealthy equilibrium E2

4 . The trajectory
defined by the new map f3(x) is shown in Figure 3.10(c).

Since E3
2 is very close to the undesired equilibrium, E1

4 , we propose two more interme-
diate steps, which correspond to switching between stable tumor dormancy equilibria until
the “safe" dormancy equilibrium E6

4 is reached. As such, for

σ4 =
(

0.7 0.45 1.3 10 7 0.9 0.9
)>

,

the DOA estimate of E4
2 = is shown in Figures 3.10(c) and 3.10(d) with black, and the

trajectory defined by f4(x) is plotted in Figure 3.10(d) with black. Next, for

σ5 =
(

0.65 0.5 1.14 10 9 0.9 0.9
)>

,

the DOA estimate of E5
2 = is shown in Figures 3.10(d) and 3.10(e) with cyan, and the

trajectory defined by f5(x) is plotted in Figure 3.10(e) with red. Finally, the trajectory
converging to the desired equilibrium E6

2 is shown with black in Figure 3.10(e).
In Figure 3.11(a) a plot with all the sets together is shown, together with one trajectory

of the controlled tumor dynamics. Since all the other sets are rather small compared to
S1(red) a left view plot of the sets and trajectory is shown in Figure 3.11(b).

Note that in the case of the last three switching systems corresponding to the parameters
in σ4, σ5 and σ6, the values of αTN and αNT are slowly converging to each other, showing
that the predator–prey type of interaction between the tumor cells and the immune cells is
converging to a Nash type of compromise. As a consequence, β is also allowed to decrease,
but still preserving stability of the dormancy equilibrium in all three cases. Similarly, KZ is
increasing, at each step, back to the initial value, while RT and RZ were switched to initial
values starting with σ4.

For the initial system, for which the vector field plot is shown in Figure 3.6(b), it can be
observed that for initial conditions corresponding to higher values of the state x3, the trajec-
tories of the system will converge to E1

4 via the boundary of the positive orthant containing
E1

4 . If the trajectories of ẋ = f1(x) reach this boundary before reaching the yellow set (S2),
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then they cannot be steered away from E1
4 . The same holds for ẋ = f2(x). Thus, conver-

gence of the switched system cannot be guaranteed for initial conditions with a high or very
low number of resting immune cells. However, this is not a limitation. Then an additional
condition can be added to the switching law, i.e. to switch directly to the next set when the
trajectory approaches a sufficiently small neighborhood of the (invariant) boundary of the
positive orthant containing E1

4 , or E2
4 in this case.

(a) (b)

Figure 3.11: Sequence of the switching sets and equilibria of (3.3) together with a controlled
trajectory–(a) and the left view–(b).

3.3.3.3 Discussion of results

If we consider the two models for which the switching control law was applied with the
same purpose, to steer the tumor dynamics trajectories to tumor dormancy, for the case of
the model proposed in [34], achieving dormancy was a much more difficult task. It required
switching between all the system’s parameters, not only the immunotherapy relevant ones as
observed in the analysis part. This is due to increased complexity in the function describing
the tumor dynamics. Once the number of hunting immune cells became nonzero in the
equilibrium, steering the states to a “safer” dormancy equilibrium could not be achieved in
one step, but by keeping KT , RT and RZ at their initial values. Furthermore, in order to
steer the states away from the stable invasive tumor equilibrium the tumor cells carrying
capacity had to be slightly increased, while the resting immune cells carrying capacity had
to be decreased. A possible explanation is that due to the increased value of β, there is an
increase in the number of hunting cells which are converted from resting cells and for the
environment to be able to sustain a larger population of hunting cells, the carrying capacity
of the resting cells needed to be reduced. The fact that αNT , which accounts for the effects
of tumor cells on the immune cells was not decreased suddenly but in steps, is consistent
with recent claims that aggressive forms of therapy aimed to completely eradicate tumor
cells may act at making the tumor cells resistant to treatment. This will allow the ones that
have survived the treatment to multiply faster and in an unbounded manner [42].
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3.4. Conclusions

Furthermore, the proposed treatment strategy is clinically implementable due to the fact
that the parameters of the system can be changed temporarily by external intervention by a
medical doctor. For example, the immune system can be temporarily stimulated by drugs.
Of course, the effect disappears over time but hopefully it will bring the state in the DOA
of the target equilibrium. Nonetheless, since patient specific parameters need to be derived,
estimating the parameters and measuring the states of the model might be difficult in real-
life. In this sense, robustness may play a very important role to counteract uncertainty in
the data.

3.4 Conclusions
In this chapter a new approach for tumor immunotherapy has been developed, by means of
switching laws and rational LFs. The derived treatment plan, based on the studied models,
is based on a switching control strategy defined on domains of attraction of equilibria of
interest. Specifically, the problem of steering a stable invasive tumor to tumor dormancy
has been investigated. This was addressed by means of a switching control law defined
over successive parameterized DOAs which can steer trajectories initiated in the DOA of
the invasive tumor equilibrium to the DOA of the tumor dormancy equilibrium, from which
the solution converges autonomously to the desired equilibrium. The switching control law
was illustrated on a model from the literature and on a new model from this thesis with the
scope to illustrate the mechanism of resting immune cells to hunting ones when interacting
with tumor cells.

The main contribution of this chapter is twofold. Firstly, to illustrate the benefits of
Lyapunov based tools for analysis of tumor dynamics and secondly, to provide a formal
mathematical framework for deriving the switching strategy for modifying not only the
tumor dynamics, but also the steady state solutions, i.e. the set of equilibria (stable and
unstable). This reasoning is in agreement with the new directions in cancer medical practice
which focus on disrupting the interaction of tumor cells with their environment through
a control–based approach [67]. By the proposed framework, information on the state at
which the critical model parameters need to be altered is provided, and additionally, the
outcome of the therapy is predicted. Certainly, in this work we dealt with one specific phase
from tumor development. Nonetheless, the same procedure can be applied for example,
when considering the post angiogenesis phase, when the critical parameter of interest is the
carrying capacity of the tumor cells.

As for the theoretical tools used to design the control strategy, a similar switching strat-
egy is applicable also to biological systems described by nonpolynomial models. This is an
advantage with respect to the continuous polynomial feedback law developed in Chapter 2,
since for nonpolynomial systems it would be based on approximations of the true dynamics.
However, since the switching control law generates a DOA of the controlled system based
on the union of the successive DOAs, in order to capture more states that can be steered to
the desired equilibrium good DOA estimates are needed. If the RLFs are to be used to com-
pute the DOA estimates for nonpolynomial systems, there is no guarantee that the resulting
set estimates would be optimal, due to approximations. As such, a method to compute LFs
that can deliver better estimates of the true DOA of a system (which is often unknown, in
which case set estimates that capture more initial conditions, the better), also for nonpoly-
nomial systems is needed. More specifically, tools for computing LFs irrespective of the
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nonlinearity type (as long as regularity conditions are satisfied) are required. This problem
will be addressed in the next chapters.
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Chapter 4

Computation of Lyapunov functions of
Massera and Yoshizawa type

In this chapter we address the problem of computing LF’s which can provide nonconserva-
tive DOA estimates for general nonlinear systems satisfying some regularity assumptions.
As motivated in Chapter 1, in particular, the goal is to derive alternatives to the Masser-
a/Yoshizawa LF converse results, which allow for computability and are applicable to gen-
eral nonlinear systems. Consequently, the alternative converse LF formulations are related
to the problem of relaxing the LF decrease condition. Therefore, we introduce two con-
structions which are enabled by imposing a finite–time criterion on the computed function,
i.e. a finite time decrease condition. By means of this approach, we relax the assumptions
of exponential stability on the system dynamics, while still allowing integration over a finite
time interval. The resulting LF can be computed based on any K∞–function of the norm of
the solution of the system. In addition, we show how the developed converse theorem can
be used to construct an estimate of the domain of attraction.

4.1 Introduction
The converse of Lyapunov’s second method (or direct method) for general nonlinear sys-
tems is a topic of extensive ongoing research in the Lyapunov theory community. Work on
the converse theorem started around the 1950s with the crucial result in [90], which states
that if the origin of an autonomous differential equation is asymptotically stable, then the
function defined by a semidefinite integral of an appropriately chosen function of the norm
of the solution is a continuously differentiable LF. This construction, also known as the
Massera construction, led to a significant amount of subsequent work, out of which we re-
call here [79]. It is well known that finding an explicit form of a LF for general nonlinear
systems is a very difficult problem. One of the constructive results on answering the con-
verse problem was introduced in [122]. Therein an analytic formula of a LF is provided,
which approaches the value 1 on the boundary of the DOA of the considered system. Thus,
simultaneously with constructing a LF, an estimate of the DOA is computed. This result,
also known as the Zubov method is summarized in [60, Theorem 34.1] and [60, Theorem
51.1]. Stemming from Zubov’s method, a recursive procedure for constructing a rational
LF for nonlinear systems was proposed in [118]. This procedure has many computational
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advantages and it is directly applicable to polynomial systems, providing nonconservative
DOA estimates (as illustrated in Chapter 2). An alternative construction (known as the
Yoshizawa construction) to the one of Massera, was proposed in [121], where it was shown
that the supremum of a function of the solutions of the system is a LF. Additionally, we refer
to the books [78] and [80], and the survey [70].

As for more recent works, for the particular case of differential inclusions, a converse
theorem for uniform global asymptotic stability of a compact set was provided in [87],
and for the case of homogeneous systems it was shown in [97] that asymptotic stability
implies the existence of a smooth homogeneous LF. Further converse results for differential
inclusions for stability with two measures were provided in, for example, [115] and [76]. If
control inputs are to be considered, an existence result of control LFs under the assumption
of asymptotic controllability was derived in [104].

For what concerns computational, LF constructive methods, see the recent developments
of the author of [57] and subsequent works, out of which we single out [12] and [15], where
the Massera construction is exploited for generating piecewise affine LFs and [59] and [58]
where the Yoshizawa construction is used. A more detailed historical survey on converse
LF results can be found in the extensive paper [75].

Despite the comprehensive work on the topic of providing a converse to Lyapunov’s the-
orem, the existing constructive approaches either rely on complex candidate LFs (rational,
polynomial) or they involve state space partitions (for which scalability with the state space
dimension is problematic), accompanied by correspondingly complex or large optimization
problems. In turn, if we restrict strictly to analytical, Massera type of converse results, the
construction in [77, Theorem 4.14], for example, involves integrating over a finite time in-
terval, however with the assumption of exponential stability of the origin. A similar, relaxed
construction was developed in [15], by using a Lipschitz, positive outside a neighborhood
around the origin, (arbitrary) function of the state.

In this chapter, we develop a similar construction for the LF, by relaxing the exponential
stability assumption to a richer type of KL–stability property. This will allow a broader
range of systems for which a LF can be computed. To enable a systematic, general compu-
tational approach, additionally, we allow for the LF to be generated by any K∞ candidate
function which satisfies a finite–time criterion. Nonetheless, this relaxation comes with a
restriction on the KL–stability condition indicated in the chapter by Assumption 4.1. Ulti-
mately, the proposed solution makes use of an analytic relation between LFs and finite–time
Lyapunov functions (FTLFs) to compute a LF. Thus, construction of LFs is brought down to
verification that a candidate function is a FTLF, which is somewhat easier than identifying
a candidate function for a true LF.

A similar finite–time criterion was introduced in [2] to provide a new asymptotic stability
result for nonautonomous nonlinear differential equations. The discrete–time analog of
this condition was first used in [45] to provide a converse Lyapunov theorem for nonlinear
difference equations. The candidate LF therein is also of Massera type, but projected in
discrete–time, thus defined by finite summation. Furthermore, for nonlinear discrete–time
systems which are homogeneous, based on similar considerations, LF constructions which
rely on vector norms were developed in [33].

The problem of relaxing the negative definite derivative requirement on the LF for sta-
bility analysis, based on three means is summarized in [71]. One mean is based on the
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4.1. Introduction

Krasovskii-LaSalle principle [77] which requires a LF with negative semidefinite deriva-
tive, or by allowing the LF to have positive definite derivatives in certain regions of the
state space [72]. The second one is based on higher order derivatives of LF’s. In [22], it
is shown that a function with a higher order derivative which is negative definite implies
stability, while in [4] it is shown that a linear combination of the function and its derivatives
is a positive definite function with negative definite derivative. The downside of the above
enumerated approaches is that they are not constructive towards nonconservative DOAs
estimates; a positive definite candidate function needs to be somehow chosen. The third
approach is the one used in this chapter, i.e. by means of a finite time decrease condition,
or as it is called in [71], the “discretization approach”, developed around the results in [2].

The approach in [2] has been further worked out and generalized in several directions
in two results presented in [71]. Firstly, Proposition 2.3 offers an alternative to the periodic
decrease condition in [2] (see also (4.7) in this chapter) by requiring the minimum over a
finite time interval of a positive definite function of the state to decrease. Condition (2.2)
in [71] always implies a decrease after a finite time interval, but it allows the length of
the time interval to be state dependent. Proposition 2.3 of [71] shows that such a relaxed
finite time decrease condition impliesKL-stability and exponential stability (under the usual
global exponential stability assumptions plus a common time interval length for all states).
The decrease condition (2.2) in [71] can be related to the Razumikhin decrease condition
for time–delay systems, applied to a system without delays, which essentially requires a
positive definite function to decrease compared to its maximum attained over a past finite
time interval.

Secondly, another relevant result of [71] is presented in Remark 2.4, which provides a
converse result for KL–stable systems in terms of condition (2.2) in [71]. More precisely,
therein it is proven that if theKL–stability property holds, then any positive definite function
satisfies inequality (2.2) in [71]. Compared to the converse results of [71], the converse
theorem presented in this chapter shows that a stronger condition holds (inequality (4.7)
with a common finite time d for all states x(t)) under Assumption 4.1 Interestingly, the
proof of Remark 2.4 in [71] shows that Assumption 4.1 is naturally implied by KL-stability
and by the assumptions (H1)-(H3) therein (on compacts sets excluding the origin) when
d = d(x(t)) is allowed to be state dependent.

From a technical point of view, the proofs of the corresponding results in this chapter
(i.e., corresponding to Proposition 2.3 and Remark 2.4 in [71]) follow a different path, which
exploits the existence of a d–invariant set, and yields simpler, more intuitive proofs and
verifiable conditions that lead to constructive algorithms for computing LFs and estimating
DOAs. It is also worth to point out that a direct relation between FTLFs and true LFs has
not been established in [71].

We proceed by (re)introducing some concepts and results that will be subsidiary.

4.1.1 Preliminaries

Consider again autonomous continuous–time systems described by

ẋ = f(x), (4.1)

where f : Rn → Rn, is a locally Lipschitz function.
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Remark 4.1 (Solution notation.) Let the solution of (4.1) at time t ∈ R≥0 with initial
value x(0) be denoted by φ(t, x(0)), where φ : R≥0 × Rn → Rn. We assume that
φ(t, x(0)) exists and it is unique for all t ∈ R≥0 (see [77, Chapter 3] for sufficient smooth-
ness conditions on f ). The locally Lipschitz assumption on f(x) implies that φ(t, x(0)) is
a continuous function of x(0) [60, Chapter III]. Furthermore, the origin is an equilibrium
point, i.e. f(0) = 0.

In what follows, for simplicity, unless stated otherwise, we will use the notation x(t) :=

φ(t, x(0)) with the following interpretations:

• if x(t) is the argument of Ẇ (x(t)), then x(t) represents the solution of the system as
defined by φ(t, x(0));

• if x(t) is the argument of V (x(t)) as in (4.7) and (4.8), for example, then x(t) repre-
sents a point on the solution φ(t, x(0)) for a fixed value of t; the same interpretation
holds for W (x(t)); in other words we do not consider time-varying functions V or
W .

Recall the definitions of AS from Definition 2.1 and of KL–stability from Definition 2.2.
In the remainder of this chapter we will use KL–stability to refer to KL–stability in S or,
equivalently to AS, as defined above. When S = Rn, then we use the term global KL–
stability. Next we redefine the concept of LFs in an equivalent manner as in Definition 2.5.

Definition 4.1 A continuously differentiable function W : Rn → R≥0, for which there
exist α1, α2 ∈ K∞ and a K function ρ : R≥0 → R≥0 such that

α1(‖x‖) ≤W (x) ≤ α2(‖x‖), ∀x ∈ Rn (4.2)

Ẇ (x) ≤ −ρ(‖x‖), ∀x ∈ S, (4.3)

with S ⊆ Rn proper, is called a Lyapunov function in S for the system (4.1). If S = Rn,
then W is called a global LF.

The following concept is a relaxation of the classical concept of invariance as defined in
Definition 2.4.

Definition 4.2 Given a positive, real scalar d, the proper set S ⊆ Rn is called a d–invariant
set for the system (4.1) if for any t ∈ R≥0, if x(t) ∈ S, then it holds that x(t+ d) ∈ S.

Note that the d–invariance property does not imply that x(t) ∈ S for all x(t) ∈ S if
x(0) ∈ S.

We recall below Sontag’s lemma on KL–estimates [108, Proposition 7], as it will be
instrumental.

Lemma 4.1 For each classKL–function β and each number λ ∈ R≥0, there exist ϕ1, ϕ2 ∈
K∞, such that ϕ1(s) is locally Lipschitz and

ϕ1(β(s, t)) ≤ ϕ2(s)e−λt, ∀s, t ∈ R≥0. (4.4)
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4.1. Introduction

The following result was introduced in [60, Definition 24.3] to relate positive definite
functions and K–functions. A proof of this result was indicated in the Introduction of [74],
however without providing a lower bound construction. In what follows we shall indicate
results from K–continuity characterizations which provide upper and lower bounds for a
given continuous, positive definite function in terms of K–functions. We recall the proof
arguments, for completeness.

Lemma 4.2 Consider a function W : Rn → R≥0 with W (0) = 0.

1. If W (x) is continuous and positive definite in some neighborhood around the origin,
N (0), then there exist two functions α̂1, α̂2 ∈ K such that

α̂1(‖x‖) ≤W (x) ≤ α̂2(‖x‖), ∀x ∈ N (0). (4.5)

2. If W (x) is continuous and positive definite in Rn and additionally, W (x) → ∞, when
x→∞ then (4.5) holds with α̂1, α̂2 ∈ K∞ and for all x ∈ Rn.

Proof: 1. For any x ∈ N (0), with N (0) sufficiently small, there exist r1 and r2 such that
for 0 ≤ r1 ≤ ‖x‖ ≤ r2 and

Wu(‖x‖) := max
ξ

W (ξ)

subject to r1 ≤ ‖ξ‖ ≤ ‖x‖,
and

Wl(‖x‖) := min
ξ

W (ξ)

subject to ‖x‖ ≤ ‖ξ‖ ≤ r2,
it holds that (by continuity of W )

Wl(‖x‖) ≤W (x) ≤Wu(‖x‖).

Additionally, Wu(·) and Wl(·) above are non–decreasing and continuous and Wu(0) =
Wl(0) = 0. Wu(‖x‖) and Wl(‖x‖) can be upper and lower bounded, respectively, by
K–functions constructed as in [119, Lemma I] or in [39, Lemma A.2].

2. Since W (x) is continuous and positive definite in Rn with W (x) → ∞, by the same
arguments as above, K∞ functions can be constructed such that (4.5) holds.

Another instrumental result for this chapter is the Bellman–Gronwall Lemma. A proof
is provided in [109, Lemma C. 3.1].

Lemma 4.3 Assume given an interval I ⊆ R, a constant c ∈ R≥0, and two functions
α, µ : I → R≥0, such that α is locally integrable and µ is continuous. Suppose further
that for some σ ∈ I it holds that

µ(t) ≤ ν(t) := c+

∫ t

σ

α(τ)µ(τ)dτ
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for all t ≥ σ, t ∈ I. Then it must hold that

µ(t) ≤ ce
∫ t
σ
α(τ)dτ .

It is well known, from the direct method of Lyapunov, that the existence of a Lyapunov
function for the system (4.1) implies that the origin is an AS equilibrium for (4.1). In the
remainder of this chapter we propose some new alternatives to classical Lyapunov converse
results, which are verifiable and constructive towards obtaining nonconservative DOA esti-
mates. By nonconservative we mean set estimates of the DOA which manage to capture a
larger region of the state space, as compared to existing results from literature, or, in the case
of bistability, which get infinitesimally close to the stability boundary or separatrix [29].

4.2 A constructive Lyapunov converse theorem

4.2.1 Finite–time conditions

Let there be a continuous function V : Rn → R≥0, and a real scalar d > 0 for which the
proper set S ⊆ Rn is d–invariant and the conditions

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ Rn, (4.6)
V (x(t+ d))− V (x(t)) ≤ −γ(‖x(t)‖), ∀t ≥ 0, (4.7)

are satisfied with α1, α2 ∈ K∞, and γ ∈ K and for all x(t), with x(0) ∈ S.
The function V which satisfies (4.6) and (4.7) is called a finite–time Lyapunov function

(FTLF) in S for the system (4.1). If S = Rn, then V is a global FTLF.
In order for condition (4.7) to be well–defined, additionally to the locally Lipschitz

property of the map f(x), it is assumed that there exists no finite escape time in each interval
[t, t + d], for all t ∈ R≥0. However, as it will be shown later, it is sufficient to require that
there is no finite escape time in the time interval [0, d].

When S = Rn, a sufficient condition for existence of the solution for all t ∈ R≥0
(additional to continuity of f ) is that the map f(x) is Lipschitz bounded [60, Chapter III.16].
Furthermore, note that existence of a finite escape time for initial conditions in a given set
in Rn implies that the origin is unstable in that set [60, Chapter III.16].

The following result relates inequality (4.7) with another known type of decrease condi-
tion, which will be instrumental.

Lemma 4.4 The decrease condition (4.7) on V is equivalent with

V (x(t+ d))− ρ(V (x(t))) ≤ 0, ∀t ∈ R≥0, (4.8)

for all x(t) with x(0) ∈ S , where ρ < id for nonzero arguments, ρ(0) = 0 is a positive
definite, continuous function.

Proof: The proof follows a similar reasoning as in [44, Remark 2.5]. Assume that V is
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such that (4.6) and (4.7) hold. Then, for all x(t) 6= 0:

0 ≤ V (x(t+ d)) ≤ V (x(t))− γ(‖x(t)‖)
< V (x(t))− 0.5γ(‖x(t)‖)
≤ V (x(t))− 0.5γ(α−12 (V (x(t)))

= (id− 0.5γ ◦ α−12 )(V (x(t))

=: ρ(V (x(t)).

(4.9)

Similarly, for all x(t) 6= 0,

0 ≤ V (x(t+ d)) ≤ V (x(t))− γ(‖x(t)‖)
< α2(‖x(t)‖)− 0.5γ(‖x(t)‖)
= (α2 − 0.5γ)(‖x(t)‖),

which implies that (α2 − 0.5γ)(s) > 0, for all s 6= 0. Furthermore, since α−12 ∈ K∞, then
(α2 − 0.5γ) ◦ α−12 (s) > 0 and

0 < (id− 0.5γ ◦ α−12 )(s) < id, ∀s 6= 0.

Thus, by construction, the function ρ : R≥0 → R≥0 is a continuous, positive definite
function. All involved functions are continuous by definition, thus the difference remains
continuous. When x(t) = 0, then (4.8) trivially holds, since ρ(0) = 0.

Now assume that (4.8) holds. Then

V (x(t+ d))− V (x(t)) ≤ ρ(V (x(t)))− V (x(t))

= −(V (x(t)) + ρ(V (x(t)))

= −((id− ρ)(V (x(t))))

≤ −((id− ρ)(α1(‖x(t)‖))
= −γ̃(‖x(t)‖),

with γ̃ = (id − ρ) ◦ α1. Since ρ < id by assumption, then γ̃ is positive definite, and
furthermore continuous. Thus, by Lemma 4.2 γ̃ can be lower bounded by a K–function
γ(‖x(t)‖), hence V (x(t+ d))− V (x(t)) ≤ −γ(‖x(t)‖), γ ∈ K.

Next, we propose a version of [2, Theorem 1] for the time–invariant case and with the
additional assumption that the set S is a d–invariant set for (4.1). This additional assumption
enables a simpler proof, while the result is stronger, i.e., KL–stability in S is attained as
opposed to local (in some neighborhood around the origin) KL–stability.

