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1 Introduction

This document introduces a notation to be used for describing kinematics and
dynamics quantities, as well as their coordinate transformations, of a mechanical
system composed by rigid bodies. The notation strives to be compact, not
ambiguous, and in harmony with Lie Group formalism.

The notation borrows from the well known notation introduced in [7], which
is also used, with slight modifications, in [15]. The notation used in [7], is,
unfortunately, not fully in accordance with Lie group formalism used in, e.g.,
[13, 14, 10], that is, however, less compact than [7], leading to long expressions
when several rigid bodys are present. This report is an attempt to get the best
from these two worlds, also focusing on an unambiguous notation to describe the
Jacobians relating the generalized coordinates to Cartesian linear and angular
velocities.

2 A quick overview on the developed notation

Quick reference list for the symbols used in this document. Precise definition is
given in the text below.

A,B coordinate frames
p an arbitrary point
oB origin of B
[A] orientation frame associated to A
B[A] frame with origin oB and orientation [A]
Ap coordinates of p w.r.t. to A
AoB coordinates of oB w.r.t. to A
AHB homogeneous transformation from B to A
AXB velocity transformation from B to A
CvA,B twist expressing the velocity of B wrt to A written in C
Cv∧A,B 4× 4 matrix representation of CvA,B
CvA,B× 6× 6 matrix representation of the twist cross product
CvA,B×̄∗ 6× 6 matrix representation of the dual cross product

Bf coordinates of the wrench f w.r.t. B

AX
B wrench transformation from B to A〈

Bf,BvA,B
〉

pairing between wrench and velocity

B(ML)B 6× 6 inertia tensor of link (=rigid body) L
expressed with respect to frame B

CJA,B Jacobian relating the velocity of B with respect to A expressed in C
CJA,B/F Jacobian relating the velocity of B with respect to A expressed in C,

where the floating base velocity is expressed in F
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3 Math preliminaries

3.1 Notation

The following notation is used throughout the document.

• The set of real numbers is denoted by R. Let u and v be two n-dimensional
column vectors of real numbers, i.e. u, v ∈ Rn, then their inner product is
denoted as uT v, with “T” the transpose operator.

• The identity matrix of dimension n is denoted In ∈ Rn×n; the zero column
vector of dimension n is denoted 0n ∈ Rn; the zero matrix of dimension n×
m is denoted 0n×m ∈ Rn×m.

• The set SO(3) is the set of R3×3 orthogonal matrices with determinant
equal to one, namely

SO(3) := {R ∈ R3×3 | RTR = I3, det(R) = 1 }. (1)

When endowed with matrix multiplication, SO(3) becomes a Lie group,
the Special Orthogonal group of dimension three.

• The set so(3), read little so(3), is the set of 3×3 skew-symmetric matrices,

so(3) := {S ∈ R3×3 | ST = −S }. (2)

When endowed with the matrix commutator as operation, the set becomes
a Lie algebra.

• The set SE(3) is defined as

SE(3) :=
{[

R p
01×3 1

]
∈ R4×4 | R ∈ SO(3), p ∈ R3

}
. (3)

When endowed with matrix multiplication, it becames the Special Eu-
clidean group of dimension three, a Lie group that can be used to represent
rigid transformations and their composition in the 3D space.

• The set se(3) is defined as

se(3) :=
{[ Ω v

01×3 0

]
∈ R4×4 | Ω ∈ so(3), v ∈ R3

}
. (4)

When endowed with the matrix commutator as operation, se(3) becomes
the Lie algebra of the Lie group SE(3).

• Given the vector w = (x; y; z) ∈ R3, we define w∧ (read w hat) as the 3×3
skew-symmetric matrix

w∧ =

xy
z

∧ :=

 0 −z y
z 0 −x
−y x 0

 ∈ so(3). (5)
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Given the skew-symmetric matrix W = w∧, we define W∨ ∈ R3 (read W
vee) as

W∨ =

 0 −z y
z 0 −x
−y x 0

∨ :=

xy
z

 ∈ R3. (6)

Clearly, the vee operator is the inverse of the hat operator.

• Given a vector v = (v;ω) ∈ R6, v and ω ∈ R3, we define

v∧ =

[
v
ω

]∧
:=

[
ω∧ v

01×3 0

]
∈ se(3). (7)

• Similarly to what done for vectors in R3 few lines above, we define the vee
operator as the inverse of the hat operator such that[

ω∧ v
01×3 0

]∨
:=

[
v
ω

]
= v ∈ R6. (8)

• Given two normed vector spaces E and F and a function between them
f : E 7→ F we define as the derivative of f in x0 ∈ E as the linear function
Df(x0) : E 7→ F such that:

lim
x→x0

||f(x)− f(x0)−Df(x0) · (x− x0)||
||x− x0||

= 0 (9)

If E = R and F = R then Df(x0) is the linear function tangent to f(x),
that is usually indicated as:

Df(x0) · x =
df

dx

∣∣∣∣
x=x0

(x− x0) + f(x0).

