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Abstract—In the smart grid context, the identification and
prediction of building energy flexibility is a challenging open
question, thus paving the way for new optimized behaviors from
the demand side. At the same time, the latest smart meters
developments allow us to monitor in real-time the power con-
sumption level of the home appliances, aiming at a very accurate
energy disaggregation. However, due to practical constraints is
infeasible in the near future to attach smart meter devices on
all home appliances, which is the problem addressed herein. We
propose a hybrid approach, which combines sparse smart meters
with machine learning methods. Using a subset of buildings
equipped with subset of smart meters we can create a database
on which we train two deep learning models, i.e. Factored Four-
Way Conditional Restricted Boltzmann Machines (FFW-CRBMs)
and Disjunctive FFW-CRBM. We show how our method may
be used to accurately predict and identify the energy flexibility
of buildings unequipped with smart meters, starting from their
aggregated energy values. The proposed approach was validated
on a real database, namely the Reference Energy Disaggregation
Dataset. The results show that for the flexibility prediction prob-
lem solved here, Disjunctive FFW-CRBM outperforms the FFW-
CRBMs approach, where for classification task their capabilities
are comparable.

I. INTRODUCTION

Unprecedented high volumes of data and information are
available in the smart grid context, with the upward growth
of the smart metering infrastructure [1], [2]. This recently
developed network enables two-way communication between
smart grid and individual energy consumers (i.e., the cus-
tomers), with emerging needs to monitor, predict, schedule,
learn and make decisions regarding local energy consumption
and production, all in real-time. On the one hand, the grid
mesh infrastructure could be seen as a collaborative commu-
nication network from which are expected benefits towards
better planning and operation of the smart grid, helping the
customers transition from a passive to an active role. On the
other hand, previous studies have shown that customers natu-
rally adopt energy conserving behaviors when presented with
a breakdown of their energy usage [3]–[5]. Concomitantly,
an ongoing research thread focuses on a new automatic and
scalable solution [6] required to extract useful patterns from
energy metered data [7], which constitutes a big data problem.

One possible way to detect building energy flexibility in
real-time is by performing energy disaggregation. Disaggrega-
tion refers to the extraction of appliance level energy signals
from an aggregated energy consumption signal, e.g. the whole-

building. Often only this aggregated signal is made available
via the smart meter infrastructure to the grid operator, due to
privacy concerns of the end-user. This new approach should
open new paths towards better planning and operation of the
smart grid, helping the customers transition to active roles. In
addition, informing the end-user in real-time, or near real-time,
about how much energy is used by each appliance can be a first
step in voluntarily decreasing the overall energy consumption.

The energy disaggregation problem, also known as the Non-
Intrusive Load Monitoring (NILM) problem, is an important
task, introduced by W. Hart [8] in the early 1980s. Tra-
ditional approaches for NILM start by investigating if the
device is turned on/off [9], and followed by many steady-
state methods [10] and transient-state methods [10] aiming to
identify more complex appliance patterns. At the same time,
advance building energy management systems are looking
beyond quantification of the energy consumption by consid-
ering fusion information [11] including for instance acoustic
sensors to identify the operational state of the appliances [12],
motion sensors, the frequency of the appliance used [13],
as well as time and appliance usage duration [13], [14]. A
more comprehensive discussion about these can be found in
recent reviews, such as [15]–[17]. Moreover, new data analytic
challenges arise in the context of an increasing number of
smart meters, and consequently, a big volume of data, which
highlights the need of more complex methods to analyze
and take benefit of the fusion information [18]. More recent
researches have explored a wide range of different machine
learnings methods, using both supervised and unsupervised
learning, such as sparse coding [14], clustering [19], [20]
or different graphical models (e.g. Factorial Hidden Markov
models (FHMM) [13], Factorial Hidden Semi-Markov Model
(FHSMM) [13], Conditional FHMM [13], Conditional Fac-
torial Hidden Semi-Markov Model (CFHSMM) [13], additive
FHMM [21] or Bayesian Nonparametric Hidden Semi-Markov
Models [22]) to perform energy disaggregation. Recently, in
[23] it was shown that by infusing data mining techniques,
such us Support Vector Machine or AdaBoost, the accuracy of
flexibility detection can be improved significantly. Still, there
is an evident challenge to develop an accurate solution that
could perform well for every type of appliance.