Theorem 4.1 If a function V defined as in (4.6) and (4.7) and a proper and compact d-
invariant set S exist for the system (4.1), then the origin equilibrium of (4.1) is KL–stable
in S.
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Proof: For any t ∈ R≥0, there exists an integer N ≥ 0 and j ∈ R≥0, j < d such that
t = Nd+ j. By applying (4.7) in its equivalent form (4.8) recursively, we get that

V (x(t)) = V (x(Nd+ j))

= V (x(((N − 1)d+ j) + d))

≤ ρ(V (x((N − 1)d+ j)))

= ρ(V (x(((N − 2)d+ j) + d)))

≤ ρ2(V (x((N − 2)d+ j)))

. . .

≤ ρN (V (x(j)))

≤ ρN (α2(‖x(j)‖)),

(4.10)

where ρN denotes the N–times composition of ρ. The solution at time t = j is given by

x(j) = x(0) +

∫ j

0

f(x(s))ds,

for any j ≥ 0. Then,

‖x(j)− x(0)‖ ≤
∫ j

0

‖f(x(s))− f(x(0)) + f(x(0))‖ds

≤
∫ j

0

‖f(x(s))− f(x(0))‖ds+

∫ j

0

‖f(x(0))‖ds.

By using the local Lipschitz continuity property of f , with L > 0 the Lipschitz constant,
and the Lemma 4.3 we obtain that

‖x(j)− x(0)‖ ≤
∫ j

0

L‖x(s)− x(0)‖ds+

∫ j

0

‖f(x(0))‖ds

≤
(∫ j

0

‖f(x(0))‖ds
)
eLj .

Thus,

‖x(j)‖ ≤ ‖x(0)‖+

(∫ j

0

‖f(x(0))‖ds
)
eLj =: Fj(‖x(0)‖).

Then Fj(‖x(0)‖) ≤ Fd(‖x(0)‖), for all j ∈ [0, d]. By the standing assumptions on f it
results that Fd(‖x(0)‖) is continuous with respect to x(0). Furthermore, Fd(0) = 0 and
Fd(s) is positive definite and continuous and Fd(s) → ∞, when s → ∞, for any s ≥ 0.
By applying Lemma 4.2 to Fd(‖x(0)‖) we obtain that there exists a function ω ∈ K∞ such
that Fd(‖x(0)‖) ≤ ω(‖x(0)‖), and consequently, ‖x(j)‖ ≤ ω(‖x(0)‖), for all 0 ≤ j < d.
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4.2. A constructive Lyapunov converse theorem

Thus, with α̂2 := α2 ◦ ω we get that

V (x(t)) ≤ ρN (α̂2(‖x(0)‖)) = ρ
t−j
d (α̂2(‖x(0)‖))

≤ ρb td c−1 ◦ α̂2(‖x(0)‖)
= ρb

t
d c ◦ ρ−1 ◦ α̂2(‖x(0)‖)

≤ ρb td c ◦ ρ̂ ◦ α̂2(‖x(0)‖) =: β̂(‖x(0)‖, t), ρ̂ ∈ K∞.

Without loss of generality we can assume that ρ is a one–to–one (injective) and onto (sur-
jective) function, thus invertible. Furthermore, since ρ is continuous, then by [20, Theorem
3.16], ρ−1 is continuous. Additionally, ρ−1(0) = ρ−1(ρ(0)) = 0. Thus, there exists a
function ρ̂ ∈ K∞, such that ρ−1 ≤ ρ̂, as follows from Lemma 4.2. We can conclude that
β̂ ∈ KL since ρ̂ ◦ α̂2(s) ∈ K∞ and ρb

t
d c ∈ L.

Finally,
‖x(t)‖ ≤ α−11 (β̂(‖x(0)‖, t)) =: β(‖x(0)‖, t),

for all x(0) ∈ S and for all t ∈ R≥0, thus we have obtained KL–stability in S.
We proceed by providing a converse finite–time Lyapunov function for KL–stability in

a compact set S.

4.2.2 Alternative converse theorem

Assumption 4.1 There exists a pair (β(·, ·), d) ∈ KL×R>0 with β satisfying (2.3) for the
system (4.1) such that

β(s, d) < s (4.11)

for all s > 0.

Theorem 4.2 If the origin is KL–stable in some invariant subset of Rn, S1 for the system
(4.1) and Assumption 4.1 is satisfied, then for any function η ∈ K∞ and for any norm ‖ · ‖,
the function V : Rn → R≥0, with

V (x) := η(‖x‖), ∀x ∈ Rn (4.12)

satisfies (4.6) and (4.7).

Proof: Let the pair (β, d) be such that Assumption 4.1 holds. Then, by hypothesis

η(‖x(t+ d)‖) ≤ η(β(‖x(t)‖, d))

≤ η(β(η−1(V (x(t))), d))

:= ρ(V (x(t))),

where ρ = η(β(η−1(·), d)), for all initial conditions x(0) ∈ S. By Assumption 4.1, we
obtain that there exists a d > 0 such that ρ < η(η−1(·)) = id, Thus, we get

V (x(t+ d))− ρ(V (x(t))) ≤ 0, ∀x(0) ∈ S.
1Invariance is needed in order for (4.8) to hold for all t ≥ 0.
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From Lemma 4.4 this implies that (4.7) holds. Since V is defined by a K∞ function, then
let α1(s) = α2(s) = η(s) such that (4.6) holds.

A similar converse theorem was provided in Remark 2.4 in [71]. Therein it was proven
that when it is allowed that d = d(x(t)) to be state dependent, then Assumption 4.1 is
implied by KL-stability (and assumptions (H1)-(H3) in [71]) on compact sets excluding
the origin and, a less conservative property than (4.7) (property (2.2) in [71]) holds for any
candidate positive definite function V .

Consider the next function defined as

W (x(t)) :=

∫ t+d

t

V (x(τ))dτ, (4.13)

for any V for which there exists a d > 0 such that (4.6) and (4.7) are satisfied.
Generally, in standard converse theorems the function ϕ1 which defines the LF is a par-

ticular, special K∞ function. In the finite–time converse theorem, η is any K∞ function,
which allows for more freedom in the construction. In turn, the developed finite–time con-
verse theorem will be used to obtain an alternative converse Lyapunov theorem.

Lemma 4.5 There exists a V satisfying (4.6) and (4.7) for (4.1) and some d > 0, if and
only if the function W as defined in (4.13) with the same d > 0 is a Lyapunov function in
S for the system (4.1).

Proof: Let there be a function V satisfying (4.6) and (4.7). V is continuous, thus it is
integrable over any closed, bounded interval [t, t + d], t ≥ 0. By Theorem 5.30 in [20],
this implies that W (x(t)) is continuous on each interval [t, t+ d], for any t. Since V is also
positive definite, by integrating over the bounded interval [t, t + d] the resulting function
W (x(t)) will also be positive definite. Since W (x(t)) is continuous and positive definite
the result in Lemma 4.2 can be applied. Therefore, there exist two functions α̂1, α̂2 ∈ K∞
such that

α̂1(‖x‖) ≤W (x) ≤ α̂2(‖x‖), ∀x ∈ Rn, (4.14)

holds. Next, by making use of the general Leibniz integral rule, we get that

d

dt
W (x(t)) =

∫ t+d

t

d

dt
V (x(τ))︸ ︷︷ ︸
=0

dτ + V (x(t+ d)) ˙(t+ d)− V (x(t))ṫ

=V (x(t+ d))− V (x(t)) ≤ −γ(‖x(t)‖).

Thus, W is a Lyapunov function for (4.1).
Now assume that W is a Lyapunov function for (4.1), i.e. (4.14) holds and for γ ∈ K it

holds that
Ẇ (x) ≤ −γ(‖x‖), ∀x ∈ S.

By the same Leibniz rule, we know that Ẇ (x(t)) = V (x(t + d)) − V (x(t)), thus the
difference V (x(t + d)) − V (x(t)) is negative definite, i.e. (4.7) holds. Now we have to
show that (4.6) holds.
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4.2. A constructive Lyapunov converse theorem

Assume that there exists an x(t) ∈ S , x(t) 6= 0, such that V (x(t)) ≤ 0. Then, this
implies that

V (x(t+ d)) < V (x(t) ≤ 0,

and furthermore,

V (x(t+ id)) < V (x(t+ (i− 1)d)) < . . . < V (x(t+ 2d)) < V (x(t+ d)) < V (x(t)) ≤ 0,

for all integers i > 0, due to d-invariance of S and the assumption that x(t) ∈ S. Then,

lim
i→∞

V (x(t+ id)) = −∞.

Since W is a LF for (4.1) in S, then the origin is KL–stable in S, thus it implies that
limi→∞ x(t + id) = 0. Then, because the solution of the system (4.1) is a continuous
function of time and W is continuous, it follows that limi→∞W (x(t + id)) = W (0).
Therefore, we have that

lim
i→∞

W (x(t+ id)) = lim
i→∞

∫ t+(i+1)d

t+id

V (x(τ))dτ

⇔

W (0) =

∫ ∞
∞

V (x(τ))dτ = V (x(∞)) = −∞,

which is a contradiction since W (0) = 0, thus V (x) must be positive definite on S. By
the definition of W , we have that V must be a continuous function, because it needs to be
integrable for W to exist. By assumption, W is upper and lower bounded by K∞ functions,
thus for x → ∞, W (x) → ∞. This can only happen when V (x) → ∞. Thus, using a
similar reasoning as above, based on Lemma 4.2, this implies that V is upper and lower
bounded by K∞ functions, hence (4.6) holds in S.

The next result summarizes the proposed alternative converse LF for KL–stability in S,
enabled by the finite–time conditions (4.6) and (4.7).

Corollary 4.1 If the zero equilibrium of the system (4.1) is KL–stable in some set S with
the KL–function β satisfying Assumption 4.1 for some d > 0, then by Theorem 4.2 and
Lemma 4.5 for any function η ∈ K∞ and any norm ‖ · ‖, the function W (·) defined as in
(4.13) for the same d > 0, is a Lyapunov function for the system (4.1).

The above corollary provides a continuous–time counterpart of the converse result [45,
Corollary 22]. The main line of reasoning relies on the Assumption 4.1, which is the
same assumption needed for the discrete–time converse theorem. The main technical dif-
ferences with [45] lie in the proofs of Theorem 4.1, the construction (4.13) and the proof of
Lemma 4.5.
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4.2.3 Remarks Massera construction

Notice that the function (4.13) with V (x) = η(‖x‖) corresponds to a Massera type of
construction, which in its original form is given by [90]

W (x(t)) =

∫ ∞
t

α(‖x(τ)‖)dτ, (4.15)

with α : R≥0 → R≥0 an appropriately chosen continuous function. In [12] the construc-
tion above is recalled as

W (x(0)) =

∫ N

0

‖x(τ)‖2dτ, (4.16)

as an alternative to the construction in [77, Theorem 4.14], where the limits of the integral
are t and t+N . This type of construction facilitated an extensive amount of converse results.
Also, the converse proof in [90] set up a proof technique which is based on the so–called
Massera’s Lemma [90, p. 716] for constructing the function α in (4.15).

The formulation in [12] is based on the exponential stability assumption, though an ex-
tension for the asymptotic stability case is suggested. The extension relates to the construc-
tion in (4.13), where instead of the function η, a nonlinear scaling of the norm of the state
trajectory is used. This scaling function is obtained from a KL estimate and Lemma 4.1
to provide an exponentially decreasing in time upper bound for the asymptotic stability
estimate. In [15], a similar construction to the one in (4.13) is proposed, namely

W (x(0)) =

∫ T

0

γ(x(τ))dτ, (4.17)

with T a positive, finite constant and γ a positive definite function. While both the proposed
construction and the one in (4.17) rely on arbitrary functions of the state, the main difference
is in the choice of the integration interval, with d being such that (4.7) holds for the arbitrary
η function.

By using the finite–time function V , we provide an alternative to Massera’s construction
via Corollary 4.1, whilst by definingW as in (4.13) we allow for aKL–stability assumption
with the KL function satisfying (4.11). The freedom in choosing any function of the state
norm η ∈ K∞ in the proposed construction facilitates an implementable verification proce-
dure which is detailed in Section 4.4 and does not rely on a specific, possibly more complex
form, which can add to the computational load, for a LF.

4.3 Expansion scheme
In [28] a scheme for constructing LFs starting from a given LF, which at every iterate pro-
vides a less conservative estimate of the DOA of a nonlinear system of the type (4.1) was
proposed. The sequence of Lyapunov functions of the type

W1(x) = W (x+ α1f(x))

W2(x) = W1(x+ α2f(x)) (4.18)
...

Wn(x) = Wn−1(x+ αnf(x)),
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4.3. Expansion scheme

with αi ∈ R≥0, i = 1, 2 . . . , n leads to the DOA estimates set inclusion

SW (c) ⊂ SW1(c) ⊂ . . . ⊂ SWn(c),

where SWi
(c) := {x ∈ Rn |Wi(x) ≤ c}, i = 1, 2 . . . , n denote the largest level sets

of the Lyapunov functions generated by the expansion sequence (4.18) with SW (c) ⊂ S ,
where S is a d–invariant set. Note that the largest level set of the LF W , included in the d–
invariant set S is a subset of the true DOA of the system (4.1). Thus, the expansion scheme
(4.18) applied on a computed W will provide a better estimate of the true shape of the DOA
contained in S. However, a less conservative initial set S leads to a better estimate of the
true DOA.

We propose to utilize the expansion idea in [28] to generate a sequence of FTLFs, with
the purpose to generate a relevant d–invariant set. The next result follows as a consequence
of Lemmas 4-1 and 4-2 from [28].

Corollary 4.2 Let V be a FTLF, i.e. conditions (4.6) and (4.7) hold with respect to the
d–invariant set S. Let

SV (c) := {x ∈ Rn |V (x) ≤ c} ⊂ S.

Then, there exists an α ∈ R≥0 such that for V1(x) = V (x + αf(x)) and SV1
(c) := {x ∈

Rn |V1(x) ≤ c}, it holds that SV (c) ⊂ SV1
(c) and V (x+ αf(x)) is a FTLF.

Proof: By hypothesis, V (x) is a FTLF, thus it is assumed to be continuously differentiable,
i.e. let V have continuous partial derivatives of order r higher or equal to 1. Then by [31,
p.190] and [28, Lemma 2-1] we can write:

V1(x(t)) = V (x(t))+αV̇ (x(t))+
α2

2!
V̈ (x(t))+ . . .

αr−1

(r − 1)!
V (r−1)(x(t))+

αr

r!
V r(z(t)),

where V r denotes the r-th derivative of V , i.e. V (r)(x) = ∇(r−1)V (x)>f(x) and z(t) =
x(t) + hαf(x(t)), for h ∈ [0, 1].

Let V (x(t)) = (V ◦ x)(t) = ψ(t). Similarly, by the formula [31, p.190, (8.14.3)], we
have that

ψ(t+ d) = ψ(t) + dψ̇(t) +
d2

2!
ψ̈(t) + . . .

dr−1

(r − 1)!
ψ(r−1)(t) +

dr

r!
ψr(w),

where w = t+ hd, h ∈ [0, 1] and ψ̇(t) = V̇ (x(t)) = ∇V (x)f(x). Then,

V (x(t+ d)) =V (x(t)) + dV̇ (x(t)) +
d2

2!
V̈ (x(t)) + . . .+

αr−1

(r − 1)!
V (r−1)(x(t))+

αr

r!
V r(x(w)).

79



From the expressions of V1(x(t)) and V (x(t+ d)), we can write

V1(x(t)) ≤V (x(t)) + V (x(t+ d))− V (x(t)) + |α− d|V̇ (x(t)) +
|α2 − d2|

2!
V̈ (x(t))+

. . .+
|αr−1 − dr−1|

(r − 1)!
V (r−1)(x(t)) +

∣∣∣∣αrr! V r(z(t))− αr

r!
V r(x(w))

∣∣∣∣
≤V (x(t)) + V (x(t+ d))− V (x(t)) + |α− d|V̇ (x(t)) + |α− d|ε.

(4.19)

Since V (x(t+d))−V (x(t)) < 0, there exists a β ∈ R>0 such that V (x(t+d))−V (x(t)) <
−β, for all x(0) ∈ S \ SV (c), where S \ SV (c) is a compact set containing no equilibrium
point. Furthermore, on the compact set S \ SV (c), ε > 0 is a bound on the sum of higher
order continuous terms in the above expression. This is due to the fact that continuous
functions are bounded on compact sets. As such, we obtain that

V1(x(t)) <V (x(t))− β + |α− d|(V̇ (x(t)) + ε)

Let |α − d| < ᾱ and let V̇ (x(t)) + ε ≤ ν, ν ∈ R>0 for all x ∈ S \ SV (c) since every
continuous function is bounded on a compact set. Thus, we obtain that

V1(x(t)) < V (x(t)) + ᾱν − β.

If (ᾱν − β) < 0, hence for 0 < |α− d| < β/ν, it holds that

V1(x(t)) < V (x(t)).

Similarly as in [28, Lemma 4-1], this implies that SV (c) ⊂ SV1
(c).

Next we will show that V1 is a FTLF. From Lemma 4.5 we know that the function
W (x(t)) =

∫ t+d
t

V (x(τ))dτ is a LF for (4.1). From [28, Lemma 4-2] it is known that there
exists some α > 0 such that

W1(x(t)) = W (x(t)) + αf(x(t))) =

∫ t+d

t

V (x(τ) + αf(x(τ)))dτ

is a LF. This implies that there exists some K–function γ̃(x(t)) such that

Ẇ1(x(t)) = V (x(t+ d) + αf(x(t+ d)))− V (x(t) + αf(x(t))) ≤ −γ̃(x(t)),

where the Leibniz integral rule was used. This further implies that V1(x(t+d))−V1(x(t)) ≤
−γ̃(x(t)), thus V1 is a FTLF.

4.4 Construction of W based on linearization
In Section 4.2 it has been shown that if the equilibrium of a given system isKL–stable, then
a method to construct a Lyapunov function is provided by (4.13), for V (x) defined by any
function η ∈ K∞ and any norm. The method is constructive starting with a given candi-
date d–invariant set S and a candidate function V (x) = η(‖x‖). Due to the d–invariance
property of S verifying condition (4.7) for the chosen V is reduced to verifying

V (x(d))− V (x(0)) ≤ −γ(‖x(0)‖) < 0, (4.20)
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4.4. Construction of W based on linearization

for all x(0) ∈ S . The difficulty in verifying (4.20) is given by the need to compute x(d),
for all x(0) ∈ S. However if x(d) is known analytically, then it suffices to verify (4.20)
for all initial conditions in a chosen set S. Then the largest level set of W , defined as in
(4.13), which is included in S, is a subset of the true DOA of the considered system. The
verification of (4.20) translates into solving a problem of the type

max
x(0)

[V (x(d))− V (x(0))]

subject to x(0) ∈ S.
(4.21)

The regularity assumptions on the map describing the dynamics (4.1) ensures that the so-
lution is continuous for all t ∈ [0, d]. Furthermore, since V (x) = η(‖x‖) ∈ K∞ and
the d–invariant candidate set S is compact, the problem (4.21) will always have a global
optimum.

When the analytical solution is not known, or obtaining a numerical approximation is
computationally tedious, as it can be the case for higher order nonlinear systems, then we
propose the following approach starting from the linearized dynamics of (4.1). In what
follows we recall some relevant properties of the map f with respect to its linearization. The
detailed derivations can be found in [77, Chaper 4.3]. Firstly, by the mean value theorem it
follows that

fi(x) = fi(0) +
∂fi
∂x

(zi)x, i = 1, . . . , n, (4.22)

where zi is a point on the line connecting x to the origin. Since the origin is an equilibrium
of (4.1),

fi(x) =
∂fi
∂x

(zi)x =
∂fi
∂x

(0)x+

(
∂fi
∂x

(zi)−
∂fi
∂x

(0)

)
x.

Then,
f(x) = Ax+ g(x), (4.23)

with

A =
∂f

∂x
(0) =

[
∂f(x)

∂x

]
x=0

, gi(x) =

(
∂fi
∂x

(zi)−
∂fi
∂x

(0)

)
x.

Furthermore,

‖gi(x)‖ ≤ ‖∂fi
∂x

(zi)−
∂fi
∂x

(0)‖‖x‖

and
‖g(x)‖
‖x‖ → 0, as ‖x‖ → 0.

In this way, in a sufficiently small region around the origin we can approximate the system
(4.1) with ẋ = Ax.

The next result is an analog to Lyapunov’s indirect method [77, Theorem 4.7], but in
terms of the FTLF concept. The aim is to provide a validity result for the FT condition (4.7)
for the nonlinear system (4.1), whenever a (global) FT type condition is satisfied for the
linearized system with respect to the origin.
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Theorem 4.3 Let V (x) = ‖x‖ be a global FTLF function for ẋ = Ax, i.e. there exists a
d > 0 such that ‖eAd‖ < 1. Additionally, let

edµ(A) − 1 = −ς, ς ∈ R>0, (4.24)

where µ(A) is the logarithmic norm of A, be satisfied. Then the following statements hold.

1. There exists a d–invariant set S for which V (x) is a FTLF for (4.1).

2. There exists a set A ⊆ S for which

W (x) =

∫ d

0

V (x+ τf(x))dτ (4.25)

is a LF for (4.1).

Proof: We start by proving point 1. As indicated in [77], from ‖g(x)‖
‖x‖ → 0, as ‖x‖ → 0,

it follows that for any δ > 0, there exists an r > 0 such that ‖g(x)‖ < δ‖x‖, for ‖x‖ < r.
Thus, the solution of the system defined with the map in (4.23) is bounded, whenever g(x)
is bounded [103], as shown below.

‖x(d)‖ ≤ edµ(A)‖x(0)‖+

∫ d

0

e(d−τ)µ(A)‖g(x(τ))‖dτ

≤ edµ(A)‖x(0)‖+

∫ d

0

e(d−τ)µ(A)δ‖x(τ)‖dτ.

By applying the Bellman–Gronwall Lemma 4.3 to the inequality above, we obtain

‖x(d)‖ ≤ edµ(A)‖x(0)‖e
∫ d
0
e(d−τ)µ(A)δdτ

≤ edµ(A)‖x(0)‖eδ
edµ(A)−1
µ(A)

≤ edµ(A)− ςδ
µ(A) ‖x(0)‖.

Thus, V (x(d)) ≤ ρV (x(0)), with ρ := edµ(A)− ςδ
µ(A) . For the equivalent FT condition (4.8)

to hold, ρ must be subunitary, and equivalently

dµ(A)− ςδ

µ(A)
< 0. (4.26)

For equation (4.24) to hold, µ(A) must be negative. Thus, we obtain that

δ ≤ dµ(A)2

ς
, (4.27)

which provides an upper bound on δ, and thus on r. Consequently, there exists a d–invariant
set

S ⊆ {x ∈ Rn | ‖x‖ < r}.
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4.4. Construction of W based on linearization

As for the second item of the theorem, let us consider the Dini derivative expression for
Ẇ (x(0)),

Ẇ (x(0)) = D+W (x(0)) = lim sup
h→0+

W (x(h))−W (x(0))

h
.

Then,

D+W (x(0)) = lim sup
h→0+

∫ h+d
h

V (x(0) + τf(x(0)))dτ −
∫ d
0
V (x(0) + τf(x(0)))dτ

h

= lim sup
h→0+

∫ d+h
d

V (x(0) + τf(x(0)))dτ −
∫ h
0
V (x(0) + τf(x(0)))dτ

h

= 2 V (x(0) + df(x(0)))− V (x(0))

<V (x(d))− V (x(0)) ≤ −γ(‖x(0)‖),
where we used the fact that V1(x(t)) < V (x(t)) shown in the proof of Corollary 4.2.

In the theorem above, due to the equivalence result in Lemma 4.5, existence of a FTLF
V is equivalent to existence of a true LF W defined as in (4.13). Since V is only valid
in the region around the origin defined by δ, the LF W will also be a valid LF in some
subset of that region. However, the expression of W in (4.13) still involves knowing the
solution x(d). In this case, relying on the solution of the linearized system might lead to
conservative approximations of the DOA. In view of the fact that we want to construct LFs
that lead to relevant DOA estimates, the construction in (4.25) is more suitable as it includes
the nonlinear vector field.

