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Notations

[n] the set of natural numbers {1, . . . , n}
[i, j] the set of natural numbers {i, . . . , j}
〈u, v〉 the scalar product of the vectors u and v

1{A} the indicator of the event A

1S the indicator vector of the set S

Unif(S) the Uniform distribution on the set S

Ber(p) the Bernoulli distribution with parameter p

Geom(p) the Geometric distribution with parameter p

Bin(n, p) the Binomial distribution with parameters n, p

N(µ, σ2) the Normal distribution with mean µ and variance σ2

TV (P,Q) the Total Variation distance between distributions P and Q
D(P‖Q) the Kullback-Leibler divergence between distributions P and Q
χ2(P,Q) the Chi-squared divergence between distributions P and Q

vii



Acknowledgments

viii



Contents

Acknowledgments v

1 Introduction 1

1.1 Primer on main notions . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Adaptive Sensing for Structured Support Recovery 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Inference Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 A General Adaptive Sensing Estimation Procedure . . . . . . . . . . 25

2.3.1 Noiseless-case algorithms . . . . . . . . . . . . . . . . . . . . 26

2.3.2 From the noiseless to the noisy case . . . . . . . . . . . . . . 28

2.4 Performance Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Analysis of the SLRTs . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 General Analysis of Algorithm 1 . . . . . . . . . . . . . . . . 33

2.5 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.1 Non-Adaptive Sensing . . . . . . . . . . . . . . . . . . . . . . 49

2.5.2 Adaptive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 A Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.A Removing the expectation from the budget constraint (2.2) . . . . . 65

2.B Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.C Fixed precision analogue of Proposition 2.1 . . . . . . . . . . . . . . 73

2.D Proof of Proposition 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.E Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



CONTENTS

3 Adaptive Compressive Sensing for Structured Support Recovery 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.1 Inference Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Signal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.2 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 Sample complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4.1 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4.2 Sample Complexity lower bounds . . . . . . . . . . . . . . . . 117

3.5 A Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . 120

3.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.A Description of the procedure of Section 3.4.1 . . . . . . . . . . . . . . 123

3.B Sketch proof of Proposition 3.14 . . . . . . . . . . . . . . . . . . . . 125

3.C Sample complexity lower bound for

non-adaptive compressive sensing . . . . . . . . . . . . . . . . . . . . 126

4 Detection of signals evolving in time 129

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.2.1 Inference goals . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3 A Detection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.4.1 Non-adaptive sensing . . . . . . . . . . . . . . . . . . . . . . . 147

4.4.2 Adaptive sensing . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.5 A Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . 159

4.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5 Distribution-Free Detection of Structured Anomalies 165

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.1 Exponential models . . . . . . . . . . . . . . . . . . . . . . . 170

5.2.2 Detection of intervals . . . . . . . . . . . . . . . . . . . . . . 171

5.2.3 Calibration by permutation . . . . . . . . . . . . . . . . . . . 172

5.2.4 Scanning the ranks . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3 When the null distribution is known . . . . . . . . . . . . . . . . . . 174

x



5.3.1 Scanning over an approximating net . . . . . . . . . . . . . . 175

5.3.2 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.4 Calibration by permutation . . . . . . . . . . . . . . . . . . . . . . . 180

5.5 Scanning the ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.6.1 Computational complexity . . . . . . . . . . . . . . . . . . . . 196

5.6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.6.3 Comparison with RSI . . . . . . . . . . . . . . . . . . . . . . 199

5.6.4 Application to the real data . . . . . . . . . . . . . . . . . . . 201

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.A Sketch proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . 204

5.B Derivation of Υ0 in the normal location model . . . . . . . . . . . . 205

6 Concluding remarks 207

xi



CONTENTS

xii



Chapter 1

Introduction

1.1 Primer on main notions

Support Recovery and Signal Detection

Suppose we have a large number of individuals, some of whom might have a certain

disease without any visible symptoms. Though the disease might not be producing

any symptoms yet, if left unchecked it can activate resulting in undesired conse-

quences. Let us imagine we are allowed to take blood samples from the individuals,

which can later be subject to analysis. One question we might ask is whether there

is anyone among them carrying the infection. We refer to such questions as a signal

detection problem, as we are only interested in the presence of infection, but not

the identity of infected subjects. This can be thought of as a first step in examining

such a system, as we are only aim to raise a red flag in case we see a deviation

from the nominal state - which in this case is the absence of infection. A second

step would be to determine exactly who is infected and who is not, which we call

a support recovery problem.

The first difficulty in such tasks lies in the fact that we usually can not observe

the true state of the individuals directly, but instead there is some sort of noise

contaminating our observations. For instance, in the example above such uncer-

tainty can arise during the analysis of the blood samples. The second problem one

often runs into is that typically there is a very large number of people that need

to be screened, but in reality only a few of them are infected. This combined with

measurement uncertainty makes it easier for infected individuals to “hide in the
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Introduction

crowd”. These are the types of questions we deal with throughtout this thesis.

Let us now discuss the nomenclature for the main objects in such problems.

Let x ∈ Rn be an unknown vector, which we refer to as the signal. The signal

x depicts the true state of affairs. In the example above for instance, xi, the

ith component of x, would tell us the level of infection of the ith individual. In

a number of applications the extrinsic signal dimension n ∈ N is large, but the

signal is assumed to be living in a much lower dimensional subspace of Rn. There

are multiple ways of modeling such a phenomenon and the one we will be dealing

with throughout this work is sparsity, which simply means that the majority of

the components of x are zero. This is often a reasonable assumption to make. For

instance, in the example above we need to screen a large number of individuals but

probably only a few of them are actually infected. Also, when trying to identify

genes which regulate a certain biological process, although there might be tens of

thousands of genes in total, we believe that only a few dozen or hundred actually

play a part in that particular process. Formally, we assume xi = 0 if and only if

i /∈ S for some S ⊂ [n] that we call the support of the signal. S is an element of

a class of supports C with the additional property that the cardinality of the sets

belonging to C is small compared to n. For now we can think of C as the collection

of all subsets of [n] with a given sparsity s, and s being much smaller than n.

As noted before, x can not be observed directly, but instead through some kind

of a measurement mechanism. Since this represents some sort of uncertainty, it

seems natural to model this as having access to a random variable Y ∈ Y that we

call the observations or sample. Note that although we simply use one symbol Y for

the observations, this can (and often does) represent multiple measurements. We

denote the distribution generating the observations by PS . Note that this depends

on the signal x and thus also on the support S in some way, and since S is our

main object of interest we emphasize the dependence with a subscript. For now

we do not specify these objects any further, but if the reader would like to have

something concrete in mind, recall the example above and think of Y as an element

of Rn, each component corresponding to the result of the blood sample analysis of

one individual.

Now we are in a position to formulate the problems under consideration. Our

main object of interest is the support of x, but this is not directly observable to

us. However, as seen before our observations do depend in some way on the true

support, so our inference about S will be based on Y. We first consider signal

2



detection. Here we are faced with two possibilities, which are called hypotheses in

the statistics literature, and we wish to decide which of the two is true in reality.

The default hypothesis states that S = ∅, which means all components of x are in

fact zero. In the above example this corresponds to the situation where none of the

tested individuals has the disease. The alternative hypothesis is that S ∈ C, that

is the support is non-empty and is one of the elements of C. The decision between

the two is made by a test Ψ : Y → {0, 1}, which is a function specifying which

hypothesis we accept based on the observations.

Naturally, if we have a test then we would like to evaluate its performance in

some way. Since Y is assumed to come from a stochastic model, a natural way to

do this is to consider the probability of error of Ψ. One can make an erroneous

decision in two ways. A so-called type I error is made when in reality x = 0, yet

we decide that some components of x are non-zero. In the above example this

corresponds to declaring the presence of infection when in fact this is not the case.

A type II error is made when in reality S 6= ∅, yet we decide that the alternative

hypothesis is true. In the above example this corresponds to declaring that no

infection is present, when in fact it is. Note that the two types of errors can have

very different consequences in practice, hence their role is often not symmetric.

Note that a type II error can be made regardless of which S ∈ C is the true

support. Thus, while the type I error probability is simply P∅(Ψ = 1), the type II

error probability is usually defined by aggregating the quantities PS(Ψ = 0), S ∈ C
in some way, common methods being to take the average or the maximum. Having

defined the two error probabilities we often combine them to form a single metric

of error, most commonly by summation or taking their maximum. Note that it

is important to consider type I and II error probabilities together, since one can

always make P∅(Ψ = 1) = 0 by setting Ψ(Y) = 0 for all Y ∈ Y or vice versa.

In support recovery we wish to know exactly which one of the possible sets in

the class C is the true support. Again, the decision is made based on the sample by

a function Ŝ : Y → C which we often refer to as an estimator. As before, we have

numerous options to evaluate the performance of Ŝ and we now mention the most

common ones. Given a fixed S ∈ C, one possibility is simply to compute the error

probability PS(Ŝ 6= S). One could also count the number of erroneously classified

components, giving rise to the so-called expected Hamming-distance ES(|Ŝ4S|).
A frequently used and less demanding metric is the expected normalized number

of false discoveries and non-discoveries ES(|Ŝ \ S|/|Ŝ|) + ES(|S \ Ŝ|/|S|), called

3



Introduction

the False Discovery Rate (FRD) and Non-Discovery Rate (NDR). Once we have

settled on a measure of effectiveness for a fixed S ∈ C, we often aggregate them into

a single error metric in some way. Choices are taking the average or the maximum

of the selected quantity over the possible supports S ∈ C.

The mathematical framework outlined above fits a wide range of problems, and

to back up this claim we now mention a few. In [66] Dorfman describes a project

whose objective was to weed out all syphilitic men enlisted to armed service. The

decision whether an individual was infected or not was based on a blood test, and

Dorfman developed a methodology now widely known as group testing in an effort

to solve the problem in an economically feasible way. Biology and medicine are

fields of science with a rich collection of problems fitting this framework, for instance

the analysis of DNA microarray data. Yoon et al. [147] describe a setting where one

wishes to identify genes exhibiting high expression levels under certain conditions

(disease, drugs, etc.), whereas Moore et al. [112] show an instance when the goal

is to discover new phenotypes of a disease based on common symptoms exhibited

by patients. During the analysis of medical imaging data such as tomography or

MRI one often wishes to find regions of activity or anomalies in the scanned tissue

(see for instance Moon et al. [111]).

Analyzing imaging data is a task that also arises in the field of computer vision

(see Zhong et al. [152]), for instance when trying to identify objects such as roads

in satellite imagery (see Geman & Jedynak [74]). As explained by Culler, Estrin

& Srivastava in [55], several surveillance tasks using sensor networks can be cate-

gorized as signal detection or support recovery problems as well. In such settings,

sensors are spread out across an area (such as a structure, or a geographical region)

and we wish to monitor the system based on observations collected by the sensors.

Some examples include the detection of radioactive materials (see Brennan et al.

[30]), or biological/chemical substances (see Cui et al. [54]) or target tracking (see

Zhang et al. [149]).

Other monitoring tasks include the detection of disease outbreaks based on data

from hospital emergency visits and pharmacy sales of drugs (see Kulldorff et al.

[100]) or the spread of viruses in computer networks (see Szor [137]). Similar tasks

may arise during the analysis of social networks as well. As an example consider

the problem of finding communities based on observing the existing connections

in a social network. A possible model is to assume connections are formed with

higher likelihood inside a community than otherwise. In this interpretation the

4



community detection problem can be viewed as a signal detection task (see for

instance Arias-Castro& Verzelen [15] and Arias-Castro & Grimmett [13]).

When facing a support recovery or signal detection task we can take two points

of view. The theorist inside us would like to know the fundamental difficulty of

these problems, that is to unravel the intricate interplay between a chosen error

metric, the measurement model PS and the class of support sets C. When this is

understood, we can formulate conditions x needs to satisfy such that the task at

hand can be solved reliably in terms of our chosen performance metric. On the

other hand, the practitioner inside us would like to actually solve the problems.

That is, he wishes to construct specific tests Ψ or estimators Ŝ, and then prove that

these work if x meets certain conditions. Ideally, the two halves meet in the middle

and complement each other. If we have results stating necessary conditions for x so

that the problem can be solved reliably and also have specific methods that solve

the problem whenever these conditions are met, we have a good understanding of

the problem at hand, and ultimately this is what we hope to achieve.

In this thesis the focus is more often on the theoretical side, in the sense that

often the procedures we develop are aimed more at corroborating our theoretical

findings and less at being readily applicable in real-life situations.

Coordinate-wise Sampling and Compressive Sensing

As noted before, the measurement model PS plays a pivotal role in our ability

to perform the tasks described above, and in what follows we briefly discuss the

two models considered in this work. Probably the most natural observation model

in the context described above is one we refer to as coordinate-wise sampling. In

this case we observe x component by component, each observation perturbed by

measurement noise. The observations of the components are independent and their

distribution depends on whether the component in question is in the support or

not. Note that the defining characteristic of this sampling scheme is that we ob-

serve components of x one-by-one, with measurement uncertainty affecting each

observation. This does not necessarily mean however that we observe every com-

ponent exactly once, in fact we can observe some components multiple times or

not at all and still have a coordinate-wise measurement scheme. Nonetheless, a

common special case of this setup is when we do observe every component of x

once and our observation for a component is its value perturbed by independent

additive noise, that is Yt = xt +Wt, t ∈ [n] and Wt are i.i.d. random variables. In
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Introduction

the example above this model would correspond to analyzing every blood sample

separately.

Probably the most prominent case of the setup described above is the normal

means model in which Wt ∼ N(0, 1) and are independent for all t ∈ [n]. This model

has received a large amount of attention, mostly in the detection setting (see Ingster

& Suslina [87, 88], Baraud [21], Donoho & Jin [64], Arias-Castro & Sharpnack [14])

also with extensions to correlated noise (see Hall & Jin [78]). The popularity of the

model is due to the fact that it arises naturally in many situations. For instance the

this model is reasonable when samples are collected independently from different

locations, or when measurements are made of separate objects. Examples of the

former case include measurements made in sensor networks (see for instance Cheung

et al. [47], Guerriero, Willett & Glaz [75]) or imaging applications (in this case we

can think of each pixel of an image as a separate sensor, see Desolneux, Moisan &

Morel [61]). An example for the latter case is for instance measuring expression

levels of different genes (see for instance Ernst et al. [69], Pawitan et al. [119]).

To introduce the second measurement model, let us revisit the example above.

Suppose that instead of analyzing each blood sample separately, we could choose

to combine samples before subjecting them to analysis. Depending on the exact

mechanics of the blood test this can be advantageous as we might be able to create

a stronger signal by pooling infected blood together, or conversely if non-infected

blood is pooled together, multiple healthy subjects can be identified using only one

lab test. This is a simple cartoon for the measurement model known as compressive

sensing.

Formally, our observations are of the form Yt = 〈At,x〉 + Wt, t ∈ [m] where

At ∈ Rn is some sensing vector, 〈., .〉 denotes the scalar product, and {Wt}t∈[m] are

i.i.d. random variables. A commonly considered setup is when ‖At‖2 ≤ 1, where

‖.‖2 denotes the Euclidean norm, and Wt ∼ N(0, 1) and independent, t ∈ [m].

The main difference compared to the previous setup is that now we can aggregate

information from different components of x before measurement uncertainty takes

effect. This results in a more flexible sensing scheme, which can be seen formally

by noting that by taking At = 1{t}, where 1{t} is the singleton vector whose tth

coordinate is equal to one, we essentially recover coordinate-wise sampling.

This sensing model arises naturally when there is some sort of data compres-

sion happening in the physical domain before the signal hits the sensors. One such

application is the so-called Single-pixel camera introduced by Duarte et al. in [68]
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where the camera has one photon receptor, and a mechanism composed of tiny

mirrors inside the camera reflects light from different locations in the scene into

the sensor. Hence each observation can be viewed as a linear combination of light

coming from different parts of the scene. Another natural setting is medical imag-

ing, most notably tomography and MRI (see for instance Panych & Jolesz [118],

Deutsch, Averbush & Dekel [62]), where the sensors observe projection data from

the object being imaged. Due to its practical relevance, the underlying mathe-

matics of compressive sensing has also been widely studied in recent years, see for

instance Candès & Tao [35], Donoho [65], Candès & Tao [34], Candès& Wakin [36],

Wainwright [140] and Foucart & Rauhut [72].

Adaptive Sensing

Let us revisit our example of screening for a disease using blood samples in a

setting where the blood sample of each individual needs to be analyzed separately

(that is we are in the coordinate-wise sampling setup). Suppose that the lab test

for analyzing a particular blood sample is such that the more time we allocate to

analyzing that sample the more accurate the result will be1. On the other hand,

suppose the time it takes to analyze a particular sample is directly associated with

a cost - the more time the test takes, the more expensive it is.

If we have a pre-determined budget to carry out the screening, and need to

decide how to allocate our resources beforehand, the sensible thing to do is to

analyze every blood sample for the same cost per sample (provided we have no

prior information about the identity of the infected individuals). However, if there

are only a relatively small number of infected people this results in most of our

budget being allocated to analyzing non-infected blood samples, which seems to

be somewhat wasteful. Hence the question arises if there is a way to allocate our

resources more efficiently by also using information we gather as we perform the

lab tests?

Consider the following two stage design as an example. In the first stage we

allocate half of our budget to a coarse screening, and perform all lab tests as before,

only now with half the cost and hence half the accuracy per lab test. Based on the

results, we select individuals that are susceptible to being infected and carry them

on to the second stage. For these individuals we perform a new lab test using the

1For instance when testing for the presence of bacteria, a possible method is to grow bacteria
in a Petri dish. In this case the more time we let the bacteria to grow, the more accurate our
assessment of the bacteria-content of that particular sample will be.
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remaining half of the total budget. Imagine that we need to screen a million people,

but we have reason to believe the number of infected are in the hundreds. Our hope

is that by calibrating the decision who to include in the second stage properly (say

for the sake of example we select a few thousand), everyone infected will be selected

to the second stage. Notice that in the second stage we use the same budget as in

the first stage, however for only a few thousand tests instead of a million, hence we

have more accuracy per person and hence more detection/estimation power. To

summarize, we hope that when properly performed, such a scheme would provide

more bang for our buck compared to the previous one.

The paradigm where samples are collected sequentially and adaptively based

on information gleaned from previous measurements is known as adaptive sensing

or active learning. To be a bit more concrete, consider the coordinate-wise sensing

model described above. In a non-adaptive sensing scheme the decision which com-

ponents of x to measure needs to be made before any observations are collected.

Without any prior information about the support of x this gives rise to strategies

where each component is measured with the same accuracy, leading essentially to

the normal means model described above, or something similar. Contrasting this,

in adaptive sensing the decision which component to sample next is allowed to

depend on our previous observations. How to go about designing a good sam-

pling strategy in this case is not obvious. Considering compressive sensing, in a

non-adaptive scheme one needs to design the sensing vectors A1, . . . , Am before

any observations are made. How to do so is not immediately clear, but perhaps

unsurprisingly, it turns out that randomized designs that allocate roughly equal

amounts of “sensing energy” to each component are the way to go, see the above

references. In an adaptive strategy, when designing the sensing vector At, we could

use all the information learned up to that point. Again, the main question here is

how to do this in an efficient way.

The above example outlines both the appeals and bottlenecks of such schemes.

The first potential benefit to adaptive sensing is increased statistical power. The

hope is that closing the loop between data collection and inference would produce

more informative samples. This would result in more accurate inference for the

same amount of resources, or from a different point of view we would be able

to perform the same task in a more cost-efficient way, compared to non-adaptive

sensing.

The second appeal of adaptive sensing is in connection with computational
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complexity. Certain statistical inference tasks are known to be computationally

demanding or even intractable. One such example being submatrix estimation.

This is a support recovery problem where the class of possible supports are subma-

trices of a given matrix (see Balakrishnan et al. [18], Berthet & Rigollet [24]). In

such situations, even though we might have a formal mathematical solution to the

problem at hand, computing it for a real dataset would be impossible because of

the huge amount of arithmetics involved. It turns out that often this phenomenon

is due to the fact that the relevant information in the non-adaptively collected data

is swamped by the large number of non-informative observations. However, using

adaptive sensing we can potentially tailor the sample collection process to facilitate

inference, thus shaking the computational burdens mentioned above.

Finally, adaptive sensing might also bear an impact on the design of data ac-

quisition devices. Data is being collected at an ever increasing pace due to rapid

technological improvement, a prominent example being the field of astronomy (see

Chamberlin, Pesnell & Thompson [45]). In some cases the volume of data is so huge

that it can not all be stored in the long run. To make matters worse, often most

of the data collected is completely irrelevant or uninteresting in hindsight. Hence

new methodology is being developed in an effort to perform inference on-the-go

(see for instance Diehl & Hampshire [63], Thompson et al. [138]). Taking this a

step further, one could also use on-line methods to inform decisions about future

sample collection, thus making better use of the available hardware.

Though these potential benefits are appealing, adaptive sensing has its draw-

backs. First of all it is not guaranteed that any of the advantages above actually

manifest in a particular inference task. Second, it is clear that the bottleneck of

adaptive sampling schemes is the sample collection process. When not done with

care, adaptive sample collection may introduce bias and steer inference in the wrong

direction early on, which carries the danger that algorithms that seem sound based

on heuristics fail dramatically and unexpectedly. Third, the feedback loop in the

data acquisition makes understanding the fundamental difficulties of the inference

task quite challenging.

Nonetheless, due to the potential benefits adaptive sensing promises, it has

received considerable interest in the past. Probably the first such scheme is the Se-

quential Probability Ratio Test (SPRT) introduced by Abraham Wald in the forties

in [141]. The aim of the SPRT is to decide between two simple hypotheses using

a random number of observations instead of a fixed sample size. In every step the
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decision maker collects a new observation and selects between two options. Either

the test is terminated and a decision is made or the data is deemed insufficient to

make a decision and a new observation is collected. Wald showed that the SPRT

minimizes the expected number of samples needed to reach the correct decision (in

some sense).

A next step to take is to consider settings where the learner not only decides

whether to acquire further samples or not, but also influences the distribution the

sample comes from. Such situations arise in many different statistical inference

tasks of which we mention a few. Considering the topic of experimental design the

decision maker might have a set of experiments to choose from and each time can

select the one deemed most useful based on the result of the previous ones. Such

settings were investigated by Chernoff [46], Fedorov [70] and Nitinawarat, Atia &

Veeravalli [117], to name a few.

In many statistical learning tasks the aim is to predict the value of a response

variable based on a number of features. A simple example is the automated clas-

sification of handwritten digits, where the learner’s task is to devise a rule that

takes an image of a handwritten digit and outputs the corresponding digit (i.e.

0, 1, . . . , 9). As information is gathered the learner might value samples with par-

ticular features more than others and so there might be benefits to collecting sam-

ples adaptively. Hence the role of adaptive sensing in similar problems has received

considerable attention, for instance in the context of classification (see for instance

Cohn, Ghahramani & Jordan [52], Dasgupta et al. [58, 57, 56], Castro & Nowak

[42], Balcan, Beygelzimer & Langford [19], Koltchinskii [96], Hanneke [80]), re-

gression (see Willett, Nowak & Castro [146], Hall & Molchanov [79]) and pattern

recognition (see Blanchard & Geman [27]).

Adaptive sensing has also been investigated in the context of support recovery

and signal detection problems, both in coordinate-wise sampling models (see Malloy

& Nowak [106, 105, 109], Haupt, Castro & Nowak [81], Castro [40]) and compressive

sensing models (see Haupt et al. [82], Malloy & Nowak [108, 107], Arias-Castro,

Candès & Davenport [7]).

Structured Supports

In a number of real-life examples of support recovery and signal detection, the

object of interest is not an arbitrary subset of the signal vector. In fact in a lot of the

examples mentioned earlier these objects have a certain structure to them. In gene
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expression studies the data is in the form of a gene-expression matrix, whose (i, j)th

element is the expression level of gene j of the ith individual. Often times the aim is

to find genes co-expressed under the influence of certain conditions such as diseases

or drugs. Hence the support in this case is a submatrix of the data matrix rather

than an arbitrary subset of its elements. Similar patterns arise in computer science

when aiming to classify malware (see Jang, Brumley & Venkataraman [89]).

Computer viruses spreading from host to host in a computer network give rise

to star-shaped patterns on the network graph (see Szor [137]). Communities in

networks are often modeled as cliques or clusters in the network (see Arias-Castro

& Verzelen [15]). In computer vision and imaging one often aims to identify objects

in images, and these appear as contiguous “blobs” not as pixels scattered about

randomly (see Moon et al. [111]). The same phenomenon applies when one aims

to find geographic regions with certain properties, as in Cheung et al. [47].

These structural assumptions are encoded in the class of supports C. As noted

before, C plays an important role in both the difficulty of support recovery and

signal detection problems and the design of tests and estimators that solve these

tasks. Hence understanding the impact different structured classes have on these

tasks is both mathematically interesting and useful in practice.

Most work on structured supports has been done in the context of non-adaptive

sensing in the normal means model. Structures investigated include intervals or

blocks (see [90, 32, 33]), submatrices (see Shabalin et al. [127], Butucea & Ingster

[31], Balakrishna et al. [18], Berthet & Rigollet [24]) and various structures embed-

ded in graphs such as clusters (see Neill & Moore [115], Arias-Castro et al. [8, 13],

Neill [113], Sharpnack, Krishnamurthy & Singh [131], Qian, Saligrama & Chen

[124]), stars, cliques and matchings (see Addario-Berry et al. [1], Arias-Castro &

Verzelen [15]) and paths (see Arias-Castro et al. [9, 12]).

The properties of compressive sensing for estimating tree-structured activations

has been studied by Baraniuk et al. [20] in the non-adaptive setting. In the adaptive

sensing setting Soni & Haupt [134, 135] investigate the previous structured class,

while Krishnamuthy, Sharpnack & Singh [97] deal with supports having low cut-size

and Balakrishnan et al. [17] investigate the problem of recovering blocks.

Dynamic Signals

So far we have discussed signals that are static over time. In particular we have

assumed that the support remains the same throughout the sampling process.
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Though this assumption is reasonable in a lot of examples, there are situations

where the story might be different. For instance a certain disease might spread

quickly and thus infection hot spots might change rapidly over time. This intu-

itively increases the difficulty of the detection of hot spots as by the time we look

at a certain place the disease might have already moved to a different location.

The detection of covert communications could also provide a similar example.

Suppose some frequencies in a certain range are used for covert communications,

those frequencies exhibiting higher power. However, in an effort to remain unde-

tected, the frequencies to communicate through are changed from time to time.

Our task, that is detecting if such communication is taking place, is clearly hin-

dered by the fact that the frequencies used are being changed. In such situations

it is important to understand how the dynamic aspect of the signal affects the

fundamental difficulty of the problem and how to adjust procedures that perform

the statistical inference to deal with this phenomenon.

The problem outlined above is essentially that of spectrum scanning in a cogni-

tive radio system (see Li [103], Caromi, Xin & Lai [37]). When monitoring computer

systems one goal is to detect malicious activity such as break-ins or frauds in the

system (see for instance Gwadera, Atallah & Szpankowski [76], Phoha [121]). In

these so-called intrusion detection problems one has access to a huge volume of data

arriving in a streaming fashion and anomalies can pop up at different locations and

times and then disappear.

Similar problems arise in the field of image processing, notably video surveil-

lance, such as identifying traffic violators on the road or detecting suspicious ac-

tivity around a structure or at an airport (see Diehl & Hampshire [63] and Pokra-

jac, Lazarevic & Latecki [122]). The detection of momentary astronomical events

such as supernovae or solar flares also serves as an example for an application of

anomaly detection in dynamical signals (see Thompson et al. [138]). Such prob-

lems also arise when observing more complex systems such as monitoring the spread

of anomalous behavior or identifying the source of propagating information (e.g.

viruses or gossips) in networks (see Wang et al. [144], Shah & Zaman [128], Luo &

Tay [104], Zhu & Ying [153]).

Distribution-free tests

A useful first step in understanding statistical learning problems is to investigate

them within clear cut distributional models. For instance the popular normal means
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model states Yt = xt +Wt, t ∈ [n] and {Wt}t∈[n] are i.i.d. standard normal. The

noise terms in compressive sensing are also often assumed to be i.i.d. and normally

distributed. In such frameworks we can more readily understand the fundamental

difficulty of the problems at hand and can develop tests and estimators that solve

them in an optimal fashion. However, in practice these assumptions are either hard

to verify or outright violated. So while the fundamental understanding we gain by

assuming specific noise distributions is valuable, developing inference methods not

relying heavily on such assumptions is very important from a practical standpoint.

These are often referred to as distribution-free methods.

The practical relevance of distribution-free methods is probably best illustrated

by their widespread application. In the first half of the twentieth century Wilcoxon

[145] and Mann & Whitney [110] suggested the use of ranks to assess whether

samples from two populations have the same mean or not. In the same time

period Friedman [73] introduced a method also relying on ranks, as a counterpart

to the analysis of variance. A similar method was developed by Kruskal & Wallis

[98]. In all cases, the use of ranks was motivated by trying to avoid the normality

assumption inherent in the commonly used inference procedures of the time. Today,

all the methods referenced above are well known and widely used.

In a more modern context, distribution-free tests are used in the areas of disease

surveillance (see Jung & Cho [92], Kulldorff et al. [100]), the analysis of fMRI data

(see Holmes et al. [116, 85]) and other imaging applications (see Flenner & Hewer

[71]) to name a few.

Though these methods benefit from not relying on distributional assumptions

and thus being more widely applicable, there is a tradeoff involved. The price we

pay for greater flexibility is decreased statistical power. Hence it is imperative to

understand how much we lose in terms of our ability to perform accurate inference

when using non-parametric methods. In an ideal situation it is possible to derive

non-parametric tests for which this loss in power is only minute, giving us methods

that are powerful but also robust to distributional misspecification.

1.2 Overview of the Thesis

Most of the thesis is aimed at gaining a better understanding of adaptive sensing

protocols. In the coming three chapters we investigate several different support

recovery and signal detection scenarios. We wish to obtain a fundamental under-
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standing about adaptive sensing in these settings, in particular how it compares to

non-adaptive sensing.

Chapters 2 and 3 deal with the problem of structured support recovery, first

in a coordinate-wise sensing model and then in a compressive sensing model. We

examine several different structured support classes that serve as good cartoons for

structured supports encountered in real applications. We develop adaptive sensing

procedures that reliably recover such supports, and show their near-optimality by

deriving necessary conditions the signal needs to satisfy in order for any adaptive

sensing algorithm to succeed. For comparison purposes we also derive necessary

conditions for non-adaptive procedures. We show that, in general, adaptive sens-

ing protocols outperform non-adaptive ones in the context of structured support

recovery, though by how much depends on the specific structured class at hand.

In Chapter 4 we return to coordinate-wise sampling and examine the task of

detecting sparse signals that change in time. To model the temporal aspect of the

signal we will use a simple stochastic model. In a nutshell, at each time step a

biased coin is flipped for each element of the support and if the coin comes up tails

that component moves to a different location. Traditionally in such problems, data

is collected non-adaptively and then analyzed, for instance by using data mining

methods. As noted before, the volume of data being collected is ever increasing,

which in turn can render inference methods designed for passively acquired samples

unfeasible in practice. Hence we will take a slightly different point of view than

usual when examining this problem. We will consider a situation where the signal

can be measured at each point in time, but instead of being able to observe the

entire signal we can only observe one component of x at each time. We wish to

gain a fundamental understanding about how this phenomenon coupled with the

temporal aspect of the signal affects the inference task. We develop algorithms

and show their near-optimality both under the adaptive sensing and non-adaptive

sensing paradigms. We show that adaptive sensing has an edge over non-adaptive

sensing in such a setup as well, with the gains being less pronounced when the the

signal components are changing rapidly.

In all previous chapters the problems are set up using rigorous distributional as-

sumptions. Though we will make some comments on possibilities to relax these, it

would be valuable from a practical standpoint to design and characterize adaptive

sensing procedures that are robust to misspecification of the underlying distribu-

tion. As a first step we need to understand the properties of such procedures in the
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non-adaptive sensing context, and this is the topic of Chapter 5. Here we revisit

the coordinate-wise sampling setting and develop non-parametric methods for the

detection of structured supports. We show that when the data we observe comes

from the exponential family there is essentially no loss in power asymptotically

when using the proposed non-parametric methods instead of ones that rely on full

knowledge of the data distribution. We also present simulation results to gain some

understanding about the finite sample behavior of the proposed methods.

Finally some concluding remarks are provided in Chapter 6. On one hand

we summarize the results presented in previous chapters with an emphasis on the

lessons learned about adaptive sensing. On the other hand we also aim to give

an outlook for future research by discussing the shortcomings of the results in the

thesis as well as describing other problems that might be worth pursuing.

15



Introduction

16



Chapter 2

Adaptive Sensing for

Structured Support

Recovery

This chapter is based on joint work with Rui Castro. The results presented here

can also be found in Castro & T. [44].

2.1 Introduction

In this chapter we consider the problem of recovering the support set of a sparse

signal through noisy coordinate-wise measurements. Under non-adaptive sensing

paradigms, the most natural way to collect data is to measure each coordinate of

the vector with the same accuracy (that is, provided each coordinate of the vector

is equally likely to be in the support set). However, what if we have the additional

flexibility of also choosing the precision and location of each measurement based

on the data collected so far? It is not immediately clear how much can be gained

by these adaptive sensing strategies over the non-adaptive ones.

In addition to the sparsity assumption one might consider further structural

restrictions on the unknown support set, as described in Chapter 1. Can we use

such additional structural knowledge to further increase the performance of support

recovery algorithms? If so, to what extent does such structural knowledge help us?
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We aim to address the questions above in the framework considered by Haupt,

Castro & Nowak in [81] and [40]. In particular we shed light on how adaptive

sensing can capitalize on structural information, by providing general and practical

algorithms endowed with performance guarantees. Furthermore we show that these

algorithms are essentially optimal as we give matching performance lower bounds.

The classes that we consider fall into two categories: (i) all support sets of

cardinality s, which we call s-sets. This is the maximal class for a given level of

sparsity s, thus we refer to this class, or the union of such classes with different

values of s, as the unstructured case. In contrast, other classes we consider are

more stringent as the sets are structurally restricted. For instance, the class of

s-intervals, that consist of sets of the form [i, i+s−1] for i ∈ [n−s+ 1]. This class

of sets is much smaller than the class of s-sets, and therefore we expect the support

recovery task to be significantly easier. We use the umbrella term structured case

for such classes. In particular, we study the following classes:

• s-sets: any subset of [n] of size s;

• s-intervals: sets consisting of s consecutive elements of [n];

• unions of s-intervals: unions of k disjoint s-intervals;

• s-stars: any star of size s in a complete graph1;

• unions of s-stars: unions of k disjoint s-stars;

• s-submatrices: any submatrix of size s of a
√
n×
√
n matrix.

The structured classes above serve as a good starting point for understanding

the effect structure has on the problem of adaptive support recovery, because while

being simple, they are good proxies to structured signals arising in practice. Sup-

ports resembling intervals or unions of those arise for instance in gene-expression

studies where certain genes are known to activate simultaneously (see for instance

Balakrishnan et al. [17]). When the gene-expression of several subjects are stacked

on top of one another to form a signal matrix, certain individuals might have ele-

vated expression levels on the same genes, giving rise to submatrix shaped signal

supports (see Shabalin et al. [127]). Finally, a star shaped pattern in a graph can

be thought of as a simple cartoon for the initial stage of the spreading of a disease

1In the complete graph G = (V,E) whose edges are identified with [n], a set S ⊂ E is a star
iff ∃v ∈ V : v ∈ e ∀e ∈ S, where v ∈ e denotes the incidence relation.
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Table 2.1: Summary of scaling laws for the signal magnitude.

Non-Adaptive Sensing Adaptive Sensing
(necessary) (necessary) (sufficient)

s-sets µ ∼
√

n
m log n µ ∼

√
n
m log s µ ∼

√
n
m log s

unions of k disjoint s-intervals µ ∼
√

n
sm log n

ks µ ∼
√

n
sm log ks µ ∼

√
n
sm log ks

unions of k disjoint s-stars µ ∼
√

n
m log

√
n
ks µ ∼

√
n
sm log ks µ ∼

√
n
sm log2 ks

s-submatrices of an
√
n×
√
n matrix µ ∼

√
n√
sm

log n
s µ ∼

√
n
sm log s µ ∼

√
n
sm log2 s

Scaling laws for the signal magnitude µ (constants omitted) that are

necessary/sufficient for maxS∈C E(Ŝ4S)→ 0 as n→∞, where C denotes the
corresponding class of support sets and m denotes the total amount of precision
available for our measurements in expectation (see (2.2)). All the results assume

sparsity, meaning both s = o(
√
n) and ks = o(

√
n) as n→∞.

or a computer virus on a network, when a single infected node spreads the infection

to some of its neighbors.

We examine the problem of structured support recovery in a coordinate-wise

sensing setting. We are allowed to make measurements of the components of the

signal, each measurement being perturbed by measurement noise. In an adaptive

sensing setting, the decision which component to measure and the precision of the

measurement in any given step can depend on the observations gathered previously.

In a non-adaptive sensing setting, the sampling strategy needs to be fixed before any

observations are made. In either case, there is a constraint on the total precision

we are allowed to use (in expectation), which we denote by m. For instance, m = n

means that, on average, we have unit precision per signal entry.

Table 2.1 summarizes the results obtained in this chapter, stated in terms of

asymptotic behavior when the signal dimension n is large and the support set (of

size s or ks) is small. Note that most results in the chapter are not asymptotic in

nature, furthermore the constant factors in the scaling laws are also accounted for.

Nevertheless the results become easier to state and interpret in asymptotic terms.

A first point to notice is that the necessary condition for non-adaptive sensing

always includes a
√

log n factor, regardless of the class considered. This factor is

essentially due to the extreme value properties of Gaussian random variables. Note,

however, that for adaptive sensing that factor is replaced by a
√

log |S| term (where

|S| is the sparsity of the support). This means that adaptive sensing can better
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mitigate the effect of measurement noise. This is particularly interesting when m =

n (or more generallym is proportional to n) meaning that one can make, on average,

one measurement of precision one per signal entry. In that case the dependence on

the extrinsic dimension n vanishes completely when considering adaptive sensing, as

opposed to non-adaptive sensing where the factor
√

log n is ever-present. However,

the gains of adaptive sensing when structure is present can sometimes be much more

remarkable. For discussion purposes consider the casem = n: for the class of unions

of disjoint s-stars one gets that µ ∼
√

log n is necessary for non-adaptive sensing,

but it suffices that µ ∼
√

(1/s) log2(ks) for adaptive sensing. Therefore, apart from

logarithmic factors, there is also a factor
√

1/s reduction on signal magnitude with

adaptive sensing. This can be rather beneficial, for instance when s ∼ nβ for some

0 < β < 1/2. These gains stem from the strong structural constraints in the class,

which can be exploited by adaptive sensing strategies. However, as the cardinality

of this class is still very large it renders the structural information almost useless

for non-adaptive sensing. A similar situation happens for the s-submatrices class,

although the gains there are less dramatic (apart from logarithmic factors there is

a factor s−1/4 reduction in signal magnitude). Finally, for the class of unions of

s-intervals such structural gains are not present (although the logarithmic factors

are still significantly improved). In summary, adaptive sensing can both remove

the dependence on the extrinsic dimension n due to noise (which is reflected in

the logarithmic terms), and further improve the signal magnitude scaling laws

(compared to non-adaptive sensing) when further structural information is present.

Remark 2.1. In this chapter we consider only Gaussian observation noise. How-

ever, all the results in this chapter can be generalized to non-Gaussian noise models,

which leads to different scaling laws. Nevertheless, the qualitative comparison be-

tween adaptive and non-adaptive sensing remains essentially the same. See e.g.

the works of Malloy & Nowak [106, 105]

Related work: Naturally, the choice of support set class C plays a crucial role.

There is a wide range of available literature exploring the effect structure has

on detecting and estimating signal supports. Most of the work on the topic so

far has considered the non-adaptive sensing setting. In [1] Addario-Berry et al.

consider the problem of testing for the presence of a signal, when the signal is

known to have a structured support. They prove a general lower bound for the
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Bayes risk2 and demonstrate its sharpness for several structured support classes

defined on graphs. Arias-Castro, Candès & Durand also investigate the detection

of structured supports in graphs in [8]. They consider connected subgraphs in a

lattice and show that a type of scan statistic is optimal for the class of supports

under consideration, but its performance depends on a condition that measures the

thickness of the support. In [129, 131] Sharpnack et al. consider the problem of

detection of clusters in a graph, defining the class of supports for the alternative

as a collection of clusters that have a small cut-size, and provide computationally

tractable methods to solve the detection problem.

Taking a different approach, Saligrama, Quian & Chen investigate the detection

problem of various types of supports on several different graphs in [124] and [123].

They show lower bounds for the different setups and a computationally tractable

procedure attaining those bounds. In [15] Arias-Castro & Verzelen derive a sharp

detection boundary for the problem of detecting a community in a random network,

and provide a test attaining the best possible performance.

Moving away from structures on graphs, Butucea & Ingster explores the prob-

lem of detecting a sparse submatrix of a given size in a matrix in [31]. They provide

lower bounds for the detection boundary and a test procedure matching the lower

bound. They also provide a test for the case when the size of the submatrix is

unknown. Arias-Castro, Candès & Plan in [10] consider the framework of linear

models, and investigate the problem of deciding whether the parameter vector of

the model is zero or some sparsely supported vector. Their results show that for

moderate sparsity levels of the parameter vector a global test is optimal, whereas

under stronger sparsity constraints a scan-type test is the optimal one.

In addition to models with added mean, models with added covariance were

also in the focus of much work in the non-adaptive sensing setting. In [6] Arias-

Castro et al. investigate the problem of deciding whether the components of a high-

dimensional vector are correlated or not. In their model the covariance matrix is the

identity under the null, and under the alternative there is a subset of components

with a common positive correlation. The structural assumptions are incorporated

through the subset of correlated components, that is, these components form a

structured subset of the original vector. The authors provide lower bounds for the

2The Bayes risk of a test Ψ is defined by considering the average of the errors probabilities
for different supports in the class as the type II error, and then adding type I and type II error
probabilities together (see Chapter 1). Formally, the Bayes risk is P0(Ψ = 1) + 1

|C|
∑
S∈C PS(Ψ =

0).
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detection problem and investigate the performance of several testing procedures as

well. In [41] this problem was addressed in an adaptive sensing scenario by Castro,

Lugosi & Savalle, and it was shown that adaptive sensing can yield significant gains

when structural assumptions are made. However, it is still not known whether

adaptive sensing can provide gains in the absence of such structural assumptions.

Amini & Wainwright [4] and Berthet & Rigollet [25] consider the detection of

sparse principal components in the spiked covariance model. They provide lower

bounds for the difficulty of the problem while providing a computationally efficient

near-optimal test using convex relaxations.

In contrast to the previously cited work, the main focus of this chapter is the

estimation of signal supports as opposed to detection of the presence of signal, and

the possible gains of adaptive sensing schemes compared to non-adaptive sensing.

Related questions have also been investigated by several authors in the compressive

sensing setting. Since Chapter 3 deals with that setup, overview of the related

literature will be provided there. Considering coordinate-wise observation models

in the adaptive sensing framework, Nitinawarat, Atia & Veeravalli investigates a

multi-hypothesis testing problem in [117], where the decision-maker has the ability

to select an experiment from a finite set of experiments in each measurement step.

The authors show the best attainable asymptotic error exponent for this problem

while providing tests attaining these exponents, extending the previous work of

Chernoff [46].

In [105, 106] Malloy & Nowak discuss the problem of sparse support recovery in

a setting where the decision which coordinates of the signal to sample can be made

adaptively (but not the precision of the measurements). In these works the authors

propose a sequential thresholding method and characterize its sample complexity.

They also show that this sample complexity is asymptotically optimal for sparse

signals.

The setting we consider in this chapter was introduced in [81], where Haupt,

Castro & Nowak provide a simple and efficient adaptive sensing algorithm for

support recovery (without structural assumptions). Castro also provides lower

bounds for this problem in [40], and this work can be viewed as the extension of

those results to structured support recovery.

Organization: This chapter is organized as follows. Section 2.2 describes the

framework that we are considering in detail. In Section 2.3 we introduce a general
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procedure for support set estimation. We analyze the performance of the procedure

in Section 2.4. The performance limitations of any support estimation recovery

procedure is investigated in Section 2.5. We present a small numerical experiment

to corroborate our theoretical findings in Section 2.6. Finally we provide concluding

remarks in Section 2.7.

2.2 Problem Setting

Let x = (x1, . . . , xn) ∈ Rn be a vector of the form

xi =

{
µ if i ∈ S,

0 if i /∈ S,
(2.1)

where µ > 0, and S ⊆ [n]. We refer to the vector x as the signal, and to S as

the signal support or the significant components of the signal. The latter is our

main object of interest, as neither x and S are directly available. We are allowed

to collect multiple noisy measurements of each individual component of x, namely

Yt = xAt + Γ
−1/2
t Wt , t = 1, 2, . . . .

For each measurement we can choose At, the entry of x to be measured, and the

corresponding precision of the measurement Γt > 0. Finally Wt ∼ N(0, 1) are inde-

pendent and identically distributed standard normal random variables. Also for any

given t, Wt is independent of {Aj ,Γj}tj=1. Under the adaptive sensing paradigm At

and Γt are allowed to be functions of the past observations {Yj , Aj ,Γj}t−1
j=1. This

model is only interesting if one includes some constraint on the total amount of pre-

cision available. Let PS denote the joint probability distribution of {Yt, At,Γt}t≥1

and ES denote the expectation with respect to PS . We require that

ES

(∑
t

Γt

)
≤ m , (2.2)

where m is our total precision budget, specified in advance. This constraint arises

naturally in many practical settings, and can be viewed as a total time constraint

in sensing modalities where precision is directly proportional to the amount of time

necessary to collect a measurement (see for instance Castro [39]). Finally, using the

collected data we construct an estimator Ŝ ≡ Ŝ({Yt, At,Γt}t≥1) that is desirably
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as close to S as possible.

Note that in our setup it is possible to make infinitely many measurements

provided that the budget condition in (2.2) is satisfied. Although this might seem

strange from a practical point of view it does enable a clear and insightful expla-

nation of the tradeoff between adaptive and non-adaptive sensing, by decoupling

the issue of sample complexity and sensing budget in a natural way. Furthermore

we show that, despite this flexibility, one can devise optimal procedures that also

have good sample complexity properties (see Remark 2.3).

At a first glance it might seem that the model (2.1) is overly restrictive, as

all the significant components of x have exactly the same value µ. However, the

results in this chapter can be generalized to sparse signals with non-zero significant

components of arbitrary signs and magnitudes, provided the minimum magnitude

of these is large enough. For the sake of clarity and simplicity we do not consider

this extension here, but refer the reader to Castro [40] for details on how this can

be done.

Note that it is also possible to consider algorithms satisfying an exact energy

constraint as opposed to the expected energy constraint in (2.2). This requires

an extension of the arguments in the body of the paper, but yields essentially the

same results. For the sake of completeness we provide details in Appendix 2.A.

In this work the primary focus is on adaptive sensing algorithms. However, for

comparison purposes, we will also consider non-adaptive sensing inference, which

means that {At,Γt}t≥1 must be chosen before any observations are collected. In

other words, non-adaptive sensing requires {At,Γt}t≥1 to be independent from

{Yt}t≥1.

2.2.1 Inference Goals

Since our goal is to characterize the fundamental limitations of adaptive sensing,

we will assume that µ is known, in addition to n and m. Therefore, the only

unknown quantity is the signal support S. Our aim is to construct adaptive sensing

methodologies that are able to estimate S. This is only possible when the signal

magnitude µ is large enough. Furthermore, it is reasonable and desirable to make

some concrete assumptions about S, namely that the signal has a sparse support

(meaning that the cardinality of S is small) and also extra structural assumptions.

All these can be formalized by assuming that S belongs to some class C of subsets

of [n]. Note that we also assume the class C is known, which in particular means

24



that we assume knowledge of the size of the support.

There are various ways one can define reliable estimation of a support set (see

Castro [39]). In this work we consider the worst-case Hamming-distance as an error

metric of our estimator. Let Ŝ ≡ Ŝ({Yt, At,Γt}t≥1) be a specific estimator. We

wish to ensure that for a given ε > 0,

max
S∈C

ES(|Ŝ4S|) ≤ ε , (2.3)

where Ŝ4S is the symmetric set difference of Ŝ and S, and | · | denotes the cardi-

nality of a set. In words, we require the expected number of errors to be less than

ε, regardless of the true unknown support set S.

One can also consider a slightly less stringent metric, namely the probability of

falsely identifying the support set, that is PS(Ŝ 6= S). Note that we have

PS(Ŝ 6= S) ≤ ES(|Ŝ4S|) ≤ 2|S| PS(Ŝ 6= S) , (2.4)

where the second inequality holds provided |Ŝ| = |S| (this property holds for all

the estimators that we that consider). According to this we are able to control the

expected number of errors of a procedure by controlling the probability of error.

This is exactly what we do, so the analysis of the procedure we propose will be

applicable to both error metrics. In addition, we also derive lower bounds in terms

of expected Hamming-distance. Whenever we can, we also provide lower bound in

terms of probability of error.