If E = Rn and F = Rm then Df(x0) is:

Df(x0) · x =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn


x=x0

(x− x0) + f(x0).

Given a function f of p normed vector spaces f : E1 × E2 . . . Ep 7→ F
we define as D1f the derivative of f with respect to E1, with D2f the
derivative of f with respect to E2 and so on so forth.

We refer to [17, Chapter 2] and to [1, Section 2.3] for further details on
the derivative notation (D, D1, D2, . . . ) used in this document.
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4 Points and coordinate frames

A frame is defined as the combination of a point (called origin) and an orien-
tation frame in the 3D space [4, 18]. We typically employ a capital letter to
indicate a frame. Given a frame A, we will indicate with oA its origin and with
[A] its orientation frame. Formally, we write this as A = (oA, [A]).

Frames can be time varying. They can be used, e.g., to describe the position
and orientation in space of a rigid body as time evolves. They are also used to
expressed a coordinate system for a wrench exchanged by two bodies or used
to define a coordinate system to describe a robot task (like a frame attached to
the center of mass and oriented as the inertial frame).

Newton’s mechanics requires the definition of an inertial frame. In this
document, we usually indicate this frame simply with A (the Absolute frame).
As common practice, for robots operating near the Earth surface, we will assume
the frame A to be fixed to the world’s surface, disregarding non-inertial effects
due to the Earth’s motion.

4.1 Coordinate vector of a point

Given a point p, its coordinates with respect to a frame A = (oA, [A]) are
collected in the coordinate vector Ap. The coordinate vector Ap represents the
coordinates of the 3D geometric vector

→
r oA,p connecting the origin of frame A

with the point p, pointing towards p, expressed in the orientation frame [A],
that is

Ap :=


→
r oA,p ·

→
xA

→
r oA,p ·

→
yA

→
r oA,p ·

→
z A

 ∈ R3, (10)

with · denoting the scalar product between two vectors and
→
xA,

→
yA,

→
z A, the

unit vectors defining the orientation frame [A].

4.2 Change of orientation frame

Given two frames A and B, we will employ the notation

ARB ∈ SO(3) (11)

to denote the coordinate transformation from frame B to frame A. The coordi-
nate transformation ARB only depends on the relative orientation between the
orientation frames [A] and [B], irrespectively of the position of the origins oA
and oB .
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4.3 Homogeneous transformation

To describe the position and orientation of a frame B with respect to another
frame A, we employ the 4× 4 homogeneous matrix

AHB :=

[
ARB

AoB
01×3 1

]
. (12)

Given a point p, the homogeneous transformation matrix AHB can be also
used to map the coordinate vector Ap to Bp as follows. Let Ap̄ and B p̄ denote
the homogenous representation of Ap and Bp, respectively. That is, let Ap̄ :=
(Ap; 1) ∈ R4 and likewise for B p̄ (note that ; indicates row concatenation). Then

Ap̄ = AHB
B p̄, (13)

which is the matrix form of Ap = ARB
Bp + AoB . We refer to [13, Chapter 2]

for further details on homogeneous rapresentation of rigid transformations.

5 Velocity vectors (twists)

In the following, given a point p and a frame A, we define

Aṗ :=
d

dt

(
Ap
)
. (14)

In particular, when p is the origin of a frame, e.g., p = oB , we have

AȯB =
d

dt

(
AoB

)
.

It is important to note that, by itself, expressions like ȯB or ṗ have no meaning.
Similarly to (14), we also define

AṘB :=
d

dt

(
ARB

)
(15)

and

AḢB :=
d

dt

(
AHB

)
=

[
AṘB

AȯB
01×3 0

]
. (16)

The relative velocity between a frame B with respect to a frame A can be
represented by the time derivative of the homogenous matrix AHB ∈ SE(3).
A more compact representation of AḢB can be obtained multiplying it by the
inverse of AHB on the left or on the right. In both cases, the result is an element
of se(3) that will be called a twist. Premultipliying on the left, one obtains

AH−1B
AḢB =

[
ARTB −ARTBAoB
01×3 1

] [
AṘB

AȯB
01×3 0

]
=

[
ARTB

AṘB
ARTB

AȯB
01×3 0

]
. (17)
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Note that ARTB
AṘB appearing on the right hand side of (17) is skew symmetric.