The condition in (4.24), essentially requires that there should exist a (weighted) norm
for which the induced logarithmic norm of the matrix obtained by evaluating the Jacobian
associated to (4.1) at the origin is negative. The choice of the norm inducing the matrix
measure is dictated by the choice of the norm defining the FTLF V (x). A similar condition
was introduced in [5] for characterizing infinitesimally contracting systems on a given con-
vex set X ⊆ Rn. Therein, the logarithmic norm of the Jacobian at all points in the set X is
required to be negative.

Remark 4.2 To overcome computing the pair (δ, r) in the above theorem, an a posteriori
check on the validity domain of W constructed as in (4.25) is necessary. More precisely,
similarly as in Theorem 2.1, this domain is provided by the largest level set of W included
in the zero level set of its derivative with respect to (4.1). Consequently, this leads to an op-
timization problem as the one in (2.11), or the feasibility problem (5.6) in the computational
procedure proposed in the next chapter.

4.4.1 An illustrative example with no polynomial LF

Consider the system

ẋ1 = −x1 + x1x2 (4.28)
ẋ2 = −x2,

2Here we applied L’Hospital rule together with Leibniz integral rule.
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with solutions x1(t) = x1(0)e(x2(0)−x2(0)e
−t−t) and x2(t) = x2(0)e−t. In [3] it was

shown that the system is GAS by using the Lyapunov function VGAS(x) = ln (1 + x21) +
x22. Furthermore, it was shown that no polynomial LF exists for this system. We will
illustrate our converse results on this system and we will show that the proposed constructive
approach leads to local approximations of the DOA that cover a larger area of the state space
compared to similar sublevel sets of VGAS . Since the system is GAS, then it is KL–stable
with S = Rn, and by Theorem 4.2 we have that for any function η ∈ K∞, there exists a set
S ⊆ Rn and a scalar d such that the function V (x) = η(‖x‖), for any x ∈ S is a FTLF for
the system (4.28).
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Figure 4.1: Plots of the level sets of the function VGAS , V , W and W1 computed for the
system (4.28). (a)–The set X–black, the set S defined by the level set CV = 1.6 of FTLF
V –red and the level set defined by CW = 0.415 of the LF W–blue together with the vector
field plot of (4.1). (b)–The same sets as in Figure 4.1(a) together with the level set defined by
CW1

= 1.5 of W1–green. (c)–Comparison plot: W (x) = 0.415–blue, W1(x) = 1.5–green
and VGAS = 3–gray.

Consider the set X := {x ∈ Rn | ‖x‖∞ ≤ 4}, which is displayed in Figure 4.1 with
the black contour. Pick V (x) = x>Px, where P = ( 0.1 0

0 0.1 ) . For this choice of V , the
feasibility problem (4.21) was solved using the sqp algorithm with fmincon. Since all
involved functions are Lipschitz and we considered a polytopic, compact candidate set S,
the problem (4.21) has a global optimum. We found that condition (4.20) and consequently,
(4.7) holds for d = 2.4 and we assume it is a valid result for any x ∈ S, where S is
the largest level set of V included in the set X; S is shown in Figure 4.1(a) in red. By
Lemma 4.5, we obtain that

W (x(t)) =

∫ t+d

t

x(τ)>Px(τ)dτ

is a Lyapunov function for (4.28), for any t ∈ R≥0. From (4.20) and the equivalence result
in Lemma 4.5, it is sufficient to compute W (x(0)). For the computed d and chosen S and
V , let SV (CV ) denote the largest level set of V included in S. Then, the largest level set of
W in SV (CV ) will be a subset of the true DOA of the system. In Figure 4.1(a) we show the
level set of W defined by CW = 0.415 in blue. Next, we will illustrate also the expansion
method. Consider W1(x(t)) = W (x(t) + α1f(x(t)), with α1 = 0.1. The level set defined
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by W1(x) = CW1
, where CW1

= 1.5 is shown in Figure 4.1(b) in green. Note that, by
construction, W1(x) = 1.5 is not restricted to the black set. For the sake of comparison we
show in Figure 4.1(c) a plot of level sets of the two computed functions, W and W1 and a
relevant level set value of the logarithmic LF VGAS .

4.5 Alternative construction: Yoshizawa type
The other classical converse result is derived in [121], and is based on computing the supre-
mum of a function of the state of the system over an infinite time interval. In this section,
similarly to the Massera case, we show how a Yoshizawa–type of LF can be constructed
from a FTLF, with the advantage of computation over a finite time interval. Therefore,
consider the function defined as

W (x(0)) = sup
τ∈[0,d]

V (x(τ))eτ , (4.29)

for any V which satisfies (4.6) and (4.7) (or (4.8)) , for all x(0) ∈ S.

Lemma 4.6 Let V = η(‖x‖), with any K∞–function η, be a continuously differentiable
function satisfying (4.6) and (4.8) with ρ < id · e−d, for some d > 0 and the proper d–
invariant set S for (4.1). Then the function W defined as in (4.29) with the same value of d
is a LaSalle type of LF for (4.1), i.e. D+W (x(0)) ≤ 0, for all x(0) ∈ S.

Proof: From Theorem 4.1 it follows that the system (4.1) is KL–stable in S, thus for any
x(0) ∈ S, we have that

W (x(0)) = sup
τ∈[0,d]

η(‖x(τ)‖)eτ

≤ sup
τ∈[0,d]

η(β(‖x(0)‖, τ))eτ

≤ sup
τ∈[0,d]

η(β(‖x(0)‖, 0))eτ

=η ◦ β(‖x(0)‖, 0) max
τ∈[0,d]

eτ

=α2(‖x(0)‖)ed =: α̂2(‖x(0)‖),

where α̂2 ∈ K∞.

W (x(0)) = sup
τ∈[0,d]

η(‖x(τ)‖)eτ ≥ sup
τ∈[0,d]

α1(‖x(τ)‖)eτ
∣∣
τ=0

=: α̂1(‖x(0)‖),

with α̂1 ∈ K∞. Thus, we obtain (4.6). Notice that by the definition of W (x(0)), the
derivative in the Dini sense needs to be considered for Ẇ (x), i.e.

D+W (x(0)) = lim sup
h→0+

W (x(h))−W (x(0))

h
.
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Next, we will establish a relation between W (x(t)) and W (x(0)), which holds for any
t > 0, based on (4.8) when ρ < id · e−d.

Let t = Nd+ j, where N ∈ Z≥0 and j ∈ R>0, j < d.

W (x(t)) = sup
τ∈[t,t+d]

V (x(τ))eτ = max
τ∈[t,t+d]

V (x(τ))eτ

= max
{

max
τ∈[t,(N+1)d]

V (x(τ))eτ , max
τ∈[(N+1)d,t+d]

V (x(τ))eτ
}

= max
{

max
τ∈[t,(N+1)d]

V (x(τ))eτ , max
τ∈[Nd,t]

V (x(τ + d))eτ+d
}

< max
{

max
τ∈[t,(N+1)d]

V (x(τ))eτ , max
τ∈[Nd,t]

V (x(τ))eτ+d−d
}

= max
τ∈[Nd,(N+1)d]

V (x(τ))eτ

= max
τ∈[(N−1)d,Nd]

V (x(τ + d))eτ+d

< max
τ∈[(N−1)d,Nd]

V (x(τ))eτ

. . .

< max
τ∈[0,d]

V (x(τ))eτ = W (x(0)).

(4.30)

Thus, it follows that

D+W (x(0)) = lim sup
h→0+

W (x(h))−W (x(0))

h

≤ lim sup
h→0+

W (x(0))−W (x(0))

h
= 0

and we have obtained that D+W (x(t)) ≤ 0.

In the above lemma, the resulting condition D+W (x) ≤ 0, does not represent a re-
striction when estimating the DOA of the system (4.1), because Theorem 2.1 in Chapter 2,
which is a consequence of LaSalle’s theorem [80, Theorem 1] can be applied to compute
the largest level set of W contained in the set where D+W (x) < 0 and does not intersect
the set {x ∈ Rn : D+W (x) = 0}.

The next result summarizes the proposed alternative converse LF for KL–stability in S,
enabled by the finite–time conditions (4.6) and (4.7).

Corollary 4.3 If the zero equilibrium of the system (4.1) is KL–stable in some set S and
Assumption 4.1 holds for some d > 0, then by Theorem 4.2 and Lemma 4.6 for any function
η ∈ K∞ and any norm ‖ · ‖, the function W (·) defined in (4.29) with the same value for
d > 0 as in Assumption 4.1, is a Lyapunov function (of LaSalle type) for the system (4.1).

Consequently, an analogue of Theorem 4.3 in terms of constructing W starting from the
linearization of (4.1) around the origin is provided below.
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4.5. Alternative construction: Yoshizawa type

Theorem 4.4 Let V (x) = ‖x‖ be a global FTLF function for ẋ = Ax, i.e. there exists a
d > 0 such that ‖eAd‖ < 1. Additionally, let

edµ(A) − 1 = −ς, ς ∈ R>0 (4.31)

be satisfied. Then the following statements hold.

1. There exists a d–invariant set S for which V (x) is a FTLF for (4.1).

2. There exists a set A ⊆ S for which

W1(x) = max
τ∈[0,d]

V (x+ τf(x))eτ (4.32)

is a LF of LaSalle type for (4.1).

Proof: The first item of the theorem is the same as in Theorem 4.3.
For the second item of the theorem, observe that [31, p.190]

V (x(t+ h)) = V (x(t) + hf(x(t)) + hε),

where ε→ 0 as h→ 0. Furthermore, from [121, p.3], it follows that

V (x(t+ h)) = V (x(t) + hf(x(t)) + hε) ≤ V (x(t) + hf(x(t))) + Lh‖ε‖
V (x(t+ h)) = V (x(t) + hf(x(t)) + hε) ≥ V (x(t) + hf(x(t)))− Lh‖ε‖

and
V (x(t− h)) = V (x(t)− hf(x(t))− hε) ≤ V (x(t)− hf(x(t))) + Lh‖ε‖
V (x(t− h)) = V (x(t)− hf(x(t))− hε) ≥ V (x(t)− hf(x(t)))− Lh‖ε‖

where L is the Lipschitz constant of V (x) for x ∈ S and ε → 0 for h → 0+. Thus, for
h→ 0+, V (x(h)) = V (x(0) + hf(x(0))), and, as shown in [98, Appendix I.4],

D+W1(x(0)) = lim sup
h→0+

W1(x(h))−W1(x(0))

h

= lim sup
h→0+

W1(x(0) + hf(x(0)))−W1(x(0))

h
.

We have to show that D+W1(x(0)) ≤ 0. Then, by making use of the above relations we
obtain the following:

D+W1(x(0)) = lim sup
h→0+

max
τ∈[h,h+d]

V (x(0) + τf(x(0)))eτ − max
τ∈[0,d]

V (x(0) + τf(x(0)))eτ

h

= lim sup
h→0+

max
τ∈[0,d]

V (x(0) + (h+ τ)f(x(0)))eτ+h − max
τ∈[0,d]

V (x(0) + τf(x(0)))eτ

h

= lim sup
h→0+

max
τ∈[0,d]

V (x(τ) + hf(x(τ)))eτ+h − max
τ∈[0,d]

V (x(0) + τf(x(0)))eτ

h

= lim sup
h→0+

max
τ∈[0,d]

V (x(τ + h))eτ+h − max
τ∈[0,d]

V (x(τ))eτ

h
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and,

D+W1(x(0)) = lim sup
h→0+

W (x(h))− max
τ∈[0,d]

V (x(τ))eτ

h
= lim sup

h→0+

W (x(h))−W (x(0))

h

= D+W (x(0)) ≤ 0,

where W (x) denotes the construction in (4.29), which it has been shown to be a LF of
LaSalle type when V is a FTLF.

In the theorem above, due to the equivalence result in Lemma 4.6, existence of a FTLF
V is equivalent to existence of a true LF W defined as in (4.29). Since V is only valid
in the region around the origin defined by δ, the LF W will also be a valid LF in some
subset of that region. However, the expression of W in (4.29) still involves knowing the
solution x(d). In this case, relying on the solution of the linearized system might lead to
conservative approximations of the DOA. In view of the fact that we want to construct LFs
that lead to relevant DOA estimates, the construction in (4.32) is more suitable as it includes
the nonlinear vector field.

Remark 4.2 holds valid also in this case, when W1 is constructed as in (4.32).
When comparing the construction (4.32) with the Massera–type one in (4.25), the advan-

tage of the first one is that for complex systems it might be less computationally demanding
to compute the maximum, rather than computing the integral.

4.5.1 An illustrative example with no polynomial LF

-5 0 5
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-3
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-1
0
1
2
3
4
5

x2

x1

Figure 4.2: Plot of the the level set Wτ∗(x) = 0.3–blue, Ẇτ∗(x) = −1.2–green, and the
largest level set of the Massera–type function–black; with red the level set V (x) = 1.6 is
plotted.

Consider again the system described in Example 4.4.1. We will illustrate also the
Yoshizawa construction on this example. Again, since the system is GAS, then it is KL–
stable with S = Rn, and by Theorem 4.2 we have that for any function η ∈ K∞, there exists
a set S ⊆ Rn and a scalar d such that the function V (x) = η(‖x‖), for any x ∈ S is a FTLF
for the system (4.28). Consider the set X := {x ∈ Rn | ‖x‖∞ ≤ 4} . Pick V (x) = x>Px,
where where P = ( 0.1 0

0 0.1 ) . Let S be the largest level set of V included in X, plotted with
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red in Figure 4.2. Then, condition (4.20) and consequently, (4.7) holds for d = 2.4 for any
x ∈ S. By Lemma 4.6, we obtain that

W (x(0)) = sup
τ∈[0,d]

x(τ)>Px(τ)eτ

is a Lyapunov function for (4.28), for any t ∈ R≥0. For this system, we consider the
maximum in (4.29) for all x(0) ∈ S , which was attained for τ∗ = d, to facilitate the
computation of an educated guess for W . Otherwise, if the true formula of (4.29) is used,
note that the supremum (maximum) depends on each x(0) ∈ S and an analytic expression
of W cannot be obtained. The largest level set of Wτ∗(x) which does not intersect the zero
level set of Ẇτ∗(x) is shown in Figure 4.2 with blue. Note that this set is not included in
the red set any more, thus it is not included in S. However, this is allowed since it is a valid
estimate of the DOA (Theorem 2.1) as it is included in the zero level set of its corresponding
derivative with respect to the dynamics (4.28).

4.6 Conclusions
In this chapter, a new Massera type of LF (and a Yoshizawa type alternative) have been de-
rived. These constructions are enabled by imposing a finite–time condition on an arbitrary
candidate function defined by a K∞–function of the state norm. An advantage over classi-
cal constructions which for finite time interval integration (supremum calculation) require
exponential stability or to allow for KL–stability a specific function under the integral is
imposed, is that we provide an approach with two more degrees of freedom. On one hand,
we allow for KL–stability (under Assumption 4.1) and on the other hand the construction
of the LF is based on any K∞ function of the norm of the solution of the system. While
a similar formulation was previously introduced in [15], the main difference in the hereby
proposed approach consists of the relation between the integration interval length and the
finite–time decrease criterion imposed on the K∞ function.

The motivation for choosing a constructive converse theorem approach to deriving LFs
comes from the need to overcome the conservativeness of the RLFs (as introduced in Chap-
ter 2) due to approximations of the dynamics. However, for either constructions the solution
needs to be known up to some finite time value. In the next chapter we will address this
problem by means of solution approximation techniques or by starting the computational
procedure from the linearized system towards obtaining DOA estimates, as already indi-
cated in this chapter.
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Chapter 5

Verification of FTLFs for computing LFs and
DOAs

In Chapter 4 we derived two alternatives for computing LFs based on FTLFs, with the
downside that they require knowledge of the system solution for a finite time, in order to
verify a corresponding finite time decrease property. In this chapter we will address the
verification problem and develop two solutions. The first one relies on linearization and
computation via an expanded FTLF and the second is based on a novel numerical approach
for the computation of LFs via the Massera-type converse. The constructed LF is continuous
and piecewise affine (CPA), computed via a FTLF evaluated at approximated trajectories.
In both cases, by optimization, the obtained LF is verified and consequently we are able to
give an estimate of the domain of attraction1.

5.1 Introduction
Among the converse theorems, we have the early result of Massera [90], where it has been
shown that the integral of a certain function of the norm of the solution of the system is a
LF. Additionally, we have the result of Yoshizawa [121], where it has been shown that the
supremum of a certain function of the norm of the solution of the system is a LF.

More recently, a stability criterion for dynamical systems in terms of a finite time dif-
ference condition has been established in [2]. In Chapter 4, a Massera-type of construction
has been proposed, based on FTLFs. In fact, we allow any K∞ function, that satisfies the
finite–time criterion, to be a FTLF. Consequently, an analytic relation between a LF and a
FTLF is stated.

Although the mentioned converse theorems are constructive, they all require the solu-
tion of the system to be known on a finite time interval. In general, obtaining the analytical
solution for a nonlinear system is, just as obtaining a LF, difficult and therefore the compu-
tational contribution of the converse theorems is limited.

An approach for constructing LFs by partitioning the state space was introduced in [89],
where linear programming is used to compute continuous and piecewise affine (CPA) LFs.

1Part of the work presented in this chapter was developed together with Tom Steentjes, during his internship
[114].
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In [12] an adjustment to this method was proposed, by making use of numerical approxi-
mations of the Massera construction instead of linear programming.

In Chapter 4, Theorems 4.3 and 4.4 provide alternative constructions of LFs starting
from a FTLFs which is verified for the linearized system. These constructions provide
directly computable analytical expressions and in this chapter we will simply state the com-
putation steps. The main contribution is the construction of continuous and piecewise affine
LFs by numerical approximations of the Massera-type converse. The proposed method dif-
fers from [12], and the later result in [15], in the sense that we allow any K∞ function of
the norm of the state to be a candidate FTLF. In [15], although a fairly arbitrary function
is considered in the Massera formulation, the upper bound in the integration interval is not
related to the properties of the function. Furthermore, by numerical approximations of the
solution, we verify the finite–time condition for some candidate d-invariant set to obtain
an upper bound for the integration interval, in contrast to [15], where the bound is chosen
differently. Specifically, therein the integration bound is given by the smallest time instant
for which states initiated in a given, chosen set reach a neighborhood of the equilibrium.
Finally, an optimization problem is solved for verification of the constructed LF, aiming at
nonconservative estimations of the domain of attraction.

5.2 Some preliminaries
Let v0, . . . , vm ∈ Rn be a collection of vectors. The vectors in the collection v0, . . . , vm
are said to be affinely independent if

∑m
i=1 λi(vi − v0) = 0, implies that λi = 0 for all

i ∈ N[0:m].

Definition 5.1 Given a collection of affinely independent vectors v0, . . . , vm, anm-simplex
in Rn is defined as its convex hull, i.e.

co {v0, . . . , vm} :=

{
m∑
i=0

λivi |λi ∈ [0, 1],

m∑
i=0

λi = 1

}
.

Given a simplex S, let the diameter of S be given by

diam(S) := max
α,β∈S

‖α− β‖.

Additionally, we give a theorem serviceable for the estimation of the domain of attraction
for biological systems, i.e. systems for which the positive orthant is positive invariant. To
this end, we recall the definition of a practical set introduced in [16, Definition 4.9].

Definition 5.2 A set S ⊂ O, where O is an open set, is called a practical set if:

• it is defined by a finite set of inequalities:

S = {x : gk(x) ≤ 0, k = 1, . . . , r}, r ∈ Z>0;

• for all x ∈ S, there exists a z such that gi(x) = ∇gi(x)>z < 0, for all i;
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• there exists a Lipschitz continuous vector field φ(x) such that for all x ∈ ∂S, it holds
that∇gi(x)>φ(x) < 0, for all i.

Theorem 5.1 Let the positive orthant P be positively invariant and consider the system
(4.1), but with an equilibrium x∗ ∈ P , such that f(x∗) = 0. Let W (·) be a LF for (4.1) and
consider the sets

A = {x ∈ Rn | ∇W>(x)f(x) < 0} and C := {x ∈ R |W (x) ≤ C∗}.

Furthermore, let C∗ ∈ R>0 be such that:

C ∩ {P \ {x∗}} ⊆ A.

Then the set
SA = C ∩ P

is positively invariant and contained in the DOA of (4.1), where SA is assumed to be prac-
tical.

Proof: First, we show that SA is positively invariant. Note that we can write this equiva-
lently as

SA = {x ∈ Rn | gi(x) ≤ 0, i ∈ N[0:n]},

where g0(x) = W (x)− C∗ and gi(x) = −xi, i ∈ N[1:n].
Consider Act(x) := {i ∈ N | gi(x) = 0}. Then for all x ∈ ∂SA the tangential cone is

given by [16]

TSA(x) = {z ∈ Rn | ∇g>i (x)z ≤ 0, ∀i ∈ Act(x)}.

Now, if f(x) ∈ TSA(x) for all x ∈ SA, then by Nagumo’s theorem, SA is positively
invariant, [16]. Since TSA(x) = Rn for all x ∈ S◦A, we only have to show f(x) ∈ TSA(x)
for all x ∈ ∂SA.

On the boundary ∂P ∩ C◦, the tangential cone is given by

TSA(x) = {z ∈ Rn | zi ≥ 0 ,∀i s.t. xi = 0}.

Indeed, f(x) ∈ TSA(x) for all x ∈ ∂P∩C◦, since ẋi ≥ 0 for xi = 0, which follows directly
from the positive invariance property of P .

On the boundary ∂C ∩ P◦, the tangential cone is given by

TSA(x) = {z ∈ Rn | ∇W>(x)z ≤ 0}.

Indeed, we have that f(x) ∈ TSA(x) for all x ∈ ∂C ∩ P◦, since ∇W>(x)f(x) ≤ 0 for all
x ∈ C ∩ P .

Finally, on the remaining intersections ∂C ∩ ∂P , the tangential cone is given by

TSA(x) = {z ∈ Rn | (zi ≥ 0, ∀i s.t. xi = 0) ∧ (∇W>(x)z ≤ 0)}.
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We obviously have that f(x) ∈ TSA(x) for all x ∈ ∂C ∩ ∂P , by the positive invariance
property of P and since∇W>(x)f(x) ≤ 0 for all x ∈ C ∩ P . Concluding, we have shown
that f(x) ∈ TSA(x) for all x ∈ ∂SA and thus SA is positively invariant.

Finally, x(t) → x∗ as t → ∞, since ∇W>(x)f(x) < 0 for all x ∈ C ∩ P \ {x∗}, by
the Aymptotic Stability Theorem, [80].

As introduced in Chapter 4, while the construction of classical LFs from a FTLF allows
the freedom to choose anyK∞–function of the norm of the state, two problems arise, related
to the verification of a FTLF and construction of a true LF.

Firstly, as opposed to verifying (4.3), verifying (4.7) requires knowledge of the solution
of system (4.1). Indeed, if we consider a d-invariant set candidate S and a candidate map
V (x) = η(‖x‖), then we need to verify

V (x(d))− V (x(0)) ≤ −γ(‖x‖) < 0, (5.1)

for all x(0) ∈ S. If the solution for (4.1) is known (analytically), then verifying (5.1) can
be done easily. However, x(d) is not known for non-linear systems, in general.

Secondly, once a FTLF V (x) = η(‖x‖) is verified, i.e. (5.1) is satisfied for some
d ∈ R>0, one wants to compute a classical LF W (x) using

W (x(0)) =

∫ d

0

V (x(τ))dτ ∀x(0) ∈ S. (5.2)

Again, we need the solution x(t), t ∈ [0, d]. Although obtaining approximate solutions
for a finite set of initial conditions is possible, and thus a finite set containing numerical
approximations of W (x(0)), finding a complete LF W is not straightforward. So we need
a way to “connect” values of W . One way of constructing a complete LF is the CPA
method, introduced in [89], where a unique continuous and piecewise affine function is
determined from a finite set containing numerical approximations of W (x(0)). In [89],
numerical values of W are obtained using linear programming.

Finally, a computed candidate function should be verified. That is, we need to verify
the region for which the computed function is a classical LF. Consequently, the domain of
attraction can be estimated.