The energy demand is dependent on the complexity of the
buildings energy producing and consuming technologies and
the uncertainty in the influencing factors, resulting in frequent
fluctuations. The Internet of Things (IoT) [24] infrastructurePre-printed version. Please cite as: D.C. Mocanu, E. Mocanu, P.H. Nguyen,
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used at the neighborhood level contain useful information with
high level of variation, acting as an aggregator in the smart
grid. These fluctuations are due to the building architecture
and thermal properties of the physical materials used, price, the
occupants and their behavior, climate conditions, and sub-level
system components. Inspired by the successful application of
Deep Learning (DL) methods to the building energy predic-
tion [25], [26] problem, in this paper, our proposed approach
goes beyond the state-of-the-art in the ongoing research on
demand flexibility methods. Firstly, two DL algorithms are
investigated in order to perform the energy disaggregation,
namely Factored Four-Way Conditional Restricted Boltzmann
Machines (FFW-CRBM) [27] and Disjunctive Factored Four-
Way Conditional Restricted Boltzmann Machines (DFFW-
CRBM) [28]. Secondly, as a main theoretical contribution,
a general framework is developed in order to incorporate in
one unified architecture each of these algorithms, making them
suitable for performing energy disaggregation, flexibility iden-
tification and flexibility prediction simultaneously. Thirdly, the
proposed methods are validated using a real-world database,
with a fine granularity (e.g. 3 seconds), specially constructed
to asses the flexibility identification and prediction problems.

The remaining of this paper is organized as follows. Sec-
tion II introduces the problem description. Section III describes
our proposed approach for the energy disaggregation problem.
In Section IV the experimental validation of the proposed
methods is detailed and Section V concludes the paper.

II. PROBLEM FORMULATION

This section details the problem definition targeted in this
paper. In one unified framework, we divide the problem in
three subproblems, namely energy disaggregation, flexibility
identification and flexibility prediction. Formally, let us con-
sider B = {B(t)}nt=1 to be the dataset of all the buildings
energy consumption, where n is the number of buildings
and D(t) ∈ Rd×n to represent a d × (N − 1) dimensional
input sequence, where d represents the number of electrical
devices and appliances considered for each time frame (e.g.
refrigerator, dishwasher, electric heater), and N is the number
of history frames considered in a temporal window.

1) Energy dissagregation: Given a set of observation
D(t) ∈ Rd×n learn a model for every electrical device, d̂.

2) Flexibility identification: Given the set of building
demand energy profiles B(t) and their corresponding sum
of disaggregated electrical parts

∑d
i=1 d̂ classified at every

moment in time find how many devices are operating in the
building.

3) Flexibility prediction: Given the set of building demand
energy profiles, B(t) learn the time-of-use (ToU) predictive
function (or the power consumption) for every device such
that the empirical loss is minimized,

min‖ToUd̂(d|d̂,B) ∧ ToUempirical(d|D)‖ (1)

III. PROPOSED METHODS

Recently, it has been proven that it is possible in an unified
framework to perform both, classification and prediction, by

using deep learning techniques, such as in [27]–[29]. Conse-
quently, in the context of flexibility detection and prediction,
we are exploring the generalization capabilities of Factored
Four-Way Conditional Restricted Boltzmann Machines (FFW-
CRBM) [27] and Disjunctive Factored Four-Way Conditional
Restricted Boltzmann Machines (DFFW-CRBM) [28]. Both
models, FFW-CRBM and DFFW-CRBM, have shown to
be successful on outperforming state-of-the-art techniques
in both, classification (e.g. Support Vector Machines) and
prediction (e.g. Conditional Restricted Boltzmann Machines),
on time series classification and prediction in the context of
human activity recognition, 3D trajectories estimation and so
on. Below we are making a brief description of these models,
while for a comprehensive discussion on their mathematical
details the interested reader is referred to [27], [28].
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Fig. 1. Classification and prediction schemes for FFW-CRBMs. To perform
classification the value of each neuron from the dotted blue area has to be
fixed (i.e. present and history layers) and to let the model to infer the values
of the label neurons. To perform prediction the value of each neuron from
the dotted red area has to be fixed (i.e. label and history layers) and to let the
model to infer the values of the present neurons.