Define BvA,B and BωA,B ∈ R3 so that

BvA,B := ARTB
AȯB , (18)

Bω∧A,B := ARTB
AṘB . (19)

The left trivialized velocity of frame B with respect to frame A is

BvA,B :=

[
BvA,B
BωA,B

]
∈ R6. (20)

By construction,

Bv∧A,B = AH−1B
AḢB . (21)

Note the slight abuse of notation in using the hat operator ∧ in (19) and (21)
that maps a vector into its corresponding matrix representation (respectively,
from R3 to R3×3 using (5) in (19) and from R6 to R4×4 using (7) in (21)).
Specularly to what done in (17), right multiplying AḢB by the inverse of AHB

leads to

AḢB
AH−1B =

[
AṘB

AȯB
01×3 0

] [
ARTB −ARTBAoB
01×3 1

]
=

[
AṘB

ARTB
AȯB − AṘB

ARTB
AoB

01×3 0

]
. (22)

Define AvA,B and AωA,B ∈ R3 as

AvA,B := AȯB − AṘB
ARTB

AoB (23)

Aω∧A,B := AṘB
ARTB . (24)

The right trivialized velocity of B with respect to A is then defined as

AvA,B :=

[
AvA,B
AωA,B

]
∈ R6. (25)

By construction,

Av∧A,B = AḢB
AH−1B . (26)

5.1 Expressing a twist with respect to an arbitrary frame

Straightforward algebraic calculations allow to show that the right and left
trivialized velocities AvA,B and BvA,B are related via a linear trasformation.
Following the notation introduced in [7], we denote this transformation AXB

and define it as

AXB :=

[
ARB

Ao∧B
ARB

03×3
ARB

]
∈ R6×6. (27)
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We have therefore

AvA,B = AXB
BvA,B . (28)

The inverse transformation is simply given by BXA = AX−1B , an exercise we
leave to the reader (recall that AoB = −ARBBoA).

Technical note. To draw a connection with Lie group theory, indicating with
g = gA,B := AHB ∈ SE(3) an arbitrary element of the Special Euclidean group
(i.e., a rigid transformation), AXB is nothing else than Adg. Given g ∈ SE(3)
and ξ ∈ se(3),

Adg ξ := gξg−1 ∈ se(3). (29)

The operator Ad : SE(3) × se(3) → se(3) is called the adjoint action of the
group SE(3) to its algebra se(3). Taking g = AHB and ξ = Bv∧A,B , one sees

immediately that gξg−1 appearing in the right hand side of (29) equals

AHB
Bv∧A,B

AH−1B , (30)

which, recalling the definition of BvA,B given in (21), is equivalent to

AḢB
AH−1B = Av∧A,B , (31)

by definition of AvA,B given in (26). The adjoint action of the group SE(3) to
its algebra se(3), given by (29), is linear with respect to its second argument.
It is therefore possible, when representing se(3) as a vector is R6 as done in
(7), to define the adjoint action (with a slight abouse of notation) as a map
Ad : SE(3) × R6 → R6. In this way, for g = AHB , AvA,B = Adg

BvA,B , with
Adg = AXB given in (27), as straightforward computations allow to conclude.

Given the ubiquity of the velocity transformation AdgA,B
in multibody dy-

namics computations and algorithms (and its associate wrench transformation
Ad∗gA,B

that we introduce later below), it is convenient to indicate it simply

with the compact notation AXB (respectively, BX
A). It is likewise important,

however, to recall its connection with Lie group theory to be able to understand
the body of literature of geometric mechanics written with the standard Ad
notation. �

We conclude this section by introducing the velocity of frame B with respect
to frame A expressed in frame C, indicated with CvA,B . The left and right
trivialized velocities of B with respect to A, respectively given by (21) and (26),
are special cases of this concept. Namely, we define

CvA,B =

[
CvA,B
CωA,B

]
∈ R6 (32)

as
CvA,B := CXA

AvA,B = CXB
BvA,B , (33)

the latter equality following from (28) and CXA
AXB = CXB .
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5.2 On the linear and angular components of a twist

As evident from (19) and (24), the angular component of the twists BvA,B and
AvA,B only depends on the relative orientation between the frames A and B,
given by the rotation matrix ARB , and its time evolution. It corresponds to the
classic concept of angular velocity found in undergraduate physics textbooks
and it can be expressed with respect to a different orientation frame simply by
multipliying its coordinates by a suitable rotation matrix so that, e.g.,

CωA,B = CRB
BωA,B = CRA

AωA,B . (34)

The linear component of the twists BvA,B and AvA,B requires a bit more of
attention. While BvA,B given in (18) is the time derivative of AoB (the coordi-
nates of the origin of B with respect to the frame A) expressed in the coordinate
of frame B, AvA,B is not the time derivative of AoB , but rather the (initially)
somehow counterintuivive expression given in (23). At each instant of time, the
linear velocity AvA,B is the linear velocity of that point, thought as fixed with
respect to frame B, that finds itself at the origin of frame A at the given instant
of time. The right trivialized velocity AvA,B finds application in the theory of
mechanical systems with symmetries and in the definition of momentum map
[11, 2, 12]. It is also a key ingredient in understanding the efficient numerical
algorithms for multibody dynamics described, e.g., in [7, 9, 14].