2.3 A General Adaptive Sensing Estimation Pro-

cedure

At the core of the problem setting we have described is the issue of noise and mea-

surement uncertainty, which is embodied by the precision budget in (2.2). Without

this restriction the inference task is much easier, in fact it is merely combinatorial

in nature, as one can make noiseless (infinite precision) measurements. Neverthe-

less, a sharp distinction between adaptive and non-adaptive sensing is still present

for noiseless procedures, meaning that one can devise adaptive sensing procedures

that outperform non-adaptive ones in this combinatorial setup. This gives rise to a

simple, yet very powerful idea: take the noiseless adaptive sensing procedures and

25



Adaptive Sensing for Structured Support Recovery

transform them to be robust to noise. Our general approach hinges precisely on

this “robustification” of noiseless procedures (which we refer to as noiseless-case

algorithms) as follows. When a noiseless case algorithm observes an entry of x,

we take multiple noisy measurements of that entry and perform a sequential hy-

pothesis test to decide whether the entry in question is zero or not. Then we use

the result of the test as a surrogate for the noiseless observation. If we ensure that

these tests have small enough probabilities of error, we can recover the support

set with high probability. By carefully controlling these error probabilities we can

also control the expected Hamming-distance of the devised estimator. To better

illustrate the ideas we will make use of two running scenarios (corresponding to

two different classes C): (i) the class of s-sets, that is when the support set S is

an arbitrary subset of [n] with cardinality s; the class of s-intervals, that is all sets

consisting of s consecutive elements of [n].

2.3.1 Noiseless-case algorithms

An algorithm based on coordinate-wise sampling for the noiseless case can be de-

scribed as follows. In each step j ∈ N, the algorithm either collects an observation

of a coordinate of x, or stops and returns the estimate Ŝ for the support set S ∈ C.
The observation collected in step j is denoted by Ỹj = 1{xQj 6= 0}, where Qj ∈ [n]

determines the coordinate of x that we sample in step j, and 1{·} denotes the

usual indicator function. We call Qj the query in step j, and it plays a role anal-

ogous to that of At in the problem description. In case the component indexed

by Qj is a signal component the value of Ỹj is 1, otherwise it is 0. Note that if

1S(·) : [n] → {0, 1} denotes the indicator function of the support set S, the ob-

servations can be written as Ỹj = 1S(Qj). After taking a number of observations

we may decide to stop and return the estimator of the support set. T denotes

the stopping time for the procedure and Ŝ denotes the estimate of the support set

S ∈ C.
To fully describe such an algorithm, one needs to give the queries {Qj}j≥1,

a stopping time T and a rule for constructing Ŝ. The query Qj is a measurable

function of {Qi, Ỹi}j−1
i=1 mapping to [n]. It determines the coordinate of x that

we wish to sample in step j. We also consider randomized procedures, so Qj

need not be deterministic. Note that because the observations are noiseless, it is

unnecessary to sample any coordinate of x more than once, and therefore we only

consider procedures satisfying this property.
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The stopping time T is the possibly random time at which we stop sampling

and return an estimate of the support set. Thus T is an N-valued measurable

function of the filtration generated by {Qj , Ỹj}j≥1. Bearing in mind that later we

wish to transform our noiseless-case algorithm to be robust to noise, we consider

the following two possible definitions of T . The first definition is simply

T = inf
{
j : there is at most one S′ ∈ C : Ỹi = 1S′(Qi) ∀i ∈ [j]

}
. (2.5)

This means that we consider procedures that stop sampling when there is a unique

set in C that agrees with all the observations, or if there is no such set. Note that

T is well defined, and since it is unnecessary to sample any coordinate of x more

than once in the noiseless case, we have T ≤ n. Furthermore in the noiseless case

the procedure stops when there is exactly one set in C in line with our observations

(since we assume S ∈ C). Recall however that we will later modify the procedure to

be able to handle noise and thus there will be a chance of making errors. Because

of this, it is possible that there will be no set in C in agreement with all our

observations. For this reason we enforce the procedure to stop when this happens

to ensure T remains well-defined after the modification.

The second possibility is much more straightforward: we can simply take T = n.

This will be useful for the unstructured example of s-sets, since it is easy to see that

no matter what sampling strategy {Qj}j≥1 we use, in the worst case we have to

sample every coordinate of x. Hence for this class we might as well stick to simply

defining T = n, which will make the transition of the noiseless-case algorithm to

the noisy case much more fluent.

The estimator Ŝ is then defined in the noiseless case as the unique set S′ ∈ C
that agrees with our observations (and clearly we have Ŝ = S). However, remem-

bering that we wish to transform our procedures to be able to handle noise, we

need to extend this definition to ensure that Ŝ also remains well-defined after the

aforementioned modification. First, consider the following definition, which we will

use in general:

Ŝ =

{
S′ if ∃! S′ ∈ C : Ỹj = 1S′(Qj) ∀j ∈ [T ],

∅ otherwise.
(2.6)

This definition is in line with the first definition of the stopping time T . How-

ever, with a slight abuse of notation, we can also define Ŝ = {Qj : Ỹj = 1}. That
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is, Ŝ can also be the collection of those coordinates for which the result of the

query at that coordinate is 1. Note that now Ŝ need not even be in C, and this

definition only makes sense when we use the choice T = n for our stopping time.

Indeed, this will be the case, and we will only use this definition for the class of

s-sets and merely to make the transition from the noiseless case to the noisy case

more seamless.

To illustrate what such procedures may look like, consider the examples of s-sets

and s-intervals. In the first case consider a deterministic procedure, that samples

every coordinate one after the other. That is let Qj = j, j ∈ [T ]. The procedure

will stop after sampling every component of x, that is T = n. Once sampling has

stopped, the estimate of the support set is the collection of components for which

the result of the query is 1, formally Ŝ = {Qj : Ỹj = 1} = {j : Ỹj = 1}. Next,

consider the class of s-intervals. Consider a randomized procedure consisting of

two phases. In the first phase sample random coordinates of the vector x until a

non-zero coordinate is found. In the second phase we search for the left endpoint

of the interval by sampling coordinates to the left of the previously found signal

component one after the other. The interval S is exactly determined either when

a 0 is found in the second phase, or when all the s signal components are found.

Formally, denoting by Unif the discrete uniform distribution, the procedure can be

written as Qj ∼ Unif
(
[n] \ {Qi}i∈[j−1]

)
, ∀j ≤ T ′, where

T ′ = inf
{
j : Ỹj = 1 and Ỹi = 0 ∀i ∈ [j − 1]

}
,

and Qj = Qj−1 − 1, ∀j = [T ′ + 1, T ]. The estimator Ŝ is defined as before as

the unique set compatible with the observations. Note that no claim is made

about whether this procedure is optimal in any sense. In particular it is possible

to construct a procedure that takes less steps in expectation than this one, for

instance by performing a binary search in the second phase.

2.3.2 From the noiseless to the noisy case

Assume now that one has a noiseless-case procedure. The next step is to translate

this procedure to the noisy case, to handle the situation when the observations are

contaminated by noise as in (2.1), and there is a total precision budget as defined

in (2.2). The main idea is to replace each query Qj by multiple observations of

the entry of x indexed by Qj , and perform a hypothesis test to assess whether
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the component corresponding to that query is zero or not. Specifically, we will set

type I and type II error probabilities αj and βj for each Qj , perform a Sequential

Likelihood Ratio Test (SLRT3) with these error probabilities, and use its result as a

surrogate for Ỹj . How to properly choose the error probabilities αj and βj depends

on the specific problem at hand, but for now assume these are simply given to us.

The procedures we propose have the nice property that all observations are

made with the same precision Γ, namely Γt = Γ > 0 ∀t ∈ N. This is not at all

restrictive, provided Γ is relatively small, as justified by Proposition 2.1 below. For

the first query Q1 set the target type I and type II error probabilities to be α1 and

β1 respectively. The SLRT collects observations

Yt = xQ1
+ Γ−1/2Wt , t = 1, . . . , N1 ,

where N1 is an appropriate stopping time defined as follows. Let f0(·) and f1(·)
denote the density of the observations when Q1 /∈ S and Q1 ∈ S respectively.

Define the log-likelihood ratio

z̄k =

k∑
t=1

log
f1(Yt)

f0(Yt)
. (2.7)

The stopping time N1 is defined as

N1 = inf {k ∈ N : z̄k /∈ (l1, u1)} ,

where l1 < 0 < u1 are chosen so that both P (ZN1
≥ u1|Q1 /∈ S) ≤ α1 and

P (ZN1
≤ l1|Q1 ∈ S) ≤ β1

4. Once N1 observations have been collected a deci-

sion is made regarding whether or not Q1 belongs to the support set. Namely we

define the test function Ψ1 as

Ψ1 =

{
0 if z̄N1 ≤ l1,
1 if z̄N1 ≥ u1.

3In the literature this sequential procedure is also referred to as the Sequential Probability
Ratio Test (SPRT) (see e.g., Wald [141]). We feel, however, that the use of the term “likelihood
ratio” is perhaps more appropriate, as in most settings one is computing a ratio between densities
and not probabilities.

4Ideally we would like to choose the stopping boundaries in a way that the true error proba-
bilities are equal to the nominal ones. However, as we will see later, it is more simple to choose
stopping boundaries that satisfy these inequalities.
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We use the value of Ψ1 as a surrogate for Ỹ1 in the noiseless-case procedure. This

then determines the next query Q2. Again we perform an SLRT by taking obser-

vations of the coordinate xQ2
. We set the type I and type II error probabilities to

be α2 and β2, determine upper and lower stopping boundaries l2, u2, perform the

test resulting in Ψ2 which we use as a surrogate for Ỹ2, and so on. We continue

in this manner until the condition for the stopping time T of the noiseless case

procedure is met, and return the corresponding estimate Ŝ. The whole procedure

is summarized in Algorithm 1.

Algorithm 1: General Adaptive Sensing Support Estimation

Input:
• A noiseless procedure characterized by: queries {Qj}j≥1, stopping time

T , and estimator Ŝ
• Precision parameter Γ > 0
• Type I and II error probabilities αj and βj corresponding to query Qj

for j ← 1 to · · · do
Perform an SLRT for entry xQj with error probabilities αj , βj resulting
in Ψj

Set Ỹj = Ψj

If T = j stop and return Ŝ
end

Remark 2.2. Note that for a fixed time j ≥ 1 the value of T need not be com-

putable. Nonetheless, the logical value of the expression T = j can be evaluated for

every j ≥ 1 as T is a stopping time.

It is important to notice that the procedure is well defined. In particular, each

of the SLRTs terminate with probability one, as shown in Proposition 2.1 below.

Furthermore, by the definition of T (see (2.5)) the entire procedure is guaranteed to

terminate with probability one, even if some of the SLRTs result in errors (meaning

Ψj 6= 1S(Qj)). Finally, the definition (2.6) ensures Ŝ is also well defined in the

event of errors.

2.4 Performance Upper Bounds

In this section we use the procedure outlined in the previous section to characterize

attainable inference limits in various settings. The SLRT is at the heart of our
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procedure, and therefore we begin by deriving some important properties these

satisfy. We then move on to the analysis of the full procedure.

2.4.1 Analysis of the SLRTs

Most tools used in our analysis stem from the seminal work by Wald [141]. However,

some of these results have to be specialized for our setting. Consider a SLRT that

we use to decide between the two simple hypotheses H0 and H1. We collect inde-

pendent and identically distributed measurements y1, y2, . . ., where yi ∼ N(0,Γ−1)

under H0 and yi ∼ N(µ,Γ−1) under H1. We set α and β as target type I and

type II error probabilities respectively. These determine upper and lower stopping

boundaries which we denote by l = log β
1−α and u = log 1−β

α . Note that for the

latter to make sense we need α, β < 1/2. We will in fact assume this for all error

probabilities throughout the chapter. Recall the definition of the log-likelihood

ratio in (2.7), and define the stopping time NΓ as

NΓ = inf {k ∈ N : z̄k /∈ (l, u)} ,

where f0 and f1 are the densities of y1 under H0 and H1 respectively, and the

subscript Γ is meant to emphasize the dependence in Γ. Finally define the test Ψ

as

Ψ =

{
0 if z̄NΓ

≤ l,
1 if z̄NΓ

≥ u.

We know from the theory of SLRTs that P (NΓ <∞) = 1 (see Wald [141]), so

the data collection terminates almost surely. We also know that

E0(NΓ) ≥ 1

−D(P0‖P1)

(
(1− α) log

β

1− α
+ α log

1− β
α

)
,

and

E1(NΓ) ≥ 1

D(P1‖P0)

(
(1− β) log

1− β
α

+ β log
β

1− α

)
,

where P0 and P1 are the distributions of y1 under H0 and H1 respectively, E0

and E1 are the expectations with respect to P0 and P1 respectively and D(·‖·) is

the Kullback-Leibler divergence of two distributions5. Since P0 and P1 are normal

5Let F and G be two distributions with densities f and g w.r.t. a common dominating
measure ν. The Kullback-Leibler divergence between F and G is D(F‖G) =

∫
f log f

g
dν when F

is absolutely continuous w.r.t. G, and ∞ otherwise.
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distributions we have D(P1‖P0) = D(P0‖P1) = Γµ2/2 and therefore

ΓE0(NΓ) ≥ 2

µ2

(
(1− α) log

1− α
β

+ α log
α

1− β

)
(2.8)

and

ΓE1(NΓ) ≥ 2

µ2

(
(1− β) log

1− β
α

+ β log
β

1− α

)
. (2.9)

The derivation of these lower bounds goes roughly as follows. The cumulative log-

likelihood {z̄k}k≥1 is a discrete-time stochastic process. The process terminates

when it leaves the interval (l, u). By assuming that the process hits the boundaries

of this interval exactly we can get the lower bounds above. In reality the log-

likelihood ratio will never be exactly equal to l and u. However, when the precision

Γ is small, the increments to the stochastic process z̄k are also small, and so this

process will nearly hit the exact boundaries of the interval (l, u). This in turn means

that the above lower bounds should be attainable when Γ approaches zero. This is

indeed the case, as stated in the following result, which is proved in Appendix 2.B:

Proposition 2.1. Let αΓ = P0(Ψ = 1) and βΓ = P1(Ψ = 0) be, respectively, the

type I and II error probabilities of the SLRT. Then

αΓ → α and βΓ → β

as Γ→ 0. Furthermore

ΓE0(NΓ)→ 2

µ2

(
(1− α) log

1− α
β

+ α log
α

1− β

)
and

ΓE1(NΓ)→ 2

µ2

(
(1− β) log

1− β
α

+ β log
β

1− α

)
,

as Γ→ 0.

Remark 2.3. Proposition 2.1 considers the setting when the precision of each mea-

surement is made arbitrarily small. This is a suitable assumption to make from a

theoretical standpoint and in fact makes the presentation of the results that follow

insightful and clear. However, from a practical standpoint this might not be satis-

factory. To this end, we present a version of the proposition above in Appendix 2.C

(Proposition 2.14) where the precision Γ > 0 is fixed, and follows from slightly more

detailed writing of the proof of Proposition 2.1. When the precision is fixed, the
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condition on the precision budget (2.2) becomes a condition on the sample com-

plexity, hence the results of Proposition 2.14 are stated in terms of E0 (NΓ) and

E1 (NΓ).

Proposition 2.1 shows that the lower bounds on the expected amount of preci-

sion used by the SLRT with error probabilities α, β can be achieved in the limit

when Γ→ 0. Thus when analyzing the performance of our procedures in terms of

expected precision used, we can use these lower bounds to calculate the expected

precision used by the SLRTs. Note that we are interested in the case when α and

β are small. Thus, to make the discussion less cumbersome we note that when α

and β are both at most 1/2 we have

2

µ2

(
(1− α) log

1− α
β

+ α log
α

1− β

)
<

2

µ2
log

1

β
(2.10)

and
2

µ2

(
(1− β) log

1− β
α

+ β log
β

1− α

)
<

2

µ2
log

1

α
, (2.11)

since the last terms are negative, and the first terms can be upper bounded trivially

by 1− α ≤ 1 and 1− β ≤ 1 respectively. When α and β are small, the inequalities

above are essentially tight. This means that when calculating the expected preci-

sion used by a SLRT, we do not lose much by using the expressions on right hand

sides above. By Proposition 2.1, for fixed α, β, we can choose a small enough Γ

such that the quantities on the right hand side above upper bound the expected

precision used by the SLRT.

2.4.2 General Analysis of Algorithm 1

Now we turn our attention to the analysis of the general procedure of Section 2.3.

Recall that a procedure for the noiseless case is characterized by queries {Qj}j≥1, a

stopping time T that indicates the time when we stop sampling, and the estimator

Ŝ. Unless stated otherwise we consider the definition of the two last quantities

given by (2.5) and (2.6). The queries Qj will be defined separately for each special

case.

Given a certain noiseless-case procedure we translate it to the noisy case by

replacing the outcome of each noiseless query Qj by a surrogate SLRT Ψj . This

requires the specification of type I and type II error probabilities αj and βj for

each of the tests {Ψj}j≥1. Naturally, αj and βj can be, in general, functions of
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{Qi,Ψi}j−1
i=1 , and we wish to choose them to ensure that the final estimator Ŝ

satisfies ES(|Ŝ4S|) ≤ ε, ∀S ∈ C on one hand, and that the total precision budget

(2.2) is not exceeded. Clearly, to meet the former goal, αj and βj need to be small

enough, while if these are too small the latter goal might not be attained. Therefore

we need to make a compromise in setting these error probabilities. How to optimally

choose {αj , βj}j≥1 depends on the specific procedure under consideration (and the

class of possible support sets), and it is difficult to get a general answer. However,

we will see that in many interesting cases simple and intuitive choices for αj , βj

yield near-optimal results.

We illustrate the analysis of the procedure by first considering the unstructured

case of all s-sets. In the unstructured case the near optimal procedure is very

simple, and our choice of αj , βj does not depend on j, which greatly facilitates the

analysis. Formally the class of s-sets is defined as

C = {S ⊆ [n] : |S| = s} .

A simple procedure for the noiseless case is defined by taking Qj = j, j ∈ T , and

T = n. Then we use the definition Ŝ = {Qj : Ỹj = 1} which translates to the

noisy case (also with our specific choice of Qj) as Ŝ = {j : Ψj = 1}. In words, we

simply estimate the support as the collection of components whose SLRT accepts

the alternative. Because of the sparsity of the signal we expect the majority of the

coordinates that we sample to be zero, and we know that there are exactly s that

are non-zero. So it is sensible to take αj ≈ ε/n and βj ≈ ε/s. We will take the

following concrete choice αj = ε/2n and βj = ε/2s, j ∈ n.

In the worst case, for any S ∈ C we query all the entries of x. Using this crude

upper bound we get

ES(|Ŝ4S|) =

n∑
j=1

PS(Ψj 6= 1S(Qj)) ≤
∑
j /∈S

αj +
∑
j∈S

βj ≤ n
ε

2n
+ s

ε

2s
≤ ε .

Since the inequality above holds for all S ∈ C we conclude that the expected number

of errors for any S ∈ C is at most ε. Furthermore the total amount of precision
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used in expectation by this procedure is

ES

(∑
t

Γt

)
≤
∑
j /∈S

2

µ2
log

2s

ε
+
∑
j∈S

2

µ2
log

2n

ε

≤ 2n

µ2
log

2s

ε
+

2s

µ2
log

2n

ε
,

where we used (2.10) and (2.11), and took Γ small enough. Note that the total

amount of precision increases when the signal magnitude µ decreases. Combining

this result with the bound on the total precision available (2.2) we can characterize

the conditions on µ for which this procedure fits all the requirements outlined in

Section 2.2.

Proposition 2.2. Let C denote the class of all s-sets. Whenever

µ ≥
√

2n

m
log

2s

ε
+

2s

m
log

2n

ε
, (2.12)

the estimator Ŝ resulting from the procedure above satisfies max
S∈C

ES(|Ŝ4S|) ≤ ε,

and the precision budget of (2.2).

Since s ≤ n the first term on the right hand side of (2.12) is always as large as

the second term. Thus the scaling of µ as a function of n,m, s and ε is determined

by the first term. Therefore we have the following corollary.

Corollary 2.1 (s-sets). Consider the setting of Proposition 2.2, and let ωn →∞
be arbitrary (as n→∞). Whenever

µ ≥
√

2n

m
(log s+ ωn) ,

the above procedure produces an estimator Ŝ satisfying lim
n→∞

max
S∈C

ES(|Ŝ4S|) = 0,

and that satisfies the precision budget of (2.2).

We know from Castro [40] that, apart from constants, this is the best perfor-

mance we can hope for when considering the expected Hamming-distance of the

estimator (when s � n). The procedure presented by Malloy & Nowak in [109]

essentially has the same performance as this one, and is also a coordinate-wise

method that it is based on sequential thresholding. However, it is parameter adap-

tive and agnostic about s for a wide range of values.
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We now turn our attention to a number of special cases, where the sets belonging

to the class C have some sort of structure. As before, the starting point is some

procedure for the noiseless case, specified by {Qj}j≥1. We will make no claim

about whether the procedure we define for the noiseless case is optimal in any

sense, although in most cases these do give rise to optimal scaling limits.

All the noiseless procedures that we consider consist of two phases. They begin

with a search phase, where one identifies the general spatial location of the support

set. In this phase we sample components of x according to some searching method,

until we find a certain number l1 ≤ |S| of signal entries. Then we switch to

a refinement phase, where we exploit the structure of the support set to find a

number of entries of S. In some cases the proposed procedures alternate between

these two phases. Consider the following procedure for the class of s-intervals. The

search phase simply scans the components until an element of S is found, and the

refinement phase explores the coordinates in the neighborhood of the element of S

found earlier.

The exact form of queries {Qj}j≥1 depends on the specific class under consid-

eration. Likewise, the number of search phases K and how many components to

find in each search phase η1, . . . , ηK depends on the class of possible support sets.

In the previous example for the s-intervals K = 1 and η1 = 1. In what follows we

denote the total number of signal entries we wish to find throughout the search

phases as η =
∑K
k=1 ηk.

To translate the noiseless-case procedures to the noisy case we must specify

αj , βj for each test Ψj , j ∈ [T ] to ensure that the overall probability of error of the

procedure is small6. Afterwards we turn our attention to the expected precision

used by the procedure. Combining the latter bound with the total amount of

precision available as in (2.2) we get a condition on the minimal signal strength µ

that is sufficient to ensure the support is recovered accurately. For the control of

the overall error probability we can take advantage of the two phases. Suppose we

want to keep the probability of error to be less than δ. First, note that since the

noiseless case procedure does not sample any coordinate of x more than once, we

perform at most n tests, thus the conservative choice αj ≈ δ/n, j ∈ [T ] suffices.

Now note that throughout the search phases we plan to encounter no more than

η non-zero coordinates of x, so it is reasonable to set βj ≈ δ/η in such phases.

Finally, since there are at most |S| significant components we can observe, in the

6As noted in Section 2.2.1, it is enough to control the probability of error of a procedure, as
then we can also control the expected Hamming-distance using (2.4)

36



refinement phase we take βj ≈ δ/|S|.

It is crucial to note that for a given j, αj , βj are in general functions of

{Qi,Ψi}j−1
i=1 . This means that when defining the error probabilities we can only

use the results of the tests carried out so far, but not the true identity of the

entries that we sampled. It is important to keep this in mind in the analysis of

the procedure. Also, note that the choices above are likely not optimal. For some

classes to be considered later on, one can immediately improve the αj , βj of the

next proposition (e.g. for the s-intervals we will perform at most n/s tests in the

first phase so setting αj = sδ/n for the search phase suffices). Nevertheless, these

choices for the probabilities of type I and II errors are simple and general, and yield

essentially optimal results.

Proposition 2.3. Suppose the noiseless case procedure is of the form described

above, and let αj = δ/4n, j ∈ [T ], βj = δ/2η for the search phase and βj = δ/4|S|
for the refinement phases. Then

PS(Ŝ 6= S) ≤ δ, ∀S ∈ C .

Proof. Consider a noiseless case procedure given by {Qj}j≥1, and any support set

S ∈ C. Let Ej denote the event that we make an error in the test Ψj , meaning

Ψj 6= 1S(Qj). Let Ej denote the complement of Ej . In what follows we compute

the probability that no errors are made.

The support set will be correctly identified if all tests are correct. Consequently,

PS(Ŝ 6= S) = 1− PS(Ŝ = S)

≤ 1− PS

 T⋂
j=1

Ej


= 1− PS

(
E1
)
PS
(
E2
∣∣ E1) · · ·PS

ET
∣∣∣∣∣∣
T−1⋂
j=1

Ej

 .

The above expression upper bounds the probability of error, by considering the

case where all the test results coincide with the noiseless case. Since there are

at most n zero components being measured in the entire noiseless-case procedure,

η significant components being measured in the search phase, and at most |S|
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significant components being measured in the refinement phase we conclude that

PS(Ŝ 6= S) ≤ 1−
(

1− δ

4n

)n(
1− δ

2η

)η (
1− δ

4|S|

)|S|
≤ δ .

The last inequality follows from a simple Taylor expansion of

g(δ) = 1− (1− δ/4n)n(1− δ/2η)η(1− δ/4|S|)|S|

around δ = 0, since g(0) = 0, g′(0) = 1/4 + 1/2 + 1/4 = 1 and g′′(δ) ≤ 0 for every

δ ∈ [0, 1].

Proposition 2.3 ensures that the noisy case procedure has a probability of error

that is sufficiently small. The next step is to evaluate the total expected precision

used (considering that the precision Γ of each measurement is arbitrarily small).

This quantity depends crucially on the noiseless case procedure we use for the spe-

cific class under consideration. For that reason this calculation is done separately

for each case considered.

s-intervals

Consider the class of intervals of length s. Formally,

C = {S ⊆ [n] : S = [i, i+ s− 1], i ∈ [n− s+ 1]} 7.

For sake of simplicity assume n/s is an integer. This is merely to ease notation

in the calculations that follow. The first step is to define a procedure for the

noiseless case. Our choice consists of one search and one refinement phase. In the

search phase we sample coordinates 1, s + 1, 2s + 1, . . . , until we find a non-zero

coordinate. This gives us the approximate position of the interval. Then we move

to the refinement phase to find the left endpoint of the interval by sequentially

sampling coordinates of x to the left of the previously found non-zero coordinate8.

7Note that, with a slight abuse of notation, we will use the same symbol C for different
structured classes throughout this work. However, the class we are referring to will always be
clear from the context.

8There are more efficient ways of finding the left endpoint, for instance using binary search.
However, we stick to the simple method outlined above, as it is easier to formally describe and
does not result in a significant loss of performance, since we are considering the sparse setting
when s� n.
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Note that in the second phase we query at most s− 1 coordinates.

Formally Qj = (j − 1)s + 1 for j ∈ [T ′], where T ′ = inf{j : Ỹj = 1}, and

Qj = Qj−1 − 1 for j = [T ′ + 1, T ], where T is defined in general in (2.5). The

estimator Ŝ is defined in (2.6) as usual. Note that this is an instance of the

general procedure described in the setting of Proposition 2.3 with K = 1 and

η1 = η = 1. Taking the corresponding choices for {αj , βj}j≥1 we ensure that

PS(Ŝ 6= S) ≤ δ, ∀S ∈ C. As for the expected precision we can make use of

Proposition 2.1 and the choices of αj and βj to conclude that

ES

(∑
t

Γt

)
≤ ES

(
T ′−1∑
j=1

2

µ2
log

1

βj
+

2

µ2
log

1

min{αj , βj}︸ ︷︷ ︸
search

+

T∑
j=T ′+1

2

µ2
log

1

min{αj , βj}︸ ︷︷ ︸
refinement

)

≤ 2

µ2

(
n

s
log

2

δ
+ s log

4n

δ

)
.

Combining this with the bound on the total precision available (2.2) we get the

following result:

Proposition 2.4. Let C denote the class of s-intervals, and suppose

µ ≥
√

2n

sm
log

2

δ
+

2s

m
log

4n

δ
.

Then the procedure above results in an estimator Ŝ satisfying max
S∈C

PS(Ŝ 6= S) ≤ δ
and the precision budget (2.2).

In addition we can also control the expected Hamming-distance ES(|Ŝ4S|) by

recalling (2.4). To guarantee that ES(|Ŝ4S|) ≤ ε we simply have to be slightly

more conservative, and require the probability of error δ to be at most ε/s. An

analogous result to that of Proposition 2.4 follows immediately. In case signals are

sufficiently sparse, meaning s� n, the first term inside the square root dominates

the bound. Therefore we have the following result.

Corollary 2.2 (s-intervals). Consider the setting of Proposition 2.4. Suppose that

s = o
(√

n/ log n
)

as n→∞, and let ωn →∞ be arbitrary.
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(i) When

µ ≥ ωn
√

n

sm
,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

PS(Ŝ 6= S) = 0, and

that satisfies (2.2).

(ii) When

µ ≥
√

2n

sm
(log s+ ωn) ,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

ES(|Ŝ4S|) = 0, and

that satisfies (2.2).

Unions of s-intervals

Now we consider the class whose elements are the union of k disjoint s-intervals,

where s-intervals were defined in the previous subsection. Formally let C′ be the

class of s-intervals as defined previously. Then

C =
{
S ⊆ [n] : S =

k⋃
i=1

Si, Si ∈ C′ ∀i, Si ∩ Sj = ∅ ∀i 6= j
}
.

Again, assume n/s is an integer for simplicity. Note that the cardinality of the

support sets belonging to this class is ks. In case s = 1 and k = s this class is the

same as the class of s-sets considered in Proposition 2.2. When we choose k = 1

this is the class of s-intervals described in Section 2.4.2. In that sense this class

can be viewed as a bridge between the two previous classes.

The procedure for the noiseless case will again consist of one search and one

refinement phase. In the search phase we sample coordinates 1, s + 1, 2s + 1, . . .

until we find k non-zero coordinates. Then in the refinement phase, we sample

coordinates to the left of the previously found non-zero coordinates to find the left

endpoints of all k intervals. Note that we make at most k(s − 1) queries in the

second phase. This procedure is an instance of that described in the setting of

Proposition 2.3 with K = 1 and η1 = η = k. Taking the corresponding choices for

αj , βj ensures PS(Ŝ 6= S) ≤ δ, ∀S ∈ C. As for the expected precision used we can
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write

ES

(∑
t

Γt

)
≤ ES

 T ′∑
j=1

2

µ2
log

1

βj
+ |S| 2

µ2
log

1

min{αj , βj}


≤ 2

µ2

(
n

s
log

2k

δ
+ ks log

4n

δ

)
.

Combining this with the bound on the total precision available (2.2) we arrive

to the following result:

Proposition 2.5. Let C denote the class of unions of s-intervals as defined above,

and suppose

µ ≥
√

2n

sm
log

2k

δ
+

2ks

m
log

4n

δ
.

The procedure above results in an estimator Ŝ satisfying both max
S∈C

PS(Ŝ 6= S) ≤ δ

and the precision budget (2.2).

In case of sparse signals, that is, when both s and k are small, the first term on

the right side dominates this bound. More precisely we have the following result.

Corollary 2.3 (Unions of s-intervals). Consider the setting of Proposition 2.5.

Assume k ≥ 2 and s ≥ 1 such that s = o
(√

n log k
k logn

)
as n → ∞. Let ωn → ∞ be

arbitrary.

(i) When

µ ≥
√

2n

sm
(log k + ωn) ,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

PS(Ŝ 6= S) = 0, and

that satisfies (2.2).

(ii) When

µ ≥
√

2n

sm
(log ks+ ωn) ,

then the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

ES(|Ŝ4S|) = 0,

and that satisfies (2.2).

s-stars

Consider a setting when the coordinates of x correspond to edges of a complete

undirected graph G = (V,E) with p vertices. We call a support set S an s-star if

41



Adaptive Sensing for Structured Support Recovery

the edges in G corresponding to S form a star in G (see Figure 1 in Addario-Berry

et al. [1]). Formally, let ei ∈ E denote the edge of G corresponding to coordinate

i of x for all i ∈ [n]. The class of s-stars is defined as

C =

{
S ⊆ [n] :

⋂
i∈S

ei = v ∈ V, |S| = s

}
,

where ei∩ej is the set of common vertices of edges ei, ej ∈ E. Unlike what was done

for the previous classes we use a randomized procedure for the noiseless case. Like

was done for s-intervals the procedure consists of one search and one refinement

phase. In the search phase we randomly search the coordinates of x until we find a

non-zero coordinate. In the refinement phase we sample the coordinates of x that

correspond to edges that share a vertex with the non-zero coordinate found in the

search phase.

Define Qj ∼ Unif
(
[n] \ {Qi}i∈[j−1]

)
for j ∈ [T ′] with T ′ = inf{j : Ỹj = 1}, and

Qj ∼ Unif
(
X̃ \{Qi}i∈[j−1]

)
for j ∈ [T ′+ 1, T ], where X̃ =

{
i ∈ [n] : ei∩ eT ′ 6= ∅

}
.

The stopping time T and estimator Ŝ are defined as usual in (2.5) and (2.6).

Note that this is an instance of the general procedure described in the setting of

Proposition 2.3 with K = 1 and η1 = 1.

The expected amount of precision used is now a bit more tedious to calculate

due to the randomness in the search phase, which in the noisy case is prone to

errors. For this reason we slightly modify the above procedure to greatly simplify

the analysis. The modification is that in the search phase we only take at most

J queries. Therefore, when J is small one might end the search phase without

finding a star. However, we choose J large enough such that the probability of not

querying a signal component is small. If we adjust the error probabilities αj , βj

accordingly, we can still ensure that the probability of error of the procedure is

small. More precisely, we choose J such that PS(∀j ∈ [J ] : Qj /∈ S) ≤ δ/2. Since

PS (∀j ∈ [J ] : Qj /∈ S) =

(
n−s
J

)(
n
J

) ≤ (1− s

n

)J
,

choosing J = (n/s) log(2/δ) ensures that the probability above is less than δ/2.

Now choosing αj , βj according to Proposition 2.3 with δ replaced by δ/2 ensures

PS(Ŝ 6= S) ≤ δ, ∀S ∈ C. With this modification the expected amount of precision
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is bounded by

ES

(∑
t

Γt

)
≤ ES

(
T ′∑
j=1

2

µ2
log

1

βj
+ |S| 2

µ2
log

1

αj
+

T∑
j=T ′+1

2

µ2
log

1

βj

)

≤ 2

µ2

(
J log

4

δ
+ |S| log

8n

δ
+ 2(p− 2) log

8s

δ

)
≤ 2

µ2

(
n

s

(
log

4

δ

)2

+ s log
8n

δ
+
√

8n log
8s

δ

)
.

Combining this with the bound on the total precision available (2.2) we get the

following result:

Proposition 2.6. Let C be the class of s-stars as defined above and suppose

µ ≥

√
2n

sm

(
log

4

δ

)2

+
2s

m
log

8n

δ
+

√
32n

m
log

8s

δ
.

The procedure above results in an estimator Ŝ satisfying both max
S∈C

PS(Ŝ 6= S) ≤ δ

and the precision budget (2.2).

In case of sparse signals the first term on the right hand side dominates this

bound. More precisely we have the following result.

Corollary 2.4 (s-stars). Consider the setting of Proposition 2.6. Suppose n→∞
such that s = o(

√
n/ log n). Let ωn →∞ be arbitrary.

(i) When

µ ≥ ωn
√

n

sm
,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

PS(Ŝ 6= S) = 0, and

that satisfies (2.2).

(ii) When

µ ≥
√

2n

sm
(log2 s+ ωn) ,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

ES(|Ŝ4S|) = 0, and

that satisfies (2.2).
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Unions of s-stars

The unions of k non-intersecting s-stars is a generalization of the class of s-stars

defined in the previous section. Suppose for technical reasons that k < s. Let C′

be the class of s-stars as defined previously. Then

C =

{
S ⊆ [n] : S =

k⋃
i=1

Si, Si ∈ C′ ∀i, Si ∩ Sj = ∅ ∀i 6= j

}
.

Note that the cardinality of the support sets belonging to this class is ks.

In contrast to what we have done before, the proposed noiseless procedure

will consist of alternating search and refinement phases. In the search phases we

randomly search coordinates of x until we find a signal coordinate. Then we switch

to the a refinement phase and sample every coordinate of x that corresponds to

edges that share a vertex with the non-zero coordinate found previously. After

doing so it may happen that we find signal entries corresponding to more than one

star, which we would know by having identified a number of active components

that is not a multiple of s. When there are stars left partly explored, we continue

sampling edges that possibly belong to not yet fully explored stars (the candidates

are edges adjacent to any previously found active component). When there are no

partly explored stars, we switch back to the search phase. We keep iterating until

we have found all k stars of the graph.

Formally Qj ∼ Unif
(
[n] \ {Qi}i∈[j−1]

)
in the search phases. Let X̃j denote

the set of edges that can belong to partly explored stars up to time j. Then the

queries of the refinement phase can be defined as Qj ∼ Unif
(
X̃j \ {Qi}i∈[j−1]

)
.

Note that this still fits the setting of Proposition 2.3 with K ≤ k being random

and η1 = η2 = · · · = ηK = 1.

Analogously to what was done for s-stars we consider a simple modification

to facilitate the analysis: each time we are in a search phase we take at most

J queries. We choose J such that the noiseless case procedure fails with small

probability. Note that we perform at most k search phases, and in each of them

there are at least s unexplored signal components. Thus, using essentially the same

calculation as before, we get that by choosing J = (n/s) log(2k/δ) we ensure that

the probability of not querying a signal coordinate in any of the search phases is

at most δ/2. Finally, choosing αj , βj according to Proposition 2.3 with δ replaced

by δ/2 yields PS(Ŝ 6= S) ≤ δ, ∀S ∈ C.
Note that the number of queries we perform in all of the search and refinement
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phases is at most kJ and 2ksp, respectively. However, for the expected number of

queries performed throughout the search phases we can get a slightly better upper

bound, which is necessary to get a more accurate dependence on the parameter

k. Recall that Ej denotes the event that we make an error in the test Ψj , i.e.

Ψj 6= 1S(Qj). Also, let E0 denote the event that there is a search phase in which

we do not query any coordinate containing a signal, and TA denote the total number

of queries in the search phases. Finally, let the number of queries in the ith search

phase be T
(i)
A . Using the mean of the negative hypergeometric distribution, we

have ES
(
T

(i)
A

∣∣∩Tj=0 Ej
)
≤ n/(ski), where ki is the number of unexplored stars in

search phase i. Noting that k1 = k and ki+1 < ki, i = 1, . . . ,K we obtain the

bound

ES

TA
∣∣∣∣∣∣
T⋂
j=0

Ej

 =

K∑
i=1

ES

T (i)
A

∣∣∣∣∣∣
T⋂
j=0

Ej


≤

k∑
i=1

n

is
≤ n

s
(log k + 1) .

Finally, through the law of total expectation we get

ES (TA) ≤ n

s
(log k + 1) + δkJ .

We are now ready to compute a bound on the precision used by the procedure.

ES

(∑
t

Γt

)
≤ ES

(
TA

2

µ2
log

4k

δ
+ |S| 2

µ2
log

8n

δ
+ 2ks(p− 2)

2

µ2
log

8ks

δ

)
≤ 2

µ2

((n
s

(log k + 1) + δkJ
)

log
4k

δ
+ ks log

8n

δ
+ ks

√
8n log

8ks

δ

)
≤ 2

µ2

(
n(1 + δk)

s

(
log

4k

δ

)2

+ ks log
8n

δ
+ ks

√
8n log

8ks

δ

)
.

Combining this with the bound on the total precision available (2.2) we get the

following result:

Proposition 2.7. Let C be the class of unions of k disjoint s-stars as defined above
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and suppose

µ ≥√
2n(1 + δk)

sm

(
log

4k

δ

)2

+
2ks

m
log

8n

δ
+
ks
√

32n

m
log

8ks

δ
.

The procedure above results in an estimator Ŝ satisfying both max
S∈C

PS(Ŝ 6= S) ≤ δ

and the precision budget (2.2).

The result of the above proposition is perhaps a bit difficult to digest, but

provided s and k are small relative to n the first term in the right side dominates

the bound.

Corollary 2.5 (unions of s-stars). Consider the setting of Proposition 2.7. Suppose

s = o

(√√
n log k
k logn

)
as n→∞. Let ωn →∞ be arbitrary.

(i) When

µ ≥
√

2n

sm
(log2 k + ωn) ,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

PS(Ŝ 6= S) = 0, and

that satisfies (2.2).

(ii) When

µ ≥
√

2n

sm
(log2 ks+ ωn) ,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

ES(|Ŝ4S|) = 0, and

that satisfies (2.2).

s-submatrices

In this setting the components of x are identified with the elements of a matrix

M ∈ Rn1×n2 (the number of elements in the matrix be n = n1n2). We assume

that the support set S is a subset of [n1] × [n2] and furthermore we assume that

it corresponds to a submatrix of size s. Formally, the class of all s-submatrices is

defined as

C = {S1 × S2 : S1 ⊆ [n1], S2 ⊆ [n2], and |S1| · |S2| = s} ,
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where S1×S2 denotes the cartesian product of S1 and S2. Note that if either n1 or

n2 is of the same order as n, then this setting becomes similar to the unstructured

case, but if n1, n2 ≈
√
n there is a significant amount of structure one can take

advantage of. Consider the following simple noiseless support recovery procedure:

in a first phase randomly search the coordinates of x to find a non-zero coordinate.

Once such a coordinate is found explore coordinates of x corresponding to the

row and column of the non-zero coordinate found previously. Clearly, this fits the

general procedure described in the setting of Proposition 2.3, with K = 1 and

l1 = l = 1. Like in the case of s-stars we stop the random search in the first phase

after J = (n/s) log(2/δ) queries to facilitate the analysis. For the expected amount

of precision used we have

ES

(∑
t

Γt

)
≤ 2

µ2

(
J log

4

δ
+ s log

8n

δ
+ (n1 + n2) log

8s

δ

)

≤ 2

µ2

(
n

s

(
log

4

δ

)2

+ s log
8n

δ
+ (n1 + n2) log

8s

δ

)
.

Proposition 2.8. Let C denote the class of submatrices as defined above with and

suppose

µ ≥

√
2n

sm

(
log

4

δ

)2

+
2s

m
log

8n

δ
+

2(n1 + n2)

m
log

8s

δ
.

The procedure above results in an estimator Ŝ satisfying both max
S∈C

PS(Ŝ 6= S) ≤ δ

and the precision budget (2.2).

In case of sparse signals, that is when s� n, and both n1 ≈
√
n and n2 ≈

√
n

the first term on the right side dominates this bound. When max{n1, n2} is at the

order of n, the situation becomes similar to the unstructured case, and the third

term dominates the bound (so one recovers essentially the result in Corollary 2.1).

Concerning the former case one has the following result:

Corollary 2.6 (s-submatrices). Consider the setting of Proposition 2.8. Assume

n1 = n2 =
√
n and s = o(

√
n/ log n) as n→∞. Let ωn →∞ be arbitrary.

(i) When

µ ≥ ωn
√

n

sm
,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

PS(Ŝ 6= S) = 0, and

that satisfies (2.2).
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(ii) When

µ ≥
√

2n

sm
(log2 s+ ωn) ,

the procedure above gives an estimator Ŝ such that lim
n→∞

max
S∈C

ES(|Ŝ4S|) = 0, and

that satisfies (2.2).

Remark 2.4. In all settings considered one can get exactly the same results with

some degree of adaptivity to sparsity level, characterized by s and k. For instance,

if one considers the class of all k and k−1 unions of s-intervals or s-stars then the

results of Corollaries 2.3 and 2.5 still hold. Likewise mild adaptivity to s is also

possible. Furthermore, all the results above will hold if the empty set is added to

the class C under consideration.

2.5 Lower Bounds

In this section we derive bounds for the signal strength µ for each special case

considered earlier, such that if µ falls below these bounds, reliably recovering the

support set S ∈ C is impossible. First we derive bounds for non-adaptive sensing

for comparison purposes.

For the non-adaptive case we derive lower bounds considering the error metric

PS(Ŝ 6= S). These are lower bounds for the error metric ES(|Ŝ4S|) as well, since

the latter dominates the former. The bounds we present for the non-adaptive case

may not be sharp, particularly when the signal is not sparse. Nonetheless in the

sparse setting they capture the essence of the difficulty of support recovery and

illustrate well the gains one achieves by using adaptive sensing procedures.

For sharper bounds, and more discussion on lower bounding techniques for

structured support sets in the non-adaptive setting, the reader is referred to Addario-

Berry et.al. [1], Arias-Castro, Candès & Durand [8], Arias-Castro & Verzelen [15],

Butucea & Ingster [31]. However, caution must be taken when comparing the pre-

vious results with the ones presented here, as the aforementioned results are bounds

for the problem of detection, whereas those presented here concern the problem of

estimation.

Afterwards, we derive lower bounds for adaptive sensing, which will show the

near-optimality of the procedures proposed previously. In this setting, whenever

we can, we prove bounds both for the Hamming-distance and the probability of

error. The proofs of the results of this section make use of tools from Castro [40]
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and Tsybakov [139].

2.5.1 Non-Adaptive Sensing

In this subsection we consider non-adaptive sensing for support recovery. The

problem setting is the same as in Section 2.2, the only difference being that in the

non-adaptive setting we have to specify {At,Γt}t≥1 before any observations are

made. All the bounds presented here are based on Proposition 2.3 in Tsybakov

[139]. Recall that D(·‖·) denotes the Kullback-Leibler divergence. The result states

the following:

Lemma 2.1 (Proposition 2.3 in Tsybakov [139]). Let P0, . . . ,PM be probability

measures on (X ,A) satisfying

1

M

M∑
j=1

D(Pj‖P0) ≤ α ,

with 0 < α <∞. For any A-measurable function Ψ : X → {0, . . . ,M}

max
j=0,...,M

Pj(Ψ 6= j) ≥ sup
0<τ<1

(
τM

1 + τM

(
1 +

α+
√
α/2

log τ

))
.

We can use this result directly to get general lower bounds for µ in the non-

adaptive setting. First let P0, . . . ,PM be the probability measures induced by the

sampling x with parameters {At,Γt}t≥1, when the support sets are S0, . . . , SM

respectively, where Si ∈ C. We take S0, . . . , SM to be all the support sets in C, so

that M = |C| − 1. For fixed Sk, Sl, k 6= l we have

D(Pk‖Pl) =
µ2

2

∑
t:At∈Sk4Sl

Γt .

Let us define bi =
∑
t:At=i

Γt. Then

M∑
j=1

D(Pj‖P0) =
µ2

2

∑
S′∈C\{S0}

∑
i∈S04S′

bi .

We need to evaluate the quantity above. Since we can choose S0 ∈ C freely, we

can choose the one that makes the hypothesis test the hardest. On the other hand,
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the measurement budget constraint (2.2) implies that
∑
i bi ≤ m. This yields the

following optimization problem

max
b∈Rn+,0: ||b||1≤m

min
S∈C

∑
S′∈C\{S}

∑
i∈S4S′

bi .

where b = (b1, . . . , bn)T . The solution of this problem can be found explicitly if the

class C under consideration has the following symmetry property (as introduced by

Castro in [40]):

Definition 2.1. Let S ∈ C be drawn uniformly at random. If P(i ∈ S) = s/n for

all i ∈ [n], then the class C is symmetric.

We have the following proposition, proved in Appendix 2.D.

Proposition 2.9. Suppose C is symmetric. Then

max
b∈Rn+,0: ||b||1≤m

min
S∈C

∑
S′∈C\{S}

∑
i∈S4S′

bi

is attained when bi = m/n, i ∈ [n].

We are now in position to prove the proposition which we can use to get lower

bounds for µ in our special cases.

Proposition 2.10. Let C be symmetric and suppose 1+
√

2 ≤ (1−2ε) log(|C|−1).

If

µ2 ≤ (1− 2ε)
n

2|S|m
log(|C| − 1) ,

then no non-adaptive procedure can satisfy

PS(Ŝ 6= S) ≤ ε, ∀S ∈ C .

Proof. Let P0, . . . ,PM be the probability measures induced by the sampling x with

parameters {At,Γt}t≥1, when the support sets are S0, . . . , SM respectively, where

Si ∈ C. We take S0, . . . , SM to be all the support sets in C, that is M = |C|−1. By

Proposition 2.9 we know bi = m/n, i ∈ [n] is the optimal choice for distributing

the precision in the non-adaptive setting for symmetric C. From this we have

1

M

M∑
j=1

D(Pj‖P0) ≤ max
j=1,...,M

D(Pj‖P0) = |S|m
n
µ2 := α .
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Then, by Lemma 2.1,

sup
S∈C

PS(Ŝ 6= S) ≥ sup
0<τ<1

(
τM

1 + τM

(
1 +

α+
√
α/2

log τ

))
.

Setting τ = 1/M we get

sup
S∈C

PS(Ŝ 6= S) ≥ 1

2

(
1−

α+
√
α/2

logM

)
.