A. FFW-CRBM and DFFW-CRBM description

FFW-CRBM is an extension of standard Restricted Boltz-
mann Machines (RBMs) [30], [31] (the basic block of deep
learning models [32]) and consists of four layers of neurons,
the history layer v<t which contains the last time series values,
the present layer vt encoding the current time step (prediction),
the hidden layer ht which assures that the model is complex
enough to model the time series complexity, and the label
layer lt which incorporates the various type of time series
(classification). These layers are connected between them with
a fourth order tensor, Wijko ∈ Rnv×nh×nv<t×nl , where nv, nh,
nv<t

, nl represent the number of neurons from the present,
hidden, history and label layers, respectively. Further on,



Wijko is factorized to decrease the computational complexity
to O(n2), as follows:

Wijko =

nF∑
f=1

W v
ifW

h
jfW

v<t

kf W l
of (2)

where nF represents the number of factors in the model.
Overall, the model is defined by an energy function:

E(vt,ht, lt|v<t,Θ) = (3)
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The stochastic inference in FFW-CRBM can be done in
parallel for the neurons from the same layer as there is no
conditional dependence between them. In the case of the label
and hidden neurons the inference is done by sampling from a
sigmoid function, while for the present layer neurons is done
by sampling from a Gaussian distribution. To train such model,
Sequential Markov Chain Contrastive Divergence procedure
can be used, as described in [27].

To improve the prediction capabilities of FFW-CRBM,
in [28] the Disjunctive FFW-CRBM (DFFW-CRBM) was
introduced. DFFW-CRBM has a similar architecture with
FFW-CRBM with the main difference that it contains two
factorized fourth order tensors, one specialized in classification
and one in regression (prediction). The inference and training
of the model can be done in a similar manner with FFW-
CRBM. To clarify, the classification and prediction schemes
for FFW-CRBMs1 are briefly illustrated in Figure 1.

B. Flexibility identification and prediction procedure.

Thus, after the FFW-CRBM or DFFW-CRBM models are
trained on data coming from buildings which have smart
meters devices at the appliances level, the trained models
can be used in real-time on other buildings (which do not
have smart meters for appliances) to identify and predict their
energy flexibility. Further on, the flexibility information can
be used to take decisions in the smart grid or to provide real-
time feedback to the buildings. Schematically, this flow of
information is depicted in Figure 2 and evaluated in the next
Section.

IV. NUMERICAL RESULTS

This section summarizes the experiments performed, flex-
ibility identification (i.e. classification) and flexibility predic-
tion (i.e. prediction), and the main results obtained. Besides
that, it includes the dataset characteristics, implementation
details of the proposed method and the metrics used to evaluate
their performance.

1Please note that for DFFW-CRBMs the classification and prediction
schemes are similar.
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Fig. 2. A general schematic representation of an IoT architecture used for
the real-time identification and prediction procedure of the buildings energy
flexibility.

A. Dataset characteristics and processing

Thus, to validate our proposed approach we have used a
real-world database, namely The Reference Energy Disaggre-
gation Dataset (REDD), described by Kolter and Johnson
in [33]. This data was chosen as it is an open dataset2 collected
specifically for evaluating energy disaggregation methods. It
contains aggregated data recorded from six buildings over
few weeks sampled at 1 second resolution, together with the
specific data for all appliances of each building at 3 seconds
resolution. In our experiments, we have used the data from
the last 5 buildings (i.e. 2, 3, 4, 5, 6) to train the models and
the data from a different one (i.e. the first one) to test them.