There are situations in which, however, one would like to describe the linear
and angular velocity of a frame as AȯB and AωA,B , respectively. This is possible:
if we express the velocity of frame B with respect frame A in the frame B[A] :=
(oB , [A]), that is, the frame with the same origin of B and same orientation of
A, one gets

B[A]vA,B = B[A]XB
BvA,B =

[
ARB 0

0 ARB

] [
BRA

AȯB
BωA,B

]
=

[
AȯB
AωA,B

]
. (35)

In [3], (35) is referred to as the hybrid velocity of frame B with respect to frame
A. To avoid confusion with hybrid systems theory, we will call (35) the mixed
velocity of frame B with respect to frame A (mixed as it has both the flavors
of a left trivialized velocity for the linear velocity part and of a right trivialized
velocity for the angular velocity part).

5.3 The cross product on R6 (×)

Equation (21) can be rewritten as

AḢB = AHB
Bv∧A,B . (36)

By time differentiation of (27), it can be shown that a similar formula holds for
AXB , namely, that

AẊB = AXB
BvA,B× (37)
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with BvA,B× defined as

BvA,B× :=

[
Bω∧A,B

Bv∧A,B
03×3

Bω∧A,B

]
. (38)

We will refer to (38) as the matrix representation of the cross product on R6.

Technical note. In the language of Lie groups, (38) is nothing else that the
matrix representation of the adjoint action of R6 on itself, indicated with ad,
when thinking at R6 as the Lie algebra induced by the Lie algebra homeomor-
phism (7) between R6 and se(3). Defining g = AHB ∈ SE(3), (37) is then
usually written as (cf. [11, Chapter 9, equation (9.3.4)])

d

dt
Adg = Adg adg−1ġ, (39)

where Adg = AXB and adg−1ġ = AvA,B×, with g−1ġ = BvA,B . This notation
is used in the robotic literature in, e.g., [8] and [14]. This connection with Lie
group theory allows to obtain immediately useful algebraic equalities such as,
e.g., the identity (v×w)∧ = v∧w∧−w∧v∧ =: [v∧,w∧], valid for arbitrary vectors
v and w ∈ R6, that derives from the fact that the adjoint operator ad is nothing
else than the matrix commutator [·, ·] when using the matrix representations
(v∧ and w∧) of the Lie algebra elements. �

5.3.1 Basic properties of the cross product

Equation (38) defines a cross product between vectors of R6, with the classical
anticommutative property

CvA,B × CvD,E = −CvD,E × CvA,B . (40)

As a direct consequence of anticommutativity is

CvA,B × CvA,B = 06×1. (41)

At deeper look at the cross product defined via (38) reveals that this operation
turns R6 into a Lie algebra, a vector space with a anticommutative bilinear
operation satisfying the Jacobi identity [11, Chapter 9].

5.3.2 Velocity transformation and the cross product

The cross product of se(3) satisfies the distributive property

AXB
BvA,B× = (AXB

BvA,B)× AXB = AvA,B × AXB . (42)

In the context of Lie groups, this latter property is the well known result

Adg adg−1ġ = adAdg g−1ġ Adg = adġg−1 Adg, (43)

where g = AHB ∈ SE(3) as in (39) and ġg−1 = AvA,B [11, Chapter 9].
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5.4 Frame acceleration and acceleration vectors

Several definitions of frame accelerations are present in the literature [6]. As an
example, in [7], “coordinate free” or “absolute” frame accelerations are intro-
duced by considering only twists with respect to an (implicitly defined) inertial
frame. This particular definition is convenient for obtaining computational ef-
ficient algorithms for multibody dynamics, but it is not natural for task speci-
fication and closed-loop control, where it is common to use linear accelerations
that are the derivative of the (inertial) coordinates of a point in space.