The right side of the above expression is bounded below by ε whenever

α+
√
α/2 ≤ (1− 2ε) logM (2.13)

Plugging the values of a and M into the above inequality immediately yields bounds

for µ. However, to make the bound more transparent, assume C is such that

1 +
√

2 ≤ (1− 2ε) log(|C| − 1). Then every α satisfying

2α ≤ (1− 2ε) logM

also satisfies (2.13). The statement now follows.

Note that the condition 1+
√

2 ≤ (1−2ε) log(|C|−1) is not necessary to get the

bound for µ, its role is merely to make the bound more transparent. Furthermore,

it simply requires C to be large enough compared to ε. Since we are interested in

cases where C is large and ε is small we can always safely assume this condition

holds provided ε is small enough. The result of Proposition 2.10 is remarkably

simple, as the lower bound depends exclusively on the cardinality of the class

under consideration. With this in hand it is immediate to get non-adaptive lower

bounds for all the classes considered in this chapter.

Theorem 2.1. A necessary condition to ensure that any non-adaptive procedure

satisfies max
S∈C

PS(Ŝ 6= S) ≤ ε, ∀S ∈ C is given by the following expressions, for the

different classes C:

• s-sets: µ ≥
√

(1− 2ε) n
2sm log

((
n
s

)
− 1
)
.

• s-intervals: µ ≥
√

(1− 2ε) n
2sm log

(
n
s − 1

)
.
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• unions of k disjoint s-intervals:

µ ≥

√
(1− 2ε)

n

2ksm
log

((
n/s

k

)
− 1

)
.

• unions of k disjoint s-stars:

µ ≥

√
(1− 2ε)

n

2ksm
log

((
p

k(s+ 1)

)
− 1

)

(assume k(s+ 1) ≤ p).

• s-submatrices: µ ≥
√

(1− 2ε) n
2sm log

((
n1√
s

)(
n2√
s

)
− 1
)
.

Proof. The case of s-sets is straightforward from Proposition 2.10. The class of

s-intervals is not symmetric, however, its subclass

{[1, s], [s+ 1, 2s], . . . , [n− s+ 1, n]}

is, therefore we can apply Proposition 2.10 for this subclass. A lower bound for

any subclass is also a lower bound for the original class.

For the class of unions of intervals, we consider a similarly constructed subclass

to get the bound above. In case of the unions of stars, we can consider the subclass

of stars with distinct vertices. The size of this subclass is lower bounded by
(

p
k(s+1)

)
.

For the submatrices, we consider the subclass of submatrices of size
√
s×
√
s.

Using the previous results we can state the following corollary considering the

large n behavior of the non-adaptive lower bounds:

Corollary 2.7. In order to have lim
n→∞

max
S∈C

PS(Ŝ 6= S) = 0 for n → ∞ any non-

adaptive procedure must satisfy, for some constant c > 0, that

• s-sets: µ ≥ c
√

n
2m log n

s .

• s-intervals: µ ≥ c
√

n
2sm log n

s .

• unions of k disjoint s-intervals: µ ≥ c
√

n
2sm log n

ks .

• unions of k disjoint s-stars: µ ≥ c
√

n
2m log

√
2n
ks .
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• s-submatrices: µ ≥ c
√

n
4
√
sm

log n
s ,

when n1 = n2 =
√
n, s1 = s2 =

√
s.

The previous results shed some light on the limits of support recovery in the

non-adaptive setting. When the size of the support set (s or ks) is sufficiently small

relative to n, the log n factor is unavoidable for non-adaptive support recovery.

On the contrary, this factor does not appear in the adaptive sensing performance

bounds in any of the cases that we consider. For the class of unions of intervals,

a factor of
√

1/s appears in the above lower bounds, which means it might be

possible to capitalize on the structure in the non-adaptive case as well (and this is

indeed the case). For the unions of stars, however, this is no longer true. In fact

this class is so large that non-adaptive procedures can no longer take significant

advantage of the structure of the support sets. This is in stark contrast with what

is possible with adaptive sensing (see Corollary 2.4). Similar remarks apply to the

class of submatrices as well.

2.5.2 Adaptive Sensing

In this section we derive lower bounds for the signal strength µ in the adaptive

sensing setting. We measure the performance of an estimator by the expected

Hamming-distance ES(|Ŝ4S|). In some cases we are also able to prove lower

bounds for the error metric PS(Ŝ 6= S). Comparing the bounds of this section with

the performance bounds of Section 2.4 shows the near optimality of the proposed

procedure for sparse signals for all the classes considered.

s-sets (unstructured case)

This case is considered by Castro in [40] and lower bounds are shown for a slightly

larger class, which consists of all s, s− 1 and s+ 1 sets. However, it turns out that

a similar result holds also if one considers the class of all s and (s − 1)-sets only.

Let C′ denote this class, and suppose there is a sensing procedure and estimator Ŝ

for which

max
S∈C′

ES(|Ŝ4S|) ≤ ε .

Lemma 4.1 in Castro [40] shows that it suffices to consider only symmetric estima-

tors, which satisfy

∀i, j ∈ S : PS(i /∈ Ŝ) = PS(j /∈ Ŝ) ,

53



Adaptive Sensing for Structured Support Recovery

and

∀i, j /∈ S : PS(i /∈ Ŝ) = PS(j /∈ Ŝ) ,

for any S ∈ C′. This follows since any estimator Ŝ can be symmetrized without

affecting their worst case performance when the class under consideration is closed

under permutations. It is easily shown that for symmetric estimators

∀i, j ∈ S : ES

( ∑
t:At=i

Γt

)
= ES

 ∑
t:At=j

Γt

 ,

and

∀i, j /∈ S : ES

( ∑
t:At=i

Γt

)
= ES

 ∑
t:At=j

Γt

 ,

for any S ∈ C′. We can then proceed as follows. Let S ∈ C′ and i ∈ [n] be arbitrary,

and such that |S| = s−1 and i /∈ S. Define also S′ = S∪{i}. For the event {i /∈ Ŝ}
we have (by Theorem 2.6 and Lemma 2.6 of Tsybakov [139], see also Castro [40]

for similar computations)

D(PS‖PS′) ≥ − log
(

2PS(i /∈ Ŝ) + 2PS′(i ∈ Ŝ)
)
.

Using the symmetry of the estimator we can easily bound the left hand side as

D(PS‖PS′) =
µ2

2
ES

( ∑
t:At=i

Γt

)
≤ µ2

2

m

n− s+ 1
.

Furthermore, also by symmetry

PS(i ∈ Ŝ) ≤ ε/(n− s+ 1), PS′(i /∈ Ŝ) ≤ ε/s ,

whenever we have ES(|Ŝ4S|) ≤ ε. Putting everything together yields the following

theorem:

Theorem 2.2. Let C′ denote the class of all subsets of [n] with cardinality either

s− 1 or s. Suppose that max
S∈C′

ES(|Ŝ4S|) ≤ ε. Necessarily

µ ≥

√
2(n− s)

m

(
log s+ log

n− s
n+ 1

+ log
1

2ε

)
.
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In the large n regime and when considering sparse signals we have the following

result:

Corollary 2.8 (s-sets). Consider the setting of Theorem 2.2, and suppose s = o(n)

as n → ∞. If there is an adaptive sensing and estimation strategy such that

lim
n→∞

max
S∈C′

ES(|Ŝ4S|) = 0 then necessarily

µ ≥
√

2n

m
(log s+ ωn) ,

where ωn →∞.

This shows that, in the asymptotic regime, our adaptive-sensing procedure is

near optimal in the unstructured case, when the signal is sparse.

Remark 2.5. Note that the above lower bound considers the class of the union

of s-sparse and s− 1-sparse sets. Contrasting this, the procedure we considered in

Section 2.4.2 for the unstructured case was designed for s-sparse sets. However, it

is easy to see that the procedure has a mild adaptivity to sparsity and works well

for this extended class as well.

Several other lower bounds have a similar form, and remarks such as this apply

in those cases as well.

s-intervals

In the case of s-intervals we can obtain a lower bound for the probability of error as

the metric of interest. This lower bound is, however, a bit loose in the dependence

on ε.

Proposition 2.11. Let C be the class of s-intervals. Let ε ∈ (0, 1) and assume

that max
S∈C

PS(Ŝ 6= S) ≤ ε . Then necessarily

µ ≥ (1− ε)
√

n

2sm
.

Proof. The reasoning below is inspired by a proof found in Balakrishnan et al. [17].

Assume without loss of generality that n/s is an even integer. Consider the

class of disjoint intervals

{[1, s], [s+ 1, 2s], . . . , [n− s+ 1, n]} . (2.14)
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Since the above class is a subclass of C it suffices to show the lower bound for

this smaller class. Now partition the class into two disjoint sets of the same size

denoted by C1 and C2. To show the lower bound we consider a test of two simple

hypothesis. Under H1 assume S ∼ Unif(C1) and under H2 assume S ∼ Unif(C2).

In words, data under each hypothesis is generated by first selecting the support set

S from either distribution, and then collecting data D = {Yt, At,Γt}t≥1 under the

model indexed by S. Therefore this is a test between two simple hypotheses.

Given a support estimator Ŝ one can construct a test

Ψ(D) =

{
1 if Ŝ ∈ C1,
2 otherwise.

Clearly, if PS(Ŝ 6= S) ≤ ε ∀S ∈ C, then P1(Ψ(D) = 2) + P2(Ψ(D) = 1) ≤ ε,

where Pi denotes the distribution of D = {Yt, At,Γt}t≥1 under Hi. Let P0 denote

the distribution of D when S = ∅ and TV (·, ·) denote the total-variation distance.

Assume without loss of generality that TV (P0,P1) ≥ TV (P0,P2). We have

P1(Ψ(D) = 2) + P2(Ψ(D) = 1) ≥ 1− TV (P1,P2)

≥ 1−
(
TV (P0,P1) + TV (P0,P2)

)
≥ 1− 2 TV (P0,P1)

≥ 1−
√

2 D(P0‖P1) , (2.15)

where the second inequality follows from the triangle inequality, and the fourth

inequality follows from the first Pinsker inequality, see Tsybakov [139].

The Kullback-Leibler divergence between P0 and P1 can be expressed as

D(P0‖P1) =
∑
t

E0

(
log

dP0(Yt|At,Γt)
dP1(Yt|At,Γt)

)
= −

∑
t

E0

(
log

dP1(Yt|At,Γt)
dP0(Yt|At,Γt)

)

= −
∑
t

E0

(
log

1
|C1|

∑
S∈C1 dPS(Yt|At,Γt, S)

dP0(Yt|At,Γt)

)

= −
∑
t

E0

(
log

1

|C1|
∑
S∈C1

exp

(
−Γt

2
µ1{At ∈ S}(µ− 2Yt)

))
.
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Using Jensen’s inequality for the final expression, we get

D(P0‖P1) ≤ −
∑
t

E0

(
1

|C1|
∑
S∈C1

−Γt
2
µ1{At ∈ S}(µ− 2Yt)

)
.

Therefore

D(P0‖P1) ≤ 1

|C1|
∑
S∈C1

E0

(∑
t

Γt
2
µ1{At ∈ S}(µ− 2Yt)

)

=
1

|C1|
∑
S∈C1

E0

( ∑
t:At∈S

Γt
2
µ2

)

≤ µ2

2

1

|C1|
∑

S∈C1∪C2

E0

( ∑
t:At∈S

Γt

)
≤ µ2

2

2s

n
m ,

where the second line follows from the law of total probability, by conditioning on

{At,Γt}t≥1

From this and (2.15) we immediately get the result of the proposition.

A closer look at the above proof gives an interesting insight. Note that in

essence the previous proof claims that estimating an interval is as hard as the

problem of detection, that is, deciding between the hypotheses H0 : S = ∅ and

H1 : S ∈ C. In fact, the method proposed in Section 2.4.2 already deals with this

case, and exhibits the same performance if one “adds” the empty set to the class

of s-intervals.

The following theorem gives lower bounds both when considering PS(Ŝ 6= S)

and ES(|Ŝ4S|) as the error metric, that also captures the dependence on ε.

Theorem 2.3. Let C be the class of s-intervals. Let ε ∈ (0, 1).

(i) If max
S∈C∪∅

PS(Ŝ 6= S) ≤ ε, then necessarily

µ ≥
√

2n

sm
log

1

2ε
.

(ii) If max
S∈C∪∅

ES(|Ŝ4S|) ≤ ε, then necessarily

µ ≥

√
2(n− s)
sm

(
log

n− s
n+ s

+ log
s

8ε

)
.
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Proof. The assertion considering PS(Ŝ 6= S) as the error metric immediately follows

from Theorem 3.1 in Castro [40]. This theorem is directly applicable as having an

estimator Ŝ satisfying (i) implies having a test Ψ for the hypothesis testing problem

H0 : S = ∅ versus H1 : S ∈ C

with sum of type I and type II error probabilities no greater than ε.

As for the case when Ŝ satisfies (ii), consider the following reduction of the

problem. Let C̃ = {∅} ∪ {Si}i∈[n/s], where {Si}i∈[n/s] is the class of disjoint con-

secutive intervals defined in (2.14). For sake of simplicity assume that n/s is an

integer. It suffices to consider estimators of the form

Ŝ =
⋃

i∈[n/s]

Si . (2.16)

In words, the estimator can be written as a (possibly empty) union of elements

from {Si}i∈[n/s]. It is not restrictive to consider such estimators since if one has

an arbitrary estimator Ŝ with expected number of errors at most ε, then we can

define the estimator S̃ of the form in (2.16) that has error at most 4ε. For instance

let S̃ be such that Si ⊆ S̃ if and only if |Ŝ ∩ Si| ≥ s/2 for all i ∈ [n/s]. Then

ES(|S̃4S|) ≤ 4ε for all S ∈ C ∪ {∅}.

Considering such estimators we can write the expected number of errors as

ES(|Ŝ4S|) =

n/s∑
i=1

s PS(1{Si ⊆ Ŝ} 6= 1{Si ⊆ S}) .

This means that the above problem is similar to that of Theorem 2.2 with a vector of

length n/s, and support set size at most 1 (but error bounded by 4ε/s), concluding

the proof.

In the asymptotic regime for sparse signals we have the following corollary,

which shows that the procedure proposed in Section 2.4.2 is nearly optimal when

considering both error metrics.

Corollary 2.9 (s-intervals). Consider the setting of Theorem 2.3, and suppose

s = o(n) as n→∞.
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(i) If lim
n→∞

max
S∈C∪∅

PS(Ŝ 6= S) = 0, then necessarily

µ ≥ ωn
√

n

sm
,

(ii) If lim
n→∞

max
S∈C∪∅

ES(|Ŝ4S|) = 0, then necessarily

µ ≥
√

2n

sm
(log s+ ωn) ,

where ωn is an arbitrary sequence such that ωn →∞.

Unions of s-intervals

Consider again a slight modification of the class of interest, namely let C denote the

class of all disjoint unions of k or (k−1) s-intervals. Similarly to the previous case,

we reduce the problem to look like the general s-sparse case, and apply Theorem 2.2.

Theorem 2.4. Let ε > 0 and suppose that max
S∈C

ES(|Ŝ4S|) ≤ ε. Then necessarily

µ ≥

√
2(n− sk)

sm

(
log k + log

n− sk
n+ s

+ log
s

8ε

)
.

Proof. Assume again for sake of simplicity that n/s is an integer and consider the

class of consecutive s-intervals {Si}i∈[n/s] defined in (2.14). Let C̃ ⊂ C be the class

that contains unions of k or (k − 1) elements of {Si}i∈[n/s]. It suffices to consider

only estimators that satisfy (2.16) since if there is a general estimator Ŝ for which

maxS∈C ES(|Ŝ4S|) ≤ ε for all S ∈ C then there is an estimator S̃ of the form

(2.16) satisfying maxS∈C ES(|S̃4S|) ≤ 4ε. Therefore the problem can once again

be viewed as the unstructured case involving a vector of length n/s and sparsity

k or (k − 1), and requiring that the estimator has expected Hamming-distance at

most 4ε/s. Using Theorem 2.2 concludes the proof.

Corollary 2.10 (Unions of s-intervals). Consider the setting of Theorem 2.4, and

suppose sk = o(n) as n → ∞. If there is an adaptive sensing and estimation
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strategy such that lim
n→∞

max
S∈C

ES(|Ŝ4S|) = 0, then necessarily

µ ≥
√

2n

sm
(log ks+ ωn) ,

where ωn is an arbitrary sequence for which ωn →∞.

The previous statements show the near-optimality of the procedure proposed

in Section 2.4.2.

s-stars and unions of s-stars

The lower bounds for this class follow from similar arguments as the ones used for

s-intervals by considering a maximal subclass of disjoint s-stars (meaning these do

not share any edges). Let Np,s be the size of such a subclass. We have the following

lemma for which we provide a short proof in Appendix 2.E:

Lemma 2.2. Let Np,s denote the maximal number of disjoint stars of size s in a

complete graph with p vertices. Then

Np,s ≥
p(p− 1− s)

2s
.

With this in mind we can get a performance lower bound, proved in an analogous

way to that of Proposition 2.11.

Proposition 2.12. Let C be the class of s-stars. Assume that max
S∈C

PS(Ŝ 6= S) ≤ ε.
Then necessarily

µ ≥ (1− ε)
√

Np,s

2m
.

We can also get results analogous to Theorems 2.3 and 2.4, and Corollaries 2.9

and 2.10. We only state the results for the unions of s-stars, which shows the

near-optimality of the proposed procedure.

Theorem 2.5. Let C′ denote the class of unions of k or k− 1 disjoint s-stars. Let

ε > 0 and suppose that max
S∈C

ES(|Ŝ4S|) ≤ ε. Then necessarily

µ ≥

√
2(Np,s − k)

m

(
log k + log

Np,s − k
Np,s + 1

+ log
s

8ε

)
.
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Corollary 2.11 (Unions of s-stars). Consider the setting of Theorem 2.5, and

suppose ks = o(n) as n → ∞. If there is an adaptive sensing and estimation

strategy such that lim
n→∞

max
S∈C

ES(|Ŝ4S|) = 0, then necessarily

µ ≥
√

2n

sm
(log ks+ ωn) ,

where ωn is an arbitrary sequence for which ωn →∞.

s-submatrices

Again, akin to the s-intervals and s-stars we can get lower bounds without including

the empty set to the class when considering the probability of error as the metric

of interest.

Proposition 2.13. Let C be the class of submatrices, and suppose that n1, n2, s

are such that we can cover the matrix M entirely with disjoint submatrices of size

s. Let ε > 0 and suppose max
S∈C

PS(Ŝ 6= S) ≤ ε. Then necessarily

µ ≥ (1− ε)
√

n

2sm
.

We can once more derive results when including the empty set in the class.

Theorem 2.6. Suppose that n1, n2, s are such that we can cover the matrix M

entirely with disjoint submatrices of size s, and let ε > 0.

(i) If max
S∈C∪{∅}

PS(Ŝ 6= S) ≤ ε, then necessarily

µ ≥
√

2n

sm
log

1

2ε
,

(ii) If max
S∈C∪{∅}

ES(|Ŝ4S|) ≤ ε, then necessarily

µ ≥

√
2(n− s)
sm

(
log

n− s
n+ s

+ log
s

8ε

)
.

The condition about the relation between n1, n2 and s in the previous results

is merely to simplify presentation. This can be easily relaxed by bounding the
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number of disjoint submatrices of size s in a matrix of size n1 × n2. For instance,

one such bound is max{n1 · bn2/sc, n2 · bn1/sc}. This condition does not play a role

when considering the behavior of the bound in the asymptotic regime for sparse

signals.

Corollary 2.12 (s-submatrices). Consider the setting of Theorem 2.6, and suppose

n→∞ such that s = o(n).

(i) If lim
n→∞

max
S∈C∪{∅}

PS(Ŝ 6= S) = 0, then

µ ≥ ωn

√
2n

sm
,

(ii) If lim
n→∞

max
S∈C∪{∅}

ES(|Ŝ4S|) = 0, then

µ ≥
√

2n

sm
(log s+ ωn) ,

where ωn is an arbitrary sequence such that ωn →∞.

The previous results show the near optimality of the procedure proposed in

Section 2.4.2, in the case when n1, n2 are the same order of magnitude. When

either of them is close to n the problem becomes similar to the unstructured case

(however, this is not captured by the above corollary).

2.6 A Numerical Experiment

We present a short numerical experiment, to corroborate the theoretical results

presented in this chapter. Note that the simulations here only serve an illustrative

purpose and are by no means exhaustive.

In this simulation we gauge the performance of the adaptive sensing procedure

presented in Section 2.3 for the class of s-intervals, and compare it with a reasonable

non-adaptive procedure9.

The non-adaptive procedure is as follows. We use a fixed precision budget m,

and sample the signal uniformly with precision m/n. Then we pick the support es-

9Although we do not make a formal claim that the non-adaptive procedure implemented is
indeed optimal, it is likely asymptotically optimal, as it is simly a maximum-likelihood estimator.
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timator Ŝna to be the s-interval with the highest sum of observations, and compute

the Hamming distance |S4Ŝna|, where S denotes the true support.

The adaptive sensing procedure is based on the one presented in Section 2.3.

Note that the procedure makes a random number of measurements, and the theory

we developed in Section 2.4 deals with the expected precision used. To make the

comparison fair between adaptive and non-adaptive algorithms, we terminate the

adaptive sensing procedure whenever the precision budget m is reached, and incur

a loss of 2s in terms of Hamming distance. Other than that, we choose every

parameter as described in Section 2.4, set ε = 0.05 and Γ = 0.2. Though the

theory in Section 2.4 suggest we need to choose Γ close to zero, we chose a non-

negligible value to see how such a choice affects the performance in practice. The

performance of the procedure is evaluated by |S4Ŝa|, where Ŝa denotes the support

estimator returned by the procedure.

Proposition 2.4 suggests that the adaptive sensing algorithm should satisfy

E(|S4Ŝa|) ≤ ε when the signal strength is roughly

µlimit =

√
8n

s2m
log

4s

ε
. (2.17)

Furthermore, according to the lower bounds of Theorem 2.3, no estimator can have

small probability of error unless the signal scales as above. Note that for the SLRT

at the core of Algorithm 1, we need to specify an alternative to test against, or in

other words, a value for µlimit. This affects the amount of precision the SLRT will

use. Note that this does not mean we use knowledge of the true signal strength,

as this is only a parameter of the SLRT.

We set 2 different values for this parameter: µlimit defined above, and µ
(.95)
limit.

The latter is also defined by the formula above, but with m replaced with 0.95 ·m.

This means that we tune the procedure to detect a signal that is slightly larger

then µlimit (roughly by a factor of 1.02), but in turn this will result in a slightly

smaller amount of precision used by the SLRTs (in expectation).

We run the procedures described above when the true signal strength is t ·µlimit

with the value of t varying. We set the signal dimension to be n = 215, the support

size to be s = 24 and the precision budget to be m = n. We run 100 iterations for

every value of the parameter t, and plot the average normalized Hamming distance

of the different estimators. We also plot error bars whose total length is four times

the (point-wise) standard error, which would correspond to a roughly 95% two-
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sided confidence interval for normally distributed measurements. Note that the

error bars are only approximate point-wise confidence bands, that are included to

provide some insight about the variability of the curves.
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Figure 2.1: Average normalized Hamming-distance (with SE bands) for the dif-
ferent estimators as a function of the parameter t (the signal strength is t · µlimit

with µlimit defined in (2.17)): the non-adaptive estimator (black); adaptive sensing

(AS) procedure calibrated with µlimit (blue); AS calibrated with µ
(.95)
limit (red). The

number of repetitions is 100 for each value of t. The vertical black dashed line is
at the value t = 1. The horizontal black dashed line is at the value of ε (0.05).

As expected, the adaptive sensing procedures outperform the non-adaptive one.

We also expect the adaptive procedures to reach the level ε = 0.05 at t = 1. In fact

this level is reached somewhat earlier, which might be the result of the conservative

algorithm choices, which we already highlighted in Section 2.4.

Perhaps remarkably, the adaptive sensing procedure calibrated to detect a signal

strength of µlimit also performs well, even though it is terminated when the precision

budget is reached. Note however, that the analysis in Section 2.4 was carried out

for the worst case scenario (when we need to perform all n/s tests in the search
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phase). As we see above, often times the procedure does not need to perform that

many tests, and thus still satisfies a strict precision budget.

Note however, that this procedure cannot have an arbitrarily small error, be-

cause regardless of the signal strength, the procedure will sometimes exhaust the

precision budget in the search phase. However, as Figure 2.1 seems to illustrate,

by tuning the procedure to detect a signal slightly larger then µlimit boundary, this

issue is circumvented (see also Appendix 2.A for more detailed comments about a

strict budget constraint).

2.7 Final Remarks

In this work we have investigated the problem of support estimation of structured

sparse signals under the adaptive sensing paradigm. These results broaden our

understanding of the fundamental limits of adaptive sensing and also provide a

method for estimating signal supports. The procedure suggested in this chapter

is rather general and simple, and also turns out to be near-optimal in a variety of

interesting cases.

It is important to point out that the proposed procedure requires knowledge

of some parameters of the problem that might not be available in a real-life set-

ting. Also, neither the fundamental performance limits nor the performance of the

proposed procedure are yet fully understood for arbitrary classes of signal support

sets. These might prove to be interesting areas for future research.

2.A Removing the expectation from the budget

constraint (2.2)

We now investigate what difference it would make if we considered a more demand-

ing budget constraint by removing the expectation from (2.2). That is, we now

wish to consider algorithms that satisfy

sup
S∈C

∑
t

Γt ≤ m .

First, note that all the lower bounds remain valid with the latter constraint as

well, since the constraint ES(
∑
t Γt) ≤ m is more forgiving than

∑
t Γt ≤ m.

65



Adaptive Sensing for Structured Support Recovery

The basis of the procedures in Chapter 2 is the SLRT described in Section 2.4.1.

To accommodate for the more strict budget constraint we need to change the bound

on the expected energy for the SLRT of Proposition 2.1 to a high probability bound.

We will only discuss this in detail for the s-sets as results for all other procedures

follow similarly.

As a reminder, the procedure for s-sets consists of independently performing a

Sequential Likelihood-ratio test (SLRT) for each component to assess whether that

component is zero or not. To carry out the test for xi we take

Ni = inf

n ∈ N :

n∑
j=1

log
dP1(Yi,j)

dP0(Yi,j)
/∈ (l, u)


measurements, where log β

1−α = l < 0 < u = log 1−β
α are the lower and upper

stopping boundaries. Recall that all measurements are made with a fixed precision

Γ. Suppose H0 is true. In this case the upper bound on the expected number of

measurements used by the test is t0 := 2
Γµ2 log 2s

ε since we set β = ε
2s . For our

purposes it is enough to show that

P

(∑
i/∈S

Ni > c(n− s)t0

)
≤ c′ε , (2.18)

for some universal constants c, c′. If this (and a comparable result for i ∈ S) were

true, then a union bound would give that the probability that the procedure uses

more then cm energy is at most 2c′ε. One then could construct a similar procedure

as before with the exception that it is forced to stop once the precision budget is

exhausted. By the previous result this happens with probability proportional to ε.

Hence the minimum signal strength required by a procedure satisfying
∑
t Γt ≤ m

for support recovery would still be on the same order as before, only the constants

would need to be adjusted.

To show the result above we need a concentration inequality. As a start, we
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show a simple tail bound for Ni under the null.

P0(Ni > ct0) ≤ P0

 ct0∑
j=1

log
dP1(Yi,j)

dP0(Yi,j)
> l


≤ P0

 ct0∑
j=1

log
dP1(Yi,j)

dP0(Yi,j)
> log β

 .

Note that dP1(Yi,j)/ dP0(Yi,j) = Γ(µYi,j−µ
2

2 ), which is distributed asN(−Γµ2

2 ,Γµ2)

under the null. Using this with the Gaussian tail bound P(ξ > x) ≤ e−x
2/2/2 we

get

P0

 ct0∑
j=1

log
dP1(Yi,j)

dP0(Yi,j)
> log β

 ≤ 1

2
exp

(
− (log β + ct0Γµ2/2)2

2ct0Γµ2

)
.

Plugging in t0 = 2
Γµ2 log 2s

ε and β = ε
2s , we get

P0(Ni > ct0/Γ) ≤ 1

2

( ε
2s

) (c−1)2

4c
,

when c > 2. We continue by using the Craig-Bernstein inequality [53] that states

that whenever the independent random variables U1, . . . , Un satisfy the moment

condition

E
(
|Ui − E(Ui)|k

)
≤ Var(Ui)

2
k!hk−2, i = 1, . . . , n ,

with some h > 0 then

P

(
1

n

n∑
i=1

(Ui − E(Ui)) ≥
z

nδ
+
nδVar( 1

n

∑n
i=1 Ui)

2(1− C)

)
≤ e−z ,

for 0 < hδ ≤ C < 1 and z > 0. We thus need to refine the calculations above to

get a general moment bound for Ni and then we will use the inequality above with
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C = 1/2, δ = 1/2h and an appropriate z. We start with the moment condition.

E(Nk
i ) =

∞∑
j=1

jkP(Ni = j)

≤
∞∑
c=1

(ct0)kP((c− 1)t0 < Ni ≤ ct0)

≤
∞∑
c=1

(ct0)kP((c− 1)t0 < Ni) .

Plugging in the previous tail bound for Ni we get

E(Nk
i ) ≤ tk0

1 +

∞∑
c=2

ck
1

2

( ε
2s

) (c−2)2

4c

 ≤ tk0
(

1 +

∞∑
c=2

ck
1

2
ε

(c−2)2

4c

)
.

Using ε ≤ 1 we simply get

E(Nk
i ) ≤ tk0

(
1 +

1

2
(2k + ek + 4k) +

∞∑
c=5

ckε
(c−2)2

4c

)

≤ tk0

(
1 +

1

2
(2k + 3k + 4k) +

1

ε

∞∑
c=5

ckεc/4

)
,

using the tail bound on Ni (also using ε ≤ 1/2). We upper bound the sum in the

last expression by an integral.

∞∑
c=5

ckεc/4 ≤
∫ ∞

4

(x+ 1)k 4
√
ε
x

dx

=

[
4(x+ 1)k 4

√
ε
x

log ε

]∞
4

− 4k

log ε

∫ ∞
4

(x+ 1)k−1
√
ε
x

dx

=
45kε

log 1
ε

+
4k

log 1
ε

∫ ∞
0

(x+ 1)k−1
√
ε
x

dx

= . . .

= ε

k∑
l=0

(
4

log 1
ε

)l+1
k!

(k − l)!
5k−l

≤ εk!5k
∞∑
l=0

(
2

log 1
ε

)l
≤ εk!5k

log 1
ε

log 1
ε − 2

,
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using repeated partial integration. Plugging this back yields

E(Nk
i ) ≤ tk0(1 +

1

2
(2k + 3k + 4k) + k!5k

log 1
ε

log 1
ε − 2

) ≤ k!(Kt0)k ,

with some constant K. Note that the variance is on the order of t20, the moment

condition above is satisfied with h = K ′t0, where K ′ is some constant. Hence

taking z = log 1
ε (and using Var(Ni) ≤ 2kt20), the Craig-Bernstein inequality yields

P

(∑
i/∈S

(Ni − E(Ni)) ≥ 2K ′ log
1

ε
t0 +

K

K ′
(n− s)t0

)
≤ ε .

Unless ε is very small (less than e−(n−s)), the expression on the left side of the

inequality above is upper bounded by c(n− s)t0 and thus we have shown (2.18).

2.B Proof of Proposition 2.1

To ease notation we write N ≡ NΓ. The proof of all the statements in the proposi-

tion hinges on the derivation of upper bounds for the expected value of the stopping

time N . Recall the definition of the log-likelihood ratio

z̄k =

k∑
i=1

log
f1(yi)

f0(yi)
=

k∑
i=1

zi ,

where zi = Γ
2µ(2yi − µ). From Wald’s identity [141] we know that

E(z̄N ) = E(N)E(z1) .

Since it is easy to compute E(z1) directly, in order to control E(N) we need to

control E(z̄N ). Note that E0(z1) < 0 < E1(z1), thus to get an upper bound on

E0(N) we need to lower bound E0(z̄N ), and to get an upper bound on E1(N) we

need to upper bound E1(z̄N ). In what follows assume H0 is true, as the case for

H1 is entirely analogous. Our proof hinges on the following technical lemma.
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Lemma 2.3.

l + E0(z1|z1 ≤ 0) ≤ E0(z̄N |z̄N ≤ l) ≤ l ; (2.19)

elE0 (ez1 | z1 ≤ 0) ≤ E0

(
ez̄N
∣∣ z̄N ≤ l) ≤ el ; (2.20)

eu ≤ E0

(
ez̄N
∣∣ z̄N ≥ u) ≤ euE0 (ez1 | z1 ≥ 0) . (2.21)

Proof. We prove only the first statement, as the proof of the other two statements

follow with essentially the same reasoning. First note that for any normal random

variable ξ ∼ N(ν, σ2) and c ≤ 0 we have

E(ξ − c|ξ ≤ c) ≥ E(ξ|ξ ≤ 0) . (2.22)

This can be justified by writing the conditional densities of ξ− c|ξ ≤ c and ξ|ξ ≤ 0,

respectively

fξ−c|ξ≤c(x) = K1e
− ((x−ν)+c)2

2σ2 1{x ≤ 0}

fξ|ξ≤0(x) = K2e
− (x−ν)2

2σ2 1{x ≤ 0} ,

where K2 > K1 > 0 are the appropriate normalization constants. It is easy to

show that these densities satisfy

fξ−c|ξ≤c(x) ≤ fξ|ξ≤0(x) if x ≤ x0 ,

fξ−c|ξ≤c(x) ≥ fξ|ξ≤0(x) if x ≥ x0 ,

where x0 is simply given by

x0 =
2σ2 log K1

K2
− c2

2c
+ ν .
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This, in turn implies (2.22), as

E(ξ − c|ξ ≤ c)− E(ξ|ξ ≤ 0) =

∫
xfξ−c|ξ≤c(x) dx−

∫
xfξ|ξ≤0(x) dx

=

∫
x
(
fξ−c|ξ≤c(x)− fξ|ξ≤0(x)

)
dx

− x0

∫
fξ−c|ξ≤c(x)− fξ|ξ≤0(x) dx

=

∫
(x− x0)

(
fξ−c|ξ≤c(x)− fξ|ξ≤0(x)

)
dx

≥ 0 .

We are now ready to prove the lemma. First note that

z1 = log
f1(y1)

f0(y1)
= Γµy1 −

Γµ2

2

H0∼ N

(
−Γ

2
µ2,Γµ2

)
.

Therefore

E0

(
z̄N

∣∣∣z̄N ≤ l) =E0

(
E0 (z̄N |N, z̄N−1, z̄N ≤ l )

∣∣∣z̄N ≤ l)
=l + E0

(
E0

(
zN − (l − z̄N−1)

∣∣N, z̄N−1, zN ≤ l − z̄N−1

) ∣∣∣z̄N ≤ l)
≥l + E0

(
E0 (zN |N, z̄N−1, zN ≤ 0)

∣∣∣z̄N ≤ l)
=l + E0

(
E0 (z1 |N, z̄N−1, z1 ≤ 0)

∣∣∣z̄N ≤ l)
=l + E0

(
z1 |z1 ≤ 0

)
,

where the inequality follows from (2.22), concluding the proof of statement (2.19).

The other two statements are shown in a similar fashion, by noting also that the

exponential function is monotone increasing.

With the lemma result at hand, note that

E0(z̄N ) = αΓE0(z̄N |z̄N ≥ u) + (1− αΓ)E0(z̄N |z̄N ≤ l)

≥ αΓu+ (1− αΓ)l + (1− αΓ)E0(z1|z1 ≤ 0) ,

where the last step follows simply from the lemma. Using this together with Wald’s
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inequality yields

ΓE0(N) ≤ − 2

µ2

(
αΓu+ (1− αΓ)l + (1− αΓ)E0(z1|z1 ≤ 0)

)
=

2

µ2

(
αΓ log

α

1− β
+ (1− αΓ) log

1− α
β

− (1− αΓ)E0(z1|z1 ≤ 0)
)
. (2.23)

So, provided we can show that αΓ → α and E0(z1|z1 ≤ 0) → 0 as Γ → 0 the

statement of the proposition follows, as we obtain the same limit as in (2.8).

Note first that P0(z1 ≤ 0) = Φ(µ
√

Γ/2) → 1/2 as Γ → 0, where Φ denotes the

standard normal cumulative distribution function. Since −|z1| ≤ z11{z1 ≤ 0} ≤ 0

we conclude that E0(z11{z1 ≤ 0})→ 0 when Γ→ 0, since E0(|z1|) ≤
√
E0(z2

1)→ 0.

Therefore E0(z1|z1 ≤ 0) = E0(z11{z1 ≤ 0})/P0(z1 ≤ 0)→ 0.

To conclude the proof we need to show that αΓ → α as Γ → 0. We can check

this using the moment generating function of z̄N . Begin by noting that

1 = E0

(
N∏
i=1

f1(yi)

f0(yi)

)
= E0(ez̄N )

= (1− αΓ)E0

(
ez̄N
∣∣ z̄N ≤ l)+ αΓE0

(
ez̄N
∣∣ z̄N ≥ u) .

Hence

αΓ =
1− E0 (ez̄N | z̄N ≤ l)

E0 (ez̄N | z̄N ≥ u)− E0 (ez̄N | z̄N ≤ l)
. (2.24)

We can now use the statements (2.20) and (2.21) of Lemma 2.3.

It can be easily shown that E0(ez1 |z1 ≤ 0) → 1 and E0(ez1 |z1 ≥ 0) → 1 as

Γ→ 0. Therefore from Lemma 2.3 we get that

E0

(
ez̄N
∣∣ z̄N ≤ l)→ el ,

and

E0

(
ez̄N
∣∣ z̄N ≥ u)→ eu

as Γ → 0. This, together with (2.24) concludes the proof of the first statement of

the proposition. The proof of the second statement is entirely analogous.
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2.C Fixed precision analogue of Proposition 2.1

Proposition 2.14. Suppose the stopping boundaries of the SLRT are l = log β

and u = log 1
α and the precision of each measurement Γ is fixed. Then

E0(NΓ) ≤ 2

Γµ2

(
α logα+ (1− α) log

1

β
+ (1− α)

√
Γ

8π

(√
Γ

2
µ+ e−Γµ2/8

))
,

and

E1(NΓ) ≤ 2

Γµ2

(
(1− β) log

1

α
+ β log β +

√
Γ

8π

(√
Γ

2
µ+ e−Γµ2/8

))
.

Proof. Note that in the SLRTs setting, the stopping boundaries are chosen as

l = log β and u = log 1
α one has type I and II error probabilities at most α and β

respectively (see [141]). Now returning to the proof of Proposition 1 if we controlled

the quantities E0(z1|z1 ≤ l) and E1(z1|z1 ≥ u) in inequality (2.23) we could arrive

at a fixed precision result. This can be easily done, for instance under the null

z1 ∼ N(−Γµ2/2,Γµ2) so

E0(z1|z1 ≤ 0) =
E0(z11{z1 ≤ 0})

P0(z1 ≤ 0)

≥ 1

2

(
−Γµ2

2
+

∫ Γµ2/2

−∞

x√
2πΓµ

e
− x2

2Γµ2 dx

)

=
1

2

(
−Γµ2

2
−
√

Γ

2π
µ

∫ Γµ2/2

−∞

−x
Γµ2

e
− x2

2Γµ2 dx

)

= −
√

Γ

8π

(√
Γ

2
µ+ e−Γµ2/8

)
.

2.D Proof of Proposition 2.9

The maximum of the quantity above is attained when ‖b‖1 = m, so we will assume

this in what follows.

For a fixed i ∈ [n] let Ci = {S ∈ C : i ∈ S}. In case of symmetric classes we have

that |Ci| = c does not depend on i. Also note that c/|C| = s/n. To see the latter
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consider a random coordinate J which is uniform on [n], and a random coordinate

K, which is selected sequentially: first select S ∈ C uniformly at random, then

select K ∈ S uniformly at random. When C is symmetric the distribution of J and

K are the same, and

1

n
= P(J = i) = P(K = i) =

c

|C|
1

s
.

With this we can write

min
S∈C

∑
S′∈C\{S}

∑
i∈S4S′

bi = min
S∈C

∑
S′∈C\{S}

 ∑
i∈S\S′

bi +
∑

i∈S′\S

bi


= min

S∈C

(∑
i∈S

∑
S′∈C\{S}

1{i /∈ S′} bi

+
∑
i/∈S

∑
S′∈C\{S}

1{i ∈ S′} bi

)

= min
S∈C

(∑
i∈S

(|C| − c) bi +
∑
i/∈S

c bi

)
= min

S∈C
((|C| − c) bS + c (m− bS))

= cm+ (|C| − 2c) min
S∈C

bS ,

where bS =
∑
i∈S bi. However,

min
S∈C

bS ≤
1

|C|
∑
S∈C

bS =
1

|C|
∑
S∈C

∑
i∈S

bi

=
1

|C|

n∑
i=1

1{i ∈ S}bi =
1

|C|
c

n∑
i=1

bi

=
cm

|C|
.

Now note that when bi = m/n for all i = 1, . . . , n, we have bS = sm/n = cm/|C|
for all S ∈ C.
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2.E Proof of Lemma 2.2

Consider the following sequence of graphs denoted by G0, G1, G2, . . . , GK , where

K ∈ N. Let G0 denote the graph with p vertices and no edges. The graphs

G1, . . . , GK are obtained recursively by adding a disjoint star of s to the graph until

this is no longer possible. In other words, for k ∈ [K] the graph Gk is constructed

by adding a disjoint s-star of Gk−1. Let dk(v) denote the degree of v ∈ Gk. Notice

that for any k ∈ {0, . . . ,K} if there exists v ∈ Gk such that dk(v) < p − 1 − s we

can add a star to Gk centered in v. This means that for the index K we have that

dK(v) ≥ p− 1− s for all v ∈ GK . Thus the graph GK has at least p(p− 1− s)/2
edges and is built entirely of disjoint stars of size s. The statement now follows.
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Chapter 3

Adaptive Compressive

Sensing for Structured

Support Recovery

This chapter is based on joint work with Rui Castro. The results presented here

can also be found in Castro & T. [43].

3.1 Introduction

Compressive sensing provides an efficient way to estimate signals that have a sparse

representation in some basis or frame, see Candès & Tao [35, 34], Donoho [65],

Candès & Wakin [36], Wainwright [140]. If the measurements can be chosen in a

sequential and adaptive fashion, it is possible to achieve further performance gains

in the sense that weaker signals can be estimated more accurately than in the non-

adaptive setting, see Castro [40], Malloy & Nowak [107]. Furthermore, in some

situations the signal may have additional structure that might be exploited.

In this chapter we investigate the problem of recovering the support of struc-

tured sparse signals using adaptive compressive measurements. Recall that in com-

pressive sensing, we observe linear combinations of the signal with vectors of our

choice, that are then perturbed by measurement noise. This makes the informa-

tion the sample provides about the support different in nature then in the case of
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coordinate-wise sampling investigated in Chapter 2.

Our focus is on the performance gains one can achieve when adaptively de-

signing the sensing matrix compared to the situation where the sensing matrix is

constructed non-adaptively. Furthermore, our aim is to highlight the way in which

adaptive compressed sensing can capitalize on structural information. An appeal-

ing feature of compressed sensing is that accurate estimation can be done using

only a few measurements. With this in mind we design algorithms for this problem

that are sample-efficient, in the sense that they collect a number of observations

that is not larger than the sample complexity of the best non-adaptive strategies.

The classes of structured support sets under consideration in this chapter are

the same ones as in Chapter 2, namely

• s-sets: any subset of [n] with size s;

• s-intervals: sets consisting of s consecutive elements of [n];

• unions of s-intervals: unions of k disjoint s-intervals;

• s-stars: any star of size s in a complete graph (where the edges of the graph

are identified with [n]);

• unions of s-stars: unions of k disjoint s-stars;

• s-submatrices: any submatrix of a given size sr × sc of an nr × nc matrix.

We analyze the fundamental limits of recovering support sets for the above

classes under non-adaptive and adaptive sensing paradigms. We also provide adap-

tive sensing protocols with near-optimal performance to show the tightness of the

fundamental limits mentioned before, and to illustrate how adaptive compressed

sensing can capitalize on the structure of the support sets in the estimation. Fi-

nally, we provide procedures that, next to being near optimal in a statistical sense,

also perform estimation using only a small number of measurements and are thus

appealing from a practical point of view.

Note that, while adaptive compressive measurements might be very advanta-

geous from a statistical and computational point of view, they also require a flexible

infrastructure and hardware. In some settings, like that of the single-pixel camera

(Duarte et al. [68]), all the necessary infrastructure is already in place. In tomog-

raphy and magnetic resonance imaging the use of adaptive compressive samples is

also possible, as described by Deutsch, Averbush & Dekel in [62] and Panych &
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Jolesz in [118]. It is important to note that in the latter settings one has additional

physical constraints that need to be accounted for. Other motivating examples

include applications in sensor networks and monitoring, for instance identifying

viruses in human or computer networks, or gene-expression studies, for instance

when we have a group of genes co-expressed under the influence of a drug, or we

have patients exhibiting similar symptoms (see Yoon et al. [147] and Moore et al.

[112]). The results in this paper are foundational in nature, and aim at under-

standing the draws and limitations of adaptive compressive sensing in the context

of structured support recovery. Furthermore, our model mostly fits the case where

“compression” happens in the physical domain and before sensing takes place (e.g.,

the settings in Duarte et al. [68], Deutsch, Averbush & Dekel [62] and Panych &

Jolesz [118]). It is important to note that if the sensing is further constrained (so

that the measurement vectors cannot be arbitrary) then the performance of any

algorithm will be affected. For a discussion on how such constraints can affect the

performance of adaptive compressive sensing see e.g. Davenport et al. [59].

Table 3.1: Summary of scaling laws for the signal magnitude.

Non-Adaptive Sensing Adaptive Sensing
(necessary) (necessary) (sufficient)

s-sets µ ∼
√

n
m

logn µ ∼
√

n
m

log s µ ∼
√

n
m

log s

unions of k disjoint s-intervals µ ∼ 1
s

√
n
m

log n
ks

µ ∼ 1
s

√
n
m

log ks µ ∼ 1
s

√
n
m

log ks

unions of k disjoint s-stars µ ∼
√

n
m

log
√
n
ks

µ ∼ 1
s

√
n
m

log ks µ ∼ 1
s

√
n
m

log ks
√
s×
√
s submatrices of

an
√
n×
√
n matrix µ ∼

√
n√
sm

log n
s

µ ∼ 1
s

√
n
m

log s µ ∼ 1
s3/4

√
n
sm

log s

Scaling laws for the signal magnitude µ (constants omitted) that are necessary/sufficient for

maxS∈C E(Ŝ4S)→ 0 as n→∞, where C denotes the corresponding class of support sets, and
m denotes the total amount of sensing energy available for our measurements in expectation

(see (3.3)). The results in the last column make some sparsity assumptions, meaning s� n. For
exact conditions see relevant propositions of Section 3.3.1.

Table 3.1 summarizes some of our results, showing necessary and sufficient con-

ditions for the signal magnitude for accurate support estimation. It also highlights

two different facets of the gains of adaptive sensing over non-adaptive sensing,

similar to what we have seen in Chapter 2. First, note that the necessary condi-

tions of non-adaptive sensing include a
√

log n factor for each of the classes under
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consideration. This factor is replaced by the logarithm of the sparsity when con-

sidering adaptive sensing, and this is due to the fact that adaptive strategies are

better able to mitigate the effects of noise. Second, for certain classes adaptive

sensing can gain greater leverage from the structure of the support sets compared

to non-adaptive sensing. This phenomenon is best visible considering the class

of s-stars, where estimators using non-adaptive sensing gain practically nothing

from the structural information whereas adaptive sensing benefits greatly from it.

Note that the necessary and sufficient conditions for the class of submatrices using

adaptive sensing do not match, and a full characterization of the problem in that

case remains open. We also remark at this point that the results derived in this

chapter are non-asymptotic in nature and also account for the constant factors in

the scaling laws. The asymptotic presentation in Table 3.1 merely makes it easier

to highlight the main contributions.

It is instructive to note a fundamental difference between non-adaptive sensing

and adaptive sensing problems. In non-adaptive sensing support recovery methods

can often be computationally demanding or even intractable, a prominent exam-

ple being submatrix estimation [31, 18, 24]. Contrasting this, adaptive sensing

algorithms can solve this problem using polynomial-time algorithms. Though this

might seem surprising, one has to bear in mind that there is a fundamental dif-

ference between the two setups. In fact when using adaptive sensing one already

shakes most of the computational burdens by tailoring the sample to facilitate infer-

ence. The bottleneck of such algorithms lies in sample collection, but given a good

strategy the sample will contain much less confounders making the inference itself

easier computationally. This, next to increased statistical power, can be another

appealing reason for using adaptive sensing methods whenever possible.

This chapter can be seen as an extension of the previous one in that we consider

the compressive sensing model, which is more general the than coordinate-wise

sampling model. Although some of the techniques and insights can be used from

there, changing the measurement model introduces a number of new challenges

to tackle. In particular the information provided by compressive measurements is

very different in nature from that provided by coordinate-wise observations. This

means that structural information is captured in the observations in a different

way, which influences both the theoretical limits and the way support recovery

procedures need to be designed.
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Related work: The results in this chapter are built on a number of recent con-

tributions on detection and estimation of sparse signals using compressive sensing.