5.3 Construction of a LF by means of linearization
5.3.1 Computation of a d for which the finite–time condition holds for the linearized sys-

tem with respect to the origin

Let

δ̇x =

[
∂f(x)

∂x

]
x=0

δx,

be the linearized system. Then condition (5.1) can be verified as:

η(‖ed[
∂f(x)
∂x ]

x=0x(0)‖)− η(‖x(0)‖) < 0,

for all x(0) in some compact, proper set S. As such, for a given value of d, (5.1) can be
verified via a feasibility problem (see (4.21)). If η = id then the feasibility problem above
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translates into verifying the matrix norm condition:

‖ed[
∂f(x)
∂x ]

x=0‖ < 1. (5.3)

Note that if there exists a d > 0 such that the condition (4.24) holds for some ς > 0, then
condition (5.3) is implicitly satisfied since it holds that ‖edA‖ ≤ edµ(A) for some real matrix
A [103].

5.3.2 Computation of W (x)

W (x) =

∫ d

0

V (x+ τf(x))dτ. (5.4)

Or, alternatively
W (x) = max

τ∈[0,d]
V (x+ τf(x))eτdτ. (5.5)

In this construction we exploit the results in Corollary 4.2 and Theorem 4.3, which guarantee
that V (x+ τf(x)) remains a FTLF for (4.1) for all τ ∈ [0, d].

5.3.3 Finding the best DOA estimate of (4.1) provided by W

Let C be such that the set {x ∈ Rn |W (x) ≤ C} is included in the set

{x ∈ Rn | ∇W>f(x) = 0}.

Finding C, implies solving an optimization problem, which involves rather complex non-
linear functions. However, feasibility problems (for example by using bisection) can be
solved successfully to obtain the best C which leads to a true DOA estimate. The feasibility
problem is as follows:

max
x
∇W (x)>f(x)

subject to W (x) ≤ C,
(5.6)

for a given C value. The largest C value for which Ẇ (x) remains negative renders the
best DOA estimate provided by a true LF W (x), which is valid for (4.1) since Ẇ (x) =
∇W (x)>f(x). The optimization problem (5.6) has been addressed in Chapter 2 and it is
standard in checking validity regions of LFs a posteriori to construction.

The bound (4.27), via r, provides an implicit, a priori theoretical indication of the region
where W is a valid LF, or in other words of a subset of the DOA. An explicit estimate can
be obtained a posteriori to computing W by solving the problem above.

5.3.4 Further improve the DOA estimate by expansion of W

The DOA estimate obtained above can be further improved by making use of expansion
methods as introduced in [28]. More specifically, the expansion method states that the C–
level set of W1(x) = W (x+ αf(x)) for some α ∈ R>0 is a subset of the true DOA of the
considered system and it will contain the estimate of the DOA obtained by the C–level set
of W .

In summary, the proposed method starts by verifying the finite–time decrease condition
(5.1) for a candidate function V (x) = η(‖x‖), η ∈ K∞ and a candidate d–invariant set S.
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The simplest way to do this, while avoiding solution approximations, given in Step 5.3.1,
is to verify (5.1) globally (x ∈ Rn) for the linearization of (4.1) around the origin. Then,
it is known by Theorem 4.3, that there exists a set S ⊆ {x ∈ Rn | ‖x‖ < r} which is
d–invariant, such that (5.1) holds for the true nonlinear system.

Next, in the second step of the procedure, W is computed via the analytic formula (5.4),
which yields an educated guess of a true LF. Thus, the final check in the third step is a
verification of the standard Lyapunov condition on W , with W known, and with the aim
to maximize the level C of W where the condition is satisfied, which in turn maintains the
DOA approximation induced by W .

In contrast, most of the other proposed methods in the literature, compute the LF W

simultaneously with verifying the derivative negative definiteness condition, which is in a
general a more difficult task, even because it is not clear how to select an appropriate W .

Remark 5.1 As for the Yoshizawa–type formulation (4.29), and corresponding one (5.5),
due to the max function W is no longer differentiable and we cannot obtain an analytic ex-
pression. Therefore in the illustrative Example 4.5.1 we consider a heuristic path by taking
τ∗ = d to be the time value for which the maximum, W ∗, is attained for all x(0) ∈ S ,
thus rendering an analytical, differentiable functionW ∗(x(0)). By solving the optimization
problem (5.6) for the constructed W ∗, we can guarantee that W ∗(x(0)) = C is a valid
estimate of the DOA of the considered system. Alternatively, numerical values of the non-
differentiable function W can be computed for the vertices of a simplicial partition of the
state space, yielding a CPA Yoshizawa–type of function, as described in the next section for
a CPA Massera–type LF.

5.4 Construction of a LF by means of approximated trajectories
We start with the definition of a (proper) triangulation, which will be used later on in this
section for the verification of a finite–time Lyapunov candidate function and construction of
a classical CPA LF via a converse theorem.

Definition 5.3 Let M be a proper subset of Rn and let T = {S1, . . . ,Sz}, where Si, i ∈
N[1:z] is an n-simplex. Suppose M = ∪i∈N[1:z]

Si. If for all Sa,Sb ∈ T, a 6= b, we
have Sa ∩ Sb = ∅ or Sa ∩ Sb is a q-simplex and a face of Sa and of face of Sb, where
q ∈ N[0:n−1], then T is called a triangulation of M. If, additionally, the origin is contained
in a simplex Si and it is a vertex of Si, then T is called a proper triangulation of M.

For a (proper) triangulation as defined above, we also define the set containing all vertices
of the simplices in the triangulation. This set is defined as

VT =
{
x ∈ Rn |x is a vertex of a simplex Si ∈ T, i ∈ N[1:z]

}
.

Note that a triangulation of a proper set M, even with uniform simplex diameter, is
not unique. Indeed, the orientation of simplices can be chosen in various ways. For the
remainder of this chapter, we will consider triangulations with two types of orientations;
mono–oriented (as shown in Figure 5.1(a)) and poly–oriented (as shown in Figure 5.1(b))
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5.4. Construction of a LF by means of approximated trajectories

triangulations. A triangulation is called mono–oriented on M, if all hypercubes formed by
simplices in T are equivalent. A triangulation is called poly–oriented if it is mono–oriented
on eachP∩M, P being an orthant of Rn, and the hypercubes in orthantP are not equivalent
to hypercubes in M \ (P ∩M), for all orthants P .

As stated in Section 5.2, solution approximations are needed for both verification and
construction of a finite–time and classical LF, respectively. Thereto, we state two meth-
ods for obtaining numerical approximations of trajectories. The first method is called the
piecewise affine vector field method, described in Appendix A.1. The second method is
the fourth-order Runge-Kutta method, described in Appendix A.2. Both methods are illus-
trated by examples in Appendix A.3. Consider the map WV : VT → R≥0. Similarly to the

−0.5 0 0.5
−0.5

0

0.5

x2

x1

(a) Example of a mono–oriented
triangulation in R2.

−0.5 0 0.5
−0.5

0

0.5

x1

x2

(b) Example of a poly–oriented tri-
angulation in R2.

Figure 5.1: Triangulation examples in R2.

piecewise affine construction for the vector field in Appendix A.1, WV can be extended to a
unique piecewise affine map W : M→ R≥0. Indeed, for each simplex Si ∈ T, i ∈ N[1:z],
the unique affine interpolation that interpolates WV at the vertices v0, . . . , vn of Si is given
by

WSi(x) =

n∑
j=0

λj(x)f(vj) = a>i x+ bi,

where

x =

n∑
j=0

λj(x)vj ,

n∑
j=0

λj(x) = 1, ∀x ∈ Si.

The continuous piecewise affine function is now given by W (x) = WSi := a>i x + bi for
all x ∈ Si. Note that W (x) = WV(x) for all x ∈ VT. Moreover, note that∇W>Si = a>i .

5.4.1 Construction in the Massera case

The construction of a LF for the system (4.1) can be achieved by first considering a FTLF
candidate η(‖x‖), η ∈ K∞, with a candidate d-invariant set M, and consequently com-
puting a classical LF using (5.2). When the analytical solution to (4.1) is not known, the
following procedure is proposed to obtain a CPA LF using numerical approximations:

1. Let M ⊂ Rn be a proper candidate d-invariant set and let V (x) = η(‖x‖) be a
candidate FTLF. Create a (proper) triangulation T of M with corresponding vertex
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set VT. Compute a d ∈ R>0 for which the finite–time condition

V (x(d))− V (x(0)) < 0, (5.7)

holds for all x(0) ∈ VT, by means of numerical approximations of the solution x(t),
using the piecewise affine vector field method.

2. Compute the map WV : VT → R≥0. That is, compute

WV(x(0)) =

∫ d

0

V (x(τ)) dτ,

for all x(0) ∈ VT, where x(τ) is the numerical approximation of the solution of (4.1)
initiated in x(0), using the fourth-order Runge-Kutta method.

3. Compute a continuous piecewise affine map W : M → R≥0 from WV by interpola-
tion.

In the preceding algorithm, we use the piecewise affine vector field method in Step 1, be-
cause of the analytical expression of the solution. That is, we can determine d precisely, in
contrast to the fourth-order Runge-Kutta method, where we are limited by a fixed time step
h. In Step 2, we use the Runge-Kutta method to reduce computational effort.

5.4.2 Verification

We know that the function computed using (5.2) is a true classical LF for (4.1). However,
due to numerical approximations of the trajectories and affine interpolation of WV , W is
not guaranteed to be a LF on M. Therefore, we need verification of the derivative of W
along the trajectories being negative definite, Ẇ (x(t)) < 0, for some proper set. Since
the CPA LF W is continuous, and in general not continuously differentiable, the orbital
derivative Ẇ (x(t)) is replaced by the Dini derivative of W , which is equal to ∇W>Sif(x)
for all x ∈ Si, Si ∈ T [49]. We state two methods for verification.

The following theorem [13] states that we only need to verify a condition at the vertices
of a simplex, to verify whether the derivative of the affine LF along trajectories is negative
definite on the whole simplex.

Theorem 5.2 Consider the system (4.1), let T = {S1, . . . ,Sz} be a triangulation of M
and assume that f(·) is twice continuously differentiable on M. Let W : M → R≥0,
WSi(ξ) := aiξ + bi for all ξ ∈ Si, be the continuous and piecewise affine interpolation of
WV : VT → R≥0. For each Si ∈ T, let constants be defined by hi := diam(Si),

Ei :=
nBi

2
h2i ,

where
Bi ≥ max

j∈N[1:n]

sup
ξ∈Si

‖Hfj (ξ)‖max,
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5.5. Numerical examples

with Hfj the Hessian of the j-th entry of f . Then, for every simplex Si = co{v0, · · · , vn}
where the inequality

∇W>Sif(vk) + Ei‖∇W>Si‖1 < 0

holds for all k ∈ N[0:n], the inequality

∇W>Sif(ξ) < 0

holds for all ξ ∈ Si.

While the above theorem provides a way to verify the continuous and piecewise affine
function W , it may not yield satisfactory results regarding estimation of the domain of
attraction, because it can be conservative. We propose a method that is in fact not conserva-
tive. Clearly, we have that

max
ξ∈Si

∇W>Sif(ξ) < 0 ⇔ ∇W>Sif(ξ) < 0, ∀ξ ∈ Si.

Thereto, we propose to solve the following optimization problem

max
ξ

∇W>Sif(ξ) < 0

s.t. ξ ∈ Si,

on each simplex Si ∈ T. Using the definition of the simplex (Definition 5.1) and thus
barycentric coordinates λ = (λ0, . . . , λn)>, the problem is rewritten as

min
λ

−∇W>Sif
(

n∑
i=0

λivi

)
> 0

s.t. 0 ≤ λi ≤ 1, i ∈ N[0:n],
n∑
i=0

λi = 1.

To guarantee that the global minimum for the nonlinear problem is found, we need the
objective function to be either concave or convex on the simplex Si. Thereto, since the sim-
plex diameter is chosen “small” in general, we state the following reasonable assumption.

Assumption 5.1 The map∇W>Sif : Si → R is either concave or convex, for all Si ∈ T.

Indeed, if the objective function is convex, a local minimum is equal to the global minimum.
Moreover, if the function is concave, the minimum will be attained at an extreme point
(vertex) vi [64].

5.5 Numerical examples
In what follows, a step size of h = 0.05 and simplex diameter of h

√
n are used for the

fourth-order Runge Kutta and piecewise affine vector field method, respectively, where n is
denotes the state dimension.
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5.5.1 Example 1: 2D example from literature - Approach 5.3

Consider the system in [48, Example 1], described by{
ẋ1 = x2,

ẋ2 = −x1 + 1
3x

3
1 − x2.

(5.8)

This system has an exponentially stable equilibrium at the origin and two saddle equilibria
at±(

√
3 0)>. We let the candidate d-invariant set be M = {x ∈ Rn | ‖x‖∞ ≤ 3} and create

a proper poly–oriented triangulation T of M with uniform simplex diameter h = 0.05
√

2.
Let the candidate FTLF be V (x) = ‖x‖1. We find that for all x ∈ VT, for which there exists
a d such that the finite–time condition holds, the condition (5.1) holds for d = 2.6651. Next,
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(a) Computed LF W for (5.8).
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(b) Level set W (x) = 4.25-red, polytope con-
taining approximation of domain of attraction
from [48]-blue and the simplices where W (x)

is not verified-black.

Figure 5.2: LF computed for (5.8).

we compute the function WV , i.e.

WV(x(0)) =

∫ d

0

‖x(τ)‖1 dτ,

for all x(0) ∈ VT, from the approximated trajectories and construct its unique continuous
piecewise affine interpolation W . In Figure 5.2(a) we show the computed LF for (5.8).

In Figure 5.2(b) we show the simplices where ∇W>Sif(x) is not negative definite to-
gether with the level set W (x) = 4.25. By analyzing the Hessian of∇W>Sif(x), it is easily
seen the function is indeed concave or convex on each simplex Si and the obtained results
are thus guaranteed. Utilizing Theorem 2.1, we find that SA = {x ∈ Rn |W (x) < C∗ =
4.25} is an approximation of the domain of attraction, i.e. a subset of the true domain of
attraction of the system. For this system a CPA LF was computed using the RBF method
and the Massera construction in [48] and [12], respectively. The approximation of the do-
main of attraction obtained using the method proposed in this report shows improvement,
cf. [48, Figure 4] and [12, Figure 11].
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5.5. Numerical examples

5.5.2 Example 2: 3D example from literature

Consider the system in [14, Example 5], given by
ẋ1 = x1(x21 + x22 − 1)− x2(x23 + 1),

ẋ2 = x2(x21 + x22 − 1) + x1(x23 + 1),

ẋ3 = 10x3(x23 − 1).

(5.9)

This system has an exponentially stable equilibrium in the origin with the true domain of

x1x2

x3

(a) Level set W (x) = 1.20-green and
the domain of attraction approximation
from [14]-red.

x3

x2 x1

(b) Level set W (x) = 1.20-green
and the simplices for which W is not
verified-black.

attraction given by the cylinder [48]

A = {x ∈ Rn |x21 + x22 < 1, |x3| < 1}. (5.10)

In [14], a CPA Lyaponov function was computed using the RBF method, resulting in the
domain of attraction shown in Figure 5.3(a) in red, available at www.ru.is/kennarar/
sigurdurh/MICNON2015CPP.rar. The blue dots represent the midpoints of the sim-
plices where the CPA LF is not verified.

5.5.2.1 Construction of a LF by means of approximated trajectories

Let M = {x ∈ Rn | ‖x‖∞ ≤ 1} and consider the function V (x) = ‖x‖1. The proper poly–
oriented triangulation of M is given by T, with uniform simplex diameter h = 0.05

√
3. For

the corresponding vertex set VT, it is found that for all initial conditions in VT for which
there exists a d such that (5.1) holds, inequality (5.1) is satisfied for d = 1.5481.

From the obtained map WV : VT → R≥0, the continuous piecewise affine interpolation
W is obtained. In Figure 5.3(b) we show the tetrahedra for which the derivative along the
trajectories ofW is positive definite, together with the level setW (x) = 1.20. Figure 5.3(a)
shows the level set W (x) = 1.20, i.e. the approximated domain of attraction, in green.
Comparing with the true domain of attraction (5.10), the approximated domain of attraction
SA has a “cylinder like” shape with maxx∈SA x

2
1 + x22 ≈ 0.872 and maxx∈SA |x3| ≈ 0.99.

5.5.2.2 Construction of a LF by means of linearization

We apply the steps described in Section 5.3 for verification starting with the linearized
dynamics corresponding to (5.9). Let V (x) = x>Px where P is the identity matrix. Then,
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the condition (5.3) holds with d = 0.2. In Figure 5.3 the level set defined by W (x) = 0.19
is plotted with green (inner set) together with the zero level set of Ẇ (x) in red. The value
of C = 0.19 was obtained by solving the feasibility problem (5.6).

Figure 5.3: Validation of level set ofW : ∇>Wf = 0–red, level set ofW (x) = 0.19–green.

5.5.3 Example 3: 2D example from literature
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Figure 5.4: The level set W (x) = 5–blue, its derivative Ẇ = 0–red, the stable equilibrium
E1–blue and the unstable ones E1, E2–black together with the vector field plot for (5.11).

Consider the system:

ẋ1 = x2 (5.11)
ẋ2 = 0.301− sin(x1 + 0.4136) + 0.138 sin 2(x1 + 0.4136)− 0.279x2,

with the stable equilibrium E1 = (6.284098 0)>, and the two unstable equilibria E2 =
(2.488345 0)>, E2 = (8.772443 0)>. This system was studied in [29] with the pur-
pose to compute the stability boundary of E1. By applying the steps described in Sec-
tion 5.3 for verification starting with the linearized dynamics, for V (x) = x>Px where
P = ( 1.6448 0.3430

0.3430 2.1255 ), the condition (5.3) holds with d = 0.8. The resulting LF W =∫ d
0
V (x+ τf(x))dτ leads to the DOA estimate defined by C = 5 and plotted in Figure 5.4
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5.6. Conclusions

with blue contour. The zero level set of the corresponding derivative Ẇ = ∇W (x)>f(x) =
0 is shown with red.

5.6 Conclusions
We have developed an algorithm for the construction of a continuous and piecewise affine
LF based on a novel Massera–type converse, enabled by a candidate K∞ function of the
norm of the state, verifying a finite–time condition. Albeit by numerical approximations,
we verify the finite–time condition on a candidate d-invariant set, yielding an upper limit for
the integral in the converse theorem. Together with an extra degree of freedom for the con-
struction of the LF, i.e. based on anyK∞ function of the norm of the solution, the algorithm
delivers promising results towards obtaining nonconservative approximations of the domain
of attraction. By two- and three-dimensional examples, we have shown that our method can
deliver better results than existing CPA methods. Furthermore, we obtained nonconservative
estimates of the domain of attraction for the illustrative, theoretical examples.

As for possible improvements for the proposed method, one may consider local refine-
ments in the triangulation for the domain of the CPA LF to obtain even less conservative
estimates of the domain of attraction, and to reduce overall computational effort, such that
the domain M could be enlarged, if necessary.
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Chapter 6

Application to biological systems

In this chapter the procedures derived in Chapters 4 and 5 will be applied to a range of
models describing biological systems, to illustrate the solutions proposed in this thesis for
the analysis and stabilization problems described in Chapter 1.

6.1 Toggle switch in Escherichia coli
Consider the genetic toggle switch in Escherichia coli constructed in [40],

ẋ1 =
α1

1 + xβ2
− x1

ẋ2 =
α2

1 + xγ1
− x2. (6.1)

The genetic toggle switch is a synthetic, bistable gene–regulatory network, constructed from
any two repressible promoters arranged in a mutually inhibitory network. The model (6.1),
proposed in [40] for description of a synthetic toggle switch in Escherichia coli (E. coli),
was derived from a biochemical rate equation formulation of gene expression. For this
model, the set of parameters for which bistability is ensured is especially of interest, as it
accommodates the real behavior of the toggle switch. The switching behavior is ensured by
flipping the system between the stable states. The implications of the toggle switch circuit as
an addressable memory unit are in biotechnology and gene therapy. When at least one of the
parameters β, γ > 1, bistability occurs. In (6.1), x1 denotes the concentration of repressor
1, x2 is the concentration of repressor 2, α1 is the effective rate of synthesis of repressor
1, α2 is the effective rate of synthesis of repressor 2, β is the cooperativity of repression of
promoter 2 and γ is the cooperativity of repression of promoter 1. The rational terms in the
above equations represent the cooperative repression of constitutively transcribed promoters
and the linear terms represent the degradation/dilution of the repressors.

The two possible stable states are one in which promoter 1 transcribes repressor 2, which
we denote by E1 and corresponds to a high value for the x2 state, and one in which pro-
moter 2 transcribes repressor 1, which we denote by E3 and corresponds to a high value
for the x1 state. Let the parameters be defined by α1 = 1.3, α2 = 1, β = 3 and

γ = 10. For this set of parameters the stable equilibria are E1 =
(

0.668 0.9829
)>
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and E3 =
(

1.2996 0.0678
)>

. The unstable equilibrium is E2 =
(

0.8807 0.7808
)>

.
The separation between the DOAs corresponding to E1 and E3 is achieved by the stability
boundary or separatrix. It is known that the unstable equilibrium E2 belongs to the stability
boundary [29]. Note that although (6.1) is not a system of the form in (4.1), as its stable
equilibria are not located at the origin, we can still apply the tools derived in Chapters 4 and
5 by applying the change of variable ξi := xi − Ei, i = 1, 3.

In [40], the necessary conditions for bistability were analyzed based on the model (6.1)
and validated by implementation on E. coli plasmids. In the same paper, it is argued that
synthetic gene circuits, such as the toggle switch, can serve as highly simplified, highly
controlled models of natural gene networks.

For controlling the behavior of the toggle switch such that it achieves certain proper-
ties, it is important to compute the two DOAs corresponding to the stable equilibria. This
problem was addressed in the literature, specifically for gene regulation, by means of PWA
approximating dynamics [120] and by computing reachable sets via a linear temporal logic
formalism. Since the PWA approximation is based on modeling gene regulation by ramp
functions, they will induce three regions of different dynamics. In the end, for the toggle
switch example this leads to nine polyhedral regions. While the approach in [120] leads to
a close estimate of the separatrix, as pointed out by the authors of the paper, the method is
very computationally expensive.

In what follows we will apply the methods proposed in Chapter 5 for computing the
DOAs of E1 and E3.
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Figure 6.1: Level sets of the computed LFs corresponding to E1–blue and E3–black for the
toggle switch system (6.1) together with vector field plots. The unstable equilbrium E2 is
plotted with the red marker.

6.1.1 Construction of a LF by means of linearization

By following the procedure in Section 5.3, the DOAs corresponding to E1 and E3 were
computed and are shown in Figure 6.1. Note that the computation procedure needs to be
carried out for the origin equilibrium. As such, by translating each nonzero equilibrium
to the origin a different system is obtained. For each system corresponding to E1 and
E3, a quadratic FTLF candidate was considered, where the matrix P is the solution of the
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6.1. Toggle switch in Escherichia coli

classical Lyapunov inequality A>P +PA < −I2, where I2 denotes the identity matrix and
A =

[
∂f(x)
∂x

]
x=Ei

for each i = 1, 3. The blue level set defined by C1 = 0.07 and d = 1.2

corresponds to E1 and the black level set defined by C3 = 0.8 and d = 0.4 corresponds to
E3. The trajectories starting from initial conditions close to the stability boundary will go
to E2 and from there via its unstable directions, they will converge either to E1 or E3. As
shown in Figure 6.1, the DOA estimates go very close to E2 (red), thus close to the stability
boundary. However, the computed sets seem conservative with respect to the directions of
the vector fields for initial conditions far from the equilibria in the positive orthant. This
is due to the fact that higher level sets of the corresponding LFs would intersect with the
unstable equilibrium and violate the stability boundary. In fact, this is not an issue for the
toggle switch as the real–life behavior is centred around the three equilibria and stability
boundary.