To avoid confusion and preserve the generality that will allows to us a com-
mon notation to describe numerical algorithm for multibody dynamics as well
as “natural” task specifications, we define the acceleration of a frame B with
respect to a frame A written in terms of a frame C simply as the time-derivative
of the corresponding twist, that is

C v̇A,B :=
d

dt

(
CvA,B

)
. (44)

Of particular interest, for task specification, is the acceleration

B[A]v̇A,B =

[
B[A]v̇A,B
B[A]ω̇A,B

]
. =

[
AöB
Aω̇A,B

]
. (45)

Using (37), one can easily prove that the acceleration of a frame B with respect
to a frame A expressed in frame C satisfies

C v̇A,B = CXB

(
BvC,B × BvA,B + B v̇A,B

)
. (46)

From equation above, for the special case C = A, one obtains, using (41), the
fundamental relationship between left and right trivialized accelerations, that is

Av̇A,B = AXB
B v̇A,B . (47)

6 Force covectors (wrenches)

The coordinates of a wrench f with respect to frame B are indicated with

Bf :=

[
Bf

Bτ

]
∈ R6. (48)

Note that the frame B is simply used to indicate the coordinate frame with re-
spect to which the wrench f is expressed in coordinates and there is no necessity
for the wrench f to also be applied to, e.g., the rigid body (if any) to which B
is attached. Similarly to what we did for a twist, we can define a linear map to
change the coordinates of a wrench from a frame B to another frame A. This
coordinate transformation is indicated with AX

B and written as

Af = AX
B
Bf. (49)
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The mapping AX
B is actually induced by the velocity transformation (27) (why

this is the case will be explained below) and is related to BXA via the definition

AX
B := BXT

A . (50)

It is important to realize that (50) is such to make the following identity (of
power) hold 〈

Bf,BvA,B
〉

=
〈
Af,AvA,B

〉
, (51)

where f could be interpreted as a wrench applied to a rigid body to which the
moving frame B is rigidly attached and A as the absolute inertial frame.

6.1 The dual cross product on R6 (×̄∗)

The time derivative of the wrench coordinate transformation AX
B has an ex-

pression that is dual to velocity coordinate transformation AXB given in (37).
Indeed, straightforward computations lead to obtain

AẊ
B = AX

BBvA,B×̄∗ (52)

where the (matrix representation of the) dual cross product ×̄∗ is defined by

BvA,B×̄∗ :=

[
Bω∧A,B 03×3
Bv∧A,B

Bω∧A,B

]
. (53)

It is worth noting that (53) is obtained from (38) by simply transposing this
latter expression and taking the negative value of the result: a fact that is also
encoded in the symbol ×̄∗, where the overline sign has been chosen to represent
the minus sign and the star the transpose operation (more formally, the adjoint
of a linear map, typically indicated with a star). The dual cross product (53)
takes one twist and one wrench and return one wrench (as opposed to the cross
product (38) that takes as input two twists and return one twist); this is also
the reason why the sub- and superscripts in (52) makes sense: when AẊ

B is
applied to a wrench Bf expressed in B, the dual cross product between BvA,B
and the wrench will return a wrench expressed in B that can then be converted
into a wrench expressed in A via AX

B . It is also straighforward to prove that

AX
BBvA,B×̄∗ = AvA,B×̄∗AXB . (54)

Technical note. In the language of differential geometry, the dual space of
se(3) (i.e., the space of linear applications from se(3) to R) is indicated with
se(3)∗ and is the space where wrenches belong (as opposed to se(3) where twists
belong). In terms of Lie group theory, the wrench coordinate transfromation

AX
B is written

AX
B = Ad∗g−1 (55)
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with g = AHB ∈ SE(3). Recall that Adg = AXB and Adg−1 = BXA. Then,
posing ξ∧ = Bv∧A,B ∈ se(3), one sees that

BvA,B×̄∗ = − ad∗ξ . (56)

Once again, note how the symbol ×̄∗ appearing in (53) has been explicitly chosen
to remind the fact that (53) is obtained from the product (×) given in (38), by
computing its adjoint (∗) and changing its sign (−). Finally, (52) is simply

d

dt
Ad∗g−1 = −Ad∗g−1 ad∗ξ (57)

for ġ = gξ, with g = AHB and ξ = Bv∧A,B . �

7 Generalized inertia tensor

The 6 × 6 generalized inertia of a link (=rigid body) L expressed with respect
to a frame C centered at the center of mass of L is defined as

C(ML)C =

[
mLI3×3 03×3

03×3 C(IL)C

]
, (58)

where mL is the mass of the rigid body and C(IL)C is the standard inertia tensor
of the rigid body L expressed in the orientation frame [C].

The generalized inertia of a rigid body L expressed with respect a generic
frame B is defined according to

B(ML)B = BX
C
C(ML)C

CXB

=

[
mLI3×3 −mL

Bo∧C
mL

Bo∧C B(IL)B

]
, (59)

where

B(IL)B = CRTB C(IL)C
CRB −mL

Bo∧C
Bo∧C . (60)

We recall that BoC = −BRCCoB . The term −mL
Bo∧C

Bo∧C appearing in the
inertia matrix B(IL)B is the classic correction term of the Huygens-Steiner the-
orem (also known as parallel axis theorem).