Considering general sparse signals without structure Arias-Castro, Candès & Dav-

enport [7] and Castro [40] provide theoretical performance limits of adaptive com-

pressive sensing, characterizing the gains one can realize when adaptively designing

the sensing matrix. Complementing these results, Haupt et al. [82] and Malloy &

Nowak [108, 107] provide efficient near optimal procedures for estimation. Con-

sidering the problem of detection Arias-Castro [5] provides both theoretical limits

and optimal procedures both in the non-adaptive and adaptive compressed sensing

settings.

The problem of estimating structured sparse signals was examined in the past in

a multitude of different settings. For an extensive literature review in the setting

of coordinate-wise observations we also direct the reader to the introduction of

Chapter 2.

Such problems received attention in the compressive sensing setting as well. In

[20] Baraniuk et al. consider recovering tree-structured signals in the non-adaptive

framework and show that structural information enhances the performance of com-

pressive sensing methods. Recovering tree-structured signals is also investigated by

Soni & Haupt [134, 135] but in these works the problem is examined in the adap-

tive sensing setting. The authors consider signals in which the activation pattern

is a rooted subtree of a given tree, and show that one can realize further gains

recovering these types of supports by adaptively designing the sensing matrix. Our

work is closely related, but the structured class investigated by Soni & Haupt in

[134, 135] is clearly different from the ones listed in Table 3.1.

In [97] Krishnamuthy, Sharpnack & Singh consider activation patterns that

have low cut-size in an arbitrary (fixed) signal graph and also find that adaptivity

enhances the statistical performance of compressive sensing. Though these types of

classes seem closer to the ones investigated in this chapter, note that the structures

in Table 3.1 do not have lower cut-size than an arbitrary s-sparse set, meaning

that these can not be efficiently encoded with the definitions of Krishnamuthy,

Sharpnack & Singh [97]. As an example, arbitrary submatrices in a 2d-lattice have

typical cut-size on the order of s, the same as any s-sparse subset of the 2d-lattice.

Similar comments apply to the other classes considered here as well.

Moving away from graphs, Balakrishnan et al. investigate the problem of find-

ing block-structured activations in a signal matrix considering both non-adaptive

81



Adaptive Compressive Sensing for Structured Support Recovery

and adaptive measurements in [17]. They report similar findings to the previous

authors, namely that both adaptivity and structural information provide gains

in support recovery when dealing with block-activations in a matrix. This work

extends these results by investigating more general structured activations.

As mentioned above, an appeal of compressive sensing is that accurate esti-

mation can be done using only a small number of measurements. The number of

measurements an estimation procedure uses is called the sample complexity of that

procedure. The sample complexity properties of compressive sensing were studied

by Aksoylar, Atia & Saligrama in [2] and [3] for the support recovery of general

sparse signals in the non-adaptive and adaptive sensing settings respectively.

Organization: The chapter is structured as follows. Section 3.2 describes the

problem setting in detail. In Section 3.3 we provide adaptive sensing procedures for

structured support recovery and analyze the theoretical limits of the problem, both

under non-adaptive and adaptive sensing paradigms. In this section we only make

a restriction to the sensing power available, but not on the number of projective

measurements that we are allowed to make. In Section 3.4 we further restrict

the number of measurements. Finally we provide some concluding remarks in

Section 3.6.

3.2 Problem Setting

In this chapter we consider the following statistical model. The signal model is

the same as in the previous chapter, but we recall it here for convenience. Let

x = (x1, . . . , xn) ∈ Rn be a vector of the form

xi =

{
µ if i ∈ S,

0 if i /∈ S,
(3.1)

where µ > 0 and S is an unknown element of a class of sets denoted by C. We refer

to x as the signal and to S as the support or significant/active components of the

signal. The set S is our main object of interest. The signal model (3.1) may seem

overly restrictive at first because of the fact that each non-zero entry has the same

value µ. However, our lower bounds and the procedures of Section 3.4.1 can be

generalized to signals with active components of arbitrary magnitudes and signs,
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in which case the value µ would play the role of the minimal absolute value of the

non-zero components. For sake of simplicity we do not discuss this extension here,

but refer the reader to Arias-Castro [5], Malloy & Nowak [107] for details on how

this can be done.

We are allowed to collect multiple measurements of the form

Yt = 〈At,x〉+Wt, t = 1, 2, . . . . (3.2)

Thus each measurement is the inner product of the signal x with the vector

At ∈ Rn, contaminated by Gaussian noise. The noise terms Wt ∼ N(0, 1) are

independent and identically distributed (i.i.d.) standard normal random variables,

also independent of {Aj}tj=1. Under the adaptive sensing paradigm At are allowed

to be functions of the past observations {Yj , Aj}t−1
j=1. This model is only interesting

if one poses some constraint on the total amount of sensing energy available. Let

A denote the matrix whose row t is At. We require

sup
S∈C

ES
(
‖A‖2F

)
= ES

(∑
t

‖At‖2
)
≤ m , (3.3)

where ‖ · ‖F denotes the Frobenius norm, m is our total energy budget, and ES
denotes the expectation with respect to the joint distribution of {At, Yt}t≥1 when

S ∈ C is the support set.

Remark 3.1. As in the previous chapter, we could consider algorithms satisfying

an exact energy constraint as opposed to the expected energy constraint in (3.3).

Similar comments apply as in Chapter 2, namely that efficient estimation can be

done under the more strict constraint as well, and the results would essentially

remain unchanged.

In detail, the same comments apply for lower bounds and the procedures of

Section 3.3.1 as before, thus the reader is referred to Appendix 2.A. Considering

the procedures of Section 3.4.1, note that these already satisfy an energy constraint

without expectations.

3.2.1 Inference Goals

This chapter aims at characterizing the difficulty of recovering structured sparse

signal supports with adaptive compressive sensing. We are interested in settings

where the class C contains sets with some sort of structure, for instance the active
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components of x are consecutive. For the unstructured case, that is, when C
contains every set of a given cardinality, there already exists a lower bound by

Castro in [40], and a procedure that achieves this lower bound by Malloy & Nowak

in [107]. The main goal of this chapter is to provide similar results for structured

sparse sets.

We are interested in two aspects of adaptive compressive sensing: statistical

power and sample complexity. First, given n, m, ε and C the aim is to characterize

the minimal signal strength µ for which S can be reliably estimated, which means

there is an algorithm and sensing strategy such that for a given ε > 0,

max
S∈C

ES(|Ŝ4S|) ≤ ε , (3.4)

where Ŝ4S is the symmetric set difference. Furthermore, we aim to construct such

an adaptive sensing strategy. Although the above setting makes sense whenever

ε ∈ [0, |S|], the problem is only interesting when ε is small. Hence we will take ε

as an element of [0, 1].

Remark 3.2. We remark at this point that our main interest lies in the scaling of

µ in terms of the model parameters, but we do not aim to find accurate constants.

With this in mind, the procedures throughout the paper could be improved with a

more careful and refined analysis. However, these would only improve constant

factors, and so we chose to keep technicalities to a minimum providing a smoother

presentation at the price of suboptimal constants.

Second, given n, m, µ, ε and C we wish to characterize the minimal number of

samples needed to ensure (3.4). Considering the unstructured case, it was shown

by Aksoylar, Atia & Saligrama in [2] that non-adaptive procedures need at least

O(s log n
s ) measurements, and in [36] Candès & Wakin show that this bound is

achievable (these results apply when the signal strength µ is close to the threshold

of estimability). On the other hand, to the best knowledge of the authors, an

exact characterization of the sample complexity for adaptive procedures is not yet

available, though there exists work on the topic by Aksoylar & Saligrama [3]. In

that work the authors present a result that states that the sample complexity of

the problem essentially scales as s. However, it is not clear if that bound is tight.

In Section 3.6 we provide more insight on this question.

Remark 3.3. As mentioned in the introduction, this chapter can be seen as an

extension of Chapter 2 from component-wise sampling to the more general com-
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pressive sensing, and it is instructive to briefly discuss the differences between the

two setups. Component-wise observations can be viewed as restricting compressive

sensing by requiring each measurement vector At to have exactly one non-zero entry

(though the problem is set up a bit differently in Chapter 2, the two are effectively

the same). In the previous chapter we have seen that the necessary conditions for

support recovery for the classes considered are as follows: the condition is the same

for s-sets, while for the other classes the 1
s term moves inside the square-root if

one only allows component-wise observations. Also, these conditions are sufficient

in the case of component-wise samples.

Lying at the heart of the difference between the rates for support recovery be-

tween the two setups is the increased detection power of compressive sensing over

coordinate-wise sampling. In a nutshell, detection of a signal is the problem of

differentiating between two hypotheses: the null being that all signal components

are zero and the alternative being that there are s non-zero components somewhere

in the signal vector. In [5] Arias-Castro shows that the necessary and sufficient

conditions for detection for compressive sensing is 1
s

√
n
m , whereas in [40] Cas-

tro shows the same for component-wise sampling to be
√

1
s
n
m . When moving from

component-wise sampling to compressive sensing, for certain structured classes it is

possible to make use of this increased detection power, which in turn lowers the re-

quirement for the signal magnitude. This also means algorithms need to be designed

with a different mindset when using compressive sensing instead of coordinate-wise

sampling.

In what follows we use the symbol 1 to denote both the usual indicator function

(e.g., 1{i ∈ S} takes the value 1 if i ∈ S and zero otherwise), and to denote binary

vectors with support S. For instance 1S denotes an element of {0, 1}n for which the

entries in S have value 1 and all the other entries have value 0. Note that to ease

distinction of the two the arguments of the functions are in a different place (after

the symbol in the first case and in the subscript of the symbol in the second case).

Furthermore, let PS denote the joint distribution of {Aj , Yj}1,2,... when S ∈ C is

the support set, and let ES denote the expectation with respect to PS .

3.3 Signal strength

We now examine the minimal signal strength required to recover structured support

sets. In this setup we are allowed to make an infinite number of measurements of the
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form (3.2) (provided that the budget (3.3) is satisfied). Although this might not be

reasonable from a practical standpoint, it is a good place to start for understanding

the fundamental performance limits of adaptive compressing sensing, and we will

see in Section 3.4 that the same performance can be attained with a small number

of measurements.

3.3.1 Procedures

It is instructive to briefly consider a simple support recovery algorithm for the

unstructured case. When the support set can be any set of a given cardinality,

and there is no restriction on the number of samples we are allowed to take, we

can use essentially the same procedure as in Chapter 2. That is, we perform a

Sequential Likelihood Ratio Test for each coordinate separately. More precisely,

for every coordinate i ∈ [n] collect observations of the form

Yi,j = axi +Wj = 〈a1{i},x〉+Wj , j = 1, . . . , Ni ,

with some fixed a > 0, where we recall that 1{i} is a singleton vector. The number

of observations Ni is random and is given by

Ni = min
{
n ∈ N :

n∑
j=1

log
dP1(Yi,j)

dP0(Yi,j)
/∈ (l, u)

}
,

where P0 (P1) is the distribution of the observations when component i is non-

active (active), and l < 0 < u are the lower and upper stopping boundaries of

the SLRT. Our estimator Ŝ will be the collection of components i for which the

log-likelihood process above hits the upper stopping boundary u. Considering

the test of component xi we have the following result, which is the analogue of

Proposition 2.1:

Lemma 3.1. Set l = log β
1−α and u = log 1−β

α with α, β ∈ (0, 1/2), and let the

type I and type II error probabilities of the SLRT described above be αa and βa.

Then αa → α and βa → β as a→ 0. Furthermore

a2E0(Ni) ≤
2

µ2

(
α log

α

1− β
+ (1− α) log

1− α
β

)
≤ 2

µ2
log

1

β

86



and

a2E1(Ni) ≤
2

µ2

(
β log

β

1− α
+ (1− β) log

1− β
α

)
≤ 2

µ2
log

1

α

as a→ 0.

Proof. The proof is identical to that of Proposition 2.1.

Using the previous result we can immediately analyze the above procedure. Set

α = ε/2n and β = ε/2s in the lemma above, and choose a to be arbitrarily small.

Hence αa and βa will be close to the nominal error probabilities α and β and we

ensure (3.4). Then using the other part of Lemma 3.1 we can upper bound the

expected energy used by the tests. Summing this over all the tests and using (3.3)

we arrive at the following:

Proposition 3.1. Testing each component xi, i = 1, . . . , n as described above

yields an estimator satisfying (3.3) and (3.4) whenever

µ ≥
√

2n

m
log

2s

ε
+

2s

m
log

2n

ε
.

When the support is sparse (that is s = o(n)), the first term dominates the

bound above. This upper bound asymptotically coincides with the lower bound of

Castro [40] showing that the simple procedure above is near optimal.

Remark 3.4. Note that the lower bound presented by Castro in [40] is valid for

a slightly broader class than the class of s-sets, namely one also has to include

(s−1)−sets into the class. However, the procedure outlined above works without any

modifications for this broadened class as well, and so the result of Proposition 3.1

holds for this larger class. A similar comment applies to all the procedures presented

later on: the procedures are presented for classes of a given sparsity for sake of

clarity, but the analysis shows that they also work for classes containing sets of

slightly different sparsity. This is important to note as, because of technical reasons,

some of the lower bounds of Section 3.3.2 can only deal with such enlarged classes.

The procedures for recovering structured support sets will be very similar in

nature, but slightly modified to take advantage of the structural information. In

particular we know that it is possible to detect the presence of weak signals using

compressive sensing (see Arias-Castro [5]). In order to take advantage of this

property our procedures consist of two phases: a search phase and a refinement

phase. The aim of the search phase is to find the approximate location of the signal
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using a detection-type method, that is identifying a subset of components P ⊂ [n]

such that |P | � n and S ⊂ P with high probability. Once this is done we can focus

our attention exclusively on P in the refinement phase and estimate the support

in the same manner as in the unstructured case.

Unions of s-intervals

The first structured class that we consider is the unions of k disjoint s-intervals.

A similar setting was considered in by Balakrishnan et al. in [17], where they

considered recovering block-structured activations in a signal matrix. Hence the

case k = 1 is a special case of their setting when the signal matrix has one row.

The unions of intervals class is a good starting point to highlight the main ideas

of how recovery algorithms can benefit from structural information in the adaptive

compressed sensing setting, particularly because it can be viewed as a bridge be-

tween the unstructured case (with k = s and intervals of length one) to the most

structured class (k = 1).

Consider the class of sets that are unions of k disjoint intervals of length s.

Formally, let Si = [i, i+ s− 1] for i ∈ [n− s+ 1] and

C =
{
S ⊂ [n] : S =

k⋃
i=1

Si, Si ∩ Sj = ∅ ∀i 6= j
}
.

In principle we could also consider overlapping intervals. Although this can still

be handled in a similar fashion as done below it would result in a more cluttered

presentation.

Our procedure for estimating S is as follows. Split the index set [n] into con-

secutive bins of length s/2 denoted by P (1), . . . ,P (2n/s). We suppose that 2n is

divisible by s, as it makes the presentation less cluttered. The procedure can be

easily modified if this is not satisfied. Of these bins at least k (and at most 2k)

are contained entirely in S. In the search phase we aim to find the approximate

location of the support by finding these bins. To do this we test the following

hypotheses

H
(i)
0 : P (i) ∩ S = ∅ versus H

(i)
1 : P (i) ⊂ S i ∈ [2n/s] .

We use a SLRT to decide between H
(i)
0 and H

(i)
1 for each i ∈ [2n/s], all with the

same type I and type II error probabilities α and β. The choices of α and β and
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the exact way of carrying out the tests will be described later. As an output of

the search phase, we define the set P based on the tests above. Since some P (i)

may only partially intersect the support S we set P to be the union of those bins

P (i) for which either H
(i−1)
1 , H

(i)
1 or H

(i+1)
1 was accepted. This way we ensure

PS(S * P ) ≤ 2kβ. We also wish to ensure that P is small, and to do so we must

to choose α appropriately. Once this is done we can move on to the search phase

and find the support within P . We can do this in a very crude way and use a

similar procedure as in the unstructured case with type I and II error probabilities

α′, β′. The sensing energy used in this phase will be negligible due to P being

small. Finally the estimator Ŝ will be the collection of components that were

deemed active at the end of the refinement phase.

We now choose α, β, α′, β′ to ensure the estimator satisfies (3.4). We have

ES
(
|Ŝ4S|

)
≤ ES

(
|Ŝ4S|

∣∣S * P
)
PS(S * P ) + ES

(
|Ŝ4S|

∣∣S ⊆ P
)

≤ ES

(
|S \ P |+

∑
i∈P : i/∈S

α′ +
∑

i∈P : i∈S

β′

∣∣∣∣∣S * P

)
2kβ

+ nα′ + ksβ′ .

Hence choosing α′ = ε/4n, β′ = ε/4ks and β = ε/8k2s2 ensures that (3.4) holds.

Note that α does not influence the probability of error directly. However, it does

influence the size of P , and hence the total sensing energy required by the proce-

dure.

To perform the ith test of the search phase we collect measurements using

projection vectors of the form a1P (i) with an sufficiently small a and perform a

SLRT with stopping boundaries l < 0 < u. Let E0 and E1 denote the expectation

when H
(i)
0 or H

(i)
1 is true, respectively. Similarly to the unstructured case we now

have the following:

Lemma 3.2. Set l = log β
1−α and u = log 1−β

α with α, β ∈ (0, 1/2), and let the

type I and type II error probabilities of the SLRT described above be αa and βa.

Then αa → α and βa → β as a→ 0. Furthermore

a2E0(Ni) ≤
2

(s/2)2µ2

(
α log

α

1− β
+ (1− α) log

1− α
β

)
≤ 2

(s/2)2µ2
log

1

β
,
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and

a2E1(Ni) ≤
2

(s/2)2µ2

(
β log

β

1− α
+ (1− β) log

1− β
α

)
≤ 2

(s/2)2µ2
log

1

α
,

as a→ 0.

Using this we can upper bound the amount of sensing energy used for the test

of P (i) under H
(i)
0 and H

(i)
1 . However, now it is possible that neither statement in

H
(i)
0 nor H

(i)
1 holds for a given bin P (i). Considering a test where neither of them

is true we can still carry out the the same calculations as in Lemma 3.1 and thus

upper bound the expected sensing energy used for the test.

Lemma 3.3. Set l = log β
1−α and u = log 1−β

α with α, β ∈ (0, 1/2), and let s̃

denote the true number of signal components in P (i). Suppose that in the setting

above neither H
(i)
0 nor H

(i)
1 is true, that is 0 < s̃ < s/2. Furthermore suppose

s̃ 6= s/4. Then, as a→ 0,

a2Es̃(Ni) ≤
2

sµ2
log max

{
1− α
β

,
1− β
α

}
≤ 2

sµ2
log

1

min{α, β}
,

where Es̃ denotes the expectation when the number of signal components in P (i) is

s̃.

Proof. In what follows we drop the subscript i to ease notation. The log-likelihood

ratio for an observation Yj is

zj = log
dP1(Yj)

dP0(Yj)
=
asµYj

2
− a2s2µ2

8
, j = 1, . . . , N .

Suppose first that s/4 < s̃ < s/2. Note that now the drift of the log-likelihood

ratio process is positive. Now z1 ∼ N
(

(s̃− s
4 )a

2sµ2

2 , a
2s2µ2

4

)
. From normality we

still have E(z1|z1 ≥ 0) ≥ E(z1 − c|z1 ≥ c), ∀c > 0. Combining this with Wald’s

identity we get

E(N)E(z1) = E(z̄N ) ≤ u+ E(z1|z1 ≥ 0) ,
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where z̄N =
∑N
j=1 zj . Denoting ξ ∼ N(0, 1),

E(z1|z1 ≥ 0) ≤ 2E(z11{z1 ≥ 0})

≤
(
s̃− s

4

) a2sµ2

2
+ 2E

(asµ
2
ξ1{ξ ≥ −

(
s̃− s

4

)
µ}
)

≤ asµ
((
s̃− s

4

) aµ
2

+ 1
)
.

Plugging this in, and using that E(z1) ≥ a2sµ2

2 we get

a2E(N) ≤ 2

sµ2
u+

2a

µ

((
s̃− s

4

) aµ
2

+ 1
)
.

Hence in the limit a→ 0 we get

a2E(N) ≤ 2

sµ2
log

1− β
α
≤ 2

sµ2
log

1

α
.

We can treat the case 0 < s̃ < s/4 in a similar fashion.

Remark 3.5. When s̃ = s/4 the argument breaks down, because of ties when s is

divisible by 4. However this is only a technical issue that can be simply circumvented

by choosing the bins to be of size s/2− 1, for instance.

Now we are ready to upper bound the expected sensing energy used by the

procedure. Given α and β we can deal with the search phase and by Lemma 3.1

we can deal with the refinement phase given α′, β′ and |P |.
Recall, the support consists of k intervals of length s. Note that we have

ES(|P |) ≤ 3ks+
3s

2

∑
i: P (i)*S

α .

Thus choosing α = ε/6n we have ES(|P |) ≤ 3ks+ ε/2 ≤ 4ks.

By denoting the part of the sensing matrix A corresponding to the search and

refinement phases by Asearch and Arefinement respectively, we have

ES(‖A‖F ) ≤ ES(‖Asearch‖2F ) + ES
(
ES(‖Arefinement‖2F

∣∣|P |))
≤ 16n

s2µ2
log

2
√

2ks

ε
+

4k

sµ2
log

6n

ε
+

2k

µ2
log

6n

ε
+

8ks

µ2
log

4n

ε
. (3.5)

When ks � n the first term dominates the bound above. Using this and
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combining the above with (3.3) we arrive at the following:

Proposition 3.2. Consider the class of k disjoint s-intervals and let n
log 4n ≥ ks

3.

Then the above estimator satisfies (3.3) and (3.4) whenever

µ ≥

√
30n

s2m
log

2
√

2ks

ε
.

Remark 3.6. The condition on the sparsity in Proposition 3.2 is needed to ensure

that the term corresponding to the search phase in (3.5) becomes dominant. By

performing the refinement phase in a more sophisticated way one can relax that

condition. For instance using k binary searches to find the left endpoint of the

intervals the sparsity condition becomes n
log 6n ≥ ks2 log s. We expect this to be

essentially the best condition one can hope for, as the lower bounds of Section 3.3.2

show that the first term in (3.5) is unavoidable.

The bound of Proposition 3.2 matches the lower bound in Section 3.3.2, hence

in this sparsity regime the procedure above is optimal apart from constants.

Unions of s-stars

Let the components of x be in one-to-one correspondence to edges of a complete

graph G = (V,E). Recall that we call a collection of s edges sharing a common

vertex an s-star (for a formal definition see page 18). Let C be the class of unions

of k disjoint s-stars. In what follows we use the notation |V | = p.

The procedure for support estimation is very similar to the one presented for

s-intervals. We introduce the procedure when k = 1, but the idea can be carried

through for larger k. Consider the subsets P (i), i = 1, . . . , p, defined as follows:

P (i) = {j ∈ [n] : vi ∈ ej} ,

that is P (i) contains all the components whose corresponding edges contain vertex

vi. These subsets are not a partition of [n] as they are not disjoint. Nonetheless

we know that

|P (i) ∩ S| ∈ {0, 1, s} ∀i ∈ [p] ,

and can use this to find the approximate location of S. In the search phase we test
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the hypotheses

H
(i)
0 : |P (i) ∩ S| = 1 versus H

(i)
1 : |P (i) ∩ S| = s i ∈ [p] .

In words we test whether vertex vi is the center of the star or not for all i ∈ [p].

Note that when vertex vi is not the center of the star we have |P (i)∩S| ∈ {0, 1}. By

specifying H
(i)
0 as above and using an SLRT to decide between the two hypotheses,

we ensure that when |P (i) ∩ S| = 0 both the probability of error and the expected

number of steps will be smaller than when |P (i) ∩ S| = 1. This is due to the

monotonicity of the likelihood ratio.

As noted before we use independent SLRTs for the tests above with common

type I and type II error probabilities α, β. The exact details of these tests will be

covered later. Using these tests we can define P , the output of the search phase,

as the union of those P (i) for which H
(i)
1 is accepted. With the appropriate choices

for α and β we can ensure that with high probability S ⊂ P and that |P | is small.

In fact we would like to accept exactly one H
(i)
1 . Again the right choice for β

will ensure PS(S * P ) is small whereas the right choice of α ensures that |P | is

small with high probability. In the subsequent refinement phase we estimate S

within P . We do this using the same procedure as in the unstructured case with

error probabilities α′, β′. Finally the estimator Ŝ will be the collection of those

components which were deemed active in the refinement phase.

Now we choose the error probabilities for the tests such that we can ensure (3.4)

for our procedure. We have

ES
(
|Ŝ4S|

)
≤ ES

(
|Ŝ4S|

∣∣S * P
)
PS(S * P ) + ES

(
|Ŝ4S|

∣∣S ⊆ P
)

≤ ES

(
|S \ P |+

∑
i∈P : i/∈S

α′ +
∑

i∈P : i∈S

β′

∣∣∣∣∣S * P

)
β

+ nα′ + sβ′ .

Thus the choices β = ε/4s and α′ = ε/4n, β′ = ε/4s suffice. As noted before, the

choice of α will influence the size of P and will be discussed later.

To test H
(i)
0 versus H

(i)
1 we collect observations using the sensing vector a1P (i)

with an arbitrarily small a and perform a SLRT such as the one in Lemma 3.2.

When there is no active component in P (i) the drift of the likelihood-ratio process

is smaller than if there was one active component by monotonicity of the likelihood
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ratio. This results in the test terminating sooner in expectation than it would

under H
(i)
0 and the probability of accepting H

(i)
1 is also smaller than the type I

error probability α.

We continue by upper bounding the expected sensing energy used by the pro-

cedure. Again we have results similar to Lemma 3.2 for the tests carried out in

the search phase, and we can use Lemma 3.1 to bound the energy used in the

refinement phase. Hence, given α, β, α′, β′ and P , we can bound the total energy

used by the procedure. Also note that

ES(|P |) ≤ p+ p
∑

i: P (i)*S

α ,

thus choosing α = ε/2n ensures ES(|P |) ≤ 2p.

Using the notation Asearch and Arefinement as before we get

ES(‖A‖F ) ≤ ES(‖Asearch‖2F ) + ES
(
ES(‖Arefinement‖2F

∣∣|P |))
≤ 2p(p− 1)

(s− 1)2µ2
log

4s

ε
+

2p

(s− 1)2µ2
log

4n

ε
+

4p

µ2
log

4n

ε
.

When s � n the first term dominates the bound. Combining this with (3.3) we

get the following:

Proposition 3.3. Consider the class of s-stars and suppose that
√
n

log 4n ≥ s
2. Then

the above estimator satisfies (3.3) and (3.4) whenever

µ ≥

√
16n

(s− 1)2m
log

4s

ε
.

In Section 3.3.2 we show that the bound of Proposition 3.3 is near optimal in

this sparsity regime. We also show that the sparsity assumption in the proposition

above is needed and is not an artifact of our method.

When k > 1 (S consists of two or more s-stars) similar arguments hold. When

k � s it is possible to modify the procedure such that the search phase aims to find

the center of the k stars. The modifications include settingH
(i)
0 : |P (i)∩S| = k, and

slightly changing α, β, α′, β′ to account for the fact that there is more than one star.

For instance choosing α, α′ to be the same as before and setting β = β′ = ε/4ks

we get the following:
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Proposition 3.4. Consider the class of k disjoint s-stars and suppose k < s and
√
n

log 4n ≥ k(s− k)2. Then the modified estimator satisfies (3.3) and (3.4) whenever

µ ≥

√
16n

(s− k)2m
log

4sk

ε
.

We see in Section 3.3.2 that the bound above is near the optimal one when k

is much smaller than s.

sr, sc-submatrices

Let the components of x be in one-to-one correspondence to elements of a matrix

M with nr rows and nc columns (and let n = nr · nc). Recall that a set S ⊂ [n]

an sr, sc-submatrix when the elements mi ∈ M corresponding to the components

i ∈ S form an sr × sc submatrix in M . Let C be the class of all sr, sc-submatrices

in x. Suppose without loss of generality that sr ≥ sc and recall that the number

of non-zero components of x is simply s = sr · sc.
One possible way to estimate S is to first find the active columns in the search

phase and then focus on one or more active columns in the refinement phase to

find the active rows. Let c(i) denote the ith column of x, for i ∈ [nc]. In order to

find the active columns we need to decide between

H
c(i)
0 : |c(i) ∩ S| = 0 versus H

c(i)
1 : |c(i) ∩ S| = sr, for i ∈ [nc] .

To do this we perform independent SLRTs with type I and type II error probabilities

α and β respectively for every i ∈ [nc]. At the end of the search phase we return

P , which is the union of columns c(i) for which H
c(i)
1 was accepted. Choosing α, β

appropriately ensures that with high probability P contains all the active columns

and only those. In the refinement phase we test whether row j of P is active or not

using a similar method as above, with error probabilities α′, β′ for every j ∈ [nr].

In particular the tests are formulated as

H
r(j)
0 : |(r(j) ∩P )∩ S| = 0 versus H

r(j)
1 : |(r(j) ∩P )∩ S| = sc, for j ∈ [nr] ,

where r(j) denotes the jth row of x, j = 1, . . . , nr. Finally our estimate Ŝ are those

elements that are in a row and column that were both deemed active.

The next step is to choose the error probabilities α, β, α′, β′. We can bound the
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expected Hamming-distance as

ES(|Ŝ4S|) ≤ nα+ sβ + nα′ + sβ′ ,

since type I error in the search phase can result in at most nr errors in Ŝ and there

can be at most nc type I errors in the search phase, whereas a type II error can

produce at most sr errors in the end and there are sc possibilities to make such

an error. A similar argument holds for tests in the refinement phase. Hence the

choices α = α′ = ε/4n and β = β′ = ε/4s ensure (3.4).

We move on to bounding the expected energy used by the procedure. To test

the ith hypothesis in the search phase we collect measurements using sensing vector

a1c(i) with an arbitrarily small a for all i ∈ [nc] and perform a SLRT similar to that

described in the previous cases. To perform the jth SLRT of the refinement phase

we collect measurements of the form a1r(j)∩P using an arbitrarily small a. For

these tests we have results identical to Lemmas 3.2 and 3.3. Also for the number

of columns in P denoted by ñc we have

ES(ñc) ≤ sc + ncα ≤ 2sc .

Putting everything together yields

ES(‖A‖F ) ≤ ES(‖Asearch‖2F ) + ES
(
ES(‖Arefinement‖2F

∣∣|P |))
≤ 2n

s2
rµ

2
log

4s

ε
+

2nrsc
s2
rµ

2
log

4n

ε
+

4nr
scµ2

log
4n

ε
.

When s� n the first term dominates the bound above. Combining this with (3.3)

yields the following result:

Proposition 3.5. Consider the class of sr, sc-submatrices and suppose nc
log 4n ≥

s2r
sc

.

Then the estimator above satisfies (3.3) and (3.4) whenever

µ ≥

√
8n

s2
rm

log
4s

ε
.

Note that the condition on the sparsity in the proposition above is not very

strict. Consider square submatrices within square matrices so that we have nr =

nc =
√
n and sr = sc =

√
s. Then the condition becomes

√
n

log 4n >
√
s, which would

automatically be fulfilled if there was no logarithmic term on the left. We see in
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Section 3.3.2 that in some sparsity regimes the above bound matches the lower

bounds we derive. Thus in those regimes this procedure is near optimal. However,

in what follows we slightly modify the procedure above to improve performance for

submatrices that are more sparse than the ones required in the proposition above.

This combined with the results of Section 3.3.2 shows that the best performance

we can hope for depends on the sparsity in a non-trivial manner in the case of

submatrices.

Note that in principle it is enough to find a single active column in the search

phase, as accurately estimating components within any active column will yield

the identity of all the active rows and similarly estimating components within any

active row yields the active columns. This motivates the following modification:

return a single active column in the search phase, then focus on that column to

find the active rows and finally focus on one active row to find the active columns.

To do this we retain most of the algorithmic choices of the earlier approach, but

choose different α and β.

Ideally we would like to accept H
c(i)
1 for exactly one active column, so our

choices for α, β will be made accordingly. In the refinement phase we choose a

column randomly from the ones that were deemed active and locate the active

components within that column, using the same procedure as in the unstructured

case. This gives us the active rows. Finally we choose a row that was deemed active,

and find all the active components within that row to find the active columns.

Throughout the refinement phase we set type I and type II error probabilities to be

α′, β′. With the right choices for the error probabilities, this procedure outperforms

the previous one in certain sparsity regimes.

First we need to choose the error probabilities for the tests. We can write

ES(|Ŝ4S|) ≤ 2sPS(P = ∅) + (2nα′ + 2s)PS(∃c(i) ⊂ P : c(i) ∩ S = ∅)

+ (2nα′ + 2sβ′)

≤ 2sβsc + (2nα′ + 2s)ncα+ (2nα′ + 2sβ′) .

Thus the conservative choices α = ε/16n2, β = sc
√
ε/8s, α′ = ε/8n, β′ = ε/8s

ensure that (3.4) holds.

Now we can move on to calculate the expected sensing energy used by the
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procedure. In the same way as before,

ES(‖A‖F ) ≤ ES(‖Asearch‖2F ) + ES(‖Arefinement‖2F )

≤ 2n

scs2
rµ

2
log

8s

ε
+

4nrsc
s2
rµ

2
log

4n

ε
+

4 max{nr, nc}
µ2

log
8n

ε
.

Combining the above with (3.3) and using that when s � n the first term domi-

nates, we arrive at the following result:

Proposition 3.6. Consider the class of sr, sc-submatrices and suppose that
min{nr,nc}

log 8n ≥ scs2
r. Then the above estimator satisfies (3.3) and (3.4) whenever

µ ≥

√
10n

scs2
rm

log
8s

ε
.

The condition on the sparsity in Proposition 3.6 above is stronger than that in

Proposition 3.5. On the other hand the bound for µ is smaller. This shows that in

sparser regimes it is indeed possible to outperform the procedure of Proposition 3.5,

hinting that the sparsity regime non-trivially influences the best possible perfor-

mance of adaptive support recovery procedures in the case of sub-matrices. For

instance, considering square matrices when nr = nc =
√
n and sr = sc =

√
s, the

above condition reads
√
n

2 log 4n >
√
s3 which is slightly stronger than the condition

in Proposition 3.5.

3.3.2 Lower bounds

We turn our attention to the fundamental limits of recovering the support of struc-

tured sparse signals using compressive measurements by any adaptive sensing pro-

cedure. We consider both the non-adaptive sensing and adaptive sensing settings.

We use the same arguments to obtain lower bounds as in Chapter 2. We

only need to adjust some the computations of the Kullback-Leibler divergences to

account for the different sensing model. Nonetheless, in order to keep this chapter

self contained, we provide all the steps of the arguments here as well.

Similarly to Chapter 2, some of the lower bounds presented below consider the

probability of error PS(Ŝ 6= S) as the error metric. Note that this is more forgiving

than ES(|Ŝ4S|), hence lower bounds with the former metric in mind apply as lower

bounds with the latter metric as well.
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Non-Adaptive Sensing

First we consider the non-adaptive compressive sensing setting. Comparing these

lower bounds with the performance bounds of the previous section illustrates the

gains adaptivity provides in the various cases. We do not make any claim on

whether these lower bounds are tight or not, as these serve mostly for comparison

between adaptive and non-adaptive sensing. The lower bounds presented for the

non-adaptive case consider PS(Ŝ 6= S) as the error metric. For certain classes

(s-sets, s-intervals) there exist procedures satisfying maxS∈C ES(|Ŝ4S|) ≤ ε with

performance matching the lower bounds below.

In the non-adaptive sensing setting we need to define sensing actions before any

measurements are taken. That means the sensing matrix A is specified prior to

taking any observations. This does not exclude the possibility that A is random,

but it has to be generated before any observations are made.

Similarly to Chapter 2 all the bounds for the non-adaptive case are based on

Proposition 2.3 in Tsybakov [139]. The exact statement can be found on page 49

(Lemma 2.1). In summary, the statement says that if P0, . . . ,PM are probability

measures, and

1

M

M∑
j=1

D(Pj‖P0) ≤ α ,

then

inf
Ψ

max
j=0,...,M

Pj(Ψ 6= j) ≥ sup
0<τ<1

(
τM

1 + τM

(
1 +

α+
√
α/2

log τ

))
.

Let P0, . . . ,PM be the probability measures induced by sampling x with sensing

matrix A, when the support set is S0, . . . , SM respectively, where Si ∈ C. Now note

that

D(Pj‖P0) = E0

(∑
t

log
dP0(Yt|At)
dPj(Yt|At)

)

=
∑
t

E
(
E0

(
−1

2

(
(Yt − µ〈At,1S0

〉)2 − (Yt − µ〈At,1Sj 〉)2
∣∣)A))

=
∑
t

E
(
E0

(
1

2

(
µ2(〈At,1Sj 〉2 − 〈At,1S0

〉2)− 2µYt〈At,1Sj − 1S0
〉
)∣∣∣∣A)) .
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Note that E0(Yt|At) = µ〈At,1S0
〉. We can thus continue as

D(Pj‖P0) =
µ2

2
E

(∑
t

(
〈At,1Sj 〉2 + 〈At,1S0

〉2 − 2〈At,1Sj 〉〈At,1S0
〉
))

=
µ2

2
E

(∑
t

〈At,1Sj − 1S0
〉2
)

≤ µ2

2
E

∑
t

|S04Sj |
∑

i∈S04Sj

A2
t,i


=
µ2

2
|S04Sj |

∑
i∈S04Sj

a2
i , (3.6)

where At,j is the (t, j)th element of the sensing matrix A, a2
i denotes E(

∑
tA

2
t,i),

and in the second to last step we use Jensen’s inequality.

Now consider the right hand side of the lemma above and set τ = 1/M . To make

the bound more transparent suppose that 1 ≤ (1 − 2ε) logM , which is essentially

always satisfied when M is large enough and ε ∈ (0, 1/2). This way we arrive at

the inequality

2α ≥ (1− 2ε) logM . (3.7)

Choosing the sets S0, . . . , SM and using inequality (3.6) to bound the average KL

distance, we can use the above inequality to get lower bounds for µ. These choices

will be specific to the different classes that we are considering.

Remark 3.7. In the following statements we require n to be divisible by s. This

condition is merely for technical convenience, and can be dropped easily at the

expense of a cumbersome presentation.

Theorem 3.1 (s-sets). Let C be the class of s-sets and suppose that n/s is an

integer. If there is a non-adaptive estimator Ŝ that satisfies (3.3) and PS(Ŝ 6=
S) ≤ ε ∀S ∈ C, then

µ ≥
√

(1− 2ε)
n

4m
log(n− s) .

Proof. Let S0 ∈ C be arbitrary. Partition [n] into s bins of equal size denoted

by P (1), . . . ,P (s) such that each bin contains exactly one element of S0. Denote

si = S0 ∩P (i), i ∈ [s]. Now consider the sets S1, . . . , SM that we get by modifying

exactly one element of S0 in the following way: pick one element of S0 denoted by

si and swap it with some other element in P (i) thus changing the position of the
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active component within P (i). We can generate M = n − s sets in the previous

manner. From (3.6) we have that

1

M

M∑
j=1

D(Pj‖P0) ≤ 1

M
µ2

M∑
j=1

∑
i∈S04Sj

a2
i =

1

n− s
µ2

(
n∑
i=1

a2
i +

n− 2s

s

∑
i∈S0

a2
i

)
.

Now note that by the total energy constraint (3.3) we have

n∑
i=1

a2
i ≤ m .

Also note that given A we can always choose S0 to be the one that is the most

difficult to distinguish from the other sets S1, . . . , SM . That is we have to solve

max
A: ‖A‖F≤m

min
S0∈C

∑
i∈S0

a2
i .

The expression above is clearly upper bounded by sm/n. Hence in the expression

above we can take S0 such that
∑
i∈S0

a2
i ≤ sm/n. Combining what we have yields

1

M

M∑
j=1

D(Pj‖P0) ≤ 1

n− s

(
1 +

n− 2s

n

)
mµ2 ≤ 2m

n
µ2 .

Using this with (3.7) concludes the proof.

Theorem 3.2 (Unions of s-intervals). Let C be the class of unions of k disjoint

s-intervals and suppose that n/s is an integer. If there is a non-adaptive estimator

Ŝ that satisfies (3.3) and PS(Ŝ 6= S) ≤ ε ∀S ∈ C, then

µ ≥
√

(1− 2ε)
n− (k − 1)s

4s2m
log(

n

s
− k) .

Proof. Partition [n] into consecutive intervals of size s denoted by S(1), . . . , S(n/s).

Now consider the subclass whose elements are unions of the first k − 1 intervals

S(1), . . . , S(k−1) and some other interval S(i). Formally,

C′ = {S ∈ C : S = S(i) ∪

k−1⋃
j=1

S(j)

 , i ∈ [k + 1, n/s]} .
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This way we effectively reduced this problem to finding one interval in a slightly

smaller vector. Let S0 ∈ C′ be arbitrary and let S1, . . . , SM be all the other elements

of C′, so M = n/s− k. Let S̃0 = S0 \ ∪k−1
j=1S

(j). From (3.6) we have

1

M

M∑
j=1

D(Pj‖P0) ≤ sµ2 1

M

M∑
j=1

∑
i∈S04Sj

a2
i

=
s2µ2

n− ks

 n∑
i=(k−1)s+1

a2
i +

n− (k + 1)s

s

∑
i∈S̃0

a2
i

 .

Again, from (3.3) and the fact that we can choose S0 ∈ C′ after the sensing strategy

has been determined we have

1

M

M∑
j=1

D(Pj‖P0) ≤ 1

n− ks

(
1 +

n− (k + 1)s

n− (k − 1)s

)
s2mµ2 ≤ 2s2m

n− (k − 1)s
µ2 .

Using this with (3.7) concludes the proof.

Theorem 3.3 (s-stars). Let C be the class of s-stars and suppose that p/s is an

integer. If there is a non-adaptive estimator Ŝ that satisfies (3.3) and PS(Ŝ 6= S) ≤
ε ∀S ∈ C, then

µ ≥
√

(1− 2ε)
n

2m
log(
√

2n− s− 1) .

Proof. Consider the p − 1 edges of the complete graph of p vertices that share a

common vertex j. Denote this set of edges by Ej . The s-stars whose center is

vertex j form a class of s-sets on Ej . So we can perform the same construction on

this set of edges as in Theorem 3.1 to get

1

M

M∑
j=1

D(Pj‖P0) ≤ 1

p− 1− s
µ2

∑
i∈Ej

a2
i +

p− 1− 2s

s

∑
i∈S0

a2
i

 .

Now note that we can choose any star to be S0 which implies
∑
i∈S0

a2
i ≤ sm/n

and
∑
i∈Ej a

2
i ≤ (p− 1)m/n yielding

1

M

M∑
j=1

D(Pj‖P0) ≤ 2m

n
µ2 .

The statement now follows from (3.7) and that p >
√

2n.
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Considering unions of k disjoint s-stars we can get a similar lower bound by

considering a subclass where k−1 of the s-stars are fixed and only one can change,

reducing the problem to finding one s-star.

Theorem 3.4 (s-submatrices). Let C be the class of s-submatrices of a fixed size

sc × sr, and suppose both nc/sc and nr/sr are integers. If there is a non-adaptive

estimator Ŝ that satisfies (3.3) and PS(Ŝ 6= S) ≤ ε ∀S ∈ C, then

µ ≥

√
(1− 2ε)

n

4m
max

{
1

sr

nc − sc
nc

,
1

sc

nr − sr
nr

}
log (max{nr − sr, nc − sc}) .

Proof. Let S0 ∈ C be arbitrary. Denote the indices of the rows of S0 by r1, . . . , rsr ,

and let S
(j)
0 denote the jth row of S0. Consider a partition of the indexes [nr] into

r(1), . . . , r(sr) such that all of the are of the same size and r(j) contains exactly one

active row indexed by rj for every j ∈ [rsr ].

Now let S1, . . . , SM be elements of C that we get by replacing exactly one row

index of S0 such that if we modify rj , then the new row index is in r(j). There are

nr − sr such submatrices. The same way as for the s-sets we get

1

M

M∑
j=1

D(Pj‖P0) ≤ 1

nr − sr
µ2

 ∑
(i,l): l∈C0

a2
(i,l) +

nr − 2sr
sr

∑
(i,l)∈S0

a2
(i,l)

 ,

where C0 denotes the set of column indices of S0. Again, the fact that we can

choose an arbitrary S0 ∈ C after the sensing strategy has been fixed results in the

upper bound

1

M

M∑
j=1

D(Pj‖P0) ≤ 2scm

n

nr
nr − sr

µ2 .

Plugging this into (3.7) and rearranging gives a lower bound. Repeating the same

arguments for columns concludes the proof.

Adaptive Sensing

Here we provide lower bounds considering the adaptive sensing framework. Com-

paring these bounds with the performance bounds of Section 3.3.1 shows the near

optimality of the procedures presented there.

s-sets

Adaptive sensing lower bounds for unstructured classes were proved by Castro
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in [40]. In that work lower bounds are derived by slightly broadening the class,

which we state here for convenience. Note that the fact that the following lower

bound is valid for a slightly larger class than the class of s-sets does not cause a

problem, see Remarks 3.4 and 3.8. Let Cs denote the class of s-sets. We have the

following result:

Theorem 3.5. Let C = Cs ∪ Cs−1, and suppose that there exists an estimator Ŝ

that satisfies (3.3) and (3.4). Then

µ ≥

√
2(n− s+ 1)

m

(
log

s

2ε
+ log

n− s+ 1

n+ 1

)
.

Remark 3.8. Note that the bound above holds for estimators for sets with sparsity

s or s − 1. The procedure presented in Section 3.3.1 works for this class of sets

without any modifications. Later on for the structured classes we rely on the above

proposition to derive lower bounds, hence a similar comment applies to those cases

as well.

s-intervals and unions of s-intervals

For s-intervals we have multiple ways of deriving lower bounds, just as in the

case of coordinate wise sampling in Chapter 2. First we consider PS(Ŝ 6= S) as

the error metric. The following result is analogous to the lower bound derived by

Balakrishnan et al. in [17], and the proof is included here for the sake of clarity.

Proposition 3.7. Let C be the class of s-intervals and suppose there is an estimator

Ŝ satisfying (3.3) and max
S∈C

PS(Ŝ 6= S) ≤ ε. Furthermore suppose that n/s is an

integer. Then

µ ≥ (1− ε)
√

n

2s2m
.

Proof. Consider the subclass of consecutive disjoint s-intervals

{[1, s], [s+ 1, 2s], . . . , [n− s+ 1, n]} .

Partition this subclass into two subclasses of equal size denoted by C1 and C2. Let

πi denote the uniform distribution on the subclass Ci for i = 1, 2, and consider the

two hypotheses Hi : S ∼ πi, i = 1, 2. If there exists an estimator Ŝ satisfying

(3.3), then there exists a test function Φ : D → {1, 2} such that

P1(Φ(D) = 2) + P2(Φ(D) = 1) ≤ ε ,
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where Pi denotes the distribution of D = {Yt, At}t≥1 when Hi is true, i = 1, 2.

Let P0 denote the distribution of D when in fact S = ∅. Let TV (·, ·) be the

total variation distance and KL(·, ·) be the Kullback-Leibler divergence of two

distributions, and assume without loss of generality that TV (P0,P1) ≥ TV (P0,P2).

We have

ε ≥ P1(Φ(D) = 2) + P2(Φ(D) = 1) ≥ 1− TV (P1,P2)

≥ 1− (TV (P0,P1) + TV (P0,P2)) ≥ 1− 2TV (P0,P1)

≥ 1−
√

2KL(P0,P1) .

Now the goal is to upper boundKL(P0,P1). Let Y denote the observations {Yt}t≥1,

and let PS denote the distribution of Y for a fixed support S. We have

KL(P0,P1) = E0

(
log

dP0(D)

dP1(D)

)
= E0

(
log

dP0(Y )

dP1(Y )

)
= −E0

(
log

dP1(Y )

dP0(Y )

)
= −E0

(
log

ES∼π1
(dPS(Y ))

dP0(Y )

)
≤ −E0

(
ES∼π1

(
log

dPS(Y )

dP0(Y )

))
,

by Jensen’s inequality. By plugging in the densities, we get

KL(P0,P1) ≤ −E0

(
ES∼π1

(
−1

2

∑
t

(
(Yt − µ〈At,1S〉)2 − Y 2

t

)))

=
1

2
E0

(
ES∼π1

(∑
t

(
µ2〈At,1S〉2 − 2µ〈At,1S〉Yt

)))

=
µ2

2
E0

(
ES∼π1

(∑
t

ATt 1S1TSAt

))

=
µ2

2
E0

(∑
t

ATt ES∼π1

(
1S1TS

)
At

)
,

where ES∼π1
is the expectation w.r.t. S when it is distributed according to π1.