6.1.2 Construction of a LF by means of approximated trajectories

Consider E1 and the candidate finite–time Lyapunov function V1(x) = ‖x − E1‖1 on the
candidate d-invariant set M1 = [−1, 1] × [−1, 1.2] for the shifted variable ξ1 = x −
E1. We create a proper mono–oriented triangulation T1 of M1 with a uniform simplex
diameter h = 0.025

√
2. The corresponding vertex set is VT1 . Then for all x ∈ VT1 , for

which there exists a d such that the finite–time condition holds, the condition (5.7) holds
for d = 5.4352. We compute the map W1,V : VT1

→ R≥0 and its unique continuous
piecewise affine interpolation W1. Figure 6.2(a) shows the computed Lyapunov function
W1 and Figure 6.3(a) shows some relevant level sets of W1. Note that the figures show
the plots for the original system and not the translated system. In Figure 6.3(b) the level
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Figure 6.2: (a)–Computed Lyapunov function W1 for E1 of (6.1); (b)–Computed Lyapunov
function W3 for E3 of (6.1).

set W1(x) = 0.98 is plotted in red together with the simplices in the triangulation T1 for
which the derivative of W1 along the trajectories is not negative definite. The set SA1 =
{x ∈ Rn |W1(x) < 0.98} is contained in the true domain of attraction. Similarly, we
compute a Lyapunov function and an approximation of the domain of attraction for the
equilibrium E3. Let the candidate d-invariant set for the shifted variable ξ3 = x − E3 be
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M3 = [−1, 2.2]× [−1, 1.8] and take V3(x) = ‖x−E3‖1. We let the triangulation of M3,
T3, be proper and poly–oriented with the same simplex diameter as for E1. We find d =
6.7507 and consequently compute W3,V : VT1 → R≥0. We show the computed Lyapunov
function W3 in Figure 6.2(b) and some level sets in Figure 6.4(a). In Figure 6.4(b) the
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(a) Some level sets of the computed Lyapunov
function W1 for (6.1).
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(b) Level set W1(x) = 0.98-red and the sim-
plices where W1(x) is not verified-black.

Figure 6.3: Computation of the DOA of E1 for (6.1).
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Figure 6.4: Computation of the DOA of E3 for (6.1).

level set W3(x) = 2.25 is plotted in red together with the simplices in the triangulation
T3 for which the derivative of W3 along the trajectories is not negative definite. Since
the positive orthant P is positive invariant, we conclude using Theorem 5.1, that the set
SA3

= {x ∈ Rn |W3(x) ≤ 2.25} ∩ P is contained in the domain of attraction for E3.

6.1.3 Discussion

The resulting DOA estimates computed by the two verification approaches are rather sim-
ilar, with the sets in Subsection 6.1.2 capturing slightly larger areas outside the stability
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6.2. The hypothalamic-pituitary-adrenal gland (HPA) axis

boundary. Thus, we can provide guarantees that once a trajectory is initiated in one of the
two sets it will remain in that set for all time and converge to either E1 or E2 correspond-
ingly. If a certain behavior is desired, for example that a trajectory converges toE1 and after
some time it is steered away to E3, then a stabilizing feedback control which globally (or at
least in the positive orthant) stabilizes E3 is needed. This will be addressed in Section 6.4.

6.2 The hypothalamic-pituitary-adrenal gland (HPA) axis
The following model was proposed in [6] to illustrate the behavior of the Hypothalamic-
Pituitary-Adrenal (HPA) axis which was schematically described in Chapter 1.

ẋ1 =

(
1 + ξ

xα3
1 + xα3

− ψ xγ3
xγ3 + c̃γ3

)
− w̃1x1

ẋ2 =

(
1− ρ xα3

1 + xα3

)
x1 − w̃2x2 (6.2)

ẋ3 = x2 − w̃3x3.

The HPA axis is a system which acts mainly at maintaining body homeostasis by regulating
the level of cortisol. The three hormones involved in the HPA axis are the CRH (x1), the
ACTH (x2) and the cortisol (x3).

For certain parameter values the system (6.2) has a unique stable equilibrium, which
relates to cortisol level returning to normal after periods of mild stress in healthy individuals.
When the parameters are perturbed, bifurcation can occur which leads to bistability. The
stable states correspond to hypercortisolemic and hypocortisolemic equilibria, respectively.

There are several models developed in the literature aimed at matching observations
from patient data by including different mechanisms in the HPA model. We recall here
the models developed and studied in [55], [10], and [54]. The model (6.2) includes the
effects from the hippocampus on the HPA axis via its influence on the CRH (x1) in the
hypothalamus. For physiologically reasonable parameter values, no oscillations were found,
thus the authors of [6] concluded that the ultradian rhythm observed in data is generated by
different mechanisms influencing the HPA axis.

In [55] a different approach is considered, which includes the glucocorticoid receptor
(GR) in the pituitary gland which is influenced by cortisol. In this case, bistability is also
observed, but the stable equilibria correspond to low GR concentrations (normal of healthy
steady state) and high GR concentrations (nonhealthy steady state). The cortisol levels
corresponding to each of the stable states do not differ as much as in the case of the system
(6.2).

In [54], a four states model is considered, where the additional state corresponds to a
regulatory substance describing the processes that occur in the hypothalamus, which further
interacts with CRH. The therein derived model was capable of capturing circadian and ul-
tradian oscillations of the hormone concentrations related to the HPA axis and matches data
from patients. Similarly to the model discussed in this chapter, a relation between abnormal
cortisol values and depression is emphasized.

In what follows, the model (6.2) developed in [6] will be studied. The motivation from
choosing this model comes from the following arguments. The model (6.2) is able to cap-
ture bistability corresponding to low and high cortisol levels, which have been observed in
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chronically depressed people. Based on the comparison between different models carried
out in [65] on data from 17 patients (i.e., values of ACTH (x2) and cortisol), the considered
model performed the best. Finally, since it has three states, it is suitable for illustrating our
tools, since the DOA set estimates can be visualized in plots.

As such, for the parameter values w̃1 = 4.79, w̃2 = 0.964, w̃3 = 0.251, c̃3 = 0.464,
ψ = 1, ξ = 1, ρ = 0.5, γ = α = 5, the HPA system has three equilibria,

E1 =
(

0.1170 0.1199 0.4778
)>

,

E2 =
(

0.2224 0.2017 0.8039
)>

,

E3 =
(

0.7833 0.4316 1.7196
)>

,

withE1 andE3 stable andE2 unstable. By following the same steps as those indicated in the
case of the toggle switch system, for the E1 equilibrium the level set defined by C1 = 0.08
and d = 0.4 is plotted in Figure 6.5 (the lower set) and for the E2 equilibrium the level set
defined byC2 = 1 and d = 0.4 is plotted in Figure 6.5 (the upper set). It is worth noting that

Figure 6.5: Level sets of the computed LFs corresponding toE1 andE3 for the HPA system
(6.2). The corresponding equilibria are E1–green marker, E2–red marker and E3–black
marker.

for this system, the logarithmic norm defined by taking the 2–norm, µ2(A) is positive, with
A =

[
∂f
∂x

]
x=E1

. Thus, equality (4.24) will not be satisfied. However, since the considered

FTLF is V (x) = x>Px, then the weighted logarithmic norm satisfies µ2,P (A) < 0.

6.3 The repressilator
Regulatory molecular networks, especially the oscillatory networks, have attracted a lot of
interest from biologists and biophysiscists because they are found in many molecular path-
ways. Abnormalities of these processes lead to various diseases, from sleep disorders to can-
cer. The naturally occurring regulatory networks are very complex, so their dynamics have
been studied by highly simplified models [21], [37]. These models are particularly valuable
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6.3. The repressilator

because they can provide an understanding of the important properties in the naturally oc-
curring regulatory networks and, thus, support the engineering of artificial ones. Moreover,
these rather simple, models can describe behaviors observed in experiments rather well [37].

An example of such a network is the repressilator. Its genetic implementation uses three
proteins that cyclically repress the synthesis of one another. A model for the reprissilator

(a) The level set W (x) = 0.32–blue
and Ẇ = 0–red.

(b) The level set W (x) = 0.32 and
some trajectories of (6.3).

Figure 6.6: Computation of the DOA of E = (1.516, 1.516, 1.516)> for (6.3).

was first proposed in [37] and we consider here the simplified version from [21]:

ẋ1 =
α

1 + xβ2
− x1

ẋ2 =
α

1 + xβ3
− x2 (6.3)

ẋ3 =
α

1 + xβ1
− x3.

The states x1, x2, and x3 are proportional to protein concentrations. All negative terms
in the right–hand side represent degradation of the molecules. The nonlinear function
h(x) = 1

1+xβ
reflects synthesis of the mRNAs from the DNA controlled by regulatory ele-

ments called promoters. β is called cooperativity and reflects multimerization of the protein
required to affect the promoter. The three proteins are assumed to be identical, rendering
the model symmetric and the order in choosing the states x1, x2 and x3 does not influence
the analysis outcome.

In [21] it was shown that for α > 0 and β > 1, there is only one equilibrium point for
the system (6.3), of the typeE = (r, r, r)>, where r satisfies the equation rβ+1+r−α = 0.

For the values α = 5 and β = 2, r = 1.516 and the eigenvalues of its corresponding
linearized matrix are λ = (−2.3936,−0.3032+1.2069i,−0.3032−1.2069i). By following
the procedure in Section 5.3 with the FTLF candidate V (x) = x>Px, with P the identity
matrix the value d = 0.4 was obtained. For the obtained functionW =

∫ d
0
V (x+τf(x))dτ

the level set given by C = 0.32 was checked to be a subset of the true DOA of the system
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and it is plotted in Figure 6.6(a) with blue. The zero level set of Ẇ = ∇W>f(x), where
f(x) denotes the map describing (6.3) is plotted in Figure 6.6(a) with red. In Figure 6.6(b)
the level set W (x) = 0.32 is shown together with some trajectories of (6.3).

6.4 Feedback stabilization via Sontag’s “universal” controller
For systems subject to control inputs, of the type

ẋ = f(x) + g(x)u (6.4)

where u ∈ U ⊆ Rm denotes the input and f : Rn → Rn and g : Rn → Rn×m with
f(0) = 0 and g(0) = 0, recall the concept of a CLF defined by Definition 2.10.

For systems defined as in (6.4), when a CLF W is known, an explicit formula for a state
feedback control that renders the system asymptotically stable, was provided in [106]. We
recall it below as defined in [106]. Note that in the remainder of this chapter we consider
the case when u is a scalar.

Let u = k(a(x), b(x)>), where a(x) := ∇W (x)>f(x), b(x) = ∇W (x)>g(x), and k
is a function k : R× Rm → R defined by

k(a, b) :=

{
−a+

√
a2+b4

b , if b 6= 0

0, if b = 0.
(6.5)

The above feedback law is a consequence of an explicit proof provided in [106] for a result
from [7] stating that if there exists a CLF, smooth, then there must exists a feedback law u =
k(x), k(0) = 0, which globally stabilizes the system and which is smooth on Rn \ {0}, if
the functions f and g are smooth. Moreover, from [106] it is known that k is also continuous
in the origin if V satisfies a small control property, defined in the same paper. The analytic
construction (5.4) will yield a Lyapunov function for autonomous systems which is valid
in the set where Ẇ = ∇W (x)>f(x) < 0 as discussed in Chapters 4 and 5. By using the
expression of W (x) for the uncontrolled case in (6.5), a global stabilizer u = k(a, b) will
be determined for systems of the type (6.4).

6.4.1 Control of the genetic toggle switch

We apply the formula (6.5) for stabilizing the equilibrium E1 of the toggle switch system
(6.1) and we consider the input u = k(x) to act on the x2 state, thus let g(x) = (0 1)>

and f(x) be the function describing the autonomous system (6.1). By using the feedback
stabilizer defined in (6.5), the LF W1(x) computed in Section 6.1.1 was used as a CLF
candidate, in the expression of k(a, b). In Figure 6.7(a) we show the vector field plot of the
controlled toggle switch together with some level sets of W1. In Figure 6.7(b) we show a
plot of k(x(t)), corresponding to the initial condition which generates the trajectory shown
with black in Figure 6.7(a). It can be observed that all trajectories converge to the E1

equilibrium.

6.4.2 Control of the HPA axis

The feedback stabilizer defined in (6.5) will be applied in what follows for the stabiliza-
tion of the healthy equilibrium of the HPA axis system, E2. Differently than in the tog-
gle switch case, E2 is an unstable equilibrium. In this case we consider the CLF can-
didate W (x) = (x − E2)>P (x − E2), where P is computed such that the linearized
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Figure 6.7: CLF and feedback stabilizer results for the toggle switch.

(a) Plot of the level set W (x) = 1, and two trajecto-
ries initiated in x0 = E1–blue dot and in x0 = E3–
black dot.
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Figure 6.8: CLF and feedback stabilizer results for the HPA axis.

system around E2 is stabilized by a linear feedback [18]. The resulting matrix P is de-

fined by P =
(

0.8737 −0.0714 −0.3720
−0.0714 0.5611 0.0670
−0.3720 0.0670 0.4715

)
. We consider again the system to be of the type

ẋ = f(x) + g(x)u, where g(x) = (0 0 1)>, illustrating that the control input will act on
the cortisol state x3. A plot of the level set W (x) = 1 is shown in Figure 6.8(a) together
with two trajectories initiated in the stable, unhealthy equilibria of the system with u = 0,
which are now destabilized by u = k(x). In Figure 6.8(b) plots of the values of u = k(x)
corresponding to the trajectories in Figure 6.8(a) are shown. In [10] it has been shown that
manipulating cortisol concentrations is a plausible strategy for redirecting the HPA axis to a
healthy steady state, in particular since only ACTH and cortisol concentrations (x2 and x3
states in (6.2)) can be measured in real life. Although the model used therein is different,
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the same reasoning applies to the well functioning of the HPA axis. Furthermore, in [10],
a model predictive control approach was used to stabilize the healthy HPA equilibrium.
Similarly as in this chapter, for an initial state in the nonhealthy equilibrium, the control
input computed in [10] has been shown to steer the HPA axis trajectory to the desired one.
However, it has been noted that the resulting control input was too aggressive in the ini-
tial time instants (of order −4) and a scaled down (up to level −0.25) suboptimal, clinical
realistic input, was applied instead. In contrast, the input values corresponding to the two
initial conditions considered in Figure 6.8(a) appear to be clinically realistic. Furthermore,
extensions of the stabilizer (6.5) such that bounded inputs are considered have been derived
in the literature, in, for example, [86].

6.5 Implications of the obtained results

6.5.1 Clinical interpretations for the HPA axis results

As a consequence of the results in Section 6.2 and Subsection 6.4.2, the following remarks
can be drawn with respect to possible clinical interpretations.

The computed DOA estimates shown in Figure 6.5 for each of the stable high and low
cortisol level equilibria represent invariant sets for the HPA axis. This implies that once
a trajectory enters such a set, it will be trapped for all times in that set and eventually
converge to the stable equilibrium. Consequently, if the measured hormone values of a
patient are found to belong to one of the two sets, then it can be predicted that his/hers
HPA axis will eventually converge to a nonhealthy steady state. Thus, it won’t be able
to regulate the cortisol level back to an admissible concentration range. The information
provided by the two DOA estimates can be useful for treatment assignment. If a patient’s
cortisol level belongs to the upper set, then a medical doctor can decide to prescribe drugs
which act at lowering the cortisol level. Therefore, nonconservative DOA estimates which
come arbitrarily close to the stability boundary between the convergence regions of the two
equilibria are needed.

Although nonconservative DOA estimates are needed for accurate diagnostics, as shown
in Subsection 6.4.2, when using the feedback stabilizer (6.5) simpler CLF candidates can be
used, such as the quadratic function. From Figure 6.8(b) it follows that for destabilizing E3

corresponding to the high level cortisol steady state, a negative input value is applied which
acts at decreasing the cortisol concentration. Although this can be a logical treatment choice
of a clinician, the plot in Figure 6.8(b), additionally provides an indication for quantifying
the treatment level such that stabilization is guaranteed.

6.5.2 Insights for the synthetic gene systems

The genetic toggle switch and the reprissilator circuits were designed in [40] and [37] with
the help of the mathematical models which were also considered in this chapter. These
systems have been designed from genetic components to illustrate how novel regulatory
circuits can be obtained. Such artificially constructed networks can serve as testing models
in biotechnologies [69]. One of the advantages of using dynamical models is that model
parameters can be varied systematically and corresponding properties observed. The DOA
estimates computed in this chapter can be used to predict the behavior of a proposed circuit.
The use of feedback stabilizers computed via CLFs is relevant for indicating input signals
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which provide a guarantee for a certain behavior corresponding to the stability of a desired
steady state.

6.6 Conclusions
This chapter provides a counterpart to Chapter 3 where the computation of DOAs and sta-
bilizing control laws were addressed for evolutionary biological systems. In this chapter
we presented two examples which are known from synthetic biology, namely the genetic
toggle switch and the repressilator and one example from the biomedical area. These three
systems were modelled from a biochemical reaction systems perspective, thus leading to
rational systems. The procedures described in Chapter 5 were applied for the above men-
tioned systems in order to compute Massera type LFs, and thus DOA estimates based on
the level sets of these functions. In particular, the construction in Section 5.3 leads to an
analytical expression for the LF W . Finally, the obtained W in combination with Sontag’s
“universal” feedback stabilizer was used to illustrate the stabilization problem on the toggle
switch and for stabilizing the healthy equilibrium of the HPA axis.
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Chapter 7

On computing ISS Lyapunov functions and
stabilizers

In this chapter we propose an input to state stability (ISS) criterion based on a finite–time
decrease condition for a K∞ function of the norm of the state. This condition enables the
construction of a Massera–type ISS classical Lyapunov function (LF). Furthermore, for the
problem of designing a state feedback control law that yields the closed loop system ISS
we show how the constructed ISS LF can be used in combination with Sontag’s “universal”
formula for ISS stabilization.

7.1 Introduction
The stability analysis and stabilization tools developed in the previous chapters are applica-
ble to deterministic models of considered biological systems. However, the estimated model
parameters are subject to errors, the developed models are simplified and proposed control
inputs based on feedback stabilization can be affected by perturbations or inaccuracies in
measurements. Then it is important to study the stability and stabilization problems with
respect to disturbance inputs. The property of input to state stability (ISS), first introduced
in [105] was proposed to study such problems. In a later paper, [111], equivalences between
the ISS property and a range of other concepts such as robustness and Lyapunov–like func-
tions, called ISS LFs, were introduced. The ISS concept was further extended for stability
with respect to compact sets in [110] and [112].

Since it was shown that the ISS property is equivalent with existence of an ISS LF, the
problem of constructing such functions needs to be addressed. In [23], a Zubov approach is
proposed to compute ISS LFs, followed by [83] where an alternative Zubov type approach
was derived. Both papers rely on the idea that ISS LFs can be obtained by computing robust
LFs for suitably designed auxiliary systems. The robust LF is computed as the numerical
solution of a Zubov type of equation, thus yielding a numerical approximation of an ISS LF.

Recently, in [81] and [82], a linear programming based algorithm for computing contin-
uous, piecewise affine ISS LFs for local ISS systems was developed. The ISS LF computed
therein is a viscosity subsolution of a Hamilton–Jacobi–Bellman partial differential equa-
tion.

In the case of discrete–time systems, for the ISS concept formulation, we refer to [68].
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As for computing ISS LFs, in [52] for example, a similar auxiliary system procedure was
used to compute ISS LFs via a set oriented approach.

The finite–time decrease condition for a K∞ function of the norm of the state, which
was used to compute LFs for continuous–time systems in Chapter 4, was used previously
for computing ISS LFs but for discrete–time systems. In [17] it was shown that for suffi-
ciently regular dynamics inherent global ISS can be established via finite–step LFs. In [46]
the concept of dissipative finite–step ISS LFs is introduced, where similarly as in [17],
the function is assumed to decrease after a finite time, rather than at each time step. This
approach eases somewhat the search for an ISS LF. Moreover, therein an equivalent charac-
terization of ISS in terms or existence of a dissipative finite–step ISS Lyapunov functions is
shown for discrete–time systems.

In this chapter, we introduce the concept of finite–time ISS LFs for continuous–time,
nonlinear systems and we show that existence of such a function implies ISS for systems
which are described byK–bounded maps. As for the converse result, when the ISS property
is known, under a certain assumption on the solution estimate of the system subject to
disturbance inputs, we show that any K∞–function of the norm of the state is a finite time
ISS LF function. Furthermore, similarly as in the case without inputs, a classical ISS LF
can be constructed via a Massera type function based on the finite–time ISS LF.

When the considered finite–time function candidate is the norm of the state, i.e. let
V (x) = ‖x‖, for verification purposes, we show that V is an inherent finite–time ISS LF if
it is a FTLF for the system with zero inputs.

Lastly, for the problem of designing a state feedback control law that renders the closed
loop system ISS we show how the constructed ISS LF can be used with Sontag’s “universal”
formula for ISS stabilization.

7.1.1 Preliminaries

Consider systems of the form
ẋ = f(x, v), (7.1)

where f : Rn × Rm → Rn, is a locally Lipschitz function and v (·) : [0,∞) → Rm,
a measurable locally essentially bounded map represents the disturbance input. We denote
the solution of the system (7.1) with initial value x(0) at time t = 0, under disturbance input
v(t), by x(t) and we assume that x(t) exists and it is unique for all t ∈ R≥0 (see [77, Chapter
3] for sufficient smoothness conditions on f ). The locally Lipschitz assumption on f(x, v)
implies that x(t) is a continuous function of x(0) and v(0) [60, Chapter III]. Furthermore,
f(0, 0) = 0.

We will use the following notations for the disturbance signal v: |v| = sups≥0 ‖v(s)‖,
|v[t1,t2]| = supt1≤s≤t2 ‖v(s)‖, t1, t2 ≥ 0, with v(s) ∈ Rm, for all s in the corresponding
interval. Furthermore, ‖v‖ denotes the regular Holder norm. Next, we proceed by recalling
some subsidiary notions and definitions, starting with the input–to–state stability concept as
introduced in [111].

Definition 7.1 The system (7.1) is said to be input–to–state stable (ISS) with respect to v
if given a proper set S ⊆ Rn, there exist a function β ∈ KL and γ ∈ K∞ such that for all
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7.2. Finite–time ISS Lyapunov functions

x(0) ∈ S, and every v, the corresponding solution of (7.1) satisfies

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(|v|), ∀t ∈ R≥0, (7.2)

If the set S = Rn, then we call the ISS property global ISS.

The characterization in (7.2) is equivalent with [111]:

‖x(t)‖ ≤ max
(
β(‖x(0)‖, t), γ(|v|)

)
, ∀t ∈ R≥0. (7.3)

Definition 7.2 A continuously differentiable function V : Rn → R≥0, for which there
exist α1, α2, α, χ ∈ K∞ such that for all v ∈ Rm it holds that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ Rn (7.4)

V̇ (x) ≤ −α(‖x‖) + χ(|v|), ∀x ∈ S, (7.5)

with S ⊆ Rn proper, is called an ISS Lyapunov function in S for the system (7.1).

Equivalently, (7.5) can be restated as [111]

V̇ (x) ≤ −α(‖x‖), ∀x ∈ S (7.6)

and for any v ∈ Rm such that ‖x‖ ≥ χ̂(|v|), where χ̂(·) = (α−1 ◦ χ)(·) ∈ K∞.

7.2 Finite–time ISS Lyapunov functions
Let there be a continuous function V : Rn → R≥0, and a real scalar d > 0 for which the
proper set S ⊆ Rn is d–invariant and the conditions

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ Rn, (7.7)
V (x(t+ d))− V (x(t)) ≤ −α(‖x(t)‖) + χ(|v|), (7.8)

are satisfied for all t ∈ R≥0 and α1, α2, α, χ ∈ K∞, and for all x(t), with x(0) ∈ S and
v(s) ∈ Rm, for any s ∈ R≥0,

By similar arguments as in [111, Remark 2.4.], the equivalent form of (7.8) is

V (x(t+ d))− V (x(t)) ≤ −α(‖x(t)‖), (7.9)

whenever ‖x(t)‖ ≥ χ̂(|v|), with χ̂(·) = (α−1 ◦ χ)(·) ∈ K∞.
The function V which satisfies (7.7) and (7.8) ((7.9)) is called an ISS finite–time Lya-

punov function (ISS–FTLF) for the system (7.1).
In order for condition (7.8) to be well–defined, additionally to the locally Lipschitz

property of the map f(x), it is assumed that there exists no finite escape time in each interval
[t, t + d], for all t ∈ R≥0. However, as it will be shown later, it is sufficient to require that
there is no finite escape time in the time interval [0, d], if the set S is d–invariant.