8 On geometric Jacobians

The goal of this section is to arrive at a precise, unambiguous notation to de-
note the ‘geometric Jacobians’ for fixed-based and, in particular, free-floating
multibody systems.

In this section, A will denote the (absolute) inertial frame and B a frame
rigidly attached to one of the bodies composing the multibody system, selected
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to be the floating base. The configuration of a free-floating multibody system
will be parametrized using q = (H, qJ) ∈ SE(3)×RnJ , with H = AHB ∈ SE(3)
representing the pose (position and orientation) of the floating base frame B
and qJ ∈ RnJ the internal joint displacements. The configuration space (more
correctly, the configuration manifold) has correspondingly dimension n = 6+nJ .

Let E be a frame (rigidly) attached to an arbitrary body to be used, e.g.,
for the specification of a task to be executed by the robot. The frame E could
represent, e.g., the pose of a specific frame rigidly attached to a end effector of
a robot manipulator, like a hand or foot of a humanoid robot. Let

AHE = AHE(q) = AHE(H, qJ) (61)

denote the homogeneous transformation expressing E with respect to A as a
function of the configuration q = (H, qJ).

Let δH denote an infinitesimal perturbation of the pose of the floating base –
in the language of differential geometry, δH ∈ THSE(3)– and δqJ an infinitesimal
perturbation of the joint displacements. Then, the corresponding infinitesimal
perturbation of frame E can be computed as

AδHE = AD1HE(H, qJ) · δH + AD2HE(H, qJ) · δqJ , (62)

where we recall that H is a short form for AHB and δH a short form for AδHB .
Define the trivialized infinitesimal perturbations E∆A,E and B∆A,B ∈ R6 such
that

E∆∧A,E = AH−1E
AδHE (63)

and

B∆∧A,B = AH−1B
AδHB . (64)

Combining (63) and (64) together with (62), it is straightforward to show that
E∆A,E depends linearly on B∆A,B and δqJ . Such a linear map defines the “geo-
metric Jacobian” for a floating base system. It will be indicated with the symbol
EJA,E/B to indicate that the Jacobian allows to compute the infinitesimal per-
turbation of frame E relative to frame A, expressed with respect to frame E (a
first left-trivialization), based on the infinitesimal perturbation of the internal
joint configuration and that of the floating base B, the latest expressed with
respect B (a second left-trivialization). For this reason, we will refer to EJA,E/B
as a double left-trivialized geometric Jacobian. In formulas, we get

E∆A,E = EJA,E/B(AHB , qJ)

[
B∆A,B

δqJ

]
. (65)

The infinitesimal perturbation of frames E and B can be clearly be expressed
with respect to arbitrary frames, let us say, C and D. The geometric Jacobian
DJA,E/C is related to EJA,E/B by the transformation

DJA,E/C = DXE
EJA,E/B

BYC , (66)
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with

BYC :=

[
BXC 06×nJ

0nJ×6 InJ×nJ

]
. (67)

The special case E[A]JA,E/B[A], obtained from the above formula with D = E[A]
and C = B[A], will be denoted the mixed-mixed geometric Jacobian.

9 Free-floating rigid body dynamics

Here we introduce the notation that we use to write, in a compact form, the
equations of motion of a free-floating rigid body system. As mentioned in Sec-
tion 8, the configuration of a free-floating rigid body system will be parametrized
as q = (H, qJ) := (AHB , qJ), where A is the inertial frame, B the (selected)
floating base frame and qJ ∈ RnJ the joint displacements.

The kinematics of the (floating base) rigid body system are written treating
the configuration manifold Q = SE(3) × RnJ as the Lie group defined by the
group direct product SE(3) × RnJ . Seeing Q as a Lie group, employing the
mixed velocity of the floating based B, allows one to write the derivative of the
configuration q̇ = (Ḣ, q̇J) as

q̇ = q Y ν, (68)

where ν = (v, q̇J) denotes the mixed generalized velocity of the floating-base
rigid-body system, i.e., ν := B[A]ν = (B[A]vA,B , qJ), and Y := BYB[A] is the
natural extension of the velocity transformation X, introduced in Section 5.1,
to the Lie algebra of Q. The structure of the generalized velocity transformation
Y has been introduced previously in (67) and it is formally defined in such as a
way that

Y ν = BYB[A]
B[A]ν

= BYB[A] (B[A]vA,B , qJ)

= (BXB[A]
B[A]vA,B , qJ)

= (BvA,B , qJ) =: Bν. (69)