Now ES∼π1

(
1S1TS

)
= 2s

n I
′ where I ′ ∈ Rn×n is block diagonal with n/2s blocks of

size s× s consisting of all ones, and the rest of the matrix consists of zeros. Thus
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we can continue as

KL(P0,P1) ≤ µ2

2
E0

(∑
t

ATt ES∼π1

(
1S1TS

)
At

)

= µ2 s

n
E0

(∑
t

ATt I
′At

)
= µ2 s

n
E0

(∑
t

〈At, I ′At〉

)

≤ µ2 s

n
E0

(∑
t

|〈At, I ′At〉|

)

≤ µ2 s

n
E0

(∑
t

‖At‖2‖I ′At‖2

)

≤ µ2 s

n
E0

(∑
t

‖At‖22‖I ′‖2

)

≤ µ2ms
2

n
,

where ‖I ′‖2 is the matrix norm of I ′ induced by the Euclidean norm and the last

step follows from ‖I ′‖2 ≤ s and (3.3). Thus we arrive at the inequality

ε ≥ 1−
√

2µ2
ms2

n
,

from which the statement follows.

In the previous bound the dependence on ε is clearly loose. When considering

the Hamming distance as the error metric, we can also get lower bounds by slightly

broadening the class. We cover this by considering the case of unions of k disjoint

s-intervals, which as a special case contains the class of s-intervals when k = 1. We

broaden this class by adding unions of k − 1 disjoint s-intervals as well.

Theorem 3.6. Let C be the class of unions of k or k − 1 disjoint s-intervals with

k > 0 fixed, and suppose that n/s is an integer. Suppose there is an estimator

satisfying (3.3) and max
S∈C

ES
(
d(Ŝ, S)

)
≤ ε. Then

µ ≥

√
2
(
n− s(k − 1)

)
s2m

(
log

ks

8ε
+ log

n− s(k − 1)

n+ s

)
.

Proof. Partition [n] into consecutive disjoint s-intervals denoted by S1, . . . , Sn/s,

that is Sj = {(j − 1)s + 1, . . . , js}, and consider the subclass C′ of C consisting
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of all the sets in C that can be written in the form ∪ Sj . This subclass is similar

to a general sparse class of sparsity k or k − 1 with the intervals Sj playing the

role of the components. This is exactly what we wish to formalize, and then use

Theorem 3.5.

Clearly max
S∈C′

ES
(
d(Ŝ, S)

)
≤ ε. Using Ŝ we can construct an estimator S̃ which

only takes values of the form ∪ Sj , and has the property max
S∈C′

ES
(
d(S̃, S)

)
≤ 4ε. For

instance let S̃ be such that for every j ∈ [n/s] : Sj ⊂ S̃ if and only if |Ŝ∩Sj | ≥ s/2.

The expected Hamming-distance for such estimators can be written as

ES
(
d(S̃, S)

)
= s

n/s∑
j=1

PS
(
1{Sj ⊂ S̃} 6= 1{Sj ⊂ S}

)
.

The measurements {Yt}t≥1 can be written in the form

Yt = 〈At,x〉+Wt = µ
∑
i∈S

ai,t +Wt = sµ
∑
Sj∈S

1

s

∑
i∈Sj

ai,t +Wt .

Also, from Jensen’s inequality we have

∑
t

n/s∑
j=1

1

s

∑
i∈S(d)

ai,t

2

≤
∑
t

n/s∑
j=1

1

s

∑
i∈S(d)

a2
i,t =

1

s

∑
t

n/s∑
j=1

∑
i∈S(d)

a2
i,t ≤

m

s
.

Therefore the problem can be viewed as estimating a general sparse support

set. The sparsity is either k or k − 1, the length of the vector is n/s, the signal

strength is sµ, the total sensing budget is m/s and the desired accuracy in expected

Hamming-distance is 4ε/s. By Theorem 3.5

sµ ≥

√
2(n/s− k + 1)

m/s

(
log

ks

8ε
+ log

n/s− k + 1

n/s+ 1

)
,

which concludes the proof.

s-stars and unions of s-stars

We can use the same arguments for these classes as we did for s-intervals and

unions of s-intervals. The only thing that needs to be altered is that instead of

disjoint s-intervals we use disjoint s-stars. The difference this makes is that whereas

before the new problem dimension became n/s, since the entire signal vector could
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be covered by disjoint intervals, the same can not be said when considering s-stars.

Let Np,s denote the number of disjoint s-stars that can be packed in a complete

graph with p vertices. We can easily check that (see Lemma 2.2 in Chapter 2)

Np,s ≥
p(p− 1− s)

2s
.

The left hand side is approximately n/s when the signal is sparse, thus essentially

the same results hold as in the case of unions of intervals. Thus the analogue of

Proposition 3.7 for s-stars is the following:

Proposition 3.8. Let C be the class of s-stars and suppose there is an estimator

Ŝ satisfying (3.3) and max
S∈C

PS(Ŝ 6= S) ≤ ε. Then

µ ≥ (1− ε)
√

Np,s

2sm
.

Remark 3.9. When s� n, the above bound scales as (1− ε)
√

n
s2m .

We also have an analogue of Theorem 3.6 for the case of multiple stars.

Theorem 3.7. Let C be the class of unions of k or k− 1 disjoint s-stars. Suppose

there is an estimator satisfying (3.3) and max
S∈C

ES
(
d(Ŝ, S)

)
≤ ε. Then

µ ≥ 1

s

√
2
(
Np,s − k + 1

)
m/s

(
log

ks

8ε
+ log

Np,s − k + 1

Np,s + 1

)
.

Remark 3.10. When s� n, the above bound scales as
√

n
s2m log ks

ε .

We also present another simple lower bound that illustrates that the assumption

on the sparsity in Proposition 3.3 requiring approximately that s4 ≤ n is needed

and is not only an artifact of our method.

Consider a setting where the support set is a star of size s or s−1. Now consider

the sub-problem of estimating the support of such a star when the center of the

star is given by an oracle. This is an unstructured problem on a vector of size p−1.

Hence we can directly apply Theorem 3.5 to get the following result:

Proposition 3.9. Let C be the class of stars with sparsity s and s−1 and suppose
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there is an estimator Ŝ satisfying (3.3) and (3.4). Then

µ ≥

√
2(p− s)
m

(
log

s

2ε
+ log

p− s
p

)
.

Remark 3.11. When s� n, the above bound scales as

√√
n
m log s

ε .

Combining the results of Theorem 3.7 and Proposition 3.9 shows that consid-

ering s-stars the scaling of the signal strength needs to be at least

max

{
n

s2m
log

s

ε
,

√
n

m
log

s

ε

}
.

The first term in the maximum above dominates the second when s4 ≤ n. This

shows that the performance of Proposition 3.3 can only be achieved in that sparsity

regime.

Remark 3.12. Note that the setting of Proposition 3.9 is slightly different than

the one considered in Section 3.3.1. However, we present this result here merely to

make a remark on the conditions in Proposition 3.3 and it only serves an illustrative

purpose. Furthermore the procedure presented in Section 3.3.1 can be easily modified

to handle classes considered in the above proposition and have similar performance

guarantees to Proposition 3.3.

sr, sc-submatrices

A similar setting has been studied by Balaksrishnan et al. in [17], where the

authors consider block-structured activations in matrices. They provide a lower

bound akin to that of Proposition 3.7 and a near-optimal procedure. Our set-

ting is more general as we consider arbitrary sub-matrices of a given dimension.

Nonetheless the same type of lower bound holds in this case as well.

Proposition 3.10. Let C be the class of sr, sc-submatrices, and for the sake of

simplicity assume that both nr/sr and nc/sc are integers. Suppose that there is an

estimator satisfying (3.3) and max
S∈C

ES
(
d(Ŝ, S)

)
≤ ε. Then

µ ≥ (1− ε)
√

n

2s2m
.
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Proof. Since both nr/sr and nc/sc are integers, the proof goes the same way as

that of Proposition 3.7 by considering any disjoint partition of the original matrix

consisting of submatrices of size s = sr × sc.

However, our procedures do not reach this lower bound, hence the question

arises whether the lower bound above is loose or the procedures are suboptimal?

We partially answer this question by presenting another simple lower bound with

which we illustrate that in certain sparsity regimes the procedure of Proposition 3.5

is indeed optimal. Consider the class containing all sr × sc and sr × (sc − 1)

submatrices, and consider the sub-problem of estimating the support when the

active rows are given. This is a problem of estimating sc or sc − 1 disjoint sr-

intervals in a signal of size sr · nc. Note that the procedure of Proposition 3.5

can handle such classes without any modifications. Now we can directly apply

Theorem 3.6 to get the following:

Proposition 3.11. Let C be the class containing all submatrices of size sr × sc
and sr× (sc−1). Suppose there is an estimator Ŝ satisfying (3.3) and (3.4). Then

µ ≥

√
2(nc − sc + 1)

srm

(
log

s

8ε
+ log

nc − sc + 1

nc + 1

)
.

When sr ≈ nr (for instance when we have linear sparsity in the rows: sr = cnr

with some c ∈ (0, 1]) the performance bound of Proposition 3.5 becomes essentially

identical to the lower bound above. This shows that in certain regimes that pro-

cedure is optimal. Note that the condition on the number of active rows does not

determine the sparsity of the signal, as there is no requirement on the number of

active columns for the results to hold. Also note that by Proposition 3.6 in certain

regimes it is possible to outperform the procedure of Proposition 3.5 indicating

that the gains one can hope for in the case of submatrices depends on the inter-

play between the dimensions of the problem nr, nc, sr, sc. On a final note if we

assume that the support set is such that either the active rows of active columns

(but not necessary both) are consecutive then one can simply modify the proce-

dure presented in Section 3.3.1 to even reach the lower bound of Proposition 3.10.

However, the exact performance characterization of the case of submatrices with

arbitrary dimensions remains an interesting open problem.
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3.4 Sample complexity

In the preceding sections we have presented near-optimal procedures for struc-

tured support recovery using adaptive compressive sensing. Those procedures pro-

vide insight on how to capitalize on the structure of the support sets to achieve

performance gains, but paid no regard to the number of measurements that are

collected. However, an important aspect of compressive sensing is the possibility to

perform estimation using only a small number of observations. Therefore we now

present procedures for structured support recovery that use only a small number

of observations.

3.4.1 Procedures

All the procedures presented here are based on an algorithm named Compressive

Adaptive Sense and Search (CASS), introduced and analyzed by Malloy & Nowak

in [107]. This procedure is designed to recover non-structured support sets. To

ease presentation we briefly describe and analyze the procedure here, though the

reader is referred to Malloy & Nowak [107] where this has already been done in

more detail.

s-sets

The main idea of the CASS procedure is to use a binary bisection type algorithm

to recover the support of the signal. In a nutshell, CASS begins by partitioning the

signal into several bins and deciding if there are any significant components inside

each bin. Then it continues by partitioning the bins deemed to contain signal into

new bins and performing the previous step again for those. By iterating these steps

the procedure is able to locate the support in a number of steps that is logarithmic

in the dimension of the signal.

Assume the support set is any s-sparse set. Partition [n] into 2s bins of equal

size, denoted by I
(1)
1 , . . . , I

(1)
2s . For each of the 2s bins we wish to decide between

H
(1)
i,0 : I

(1)
i ∩ S = ∅ versus H

(1)
i,1 : I

(1)
i ∩ S 6= ∅, for i ∈ [2s] .

Once having identified the non-empty bins, we split each of these into two bins of

equal size denoted by I
(2)
1 , . . . , I

(2)
2n1

, where n1 denotes the number of bins deemed

non empty previously, and do the same as before. We know that at most s bins
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can be non-empty, thus we will enforce in our procedure that n1 ≤ s. Hence in

step j we consider bins I
(j)
1 , . . . , I

(j)
2nj−1

, where nj−1 ≤ s, and test the hypotheses

H
(j)
i,0 : I

(j)
i ∩ S = ∅ versus H

(j)
i,1 : I

(j)
i ∩ S 6= ∅, for i ∈ [2nj−1] .

When j = log2
n
2s the bins consist of single components of x, and the estimator of

the support Ŝ will consist of the ones deemed non-empty in this final step.

To decide between H
(j)
i,0 and H

(j)
i,1 , for j ∈ [log2

n
2s ] and i ∈ [2nj−1], we collect a

single measurement of the form

Y
(j)
i = 〈a

√
j1

I
(j)
i
,x〉+W

(j)
i , for j ∈ [log2

n
2s ]; i ∈ [2nj−1] ,

where W
(j)
i ∼ N(0, 1) are i.i.d., and a > 0. The parameter a > 0 needs to be

chosen such that (3.3) is fulfilled. Since the length of the bins I
(j)
i is n/(2js) for

every i ∈ [2nj−1], nj−1 ≤ s and there are log2
n
2s steps we have

‖A‖2F =

log2
n
2s∑

j=1

2s
n

2js
ja2 ≤ na2

∞∑
j=1

j2−(j−1) = 4na2 .

Combining this with (3.3) yields a =
√

m
4n . If the bin I

(j)
i is non-empty then

ES(Y
(j)
i ) ≥ µ

√
jm
4n . Therefore we deem the bin I

(j)
i to be empty when Y

(j)
i ≤

µ
2

√
jm
4n , otherwise we deem the opposite. If at any step j ∈ [log2

n
2s ] more than

s bins are deemed non-empty, we select those that correspond to the s largest

observations. For the method described above both the type I and type II error

probabilities for the test between H
(j)
i,0 and H

(j)
i,1 , for j ∈ [log2

n
2s ] and i ∈ [2nj−1]

can be upper bounded using the Gaussian tail bound

P(X > η) ≤ 1

2
e−η

2/2 (3.8)

by
1

2
exp

(
−jmµ

2

32n

)
.

Hence the probability of error can be bounded from above as follows

PS(Ŝ 6= S) ≤
log2

n
2s∑

j=1

s exp

(
−jmµ

2

32n

)
.
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Thus whenever µ2 ≥ 32n
m log 2s

ε we have

PS(Ŝ 6= S) ≤
log2

n
2s∑

j=1

s
( ε

2s

)j
≤

log2
n
2s∑

j=1

(ε
2

)j
≤ ε .

When considering the expected Hamming-distance as the error metric we can use

the above procedure with probability of error set to ε/2s. This method then yields

a rate-optimal estimator for the support recovery problem described in Section 3.2

by collecting at most 2s log2
n
2s measurements.

Unions of s-intervals

We can modify the CASS procedure of Malloy & Nowak [107] to estimate unions of

k disjoint s-intervals. Similarly to the procedure presented in Section 3.3.1 the one

discussed here will consist of two phases, a search phase and a refinement phase.

As before, in the search phase we wish to identify the approximate location of the

support, that is, return a subset of components P ⊂ [n] such that |P | � n and

S ⊂ P with high probability. Again we start by splitting [n] into consecutive bins

of size s/2 denoted by P (1), . . . ,P (2n/s). To ease the presentation we assume 2n/s

is an integer since the case when this is not satisfied can be handled using simple

modifications. The same holds for any divisibility issue that we encounter further

on. Of these bins at least k will consist entirely of signal components. Roughly

speaking we think of these bins as signal components of a vector of size 2n/s, and

use a CASS procedure to find them. Once that is done, we set P as the bins

deemed active and their neighboring bins, and move on to the refinement phase.

In the refinement phase we estimate the active components in P for instance by

using another CASS procedure.

We now describe the method in full detail. Consider the binning P (1), . . . ,P (2n/s)

described before. Partition the bins into 4k groups denoted by I
(1)
1 , . . . , I

(1)
4k . For

each of these we test the hypothesis

H
(1)
i,0 : I

(1)
i ∩ S = ∅ versus H

(1)
i,1 : |I(1)

i ∩ S| ≥ s/2, for i ∈ [4k] .

The groups for which H
(1)
i,1 is accepted are split into two in the middle giving us

the groups I
(2)
1 , . . . , I

(2)
2n1

. We now test a similar hypothesis as before for these

new groups. Since at most 3k groups can contain signal components, we will

specifically enforce n1 ≤ 3k. Iterating this, in step j we have groups denoted by
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I
(j)
1 , . . . , I

(j)
2nj−1

, where nj−1 ≤ 3k, and we wish to decide between

H
(j)
i,0 : I

(j)
i ∩ S = ∅ versus H

(j)
i,1 : |I(j)

i ∩ S| ≥ s/2, for i ∈ [2nj−1] .

When j = log2 n/2ks the groups consist of single bins. The set P will consist of

the ones for which H
(1)
i,1 is accepted in this final step and the bins adjacent to those.

To decide between H
(j)
i,0 and H

(j)
i,1 , for j ∈ [log2

n
2s ] and i ∈ [2nj−1], we collect a

single measurement of the form

Y
(j)
i = 〈a

√
j1

I
(j)
i
,x〉+W

(j)
i , for j ∈ [log2

n
2s ]; i ∈ [2nj−1] ,

where W
(j)
i ∼ N(0, 1) are i.i.d., and a > 0. The parameter a > 0 needs to be chosen

such that (3.3) is fulfilled. We will use half of our energy budget for the search

phase. Since the groups I
(j)
i contain n/(2j+1k) components for every i ∈ [2nj−1],

nj−1 ≤ 3k and there are log2
n

2ks steps,

‖Asearch‖2F =

log2
n

2ks∑
j=1

6k
n

2j+1k
ja2 =

3

2
na2

log2
n
2s∑

j=1

j2−(j−1) = 6na2 .

Since we use at most m/2 energy in the search phase we get a =
√

m
12n . When group

I
(j)
i contains a bin which is contained in S, we have ES(Y

(j)
i ) ≥ sµ

2

√
jm
12n . Therefore

we declare that the group contains no signal components when Y
(j)
i ≤ sµ

4

√
jm
12n ,

otherwise we declare the opposite. If in step j ∈ [log2
n

2ks ] we accept H
(j)
i,1 for more

than 3k groups, we choose those corresponding to the highest 3k observations.

Considering a single test the type I and type II error probabilities can both be

upper bounded using (3.8) by

1

2
exp

(
−js

2mµ2

384n

)
.

It is also possible that neither the null nor the alternative is true, and the group

contains some bins that intersect with S, but are not contained in S. However

we need not pay any attention to those, as by construction P will also contain

neighboring bins of those we deem non-empty. The probability of either concluding

H
(j)
i,1 when the group I

(j)
i contains no signal or concluding H

(j)
i,0 when in fact H

(j)
i,1
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is true can be bounded from above by

log2
n

2ks∑
j=1

3k exp

(
−js

2mµ2

384n

)
.

Thus whenever µ ≥
√

384n
s2m log 9k

ε we have that

PS(S * P ) ≤
log2

n
2ks∑

j=1

3k
( ε

9k

)j
≤

log2
n

2ks∑
j=1

(ε
3

)j
≤ ε/2 .

By construction we also have that |P | ≤ 9
2ks. Hence in the refinement phase we

can measure each component in P separately, say, to produce Ŝ. We have 2m/18ks

energy for each of the components in P , hence it is easy to check using (3.8) that

the probability of making an error in the refinement phase is at most

9ks

4
exp

(
−mµ

2

72ks

)
.

Whenever µ ≥
√

72ks
m log 9ks

2ε the probability above is at most ε/2. Thus the

procedure gives an estimator Ŝ for which PS(Ŝ 6= S) ≤ ε whenever

µ ≥
√

max{384n

s2m
log

9k

ε
,

72ks

m
log

9ks

2ε
} .

When considering the expected Hamming-distance as the error metric we can

use the above procedure with probability of error set to ε/2s in the search phase and

ε/2ks in the refinement phase. This method then yields a rate-optimal estimator

for the support recovery problem described in Section 3.2 by collecting at most

3k
(
log2

n
2ks + 3

2s
)

measurements. We emphasize that the procedure above is only

optimal in terms of rates (the way µ depends on the parameters n,m, k, s), but the

constant is very large. However, as mentioned in Remark 3.2, our main interest is

finding the optimal rates. Furthermore, the constants of the procedure above can

be improved by better algorithm choices and a more careful analysis..
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Proposition 3.12. Consider the class of k disjoint s-intervals and suppose n >

ks3. Then the procedure above satisfies (3.3) and (3.4) whenever

µ ≥

√
768n

s2m
log

3
√

2ks

ε
.

Furthermore, the procedure collects at most 3k
(
log2

n
2ks + 3

2s
)

observations.

Remark 3.13. As with Proposition 3.2 the condition on the sparsity is an artifact

of the simple method above and can be avoided by using a more elaborate method

in the refinement phase, such as binary search.

Unions of s-stars

Consider the class of k disjoint s-stars. To ease the discussion we focus on the case

k = 1, but the idea can be applied to larger k. The procedure is very similar to

the one used for unions of s-intervals, however due to the different nature of the

structure we provide a detailed description of the procedure in Appendix 3.A.

Proposition 3.13. Consider the class of s-stars, and suppose
√

2n ≥ s2. Then

the procedure described in the Appendix satisfies (3.3) and (3.4) whenever

µ ≥
√

392n

s2m
log

9s

ε
.

Furthermore, the procedure collects at most 2 log2 n+ 2s log2

√
2n
s observations.

Similar ideas can be used to treat the case of k disjoint s-stars when k > 1, but

k � s.

sr, sc-submatrices

Consider the class of submatrices of size sr × sc of a matrix of size nr × nc, and

suppose sr ≥ sc. The procedure we present now is very similar to the one used for

unions of s-intervals, hence we only provide an outline and present performance

guarantees here.

Once more we break the procedure into two phases, a search phase and a re-

finement phase. The aim of the search phase is to find the active columns of the

signal matrix, whereas the refinement phase aims to find the active rows once the
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active columns are found. If we view the columns of the signal matrix as compo-

nents of a vector of dimension nc, then finding the active columns can be viewed

as estimating an unstructured sc-sparse support set. Likewise the problem of the

refinement phase can be viewed as finding an sr-set in a signal of dimension nr.

Hence we can immediately use the CASS procedure for both sub-problems with

modifications similar to those used in the case of unions of s-intervals. Thus we

get the following proposition:

Proposition 3.14. Consider the class of sr, sc-submatrices and suppose nc >

s2
r/sc. There exists a procedure which yields an estimator satisfying (3.3) and

(3.4) whenever

µ ≥

√
128n

s2
rm

log
2s

ε
.

Furthermore the estimator takes at most 2sc log2
nc
2sc

+ 2sr log2
nr
2sr

measurements.

The sketch of the proof of Proposition 3.14 is given in Appendix 3.B.

Note that the sample complexity of the algorithm above scales s log n. Each

time we collect a sample, we decide if a specific row or column is active. Therefore,

the computational complexity of this adaptive sensing algorithm is also s log n. This

is in stark contrast to the non-adaptive sensing setting, where in order to estimate

a submatrix, one needs to solve an NP-hard optimization task (see Balakrishnan

et al. [18]). As mentioned in Section 3.1, this is due to a fundamental difference

between adaptive and non-adaptive sensing. In particular, using adaptive sensing

we can shake these computational burdens by tailoring the sample to facilitate

inference.

Remark 3.14. The result above guarantees essentially the same performance as

Proposition 3.5. We remark that it is possible to formulate a CASS-type algorithm

whose performance would match that in Proposition 3.6, by aiming to find only one

active column in the first phase. This can be done with a binary search procedure,

much like the one described by Malloy & Nowak in [108].

3.4.2 Sample Complexity lower bounds

Necessary conditions for the sample complexity of compressive sensing have been

studied both in the adaptive and the non-adaptive sensing setting by Aksoylar,

Atia & Saligrama in [2] and [3]. In both works, the sample complexity was studied
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for the unstructured case of s-sets. For the non-adaptive setting the authors show

in Theorem 4.1 of [2] that the sample complexity can be lower bounded by an

expression that scales essentially like s log n
s . Furthermore they also show that the

signal-to-noise ratio plays a role in the sample complexity of compressive sensing,

and this phenomenon is also explicitly captured in their bound. Though the set-

ting considered in their work is slightly different from that in the present work,

Theorem 4.1 of Aksoylar, Atia & Saligrama [2] can be translated into our setting

in the following manner.

Theorem 3.8 (Theorem 4.1 of Aksoylar, Atia & Saligrama [2]). Consider the class

of s-sets, and suppose there exists a non-adaptive estimator for which (3.3) holds

and for which 1
|C|

∑
S∈C

PS(Ŝ 6= S) is not asymptotically bounded away from zero as

n, s → ∞. Let k(n, s) denote the number of measurements the estimator makes.

Then

k(n, s) ≥
cs log n

s

log
(
µ2m

n + 1
) ,

with some constant c.

Remark 3.15. For the proof the reader is referred to the paper above. However,

we can show a similar, but slightly weaker result using a simple reasoning. That

result is provided in Appendix 3.C for the sake of completeness, and shows that for

very sparse signals, the sample complexity must scale as s log n.

This shows that the procedure presented in the previous section for s-sets per-

forms as well in terms of sample complexity as the best non-adaptive procedure.

Furthermore, when estimating structured support sets, potentially fewer samples

are enough to perform accurate estimation. We now briefly discuss necessary con-

ditions on sample complexity for non-adaptive estimators for the structured classes

we have examined before.

Consider the case of unions of k disjoint s-intervals first. Without giving a

rigorous formal proof we argue that the number of samples required in the non-

adaptive case must scale as k log n
sk . Let S1, . . . , Sn/s be consecutive disjoint s-

intervals of [n] and let

C′ =

S ∈ C : S =

k⋃
j=1

Sij , i1, . . . , ik ∈ [n/s]

 ,

that is unions of intervals that are constructed from S1, . . . , Sn/s. This class roughly

118



behaves like a class of k-sparse sets of a vector of dimension n/s, except that there

is an increase in the relative sensing power arising from the fact that the building

blocks of the class are s-sets instead of singletons. This results in that it is possible

to detect somewhat weaker signals (see Theorem 3.2), but because of the weak

dependence of the sample complexity bound of Theorem 3.8 on the signal-to-noise

ratio, the scaling of the bound will still be dictated by the numerator.

The class of unions of k disjoint s-stars is even simpler to consider. Suppose

k = 1, and that the center of the star is given by an oracle. The remaining problem

is the estimation of an s-sparse set in a vector with dimension roughly
√

2n. Hence

the sample complexity remains essentially the same as that of the unstructured

case.

Finally for the class of sr, sc-submatrices, if an oracle provides the active columns,

the problem reduces to the unions of intervals case.

This shows that the procedures presented in the previous section for struc-

tured support recovery perform as well in terms of sample complexity as the best

non-adaptive procedures. However, it is plausible that adaptive procedures might

outperform non-adaptive ones in terms of sample complexity. This question was

investigated by Aksoylar & Saligrama in [3], where the authors provide a necessary

condition for any adaptive algorithm to recover unstructured s-sets. The num-

ber of samples required depends on the signal-to-noise ratio in this case as well.

Their results show that when the signal-to-noise ratio is near the boundary where

accurate estimation is possible (see Theorem 3.5, and Castro [40]) the number of

samples needs to scale essentially like s. It is still an open question whether this

bound is achievable or not.

Although we do not yet have a rigorous proof, we conjecture that although some

performance gain might be present, it is not substantial and the number of samples

needs to scale essentially like s log n
s for adaptive estimators as well, when the signal

magnitude is close to the estimation threshold. The reason behind this conjecture

is roughly the following. Consider the 1-sparse case. It can be easily seen that by

taking one measurement, a fraction of the n hypotheses (namely that the signal

component is at coordinate 1, . . . , n) remains essentially indistinguishable. Focus-

ing the next measurement on these potential signal components, again a fraction

of them will remain essentially indistinguishable. With a bit of work this line of

reasoning will, in principle, provide a lower bound on the sample complexity. How-

ever, formalizing this argument is challenging, because each projection does contain
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some faint amount of information about these “indistinguishable” hypotheses. So

one needs to show that these small amounts of information are negligible as a

whole, even after collecting multiple projections. Showing this requires the proof

of a sharp information-contraction bound suitable for the adaptive sensing setting.

Nonetheless, the authors conjecture that because of this heuristic, a term that is

logarithmic in the dimension should also be present in the sample complexity lower

bounds. Foucart & Rauhut consider a different compressed sensing setting and

framework in [72]. Although this setting is not directly comparable to ours, the

authors show that adaptive sensing does not further reduce the sample complexity,

which also leads us to believe that our conjecture is reasonable.

3.5 A Numerical Experiment

Akin to Chapter 2, we present a short numerical experiment to corroborate the

theoretical results presented in this chapter. Again, the simulations here only

serve an illustrative purpose.

In this simulation we gauge the performance of the adaptive sensing procedures

presented in Sections 3.3.1 and 3.4.1 for the class of s-intervals, and compare it

with a reasonable non-adaptive procedure1.

For the non-adaptive procedure we randomly generate a sensing matrix of size

2 log n×n2, whose entries are independent standard normal random variables. We

then re-scale the matrix so that its squared Frobenius-norm is equal to m. We use

this matrix to sample the signal, as described in (3.2). Finally, we choose the s-

interval that is the most closely aligned to our observations (in Euclidean sense) as

our estimator. The performance of the estimator is measured in terms of Hamming

distance.

The adaptive sensing procedures presented in this chapter fall into two cate-

gories: procedures based on the CASS algorithm (see Section 3.4.1) and those based

on the SLRT (see Section 3.3.1). The CASS-based procedure for the detection of

intervals is implemented the same way as it was described in Section 3.4.1. Note

that the CASS procedure uses at most m total sensing energy by design, so it is

fair to compare it with the non-adaptive procedure above.

1Although we do not make a formal claim that the non-adaptive procedure implemented is
indeed optimal, it is likely asymptotically optimal, as it is simply a maximum-likelihood estimator.

2As shown in Section 3.4.2, we need at the order of logn projections for reliable support
recovery. Increasing the number of rows of the sensing matrix further did not seem to have a
considerable effect on the performance of the procedure.
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The SLRT-based procedures use a random amount of energy, so a direct com-

parison with the procedures above is somewhat unfair. However, we deal with this

in the same manner as in Section 2.6: when the energy budget is exhausted, we ter-

minate the procedure and incur a loss of 2s in terms of Hamming distance. Other

than that, we choose every parameter as described in Section 3.3.1, set ε = 0.05 and

a = 0.2. The latter choice has the same motivation as the choice of Γ in Section 2.6,

namely to see if such a choice has an effect on the practical performance.

Computations in Section 3.3.1 (most noatbly Lemma 3.2) suggest that the adap-

tive sensing algorithm based on the SLRT should satisfy E(|S4Ŝ|) ≤ ε when the

signal strength is roughly

µlimit =

√
8n

s2m
log

4s

ε
. (3.9)

Furthermore, according to the lower bounds of Theorem 3.6, no estimator can have

small probability of error unless the signal scales as above.

The same comments apply to the calibration of the SLRT-based algorithm as

in Section 2.6. In a nutshell, to implement the SLRTs we need to specify a value

for µlimit that we use for the alternative hypothesis in the likelihood-ratio. We

emphasize once more, that this is an internal parameter of the SLRT, and does not

mean that we use knowledge of the true signal strength. As in Section 2.6, we again

use two versions of the SLRT-based procedure: one where we set µlimit as defined

above, and one where we use µ
(.95)
limit, which is defined by the same expression as in

(3.9), only we replace m by 0.95 ·m. This way we tune the procedure to detect a

signal that is slightly larger then µlimit (roughly by a factor of 1.02), but in turn

this will result in a slightly smaller amount of sensing energy used by the SLRTs

(in expectation).

We run a similar experiment as in Section 2.6. We run the procedures described

above when the true signal strength is t · µlimit with the value of t varying. The

signal dimension is n = 215, the support size is s = 24 and the energy budget is

m = n. We run 100 iterations for every value of the parameter t, and plot the

average normalized Hamming distance of the different estimators. We also plot

error bars whose total length is four times the (point-wise) standard error, which

would correspond to a roughly 95% two-sided confidence interval for normally dis-

tributed measurements. Note that the error bars are only approximate point-wise

confidence bands, that are included to provide some insight about the variability

of the curves.
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Figure 3.1: Average normalized Hamming-distance (with SE bands) for the dif-
ferent estimators as a function of the parameter t (the signal strength is t · µlimit

with µlimit defined in (3.9)): the non-adaptive estimator (black); the CASS-based
procedure (blue); the SLRT-based procedure calibrated with µlimit (red); the SLRT-

based procedure calibrated with µ
(.95)
limit (green). The number of repetitions is 100 for

each value of t. The vertical black dashed line is at the value t = 1. The horizontal
black dashed line is at the value of ε (0.05).

We provide a plot on a wider range of the parameter t to be able to compare

the non-adaptive estimator to the adaptive ones, and a zoom-in of the previous

plot around t = 1 to be able to compare the adaptive sensing estimators. As

expected, the adaptive sensing procedures outperform the non-adaptive one. We

also expect the SLRT-based procedures to reach the level ε = 0.05 at t = 1, and

the CASS-based procedure to reach this level somewhat later.

The same comments apply to the performance of the SLRT-based procedures

as in Section 2.6. Note that the CASS-based procedure performs comparably to

the SLRT-based estimators. This illustrates that the constants resulting from the

crude analysis of Section 3.4.1 are indeed very loose.

3.6 Final remarks

In this chapter we have examined the problem of recovering structured support

sets through adaptive compressive measurements. We have seen that by adaptively
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designing the sensing matrix it is possible to achieve performance gains over non-

adaptive protocols, and that the gains can be quite dramatic, for instance in the

case of s-stars. We have also seen that these gains can be realized by simple and

practically feasible estimation procedures.

However, a complete characterization of the problem for the class of submatri-

ces is still missing. This could prove to be an interesting area for future research

considering the practical relevance of that model in gene expression studies. Fur-

thermore, it remains unclear if the sample complexity of support recovery using

compressive measurements can be significantly reduced by adaptively designing the

rows of the sensing matrix. Finally, the procedures of Section 3.4.1 can be modi-

fied using ideas of Arias-Castro presented in [5] to be able to handle signals with

arbitrary signs and magnitudes. Working out the details could prove to be a useful

extension to this work.

3.A Description of the procedure of Section 3.4.1

We begin with a search phase to find the approximate location of the support.

Again we consider the subsets P (i), i = 1, . . . , p, where P (i) contains all the com-

ponents whose corresponding edges lie on the vertex vi. Our goal is to find the

center of the star. We begin by forming 4 groups I
(1)
1 , . . . , I

(1)
4 , where each of them

is a union of p/4 different P (i), and no subset P (i) is contained in more than one

group. We then take one measurement per group

Y
(1)
i = 〈a1

I
(1)
i
,x〉+W

(1)
i , for i ∈ [4],

where W
(1)
i are i.i.d. standard normals and a > 0. Large measurements should

correspond to groups containing a lot of signal components, and particularly the

one containing the center of the star. However, because of the structure of the

support and the fact that these groups are not disjoint, large observations may

also correspond to groups not containing the center of the star. Therefore instead

of performing hypothesis tests we choose the two highest observations, and consider

the groups corresponding to those. Once we have these groups, we split each in

half in the sense that half of the P (i) in a given group will form one new group, and

the other half will form another new group. This way we end up with 4 groups,

again not disjoint, and do the same as before. Let the groups in step j be denoted
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by I
(j)
1 , . . . , I

(j)
4 . The measurements we collect are

Y
(j)
i = 〈a

√
j1

I
(j)
i
,x〉+W

(j)
i , for j ∈ [log2

p
4 ] and i ∈ [4] .

In the final step j = log2
p
4 each group consists of a single P (i). The output set of

the search phase P will consist of the union of those two groups for which the final

observation is largest.

First we specify the parameter a so as to ensure that we do not use more than

half of our measurement budget. Each I
(j)
i contains at most (p − 1) p

2j+1 = n/2j

components i ∈ [4], and j ∈ [log2
p
4 ]. Recalling that n =

(
p
2

)
, we have

‖Asearch‖2F ≤
log2

p
4∑

j=1

n

2j−2
ja2 ≤ 8na2 .

Therefore a =
√

m
16n ensures we use at most m/2 energy in the search phase.

Now we need to show that S ⊂ P with high probability. Without loss of

generality suppose that I
(j)
1 , . . . , I

(j)
4 are indexed such that the center of the star

is in group I
(j)
1 , and for the number of signal components in I

(j)
i denoted by N

(j)
i

we have N
(j)
i ≥ N

(j)
i+1. Hence I

(j)
1 contains exactly s components, and because

4∑
i=2

N
(j)
i ≤ s we know that N

(j)
3 ≤ s/2. Using this we conclude that in each step

j ∈ [log2
p
4 ] the probability that Y

(j)
1 < max{Y (j)

3 , Y
(j)
4 } can be bounded from

above using (3.8) by

3 · 1

2
exp

(
−js

2mµ2

392n

)
.

From this we get that whenever µ ≥
√

392n
s2m log 9

2ε we have

PS(S * P ) ≤
log2

p
4∑

j=1

(ε
3

)j
≤ ε/2 .

By construction we make 4 log2
p
4 observations in this phase, and also |P | ≤ 2(p−1).

In the search phase we can directly apply the CASS procedure on P to estimate

the support. Since
√

2n > p − 1 we know that whenever µ ≥
√

64
√

2n
m log 4s

ε the

probability of error is at most ε/2, and we take at most 2s log2
p−1
s measurements.

When considering ES(|Ŝ4S|) as the error metric one can set the probability of

124



error to ε/2s and use the procedure above.

3.B Sketch proof of Proposition 3.14

Recall that the signal matrix is of size n = nr · nc and the support is a submatrix

of size s = sr · sc with sr ≥ sc.

We use half the energy for the search phase, and half for the refinement phase.

In step j of the search phase the groups I(j) contain n/2jsc components and there

are at most 2sc components. Hence the energy used is at most

log2
nc
2sc∑

j=1

2sc
n

2jsc
ja2 = 4na2 .

Thus a =
√

m
8n . This means that the probability of error is bounded by

log2
nc
2sc∑

j=1

2sc
1

2
exp

(
−s

2
rjmµ

2

64n

)
,

sing (3.8). Thus, whenever µ ≥
√

64n
s2rm

log 2sc
ε the probability of error is at most

ε/2.

In the refinement phase the energy used is

log2
nr
2sr∑

j=1

2sr
nrsc
2jsr

ja2 = 4nrsca
2 ,

hence a =
√

m
8nrsc

. Therefore, using the same bound as before, the probability of

error is at most
log2

nr
2sr∑

j=1

2sr
1

2
exp

(
−scjmµ

2

64nr

)
,

which means that whenever µ ≥
√

64nr
scm

log 2sr
ε the probability of error is at most

ε/2.

Considering the expected Hamming-distance as the error metric, we can use

the procedure above with probability of error set to ε/2s.
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3.C Sample complexity lower bound for

non-adaptive compressive sensing

Consider the 1-sparse case. Suppose a measurement strategy satisfying ‖A‖2F ≤ m
identifies the signal support correctly, where A has r rows. If component i ∈ [n] is

active then the measurement Y ∈ Rr is distributed as N(µAi, I), where Ai is the ith

column of A and I is the identity matrix. Recovering the support can be viewed as a

multiple testing problem, namely we want to decide between Hj : xj = µ, j ∈ [n].

Now suppose that there is a column Aj such that ‖µAi − µAj‖22 ≤ 1. If this

were the case, we would have

max
{
Pi(Ŝ = j),Pj(Ŝ = i)

}
≤ 1− TV (Pi,Pj) ≤

1

2
exp (−KL(Pi,Pj)) , (3.10)

where the first inequality follows from Theorem 2.2 in Tsybakov [139], and the

second inequality follows from Lemma 2.6 in Tsybakov [139]. Plugging in the

definition of the Kullback-Leibler divergence, we continue as

max
{
Pi(Ŝ = j),Pj(Ŝ = i)

}
≤ 1

2
exp

(
−

r∑
k=1

Ei
(
µYk(Aik −Ajk)− µ2

2
(A2

ik −A2
jk)

))

=
1

2
exp

(
−µ

2

2
‖Ai −Aj‖22

)
≤ 1

2
√
e
, (3.11)

and so we could not have PS(Ŝ 6= S) ≤ ε for all S with ε < 1/(2
√
e). This means

that the minimum squared Euclidean distance between the vectors µAj , j ∈ [n]

has to be at least 1. On the other hand note that since we are considering maximal

probability of error, similar arguments as in the proofs in Section 3.3.2 show that

the Euclidean norm of the columns of the sensing matrix A should be identical,

that is ‖Aj‖22 = m/n ∀j ∈ [n].

This leads to the following question: at most how many unit balls can we pack

into a ball with radius µ
√
m/m+ 1 in r dimensions? Unless we are able to pack n

such balls, the argument above shows that we cannot have an estimator satisfying

maxS∈C PS(Ŝ 6= S) ≤ ε with a sensing matrix that has r rows. But the number of

balls we can pack can simply be upper bounded by the ratio of the volume of the
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balls and the total volume, hence we get

(µ
√
m/m+ 1)r < n ⇒ max

S∈C
PS(Ŝ 6= S) > ε ,

for ε < 1/(2
√
e), showing that we need r ≥ log n/ log(µ

√
m/n+ 1) measurements

to recover a 1-sparse support.

We can follow the same arguments for the s-sparse case to establish

r ≥ log

(
n

s

)
/ log(sµ

√
m/n+ 1) .

These lower bounds are somewhat weaker than the one referenced in Section 3.4.2,

but are simple to obtain and give comparable results for very sparse signals.
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Chapter 4

Detection of signals evolving

in time

This chapter is based on joint ongoing work with Rui Castro. Because of this,

some results presented in this chapter still lack rigorous proofs. In such cases the

author aimed to provide heuristic arguments to show what kind of statements can

be expected to hold, and wherever possible highlight the specific steps in the proofs

that still require further justification.

4.1 Introduction

As outlined in Chapter 1 the detection of sparse signals is a problem that has been

studied with great attention in the past. The usual setting of this problem involves

a (potentially) very large number of items, of which a (typically) much smaller

number may be exhibiting anomalous behavior. A natural question one can ask

is whether it is possible to reliably detect whether there are indeed some items

showing anomalous behavior?

Questions like this are encountered in a number of fields of research. Some

examples include epidemiology where one wishes to quickly detect an outbreak or

the environmental risk factors of a disease (see Neill & Moore [114], Kulldorff et al.

[100, 86, 101]), identifying changes between multiple images (see Flenner & Hewer

[71]), and microarray data studies (see Pawitan et al. [119]) to name a few.

A common point in the examples above is that even though it is not known
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which items are anomalous, their identity remains fixed throughout the sampling

process. However in certain situations the identity of these items may change

over time. For instance consider a signal intelligence setting where one wishes

to detect covert communications. Suppose that our task is to survey a signal

spectrum, a small fraction of which may be used for communication, meaning that

some frequencies would exhibit increased power. On one hand we do not know

beforehand which frequencies are used, but also the other parties may change

the frequencies they communicate through over time. This introduces a further

hindrance in our ability to detect whether someone is using the surveyed signal

spectrum for covert communications.

As mentioned in Chapter 1, other motivating examples for such a problem

include spectrum scanning in a cognitive radio system (see Li [103], Caromi, Xin

& Lai [37]), detection of hot spots of a rapidly spreading disease (see Shah &

Zaman [128], Zhu & Ying [153], Luo & Tay [104], Wang et al. [144]), detection

of momentary astronomical events (see Thompson et al. [138]) or intrusions into

computer systems (see Gwadera, Atallah & Szpankowski [76], Phoha [121]). The

main question that we aim to answer in this chapter is how the dynamical aspects

of the signal affect the difficulty of the detection problem.

In the more classical framework of the signal detection problem, inference is

based on observations that are collected in a non-adaptive manner. However, deal-

ing with time-dependent signals naturally leads to a setting where measurements

can be obtained in a sequential and adaptive manner, using information gleaned

in the past to guide subsequent sensing actions. Furthermore, in certain situations

it is impossible to monitor the entire system at once, but instead one can only

partially observe the system at any given time. For instance in the above signal

intelligence example, we can consider a situation where we are only able to moni-

tor a certain frequency band at a given time, but the decision which frequencies to

monitor can depend on our past observations.

Such adaptive sensing procedures can, in certain situations, outperform non-

adaptive ones in signal detection and support recovery tasks, as seen in the pre-

vious two chapters. Hence a further goal is to understand the differences between

adaptive and non-adaptive sensing procedures when used for detecting dynamically

evolving signals, in particular in situations where the system can only be partially

monitored.

In this chapter we introduce a simple framework for studying the detection prob-
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lem of time-evolving signals. Our signal of interest is modeled as an n-dimensional

vector. We take a hypothesis testing point of view. Under the null the signal is the

zero vector, while under the alternative the signal is an s-sparse vector. At each

time step t ∈ N we flip a biased coin independently for each anomalous component.

The coin comes up tails with probability p, and if this happens, that component

will be in a different unoccupied location of the signal vector in the next time step.

Thus the parameter p encodes the speed of change of the signal support in some

sense. At each time step we are allowed to select one component of the signal to

observe through additive standard normal noise, and we are allowed to collect up

to m measurements. Our goal is to decide whether the signal is zero or not, based

on the collected observations.

We present an algorithm that solves the above task, and show its near-optimality

by deriving the fundamental limits of the hypothesis testing problem above. We

do this in both the adaptive sensing and non-adaptive sensing settings. It is easy

to see that the above problem can not be solved reliably unless we are allowed to

collect on the order of n/s measurements. When the number of measurements is

of this order, we can reliably detect the presence of the signal when the minimum

non-zero component scales like
√
p log(n/s) in the adaptive sensing setting. In the

non-adaptive sensing setting detection is possible when the smallest non-zero com-

ponent scales like
√

log n. Hence, under the adaptive sensing paradigm the speed

of change influences the difficulty of the detection problem, with slowly changing

signals being easier to detect. Contrasting this, in the non-adaptive sensing set-

ting, the speed of change has no effect of the problem difficulty, and in particular

detection is as hard as if we were given a different s-sparse signal at each time step.

Related work: The setting where the identity of the anomalous items is fixed

over time has been widely studied in the literature. Classically this problem has

been studied in the non-adaptive sensing setting. In this context both the funda-

mental difficulties of the detection problem and the optimal tests are well under-

stood, see for instance Ingster & Suslina [87, 88], Baraud [21], Donoho & Jin [64]

and the references therein. The same problem has been investigated in the adap-

tive sensing setting as well. In [81], Haupt, Castro & Nowak provide an efficient

adaptive sensing algorithm for identifying a few anomalous items among a large

number of items. Malloy & Nowak provide algorithms for sequential testing in a

similar setting, but for general distributions in [109, 106]. The algorithms outlined
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in these works can in principle also be used to solve the detection problem, that is

where only the presence or absence of anomalous items needs to be decided. Mal-

loy & Nowak also provide bounds on the fundamental difficulty of the estimation

problem in the adaptive sensing setting in [105], whereas Castro provides similar

results for the detection problem as well in [40].

Inference problems concerning time-dependent signals have been investigated in

various settings. The papers referenced below have varying degrees of connection

to the problem we are considering, but we remark that we were only able to find a

few instances that closely match our setting.

A closely related topic to the above is that of target search. Here, the goal is

to identify anomalous processes under the constraint that we can only observe a

limited number of them. These works consider a setting inspired by Chernoff [46],

which deals with optimal experimental design for testing binary hypotheses, which

was extended to multi-hypothesis testing by Bessler in [26]. Kadane introduced a

problem called whereabouts search in [94], which was recently revisited by Zhai &

Zhao [148]. Here, the aim is to find a target which is in one of several possible

locations. In this setting searching at a specific location results in binary obser-

vations regarding the presence or absence of the target. Castanon [38] and Cohen

& Zhao [48] consider a version of the previous problem dealing with more general

observations instead of binary ones. In particular Castanon [38] considers a setting

where the target process is a mean-shifted version of the baseline process, whereas

Cohen & Zhao [48] deal with arbitrary distributions.

A set of related work is concerned with the spectrum scanning of multichannel

cognitive radio systems. Here the aim is to quickly and accurately determine the

availability of each spectrum band of a multi-band system. Alternatively one might

only aim to quickly find a single band that is available. Efficient algorithms for the

spectrum scanning problem are provided by Li in [103] and Caromi, Xin & Lai in

[37]. A very similar problem is intrusion detection in cyber systems, investigated

by Cohen, Zhao & Swami in [50, 51, 49], where the target processes correspond

to unauthorized accesses or frauds in the system. We are only able to partially

monitor the system, that is we can only observe a subset of the processes. Each

anomalous process incurs a cost per unit time until the process is identified and

fixed, thus the aim is to develop methods that detect the anomalous processes as

quickly as possible in order to minimize the incurred cost.

Identification of anomalous processes among a large number of processes is
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a question also encountered in the monitoring of multi-channel systems. This

problem was introduced by Zigangirov in [154] and later revisited by Klimko &

Yackel [95] and Dragalin [67]. In this setting each channel of a multi-channel system

contains a Wiener process, a few of which are anomalous and have a deterministic

drift. The observer is allowed to monitor one channel at a time with the goal to

localize the anomalous channels as quickly as possible. Stone & Stanshine [136]

consider a similar setting, but with an additional constraint that once the observer

decides to monitor a different channel the decision about the currently monitored

channel has to be made.

A more closely related problem to the one considered in this chapter is detect-

ing the first disorder of a system involving multiple processes. In this problem,

multiple sensors take observations sequentially and relay them to a so-called fusion

center that determines whether the system is behaving normally or not. After

some unknown time a change occurs in the statistical behavior of the observations

collected by the sensors. This time can be different for different sensors, and some

sensors might not exhibit any change in the behavior. The goal is to detect the

first time change that occurs in any of the sensors as quickly as possible. Hadjil-

iadis, Zhang & Poor [77] examines one-shot schemes in the previous setup, that is,

when sensors only communicate with the fusion center in case they signal an alarm.