The following result relates inequality (7.8) with another known type of decrease condi-
tion, which will be instrumental.
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Lemma 7.1 The decrease condition (7.8) on V is equivalent with

V (x(t+ d)) ≤ ρ(V (x(t))) + χ(|v|), ∀t ∈ R≥0, (7.10)

for all x(t) with x(0) ∈ S, where ρ is a positive definite, continuous function such that
(id− ρ) ∈ K∞.

Proof: The proof follows similarly as in [46, Remark 3.17]. We provide it below for com-
pleteness.
(7.8)⇒(7.10):

0 ≤ V (x(t+ d)) ≤ V (x(t))− α(‖x(t)‖) + χ(|v|)
≤ V (x(t))− α(α−12 (V (x(t)))) + χ(|v|)
= (id− α ◦ α−12 )(V (x(t))) + χ(|v|)
= ρ(V (x(t))) + χ(|v|),

where ρ = id− α ◦ α−12 can be assumed to be positive, since one can always take α2(s) ≥
2α(s) > α(s), for all s > 0, thus ρ = id−α ◦α−12 > 0. Additionally, id− ρ = α ◦α−12 ∈
K∞.

(7.10)⇒(7.8):

V (x(t+ d))− V (x(t)) ≤ ρ(V (x(t)))− V (x(t)) + χ(|v|)
= −(−ρ+ id)(V (x(t))) + χ(|v|)
= −α̂(V (x(t))) + χ(|v|)
≤ −α̂(α1(‖x(t)‖)) + χ(|v|)
= −α(‖x(t)‖) + χ(|v|),

where α̂ = id− ρ ∈ K∞, by hypothesis and α = α̂ ◦ α1 ∈ K∞.

Assumption 7.1 The function f(·, ·) in (7.1) satisfies

‖f(x, v)‖ ≤ µ1(‖x‖) + µ2(‖v‖) (7.11)

for all x ∈ Rn, v ∈ Rm, and some µ1, µ2 ∈ K.

The above assumption is a natural consequence of the Lipschzitz continuity requirement for
f at the origin. In fact, it implies K–boundedness with respect to each argument of f .

Remark 7.1 For some fixed t > 0, the solution of the system (7.1) is given by

x(t) = x(0) +

∫ t

0

f(x(s), v(s))ds.

Let the locally Lipschitz condition be

‖f(x, v)− f(y, u)‖ ≤ L(‖x− y‖+ ‖v − u‖), L > 0

120



7.2. Finite–time ISS Lyapunov functions

for x, y ∈ N (0, r), where N (0, r) denotes a neighborhood around the origin of radius r
and v ∈ Rm and u ∈ U, U a compact subset of Rm. Then,

‖x(t)− x(0)‖ ≤
∫ t

0

(‖f(x(s), v(s))− f(x(0), v(0)) + f(x(0), v(0)))‖ds

≤ L

∫ t

0

‖x(s)− x(0)‖ds+ L

∫ t

0

‖v(s)− v(0)‖ds+

∫ t

0

‖f(x(0), v(0)‖ds

≤
(7.11)

L

∫ t

0

‖x(s)− x(0)‖ds+ L

∫ t

0

‖v(s)− v(0)‖ds+

∫ t

0

µ1(‖x(0)‖)ds+∫ t

0

µ2(‖v(0)‖)ds.

By applying the Gronwall Lemma above, we obtain that

‖x(t)− x(0)‖ ≤
(
L

∫ t

0

‖v(s)− v(0)‖ds+

∫ t

0

µ2(‖v(0)‖)ds+

∫ t

0

µ1(‖x(0)‖)ds
)
eLt

≤Gt(|v[0,t]|) +

∫ t

0

µ1(‖x(0)‖)dseLt,

and further,

‖x(t)‖ ≤Gt(|v[0,t]|) + ‖x(0)‖+

∫ t

0

µ1(‖x(0)‖)dseLt

=Gt(|v[0,t]|) + Ft(‖x(0)‖).

From the inequalities above and the standing assumptions on f we know that Ft(‖x(0)‖)
and Gt(|v[0,t]|) are continuous with respect to x(0) and v(t), respectively. Furthermore,
Ft(0) = 0, Gt(0) = 0 and Ft(‖x(0)‖), Gt(|v[0,t]|) are positive definite and continuous as
µ1, µ2 ∈ K.

Remark 7.2 In [46, Theorem 4.1], it is shown that the set

Sv := {x ∈ Rn |V (x) ≤ (id− ρ)−1 ◦ ν−1 ◦ χ(|v|)}, (7.12)

where ν ∈ K∞ and id− ν ∈ K∞ is d–invariant for the system (7.1) and for all v(s) ∈ Rm,
s ≥ 0. Following from the proof (7.8)⇒(7.10) of Lemma 7.1, we have that ρ = id−α◦α−12 .
If one takes ν in (7.12) to be such that α = ν−1, we obtain that

(id− ρ)−1 ◦ ν−1 ◦ χ(|v|) = (α ◦ α−12 )−1 ◦ α ◦ χ(|v|)
= α2 ◦ α−1 ◦ α ◦ χ(|v|)
= α2 ◦ χ(|v|).

The set Sv defined in (7.12) can be written equivalently (with respect to condition (7.8)) as

Sv := {x ∈ Rn |V (x) ≤ α2 ◦ χ(|v|)}, (7.13)
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which corresponds to the construction with classical LFs in [111, Lemma 2.14], where Sv
is an invariant set when V is a classical LF.

Theorem 7.1 If a function V defined as in (7.7) and (7.8) and a proper and compact d-
invariant set S exist for the system (7.1) satisfying Assumption 7.1, then the system (7.1) is
ISS in S.

Proof: Consider the set Sv defined as in (7.12). Let

t1 = inf{t ≥ 0 |x(j) ∈ Sv, j ∈ [t, t+ d)}.
Then, when t ≥ t1, x(t) ∈ Sv and

V (x(t)) ≤ (id− ρ)−1 ◦ ν−1 ◦ χ(|v|) =: γ̂(|v|)
implies that

‖x(t)‖ ≤ α−11 ◦ γ̂(|v|) =: γ̃(|v|).
When t < t1, it is possible that x(t) ∈ Sv which implies that ‖x(t)‖ ≤ γ̃(|v(t)|), and that
x(t) /∈ Sv . For the latter case, let t = Nd + j, with N ∈ N and 0 ≤ j < d. The d–
invariance of Sv implies that for x(j) ∈ Sv , x(d + j) ∈ Sv and x(Nd + j) ∈ Sv . Thus,
x(Nd+ j) /∈ Sv implies that x(j) /∈ Sv . Hence,

V (x(j)) > (id− ρ)−1 ◦ ν−1 ◦ χ(|v|)
(id− ρ)V (x(j)) > ν−1 ◦ χ(|v|)

ν ◦ (id− ρ)V (x(j)) > χ(|v|),
and

V (x(j + d)) ≤ ρ(V (x(j))) + χ(|v|)
< ρ(V (x(j))) + ν ◦ (id− ρ) ◦ V (x(j))

= (ρ+ ν ◦ (id− ρ)) ◦ V (x(j))

=: ρ̂(V (x(j))),

where ρ̂ = ρ+ ν ◦ (id− ρ) satisfies id− ρ̂ = id− ρ− ν ◦ (id− ρ) = (id− ν) ◦ (id− ρ),
thus we can write ρ̂ = id− (id− ν) ◦ (id− ρ). ρ̂ < id since (id− ν), (id− ρ) ∈ K∞, thus
id − ρ̂ ∈ K∞, which implies that id(s) − ρ̂(s) > 0 for s 6= 0. Furthermore, ρ̂ is positive
definite, continuous and ρ̂(0) = 0.

Let N∗ := sup{N ∈ N |V (x(Nd+ j)) /∈ Sv}. Then for all N ≤ N∗ we have:

V (x(t)) = V (x(Nd+ j))

= V (x(((N − 1)d+ j) + d))

≤ ρ̂(V (x((N − 1)d+ j)))

= ρ̂(V (x(((N − 2)d+ j) + d)))

≤ ρ̂2(V (x((N − 2)d+ j)))

. . .

≤ ρ̂N (V (x(j)))

≤ ρ̂N (α2(‖x(j)‖)),

(7.14)
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7.2. Finite–time ISS Lyapunov functions

where ρ̂N denotes the N–times composition of ρ̂. Following from Remark 7.1, by applying
Lemma 4.2 we obtain that there exist functions ω1, ω2 ∈ K∞, such that Fj(‖x(0)‖) ≤
ω1(‖x(0)‖) and Gj(|v[0,j]|) ≤ ω̂2(|v[0,j]|) and consequently,

‖x(j)‖ ≤ ω1(‖x(0)‖) + ω2(|v[0,j]|),
for all 0 ≤ j < d. Thus

V (x(t)) ≤ ρ̂N (α2(ω1(‖x(0)‖) + ω2(|v[0,j]|)))
≤ ρ̂N (α2(2ω1(‖x(0)‖)) + α2(2ω2(|v[0,j]|)))
= ρ̂N (σ1(‖x(0)‖) + σ2(|v[0,j]|))
≤ ρ̂N (2σ1(‖x(0)‖)) + ρ̂N (2σ2(|v[0,j]|))
≤ ρ̂N (2σ1(‖x(0)‖)) + ρ̂N (2σ2(|v[0,j]|)), ∀t ≥ j
= ρ̂N (σ̂1(‖x(0)‖)) + ρ̂N (σ̂2(|v[0,j]|))
= ρ̂

t−j
d (σ̂1(‖x(0)‖)) + γ̃1(|v[0,j]|)

≤ ρ̂b td c−1 ◦ σ̂1(‖x(0)‖) + γ̃1(|v[0,j]|)
= ρ̂b

t
d c ◦ ρ̂−1 ◦ σ̂1(‖x(0)‖) + γ̃1(|v[0,j]|)

≤ ρ̂b td c ◦ ρ̃ ◦ σ̂1(‖x(0)‖) + γ̃1(|v[0,j]|), ρ̃ ∈ K∞
=: β̂(‖x(0)‖, t) + γ̃1(|v[0,j]|)
≤ β̂(‖x(0)‖, t) + γ̃1(|v|).

Without loss of generality we can assume that ρ̂ is a one–to–one (injective) and onto (sur-
jective) function, thus invertible. Furthermore, since ρ̂ is continuous, then by [20, Theorem
3.16], ρ̂−1 is continuous. Additionally, ρ̂−1(0) = ρ̂−1(ρ(0)) = 0. Thus, there exists a
function ρ̃ ∈ K∞, such that ρ̂−1 ≤ ρ̃, as follows from Lemma 4.2. We can conclude that
β̂ ∈ KL since ρ̃ ◦ σ̂1(s) ∈ K∞ and ρ̂b

t
d c ∈ L. Next, γ̃1 = ρ̂N ◦ 2α2 ◦ 2ω2, thus γ̃1 > 0 is

continuous and γ̃1(0) = 0. Therefore, there exists a function γ̂1 ∈ K∞ such that γ̃1 < γ̂1.
We obtain

‖x(t)‖ ≤ α−11 (2β̂(‖x(0)‖, t)) + α−11 (2γ̂1(|v|))
:= β(‖x(0‖, t) + γ̃2(|v|),

with β ∈ KL and γ̃2 ∈ K∞.
For N > N∗ it holds that V (x(Nd+ j)) ∈ Sv , thus ‖x(Nd+ j)‖ ≤ γ̃(|v|).
For all N ∈ N∗ it follows that

‖x(t)‖ ≤ β(‖x(0‖, t) + (γ̃2 + γ̃)(|v|),
thus, also for all t ≥ t1

‖x(t)‖ ≤ β(‖x(0‖, t) + (γ̃2 + 2γ̃)(|v|).
Hence, for all t ≥ 0 it holds that

‖x(t)‖ ≤ β(‖x(0‖, t) + (γ̃2 + 2γ̃)(|v|),
which implies ISS for (7.1).
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7.3 Alternative ISS converse theorem
Assumption 7.2 There exists a pair (β(·, ·), d) ∈ KL×R>0 with β satisfying (7.2) for the
system (7.1) such that

β(s, d) < s (7.15)

for all s > 0.

Theorem 7.2 If the system (7.1) is ISS in some invariant set S with d > 0 as in (7.15)
and Assumption 7.2 is satisfied, then for any function η ∈ K∞ and for any norm ‖ · ‖, the
function V : Rn → R≥0, with

V (x) := η(‖x‖), ∀x ∈ Rn (7.16)

satisfies (7.7) and (7.8) with the same d > 0 as in (7.15).

Proof: Let the pair (β, d) be such that Assumption 7.2 holds. Then, from the ISS hypoth-
esis we obtain that for all initial conditions x(0) ∈ S, it holds that

‖x(t+ d)‖ ≤ max(β(‖x(t)‖, d), γ(|v|))
= β(‖x(t)‖, d),

whenever αd(‖x(t)‖) := β(‖x(t)‖, d) ≥ γ(|v|), where αd ∈ K∞, or equivalently, when-
ever ‖x(t)‖ ≥ (α−1d ◦ γ)(|v|) = γ̂(|v|). Consequently,

η(‖x(t+ d)‖) ≤ η(β(‖x(t)‖, d))

≤ η(β(η−1(V (x(t))), d))

:= ρ(V (x(t))),

where ρ = η(β(η−1(·), d)). Then, via Assumption 7.2, it follows that ρ < η(η−1(·)) = id
and id− ρ ∈ K∞. Thus, we get

V (x(t+ d))− ρ(V (x(t))) ≤ 0, ∀x(0) ∈ S, ‖x(t)‖ ≥ γ̂(|v(t)|).

Next, this implies

V (x(t+ d))− V (x(t)) ≤ ρ(V (x(t)))− V (x(t))

= −(V (x(t)) + ρ(V (x(t)))

= −((id− ρ)(V (x(t))))

≤ −((id− ρ)(α1(‖x(t)‖))
= −α(‖x(t)‖), ‖x(t)‖ ≥ γ̂(|v|),

with α = (id − ρ) ◦ α1. Since id − ρ ∈ K∞, then α ∈ K∞ and we have obtained (7.9)
which further yields (7.8). Furthermore, since V is defined by a K∞ function, then there
exist α1, α2 ∈ K∞ such that (7.7) holds.
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7.3. Alternative ISS converse theorem

7.3.1 An ISS Lyapunov Function

Consider the function defined as

W (x(t)) :=

∫ t+d

t

V (x(τ))dτ, (7.17)

for any V that satisfies (7.7) and (7.8).

Lemma 7.2 There exists a V satisfying (7.7) and (7.8) for some d > 0 for (7.1) if and only
if the function W as defined in (7.17) with the same d > 0 is an ISS Lyapunov function for
the system (7.1).

Proof: Let there be a function V satisfying (7.7) and (7.8). V (x(t)) is continuous, thus it
is integrable over any closed, bounded interval [t, t + d], t ≥ 0. By Theorem 5.30 in [20],
this implies that W (x(t)) is continuous on each interval [t, t + d], for any t. Since V
is also positive definite, by integrating over the bounded interval [t, t + d] the resulting
function W (x(t)) will also be positive definite. Since W (x(t)) is continuous, W (0) = 0
and it positive definite the result in Lemma 4.2 can be applied. Therefore, there exist two
functions α̂1, α̂2 ∈ K∞ such that

α̂1(‖x‖) ≤W (x) ≤ α̂2(‖x‖), ∀x ∈ Rn, (7.18)

holds. Next, by making use of the general Leibniz integral rule, we get that

d

dt
W (x(t)) =

∫ t+d

t

d

dt
V (x(τ))︸ ︷︷ ︸
=0

dτ + V (x(t+ d)) ˙(t+ d)− V (x(t))ṫ

=V (x(t+ d))− V (x(t))

≤ − α(‖x(t)‖) + χ(|v|).

In d
dtV (x(τ)) note that x(τ) = x(τ, v(τ)), which implies that

d

dt
V (x(τ, v(τ))) =

∂V

∂x

dx

dt

=
∂V

∂x

(
∂x

∂τ

dτ

dt
+
∂x

∂v

dv

dt

)
=
∂V

∂x

(
∂x

∂τ
· 0 +

∂x

∂v
· 0
)

= 0.

Thus, W is an ISS Lyapunov function for (7.1).
Now assume that W is an ISS Lyapunov function for (7.1), i.e. (7.4) holds and for some

α̂, χ̂ ∈ K∞ it holds that

Ẇ (x(t)) ≤ −α̂(‖x(t)‖) + χ̂(|v|), ∀x(t) ∈ S,∀v ∈ Rm.
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By the same Leibniz rule, we know that Ẇ (x(t)) = V (x(t + d)) − V (x(t)), thus for the
difference V (x(t+ d))− V (x(t)) (7.8) holds. Now we have to show that (7.7) holds.

Assume that there exists an x ∈ Rn such that V (x) < 0. Then we obtain that W (x) =∫ t+d
t

V (x(τ))dτ < 0. But this is a contradiction since we assumed that W satisfies (7.18)
on Rn, thus V (x) must be positive definite on Rn. By the definition of W , we have that
V must be a continuous function, because it needs to be integrable for W to exist. By
assumption, W is upper and lower bounded by K∞ functions, thus for x → ∞, W (x) →
∞. This can only happen when V (x) → ∞. Thus, using a similar reasoning as above,
based on Lemma 4.2, this implies that V is upper and lower bounded by K∞ functions,
hence (7.7) holds.

The next result summarizes the proposed alternative converse theorem for ISS of (7.1)
in S, enabled by the finite–time conditions (7.7) and (7.8).

Corollary 7.1 If the the system (7.1) is ISS in some invariant set S and Assumption 7.2
holds for (β, d) ∈ KL × R>0, then by Theorem 7.2 and Lemma 7.2 for any function
η ∈ K∞ and any norm ‖ · ‖, the function W (·) as defined in (7.17) with V (x) = η(‖x‖) for
the same d > 0 as in Assumption 7.2, is an ISS Lyapunov function for the system (7.1).

7.3.2 Computation of W

In Section 7.2 it was shown that if a system is ISS, then a method to construct an ISS LF is
provided by (7.17), for V (x) defined by any function η ∈ K∞ and any norm. The method
is constructive starting with a given candidate d–invariant set S and a candidate function
V (x) = η(‖x‖). Due to the d–invariance property of S verifying condition (7.8) for the
chosen V is reduced to verifying

V (x(d))− V (x(0)) ≤ −α(‖x(0)‖) + χ(|v|), (7.19)

for all x(0) ∈ S . The difficulty in verifying (7.19) is given by the need to compute x(d),
for all x(0) ∈ S . However if x(d) is known analytically and the disturbance input v is
a known or estimated signal in some analytic form, then it suffices to verify (7.19) for all
initial conditions in a chosen set S. Since V is a continuous function of time and the integral
in (7.17) is defined over a closed time interval, the expression of W becomes

W (x(0)) =

∫ d

0

V (x(τ))dτ. (7.20)

Since v is however not known in general, we propose to compute a value for d when v = 0

and rely on inherent ISS. As such, we will make use of the next result, which enables the
verification of the finite–time condition (7.19) for the system (7.1) with v = 0.

Lemma 7.3 Let V (x) = ‖x‖. If V (x) satisfies (7.8) for ẋ = f(x, 0) and v(t) = 0 for all
t ∈ R≥0, then V (x) satisfies the condition (7.8) for ẋ = f(x, v).

Proof: We shall write the proof for t in the interval [0, d]. Let x̄(d) denote the solution of
ẋ = f(x, 0) for x(0) ∈ S. It follows from (7.8) that

‖x̄(d)‖ − ‖x(0)‖ ≤ −α(‖x(0)‖),
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for all x(0) ∈ S, where S a d–invariant set. Then,

‖x(d)‖ − ‖x(0)‖ ≤ ‖x(d)‖ − ‖x̄(d)‖ − α(‖x(0)‖)
≤ ‖x(d)− x̄(d)‖ − α(‖x(0)‖), ∀x(0) ∈ S.

x(d)− x̄(d) =

∫ d

0

f(x(s), v(s))ds−
∫ d

0

f(x(s), 0)ds.

This implies, by using the local Lipschtiz condition on f with respect to its both arguments,
that

‖x(d)− x̄(d)‖ ≤
∫ d

0

‖f(x(s), v(s))− f(x(s), 0)‖ds

≤
∫ d

0

L‖v(s)− 0‖ds

where L > 0 is the Lipschitz constant. Since
∫ d
0
L‖v(s)− 0‖ds is positive definite, zero at

zero and continuous then via Lemma 4.2, there exists χ ∈ K∞ such that

‖x(d)− x̄(d)‖ ≤
∫ d

0

L‖v(s)‖ds ≤ χ(‖v(d)‖) ≤ χ(|v|).

As such, we have that

‖x(d)‖ − ‖x(0)‖ ≤ χ(|v|)− α(‖x(0)‖), ∀x(0) ∈ S,
which recovers (7.19), and further (7.8) for V (x) = ‖x‖.

The result of Lemma 7.3 allows us to obtain a d for which a candidate function V (x) =

‖x‖, with any norm, is an ISS FTLF in a much simpler way than verifying (7.19) directly.

Remark 7.3 In [28] a scheme for constructing LFs starting from a given LF, which at every
iterate provides a less conservative estimate of the DOA of a nonlinear system of the type
(7.1) was proposed and it was based on iterative constructions of the type W1(x) = W (x+

α1f(x)). In Chapter 4, the expansion idea in [28] was used to generate a sequence of
FTLFs, with the purpose to generate a relevant d–invariant set for constructing Massera–
type of LFs. Thus the sequence of functions

V1(x) = V (x+ α1f(x, 0))

V2(x) = V1(x+ α2f(x, 0))

... (7.21)

Vn(x) = Vn−1(x+ αnf(x, 0)),

with αi ∈ R≥0, i = 1, 2 . . . , n yields FTLFs, when V is FTLF. From Lemma 7.3, we know
that V1(x) = V (x + α1f(x, v)) for example is an inherent ISS FTLF. This fact will be
relevant in the computation of an ISS LF, W from (7.20) as it involves knowledge of the
solution of (7.1) up to time d.
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7.3.3 Computational procedure FTLF candidates V (x) = ‖x‖
The procedure can be summarized as follows.

7.3.3.1 Verify the FT conditions for ẋ = f(x, 0)

When the analytical solution is not known, or obtaining a numerical approximation is com-
putationally tedious, as it can be the case for higher order nonlinear systems, then we pro-
pose to use the approach in Chapter 5 starting from the linearized dynamics of (7.1) with
v = 0:

‖ed[
∂f(x,0)
∂x ]

x=0x(0)‖ − ‖x(0)‖ < 0, (7.22)

for all x(0) in some compact, proper set S. Then, for the computed d, the approach in
Chapter 4 relies on constructing W as

W (x) =

∫ d

0

V (x+ τf(x, 0))dτ, ∀x ∈ S. (7.23)

7.3.3.2 Compute an ISS LF

Let W̄ (x) =
∫ d
0
V (x + τ(f(x, 0))dτ and S(c) = {x ∈ Rn | W̄ (x) ≤ c} with c > 0 such

that S(c) ⊆ {x ∈ Rn | ˙̄W (x) < 0}. Now consider ˙̄W (x) ≤ −α(‖x‖), for any x ∈ S(c).
By the Leibniz integral rule, this implies that

V (x+ df(x, 0))− V (x) ≤ α(‖x‖) ∀x ∈ S(c).

For V (x) = ‖x‖, by a similar reasoning as in the proof of Lemma 7.3 it can be seen that

V (x+ df(x, v))− V (x) ≤ α(‖x‖) + dL|v| ∀x ∈ S(c),

which implies that

W (x) =

∫ d

0

V (x+ τf(x, v))dτ, ∀x ∈ S(c) (7.24)

is an ISS Lyapunov function.