Note how Y acts on the floating base velocity v, leaving the joint velocities q̇J
unaltered. The configuration q and the mixed generalized velocity ν can then
be used to write the dynamics of the floating-based rigid-body system as

M(q)ν̇ + C(q, ν)ν +G(q) = S τ +
∑
i∈IN

JTi (q)fi (70)

with M the (mixed) mass matrix, C the (mixed) Coriolis matrix, G the (mixed)
potential force vector, S := [06×nJ

; InJ×nJ
] the joint selection matrix (see, e.g.,

[5]), τ the joint torques, IN the set of closed contacts, fi := Ci[A]fi the i − th
contact wrench, and

Ji(q) := Ci[A]JA,Li/B[A](q) (71)
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the mixed-mixed geometric Jacobian associated to the contact frame Ci, where
we used the notation introduced in Section 8, where Li is the frame rigidly
attached to the link that is experiencing the i-th contact. To better understand
where (71) comes from, recall that the infinitesimal power injected by a contact
wrench C f is given by〈

LX
C
C f, LJA,L/B[A](q) ν

〉
=
〈
C f,CXL

LJA,L/B[A](q) ν
〉

=
〈
C f,CJA,L/B[A](q) ν

〉
. (72)

Note, in particular, that CJA,L/B[A] 6= CJA,C/B[A] because CXL is, typically,
time varying as the contact frame is allowed to move with respect to the link
which is experiencing the contact and therefore with respect to the link frame
L. The twist CJA,L/B[A](q(t)) ν(t) can be interpreted as the velocity of that
frame rigidly attached to the link that has, at time t, the same position and
orientation of frame C.
Technical note. In the robotics literature, the equations of motions (70) are
often referred to generically as forced Euler-Lagrange equations. While, indeed,
the variational principle and the Lagrangian play a central role in obtaining the
unforced equations

M(q)ν̇ + C(q, ν)ν +G(q) = 0, (73)

it is important to realize that the Lagrangian is a mapping defined on the tangent
bundle of Q = SE(3)×RnJ , that is L : TQ→ R, (q, q̇) 7→ L(q, q̇). The classical
Euler-Lagrange equations, typically written in coordinates as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = {1, 2, . . . , n}, (74)

with n the configuration space dimension, do not apply (globally) because Q is
not Rn. Indeed, to obtain (73), one needs to resolve to geometric mechanics.
In this context, one first defines a trivialized Lagrangian as the difference be-
tween kinetic and potential energy, where the velocity is parameterized via the
trivialized velocity. For example, one can define the trivialized Lagrangian as
l(q, ξ) = L(q, qξ) = 1/2 〈I(q)ξ, ξ〉−V (q), where ξ = Bν, V denotes the potential
energy, and I(q) the inertia matrix (defined as Y (q)TM(q)Y (q) with Y (q) as in
(70) and M(q) as in (68)). One then applies a modified version of the Euler-
Lagrange equations, typically referred to as Hamel equations to this trivialized
Lagrangian l (see, e.g., [11, Section 13.6]), obtaining a differential equation for
updating the velocity ξ. Since different Lie group structures can be associated
to the configuration manifold Q, different parametrization are actually possible
to describe the trivialized velocity. The matrix form of the Hamel equations
given in (73), in particular, is the one obtained using the trivialized Lagrangian
l(q, ξ) = 1/2 〈M(q)ξ, ξ〉 − V (q), with M(q) and V (q) as above but where we
take ξ = ν = B[A]ν and where Q has been assigned the direct product struc-
ture R3 × SO(3) × RnJ , with R3 and RnJ seen as Lie groups with standard
vector sum as group operation. Using this group structure, the right trivial-
ization of q̇ is simply ν := B[A]ν = (B[A]vA,B , qJ) used in (70). The forced
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equations of motion (70) are then obtained by employing the geometric version
of the Lagrange-d’Alembert principle (whose details we will not provide here)
employing the appropriate Jacobians (i.e., the mixed-mixed Jacobians for (70)).

A Comparison with existing notation

In this section, we compare the notation introduced in this document with
similar notations previously appeared in the literature.

A.1 Featherstone’s Notation

In [7] and in the second chapter of [15], based on it, the concept of link spatial
velocity and acceleration is used to explain the rigid body algorithms. It is
worth noting that in [7] the term spatial has a totally different meaning with
respect to how it is used in [13]. In particular, in [7] spatial is used to indicate a
6D vector, being it a twist, a link acceleration, a wrench, or momentum, while
in [13], the term spatial is used to indicate a 6D vector expressed with respect
to an inertial reference frame.

In [7], 6D vectors are composed using the angular-linear serialization. In
this report, we use instead the linear-angular serialization. In the remining of
this section, we explicitly show the difference between this report’s and Feath-
erstone’s notation (disregarding the difference in angular-linear serialization).