A Bayesian version of the problem was investigated by Raghavan & Veeravalli in

[125]. Bayraktar & Lai [23] deal with a version of the above problem where only

one of the sensors is compromised.

The detection of a change point is also a topic examined by Zhao & Ye [151].

In this work the observer is faced with multiple processes, each of which alternates

between two states (called ON and OFF), but the change points of the processes

are unknown. Only one process can be observed at any given time, and the goal is

to catch any one process in an ON state. This problem is very similar to the one

we are considering in this chapter, the main difference being that we aim to answer

a different type of question, namely detecting whether there is any process in the

ON state.

Organization: This chapter is organized as follows. Section 4.2 introduces the

problem setup, including the signal and observation models and the inference goals.

In Section 4.3 we introduce an adaptive sensing algorithm and analyze its perfor-

mance. Section 4.4 is dedicated to the characterization of the difficulty of the
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detection of dynamically evolving signals. In particular we show that the algo-

rithm presented in Section 4.3 is near-optimal, and examine the difference between

adaptive and non-adaptive sensing procedures. Concluding remarks and avenues

for future research are provided in Section 4.6.

4.2 Problem Setup

For every t ∈ [m], let x(t) ∈ Rn be an unknown signal of the following form

x
(t)
i =

{
µ i ∈ S(t),

0 i /∈ S(t),

where S(t) ⊂ [n] is the support of the signal at time t, and m ∈ N is our time hori-

zon. We refer to {x(t)}t∈[m] as the signal and {x(t)
i }i∈S(t) as the active components

of the signal. We can collect at most m measurements of the form

Yt = x
(t)
At

+Wt, Wt
iid∼ N(0, 1), t ∈ [m] , (4.1)

where At ∈ [n] is the index of the entry of the signal that we measure at time

t. In an adaptive sensing scenario {At}t∈N is a (possibly random) function of

the past {Yj , Aj}j∈[t−1]. In a non-adaptive sensing scenario {At}t∈N needs to be

generated before any observations are made, or formally At is independent from

{Yj , Aj}j∈[t−1] for all t ∈ [m].

This measurement model is closely related to that of Chapter 2. In particular,

setting the precision of the measurements Γt = 1 and removing the expectation

from the budget constraint in Chapter 2 leads to the model above. It is natural to

assume that the precision is related to the amount of time we have for an observa-

tion, which is the reason behind the first modification. Removing the expectation

from the budget constraint is done for more technical reasons, though we remark

that in the previous chapters this modification did not change the results qualita-

tively (see Appendix 2.A), and we do not have any reason to believe that this is

any different in the current setting.

Although the fact that the active components of x(t) have the same value might

seem overly restrictive at first glance, note that the same comment applies as in the

previous chapters. That is, when the active components have different signs and

magnitudes, essentially the same arguments hold throughout the chapter with µ
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playing the role of the minimum absolute value of the active components. Nonethe-

less, we use this simple model to make discussions and results more transparent.

We consider a simple stochastic model for the evolution of the signal. In a

nutshell, a support of size s is chosen uniformly at random in the first step. In

subsequent steps we toss a coin which comes up tails with probability p for every

active component. We then remove components for which the coin came up tails,

and place them back again to a position chosen uniformly at random from available

locations. Thus when p = 1 the signal has a new support drawn uniformly at

random from all sets of size s at each time t ∈ [m], whereas in case p = 0 the

support is chosen randomly at the beginning and stays the same throughout the

process. In general, the parameter p can be interpreted as the speed of change of

the support, with larger values corresponding to faster change.

Formally, let S(1) be chosen uniformly at random from {S ⊂ [n] : |S| = s} with

some fixed s ∈ [n]. Let θ
(t)
i ∼ Ber(p) be independent for every i ∈ [s], t ∈ [m]. For

a fixed t ∈ [m], enumerate the elements of S(t) as {S(t)
i }i∈[s]. If θ

(t)
i = 0 component

S
(t)
i will also be included in S(t+1), otherwise it will move. The support set S(t+1)

is chosen uniformly at random from the set{
S ⊂ [n] : |S| = s, S ∩ S(t) = {S(t)

i : θ
(t)
i = 0}

}
.

To help visualize the evolution of the support, we provide some simulated results

in Figure 4.1.

Figure 4.1: Indicator vectors of the support through time, with p = 0, 2, p = 0, 5
and p = 0, 8 respectively from left to right. The signal dimension is n = 100, the
support size is s = 10 and the simulations are run for 100 time steps. Time runs
from bottom to top on the vertical axis, and components in the support are colored
with black.
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4.2.1 Inference goals

Our goal is to decide between two hypotheses. Under the null hypothesis there is no

signal present, that is S(t) = ∅ for every t ∈ N. Under the alternative hypothesis

there is a signal support evolving according to the model described above. Let

Ψ : {At, Yt}t∈[m] → {0, 1} be a test function. We evaluate the performance of a

test Ψ in terms of the maximum of the type I and type II error probabilities. We

require

max
i=0,1

Pi(Ψ 6= i) ≤ ε , (4.2)

with some fixed ε ∈ (0, 1/2).

Note that, in contrast with Chapters 2 and 3, the alternative hypothesis is

simple in the current setup. In particular, the type II error probability can be

expressed by the law of total probability as

P1(Ψ = 0) := E1

(
P
(

Ψ = 0
∣∣∣{S(t)}t∈[m]

))
. (4.3)

Our goal is to understand how the signal strength µ needs to scale in terms of

the parameters n, s,m, p and ε so that the detection problem can be solved such

that (4.2) is satisfied. To this end we first propose an algorithm and evaluate its

performance in Section 4.3. Then in Section 4.4 we prove the near optimality of

the previous algorithm by proving necessary conditions that µ needs to satisfy so

that the detection task can be solved reliably.

In the subsequent sections we will see that there is a complex interplay between

the parameters n, s,m and p in how they affect the minimum signal strength re-

quired for reliable detection. Even when we restrict ourselves to the case p = 1, the

nature of the optimal test changes radically depending on the interplay between

the remaining parameters. In this case, the signal support is reset at every time

t ∈ [m], which means that regardless of the sampling strategy (the choice of At)

we are in the situation akin to a so-called sparse mixture model.

These models are now well understood (see Ingster & Suslina [87, 88], Baraud

[21], Donoho & Jin [64] and the references therein). We know that in the case of

mixture models, for very sparse signals a type of scan test (which is essentially a

generalized likelihood-ratio test) performs optimally, whereas for less sparse signals

a global test based on the sum of all the observations is the optimal one. In our case

the interplay between the parameters n, s and m determines the level of sparsity

of the sample under the alternative. This in turn means that in our situation the
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optimal test, and the scaling required for µ, depends on the relation between m

and n/s. For more details, see also Remark 4.1.

The above phenomenon becomes even more complex with the introduction of

the parameter p. Note however, that unlessm is at least on the order of n/s, reliable

detection is impossible. The reason behind this is that no sampling strategy will

sample an active component under the alternative in fewer measurements with

sufficiently large probability (this heuristic will be made rigorous in Section 4.4).

Consider the case when p = 0 and suppose there is no observation noise. Let

the sampling strategy be arbitrary and let Ω denote the event that the algorithm

does not sample an active component. When m ≤ n/s we have

P1(Ω) ≥
(
n−s
m

)(
n
m

) =
(n− s)(n− s− 1) . . . (n− s−m+ 1)

n(n− 1) . . . (n−m+ 1)

≥
(

1− s

n−m

)m
≥
(

1− 2s

n

)n/s
.

The expression on the right is bounded away from zero when n/s is large enough.

Hence regardless of the sampling strategy, there is a strictly positive probability

that no active components are sampled under the alternative, which shows that

(4.2) can not hold for ε small enough. When p 6= 0, sampling an active component

becomes even harder, hence the same result holds.

Hence, in order to take the first steps in understanding the effect of the speed of

change p has on the problem difficulty, we will focus on the case when the number

of measurements we are allowed to make is of the order n/s. If we are in a situation

where we want to make a decision as fast as possible, then this is the regime of m we

want to consider. We aim to gain understanding of the problem in full generality

in the future.

4.3 A Detection Procedure

In this section we propose an algorithm for the problem described in Section 4.2

and analyze its performance. Recall that in the current setup we can select our

measurement actions adaptively based on our previous observations.

The main idea of the algorithm for detection is similar to the one presented in

Chapter 2. Consider a setting where there is no measurement noise, that is, when

measuring a component of x(t) we know for sure whether that component is zero
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or not. In such a setting if we find an active component we can stop and set Ψ = 1.

On the other hand if we look at a large number of components and only observe

zeros, it becomes safe to conclude that there are no active components. Bear in

mind though that in case we did not observe any active components we might have

simply been unlucky - so there is always a possibility for a false negative decision

regardless of how many components we observe, unless p = 0.

The procedure that we propose is a robustified version of the one explained

above, so that it can deal with measurement noise. This is done by performing a

simple sequential test to gauge the identity of the component that we are observing.

Recall that in Chapter 2 this was accomplished by using a Sequential Likelihood

Ratio Test (SLRT). In principle we could use the same method here, but the

dynamical nature of the signal causes some difficulties. In particular since the

identity of the component that we are observing might change while performing

the test, the analysis of the SLRT becomes cumbersome.

Note however, that the SLRT in the case of normal observation noise is a

function of the running average of the observations. Hence we will use the same

statistic as the core of a more simple sequential test, that is easier to analyze and

still has good performance. This test is inspired by the Distilled Sensing algorithm

of Haupt, Castro & Nowak [81] and the Sequential Thresholding procedure of

Malloy & Nowak [109].

We now describe the algorithm formally. We query components uniformly at

random one after another and examine their identity (whether they are 0 or not)

using a sequential test to be described later. Once we find a component that

we deem to have non-zero mean we stop and set Ψ = 1. If we do not find any

components with elevated mean after examining T components, or we exhaust our

measurement budget m, we set Ψ = 0.

Formally, let {Qj}j∈[T ] denote the components we query. We choose Qj ∼
Unif([n]) and independent for j ∈ [T ]. The number of queries T ≤ m will be chosen

appropriately later. For each Qj we run a sequential test to determine the identity

of that component. We refer to our sequential test as Sequential Thresholding Test

(STT). To gauge the identity of Q1, STT makes multiple measurements at that

coordinate. That is, we set At = Q1 for t ∈ [N1], where N1 denotes the (random)

number of measurements that STT makes. If STT deems Q1 to be an active

component then we stop and set Ψ = 1. Otherwise we move on to the second query,

and run STT for that component (that is we set At = Q2, t = N1+1, . . . , N1+N2).
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We continue until either we find an active component, or perform all the tests for

Q1, . . . , QT and find no active components, or exhaust our measurement budget. In

case we stop because we have found an active component we set Ψ = 1, otherwise

we set Ψ = 0.

Algorithm 2: Algorithm for detection

Parameters:
• Number of queries T ∈ N
• Queries Q1, . . . , QT

iid∼ Unif([n])
Set Ψ = 0
for j ← 1 to T do

Perform STT for the component indexed by Qj
If STT returns “Signal”: break and set Ψ = 1
If measurement budget is exhausted: break

end

The sequential test that we use to examine the identity of a queried component

is based on the ideas of distilled sensing introduced and analyzed by Haupt, Castro

& Nowak in [81]. This algorithm is designed to recover the support of a sparse

signal (whose active components remain the same during the sampling process).

The main idea is to use the fact that the signal is sparse and try to measure active

components as often as possible, while not wasting too many measurements on

components that are not part of the support. We aim to achieve the same with our

procedure. On one hand we wish to quickly identify when the component that we

are sampling is non-active so that we can move on to probe a different location of

the signal. On the other hand in case we are sampling an active component, we wish

to keep sampling as long as possible so that we collect as much evidence of an active

component as possible. However, unlike in the original setting of distilled sensing,

we need to be able to quickly detect that we are sampling an active component, as

it might move away if we hesitate for too long.

In words, STT collects at most k measurements sequentially and keeps track of

the running average until one of the stopping conditions is met. The first stopping

condition says that once the running average drops below the threshold tk we

stop and declare that there is no signal present. The second says that if the

running average at step j exceeds a threshold tj , we stop and conclude that a

signal component is present. Note that after each measurement the upper threshold

decreases, eventually reaching tk, hence the procedure terminates after at most k
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Algorithm 3: Sequential Thresholding Test (STT)

Input:
• k ∈ N, t1 > t2 > · · · > tk > 0

for j ← 1 to k do

Observe Xj and compute Xj =
∑j
i=1Xi/j

If Xj ≤ tk: break and declare No signal
If Xj > tj : break and declare Signal

end

measurements are made.

We now use a bit of heuristics to conjecture a good choice for the parameters

k and {tj}j∈[k]. The sample collected by the algorithm consists of T blocks of

measurements, where each block corresponds to an application of STT. Let the

block lengths be denoted by {Nj}j∈[T ]. Suppose for a moment that blocks entirely

consist of either zero mean or non-zero mean measurements. In this case we could

simply collapse each block by replacing block j with its mean multiplied by
√
Nj

for all j ∈ [T ].

This would reduce the problem to a detection problem in a T -dimensional vec-

tor, each component being normally distributed and having unit variance. This is

a well-understood setting, and we know that in this case the signal strength needs

to scale as
√

log T when there are not too many active components (see for instance

Donoho & Jin [64] and the references therein). Recall that we are concerned with

the case where the number of measurements we are allowed to make is of the order

n/s. Hence we do not expect to encounter active components too many times.

This heuristic shows that we should calibrate STT in a way that when it encoun-

ters j consecutive measurements with elevated mean, it should be able to detect

it when µ ≈
√

1
j log T . Furthermore, note that by the above analysis we also need

µ &
√

log 1
ε . Recalling that j ≤ k, we thus see that choosing k greater than log T

does not buy us anything.

We choose the parameters of STT by the previous heuristics. We can prove the

following result:
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Lemma 4.1. Let ε ∈ (0, 1/2) and define the parameters of STT as

k = blog T c ,

tj =

√
c(ε/T )

j
log

T

ε
, j ∈ [k] ,

with

c(x) = 2

(
1 +

log log(1/x)

log(1/x)

)
.

Denote the observations available to the STT by X1, . . . , Xk (note that the STT

may terminate without observing all the variables). Then the following holds:

(i) If all Xi ∼ N(0, 1) and independent for i ∈ [k], then STT declares “Signal”

with probability at most ε/T .

(ii) If the Xi ∼ N(µ, 1) and independent for i ∈ [j] with

µ ≥

√
c(ε/T )

j
log

T

ε
+

√
2 log

2

ε
,

then STT declares “No Signal” with probability at most ε.

Proof. (i): Suppose we have Xi ∼ N(0, 1) and independent for i ∈ [k]. Note

that the STT declares “Signal” if at any time step j ∈ [k] the running average Xj

exceeds the threshold tj . We can use a union bound to upper bound the probability

of this event, and plug in the parameter values to verify the claim. In detail,

P
(
∃j ∈ [k] : Xj ≥ tj

)
≤

k∑
j=1

P(Xj ≥ tj)

≤
k∑
j=1

1

2
exp

(
−
jt2j
2

)

=

blog Tc∑
j=1

1

2
exp

(
−c(ε/T )

2
log

T

ε

)
≤ log T ·

( ε
T

)c(ε/T )/2

.
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The right hand side is at most ε/T , which can be checked by taking the logarithm:

log

(
log T ·

( ε
T

)c(ε/T )/2
)

= log log T +

(
1 +

log log(T/ε)

log(T/ε)

)
log(ε/T )

= log log T + log(T/ε)− log log(T/ε)

≤ log(T/ε) .

(ii): Suppose Xi ∼ N(µ, 1) and independent for i ∈ [j], with µ defined above.

Let

Ω = {∃i ∈ [j − 1] : Xi ≤ tk} .

Note that if this event happens, we stop and declare “No signal” in one of the first

j − 1 steps. Hence, using the law of total probability, the probability of missing

the signal can be upper bounded as

P(Declare “No signal”) = P(Ω) + P(Ω)P(Declare “No signal”)|Ω)

≤ P(Ω) + P(Ω)P(Xj ≤ tj |Ω)

≤ P(Ω) + P(Xj ≤ tj) .

Using a union bound and the same Gaussian tail bound as before, the last expres-

sion can be upper bounded by

j−1∑
i=1

1

2
exp

(
− i(µ− tk)2

2

)
+

1

2
exp

(
−j(µ− tj)

2

2

)
. (4.4)

Considering he first term above, note that

µ− tk = tj +

√
2 log

2

ε
− tk ≥

√
2 log

2

ε
,

since tj ≥ tk (recall that j ≤ k). Hence the first term can be upper bounded as

j−1∑
i=1

1

2
exp

(
− i(µ− tk)2

2

)
≤ 1

2

j−1∑
i=1

(ε/2)i

≤ 1

2

∞∑
i=1

(ε/2)i

=
ε

2

1

2− ε
≤ ε/2 .
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On the other hand, when µ satisfies the inequality above, the second term is

simply upper bounded by (ε/2)j , and hence the claim follows.

Using Lemma 4.1, we can establish a performance guarantee for our detection

algorithm. Though it is possible to derive a result for a fixed set of parameters

(n, s), perhaps it is better to state an asymptotic result instead, which reads more

easily, and better highlights the impact of the parameter p.

Keeping this comment in mind, note that 2 ≤ c(x) ≤ 2(1 + 1/e) and c(x) → 2

as x → 0. Thus, keeping ε fixed and letting T → ∞, we see that if there exists a

τ > 1 for which

µ ≥ τ
√

2

j
log T +

√
2 log

2

ε
,

then for T large enough the condition on µ in Lemma 4.1 is satisfied. Furthermore,

recall that our main interest is how the algorithm performs when the time horizon

is of the order n/s.

Proposition 4.1. Fix ε ∈ (0, 1/2) and let n→∞ and s = o(n/(log n)2). Set T =
4n
s log2

2
ε and the parameters of STT according to Lemma 4.1. If the measurement

budget is m > 2T then the algorithm described above asymptotically satisfies

max
i=0,1

Pi(Ψ 6= i) ≤ 2ε ,

whenever

µ ≥ τ

√
2

min{1/(2p), log(n/s)}
log(n/s) +

√
2 log

2

ε
,

with τ > 1 fixed, but arbitrary.

Before we move on to the proof of this result, let us discuss its message. First

note that the detection algorithm is agnostic about the speed of change p and the

signal strength µ, though it does require knowledge of the sparsity s to set the

parameter T . On the other hand it is apparent from the proof of Proposition 4.1,

that it is enough to have a lower bound on the sparsity.

The number of measurements that the Algorithm 2 requires to be effective scales

like n/s, which is the minimum amount necessary to be able to solve the problem

(see Section 4.4). Furthermore, when p < 2/ log(n/s) the signal strength needs

to scale as
√

log(1/ε), and when p ≥ 2/ log(n/s) it needs to scale as
√
p log(n/s).

This matches our intuition that the speed of change p affects the problem difficulty
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in a monotonic fashion. We will show in Section 4.4 that in the regime m ≈ n/s

this scaling of µ is necessary to reliably solve this detection task.

Remark 4.1. As we have mentioned in Section 4.2.1, for now we are interested in

the case where the number of observations we can make is of the order n/s. In fact,

in Section 4.4 we only show the optimality of the above algorithm in this regime.

Note that Proposition 4.1 claims the same performance guarantee for every m that

is at least of order n/s. In fact, it is not hard to see that the performance of this

algorithm does not improve as m increases, hinting that it is likely suboptimal for

large m. To illustrate this, we present a very simple algorithm and a back of the

envelope analysis here.

Let us sample components uniformly at random in each step t ∈ [m]. Then

in each step we hit an active component with probability s/n. We then roughly

have ms/n active components in our sample under the alternative. Consider the

standardized sum of our observations. Under the null this follows a standard normal

distribution, whereas under the alternative it is distributed as N(
√
msµ/n, 1). Thus

reliable detection using this algorithm is possible when µ is of the order n/(
√
ms).

Hence this simple algorithm clearly outperforms the one above when m is large

enough (compared to n/s).

proof of Proposition 4.1. In light of Lemma 4.1, the type I error probability is at

most ε by a union bound. Hence we are left with studying the alternative.

There are two ways that our algorithm can make a type II error. Either the

measurement budget is exhausted, or we fail to identify an active component in

T runs of STT. We show that the probability of both events is small if n is large

enough.

We start with upper bounding the probability of exhausting our measurement

budget. Let Nj denote the number of measurements that STT makes when called

for the jth time, for j ∈ [T ]. Note that these variables are independent and

identically distributed, because the components to query are selected uniformly

at random independently from the past, the dynamic evolution of the model is

memoryless and finally the observation noise is independent. First we upper bound

E1(N1). Note that 1 ≤ N1 ≤ k, where k = log T by Lemma 4.1. Let Ω denote the

event that a non-zero mean observation appears at location A1 in any of the first

k steps. By the law of total expectation we have

E1(N1) ≤ kP1(Ω) + E1(N1|Ω) .
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Note that

P1(Ω) = P1(∃t ∈ [k] : A1 ∈ S(t)) ≤
k∑
t=1

P1(A1 ∈ S(t))

≤ s

n
+ (k − 1)

s

n− s
≤ ks

n− s
,

since the choice of A1 (and S(1)) is random, and in each subsequent step the

probability that a signal component moves to location A1 is at most s/(n − s)

regardless of p. On the other hand, recalling that tk =
√

c(ε/T
blog Tc log T

ε ≤
√

2 is the

lower stopping boundary of STT,

E1(N1|Ω) =

k∑
t=1

P0(N1 ≥ t) ≤
k∑
t=1

P0(Y t−1 > tk) ≤
k∑
t=1

P0(Y t−1 >
√

2)

≤ 1 +
1

2

k−1∑
t=1

e−t ≤ 1 +
1

2(e− 1)
< 2 .

Hence

E1(N1) ≤ 1 +
1

2(e− 1)
+

k2s

n− s
≤ 2 ,

eventually as n → ∞ by the definition of k (and T ) and since s = o(n/(log n)2).

Hence, using the notation m = (2 + c)T with some c > 0 and using Hoeffding’s

inequality (when n is large enough for the previous inequality to hold) we get

P1

 T∑
j=1

Nj > m

 = P1

 T∑
j=1

Nj − E1

( T∑
j=1

Nj

)
> m− E1

( T∑
j=1

Nj

)
≤ P1

(
T∑
i=1

Ni − E1

( T∑
i=1

Ni

)
> cT

)

≤ exp

(
−c

2T

k2

)
→ 0 ,

as n→∞ again using the definitions of T and k and the assumption about s. This

shows that the probability that the measurement budget is exhausted tends to zero

as n→∞.

The second step is to guarantee that the algorithm identifies an active compo-

nent in one of the T tests with high probability. To show this, we first guarantee

that there will be an instance in the repeated application of STT where the first
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1/(2p) observations that the procedure has access to have elevated mean. Then we

can apply Lemma 4.1 together with a union bound to conclude the proof.

Let Tj =
∑j−1
i=1 Ni + 1 denote the time when STT starts for the jth time. Let

N =
∑T
j=1 1{Qj ∈ S(Tj)} denote the number of times an active component is

sampled at the start of STT. Note that N ∼ Bin(T, s/n). Each time this happens,

the first few observations STT has access to have elevated mean. Denote the

number of these consecutive observations by {ηi}i∈[N ]. Note that ηi ∼ Geom(p)

and {ηi}i∈[N ] are independent. We have

P(∀i ∈ [N ] : ηi < 1/(2p)) ≤ P
(
∀i ∈ [N ] : ηi < 1/(2p) |N ≥ log2

2
ε

)
+ P

(
N < log2

2
ε

)
.

On one hand, note that the median of ηi is d1/| log2(1− p)|e which is greater than

1/(2p). This can be easily checked by considering the cases p ≥ 1/2 and p < 1/2

separately. Hence the first term above can be upper bounded as

P
(
∀i ∈ [N ] : ηi < d1/| log2(1− p)|e |N ≥ log 4

ε

)
≤ 2− log2

2
ε = ε/2 .

On the other hand, N ∼ Bin(T, s/n) and so by Bernstein’s inequality,

P
(
N < (1− δ)Ts

n

)
≤ exp

(
− 3δ2

8(1− δ)
Ts

n

)
,

for any δ ∈ (0, 1). However, note that plugging in the value of T together with

δ = 2/3 yields

P
(
N < log2

2
ε

)
≤ P

(
N <

4

3
log2

2
ε

)
≤ exp

(
−2 log2

2
ε

)
< ε/2 ,

since log2 x > log x for x > 1.

Union bounding concludes the proof.

4.4 Lower bounds

In this section we identify conditions for the signal strength that are necessary for

the existence of a test satisfying

max
i=0,1

Pi(Ψ 6= i) ≤ ε .
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First, we consider the non-adaptive sensing setting for comparison purposes. Then

we consider the adaptive sensing setting to show the near-optimality of the algo-

rithm proposed in Section 4.3.

In both cases we focus on the regime m ≈ n/s, as highlighted in Section 4.2.1.

4.4.1 Non-adaptive sensing

In the non-adaptive sensing setting, the sampling strategy {At}t∈[m] needs to be

specified before any observations are made. Note that this does not exclude the

possibility that these variables are generated randomly.

Due to technical difficulties we were so far unable to show a general lower

bound for the non-adaptive sensing setting. Nonetheless, we show a lower bounding

argument to illustrate the difficulty that we face compared to the more classical

signal detection settings. We also show that this proof sketch can be made rigorous

with two additional results that heuristically seem valid, but to which we do not

have a formal proof yet.

The usual technique for deriving non-adaptive lower bounds in high-dimensional

signal detection problems is the so-called second moment method. Let P0 and P1

denote the distribution of {Yt}t∈[m] under the null and the alternative respectively.

Under the null Yt ∼ N(0, 1), t ∈ [m] independent, regardless of the choice of

{At}t∈[m]. Under the alternative

Yt ∼ 1{At ∈ S(t)}N(µ, 1) + 1{At /∈ S(t)}N(0, 1), t ∈ [m]

and Yt and Yt′ are conditionally independent given {At}t∈[m] and {S(t)}t∈[m] for

t 6= t′. We use the notations Y = {Yt}t∈[m],S = {S(t)}t∈[m] and A = {At}t∈[m].

Suppose there exists a test for which the maximum of type I and type II errors

is at most ε. By Theorem 2.2 in Tsybakov [139],

ε ≥ inf
Ψ

max
i=0,1

Pi(Ψ 6= i) ≥ 1− TV (P0,P1) ,

where TV (·, ·) is the Total Variation distance. This is usually difficult to compute,

hence we continue by upper bounding the Total Variation distance with the χ2-
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divergence. We have the following bound (see Section 2.4.1 in Tsybakov [139]):

TV (P0,P1) ≤
√

1

2
χ2(P0,P1) =

√√√√1

2

(
E0

[(
dP1

dP0

)2
]
− 1

)
.

Note that there are other ways to upper bound the Total Variation distance.

For instance, we could use a function of the Kullback-Leibler divergence to con-

tinue. By doing so, we would essentially get that µ needs to scale as
√
n/(sm),

which in the regime m = n/s would only claim that the signal strength has to be

above a constant. This lower bound is probably very loose. Another possibility

would be to use the Hellinger-distance to continue, which would lead to similar

computations and hence similar difficulties to the ones we encounter when using

the χ2-divergence.

Continuing with the bound above, we get

2(1− ε)2 + 1 ≤ E0

[(
dP1

dP0

)2
]
.

We need to upper bound the right hand side above. Note that the density dP1

is a mixture. In particular, denoting the density of N(µ, 1) by fµ, the conditional

density of Y given A and S is

dP1(Y|A,S) =
∏
t∈[m]

(
1{At ∈ S(t)}fµ(Yt) + 1{At /∈ S(t)}f0(Yt)

)
.

Hence we can write dP1(Y) = EA [ES [ dP1(Y|A,S)]], where the subscripts of the

expectations indicate which random variables are integrated out by that particular

expectation.

Let S′ = {S′(t)}t∈[m] denote a sequence of supports having identical distribution

to that of S, and independent of S. Using Jensen’s inequality we get

E0

[(
dP1

dP0

)2
]

= E0

[(
EA [ES [ dP1(Y|A,S)]]

dP0(Y)

)2
]

≤ E0

[
EA

[
ES

[
dP1(Y|A,S)

dP0(Y)

]2
]]

= E0

[
EA

[
ES

[
dP1(Y|A,S)

dP0(Y)

]
ES′

[
dP1(Y|A,S′)

dP0(Y)

]]]
.
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Note that
dP1(Y|A,S′)

dP0(Y)
=
∏
t∈[m]

1{At ∈ S(t)}fµ(Yt)

f0(Yt)
.

Hence the expression on the right above is equal to

E0

[
EA

[
ES,S′

[ ∏
t∈[m]

1{At ∈ (S(t) ∩ S′(t))}
(
fµ(Yt)

f0(Yt)

)2

∏
t∈[m]

1{At ∈ (S(t)4S′(t))}
(
fµ(Yt)

f0(Yt)

)]]]
.

By changing the order of integration we can move the outermost expectation inside,

and integrate out Yt to get

E0

[(
dP1

dP0

)2
]
≤ EA

ES,S′

 ∏
t∈[m]

exp
(
1{At ∈ (S(t) ∩ S′(t))}µ2

) . (4.5)

Evaluating the expectations above in general is challenging because we can not

move the expectations inside the products, since we do not have independence.

Note that when p = 1 the supports are chosen uniformly at random at each time

step, so we can evaluate the inner expectation and get

E0

[(
dP1

dP0

)2
]
≤ EA

 ∏
t∈[m]

(
1 +

s2

n2
(eµ

2

− 1)

)
=

(
1 +

s2

n2
(eµ

2

− 1)

)m
.

This would lead to the bound

µ ≥

√
log

(
n2

s2

(
m
√

2(1− ε)2 + 1− 1
)

+ 1

)

≥

√
log

(
n2

s2m
log (2(1− ε)2 + 1) + 1

)
,

using log x ≤ x − 1 with x = m
√

2(1− ε)2 + 1. In the regime m ≈ n/s this lower

bound states that the signal strength needs to be of the order
√

log(n/s). Our

conjecture is that this scaling is required regardless of the value of p (at least, in
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the regime m ≈ n/s). We illustrate the reason behind our conjecture with some

heuristics.

Consider the case p = 0. In this case, a good strategy is to subsample the signal.

This means that we select a number of locations of the signal, and sample only at

the selected locations. Clearly, the number of locations we choose to sample at

needs to be of the order n/s, by the same token as before. Using such a sampling

scheme, it is easy to check that detection is possible whenever µ is at least of the

order
√

(n/sm) · log(n/s). Although we do not have a formal proof, we conjecture

that such a sampling scheme is optimal in the case p = 0.

Note that the conjectured bound for the case p = 0 in the regime m ≈ n/s is

of the order
√

log(n/s), which is the same as the bound we have for p = 1. Since

we suspect the same result to hold (at least qualitatively) at the two extremes of

the spectrum, we believe that this result should also hold for every p ∈ [0, 1]. For

a rigorous argument, we need two ingredients:

(i) A lower bound for the case p = 0, and

(ii) A formal argument showing the monotonicity of the problem difficulty in p.

It is important to emphasize that the above conjecture is for the case when m

is of the order n/s. As we have seen in Remark 4.1, this lower bound can not be

valid for large m.

4.4.2 Adaptive sensing

In the adaptive sensing setting the sample collection strategy can depend on in-

formation gleaned during the sample collection process. Fundamental limits of the

detection problem in this setup have been studied by Castro in [40] for the case

when p = 0. The lower bounds presented in that work are valid for a more general

observation model than the one considered in this chapter. Specifically, the setting

in Castro [40] is the same as in Chapter 2, that is, we are allowed to choose the

precision of the measurements as well as which coordinates of the signal to measure.

Hence the lower bound presented there is also a valid lower bound for our setting.

A result in that work translated to our setting states the following:

Theorem 4.1 (Theorem 3.1 of [40]). Let C = {S ⊂ {1, . . . , n} : |S| = s} and

ε ∈ (0, 1). If there exists an adaptive algorithm producing an test Ψ such that

max{P0(Ψ = 1),max
S∈C

PS(Ψ = 0)} ≤ ε
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then necessarily

µ ≥
√

2n

sm
log

1

ε
.

Note that the way the that performance of the test is measured in the above

result is slightly different than the way we have defined it in (4.2). However, it

is easy to show that these only differ by a constant multiplicative factor (this is

also argued in Castro [40]), meaning that essentially the same scaling holds in our

setting as well.

In the regime m ≈ n/s the bound states that the signal strength needs scale as√
log(1/ε). This coincides with the bound in Proposition 4.1 when p ≤ 2/ log(n/s).

This tells us that when the signal changes slowly enough, the problem is essentially

non-dynamic in nature, which is what one would expect.

On the other extreme end of the spectrum is the case when p = 1. In this case

the signal resets in every time instance. Let {At}t∈[m] be the sensing actions of

an arbitrary algorithm. Under the alternative we have 1{At ∈ S(t)}iid∼ Ber(s/n),

and so the observation model is a mixture model, and the same computations hold

as in the non-adaptive sensing setting. In particular, when the support changes

in every time step, adaptive sensing does not provide any help in detection, which

is also what one would expect. Hence, when m ≈ n/s, then for any test to have

small probability of error, the signal strength has to scale like
√

log n
s . Again,

this rate coincides with the performance guarantee of our algorithm established in

Proposition 4.1.

Non-extreme dynamics (p ∈ (0, 1)), 1-sparse case

For general values of p we start by considering the 1-sparse case. This case is

considerably simpler than the general s-sparse setting, as now whenever the active

component changes, the entire signal resets. This effectively creates a number of

independent static signals on the time horizon.

Figure 4.2: Illustration of the notations introduced for the 1-sparse case.

Let us introduce some notation, which we illustrate in Figure 4.2. Recall that

the variables θ
(t)
i
iid∼ Ber(p), t ∈ [m], i ∈ [s] identify the change points of the
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signal. Since now we are dealing with the 1-sparse case we have one variable per

time index, so in what follows we drop the subscript from the previous notation.

Furthermore, note that our time horizon is m, so enforcing θ(m) = 1 does not

change the model. Let the number of change points over our time horizon be

N =
∑
t∈[m] 1{θ(t) = 1}. Note that N − 1 ∼ Bin(m − 1, p). Let τ0 = 0 and for

j ∈ N let τj = min{t > τj−1 : θ(t) = 1} denote the time instances when the signal

changes (so τN = m). Note that on the time intervals [τj + 1, τj+1] the signal is

static. Finally, for any t ∈ [m] let the number of change points up to time t be

N(t) = max{j : τj ≤ t}.
We wish to get a lower bound for all adaptive sensing algorithms described in

Section 4.2. Denote the set of those algorithms by A. Our first step is to consider

a wider class of adaptive sensing algorithms A ⊆ A′ and show a lower bound for

the class A′. Let A′ be the set of algorithms that at time t also has access to the

variables {θ(j)}t−1
j=1 next to those described in the problem setup. In words, this

means the algorithm also has knowledge of when the signal changes. Due to this

extra information such an algorithm has an advantage compared to those that we

are interested in, or more formally A ⊆ A′. Note that since we are considering

a 1-sparse problem, the entire signal resets when the active component changes.

Hence, when deciding where to collect the observation at time t, all the information

gathered before time τN(t) is irrelevant. More formally, an algorithm in A′ that also

uses the information in the variables {θ(j)}j∈[t−1] has the property that At is only

a function of {Yj , Aj}t−1
j=τN(t)

(instead of {Yj , Aj}t−1
j=1). Hence, for such algorithms,

the variables ωj =
∑τj
t=τj−1+1 1{At ∈ S(t)} are independent for j ∈ [N ].

Consider the variables ωj , j ∈ N . Under the null all those indicators are zero,

since S(t) = ∅ for every t ∈ [m] and so all the observations that the algorithm

collects have mean 0. Under the alternative, if an algorithm does not manage

to sample an active component in the time interval [τj−1 + 1, τj ], then all the

observations are mean 0. Otherwise, some observations in that time interval have

mean µ. Consider a setting where the event {ωj = 1} implies that all observations

in the time interval [τj−1 + 1, τj ] have mean µ under the alternative. In such a

situation the distinction between the null and the alternative is easier as we have

more anomalous samples under the alternative.

Hence we aim to lower bound the following block-mixture problem. Under the

null Yt ∼ N(0, 1) and independent t ∈ [m]. Under the alternative

Yt ∼ ωN(t)N(µ, 1) + (1− ωN(t))N(0, 1)
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and independent for t ∈ [m]. In words, the model contains m measurements,

consisting of N blocks (where N −1 is a binomial random variable, see Figure 4.2).

Block j activates independently of the other blocks, for every j ∈ [N ]. When

ωj = 1, every measurement in the block [τj−1 + 1, τj ] has mean µ, otherwise all of

them have mean zero. The lower bound for µ in this problem is also a lower bound

in the original problem by the above reasoning. Let qj = P(ωj = 1) denote the

probability that the signal component is sampled in the time interval [τj−1 + 1, τj ].

This probability can re-written as

qj = P(∪τjt=τj−1+1{At = S(t)}) = P(S(t) ∈ {At : τj−1 + 1 ≤ t ≤ τj}) .

However, |{At : τj−1 + 1 ≤ t ≤ τj}| ≤ τj − τj−1 := lj thus we have qj ≤ lj/n.

Our strategy for deriving a lower bound for the block-mixture problem above is

the following: First, we show a lemma stating that under the random signal model

described above, the number of blocks N the signal consists of is at least mp/2,

and no block is longer than cm/N with probability bounded away from zero for a

well-chosen universal constant c. This means that in order for any procedure to

have a small probability of error, the procedure needs to have a small probability

of error on this event. Then we formulate a necessary condition for µ so that a

reliable test exist, given this event.

Lemma 4.2. Consider the event

Ω =
{
{N − 1 > mp/2} ∩ {∀j : lj ≤ cm/N}

}
.

In the model described above P(Ω) > 1/4 whenever c ≥ 6 + 3 log 2 and p ≥ 8/m.

Proof. We write

P(Ω) = E ({N − 1 > mp/2} ∩ {∀j : lj ≤ cm/N})

= EN
(
1{N − 1 > mp/2}El|N

(
1{∀j : lj ≤ cm/N}

∣∣N)) ,
where l = (l1, . . . , lN ) is a shorthand notation, and as before the subscripts of the

expectations are reminders to which random quantities are integrated out by that

particular expectation. We continue by lower bounding the expression on the right.

We first lower bound the inner conditional probability

El

(
1{∀j : lj ≤ cm/N}

∣∣N) .
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Note that if N ≤ c this probability is one (since cm/N ≥ m and lj ≤ m by

definition). Otherwise, we will upper bound the probability of the complementary

event. This can be done by counting the number of configurations for placing the

N − 1 endpoints of the intervals in the set [m − 1] that results in at least one

block that is longer than cm/N . To get an upper bound on this count we use

the following strategy. First, place an interval of length cm/N in the set [m − 1].

Then choose the N − 1 endpoints of the intervals such that none of them are in

the aforementioned interval. This gives a configuration in which the existence of at

least one long interval is guaranteed. Furthermore, though some configurations are

counted multiple times, every configuration leading to at least one long interval is

counted at least once. Hence

Pl(∃j : lj > cm/N |N) ≤

≤ (m− cm/N)

(
m−cm/N
N−1

)(
m−1
N−1

)
= (m− cm/N)

(m− cm/N)(m− cm/N − 1) . . . (m− cm/N −N + 2)

(m− 1)(m− 2) . . . (m−N + 1)

≤ m

m− 1
(1− c/N)

(
m− cm/N
m− 2

)N−2

<

(
m− cm/N
m− 2

)N−2

.

Now consider the logarithm of the expression above. Using log(1 + x) ≤ x, we get

logPl(∃j : lj > cm/N |N) < (N − 2)

(
log

m

m− 2
+ log(1− c/N)

)
≤ (N − 2)

(
2

m− 2
− c

N

)
≤ − log 2 ,

whenever c ≥ 6 + 3 log 2, using the fact that 3 ≤ c ≤ N ≤ m.

Hence P(Ω) ≥ PN (N − 1 > mp/2)/2. All that remains is to use the fact that

N − 1 ∼ Bin(m− 1, p). For instance Chebyshev’s inequality yields

P(N − 1 ≤ mp/2) ≤ 4(m− 1)p(1− p)
(mp)2

≤ 1/2 ,

154



when p ≥ 8/m and so the claim is proved.

We can use the above result to argue that in order to have a small probability

of error, we need to be able to distinguish the null and the alternative under the

event Ω. Under this event we can compute a suitable metric of divergence between

the two (conditional) distributions, which leads to a lower bound for µ.

Theorem 4.2. Let {θ(t)}mt=1, N, {τj}Nj=1, {lj}Nj=1 be defined as above and consider

the problem of distinguishing H0 : Yt
iid∼ N(0, 1), t ∈ [m] and

H1 : Yt
iid∼ ωN(t)N(µ, 1) + (1− ωN(t))N(0, 1), t ∈ [m] ,

where ωj
iid∼ Ber(qj) (with qj ≤ lj/n). Suppose

inf
Ψ

max
i=0,1

Pi(Ψ = 1− i) ≤ ε ,

with some ε ∈ (0, 1/8), and that p ≥ 8/m. Then necessarily

µ ≥

√
p

2c
log

(
log(2(1− 8ε)2 + 1)p2n2

4c2m
+ 1

)
,

with c = 6 + 3 log 2.

Before we prove this result, let us compare the above bound on µ with the

guarantees of our detection algorithm proved in Proposition 4.1. Note that c and

ε are fixed constants. Thus the bound on the signal strength in the above result

scales as
√
p log(p2n2/m). Recall that we are interested in the regime m ≈ n/s

and that s = 1, as we are considering the 1-sparse case. Plugging this value in,

the bound above scales as
√
p log(p2n). Also note that the scaling of the per-

formance guarantee of Proposition 4.1 matches that of the lower bound in Theo-

rem 4.1 when p < 1/ log n. Hence we only need to assess the result of Theorem 4.2

when p ≥ 1/ log n. In this case, the scaling of that bound is at least as big as√
p(log n− 2 log log n) ≈

√
p log n. This shows near-optimality of the algorithm

proposed in Section 4.3, in terms of its scaling in the parameters n and p.

Proof. We use similar arguments to those presented in the non-adaptive sensing

setting in Section 4.4.1. First, we use the law of total probability and Theorem 2.2
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in [139] to get

ε ≥ inf
Ψ

max
i=0,1

Pi(Ψ = 1− i)

≥ P(Ω)

2
inf
Ψ

(P0(Ψ = 1|Ω) + P1(Ψ = 0|Ω))

≥ P(Ω)
1− TV (P′0,P′1)

2
,

where TV (·, ·) is the total variation distance and P′i is the conditional distribution

Pi given Ω, i = 0, 1 (note that P′0 = P0). We continue the previous chain of

inequalities by upper bounding the total variation distance with the χ2-divergence.

We have

TV (P0,P′1) ≤
√

1

2
χ2(P0,P′1) =

√√√√1

2

(
E0

[(
dP′1
dP0

)2
]
− 1

)
,

where dP0 and dP′1 are the conditional marginal densities of {Yt}t∈[m] given Ω

under the null and the alternative respectively. Hence we have

2(1− 2ε/P(Ω))2 + 1 ≤ E0

[(
dP′1
dP0

)2
]
,

and so all that remains is to get a good upper bound on the expectation on the

right. We let Ω be the same event as in Lemma 4.2 with c = 6 + 3 log 2, that is

Ω =
{
{N − 1 > mp/2} ∩ {∀j : lj ≤ cm/N}

}
.

By Lemma 4.2 we have P(Ω) ≥ 1/4.

We use the shorthand notations Y = {Yt}t∈[m], l = {lj}j∈[N ] and ω = {ωj}j∈[N ].

As before, dP′1 is a mixture, and we can express it in a similar fashion as we did

in Section 4.4.1.

In particular, denoting the density of N(µ, 1) by fµ, the conditional density of

Y given N, l and ω is

dP1(Y|N, l, ω) =

N∏
j∈1

∏
t:N(t)=j

(1{ωj = 1}fµ(Yt) + 1{ωt = 0}f0(Yt)) .

Hence we can write dP′1(Y) = EN,l|Ω
[
Eω|N [ dP1(Y|N, l, ω)]

]
, where the subscripts
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of the expectations indicate which random variables are integrated out by that

particular expectation. In detail, the inner expectation Eω|N is taken w.r.t. the

conditional distribution ω|N (recall ωj ∼ Ber(qj) and independent for j ∈ [N ]).

The outer expectation EN,l|Ω is taken w.r.t. the joint conditional distribution of

N, l given the event Ω.

We upper bound E0

[
( dP′1/ dP0)2

]
similarly to how it was done in Section 4.4.1.

Let ω′ be a vector distributed identically to ω (given N) independent of ω, and let

fµ denote the density of N(µ, 1). We have

E0

[(
dP′1(Y)

dP0(Y)

)2
]

=

= E0

(EN,l|Ω
[
Eω|N [ dP1(Y|N, l, ω)]

]
dP0(Y)

)2


≤ E0

[
EN,l|Ω

[
Eω|N

[
dP1(Y|N, l, ω)

dP0(Y)

]2
]]

= E0

[
EN,l|Ω

[
Eω|N

[
dP1(Y|N, l, ω)

dP0(Y)

]
Eω′|N

[
dP1(Y|N, l, ω′)

dP0(Y)

]]]
,

using Jensen’s inequality. In the above expression dP1(Y|N, l, ω)/ dP0(Y) are

products of the marginal densities of Yt, t ∈ [m], which take the value 1 when

ωN(t) = 0 and take the value fµ(Yt)/f0(Yt) when ωN(t) = 1. So the expression on

the right side above is equal to

E0

[
EN,l|Ω

[
Eω,ω′|N

[ N∏
j=1

∏
t: N(t)=j

1{ωj = ω′j = 1}
(
fµ(Yt)

f0(Yt)

)2


 N∏
j=1

∏
t: N(t)=j

1{ωj 6= ω′j}
fµ(Yt)

f0(Yt)

]]] .
Note that the outermost expectation E0 is with respect to the density of Y under

the null. This does not depend on any of the other variables. Hence we can change
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the order of integration and continue as

E0

[(
dP′1(Y)

dP0(Y)

)2
]
≤

≤ EN,l|Ω

Eω,ω′|N
E0

 N ′∏
j=1

∏
t: N(t)=j

1{ωj = ω′j = 1}
(
fµ(Yt)

f0(Yt)

)2


= EN,l|Ω

Eω,ω′|N
 N∏
j=1

∏
t: N(t)=j

exp(1{ωj = ω′j = 1}µ2)


= EN,l|Ω

 N∏
j=1

(1 + q2
j (eljµ

2

− 1))



The expectation is readily upper bounded using the fact that we are under the

event Ω (recall that Ω puts an upper bound on the interval lengths l and a lower

bound on the number of intervals N). We get

E0

[(
dP′1(Y)

dP0(Y)

)2
]
≤
(

1 +
4c2

p2n2

(
e2cµ2/p − 1

))m
,

which when combined with the previous inequality yields

µ ≥

√
p

2c
log

(
p2n2

4c2
( m
√

2(1− 8ε)2 + 1− 1) + 1

)
.

Using log x ≤ x− 1 for x = m
√

2(1− 8ε)2 + 1, the previous inequality implies

µ ≥

√
p

2c
log

(
log(2(1− 8ε)2 + 1)p2n2

4c2m
+ 1

)
,

which is what we wanted to show.

Non-extreme dynamics, general sparsity

A rigorous result for the case of general sparsity levels remains out of reach at this

point. However, we conjecture that in the s-sparse case, essentially the same result

should hold as in Theorem 4.2 with n replaced by n/s. That is to say, we conjecture
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that the signal strength needs to scale as
√
p log(n/s) in the regime m ≈ n/s.

Although lacking a formal proof, we highlight the reason behind the above

conjecture. Consider a model for the evolution of the signal support, which is the

s-fold concatenation of 1-sparse problems of size n/s. Formally, let {Bi}i∈[s] be

consecutive blocks of [n], each having size n/s. Formally,

Bi = {k : k = (i− 1)n/s+ j, j ∈ [n/s]} ,

for i ∈ [s]. Consider a single active component that evolves according to the

dynamic described in Section 4.2, restricted to the block B1. Denote the position

of this active component at time t by S
(t)
1 . Define an s-sparse support for every

t ∈ [m] by setting S(t) = {S(t)
1 , . . . , S

(t)
s } with S

(t)
i = (i − 1)n/s + S

(t)
1 for every

i ∈ [s].

This model is essentially a 1-sparse model on a set of size n/s repeated s times.

Note that in this model every measurement action At can be treated as if it was

made inside B1, since if At ∈ Bi, i 6= 1 then A′t = At( mod n/s) yields the same

type of observation (in terms of having elevated mean or not). Thus Theorem 4.2

directly applies with n replaced by n/s in this model.