7.4 Control Lyapunov functions and ISS stabilization
For systems subject to control inputs, of the type

ẋ = f(x) + g(x)u (7.25)

where u ∈ U ⊆ Rm denotes the input and f : Rn → Rn and g : Rn → Rm with
f(0) = 0 and g(0) = 0, recall the concept of a CLF defined in Definition 2.10.

When a CLFW is known, an explicit formula for a state feedback control that makes the
system asymptotically stable orKL–stable inAwas provided in [106] and it was recalled in
Chapter 6 in (7.26). In this chapter we will use a slightly modified version for the expression
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7.4. Control Lyapunov functions and ISS stabilization

of k(a, b) defined in [85]. Let u = k(a(x), b(x)>), where a(x) := ∇W (x)>f(x), b(x) =
∇W (x)>g(x), and k is a function k : R× Rm → Rm defined by

k(a, b) :=

{
−a+
√
a2+‖b‖4
‖b‖2 b, if b 6= 0

0, if b = 0.
(7.26)

In the remainder of this chapter we consider the case when u is a scalar.
Let there be disturbance inputs acting on (7.25), as described by

ẋ = f(x, v) + g(x)u, (7.27)

where v, u and g : Rn → Rn×m are defined as in (7.1) and (7.25), respectively with
v ∈ Rp and f : Rn × Rp → Rn.

For the problem of disturbance attenuation by choice of feedback in terms of ISS, it is
necessary to define the notion of an ISS CLF. We recall the definition from [85].

Definition 7.3 Let W : Rn → R, be a continuously differentiable function for which
there exist α1, α2, α, χ ∈ K∞, such that

α1(‖x‖) ≤W (x) ≤ α2(‖x‖), ∀x ∈ Rn (7.28)

∇W (x)>(f(x, v) + g(x)u) ≤ −α(‖x‖) + χ(|v|), (7.29)

for all x 6= 0, and v ∈ Rp. Then W is an ISS CLF for the system (7.27).

Note that the second condition above is equivalent with the statement that

∇W (x)>g(x) = 0⇒ ∇W (x)>f(x, v) < 0, ∀x ∈ Rn.

Consider as candidate ISS CLF, the function W (x) defined in (7.23) computed for (7.27)
when the control input is u = 0. In [85], a similar “universal” construction as in (7.26) was
proposed for computing feedback stabilizers for (7.27). We propose to useW (x) to compute
a feedback stabilizer as constructed in [85] for (7.27) with f(x, v) = f̂(x) + ĝ(x)v. Thus,
let us consider systems described by

ẋ = f̂(x) + ĝ(x)v + g(x)u. (7.30)

Let a(x) be redefined as a(x, v) := ∇W (x)>f̂(x)+∇W (x)>ĝ(x)v = â(x)+ b̂(x)v. Then
W is an ISS CLF for (7.30) if

â(x) + b̂(x)v + b(x)u ≤ −α(‖x‖) + χ(|v|). (7.31)

In [85], the condition (7.31) was equivalently written so as not to involve v as

â(x) + ‖b̂(x)‖%−1(‖x‖) + b(x)u ≤ −α̃(‖x‖), (7.32)

where %, α̃ ∈ K∞ are such that it holds that ‖x‖ ≥ %(|v|) implies that

â(x) + b̂(x)v + b(x)u ≤ α̃(‖x‖).
Then a feedback stabilizer can be computed by using the same formula (7.26) with

a(x, d) = â(x) + ‖b̂(x)‖%−1(‖x‖). (7.33)
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7.4.1 Computation of an ISS feedback stabilizer

In this subsection we summarize the steps required for computing an ISS feedback stabilizer.

7.4.1.1 Compute a CLF candidate function W for ẋ = f̂(x)

Find a d and compute W similarly as in (7.22) and (7.23), i.e.

V (e
d
[
∂f̂(x)
∂x

]
x=0x)− V (x) ≤ −α(‖x‖)

and

W (x) =

∫ d

0

V (x+ τ f̂(x))dτ, ∀x ∈ S.

7.4.1.2 Compute k(x) via (7.26) with W and a(x, d) from (7.33)

Compute α̃ and % such that (7.32) holds. From (7.31) it follows that

%(|v|) = α−1 ◦ χ(|v|)

and via the inherent ISS FT LF lemma, Lemma 7.3 we have that χ(·) can be any K∞–
function such that χ(|v|) ≥

∫ d
0
L‖v(s)‖ds.

7.5 Examples
7.5.1 Example 1: whirling pendulum

We consider the system below, which was studied in [25] with the purpose to compute the
DOA of the zero equilibrium when the system is autonomous (u = v = 0).

ẋ1 = x2 (7.34)

ẋ2 =
−kf
mb

x2 + ω2 sin(x1) cos(x1)− g

lp
sin(x1) + c(u+ v).

Therein a polynomial LF was computed, whose level set rendering a DOA estimate is shown
in Figure 7.1(a) with the black contour. Following Step 7.4.1.1 (for more details we re-
fer to Chapter 5), a LF W was computed from a quadratic FTLF, V (x) = x>Px, with
P = ( 3.6831 2.3169

2.3169 14.7694 ) and d = 1.1 and α(‖x‖) = ‖x‖. The level set C = 3.55 of W (x)
defines an estimate of the true DOA of the origin of (7.34) and it is shown with blue in Fig-
ure 7.1(a) together with a vector field plot of the system. Then, as suggested in Step 7.4.1.2
we consider the above computed W as a CLF candidate for computing an ISS feedback
stabilizer u = k(x). Let α̃(‖x‖) = ‖x‖. Next we have to compute %. Since the proposed
computational procedure relies on an inherent ISS FTLF, the result in Lemma 7.3 will be
used to compute χ(|v|) which is needed in the expression of %, and consequently in the
feedback stabilizer.

Let the disturbance signal be a generated as an uniformly distributed sequence in the
interval (−0.5, 0.5). Thus |v| = sups∈[0,t] ‖v(s)‖ ≤ 0.5 for some t ∈ R≥0. As such we
have that

L

∫ d

0

‖v(s)‖ds ≤ L
∫ d

0

|v[0,d]|ds ≤ Ld|v[0,d]| = Ldv̄, (7.35)
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7.5. Examples

where L is the Lipschitz constant and v̄ = 0.5 for the considered system and disturbance
signal. L can be approximated as suggested in [77], from the fact that ‖∂f∂v ‖ ≤ L implies
that ‖f(x, v) − f(x, u)‖ ≤ L‖v − u‖. In this case L = c = 0.2. However, to compute
k(x) we need %−1(‖x‖). We know that %(|v|) = α−1 ◦ χ(|v|), thus %−1(s) = χ−1(s) ◦
α = χ−1(s) ◦ id = χ−1(s). Following from (7.35) we shall take %−1(s) = 1

Lds, thus
%−1(‖x‖) = 1

Ld‖x‖ in (7.32). Furthermore, since the computed W (x) is based on a FTLF
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Figure 7.1: (a)–level set of W for C = 3.55 computed for (7.34) with v = u = 0, d = 1.1,
plotted in blue, its corresponding derivative–red and the level set computed in Chesi with
smrsoft; (b)–level set of W for C = 3.55 computed for (7.34) with v 6= 0 plotted in blue
and simulations from the same x(0) different cases.
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Figure 7.2: Level set of W for C = 3.55 computed for (7.34) with v 6= 0 plotted in blue
and simulations from the same x(0) different cases.

which is an inherent ISS LF, it follows from the equivalence in Lemma 7.2 that W (x) is an
(inherent) ISS Lyapunov function. From [111, Lemma 2.14] it follows that the set

Sv = {x ∈ Rn |W (x) ≤ α2 ◦ χ(|v|)}
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is an invariant set for (7.34). If we consider χ(|v|) = Ldv̄ and we know that W (x) can be
upper bounded by εV (x) = x>εPx such that the level set V (x) = 1

ε is included in the
level set W (x) = C, then α2(‖x‖) = λ1(εP )‖x‖, where λ1 is the largest eigenvalue of P .
Then we obtain α2 ◦ χ(|v|) = λ1(εP )Ldv̄. For this example ε = 0.4762 and a plot of the
resulting level set is shown in Figure 7.1(b) together with several trajectories of the system.

The same level set defined by C = 3.55 of W is shown in Figures 7.1(a), 7.1(b) and
7.2. Next, we compute k(x) from (7.26) with a(x, d) from (7.33) on basis of the computed
W (x). As the expression of k(x) is rather lengthy we provide a plot of u = k(x) for the
initial condition x0 = (−0.8680 0.1810 )

> in Figure 7.3(d). For comparison, we show also a
plot of u = k0(x), where k0(x) is computed without considering v in the dynamics, i.e. in
the computation of a in (7.26).

A trajectory of the closed loop system is shown in Figure 7.3(d) for a particular initial
condition, together with trajectories initiated at the same initial condition for different cases:
the closed loop system with u = k(x)–black, the closed loop system with u = k0(x) and
v 6= 0–grey, the closed loop system with u = k0(x) and v = 0–blue, the open loop system
with v 6= 0–brown and the open loop system with v = 0–green. For the same initial
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Figure 7.3: The corresponding states for k computed without considering v–grey and k
computed with v 6= 0 via the function % ((a)-(b)). In (c): plot of x2 when the disturbance
becomes zero for t = 16; (d): v, k(x) and k0(x) as functions of the solution of (7.34)
initiated at x0 = (−0.8680 0.1810)>.

condition, we show each of the states of the closed–loop system for u = k(x)–black and
for u = k0(x)–grey in Figure 7.3(a) and Figure 7.3(b). We also illustrate the case when
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7.6. Conclusions

the disturbance becomes zero after some time in Figure 7.3(c) for the x2 state. It can be
observed that the trajectory corresponding to the disturbance becoming zero–blue recovers
asymptotic stability.

7.6 Conclusions
In this chapter, we provided an equivalent characterization of the ISS property in terms of
existence of an ISS–FTLF. For what concerns the converse result, when the ISS property
is known, under a certain assumption on the solution estimate of the system subject to
disturbance inputs, we showed that any K∞–function of the norm of the state is an ISS–
FTLF. Furthermore, inspired by classical converse results, we showed how an ISS LF can
be computed via a construction of the Massera type.

When the considered finite–time function candidate is the norm of the state, i.e. let
V (x) = ‖x‖, for verification purposes, we show that V is an inherent finite–time ISS LF if
it is a FTLF for the system with zero inputs. Finally, we proposed a procedure to construct
an ISS feedback stabilizer by using Sontag’s “universal” formula for ISS stabilization and a
Massera–type of function constructed for the system without disturbances.

The main motivation for the results in this chapter comes from the need to ensure some
robustness properties for the tools developed in the previous chapters, when applied to bi-
ological systems. Furthermore, the ISS theory provides a suitable framework for dealing
with large scale systems (which can be met in biology, although not treated in this thesis). If
such systems can be written as interconnected small scale systems, then the individual ISS
property together with small gain type of conditions can be used for analysis of the large
scale system [23].

133



134



Chapter 8

Conclusions and future perspectives

8.1 Discussion of the results
In this thesis a Lyapunov functions outlook on answering problems emerging from biologi-
cal applications, which are described by nonlinear continuous–time dynamical systems has
been developed. In particular, we derive and demonstrate the use of nonlinear systems the-
ory tools for analysis and stabilization of the dynamical description of the considered class
of systems. Consequently, the purpose of the developed framework is to assist biologist-
s/clinicians in addressing issues such as disease or dysfunctions diagnosis, time evolution
predictions and treatment evaluation and synthesis.

As advocated in this thesis, there is a one–to–one relation between properties of the
equilibria and trajectories of the continuous–time nonlinear differential equation systems
used as models for biological systems and their real life interpretations. We recall the case
of the HPA axis for which a stable equilibrium with an acceptable value of the cortisol
state corresponds to a well functioning HPA axis. Therefore, in this thesis we have sought
to provide relevant solutions to the analysis and stabilization problems in the context of
nonlinear dynamical systems, which answer the above mentioned biological problems.

Specifically, by relevant solutions it is meant: as good as possible DOA estimates in the
case of the analysis problems and which allow destabilizing certain equilibria and stabilizing
others, in the case of the stabilization problem. Accordingly, the classical problems of
computing LFs and estimating the DOA for nonlinear systems have been addressed in the
thesis.

In order to derive systematic procedures which are computationally applicable in the
field of systems biology and are based on LFs, two different perspectives were considered
with respect to the nonlinearity type. Therefore, the subproblems addressed in this thesis
can be classified as follows.

8.1.1 Analysis and design tools for polynomial (approximated) systems

Many biological systems, especially those describing diseases as a consequence of the time
evolving interaction between native cells and invader cells, whether they are from bacteria,
viruses or they develop from genetic mutations, can be and are usually modelled in the lit-
erature by following evolutionary principles. This approach generally leads to polynomial
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systems. Although the problem of computing LFs for polynomial systems has been studied
in the literature, leading to polynomial LFs, for computing nonconservative DOA estimates
a different approach was needed. As such, in Chapter 2, a Zubov type of procedure has
been revisited, for the reason that it iteratively works at improving the DOA estimate. In the
interest of answering the stabilization problems from Chapter 1, Table 1.1, this procedure
was further extended to generate a feedback stabilizer and a control Lyapunov function. In
particular, the coefficients of a polynomial feedback stabilizer are computed together with
the coefficients of a rational polynomial CLF, both with a predefined structure. While this
procedure is systematic and theoretically should render a maximal LF, which is associated
with the true DOA for a system, in practice it will provide an estimate, similar to all com-
putational methods from the literature.

As for a representative biological application, tumor dynamics have been considered
and in Chapter 3 we discussed two population computation type of models from the litera-
ture and we derived a new one which contains relevant information for immunotherapeutic
treatment strategies. The analysis of these models has been carried by means of RLFs and
for treatment design we proposed an alternative to the continuous, polynomial feedback
stabilizer. The alternative proposed treatment course is based on a switching control strat-
egy defined on domains of attraction of equilibria of interest. Specifically, the problem of
steering a stable invasive tumor to tumor dormancy has been investigated. This has been
addressed by means of a switching control law defined over successive parametrized DOAs
which can steer trajectories initiated in the DOA of the invasive tumor equilibrium to the
DOA of the tumor dormancy equilibrium, from which the solution converges autonomously
to the desired equilibrium.

For nonpolynomial systems, the same procedures for computing DOAs and stabilizing
control laws can be applied. However, in addition to the estimation errors, polynomial
approximations errors will introduce conservativeness in the results. The switching control
law will then be based on DOAs which are computed for polynomial approximations of the
individual switching dynamics and the continuous feedback stabilizer on the approximation
of the system whose steady state is to be stabilized.

8.1.2 Analysis and design tools for general nonlinear systems

The research question posed in Chapter 1 is concerned with a broader class of nonlinear
systems emerging from biological processes, not only polynomial ones. With regard to
overcoming the conservativeness of RLFs based tools, which is due to approximations of
the functions describing the dynamics, approaches which are not dependent on the system
class have been considered. Thereupon, in Chapter 4 alternative constructive converse the-
orems to the classical ones, known as the Massera and Yoshizawa constructions have been
developed. Alternative constructions were needed for developing a framework which al-
lows for computation feasibility, and thus can be applied to models for biological systems.
Otherwise, restrictions on the considered class of systems such as exponential stability, or
the use of specific functions within the constructions, which are generally difficult to find,
are imposed.

In Chapter 4 we allow for KL–stability (though under one assumption) and the con-
struction of the LF is based on any K∞ function of the norm of the solution of the system.
A finite–time decrease criterion was imposed on the K∞ function which generates a finite
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8.1. Discussion of the results

computation interval in both Massera and Yoshizawa type of constructions. However, for
either constructions, the freedom in the LF construction is counteracted by the fact that
the solution of the system needs to be known up to some finite time value. This problem
was addressed in Chapter 5 by means of solution approximation techniques or by develop-
ing a computational procedure starting from the linearized system towards obtaining DOA
estimates.

The stability analysis and stabilization tools developed in the previous chapters are ap-
plicable to deterministic models of considered biological systems. However, the estimated
model parameters are subject to errors, the developed models are simplified and proposed
control inputs based on feedback stabilization can be affected by perturbations or inaccura-
cies in measurements. Then it is important to study the stability and stabilization problems
with respect to disturbance inputs.

Since biological models are subject to input disturbances coming from parameter es-
timation errors or inaccuracies in measurements, the problem of robustness of the tools
developed in Chapter 4 was addressed in Chapter 7. The ISS framework has been chosen,
since it fits to the nonlinear context of our problems and allows formulations in terms of LFs.
Hence, in Chapter 4 we provided an equivalent characterization of the ISS property in terms
of existence of an ISS–FTLF. For what concerns the converse result, when the ISS property
is known, under certain assumptions, we showed that any K∞–function of the norm of the
state is an ISS–FTLF, allowing computation for a Massera–type ISS LF.

When the considered finite–time function candidate is the norm of the state, for veri-
fication purposes, we showed that V is an inherent finite–time ISS LF if it is a FTLF for
the system with zero inputs. Finally, we proposed a procedure to construct an ISS feedback
stabilizer by using Sontag’s “universal” formula for ISS stabilization and a Massera–type of
function constructed for the system without disturbances.

8.1.3 Verification and applicability of the developed theory in the biological field

Based on the theoretical tools developed in Chapter 4, the problems of computing DOAs
and stabilizing control laws for biological systems with general (Lipschitz) nonlinearities
can be addressed without requiring approximations of the dynamics. However, for com-
putational purposes approximations of the system solutions over a finite time interval are
required. In Chapter 5, two solutions were proposed. The first one relies on linearization
and computation via an expanded FTLF and the second is based on a numerical approach for
the computation of LFs via the Massera–type converse. The constructed Lyapunov function
is continuous and piecewise affine (CPA), computed via a finite–time Lyapunov function
evaluated at approximated trajectories. In both cases, by optimization, the obtained LF
is verified and consequently we are able to give an estimate of the DOA. Both proposed
procedures delivered promising results towards obtaining nonconservative approximations
of the DOA. By two- and three-dimensional examples, we have shown that the proposed
method can deliver comparable results with state–of–art computational methods from the
literature. The improvements in the DOA estimation validate the nonconservativeness of
the developed method. A possible advantage of the proposed solution originates from the
fact that Lyapunov functions are constructed based on finite–time Lyapunov functions and
the corresponding finite time decrease time.

Chapter 6 is dedicated strictly at applying the procedures derived in Chapters 4 and 5 to
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some representative examples of biological applications. In the case of the HPA example
or the genetic toggle switch, for which bistability is either a property of a dysfunction (in
the HPA case) or desired, engineered behaviour, a measure of the “nonconservativeness” is
provided by the bistability property. It is known that the boundary of the DOAs of the two
stable equilibria contains the unstable equilibrium. Thus, DOA estimates which get very
close to the unstable equilibrium are also very close to the true DOAs. In both examples,
by means of the developed procedures, DOA estimates which satisfy this criterion were
obtained. This allows for fairly accurate disease evolution predictions. For example, in the
case of the HPA axis, if measurements of the three hormone levels (or at least cortisol level)
indicate that the state of the patient is inside the hypercortisolic DOA or hypocortisolic
DOA, one can infer that without treatment intervention, the patient will converge to a stable
nonhealthy state which in turn will lead, for example, to type 2 diabetes.

8.2 Future perspectives and extensions
In this thesis a nonlinear systems theory based approach was proposed for answering prob-
lems from biological applications which are related to diagnosis and predictions and treat-
ment design strategies. The derived LF computation procedures were aimed at issues arising
from the specific classes of systems considered in this thesis. The majority of possible ex-
tensions of the developed results come from a biological perspective, however they reflect
on nonlinear systems theory classical problems.

8.2.1 Dynamical properties of biological systems

A large range of biological systems are characterized by oscillatory behaviour, which in
turn is represented by stable limit cycles of their corresponding models. Therefore, in order
to address this type of systems as well, an extension of the developed tools in this thesis for
computing LFs for attractors or invariant sets (as formulated for example in [15], [110]) is
necessary.

An inherent property of biological systems is that they are positive, thus the positive
orthant is an invariant set for such systems. When a stable equilibrium is on the boundary of
the positive orthant, or the positive orthant is an attractor for certain equilibria, the resulting
DOAs based on level sets of LFs will also contain initial states outside the positive orthant
if Ẇ (x) < 0 holds in those points. While this is not a concern for computing DOAs, when
computing stabilizing controllers based on such LFs it is possible that the control input will
steer trajectories outside the positive orthant before converging to the desired equilibrium.
Thus, mechanisms which restrict the computation of CLFs inside the positive orthant need
to be included in the procedures.

8.2.2 Validation and application to real life cases

In the case of synthetically engineered biological systems, like the genetic toggle switch or
the reprissilator, the models discussed in this thesis have been experimentally validated to
capture real life properties of the systems [40], [37]. The methods developed in this thesis
can be directly employed to analyze certain synthesized behaviours or indicate the optimal
operating areas for the systems as well as for computing control inputs which achieve the
desired behavior.

In the case of biomedical systems, while a model type can be validated against measure-
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ments gathered from patients, in certain cases parameter models are specific to each person
and need to be measured or estimated. The parameters of the HPA axis model considered in
Chapter 6 used in this thesis have been derived based on available experimental data from
multiple patients in [6]. The parameters of the tumor growth models from Chapter 3 have
been chosen to illustrate certain behaviours which correspond to a range of parameter val-
ues. Predator–prey models have been shown to be able to describe very well the stages of
cancer evolution [41] and explain phenomena which, without an understating of the nonlin-
ear interactions between the tumor cells in immune cells, cannot be explained by medical
doctors. In this sense, effects of treatment can be incorporated in the model parameters to
analyze the influence of treatment on the tumor dynamics. This approach can provide a
supporting mechanism for medical doctors when deriving personalized treatment strategies.
However, again the model parameters are specific to each tumor and not all are measur-
able. Take for example the parameter representing the influence of immune cells on tumor
cells. To the best of our knowledge, it can only be estimated from analyzing data of a tumor
evolution in time. As a possible solution we propose for example the use of (noninvasive)
ultrasound data, gathered for a period of time from the same patient.

As many diseases which have a nonlinear dynamical behavior are becoming more and
more prevalent, and with the increase number of applications of the “big data” and “data an-
alytics” concepts in the healthcare field, extracting dynamical information from the gathered
data becomes more and more relevant. This will allow for more accurate, patient specific
models which need to be analyzed and possibly, used for optimal personalized treatment
design.
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Appendix A

Approximation of solutions

A.1 Approximate solutions using piecewise affine vector fields
The method of approximating the solution of (4.1) using piecewise affine vector fields,
was proposed in [51]. A 2D version of the algorithm called CASCADE has been im-
plemented in MATLAB by the author of [51] and is available online at: http://ljk.
imag.fr/CASYS/LOGICIELS/CASCADE/. A 3D version of the algorithm has been
implemented in MATLAB by the first author of [114]. Unlike classical methods for approx-
imating solutions (Runge-Kutta, Taylor, etc.), which use a discretization of the time space,
this method uses a discretization of the phase space. More precisely, consider system (4.1)
with f : M → Rn, M ⊂ Rn; given a simplicial subdivision of the phase space, we let
fh be the interpolate piecewise affine vector field of f on the triangulation. To obtain the
approximate solutions, the following steps have been followed [51]. 1

A.1.1 Algorithm

First, we define a subdivision of M, T = {S1, . . . ,Sz}, where Si, i ∈ N[1:z], is an n-
simplex. A simplex Si is delimited by the (n − 1)-simplices F0,i, . . . ,Fn,i, called facets.
For all Si, i ∈ N[1:z] the unique affine interpolate vector field that interpolates f(x) at the
vertices v0, . . . , vn of Si is given by

fi(x) =

n∑
j=0

λj(x)f(vj) = Aix+Bi,

where λj(x) ∈ [0, 1] are the barycentric coordinate functions with respect to the vertices
v0, . . . , vn, such that

x =

n∑
j=0

λj(x)vj ,

n∑
j=0

λj(x) = 1, ∀x ∈ Si.

Then the piecewise affine vector field is given by

fh(x) = fi(x), if x ∈ Si.