Homogeneous transformations. In Featherstone’s notation, the homoge-
neous transformation is seldom used, as most of the theory is introduced using
directly 6D vectors. For this reason there is not direct equivalent of the notation.

Velocities. In Featherstone’s notation, the 6D rigid body velocity of a body-
frame B expressed in a frame C is indicated as

CvB .

All velocities in Featherstone’s are always relative to an implicitly defined in-
ertial frame A. In this report’s notation, we prefer to explictly indicate this
dependency, and therefore the equivalent expression for this velocity is

CvA,B .

Accelerations. Featherstone [7, 15] uses the dot notation ˙(·) to indicate the
differentiation with respect to an implicitly defined inertial frame, and the ring

notation (̊·) to indicate the differentiation with respect to the frame in which
the quantity is expressed. As we do not implicitly assume the existence of
an absolute inertial frame, we just use the ˙(·) to indicate the differentiation
in coordinates. Using this defition, it is easy to see that the body (spatial)
acceleration defined in Featherstone as

C v̇B = CaB
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is equivalent, in this report’s notation, to

CXA
Av̇A,B , (75)

where A is the inertial frame implicitly used in Featherstone’s. Note that from
(47), using this report’s notation, we get

B v̇B = BXA
Av̇B , (76)

that in Featherstone’s notation is written

Bv̊B = Bv̇B . (77)

Adjoint transformations. The adjoint transform that maps a motion vector
expressed in a frame B in one expressed in a frame C is indicated in this report
as CXB . This notiation is directly take from Featherstone’s, where it is indi-
cated with CXB . However, the transformation matrix for a 6D force vector is
indicated with CX∗B in Featherstone’s, while in this report’s we use CX

B . The
main reasons behind this choice are: a) the star is typically used to indicate
the adjoint (in the sense of adjoint linear transformation in linear algebra) and
indeed, in this report’s notation we get CX

B = BX∗C , which is not the case in
Featherstone’s; b) CX

B maps wrenches into wrenches while BXC maps twists
into twist and we use a right superscript to indicate a twist and a right subscript
to indicate a wrench.

6D Cross Product. In Featherstone’s, the 6D Cross product of a 6D mo-
tion vector v and a 6D motion vector u is indicated as

v × u.

A very similar notation is used in this report, namely

v × u.

The 6D cross product of a 6D motion vector v and a 6D motion vector f is
indicated in Featherstone’s as

v ×∗ f .

To indicate explicitly that ×∗ is nothing else that minus the adjoint represen-
tation of the Lie algebra of SE(3) to itself, we write the same operation as

v×̄∗f.

Further details are given in the explanation of (53).

Recap on this report’s and Featherstone’s notation comparison. Sum-
marizing, the main difference and similarities of the two notations are the fol-
lowing.
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This report Featherstone [7]
CvA,B

CvB
CXA

Av̇A,B = CXB
B v̇A,B

C v̇B
CXB

CXB

CX
B CX∗B

v× v×
v×̄∗ v×∗

A.2 Siciliano’s Notation

In this section, we compare this report’s notation the notation used in the
classical book of Siciliano et al. [16].
Homogenous transformation. In [16], the homogeneous transformation that
maps the coordinates of a point from a frame A to a frame B is indicated with

TA
B =

[
RA
B oAB

03×1 1

]
. (78)

Comparing it with (12), we obtain the following comparison table.

This report Siciliano [16]
AHB TA

B
ARB RA

B
AoB oAB

Note that, in Siciliano et al.’s notation, oAB is simply denoted pB whenever A is
an inertial frame.

Velocity of a frame. In [16], the velocity of a frame B is denoted

vB =

[
ṗB
ωB

]
. (79)

Comparing it with (35), indicating with A the inertial frame implicitly assumed
by the Siciliano notation, we have

This report Siciliano [16]
B[A]vA,B vB
AȯB ṗB
AωA,B ωB
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J. De Schutter. Geometric relations between rigid bodies (part 1): Se-
mantics for standardization. Robotics & Automation Magazine, IEEE,
20(1):84–93, 2013.

[5] A. Del Prete, N. Mansard, F. Nori, G. Metta, and L. Natale. Partial force
control of constrained floating-base robots. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2014), pages 3227–
3232. IEEE, 2014.

[6] R. Featherstone. The acceleration vector of a rigid body. The International
Journal of Robotics Research, 20(11):841–846, 2001.

[7] R. Featherstone. Rigid body dynamics algorithms. Springer, 2008.

[8] G. Garofalo, C. Ott, and A. Albu-Schäffer. On the closed form compu-
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