Though this is a different problem then the one we would like to derive a lower

bound for, heuristically this seems to be an easier problem, as the evolution of the

signal support is much more restricted. Hence we believe a lower bound in this

model would also be a lower bound for the one that we are considering.

4.5 A Numerical Experiment

As in Chapters 2 and 3, we present a short numerical experiment to corroborate

the theoretical results presented in this chapter.

In this simulation we compare the performance of the adaptive sensing proce-

dure of Section 4.3 with a reasonable non-adaptive procedure1.

Recall that we are concerned with the setting when m, the time horizon, is of the

order n/s. According to Proposition 4.1, we need m to be roughly (n/s) · log2(2/ε)

for the adaptive sensing procedure to have error probability at most ε. However,

by simply choosing m = n/s, the probability of not sampling an active component

would be high (see the beginning of Section 4.4). Hence we use m = (n/s)·log2(2/ε)

1Though we could not yet formally prove that this non-adaptive procedure is indeed optimal,
we conjecture that it is (see Section 4.4.1).
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with ε = 0.05.

The non-adaptive procedure simply selects components to sample at random

at each time instance. Our conjecture in Section 4.4.1 is that a sub-sampling

procedure should be optimal in the non-adaptive setting. Note that with this

choice of m, this is in fact a sub-sampling procedure. Even if not optimal, this is

a reasonable non-adaptive sampling strategy.

Once we have the sample, we simply scan through the signal and declare a

detection whenever we find a large enough value. More precisely, with Y ∈ Rm

denoting the sample, we declare that a signal is present when

max
i∈[m]

Yi ≥
√

2 log
m

2ε
.

The threshold on the right side is motivated by controlling the type I error. A

union bound with a Gaussian tail bound yields

P0

(
max
i∈[m]

Yi ≥ z
)
≥ m

2
e−z

2/2 .

With the above choice for the threshold, we ensure the type I error of the procedure

above is at most ε.

The adaptive procedure is implemented as described in Section 4.3. In detail,

we apply STT (see Algorithm 3) repeatedly to randomly selected components, until

either one of them declares “Signal” in which case we stop and declare a signal is

present, or reach our time horizon in which case we declare no signal is present.

According to Proposition 4.1, the type II error probability of the adaptive sens-

ing procedure should drop below the value ε when the signal strength is about

µlimit =

√
2

min{1/(2p), log(n/s)}
log(n/s) . (4.6)

Hence, set the signal strength to be t · µlimit and run the procedures above with

different values for t. Since both procedures are designed to ensure small type I error

probability, we only plot the type II errors. We choose n = 215 and s = 24. We run

two different simulations, first when the speed of change p is equal to 0.2 and second

when it is equal to 0.5. Note that with these parameters µlimit =
√

4p log(n/s).

In every instance we run 100 iterations for every value of the parameter t, and

plot the average type II errors of the different tests. In order to illustrate the
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variability of the curves, we also plot error bars whose total length is four times

the (point-wise) standard error. These would correspond to a roughly 95% two-

sided confidence interval for normally distributed measurements, and hence are

approximate point-wise confidence bands.
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Figure 4.3: Average type II error probabilities (with SE bands) for the different
estimators as a function of the parameter t (the signal strength is t · µlimit with
µlimit defined in (4.6)): the non-adaptive test (black); the adaptive sensing test
based on the STT (blue). The plots from left to right correspond to p = 0.2 and
p = 0.5. The number of repetitions is 100 for each value of t. The vertical black
dashed line is at the value t = 1. The horizontal black dashed line is at the value
of ε (0.05).

As expected, the adaptive sensing test outperforms the non-adaptive one, unless

the speed of change p is high. The margin by which the adaptive sensing test is

superior is greater as p decreases, which is what the theory suggested. Note that

the type II error probability of the tests never quite reach the value zero, since with

this choice of m, the probability of being able to sample an active component is

not overwhelming.

4.6 Final Remarks

In this chapter we have studied the problem of the detection of signals that evolve

dynamically over time. We have introduced a simple stochastic model for the

161



Detection of signals evolving in time

evolution of the signal support, and have analyzed the signal detection problem in

this framework, with special interest in the effect the speed of the change of the

support has on the problem difficulty. Though some results remain conjectures at

this point, our aim as been to provide convincing heuristics as to why we believe

the conjectures to be true, and hope to provide formal proofs in the near future.

Our results suggest that the speed of change has an increasing effect on the

problem difficulty, when using adaptive sensing. In particular, in an adaptive sens-

ing setting we take advantage of situations when the signal is changing slowly. This

effect becomes less and less pronounced as the speed of change grows. Contrasting

this, such gains can not be realized in a non-adaptive sensing context. That is, the

performance of non-adaptive sensing procedures is essentially the same regardless

of the speed of change, and this performance corresponds to the worst-case perfor-

mance of adaptive algorithms (the case when the speed of change is the highest).

We highlight a few possibilities for future work regarding dynamically evolving

signals:

Higher number of measurements: As noted before, we need at least n/s

measurements to perform detection reliably, and the algorithm that we propose is

only optimal when the number of measurements that we are allowed to collect is of

the same order as this quantity. Understanding how the model parameters affect

the problem difficulty in general remains an open question.

Restricted dynamics: In the model considered in this chapter when signal com-

ponents change they can move to any unoccupied location in the signal vector. This

assumption simplifies the setup, but in some applications might not be restrictive

enough. For instance if signal components could only move to a location in the

vicinity of where they were before, then this might make the effect of the speed

of change less pronounced in the difficulty of detection. Understanding the effect

of such restrictions could prove valuable in certain applications, while also being

interesting from a theoretical point of view.

Structures: In certain situations the signal support can be assumed to have

structure to it (as in Chapters 2, 3 and 5). For instance all anomalous items might

be consecutive. In some cases the structure of the support has a huge effect on

the difficulty of recovery, as illustrated in Chapters 2 and 3. In those measurement
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models however, we know that structure plays (almost) no role in the difficulty of

detection. How structural restrictions affect these tasks for dynamically evolving

signals could be an interesting avenue of research.

Support recovery: Another common question in similar settings is how well we

can estimate the support of a signal. That is, instead of deciding whether there are

anomalous items or not, we need to determine which of the items are anomalous.

This would also be an interesting problem to study for dynamically evolving signals,

although how to cast the problem in a meaningful way is less immediate.
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Chapter 5

Distribution-Free Detection

of Structured Anomalies

This chapter is based on joint work with Ery Arias-Castro (UCSD), Meng Wang

(UCSD), Rui Castro (TU/e). The results presented here can also be found in

Arias-Castro et al. [11]. The numerical experiments of Section 5.6 were performed

by Ery Arias-Castro (UCSD) and Meng Wang (UCSD).

5.1 Introduction

In the previous chapters we have investigated the properties of adaptive sensing in

several signal detection and support recovery settings. This was done in the frame-

work of clear-cut distributional models. Although we have made some remarks

about possibilities to relax the distributional assumptions, a more thorough un-

derstanding of distribution-free adaptive sensing methods would be very useful in

practice, as often one can not rely on such assumptions being fulfilled. A first step

in this direction is to understand how such methods perform in the non-adaptive

sensing setting, and this is the topic of this chapter.

We consider the problem of detecting anomalous behavior which is endowed

with some structure in a high-dimensional signal. A standard way to tackle this

problem in the non-adaptive sensing setting is the use of a scan statistic, which

essentially inspects all possible anomalous patterns. It usually corresponds to a

form of generalized likelihood ratio test (see Kulldorff [99]). Although computa-
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tionally this might present a challenge, there are a number of situations where this

is possible in nearly linear time (see Neill & Moore [115], Neill [113], Arias-Castro,

Donoho & Huo [12] and Walther [143]).

We are interested in ways to calibrate1 the scan statistic when the underly-

ing distribution of the observations is unknown. For the purpose of illustration,

consider the following prototypical example2: suppose we have event data over a

certain time period and want to detect if there is a time interval with an unusually

high concentration of events. To make things more concrete and move towards

the setting we consider in this chapter, assume one can model this event data as

a realization of a Poisson process and bin the data, so that we observe a sequence

of Poisson random variables. The scan statistic in this particular case combines

sums of these values over (discrete) intervals of different size and location, together

with some normalization - see (5.2) further down. In this scenario we want to

perform a hypotheses test, where the null hypothesis is that no anomaly is present

(a homogeneous Poisson process) versus the alternative where some time intervals

have an elevated rate of events (an inhomogeneous process). If the (constant) rate

is known under the null, then the null distribution is completely specified and the

test can be calibrated either analytically or by Monte-Carlo simulation. But what

if the null event rate is unknown?

One can regard the scan statistic as a comparison between observations in one

interval to those outside the interval. This point of view naturally leads to a two-

sample problem for each interval, which is then followed by some form of multiple

testing since we scan many intervals. Thus drawing from the classical literature on

the two-sample problem, two approaches can be considered:

• Calibration by permutation. This amounts to using the permutation distri-

bution of the scan statistic for inference (detection/estimation).

• Scanning the ranks. This amounts to replacing each observation by its rank

before scanning. As any rank-based method, calibration can generally be

done by Monte-Carlo simulation before the observation of data.

The perspective offered by the two-sample testing framework makes these two pro-

cedures very natural. Although less popular, as in two-sample testing, a procedure

based on ranks offers some advantages over a pure calibration by permutation: it

1By calibration, we mean specifying the critical region of the test.
2In fact, this setting might have been the original motivation for the work on the scan statistic,

see Wallenstein [142].
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is more robust to outliers and its calibration only needs to be done once for a given

sample size.3 The latter is rather advantageous if one desires to apply the test

repeatedly on several datasets of the same size. Compare with a calibration by

permutation: typically, several hundred permutations are sampled at random and,

for each one of them, the scan statistic is computed - and this is done each time

the test is applied.

The intrinsic difficulty of the detection task depends on two things: the data

distribution and the complexity of the class of anomalous sets. Regarding the data

distribution, we consider the situation where the data comes from the natural ex-

ponential family. As for the class of anomalous sets, since the main motivation

of our work is to develop methods and theory for the scenario when the null dis-

tribution is unknown/unspecified, we focus on the simplest and most emblematic

setting, that of detecting an interval in a one-dimensional regularly sampled signal.

Generalizations of our results to more complex settings (e.g., rectangles in two or

more dimensions, or even blob-like subsets) are possible, and we later explain how

this can be done.

In this chapter we study the performance of the two methods above and provide

strong asymptotic theoretical guarantees as well as insights on the their finite-

sample performance in some numerical experiments. In the context of a natural

exponential family - which includes the classical normal location model and the

Poisson example above - we find that the permutation scan test and the rank scan

test come very close to performing as well as the oracle scan test, which we define

as the scan test calibrated by Monte Carlo with (clairvoyant) knowledge of the null

distribution. We perform numerical experiments on simulated data, confirming our

theory, and also some experiments using a real dataset from genomics.

Related work: The permutation scan has been suggested in a number of pa-

pers and applied in a number of ways in different contexts. For example, it is

suggested by Kulldorff et al. in [100, 101, 86] in the context of syndromic surveil-

lance; by Walther in [143] in the context of sensor network monitoring with binary

observations; and by Flenner & Hewer in [71] in the context of detecting a change

in a sequence of images. We note that permutation tests are known to perform

well in classical two-sample testing (see Lehmann & Romano [102]). However, in

the context of the scan test, we are only aware of one other paper, that of Walther

3The latter explains why, in two-sample testing, methods based on ranks were feasible decades
before methods based on permutations, which typically require access to a computer.
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[143], that develops theory for the permutation scan test. This is done in the con-

text of binary data (a Bernoulli model). Our analysis extends the theory to any

natural exponential model as described in Section 5.2.1 (which also includes the

binary case). This requires a different set of tools. Jung & Cho [92] also proposed

a rank based method, but without any theoretical justification. That said, rank

tests such as Wilcoxon’s are known to perform well in classical two-sample testing

(see Hettmansperger [83] and Lehmann & Romano [102].

As noted in Chapter 1, in several cases one can make some structural assump-

tions on the anomalous sets. For instance, grid-like networks are an important

special case, arising in applications such as signal and image processing (where the

signals are typically regularly sampled) and sensor networks deployed for the mon-

itoring of some geographical area. This situation is considered in great generality

and from different perspectives by several authors (see for instance Arias-Castro,

Candès & Durand [8], Walther [143], Arias-Castro, Donoho & Huo [12], Desolneux,

Moisan & Morel [61], Perone et al. [120], Cai & Yuan [33], Hall & Jin [78]). Also,

the distribution of the corresponding scan statistic (5.2) and variants has been

studied in a number of places (see Jiang [91], Boutsikas & Koutras [29], Siegmund

& Venkatraman [133], Kabluchko [93], Arias-Castro & Sharpnack [14]).

In this chapter we focus exclusively on the detection of intervals, for the sake

of clarity and simplicity, but our techniques and results apply naturally to more

general anomaly classes. As shown by Arias-Castro, Candès & Durand in [8],

similar results apply to a general (nonparametric) class C of blob-like (‘thick’) sets

S when the signal corresponds to measurements from a grid-like set of arbitrary

finite dimension, although the scanning is done over an appropriate approximating

net for C (instead of the entire class C). Furthermore, these results generalize to

one-parameter exponential models, beyond the commonly assumed normal location

model, as long as the sets S ∈ C are sufficiently large (poly-logarithmic in n).

Other authors that develop theory for different environments include Sharpnack,

Krishnamurthy & Singh [130, 131], Arias-Castro et al. [9], Addario-Berry et al. [1],

Zhao & Saligrama [150]. Variants of this detection problem have been suggested,

and the applied literature is quite extensive. We refer the reader to Arias-Castro,

Candès & Durand [8] and references therein.

As specified below, we focus on a “static” setting, where the length of the

signal being monitored is fixed a priori. Adding time is typically done by adding

one ‘dimension’ to the framework, as done for example by Kulldorff et al. in [100].
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Organization: The rest of the chapter is organized as follows. In Section 5.2 we

describe the problem setting in detail. In Section 5.3 we consider the case when

the null distribution is known. This section is expository, introducing the reader

to the basic proof techniques that are used, for example by Arias-Castro, Candès

& Durand in [8], to establish the performance of the scan statistic when calibrated

with full knowledge of the null distribution - the oracle scan test, as we called it

here. To keep the exposition simple, and to avoid repeating the substantially more

complex arguments detailed in that paper and others, we focus on the problem

of detecting an interval in a one-dimensional lattice. This allows us to set the

foundation and discover what the performance bounds for the scan test in this case

rely on. In Section 5.4 we consider the same setting and instead calibrate the scan

statistic by permutation. In Section 5.5 we consider the same setting and instead

scan the ranks. In both cases, our analysis relies on concentration inequalities

for sums of random variables obtained from sampling without replacement from a

finite set of reals, already established in the seminal paper of Hoeffding [84]. In

Section 5.6 we perform some simulations to numerically quantify how much is lost

in finite samples when calibrating by permutation or when using ranks. We also

compare our methodology with that of Cai, Jeng & Li [32], on simulated data,

and also on a real dataset from genomics. We conclude with a brief discussion in

Section 5.7.

5.2 Problem setting

A typical framework for static anomaly detection - which includes detection in

digital signals and images, sensor networks, biological data, and more - may be

described in general terms as follows. We observe a set of random variables, de-

noted by Y = {Yi}i∈[n], which is a snapshot of the state of the environment. In

this chapter we take a hypothesis testing point of view. Under the null hypothesis,

corresponding to the nominal state when no anomalies are present, these random

variables are independent and identically distributed (i.i.d.) with some null dis-

tribution F0. Under the alternative, some of these random variables will have a

different distribution. Let C ⊂ 2[n] denote a class of possibly anomalous subsets,

corresponding to the anomalous patterns that we expect to encounter (this would

be a class of intervals in the example that we have used earlier). Under the alter-

native hypothesis, there is a subset S ∈ C such that, for each i ∈ S, Yi ∼ Fθi , for
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some distribution Fθi 6= F0, and independent of {Yi}i∈[n]\S , which are still i.i.d.

with distribution F0. In a number of important applications, the variables are

real-valued and the anomalous ones take larger-than-usual values, which can be

formalized by assuming that each Fθi stochastically dominates4 F0. We take this

to be the case throughout the paper.

Note that in the formulation above the alternative hypothesis is composite.

Tackling this problem using a generalized likelihood ratio approach is popular in

practice (see Kulldorff [99]) and often referred to as the scan test, as it works by

scanning over the possible anomalous sets to determine if there is a set that is able

to “explain” the observed data. Assuming that Fθi ’s are equal for every i ∈ S

under the alternative, and that all subsets in the class C have the same size, some

simplifications lead to considering the test that rejects for large values of the scan

statistic

max
S∈C

∑
i∈S

Yi . (5.1)

When the subsets in the class C may have different sizes, a more reasonable ap-

proach includes a normalization of the partial sums above, leading to the following

variant of the scan statistic

max
S∈C

1√
|S|

∑
i∈S

(Yi − E0(Yi)) , (5.2)

where Eθ denotes the expectation with respect to Fθ, and for a discrete set S, |S|
denotes its cardinality. As argued by Arias-Castro & Grimmett in [13], this test is

in a certain sense asymptotically equivalent to the generalized likelihood ratio test,

but slightly simpler.

5.2.1 Exponential models

An important special case of the general framework just described is that of a

one-parameter exponential model in natural form. In detail, consider a probability

measure F0 on the real line with finite moments. We assume that either F0 is

continuous (i.e., diffuse) or discrete (i.e., with discrete support). For θ ∈ (0, θ?)

define

fθ(x) = exp(θx− logϕ0(θ)) ,

4For two distribution (functions) on the real line, F and G, we say that G stochastically
dominates F if G(t) ≤ F (t) for all t ∈ R. We denote this by G � F .
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F0 Fθ

Normal N(µ0,σ2
0 ) N(µ0 + θσ2

0 ,σ2
0)

Poisson Pois(λ0) Pois(λ0e
θ)

Bernoulli Ber(p0) Ber(p0e
θ/(1 + p0(eθ − 1)))

Some examples of the exponential models of Section 5.2.1.

where ϕ0(θ) =
∫
eθx dF0(x) and θ? = sup{θ > 0 : ϕ0(θ) < ∞}, assumed to be

strictly positive (and possibly infinite).

In this setting, Fθi is the distribution whose density w.r.t. F0 is fθi as de-

fined above, where θi > 0. Since a natural exponential family has the monotone

likelihood ratio property5, it follows that Fθ is stochastically increasing in θ (see

Lemma 3.4.2 in Lehmann & Romano [102]). In particular, we do have Fθ � F0 for

all θ > 0.

Important special cases of such an exponential model includes the normal loca-

tion model standard in many signal and image processing applications; the Pois-

son model popular in syndromic surveillance (see Kulldorff et al. [100]); and the

Bernoulli model (see Walther [143]). The distributions that correspond to the

parametrization defined above are summarized in Table 5.2.1.

5.2.2 Detection of intervals

Let C be the class of all discrete intervals of [n], meaning

C =
{
{a, . . . , b} : 1 ≤ a ≤ b ≤ n

}
.

If one assumes a normal location model then the scan test corresponding to (5.2)

rejects the null for large values of

max
1≤a≤b≤n

1√
b− a+ 1

b∑
i=a

Yi . (5.3)

5A family of densities (fθ : θ ∈ Θ), where Θ ⊂ R, has the monotone likelihood ratio property
if fθ′ (x)/fθ(x) is increasing in x when θ′ > θ.
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Following the parameterization in Arias-Castro, Donoho & Huo [12] one assumes

1

|S|
∑
i∈S

θi ≥ τ

√
2

|S|
log n, with τ > 0 fixed, (5.4)

where S denotes the anomalous set (this ensures that all intervals are roughly

equally difficult to detect). In a minimax setting it can be shown that the detection

boundary is at τ = 1, meaning that when τ < 1 no test can simultaneously attain

arbitrarily small type I and type II error probabilities in the large sample limit

n → ∞, while there is such a test when τ > 1 (meaning such a test has risk

tending to 0). In fact, the scan test (5.3) is one of them. We remark that in

this model the short intervals (the most numerous in C) drive the difficulty of the

problem and a refinement is possible. See Arias-Castro, Candès & Durand [8] and

Walther [143] for details.

As we will see later (Section 5.3) it is often advantageous to scan over a so-called

approximating net of the class C instead of the entire class itself. An approximating

net is simply a class such that for every set S ∈ C there is a set in the approxi-

mating net that is close to S in some sense. Analyzing a scan test restricted to

an approximating net has the following advantages: the analysis is simpler as it

does not require the use of chaining to achieve tight constants; it is applicable in

more general settings, in particular, when the class C is nonparametric; and it is

computationally advantageous, giving rise to potentially fast implementations.

5.2.3 Calibration by permutation

Suppose we are considering a test that rejects the null for large values of a test

statistic T (Y). Let y = {yi}i∈[n] be the observed value of Y. If we were to know

the null distribution F0, we would return the p-value as P0(T (Y) ≥ T (y)). In

practice, more than knowing the null distribution, what really matters is that we

can (efficiently) simulate from it, so that we can estimate this p-value by Monte-

Carlo simulation.

Ignoring computational constraints for the moment, calibration by permutation

amounts to computing T (y(π)) for all π ∈ [n]!, where [n]! denotes the set of all

permutations of [n] and y(π) = {yπ(i)}i∈[n] is the permuted data. We then return

the p-value
1

n!

∣∣∣{π ∈ [n]! : T (y(π)) ≥ T (y)
}∣∣∣
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and our decision is based on this value. Let M = |{T (y(π)) : π ∈ [n]!}|. If

there are no multiplicities, meaning M = n!, it can be shown such tests are ex-

act and that under the null the p-value has a (discrete) uniform distribution on

{1/M, 2/M, . . . , 1}. Otherwise the test will be conservative (see Lehmann & Ro-

mano [102]). In practice, the number of permutations is very large (n!) and the

p-value is estimated by simulation (by uniform sampling of permutations).

In our setting, T above will be a form of a scan statistic. Assuming that T

has been chosen, we define the oracle scan test as the scan test calibrated with

full knowledge of the null distribution. We also define the permutation scan test

as the scan test calibrated by permutation as explained above. In this chapter we

characterize the performance of the permutation scan test, concluding that it has

as much asymptotic power as the oracle scan test (Theorem 5.1) in most scenarios.

5.2.4 Scanning the ranks

As explained earlier, when calibrating by permutation, the scan is performed on

each permutation of the original dataset. Even though this is done for only a rela-

tively small number of permutations, that number is often chosen in the hundreds,

if not thousands, meaning that the procedure requires the computation of that

many scans. Even if the computation (in fact, approximation) of the scan statis-

tic is done in linear time, this can be rather time consuming. Furthermore, for a

new instantiation of the data the whole procedure must be undertaken anew. The

computational burden of doing so may be prohibitive in some practical situations,

for instance when monitoring a sensor network in real-time.

We propose instead a rank-based approach, which avoids the expensive calibra-

tion by permutation. The procedure amounts to simply replacing the observations

with their ranks6 before scanning, so that we end up scanning the ranks instead

of the original values. As any other rank-based method, the resulting procedure is

distribution-free and therefore only needs to be calibrated once for each data size n

even though it can be viewed as a permutation procedure. Such a procedure is very

natural given the classical literature on nonparametric tests (see Hettmansperger

[83]), and from the two-sample perspective offered earlier, it is directly inspired by

the rank-sum test introduced by Wilcoxon in [145].

In detail, let Ri denote the rank (in increasing order) of Yi among Y. If there

are ties, they can be dealt with in any of the classical ways, for instance, by

6Throughout, the observations are ranked in increasing order of magnitude.
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assigning them the average rank. For technical and also practical reasons our

results are proven under the assumption that ties are broken randomly. If T (Y)

is a form of scan statistic, we then consider the rank scan, defined as T (R), where

R = {Ri}i∈[n]. For example, the rank variant of (5.2) is

max
S∈C

1√
|S|

∑
i∈S

(Ri − n+1
2 ) ,

since E0(Ri) = n+1
2 . Assuming that T has been chosen, we define the rank scan test

as the scan test based on the ranks. Again, the test is calibrated by permutation,

since this corresponds to the null distribution once the observations are replaced

by their ranks. In this chapter we establish the performance of the rank scan test,

concluding that it has nearly as much asymptotic power as the oracle scan test

(Theorem 5.2 and Proposition 5.2). Our results allow us to precisely quantify how

much (asymptotic) power is lost when using the rank scan test versus the oracle

scan test. For example, in the normal means model the rank-scan test requires

a signal magnitude roughly 1.023 times larger than the regular scan test to be

asymptotically powerful against anomalous sets that are not too small. In fact, in

our empirical analysis of the finite sample properties of the rank-scan we actually

found it is slightly more powerful than the oracle scan test.

5.3 When the null distribution is known

This section is meant to introduce the reader to the techniques underlying the

performance bounds presented by Arias-Castro et al. in [8] and [12] for the scan

statistic (and variants) when the null distribution is known. These provide a step-

ping stone for our results in regards to permutation and rank scan tests. We detail

the setting of detecting an interval of unknown length in a one-dimensional lattice.

Therefore, as in Section 5.2.2, consider the setting where

C =
{
{a, . . . , b} : 1 ≤ a ≤ b ≤ n

}
.

We begin by considering the normal model - Yi ∼ N(θi, 1) independent - and

explain later on how to generalize the arguments to an arbitrary exponential model
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as described in Section 5.2.1. We are interested in testing

H0 : θi = 0,∀i ∈ [n] versus H1 : ∃S ∈ C such that 1
|S|

∑
i∈S

θi ≥ τ

√
2

|S|
log n .

(5.5)

We consider this problem from a minimax perspective. It is shown by Arias-Castro,

Donoho & Huo in [12] that, when τ < 1, any test with level α has power at most

β(α, n), with β(α, n)→ α as n→∞. In other words, in the large-sample limit, no

test can do better than random guessing, the test that rejects with probability α

regardless of the data. On the other hand, if τ > 1, then for any level α > 0 there

exists a test with level α and power β(α, n) → 1 as n → ∞. In particular, such a

test can be constructed using a form of scanning.

5.3.1 Scanning over an approximating net

Instead of considering a test that scans over all elements in C, as in (5.3), we

describe a variant that consists of scanning over an approximating net for the class

C. This brings both computational and analytical advantages over scanning all

sets in C as discussed in Section 5.2.2. We use an approximating net similar to

that of Arias-Castro, Donoho & Huo [12]; see Arias-Castro & Sharpnack [14] for

an alternative construction. The underlying metric on C is given by

ρ(S, S′) :=
|S ∩ S′|√
|S||S′|

.

Step 1: Construction of an approximating net. Instead of scanning over C we will

scan over a subclass of intervals Cb, where 0 ≤ b ≤ n is an integer to be specified

later on. Such a subclass must satisfy two important properties, namely have

cardinality significantly smaller than C, and be such that any element S ∈ C can be

well approximated by an element of Cb, in terms of the metric ρ defined above. To

simplify the presentation assume n is a power of 2 (that is n = 2q for some integer

q). We describe the construction similar to the one given by Arias-Castro, Donoho

& Huo in [12].

Let Dj denote the class of dyadic intervals at scale j, meaning of the form

S = [1 + k2j , (k + 1)2j ] ⊂ [n] with j and k nonnegative integers. Let Dj,0 denote

the class of intervals of the form S ∪ S′ with S, S′ ∈ Dj−1. In words, Dj,0 contains

the dyadic intervals at scale j (that is Dj ⊂ Dj,0) and the intervals that are obtained
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by shifting the previous ones by half their length. Then, for 1 ≤ k < b, let Dj,k be

the class of intervals of [n] of the form Sleft ∪ S ∪ Sright, where S ∈ Dj,k−1 while

Sleft (resp. Sright) is adjacent to S on the left (resp. right) and is either empty

or in Dj−k. Note that Dj,k−1 ⊂ Dj,k by construction. This way, Dj,b−1 contains

intervals of the following form: we start with an interval from Dj,0 (whose length

is 2j) and we can append intervals of length 2j−1, 2j−2, . . . , 2j−b+1 consecutively

to either end of the interval. In the final step, Dj,b is of the same form as before,

only the appended intervals Sleft and Sright are either empty, or in Dj−b+1. That

is, in the last step we can append another interval of length 2j−b+1. Finally, define

Cb =
⋃
j Dj,b.

We can prove the following result for this approximating net, using similar

arguments to those of Arias-Castro, Donoho & Huo [12].

Lemma 5.1. The subclass Cb ⊂ C has cardinality at most n4b+1 and is such

that for any element S ∈ C there is an element S′ ∈ Cb satisfying S ⊂ S′ and

ρ(S, S′) ≥ (1 + 2−b+2)−1/2.

Remark 5.1. It is easy to see that the subclass Cb can be scanned in O(nb4b)

operations - this is implicit in Arias-Castro, Donoho & Huo [12]. Indeed, we start

by observing that scanning all dyadic intervals can be done in O(n) operations by

recursion, starting from the smallest intervals and moving up (in scale) to larger

intervals. We then conclude by realizing that each interval in Cb is the union of at

most 2b+ 2 dyadic intervals.

Step 2: Definition of the scan test. We consider a test based on scanning only the

intervals in Cb. This test rejects the null if

max
S∈Cb

YS ≥
√

2(1 + η) log n , (5.6)

where

YS =
1√
|S|

∑
i∈S

Yi ,

and η > 0 satisfies η → 0 and η log n → ∞ (the reason for these conditions will

become clear shortly).
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Step 3: Under the null hypothesis. By the union bound,

P0

(
max
S∈Cb

YS ≥
√

2(1 + η) log n

)
≤
∑
S∈Cb

P0

(
YS ≥

√
2(1 + η) log n

)
≤ |Cb|Φ̄

(√
2(1 + η) log n

)
,

where Φ denotes the standard normal distribution function and Φ̄ = 1−Φ denotes

the corresponding survival function. We have the well-known bound on Mill’s ratio:

Φ̄(x) ≤ e−x
2/2, ∀x ≥ 0 . (5.7)

Therefore we get

P0

(
max
S∈Cb

YS ≥
√

2(1 + η) log n

)
≤ n4b+1n−(1+η) = n−η4b+1 .

We choose b = 1
2η log n/ log 4. With our assumption that η log n→∞, this makes

the last expression tend to zero as n → ∞ (it also implies that b → ∞, which we

use later on). We conclude the test in (5.6) has level tending to 0 as n→∞.

Step 4: Under the alternative. We now show that the power of this test tends to 1

when τ > 1. Let S denote the anomalous interval. Referring to Lemma 5.1, there

is a set S′ ∈ Cb such that ρ(S, S′) ≥ (1 + 2−b+2)−1/2, so that ρ(S, S′) = 1 + o(1)

since b→∞. Furthermore YS′ is normal with mean larger than ρ(S, S′)τ
√

2 log n,

and variance 1. We thus have

P
(
YS′ ≥

√
2(1 + η) log n

)
≥ Φ̄(ξ) ,

where

ξ :=
√

2(1 + η) log n− ρ(S, S′)τ
√

2 log n

=
√

2(1 + η) log n
(
1− (1 + o(1))τ/

√
1 + η

)
∼ −(τ − 1)

√
2 log n→ −∞ ,

where we have used the fact that τ > 1 is fixed and η → 0. We conclude that the

test in (5.6) has power tending to 1 as n → ∞. In conclusion, we have shown the

following result:

Proposition 5.1 (Arias-Castro, Donoho & Huo [12]). The test defined in (5.6),
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with η = ηn → 0, ηn log n → ∞ and b = bn = 1
2ηn log n, has level converging to 0

as n→∞. Moreover, if (5.4) holds with τ > 1, then it has power converging to 1

as n→∞.

We remark that, in principle, we may choose any b = bn → ∞ such that

bn/ log n → 0. From Remark 5.1 the computational complexity of the resulting

scan test is of order O(nbn4bn). For example, bn ∼ log log n is a valid choice and

the resulting scan test runs in O(n · polylog(n)) time7.

5.3.2 Generalizations

The arguments just given for the setting of detecting an anomalous interval under a

normal location model can be generalized to the problem of detecting other classes

of subsets under other kinds of distributional models. We briefly explain how this

is done (note that these generalizations can be combined).

Other classes of anomalous subsets: For a given detection problem, specified

by a set of nodes [n] and a class of subsets C ⊂ 2[n], the arguments above con-

tinue to apply if one is able to construct an appropriate approximating net as in

Lemma 5.1. This is done, for example, by Arias-Castro et al. in [8, 12] for a wide

range of settings. We note that the construction of an approximating net is purely

geometrical.

Other exponential models: To extend the result to an arbitrary (one-parameter,

natural) exponential model, we require the equivalent of the tail-bound (5.7). While

such a bound may not apply to a particular exponential model, it does apply asymp-

totically to large sums of i.i.d. variables from that model by Chernoff’s bound and

a Taylor development of the rate function. To ease presentation, assume without

loss of generality that F0 has mean zero, and unit variance.

Indeed, recalling the notation introduced in Section 5.2.1, let the rate function

7By polylog(n), we mean a polynomial of logn.
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of F0 be ψ0(t) = supλ≥0(λt− logϕ0(λ)). We have, for any λ ≥ 0, that

P0(YS ≥ x) = P0

(∑
i∈S

Yi ≥
√
|S|x

)
= P0

(
eλ

∑
i∈S Yi ≥ eλ

√
|S|x
)
.

Using Markov’s inequality we can continue as

P0(YS ≥ x) ≤ e−λ
√
|S|xE0

(∏
i∈S

eλYi

)
= exp

(
−λ
√
|S|x+ |S| logϕ0(λ)

)
.

Re-writing the above in terms of the rate function,

P0(YS ≥ x) ≤ exp
(
−|S|ψ0(x/

√
|S|)

)
. (5.8)

Assuming without loss of generality that F0 has zero mean and unit variance, we

have

ψ0(t) ≥ 1

2
t2 +O(t3) , t→ 0 . (5.9)

To see this, note that

ψ0(t) = sup
λ∈[0,θ∗)

(λt− log φ0(λ)) ≥ t2 − log φ0(t) ,

with the choice λ = t. On the other hand, ϕ0(t) is infinitely many times differ-

entiable when t ∈ [0, θ∗), with ϕ′0(0) = E0(X) = 0 and ϕ′′0(0) = E0(X2) = 1, by

assumption. Therefore, ϕ0(t) ≤ 1 + 1
2 t

2 + Kt3 when t is in a finite neighborhood

of zero. Thus, using log(1 + x) ≤ x, we have

ψ0(t) ≥ 1
2 t

2 −Kt3

around t = 0. This results in the bound

P0(YS ≥ x) ≤ exp

(
−1

2
x2 +O(x3/

√
|S|)

)
.

From this we see that our derivations for the normal model apply essentially ver-

batim if, for some constant c > 0, |S| ≥ c(log n)3 for all S ∈ C. Furthermore,
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it can be seen the test in (5.6) is essentially optimal for exponential models, as

its performance matches the lower bounds developed by Arias-Castro, Candès &

Durand in [8].

5.4 Calibration by permutation

We have described in detail how a performance bound is established for the scan

test variant (5.6) for the problem of detecting an interval of unknown length, and

its extensions to other detection problems. Because of this, we now clearly see that

the key to adapting this analysis to a calibration by permutation is a concentration

of measure bound to replace (5.7) and (5.8). Since this is the same in any detection

setting, we consider the problem of detecting an interval of unknown length as in

Section 5.3. This time, we impose a minimum and maximum length on the intervals

C =
{
{a, . . . , b} : 1 ≤ a < b ≤ n, sl ≤ b− a ≤ su

}
. (5.10)

Indeed, when calibrating the scan test by permutation, we necessarily have to

assume non-trivial upper and lower bounds on the size of an anomalous interval.

To see this consider intervals of length one. In this case the value of the scan for

any permutation of the data is the same regardless of the underlying distributions.

By symmetry the same reasoning applies to intervals of length n− 1.

We consider essentially the same scan statistic (5.6) as before, except for the

following. We restrict the approximating net to match the class of intervals defined

in (5.10) (but still call it Cb). Specifically we only keep an element S′ ∈ Cb if there

is S ∈ C such that ρ(S, S′) ≥ (1 + 2−b+2)−1/2. This ensures that the statements

in Lemma 5.1 still hold, and also that |S′| ≥ sl/(1 + 2−b+2) for all S′ ∈ Cb. We

also do a “centering” of the statistic prior to the scan. In detail, with y = {yi}i∈[n]

denoting the observed data, we define

scan(y) = max
S∈Cb

(
yS −

√
|S|ȳ

)
, yS :=

1√
|S|

∑
i∈S

yi , (5.11)

where ȳ = 1
n

∑
i∈[n] yi is the overall average. The test rejects the null when

P(y) :=
1

n!

∣∣∣{π ∈ [n]! : scan(y(π)) ≥ scan(y)
}∣∣∣ ≤ α , (5.12)

where P(y) is the permutation p-value, and α ∈ (0, 1) is the desired level.
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Recall the definition of θ? in Section 5.2.1.

Theorem 5.1. Let 0 < α < 1 and consider the test that rejects the null if P(Y) ≤
α, where P is defined in (5.12), with b = bn → ∞ and bn/ log n → 0. Assume

that the anomalous set S belongs to C defined in (5.10) with sl/(log n)3 → ∞
and su = o(n) as n → ∞. Then the test has level at most α. When the sample

distribution is from the exponential family (as defined in Section 5.2.1) with F0

having mean zero and unit variance, the test has power converging to 1 as n→∞
whenever

θ̄S ≥ τ

√
2

|S|
log n ,

with τ > 1, provided that either F0 has compact support or maxi θi ≤ θ̃ < θ? for

some fixed θ̃ > 0.

The headline here is that a calibration by permutation has as much asymptotic

power as a calibration by Monte-Carlo with full knowledge of the null distribution

(to first-order accuracy). This is (qualitatively) in line with what is known in

classical settings (see Lehmann & Romano [102]).

The conditions required here allow C to be any class of intervals of lengths

between (log n)3+a and o(n), for any a > 0 fixed. This includes the most inter-

esting cases of intervals not too short and also not too long. In fact, for certain

families of distributions removing from consideration very small intervals is es-

sential and cannot be avoided. For instance consider the Bernoulli model, where

Yi ∼ Bernoulli(1/2), for all i ∈ [n] under the null and Yi ∼ Bernoulli(1), for all

i ∈ S when S is anomalous. Even under the null we will encounter a run of ones of

length ∼ log2 n (the famous Erdős-Rényi Law) with positive probability. Therefore

in this case the scan test, calibrated by Monte-Carlo or permutation, is powerless

for detection of intervals of length 1
2 log2 n. In fact, it can be shown that no test

has any power in that case.

We place an upper bound on the nonzero θi’s to streamline the proof arguments

and also avoid special cases we were not able to rule out. For example, an open

question is whether the power of this permutation test is monotone increasing in

each of the θi when i ∈ S and S is the anomalous set. If this is true, then obviously

the upper bound (by θ̃) can be removed. We note that when F0 does not have

compact support, this can be enforced by applying a censoring. See Section 5.7.

Remark 5.2. If we do not assume F0 to have zero mean and unit variance, we
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can still follow the steps of the proof below. By doing so one can easily check that

by replacing the condition in Theorem 5.1 with

1

|S|
∑
i∈S

θi ≥ τ
1

σ0

√
2

|S|
log n , with τ > 1 ,

the statement remains true, where σ0 denotes the standard deviation of F0.

Proof of Theorem 5.1. Consider first the null hypothesis. Note that Y = {Yi}i∈[n]

are i.i.d. under the null, and therefore exchangeable. This means that, for any

permutation π the marginal distributions of scan(Y) and scan(Y(π)) are the same.

This implies that scan(y) is uniformly distributed on the set {scan(y(π)), π ∈ [n]!}
(with multiplicities). With this we have

P(|{π ∈ [n]! : scan(y(π)) ≥ scan(y)}| ≥ αn!) ≤ bαn!c
n!

≤ α ,

where bzc denotes the integer part of z. If there were no ties, then the first inequal-

ity above would be an equality, but with ties present the test becomes more con-

servative. For more details on permutation tests the reader is referred to Lehmann

& Romano [102].

All that remains to be done is to study the permutation test under the alter-

native hypothesis. This requires two main steps. First we need to control the

randomness in the permutation, conditionally on the observations y. Once this is

done we remove the conditioning on the observed data.

The key to the first step is the following Bernstein’s inequality for sums of

variables sampled without replacement from a finite population:

Lemma 5.2 (Bernstein’s inequality for sampling without replacement). Let {Zi}i∈[m]

be obtained by sampling without replacement from a given a set of real numbers

{zj}j∈[J] ⊂ R. Define zmax = maxj zj, z̄ = 1
J

∑
j zj, and σ2

z = 1
J

∑
j(zj − z̄)2.

Then the sample mean Z̄ = 1
m

∑
i Zi satisfies

P
(
Z̄ ≥ z̄ + t

)
≤ exp

(
− mt2

2σ2
z + 2

3 (zmax − z̄)t

)
, ∀t ≥ 0.

This result is a consequence of Theorem 4 of Hoeffding [84] and Chernoff’s

bound, from which Bernstein’s inequality is derived, as in Shorack & Wellner [132],
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page 8518. See Boucheron, Lugosi, & Massart [28], Bardenet & Maillard [22]

and Dembo & Zeitouni [60] for a discussion of the literature on concentration

inequalities for sums of random variables sampled without replacement from a

finite set.

Applying this result for a fixed (but arbitrary) set S′ ∈ Cb when π is uniformly

drawn from [n]! and y is given, we get

P
(
y

(π)
S′ −

√
|S′|ȳ ≥ t

)
≤ exp

(
− t2

2σ2
y + 2

3 (ymax − ȳ)t/
√
|S′|

)
, ∀t ≥ 0,

using the same notation as in Lemma 5.2. Plugging in t = scan(y), noting that

|S′| ≥ sl/(1 + 2−b+2) ≥ sl/2 eventually (because b → ∞), and using this together

with a union bound, we get

P(y) ≤ |Cb| exp

(
− scan(y)2

2σ2
y + (ymax − ȳ)scan(y)/

√
sl

)
. (5.13)

(The 2
3 in the denominator, when multiplied by

√
2, from |S′| ≥ sl/2, is still less

than 1.)

Now we remove the conditioning Y = y by plugging the random variable Y

into the expression above. We then proceed by upper bounding the right-hand

side, which amounts to controlling the terms Ymax − Ȳ, σ2
Y and scan(Y) under

the alternative.

Let S denote the anomalous interval under the alternative. Recall that by

assumption θi ≤ θ̃ for all i ∈ S, and

1

|S|
∑
i∈S

θi ≥ τ

√
2

|S|
log n := θ . (5.14)

Note that, by the assumption on sl, we have θ → 0 as n → ∞. Also note that

Eθ(X) and Varθ(X) are continuous in θ (and thus bounded on the interval [0, θ̃]),

Eθ(X) is increasing in θ (as ∂
∂θEθ(X) = Eθ(X2) ≥ 0) and Eθ(X) ≥ θ + O(θ2)

around zero (this can be checked by noting Eθ(X) =
∫
xeθxF0( dx) and writing the

Taylor expansion of eθx around zero). Also recall that F0 has zero mean and unit

variance.

8There is a typo in the statement of the result on page 851 in Shorack & Wellner [132], but
following the proof one can find the correct result. Where the statement of the result reads − λ

2σ2

we should have − λ2

2σ2 instead.
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We begin by controlling Ymax − Ȳ. We have

Ȳ =
1

n

∑
i∈[n]

E(Yi) +
1

n

∑
i∈[n]

(Yi − E(Yi)) = O(|S|/n) + oP (1) = oP (1) ,

as n→∞, since |S| = o(n), θi ≤ θ̃ for all i ∈ [n], and using Chebyshev’s inequality

in the second equality. Furthermore, let Ymax,S = maxi∈S Yi be the maximum over

S. A union bound together with Ymax = Ymax,S ∨Ymax,S̄ implies

P(Ymax > x) ≤ P(Ymax,S > x) + P(Ymax,S̄ > x) ≤ |S|F̄θ̃(x) + |S̄|F̄0(x) ,

where F̄θ(x) = Pθ(X > x) and we used the fact that F̄θ(x) is monotone increasing

in θ - see Section 5.2.1. For c ∈ (0, θ? − θ̃), we have

F̄θ̄(x) =

∫ ∞
x

eθ̄u−logϕ0(θ̄) dF0(u)

=
1

ϕ0(θ̄)

∫ ∞
x

e−cue(θ̄+c)u dF0(u) ≤ ϕ0(θ̄ + c)

ϕ0(θ̄)
e−cx .

Using this with the above union bound gives P(Ymax > (2/c) log n)→ 0 as n→∞.

This and the bound on Ȳ imply that

P(Ymax − Ȳ > (3/c) log n)→ 0 .

We now consider σ2
Y. Similarly as before, we have

σ2
Y =

1

n

∑
i∈[n]

(Yi − Ȳ)2 ≤ 1

n

∑
i∈[n]

Y 2
i =

1

n

∑
i∈[n]

E(Y 2
i ) +

1

n

∑
i∈[n]

(Y 2
i − E(Y 2

i )) .

On one hand,

1

n

∑
i∈[n]

E(Y 2
i ) =

1

n

∑
i/∈S

Var(Yi) +
1

n

∑
i∈S

(Var(Yi) + E(Yi)
2)

= 1− |S|
n

+O

(
|S|
n

)
= 1 + o(1) ,

using Var(Yi) = 1 for i /∈ S, maxi∈S Var(Yi) < ∞ and maxi∈S E(Yi) < ∞ (since
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maxi∈S θi ≤ θ̃), as well as our assumption that |S| = o(n). On the other hand,

1

n

∑
i∈[n]

(Y 2
i − E(Y 2

i )) = OP (1/
√
n) ,

using the fact that maxi∈[n] E(Y 4
i ) < ∞ (since maxi∈S θi ≤ θ̃) combined with

Chebyshev’s inequality. We may therefore conclude that

P(σ2
Y ≤ 1 + ε/4)→ 1 ,

with a fixed but arbitrary ε > 0 (we will choose an appropriate value for ε later

on).

From Lemma 5.1 (which does apply to the newly defined Cb) there is a set S′ ∈
Cb such that S ⊆ S′ and ρ(S, S′) ≥ (1 + 2−b+2)−1/2. Note that ρ(S, S′) = 1− o(1)

by the fact that b→∞. We then have

scan(Y) ≥ YS′ −
√
|S′|Ȳ =

√
|S′|(ȲS′ − Ȳ)

≥
√
|S′|

(
|S|(n− |S′|)
|S′|n

ȲS −
n− |S|
n

Ȳ[n]\S

)
,

where ȲS and Ȳ[n]\S are the averages of the components of Y over the sets S and

[n] \ S respectively. By Chebyshev’s inequality,

ȲS =
1

|S|
∑
i∈S

E(Yi) +OP (1/
√
|S|) ,

Ȳ[n]\S = OP (1/
√
|n− |S||) .

Furthermore, as noted above, 1
|S|
∑
i∈S E(Yi) ≥ Eθ(X) ≥ θ + O(θ2) around zero.

Recalling the expression for θ, using
√
|S′| = (1 + o(1))

√
|S| and |S| = o(n) we get

scan(Y) = (1 + o(1))τ
√

2 log n+OP (1)− o(1) +OP (1/
√
n) .

Hence

scan(Y) ≥
√

2(1 + ε/2) log n ,

with probability tending to one as n→∞, where τ =
√

1 + ε.

Plugging this back into the upper bound on the p-value given by (5.13) and
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using the condition on sl we get

logP(Y) ≤ log |Cb| −
2(1 + ε/2) log n

2(1 + ε/4) + (3/c)(log n)
√

2(1 + ε/2) log n/
√
sl

≤ log |Cb| −
(1 + ε/2) log n

1 + ε/4 + o(1)
,

with probability going to 1. For the size of the approximating net we have

log |Cb| ≤ log
(
n4b+1

)
= log n+ (b+ 1) log 4 = (1 + o(1)) log n , (5.15)

by our assumption on b. Combining these allows us to conclude that logP(Y)→
−∞ (meaning P(Y)→ 0) with probability tending to one, implying that the test

has power tending to 1 as n→∞.

5.5 Scanning the ranks

Having observed y = {yi}i∈[n], scanning the ranks amounts to replacing every ob-

servation with its rank among all the observations, and computing the scan (5.11).

We call this the rank scan. As for all rank-based methods, the null distribution is

the permutation distribution when there are no ties.

• When there are no ties with probability one we calibrate the test by permu-

tation, and this can be done before data is observed.

• When there are ties the rank scan test is also calibrated by permutation. If

one breaks ties using the average rank then the calibration must be done

every time as for the permutation test. A much better alternative is to break

ties randomly, so that the test can be calibrated by permutation only once

(before seeing the data). The latter option is computationally superior and

is the one we analyze.

See Section 5.6 for implementation issues and a computational complexity analysis.

Formally, let y = {yi}i∈[n] denote the observations as before, and for every

i ∈ [n], let ri be the rank (in increasing order) of yi in y, where ties are broken

randomly, and let r = {ri}i∈[n] be the vector of ranks. The rank scan test returns

the p-value P(r) defined in (5.12).