1The work presented in this Appendix was developed by Tom Steentjes, during his internship [114].
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Next, we find the approximated solution on a simplex Si. If x(t) ∈ Si, then it verifies

ẋ = Aikx+Bik ,

which is equivalent to (
ẋ

0

)
=

(
Aik Bik
0 0

)
︸ ︷︷ ︸

=:Mik

(
x

1

)
. (A.1)

The solution of (A.1) is given by(
x(t)

1

)
= e(t−tk)Mik

(
x(tk)

1

)
,

for all t such that x(t) ∈ Sik , where tk is the time at which x(t) entered Sik .
To determine t such that x(t) ∈ Sik , we need to determine the time tk+1 at which

x(t) exits simplex Sik . There does not exist an algebraic expression for the exit time for
n-dimensional systems, as it does for 1-dimensional systems [51]. Therefore, numerical
computation of the exit time is used instead. The problem can be stated equivalently as
follows

For ẋ = Ax+B, x(0) =: x0 ∈ S,

find the time when x(t) leaves S,
t∗ ∈ R>0 (if it exists).

(A.2)

The simplex S is delimited by the facets F0, . . . ,Fn. Consider the unitary vectors kj being
orthogonal with respect to Fj and directed towards the interior of S. Then there exist scalars
r0, . . . , rn ∈ R, such that x ∈ S, if and only if

k>j x− rj ≥ 0, ∀j ∈ N[0:n].

Consequently, the distance of x(t) to Fj is defined as lj(t) := k>j x(t) − rj , j ∈ N[0:n].
Now, the series τk converges to the solution t∗ of (A.2) quadratically [50]{

τ0 = 0,

τk+1 = τk + minj∈N[0:n]
skj ,

where skj is the smallest positive solution of the equation

lj(τk) + sl̇j(τk) +
1

2
s2mj = 0, (A.3)

with

mj = min
i∈N[0:n]

k>j (A2vi +AB).
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When there does not exist a solution for (A.3) in R>0, then we set skj = ∞. Since we
are looking for an approximate solution on a finite time interval T , the algorithm will stop
whenever for some finite k, τk /∈ T .

Based on the exit time tk+1, one can easily compute the position x(tk+1) at which it
exits the simplex Sik . Next, the following active simplex Sik+1

is created. Since the state
exits the simplex through a face,

∃j ∈ N[0:n] x(tk+1) ∈ Fj,ik .

Since we know j, we then create a new simplex Sik+1
such that

Sik+1
∩Sik = Fj,ik ,

i.e. the current and “new” simplex have a common facet ((n− 1)-simplex). The listed steps
will be repeated, until t /∈ T .

Now, we have determined finite series of time instants and exit states, {tk} and {x(tk)},
respectively. The approximate solution is now given by an analytic expression given by(

x(t)

1

)
= e(t−tk)Mik

(
x(tk)

1

)
, ∀t ∈ [tk, tk+1].

A.1.2 Error bound on approximate solutions

In this section it will be shown that the approximate solutions of the piecewise affine
vector field method converge to the exact solutions of (4.1), when the simplex diameter
diam(Sik) → 0 for all i. We recall the so-called Fundamental Inequality [66], which pro-
vides a way to compute an upperbound on the norm of the difference of two trajectories.
This theorem will be used in the proof of Corollary A.1, which provides an upperbound on
the error of the approximated solution.

Theorem A.1 Let T ⊂ R be a nonempty interval and let U ⊂ Rn be a domain. Let
f : T ×M→ Rn be a continuous mapping and assume there exists a constant L such that
f satisfies the Lipschitz condition, i.e. there exists a constant L ∈ R>0 such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ ∀t ∈ T ∀x, y ∈M.

If for εi, δ ∈ R, ξ1(t) and ξ2(t) are continuous piecewise differentiable functions on T into
Rn with

‖ξ̇i(t)− f(t, ξi(t))‖ ≤ εi

and let t0 ∈ T with

‖ξ1(t0)− ξ2(t0)‖ ≤ δ,

then

‖ξ1(t)− ξ2(t)‖ ≤ δeL|t−t0| + ε1 + ε2
L

(
eL|t−t0| − 1

)
.
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Corollary A.1 Let T ⊂ R be a nonempty interval and let U be a domain in Rn. Let
f : M→ Rn be a mapping that satisfies the Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ ∀t ∈ T , ∀x, y ∈M,

for some L ∈ R>0. Let t0 ∈ T and let x0 ∈M and denote the solution of the initial value
problem

ẋ(t) = f(x(t)), x(t0) = x0,

by ξ(t) and denote the solution of

ẋh(t) = fh(xh(t)), xh(t0) = x0,

by ξh(t), where fh : ∪i∈N[1:z]
Si → Rn denotes the piecewise affine interpolate vector

field of f with regard to the simplicial subdivision ∪i∈N[1:z]
Si of M. Let the error in the

interpolation have an upper bound ε ∈ R≥0, i.e.

‖f(x)− fh(x)‖ ≤ ε, ∀x ∈ ∪i∈N[1:z]
Si.

Then for all t where ξ and ξh are defined,

‖ξ(t)− ξh(t)‖ ≤ ε

L

(
eL|t−t0| − 1

)
.

Proof: We have

‖ξ̇(t)− f(ξ(t))‖ = 0

and

‖ξ̇h(t)− f(ξh(t))‖ = ‖fh(ξh(t))− f(ξh(t))‖.

As ξh(t) ∈ ∪i∈N[1:z]
Si for all t ∈ T , we have

‖f(x)− fh(x)‖ ≤ ε, ∀x ∈ ∪i∈N[1:z]
Si

⇒ ‖fh(ξh(t))− f(ξh(t))‖ ≤ ε, ∀t ∈ T .

Moreover,

‖ξ(t0)− ξh(t0)‖ = 0,

and thus using Theorem A.1 we conclude that

‖ξ(t)− ξh(t)‖ ≤ ε

L

(
eL|t−t0| − 1

)
.
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A.1. Approximate solutions using piecewise affine vector fields

The following lemma will provide a way to compute a lower bound on the Lipschitz
constant L ∈ R>0 for some convex domain in Rn, such that the upper bound on the error in
Corollary A.1 can be computed.

Lemma A.1 Let T ⊂ R be a nonempty interval and let D be a domain in Rn. Let f :

T × D → Rn be a mapping and suppose that ∂f∂x exists and is continuous on T × D. If for
a convex subsetW ⊂ D, there is a constant L ∈ R>0 such that∥∥∥∥∂f∂x (t, x)

∥∥∥∥ ≤ L,
on T ×W , then

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, ∀t ∈ T , ∀x, y ∈ W.

A proof of the above lemma can be found in [77, Chapter 3]. In the following theorem, an
upper bound on the error ε of the piecewise affine vector field fh with respect to the exact
vector field f is provided. Let the norm ‖ · ‖max be defined by ‖A‖max = max{|aij |}.

Theorem A.2 Let Si be an n-simplex satisfying diam(Si) = h, h ∈ R≥0. Let f :

∪i∈N[1:z]
Si → Rn be a vector-valued multivariate function of class C2 and fi : Si → Rn

the affine map that interpolates f at the vertices of Si. Now let fh : ∪i∈N[1:z]
Si → Rn

denote the piecewise affine vector field

fh(x) = fi(x) if x ∈ Si.

Then

‖f(x)− fh(x)‖ ≤ Kh2M, ∀x ∈ ∪i∈N[1:z]
Si,

where

M = max
i∈N[1:z]

max
j∈N[1:n]

sup
x∈Si

‖Hfj (x)‖max,

with Hfj the Hessian of the j-th entry of f , and

K =
n2
√
n

4(n+ 1)
.

Proof: As

‖f(x)− fh(x)‖ = ‖f(x)− fi(x)‖, ∀x ∈ Si,

we have

‖f(x)− fh(x)‖ ≤ max
i∈N[1:z]

{‖f(x)− fi(x)‖},
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for all x ∈ ∪i∈N[1:z]
Si.

Consider a single simplex Si, i ∈ N[1:z], and corresponding interpolation fi : Si → Rn.
According to [113]

‖f(x)− fi(x)‖ ≤ Kh2 max
j∈N[1:n]

sup
x∈Si

‖Hfj (x)‖max,

and thus

‖f(x)− fh(x)‖ ≤ max
i∈N[1:z]

Kh2 max
j∈N[1:n]

sup
x∈Si

‖Hfj (x)‖max

= Kh2 max
i∈N[1:z]

max
j∈N[1:n]

sup
x∈Si

‖Hfj (x)‖max

= Kh2M.

We have shown that the upper bound on the error of approximate solutions for the con-
sidered algorithm converges to zero, when the simplex size goes to zero. Indeed, using
Corollary A.1 and Theorem A.2, we see that

‖ξ(t)− ξh(t)‖ = O(h2).

A.2 Approximate solutions using the Runge-Kutta method
One of the classical methods for approximating the solution of (1) is the Runge-Kutta
method. We consider t on the finite time interval t ∈ [t0, tz]. Note that this method does not
provide an analytic expression of the approximate solution. Indeed, we find an approximate
solution x(t) on a finite set of time instants t0, . . . , tz , where ti < tj for all j > i. The
sample time will be taken constant, that is

tk = t0 + kh, k ∈ N[0:z].

The general form for a Runge-Kutta method is given by

x(tk+1) = x(tk) + hF (tk, x(tk), h), k ∈ R≥0.

An explicit Runge-Kutta method of s−th order for ẋ = f(t, x) has the following form [8]:

z1 = x(tk),

z2 = x(tk) + ha2,1f(tk, z1),

z3 = x(tk) + h(a3,1f(tk, z1) + a3,2f(tk + c2h, z2)),

...
zs = x(tk) + h(as,1f(tk, z1) + as,2f(tk + c2h, z2)

+ · · ·+ as,s−1f(tk + cs−1h, zs−1)),

x(tk+1) = x(tk) + h(b1f(tk, z1) + b2f(tk + c2h, z2) + · · ·
+ bs−1f(tk + cs−1h, zs−1) + bsf(tk + csh, zs)).
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A.2. Approximate solutions using the Runge-Kutta method

Equivalently, we write

zi = x(tk) + h

i−1∑
j=1

ai,jf(tk + cjh, zj), i ∈ N[1:s],

x(tk+1) = x(tk) + h

s∑
j=1

bjf(tk + cjh, zj).

Note that the next state x(tk+1) depends only on the current state x(tk) and not on the
previous states x(tk−1) etcetera. Therefore, this method is called a one-step method. Since
we only consider autonomous systems (4.1), the algorithm is reduced to

zi = x(tk) + h

i−1∑
j=1

ai,jf(zj), i ∈ N[1:s], (A.4)

x(tk+1) = x(tk) + h

s∑
j=1

bjf(zj). (A.5)

In this thesis, we mainly focus on the fourth-order Runge-Kutta method (RK4) given by

z1 = x(tk),

z2 = x(tk) +
1

2
hf(z1),

z3 = x(tk) +
1

2
hf(z2),

z4 = x(tk) + hf(z3),

x(tk+1) = x(tk) +
1

6
h(f(z1) + 2f(z2) + 2f(z3) + f(z4)).

A.2.1 Error bound on approximate solutions

Consider the truncation error defined by

Ek+1(ξ(t)) := ξ(tk+1)− (ξ(tk) + hF (tk, ξ(tk), h)),

where ξ(t) denotes the true solution to (4.1). According to [8] we have the following result
regarding the convergence.

Corollary A.2 If the Runge-Kutta method (A.4), (A.5) has a truncation error O(hm+1),
then the error in the convergence of x(tk) to ξ(t) on [t0, tz] is O(hm).

For the fourth-order Runge-Kutta method, we have that Ek+1 = O(h5). Therefore, the
error in the convergence of the approximate solution to the exact solution isO(h4) and thus
for h→ 0, we have that the approximate solution converges to the true solution.
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A.3 Numerical examples of approximate solutions
In this section we show two examples to illustrate the piecewise affine vector field method
and the RK4 method. The two examples considered, represent models of biochemical pro-
cesses. As the states of the models represent concentrations, they are considered to be
biologically feasible if they are contained in the positive orthant P , which is defined as

P := {(x1, x2, x3) ∈ R3|x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}.

In what follows the simplex diameter h = 0.05
√

2 has been used for all simplices Si

generated along the trajectory for the piecewise affine vector field method. For the RK4
method a step size h = 0.05 has been used.

A.3.1 Model of hypothalamic-pituitary-adrenal gland axis

Consider again the dimensionless model representing the HPA-axis (6.2), with the parame-
ters given in section (6.2). Approximations of the solutions of (6.2) are made using both the
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Figure A.1: Trajectory approximations for (6.2).

3D implementation of the piecewise affine vector field method and the fourth-order Runge-
Kutta algorithm. In Figure A.1(a) we show the trajectory of the approximated solution of
(6.2), initialized in x0 = (0.5 1.2 2.0)> ∈ P , generated by the PWA vector field method,
together with the corresponding simplices. For the same initial condition, a simulation is
made using the RK4 method. We show the trajectories generated by both methods in Figure
A.1(b) where it can be observed that they fully overlap.

A.3.2 Model of tumor growth dynamics

Consider the system described by
ẋ1 = 1 + a1x1(1− x1)− x1x2,
ẋ2 = a2x2x3 − a3x2,
ẋ3 = a4x3(1− x3)− a5x2x3 − a6x3,

(A.6)
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A.3. Numerical examples of approximate solutions
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Figure A.2: Trajectory approximations for (A.6).

representing a prey-predator type model for tumor growth dynamics [100]. We consider the
parameters a1 = 2.5, a2 = 4.8, a3 = 0.6. a4 = 3.5, a5 = 2.4 and a6 = 0.1.

Approximations of the solutions of (A.6) are made using both the 3D implementation
of the piecewise affine vector field method and the fourth-order Runge-Kutta algorithm.
In Figure A.2(a) we show the trajectory of the approximated solution of (A.6), initialized
in x0 = (1 1 1)> ∈ P , generated by the PWA vector field method, together with the
corresponding simplices. For the same initial condition, a simulation is made using the
RK4 method. We show the trajectories generated by both methods in Figure A.2(b).
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Appendix B

Numerical values from Chapter 3

B.1 Numerical values for the system in Section 3.2.1
The LF V4(x) for system (3.1) is defined by

V4(x) =
R2(x) +R3(x) +R4(x)

1 +Q1(x) +Q2(x)
,

with the following polynomials.

R2(x) = 0.0742x21 − 0.0042x1x2 + 12.8175x22 − 0.0003x1x3 + 50.0419x2x3 + 61.571x23.

R3(x) = − 0.00826194x31 − 0.0992636x21x2 + 0.00579408x1x
2
2 − 18.2006x32

+ 0.34662x21x3 − 0.0196204x1x2x3 − 7.11137x22x3 − 0.00145815x1x
2
3

+ 47.7474x2x
2
3.

R4(x) = 0.00105993x41 + 0.0110812x31x2 + 0.0466955x21x
2
2 − 0.00275097x1x

3
2

+ 8.96691x42 − 0.0385862x31x3 − 0.224657x21x2x3 + 0.0131018x1x
2
2x3

− 18.0608x32x3 + 0.0100365x21x
2
3 + 0.00026071x1x2x

2
3 + 13.836x22x

2
3

+ 0.000156139x1x
3
3 − 0.170002x2x

3
3 + 0.000643478x43.

Q1(x) = − 1.33826x2 + 4.67002x3.

Q2(x) = 0.000339616x21 − 0.0000193332x1x2 + 0.571608x22 − 3.25913x2x3 − 0.1483x23.

B.2 Numerical values for the system in Section 3.2.2
Numerical values for each LF V4, corresponding to system (3.2) in the cases discussed in
Section 3.2.2.

• Case 1: V1(x) = (29.8 + 6.45x1 + 1.16x21 − 0.0272x31 − 0.000275x41 − 1.81x2 −
1.18x1x2 − 0.073x21x2 + 0.0016x31x2 − 0.69x22 + 0.0707x1x

2
2 + 0.00197x21x

2
2 +

0.0731x32−0.0017x1x
3
2−0.00158x42)/(−0.0659+0.0432x1−0.00123x21+0.129x2−

0.00153x1x2 − 0.00219x22) with C1 = 37.
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• Case 2: V2(x) = (57.9 + 31.3x1 + 8.26x21 − 0.596x31 + 0.0231x41 − 19.8x2 −
11.4x1x2−0.349x21x2+0.0125x31x2+3.05x22+0.901x1x

2
2+0.00921x21x

2
2−0.21x32−

0.0239x1x
3
2+0.00591x42)/(0.517+0.434x1−0.0425x21−0.0743x2+0.00157x1x2+

0.00576x22).

• Case 3: V3(x) = (44.7 − 6.13x1 + 2.72x21 − 0.19x31 + 0.00523x41 − 6.13x2 −
4.84x1x2 + 0.213x21x2 − 0.00212x31x2 + 2.72x22 + 0.213x1x

2
2 − 0.00781x21x

2
2 −

0.19x32−0.00212x1x
3
2 +0.00523x42)/(0.204+0.0671x1−0.00248x21 +0.0671x2 +

0.00273x1x2 − 0.00248x22).

• Case 4: V4(x) = (29.8 − 1.81x1 − 0.69x21 + 0.0731x31 − 0.00158x41 + 6.45x2 −
1.18x1x2 + 0.0707x21x2 − 0.0017x31x2 + 1.16x22 − 0.073x1x

2
2 + 0.00197x21x

2
2 −

0.0272x32+0.0016x1x
3
2−0.000275x42)/(−0.0659+0.129x1−0.00219x21+0.0432x2−

0.00153x1x2 − 0.00123x22).

152



Bibliography

[1] J. Adam and N. Bellomo. A Survey of Models on Tumor Immune Systems Dynamics.
Birkhauser, Boston, 1996.

[2] D. Aeyels and J. Peuteman. A new asymptotic stability criterion for nonlinear time-
variant differential equations. IEEE Transactions on Automatic Control, 43(7):968–
971, Jul 1998.

[3] A. A. Ahmadi, M. Krstic, and P. A. Parrilo. A globally asymptotically stable polyno-
mial vector field with no polynomial Lyapunov function. In 50th IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC), pages 7579–
7580, Dec 2011.

[4] A. A. Ahmadi and P. A. Parrilo. On higher order derivatives of Lyapunov functions.
In Proceedings of the 2011 American Control Conference, pages 1313–1314, 2011.

[5] Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief
introduction and some open problems. In 53rd IEEE Conference on Decision and
Control (CDC), pages 3835–3847, 2014.

[6] M. Andersen, F. Vinther, and J. T. Ottesen. Mathematical modeling of the
hypothalamic-pituitary-adrenal gland (hpa) axis, including hippocampal mecha-
nisms. Mathematical Biosciences, 246(1):122 – 138, 2013.

[7] Z. Artstein. Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods
& Applications, 7(11):1163 – 1173, 1983.

[8] K. Atkinson, W. Han, and D. Stewart. Numerical solution of ordinary differential
equations. Wiley-Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.

[9] R. Baier and S.F. Hafstein. Numerical computation of control Lyapunov functions
in the sense of generalized gradients. In Proceedings of the 21st International Sym-
posium on Mathematical Theory of Networks and Systems (MTNS 2014), July 7-11,
2014, University of Groningen, Groningen, Netherlands, pages 1173 – 1180, 2014.

[10] A. Ben-Zvi, S. D. Vernon, and G. Broderik. Model-based therapeutic correction
of hypothalamic-pituitary-adrenal axis dysfunction. PLOS Computational Biology,
5(1), 2009.

153



[11] A. Berman, M. Neumann, and R. J. Stern. Nonnegative Matrices in Dynamic Sys-
tems: A Wiley Series of Texts, Monographs and Tracts. Wiley-Interscience; 1 edition,
1989.

[12] J. Bjornsson, P. Giesl, S. F. Hafstein, C. M. Kellett, and H. Li. Computation of
continuous and piecewise affine Lyapunov functions by numerical approximations of
the Massera construction. In 53rd IEEE Annual Conference on Decision and Control
(CDC), pages 5506–5511, Dec 2014.

[13] J. Bjornsson, S. Gudmundsson, and S. F. Hafstein. Algorithmic verification of ap-
proximations to complete Lyapunov functions. In Proceedings of the 21st Interna-
tional Symposium on Mathematical Theory of Networks and Systems (MTNS), pages
1181–1188, 2014.

[14] J. Bjornsson, S. Gudmundsson, and S. F. Hafstein. Class library in C++ to compute
Lyapunov functions for nonlinear systems. IFAC-PapersOnLine, 48(11):778 – 783,
2015. 1st IFAC Conference on Modelling, Identification and Control of Nonlinear
Systems, 2015.

[15] J. Björnsson, P. Giesl, S. F. Hafstein, and C. M. Kellett. Computation of Lyapunov
functions for systems with multiple local attractors. Discrete and Continuous Dy-
namical Systems, 35(9):4019–4039, 2015.

[16] F. Blanchini and S. Miani. Set-theoretic methods in control. Systems & Control:
Foundations & Applications. Birkhäuser, Boston, MA, 2008.

[17] R. V. Bobiti and M. Lazar. On input-to-state stability analysis of discrete-time sys-
tems via finite-time Lyapunov functions. In the 19th World Congress The Interna-
tional Federation of Automatic Control Cape Town, South Africa, pages 8623–9628,
2014.

[18] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
2004.

[19] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Transactions on Automatic Control, 43(4):475–482, Apr
1998.

[20] A. Browder. Mathematical analysis. An introduction. Springer, 1996.

[21] O. Buse, R. Pérez, and A. Kuznetsov. Dynamical properties of the repressilator
model. Phys. Rev. E, 81:066206–1–066206–7, June 2010.

[22] A. Butz. Higher order derivatives of Liapunov functions. IEEE Transactions on
Automatic Control, 14(1):111–112, 1969.

[23] F. Camilli, L. Grüne, and F. Wirth. Domains of attraction of interconnected systems:
A Zubov method approach. In European Control Conference (ECC), pages 91–96,
Aug 2009.

154



Bibliography

[24] F. Camilli, L. Grüne, and F. Wirth. Control Lyapunov Functions and Zubov’s Method.
Siam Journal on Control and Optimization, 47:301–326, 2008.

[25] G. Chesi. Estimating the domain of attraction for non-polynomial systems via LMI
optimizations. Automatica, 45(6):1536 – 1541, 2009.

[26] G. Chesi. Domain of Attraction: Analysis and Control via SOS Programming. Lec-
ture Notes in Control and Information Sciences. Springer, 2011.

[27] G. Chesi. Rational Lyapunov functions for estimating and controlling the robust
domain of attraction. Automatica, 49(4):1051 – 1057, 2013.

[28] H. D. Chiang and J. S. Thorp. Stability regions of nonlinear autonomous dynamical
systems: a constructive methodology. IEEE Transactions on Automatic Control,
34:1229–1241, 1989.

[29] H.D. Chiang, M.W. Hirsch, and F. W. Wu. Stability regions of nonlinear autonomous
dynamical systems. IEEE Transactions on Automatic Control, 33:16–27, 1988.

[30] E. J. Davison and E. M. Kurak. A computational method for determining quadratic
Lyapunov functions for non-linear systems. Automatica, 7(5):627 – 636, 1971.

[31] J. Dieudonné. Treatise on Analysis, Vol. I, Foundations of Modern Analysis. Aca-
demic Press, New York and London, 1969.

[32] A. I. Doban and M. Lazar. Domain of attraction computation for tumor dynamics.
In 53rd IEEE Conference on Decision and Control (CDC), pages 6987–6992, Los
Angeles, 2014.

[33] A. I. Doban and M. Lazar. Stability analysis of discrete-time general homogeneous
systems. In the 19th IFAC World Congress, pages 8642–8647, 2014.

[34] A. I. Doban and M. Lazar. An evolutionary-type model for tumor immunotherapy.
In The 9th IFAC Symposium on Biological And Biomedical Systems (BMS), pages
575–580, Berlin, 2015.

[35] A. I. Doban and M. Lazar. A switched systems approach to cancer therapy. In the
14th annual European Control Conference (ECC), pages 2723–2729, Linz, 2015.

[36] L. Edelstein-Keshet. Mathematical Models in Biology. Society for Industrial and
Applied Mathematics, 2005.

[37] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional reg-
ulators. Nature, 403(6767):335–338, 2000.

[38] H. Enderling, N. Almog, and L. Hlatky. Systems Biology of Tumor Dormancy. Ad-
vances in Experimental Medicine and Biology, Volume 734, Springer, 2013.
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