As we mentioned in Section 5.1, an important advantage of the rank scan over

the permutation scan is the fact that the former only requires calibration once,
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while the latter requires a new calibration with each dataset. This assumes that

the extrinsic signal dimension n remains the same. An additional advantage of

the rank scan is its robustness to outliers - although the permutation scan after

censoring (discussed in Section 5.7) is also robust to outliers.

Because the rank scan test is a special case of the permutation scan test, we

assume similarly upper and lower bounds on the size of the anomalous set as in Sec-

tion 5.4. However, we will see later that it is possible to relax these conditions and

prove results similar to Theorem 5.2 for small intervals as well (see Proposition 5.2).

We first prove a theorem for the rank scan test that establishes a performance

bound for general distributions. This is followed by a corollary that establishes the

performance of the test for the family of exponential distributions. Define

pθ,θ′ = P(X > Y ) + 1
2P(X = Y ) , (5.16)

where X ∼ Fθ and Y ∼ Fθ′ are independent. Also, we use the shorthand notation

pθ := pθ,0. Note that in the definition above Fθ and Fθ′ need not be members of

the exponential family.

Theorem 5.2. Let 0 < α < 1 and consider the test that rejects the null if P(R) ≤
α, where P is defined in (5.12), with b = bn →∞ and bn/ log n→ 0. Assume that

the anomalous set S belongs to C defined in (5.10) with sl/ log n → ∞ and that

su = o(n) as n → ∞. Then the test has level at most α. Moreover, it has power

converging to 1 as n→∞ when

1

|S|
∑
i∈S

pθi ≥
1

2
+ τ

√
2

|S|
log n, with τ > τ0 :=

1

2
√

3
.

Note that by the condition on sl, the expression on the right in the condition

above goes to 1/2 as n→∞. This allows us to relate the parameter θ to pθ using

a Taylor expansion when the distributions are in the exponential family. Define

Υ0 = E(X1{X > Y }) + 1
2E(X1{X = Y }) =

1

2
E(max{X,Y }) , (5.17)

where X,Y ∼ F0 and independent. Note that Υ0 ≥ 0 (with equality iff F0 is a

Dirac-measure).

Corollary 5.1. Suppose the distributions of {Yi}i∈[n] are in the exponential family

as defined in Section 5.2.1 with F0 having mean zero and unit variance. Under
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the conditions of Theorem 5.2, the rank scan test has level at most α and power

converging to 1 as n→∞ when

1

|S|
∑
i∈S

θi ≥ τ

√
2

|S|
log n , with τ >

1

2
√

3Υ0

.

The headline here is that rank scan requires a signal amplitude which is τ0/Υ0

larger than what is required of the regular scan test calibrated by Monte-Carlo

with full knowledge of the null distribution. This is (qualitatively) in line with

similar results in more classical settings (see Hettmansperger [83]). For the normal

location model, we find that τ0 =
√
π/3 ≈ 1.023, so the detection threshold of

rank scan is almost the same as that of the regular scan test. See Appendix 5.B

for details.

Remark 5.3. If we do not assume F0 to have zero mean and unit variance, we

can still follow the steps of the proof of Corollary 5.1. By doing so one can easily

check that by replacing the condition in Corollary 5.1 with

1

|S|
∑
i∈S

θi ≥ τ

√
2

|S|
log n , with τ >

1

2
√

3(Υ0 − 1
2E0(X))

,

the statement remains true, where E0(X) denotes the mean of F0.

Proof of Theorem 5.2. The arguments used for the general permutation test apply

verbatim under the null hypothesis, so all that remains to be done is to study the

performance of the rank scan test under the alternative.

We may directly apply (5.13), to obtain

P(r) ≤ |Cb| exp

(
− scan(r)2

n2

6 + n
2 scan(r)/

√
sl

)
, (5.18)

where we have used that σ2
r = (n2 − 1)/12 < n2/12, rmax = n and r̄ = (n + 1)/2,

so that rmax− r̄ < n/2. The previous bounds can be directly computed when there

are no ties in the ranks, and it is easy to verify that they also hold if ties are dealt

with in any of the classical ways (assigning the average rank, randomly breaking

ties, etc). As before, this is a result conditional on the observations Y = y and

hence the ranks R = r. The next step is to remove this conditioning, which now

amounts to controlling the term scan(R).
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Let S denote the anomalous interval under the alternative. From Lemma 5.1

there is a set S′ ∈ Cb such that S ⊆ S′ and ρ(S, S′) ≥ (1 + 2−b+2)−1/2. Note that

ρ(S, S′) = 1− o(1) by the fact that b→∞. Since

scan(R) ≥ RS′ −
√
|S′|n+1

2 , RS′ =
1√
|S′|

∑
i∈S′

Ri ,

we focus on obtaining a lower bound on RS′ that applies with high probability.

Note that

E(RS′) =
1√
|S′|

∑
i∈S′

E(Ri) ,

and

Var(RS′) =
1

|S′|

∑
i∈S′

Var(Ri) +
∑

i,j∈S′,i6=j

Cov(Ri, Rj)

 .

In an analogous fashion to that in Hettmansperger [83], we can make the following

claims about the first two moments of the ranks.

Lemma 5.3. Suppose Xi ∼ Fθi , i ∈ [s] and independent, also independent of

{Xi}i∈[s+1,n] which are i.i.d. and distributed as F0. Let Ri denote the rank (in

increasing order) of Xi in the combined sample, and suppose ties are broken ran-

domly. Recall the definition of pθ,θ′ and pθ in (5.16).

E(Ri) =


(n− s)pθi +

∑
j∈[s],j 6=i

pθi,θj + 1 , when i ∈ [s],

n+s+1
2 −

∑
j∈[s]

pθj , when i /∈ [s].

Furthermore, as n, s→∞, s = o(n), for i ∈ [s]

Var(Ri) = (λθi − p2
θi)n

2 +O(sn) ,

where

λθ = P({X > Y1} ∩ {X > Y2}) + P(X = Y1 > Y2) + 1
3P(X = Y1 = Y2) ,

where X ∼ Fθ independent of Y1, Y2 ∼ F0, also independent. Finally, for any

i, j ∈ [n]

Cov(Ri, Rj) = O(n) .
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For the sake of completeness we sketch a proof of Lemma 5.3 in Appendix 5.A.

Using the fact that for any θ, θ′ we have pθ,θ′ + pθ′,θ = 1 we get

E(RS′) =
1√
|S′|

(
|S|(n− |S|)p̄S +

∑
i∈S

∑
j∈S, j 6=i

pθi,θj + |S|

+ |S′ \ S|n+|S|+1
2 − |S′ \ S||S|p̄S

)

=
|S|√
|S′|

(n− |S| − |S′ \ S|)(p̄S − 1/2) +
√
|S′|n+ 1

2
,

where p̄S = 1
|S|
∑
i∈S pθi is the average of pθi over the anomalous set.

Note that for any i ∈ [n] we trivially have Var(Ri) ≤ n2, and by Lemma 5.3

Cov(Ri, Rj) = O(n), so Var(RS′) = O(n2). Hence, using Chebyshev’s inequality

we obtain

RS′ −
√
|S′|n+1

2 =
|S|√
|S′|

(n− |S| − |S′ \ S|)(p̄S − 1/2) +OP (n)

≥ ρ(S, S′)(n− 2su)τ
√

2 log n+OP (n) .

We thus have

scan(R) ≥ cn
√

2 log n ,

with probability going to 1 as n→∞, where c ∈ (τ0, τ), for instance c = τ+τ0
2 .

Plugging this back into (5.18) and using the condition on sl we get

logP(R) ≤ log |Cb| −
2c2n2 log n

n2

6 + n
2 c
√

2 log n/
√
sl

≤ log |Cb| −
(c/τ0)2 log n

1 + o(1)
,

with probability going to 1. Note that the upper bound on |Cb| in (5.15) is still

valid. This with the fact that c/τ0 > 1 yields that logP(R) → −∞ as n → ∞,

hence the test is asymptotically powerful.

Proof of Corollary 5.1. We bound pθ by using a Taylor expansion. When F0 is

discrete, we have

pθ =

∫
R

(
F̄θ(x) + 1

2fθ(x)F0(x)
)
F0( dx).
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We expand the integrand seen as a function of θ around θ = 0 up to a second order

error term. We have

∂
∂θfθ(x)

∣∣∣∣∣
θ=0

= x, ∂
∂θ F̄θ(x)

∣∣∣∣∣
θ=0

=

∫
(x,∞)

u dF0(u) ,

where the second identity comes from differentiating inside the integral defining

F̄θ, justified by dominated convergence. Note that ∂2

∂θ2 fθ(x) is integrable w.r.t. F0

when θ ∈ [0, θ∗) and the same holds for ∂2

∂θ2 F̄θ(x) as well. Hence let

c′0 :=

∫
R

sup
θ̃∈[0,θ]

∂2

∂θ2 fθ(x)

∣∣∣∣∣
θ=θ̃

dF0(x) <∞ , and

c0 :=

∫
R

sup
θ̃∈[0,θ]

∂2

∂θ2 F̄θ(x)

∣∣∣∣∣
θ=θ̃

dF0(x) <∞ .

Hence,

pθ ≥
∫
R
F̄0(x) + 1

2F0(x) + θ

(∫
(x,∞)

u dF0(u) + 1
2F0(x)x

)
dF0(x)− θ2

2 (c0 + c′0/2)

= p0 + θ
(
E0(X1{X > Y }) + 1

2E0(X1{X = Y })
)
− θ2

2 (c0 + c′0/2)

= 1
2 + θΥ0 − θ2

2 (c0 + c′0/2) .

When F0 is continuous, we have

pθ =

∫
R
F̄θ(x)F0( dx),

and the same calculations lead to

pθ ≥ 1
2 + θΥ0 − θ2

2 c0 .

In any case, pθ ≥ 1
2 + θΥ0 −O(θ2).

Following the steps of the proof of Theorem 5.2 with the above bound for pθi

the statement follows.
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Smaller intervals

The conditions of Theorem 5.2 allow for dealing with intervals of length of order

(strictly) larger than log n. We present results that encompass the scenario where

the interval might be of smaller length. To keep the discussion simple we consider

the class of intervals of a fixed size |S| = s under the alternative. In this situation

there is no need to consider an approximating net and we simply scan over the

entire class, denoted by C.
Recall the definition of the p-value of the permutation test (5.12) and the pa-

rameter pθ in (5.16). We can state the following result, which we prove at the end

of this section:

Proposition 5.2. Let 0 < α < 1 and consider the test that rejects the null if

P(R) ≤ α. Recall that p̄S is the average of pθi over the anomalous set S. Then,

in the present context, the test has level at most α and power converging to 1 as

n→∞ provided

(i) p̄S = 1− o(n−2/s) when 2 < s = o(log n); or

(ii) p̄S > 1− exp(− c+1
c ) when s = c log n for some c > 0 fixed.

Theorem 5.2 and Proposition 5.2 together cover essentially all interval sizes

that are o(n2/3). Theorem 5.2 covers the case of larger intervals, in which case

mini∈S pθi can go to 1/2 provided it does not converge too fast, and the test

is still asymptotically powerful. In Proposition 5.2, a sufficient condition for an

asymptotically powerful test is that mini∈S pθi goes to 1 at a certain rate when the

size of the anomalous interval is o(log n). If the interval size is c log n with c > 0

arbitrary, then the rank test is asymptotically powerful when mini∈S pθi is greater

than a constant (strictly larger than 1/2) depending on c.

Unlike for Theorem 5.2, we can not state a general corollary for Proposition 5.2,

that is a result in terms of the parameter θ instead ofpθ. This is due to the fact

that, for small intervals, the signal magnitude must necessarily be large, implying

that θ is bounded away from zero. In such situations, one can only relate pθ and θ

with further knowledge about the family of distributions.

As an example, consider the normal means model when s = o(log n). In this

case, we have

pθ = Φ(−θ/
√

2) ≥ 1− 1

2
e−θ

2/4,
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where Φ(x) is the CDF of the standard normal distribution. Hence, whenever
1
2e
−θi2/4 = o(n−2/s) for all i ∈ S, the condition in the proposition is met. This is

satisfied when

min
i∈S

θi = τ

√
2

s
log n, with τ > 2 fixed. (5.19)

This means that in this case the rank scan requires an amplitude at most two

times larger than the regular scan test calibrated with full knowledge of the null

distribution.

Finally note that the condition pθ → 1 or pθ > 1 − pc might not be possible

to meet for certain distributions of the exponential family. Recall the example of

Bernoulli random variables discussed Section 5.4. In this setup pθi = 3/4 for all

i ∈ S, a case that is not covered by Proposition 5.2 when the interval size is smaller

than c log n and c is small enough. But this is expected since no test has any power

when c is sufficiently small.

Remark 5.4. We have considered the case when the size of the anomalous interval

is known. However, we could consider the class of intervals of length greater than

2 and at most s̄ for some given s̄ = O(log n). In this case we would simply scan

the ranks for every fixed interval size up to s̄ and apply a Bonferroni correction to

the p-values. Following through the steps, one can see that the rank scan test would

be asymptotically powerful when

(i′) p̄S = 1− o(n log n)−2/s when 2 < s = o(log n) ;

(ii) p̄S > 1− exp(− c+1
c ) when s = c log n for some c > 0 fixed.

For the normal location model and considering s̄ = o(log n), we can see that this is

satisfied when (5.19) holds.

Proof of Proposition 5.2. We treat each case separately.

Condition (i). The same arguments hold as before under the null, so again we are

left with studying the alternative. To deal with smaller intervals, we need a slightly

different concentration inequality than before.

Lemma 5.4 (Chernoff’s inequality for ranks). In the context of Lemma 5.2, as-

sume that zj = j for all j. Then

P
(
Z̄ ≥ z̄ + t

)
≤ exp

(
−m supλ≥0ψ(t, λ)

)
, ∀t ≥ 0 ,
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where

ψ(t, λ) := λt− log

(
sinh(λn/2)

n sinh(λ/2)

)
.

Similarly to Lemma 5.2 this result is also a consequence of Theorem 4 of Hoeffd-

ing [84] and Chernoff’s bound. However, with the assumption on zj in the lemma

above we can directly compute the moment generating function of Zj after using

Chernoff’s bound instead of upper bounding it, as is classically done to obtain

Bernstein’s inequality.

In the present context, this yields

P(r) ≤ |C| exp
(
−sψ(scan(r)/

√
s, λ)

)
∀λ > 0 .

Note that x ≤ sinh(x) ≤ ex/2 and |C| ≤ n, hence

P(r) ≤ n exp

(
−λ
√
sscan(r) +

λsn

2
− s log(λn)

)
∀λ > 0 . (5.20)

The next step is to remove the conditioning R = r and bound scan(R). Recall

scan(R) ≥ RS −
√
sn+1

2 , where S is the anomalous interval. As in the proof of

Theorem 5.2 we use Lemma 5.3 to evaluate the terms E(RS) and Var(RS). We

have

E(RS) =
√
s(n− s)(p̄S − 1/2)) +

√
s
n+ 1

2
.

For the variance term, recalling the definition of λθ from Lemma 5.3, we note that

λθ ≤ pθ. Hence

Var(Ri) = (λθi − p2
θi)n

2 +O(sn) ≤ pθi(1− pθi)n2 +O(sn) ≤ (1− pθi)n2 +O(sn) .

Also using Cov(Ri, Rj) = O(n), we get

Var(RS) ≤ (1− p̄S)n2 +O(sn) .

According to our assumption, there exists a sequence ωn →∞ such that

p̄S ≥ 1− ω−1
n n−2/s .

For reasons that become apparent at the end of the proof, we choose ωn →∞ not
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too fast (for instance ωn ≤ log n suffices). Using Chebyshev’s inequality we get

P
(
RS −

√
sn+1

2 ≤
√
s(n− s)

(
1
2 − ω

−1/4
n n−1/s

))
= P

(
RS − E(RS) ≤

√
s(n− s)

(
1− ω−1/4

n n−1/s − p̄S
))

≤ P
(
RS − E(RS) ≤ −

√
s(n− s)

(
ω−1/4
n n−1/s − ω−1

n n−2/s
))

≤ P
(
|RS − E(RS)| ≥

√
s(n− s)

(
ω−1/4
n n−1/s − ω−1

n n−2/s
))

≤ n2ω−1
n n−2/s +O(sn)

s(n− s)2
(
ω
−1/4
n n−1/s − ω−1

n n−2/s
)2 ≤

4n2ω−1
n n−2/s +O(sn)

s(n− s)2ω
−1/2
n n−2/s

→ 0 ,

where the last inequality follows because ω
−1/4
n n−1/s − ω−1

n n−2/s ≥ ω−1/4
n n−1/s/2

eventually as n→∞. Hence,

scan(R) ≥
√
s(n− s)

(
1
2 − ω

−1/4
n n−1/s

)
,

with probability converging to 1 as n→∞. Using this with (5.20) we get

logP(R) ≤ log n+
λs2

2
+ λs(n− s)ω−1/4

n n−1/s − s log(λn) ∀λ > 0 ,

with probability tending to 1. Choosing λ = ω
1/4
n n1/s/n we get

logP(R) ≤ ω
1/4
n n1/s

n
s2 +

n− s
n

s− s

4
logωn → −∞ ,

with probability going to 1, where we used that ωn grows slowly enough for the

first term to vanish.

Condition (ii). We can mimic the arguments above. Suppose s = c log n with

arbitrary c > 0 and p̄S = 1− (1−δ) exp(− c+1
c )) := 1− (1−δ)f(c) with some δ > 0.

As before, using Chebyshev’s inequality we can show that

scan(R) ≥
√
s(n− s)

(
1

2
−
(

1− δ

2

)
f(c)

)
,

with probability tending to 1 as n → ∞. Plugging this into (5.20), choosing
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λ = 1/(nf(c)) we get

logP(R) ≤ log n+
s2

2f(c)n
+
s(n− s)(1− δ

2 )

n
− s log f(c) ,

with probability going to 1 as n → ∞. Plugging in s = c log n and f(c) =

exp(− c+1
c ) we see that the log of the p-value goes to −∞, which is what we wanted

to show.

5.6 Numerical experiments

5.6.1 Computational complexity

We have already cited some works in Section 5.1 where fast (typically approximate)

algorithms for scanning various classes of subsets are proposed (Neill & Moore [115],

Neill [113], Arias-Castro, Donoho & Huo [12], Walther [143]). For example, as we

saw in Lemma 5.1, Arias-Castro, Donoho & Huo [12] design an approximating net

Cb for the class of all intervals C that can be scanned in O(nb4b) operations and

provides an approximation in δ-metric of order O(2−b/2). Furthermore, we saw in

Proposition 5.1 that this procedure achieves the optimal asymptotic power as long

as b = bn →∞. For example, if bn � log log n, then the computational complexity

is of order (npolylog(n)).

In any case, suppose that a scanning algorithm has been chosen and let Cn de-

note its computational complexity. The oracle scan test and the rank scan test are

then comparable, in that they estimate the null distribution of their respective test

statistic by simulation, and this is done only once for each data size n. With this

preprocessing already done, the computational complexity of these two procedures

is Cn, the cost of a single scan when applied to data of size n. In contrast, the

permutation scan test is much more demanding, in that it requires scanning each of

the permuted datasets, and this is done every time the test is applied. Assuming B

permutations are sampled at random for calibration purposes, the computational

complexity is BCn, that is, B times that of the oracle or rank variants (not ac-

counting for preprocessing). B is typically chosen in the hundreds (B = 200 in our

experiments), if not thousands, so the computational burden can be much higher

for the permutation test.
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5.6.2 Simulations

We present the results of some basic numerical experiments that we performed

to corroborate our theoretical findings in finite samples. We generated the data

from the normal location model - where Fθ = N(θ, 1) - which is arguably the most

emblematic one-parameter exponential family and a popular model in signal and

image processing. We used the regular scan test, calibrated with full knowledge of

the null distribution, as a benchmark. The permutation scan test and rank scan

test were calibrated by permutation.

The test statistic that we use in our experiments is the scan over all intervals

of dyadic length. This subclass of intervals is morally similar to C0 (corresponding

to b = 0) but somewhat richer. This choice allows us to both streamline the

implementation and make the computations very fast via one application of the

Fast Fourier Transform per dyadic length. In detail, letting C denote the class of

all discrete intervals in [n], this amounts to taking

Cdyad =
{
S ∈ C : |S| = 2j for some j ∈ N

}
as an approximating set.

As explained earlier, the calibration by permutation and the rank-based ap-

proach are valid no matter what subclass of intervals is chosen, and in fact, the

same mathematical results apply as long as the subclass is an appropriate approxi-

mating net. We encourage the reader to experiment with his/her favorite scanning

implementation.

It is easy to see that, for each S ∈ C, there is S′ ∈ Cdyad with S′ ⊂ S and

|S′| > |S|/2. Hence,

min
S∈C

max
S′∈Cdyad

ρ(S, S′) ≥ 1/
√

2.

A priori, this implies that scanning over Cdyad requires an amplitude
√

2 larger to

achieve the same (asymptotic) performance as scanning over C or a finer approxi-

mating set as considered previously. To simplify things, however, in our simulations

we took an anomalous interval of dyadic length, so that the detection threshold is

in fact the same as before.

We set n = 215 and tried two different lengths for the anomalous interval
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|S| ∈ {27, 210}. All the nonzero θi’s were taken to be equal to

θS = t

√
2

|S|
log n (5.21)

with t varying. The critical values and power are based on 1000 repeats in each

case. A level of significance of 0.05 was used. Also, 200 permutations were used

for the permutation scan test. The results are presented in Figure 5.1. At least

in these small numerical experiments, the three tests behave comparably, with the

rank scan slightly dominating the others. Although the last finding is somewhat

surprising, and we do not know the reason behind it, this is a finite-sample effect

and is localized in the intermediate power range (around a power of 0.5) and so

does not contradict the theory developed earlier. In fact, the three tests achieve

power 1 at roughly the same signal amplitude, confirming the theory.
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Figure 5.1: Power curves (with 95% margin of error) for the three tests (all set at
level 0.05) as a function of the parameter t in (5.21): the scan test calibrated with
knowledge of the null distribution (black); the permutation scan test (blue); and
the rank scan test (red). On the left are the results for |S| = 27 and on the right for
|S| = 210. n = 215 in both cases. Each situation was repeated 1,000 times and each
time 200 permutations were drawn for calibration. The vertical black dashed line
is the minimax boundary for t. The horizontal black dashed line is the significance
level 0.05.
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5.6.3 Comparison with RSI

Next, we compare our rank scan with the robust segment identifier (RSI) of Cai,

Jeng & Li [32]. This is a recent method based taking the median over bins of a

certain size (a tuning parameter of the method) and then scanning over intervals.

Because the median is asymptotically normal, it allows for a calibration that only

requires the value of the null density at 0. In turn, one can try to estimate this

parameter. Although the method is not distribution-free proper, it appears to

be the main contender in the literature. Note that the RSI was developed with a

different task in mind than that investigated here, namely for identifying anomalous

intervals. Hence, we first compare the two methods on simulated data in the context

of detection (the problem we considered so far), and in the context of identification

(a problem the RSI is designed for).

Detection: In the problem of detection, we compare the performance of the rank

scan test and RSI with bin size m ∈ {10, 20} in normal data. To turn RSI into

a test, we reject if it detects any anomalous interval. In the simulation, we set

sample size n = 50, 000 and considered the case where there is only one signal

interval with known length |S| ∈ {100, 1000}. The amplitude satisfies (5.21) as

before. We report the empirical power curves (based on 100 repeats) in Figure 5.2.

To be fair, both methods only scan candidate signal intervals of length |S|. The

rank scan is calibrated as before. For RSI, we set the threshold to
√

2 log n for the

normalized data after localization to better control the family-wise type I error as

explained in Cai, Jeng & Li [32]. From Figure 5.2, we can see that RSI is a bit more

conservative. In fact, a drawback of RSI is the difficulty to calibrate it correctly.9

In any case, the rank scan test outperforms RSI in these simulations.

Identification: In the problem of identification, we compare the rank scan and

RSI. Although we focused on the problem of detection so far, a scan can be as easily

used for testing as for estimation (i.e., identification). Indeed, one sets an identi-

fication threshold and extract all the intervals that exceed that threshold. Some

post-processing - such as merging significant intervals that intersect or keeping the

most significant among significant intervals that intersect - is often applied.

9Of course, it could be calibrated by permutation, but this would make the procedure much
more like the permutation scan test (with the same high-computational burden), somewhat far
from the intentions of Cai, Jeng & Li [32].
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Figure 5.2: Power curves (with 95% margin of error) for the three tests as a function
of the parameter t in (5.21): the rank scan test (red); RSI with bin size 10 (solid
green); and RSI with bin size 20 (dashed green). The rank scan test is set at
level 0.05 and its critical value is from 1000 repeats. On the left are the results
for |S| = 100 and on the right for |S| = 1000. n = 50, 000 in both cases. Each
situation was repeated 100 times. The vertical black dashed line is the minimax
threshold for t. The horizontal black dashed line is the significance level 0.05.

Here, in an effort to be fair, we simply took the procedure of Cai, Jeng & Li

[32] - which is essentially the procedure of the same authors in [90] - but scanning

ranks and calibrating as we did for testing. Note that this implies a very stringent

false identification rate (at the 0.05 testing level, this means that the chances that

one or more intervals are identified by mistake is 0.05).

Following Cai, Jeng & Li [32], in the simulation, we set n = 104. We consider

a range of null distributions: the standard normal distribution, the t-distribution

with 15 degrees of freedom and that with one degree of freedom. In each case, we

set the signal mean to θS ∈ {1, 1.5, 2}. There are three signal intervals, S1, S2, S3,

starting at positions 1000, 2000, 3000, and having lengths 24, 25, 26, respectively.

We set the threshold for the rank scan test by simulation at a significance level of

0.05. For RSI, we tried several bin sizes, m ∈ {23, 25}. To simplify the computation,

both methods only scan dyadic intervals of length at most 26. As in Cai, Jeng &

Li [32], we compare their performance in terms of the following dissimilarities

Dj = min
Ŝ∈Ĉ
{1− ρ(Sj , Ŝ)},

200



and the number of false positives, namely

O = {Ŝ ∈ Ĉ : Ŝ ∩ S = ∅,∀S ∈ C},

where Ĉ are the estimated signal intervals.

We report the average and standard deviation (in the parenthesis in the tables

below) based on 200 repeats in Tables 5.1, 5.2, and 5.3. We can see that the rank

scan method performs better than RSI in when the null distribution is normal and

t(15), and it performs similarly to RSI with bin size m = 23 in t(1). However, when

the bin size of RSI is not properly chosen, RSI can perform poorly.

Table 5.1: Dissimilarity and number of over-selected intervals in N(0, 1)

θS Method D1(|S1| = 24) D2(|S2| = 25) D3(|S3| = 26) #O

1 Rank Scan 0.734 (0.421) 0.148 (0.284) 0.031 (0.049) 0.000 (0.000)
RSI(m = 23) 0.916 (0.235) 0.420 (0.406) 0.095 (0.091) 0.065 (0.267)
RSI(m = 25) 0.998 (0.029) 0.959 (0.144) 0.326 (0.278) 0.130 (0.337)

1.5 Rank Scan 0.167 (0.326) 0.019 (0.044) 0.008 (0.012) 0.000 (0.000)
RSI(m = 23) 0.593 (0.391) 0.132 (0.033) 0.069 (0.029) 0.080 (0.272)
RSI(m = 25) 0.980 (0.087) 0.729 (0.284) 0.204 (0.044) 0.025 (0.157)

2 Rank Scan 0.018 (0.051) 0.006 (0.024) 0.004 (0.008) 0.000 (0.000)
RSI(m = 23) 0.277 (0.226) 0.128 (0.021) 0.064 (0.013) 0.065 (0.247)
RSI(m = 25) 0.960 (0.122) 0.476 (0.162) 0.193 (0.032) 0.010 (0.100)

5.6.4 Application to the real data

In this section, we apply the methods to the problem of detecting the copy number

variant (CNV) in the context of next generation sequencing data. We compare the

rank scan method and RSI on the task of identifying short reads on chromosome 19

of a HapMap Yoruban female sample (NA19240) from the 1000 genomes project

(http://www.1000genomes.org), which is the same data set used by Cai, Jeng

& Li in [32]. Following standard protocols (see Ernst et al. [69]), we extend all

the reads to 100 base pairs (BPs). We take 106 reads from the whole data set for

comparison purposes resulting in 1,281,502 genomic locations.

We tune RSI as done by Cai, Jeng & Li in [32], setting the bin size to m = 400
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Table 5.2: Dissimilarity and number of over-selected intervals in t(15)

θS Method D1(|S1| = 24) D2(|S2| = 25) D3(|S3| = 26) #O

1 Rank Scan 0.806 (0.369) 0.223 (0.354) 0.029 (0.048) 0.000 (0.000)
RSI(m = 23) 0.926 (0.223) 0.436 (0.406) 0.106 (0.099) 0.050 (0.218)
RSI(m = 25) 0.996 (0.041) 0.944 (0.168) 0.336 (0.278) 0.125 (0.332)

1.5 Rank Scan 0.232 (0.378) 0.026 (0.079) 0.010 (0.017) 0.000 (0.000)
RSI(m = 23) 0.554 (0.391) 0.143 (0.112) 0.069 (0.031) 0.075 (0.282)
RSI(m = 25) 0.992 (0.057) 0.732 (0.286) 0.199 (0.042) 0.020 (0.140)

2 Rank Scan 0.034 (0.097) 0.009 (0.019) 0.005 (0.014) 0.000 (0.000)
RSI(m = 23) 0.277 (0.220) 0.128 (0.022) 0.063 (0.013) 0.060 (0.238)
RSI(m = 25) 0.968 (0.107) 0.521 (0.214) 0.192 (0.030) 0.010 (0.100)

Table 5.3: Dissimilarity and number of over-selected intervals in t(1)

θS Method D1(|S1| = 24) D2(|S2| = 25) D3(|S3| = 26) #O

1 Rank Scan 0.989 (0.082) 0.878 (0.305) 0.461 (0.448) 0.000 (0.000)
RSI(m = 23) 0.950 (0.186) 0.764 (0.370) 0.332 (0.358) 4.305 (5.653)
RSI(m = 25) 0.998 (0.022) 0.982 (0.098) 0.609 (0.392) 0.520 (0.501)

1.5 Rank Scan 0.922 (0.251) 0.542 (0.455) 0.067 (0.132) 0.000 (0.000)
RSI(m = 23) 0.843 (0.307) 0.342 (0.354) 0.104 (0.080) 3.920 (2.082)
RSI(m = 25) 0.983 (0.079) 0.877 (0.236) 0.225 (0.111) 0.055 (0.229)

2 Rank Scan 0.763 (0.410) 0.206 (0.333) 0.043 (0.093) 0.000 (0.000)
RSI(m = 23) 0.619 (0.382) 0.154 (0.121) 0.089 (0.063) 3.945 (2.385)
RSI(m = 25) 0.978 (0.090) 0.667 (0.280) 0.208 (0.05) 0.060 (0.238)

and the maximum BPs in a possible CNV to L = 216. Note that Cai, Jeng &

Li [32] took L = 60, 000, which is a bit smaller than 216 (we chose the latter

because we only scan intervals of dyadic length). To save computational time, in

the implementation of the rank scan we group read depths in every 200 positions

and take the summation of the read depths for each bin and use that as input

(meaning, we rank the sums and scan the ranks). We get the critical value for

the rank scan method under the significance level 0.05 from 1000 repeats. In the
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experiment, we let RSI and the rank scan method only scan dyadic intervals of

lengths from 21 to 216.

After merging the contiguous selected segments, RSI found 30 possible CNVs

and the rank scan method selected 34. Figure 5.3 shows the histograms of the read

depths of the selected CNVs. We can see the read depth in the rank scan method

is generally larger than that in RSI.
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Figure 5.3: Histogram of the read depths of the selected CNVs in log scale (base
10). Both methods only scan dyadic intervals of lengths from 21 to 216. The RSI
used a bin size m = 400, while the rank scan was calibrated as for testing.

5.7 Discussion

In this chapter we have considered a prototypical structured detection setting with

the particularity that the null distribution is unknown. When the null distribution

is known, various works have shown that a form of scan test achieves the best

possible asymptotic power. When the null distribution is unknown, one can alter-

natively calibrate the scan test by permutation. This has been suggested a number

of times in the detection literature. Theorem 5.1 implies doing this results in no loss

of asymptotic power compared to a calibration by Monte Carlo with full knowledge

of the null distribution. To circumvent the expense of calibrating by permutation,

we propose to scan the ranks. Theorem 5.2 implies that this results in very little

loss in asymptotic power. In our empirical experiments all three methods perform
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comparably.

Censoring before permutation. When F0 is not of compact support, we can enforce

it by applying a censoring of the form Ỹi = Yi1{|Yi| ≤ t}+ t · sign(Yi)1{|Yi| > t}.
With a choice of threshold t = tn → ∞ slowly (e.g., tn = log log n), Theorem 5.1

applies unchanged and without an upper bound on the θi’s, and the proof is iden-

tical except for very minor modifications. This censoring has the added advantage

of making the method more robust to possible outliers.

Other scoring functions. Although rank-sums are intuitive and classically used,

any scan based on h(ri), where h is increasing, is valid (recall that ri is the rank

of xv in the sample). In two-sample testing, it is known that there is no uniformly

best choice for the function h. See Section 6.9 in Lehmann & Romano [102] where

it is shown that choosing h(r) = E(Z(r)) - where Z(1) < · · · < Z(n) are the order

statistics of a standard normal sample - is (in some sense) optimal in the normal

location model. Our method of proof applies to a general h.

Unstructured subsets. No permutation approach (including a rank-based approach)

has any power for detecting unstructured anomalies. A prototypical example is

when C is the class of all subsets, or all subsets of given size, the latter including

the class of singletons. The reason behind this is that in this case the class of

possible anomalies is closed under permutations, hence the scan statistic takes the

same value for every permutation of the data.

5.A Sketch proof of Lemma 5.3

First, assume that there are no ties in the ranks, with probability one. Note that

we can write

Ri =
∑

j∈[n],j 6=i

1{Xi > Xj}+ 1 =
∑

j∈[s],j 6=i

1{Xi > Xj}+
∑

j /∈[s],j 6=i

1{Xi > Xj}+ 1 .

Taking expectation yields

E(Ri) =


(n− s)pθi +

∑
j∈[s],j 6=i

pθi,θj + 1 , when i ∈ [s],

n+s+1
2 −

∑
j∈[s]

pθj , when i /∈ [s].
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since P(Xi = Xj) = 0 for i 6= j when there are no ties. The variance and covariance

terms can be worked out using the same representation of the ranks as above, but

we omit these straightforward computations for the sake of space.

In case of ties, to keep the presentation simple, assume that the distributions of

{Xi}i∈[n] are supported on Z. Then randomly breaking ties in the ranks amounts

to using the following procedure. Let {εi}i∈[n] be independent and uniformly

distributed on (−c, c) with c ≤ 1/2, also independent from {Xi}i∈[n]. Consider

X ′i = Xi + εi, i ∈ [n] and let R′i be the rank of X ′i in the combined sample

{X ′i}i∈[n]. Then the joint distribution of {R′i}i∈[n] is the same as that of {Ri}i∈[m]

when ties are broken randomly.

For instance, for i /∈ [s]

E(R′i) = n+s+1
2 −

∑
j∈[s]

P(X ′i > X ′j)

= n+s+1
2 −

∑
j∈[s]

(P(Xi > Xj) + P(εi > εj |Xi = Xj)P(Xi = Xj))

n+s+1
2 −

∑
j∈[s]

pθj .

The rest of the claims can be worked out similarly.

Finally, when Xi have arbitrary distributions a similar method can be applied,

although it requires a bit more care and one needs to take c approaching zero.

5.B Derivation of Υ0 in the normal location model

Assume the normal model where Fθ = N(θ, 1). For this case we can simply compute

Υ0. Since there are no ties with probability 1, we have

Υ0 = E(X1{X > Y }) =

∫ ∞
−∞

∫ ∞
x

uf0(u) duf0(x) dx .

Considering the inner integral we have∫ ∞
x

uf0(u) du =
1√
2π

∫ ∞
x

ue−u
2/2 du =

1√
2π
e−x

2/2 = f0(x) .

Hence

Υ0 =

∫ ∞
−∞

f0(x) =

∫ ∞
−∞

1

2π
e−x

2

dx =
1

2
√
π
.
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We conclude that, in the normal location model, τ0 =
√
π/3 as claimed earlier.
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Chapter 6

Concluding remarks

Empirical research is a cornerstone of the scientific learning process. In most fields

of science there is a stage of the scientific process where one has to verify theo-

ries or hypotheses using empirical data. Mathematical statistics is the discipline

underpinning empirical research, providing methods with which the researcher can

evaluate data to draw conclusions, and providing theoretical foundations to how

accurately this can be done.

Considering the process of empirical learning, note that this is inherently an ac-

tive mechanism in the following sense. The researcher formulates theories about the

phenomenon in question, designs experiments to test these theories, and performs

them to acquire data. After analyzing the data, the researcher adjusts his/her

theories based on what he/she learned, and undertakes the previous sequence of

actions anew. This cartoon holds for most learning processes, even ones outside

the scientific world.

The focus of this work was to understand how efficient adaptive sensing is. We

had the following questions in mind: Is it worth putting the effort into designing

strategies to close the loop between data collection and inference, or would simply

collecting data first and analyzing it afterwards be just as efficient? In case there

is a benefit to active learning, what are good active learning strategies? Which are

the best ones, and what is the best performance we can hope for?

We have investigated the above questions in the context of high-dimensional

support recovery and signal detection. We have found that in these settings active

learning is advantageous, often extremely so, compared to non-adaptive sensing.

We also gained an understanding of how active learning procedures work in this
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context, and what the fundamental performance limits of such procedures are.

Although we have gained valuable insights about active learning, as usual, there

are more questions than answers. We highlight a few below.

Robust active learning algorithms: In this work we have taken a more theo-

retical point of view, and have focused more on gaining fundamental understanding

about active learning and less on designing practical active learning algorithms. Of-

ten the main purpose of the procedures that we have presented was to illustrate the

tightness of the conditions that we have derived concerning the fundamental lim-

its of active learning. Because of this, most of our procedures require knowledge

of parameters that would perhaps be unavailable in practice, and rely on strict

distributional assumptions that might be violated in real applications.

To some extent the above phenomena could be circumvented by simple modifi-

cations to the algorithms in this thesis. For instance, even though the algorithms

in Chapters 2 and 3 required knowledge of the sparsity, in fact those algorithms

have a mild adaptivity to sparsity. Similarly, the Sequential Likelihood Ratio Test

is often at the core of those algorithms, which relies on knowledge of the underlying

distributions. Replacing this with some sort of sequential thresholding procedure,

one could deal with slight misspecifications of the underlying distributions.

Nonetheless, now that we see the gains that adaptive sensing can provide in

this context, designing adaptive sensing procedures specifically for practical use

could be of great value. We have seen in Chapter 5 that in the non-adaptive

setting, distribution-free procedures perform nearly as well asymptotically as those

with full knowledge of the underlying distributions, when the data distribution is a

member of the exponential family. Therefore, designing similar procedures for the

adaptive sensing setting, and understanding their performance could prove to be a

fruitful topic of future research.

Fundamental limits of active learning in general: Although we could derive

the fundamental limits of adaptive sensing in specific settings, this is a challenging

task in general. The main method for understanding fundamental difficulties of

statistical inference problems is to evaluate certain divergence metrics between

distributions. Even when the sample is collected non-adaptively such computations

might not be completely straightforward. However, such tasks become increasingly

difficult in an adaptive sensing setting, because sensing actions depend on past
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observations, due to which we lose the independence of the sample.

Even when we have tight bounds on these divergence metrics, obtaining sharp

lower bounds for a specific class of supports often involves selecting an appropriate

subclass. The subclass needs to have two properties: it needs to be simple so

that we are able to compute the divergence metrics, but also the essence of the

problem has to be captured in the subclass. For a given class of supports, this

requires a good intuition about which subclasses account for the main difficulty of

the recovery problem, and so this is difficult to generalize for arbitrary classes.

Because of the above, there are a number of open questions concerning the

fundamental limits of adaptive sensing throughout this work. For instance, we

are missing lower bounds for general structured classes both for the coordinate-

wise sampling and the compressive sensing settings. Such lower bounds might be

easier to obtain in the coordinate-wise sampling case. In particular, the procedures

presented in Chapter 2 are based on a rather general idea. For a given class

of supports, take the noiseless case procedure that is optimal for this class in

terms of sample complexity, and then robustify it using a SLRT, which we know

is also optimal in terms of the amount of precision it requires (in some sense).

Heuristically, this seems to be a good candidate for an optimal procedure for general

classes, and there might be a way to make such an argument formal.

Even if fully general lower bounds are temporarily out of reach, obtaining tighter

upper bounds for the divergence metrics in the adaptive sensing setting would be

very valuable. We illustrate this by considering the class of submatrices. To be a

bit blunt, note that every lower bound in Chapters 2 and 3 essentially reduces the

estimation problem to a detection problem. For certain classes (such as intervals),

this reduction leads to optimal lower bounds. For submatrices it does not, at

least not in the compressive sensing setting. We conjecture that the bottleneck

of submatrix estimation (using adaptive sensing) is finding an active row or an

active column1, and one could quickly come up with a subclass of submatrices

that captures this aspect. However, we were unable to use this idea to obtain a

tight lower bound, because we lack tight bounds for the divergence metrics in the

adaptive sensing setting.

Note that in the non-adaptive sensing setting, such bounds are obtained by

noting certain properties of the optimal estimators. In particular, for symmetric

1Note that in the coordinate-wise sampling setting this is the same as the detection problem,
so in that case this reduction works. However, in the compressive sensing case, this question is
fundamentally different than the detection problem.
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classes, our resources (precision for coordinate-wise samples and sensing energy for

compressive sensing) have to be distributed evenly across the signal vector. Similar

properties also hold in the adaptive sensing setting, but unfortunately these alone

are not sufficient to obtain tight bounds. However, by exploring further conditions

that the optimal support recovery algorithms must satisfy, we might be able to

gain better control on the divergence metrics.

Another approach would be to explore different lower bounding techniques in

the literature (for instance Fano’s inequality). These would present a different set of

challenges, but perhaps those could be overcome more easily. Such methods could

also lead to deriving necessary conditions for the sample complexity of adaptive

compressive sensing, and understanding the fundamental difficulty of the detection

of signals evolving in time.

Combinatorial bandits: A natural generalization of the problems that we have

considered in this work is to consider signals whose coordinates can take arbitrary

values. If we consider settings where the signal is still sparse but the values of

the active components can be arbitrary, we can obtain similar results to those

presented in this thesis. This was already addressed in some comments throughout

the previous chapters. However, when the signal is no longer sparse, the nature

of such problems changes radically. In such settings, instead of the support of the

signal, we are usually looking for the components that have the highest values.

Such problems are called multi-armed bandit problems, and were already ex-

amined in the past due to their high relevance in applications. There are multiple

ways in which multi-armed bandit problems can be cast. In the classical setup the

task is to minimize a cumulative regret over time as introduced by Robbins [126],

whereas in more recent settings, the aim is to find the arm with the highest reward

after a fixed number of pulls, which is called the best-arm problem (see Audibert

& Bubeck [16]).

The latter problem is closely related to the coordinate-wise sampling setting

considered earlier, and in fact can be viewed as a generalization of it. Consider

the setting in Chapter 2, and recall that x denotes the signal vector, and C de-

notes the class of possible supports. Note that the support recovery problem can

be formulated as finding the set in the class for which
∑
i∈S xi is maximal. By

letting the components of x take arbitrary values, and setting C to be the class of

singletons, we arrive at the best-arm problem described above. In a similar fash-
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ion, one could consider this problem for different classes of supports, for instance

the ones considered in earlier chapters. This leads to the so-called combinatorial

bandit problems.

Although the best arm problem is now well understood, knowledge about the

more general combinatorial bandit problem is much more limited. In contrast to

the sparse signal setting considered in this work, in multi-armed bandit problems

we no longer have a baseline distribution to test against. This creates an addi-

tional difficulty, which we know how to overcome in the best arm problem, but is

non-trivial to tackle in combinatorial bandit problems. The additional difficulty

that combinatorial bandits pose stems from the overlaps between the different sets

in the class. Whereas in the best-arm problem every set is a singleton, in combi-

natorial bandits, sets consist of multiple arms, which increases the uncertainty in

our assessment of the values of
∑
i∈S xi for a given S ∈ C. Furthermore, unlike in

the best-arm problem, any given arm contributes its value to many different sets.

These facts make combinatorial bandit problems considerably more difficult.

Nonetheless, obtaining results in this setting would both provide valuable in-

sights about the fundamental properties of adaptive sensing, and could also prove

to be fruitful for practical applications.

Detecting/estimating correlations: The main theme of the problems investi-

gated in this thesis is anomaly detection and estimation. In each chapter, we have

considered an n-dimensional vector that represented some sort of a system, and

some of its components could have different than usual values, which represented

anomalous behavior in the system. However, there are different ways in modeling

anomalous behavior. In particular, note that in the previous setting any given

component of the system can be deemed anomalous in isolation. However, in cer-

tain situations, such a claim can not be made by examining items in isolation, but

rather only when considering different components together. This is referred to as

contextual anomaly detection.

A natural way to model this is to consider a model with added covariance instead

of added mean. That is, anomalous behavior is modeled as certain components of

the signal vector being correlated. In such a setting, one could consider a detection

problem (deciding whether correlated components exist) as well as an estimation

problem (identifying the correlated components). The detection problem has been

investigated both in the non-adaptive sensing setting (see for instance Arias-Castro,
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Bubeck & Lugosi [6]) and in the adaptive sensing setting (see Castro, Lugosi &

Savalle [41]).

In the adaptive sensing setting, the picture is far from complete. In particular,

Castro, Lugosi & Savalle [41] have shown that adaptive sensing can provide an

improvement over non-adaptive sensing in certain settings. When the correlated

components form an interval in the signal vector, the necessary and the sufficient

conditions for detection nearly match. However, when the correlated components

are unstructured, there is a gap between the two conditions, possibly due to the

lower bounds being loose. Therefore, this problem might be another instance for

which the development of general lower bounding techniques for adaptive sensing

(as described above) could be extremely valuable.
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Summary

On High-Dimensional Support Recovery

and Signal Detection

This work investigates questions related to support recovery problems. This is a

group of statistical learning problems in which the goal is to identify items with

unusual/anomalous behavior among a large number of items. Typical examples

of such problems arise in the fields of computer vision, genetic research or in the

analysis of astronomical data. The items themselves cannot be observed directly,

but rather through some sort of observation noise, which makes this a statistical

learning/multiple hypotheses testing task in nature. Furthermore, in most inter-

esting applications the number of items is very large but the number of anomalous

ones among these is relatively small.

We investigate instances of the problem above where observations can be gath-

ered in a sequential and adaptive manner. This paradigm is known as active learn-

ing/adaptive sensing as here the learner can control how data is collected while the

data is being acquired. Adaptive sensing algorithms can potentially exploit the fact

that only a small fraction of the items are anomalous by allocating sensing efforts

more efficiently among various items. Despite their practical appeal a theoretical

understanding of such procedures is challenging. Most of this thesis is aimed at

providing a thorough foundational understanding of adaptive sensing algorithms.

First we consider a model in which we are allowed to sequentially collect ob-

servations of items corrupted by additive Gaussian noise, but the total precision

of the measurements we make must not exceed a predetermined threshold. Our

goal is to understand how much advantage do adaptive sensing procedures have in

this setup compared to non-adaptive ones. To answer this question we first propose
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algorithms for support recovery and analyze their performance. We then show near

optimality of these algorithms, characterizing the fundamental difficulty of the sup-

port recovery task in this model. Finally we show the best possible performance

of non-adaptive algorithms and contrast this to the performance of adaptive ones

established previously.

Next we consider an adaptive compressive sensing model. Instead of individual

measurements of the items, in compressive sensing we observe dot products be-

tween the signal vector and sensing vectors of our choice. These dot products are

corrupted by additive Gaussian noise. Here the norms of the sensing vectors play

the same role as the measurement precision in the previous model. Our research

questions and results parallel those outlined in the previous paragraph, only now

concerning the adaptive compressive sensing model outlined above.

Then we investigate the support recovery problem in a dynamical setting, when

the identity of the anomalous items changes over time. Our main interest is to

understand the fundamental effect the rate of change of the anomalous items has

on the difficulty of the detection problem. To this end we introduce a simple

model in which at each time step each signal component has a fixed probability

of moving to a different location, and these moves happen independently. At each

time step we are allowed to collect a noisy measurement of an item of our choice.

We analyze this problem under both adaptive and non-adaptive sensing paradigms,

and characterize the difficulty of signal detection in both setups.

Complementing the theoretical work above, we provide some results with a

strong methodological motivation. We consider the more classical setup (non-

adaptive sensing) when we are provided with one observation per item, assumed to

belong to some family of distributions. Though this setup has been widely studied

for a multitude of distributions, often in practice such distributional assumptions

may be violated. Motivated by this we introduce distribution-free tests for the

problem of detecting the presence of anomalous items. We analyze the performance

of these tests and show that for distributions in the exponential family, our proposed

tests have near optimal performance.
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