Similarly with the data processing step from [23] we have
applied a median filter of 6 samples to make the power data
smoother. At each discrete time step, to make the classification
(i.e. detect each appliance activation) or the prediction (i.e.
predict the power consumption and the time-of-use of any
appliance during any activation) we have used a history
window of 10 consecutive time steps of the whole building
energy consumption. This procedure leads to 1750614 training
data points and 745878 testing data points with an imbalanced
number of classes for any device (as the number of activations
is smaller then the number of non-active regions). To exem-
plify the energy disaggregation problem, in Figure 3 we plotted
the inflexible and the flexible load from an arbitrary chosen
building over one day.

B. Implementation details

The REDD data were processed in the MATLAB R© environ-
ment and then passed on to Python in which FFW-CRBM and
DFFW-CRBM were implemented. For each appliance we have

2http://redd.csail.mit.edu/, Last visit November 5th, 2015
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Fig. 3. An example of electrical energy consumption in buildings over one
day for inflexible load and flexible load (refrigerator, electric heater, washer
dryer and dishwasher).

build one model. In every experiment performed, the history
layer had 10 neurons representing the window of 10 values
for the building energy consumption, the label layer had 2
binary neurons (i.e. one representing the class of activations,
while the other representing the non-active situations), and the
present layer had 2 real-valued neurons representing the power
consumption and the time-of-use for that specific device in
that specific activation period. The choice of the other model
parameters was carefully made, as discussed in more details
in [28]. Thus, the number of factors was set to 20, the learning
rate to 0.001, the weight decay to 0.0002. the momentum to
0.5, and the number of training epochs to 10.

C. Evaluation Metrics

To assess the models performance, three standard metrics
were used. Firstly, in order to test the significance of the
classification results we used the accuracy metric followed by
the balanced accuracy metric. The balanced accuracy metric
is imposed by the fact that there is an unbalanced number
of data points per class. Secondly, the estimation (prediction)
task was evaluated using the Normalized Root Mean Square
Error (NRMSE) measure between the real measured flexibility
values versus their corresponding predicted values. All the
reported performance metrics are measured in percentage.

TABLE I
RESULTS SHOWING ACCURACY [%] AND BALANCED ACCURACY [%] FOR

FFW-CRBM AND DFFW-CRBM, WHEN CLASSIFYING AN APPLIANCE
VERSUS ALL DATA.

Appliance Method Accuracy [%] Balanced
accuracy [%]

refrigerator FFW-CRBM 86.23 90.05
DFFW-CRBM 83.10 91.27

dishwasher FFW-CRBM 97.42 80.21
DFFW-CRBM 97.26 87.06

washer dryer FFW-CRBM 98.83 99.03
DFFW-CRBM 99.06 92.16

electric heater FFW-CRBM 99.10 90.58
DFFW-CRBM 99.03 92.05

D. Results

Flexibility identification. In Table I the classification re-
sults for all the flexible devices are reported. Both models
performed very well (without a clear winner), reaching at least
97.26% accuracy, with the exception of the refrigerator on
which the accuracy of DFFW-CRBM is 83.10% and the one
of FFW-CRBM is 86.23%. Similary, the balanced accuracy for
both models shows very good performance with a minimum
of 80.21% in the case of FFW-CRBM on dishwasher and a
maximum of 99.03% of FFW-CRBM on the washer dryer.
Overall, these results are comparable with the state-of-the-
art results on flexibility identification reported on the same
database in [23].

Flexibility prediction. The advantage of using FFW-CRBM
and DFFW-CRBM instead of the methods proposed in [23]
consists in the fact that beside flexibility identification the
same model can perform simultaneously also flexibility pre-
diction. Thus, in Table II we report the prediction performance

TABLE II
RESULTS SHOWING THE NRMSE [%] OBTAINED TO ESTIMATE THE
ELECTRICAL DEMAND AND THE TIME-OF-USE FOR FOUR BUILDING

ELECTRICAL SUB-SYSTEMS USING FFW-CRBM AND DFFW-CRBM.

Appliance Method Power Time-of-use
NRMSE [%] NRMSE [%]

refrigerator FFW-CRBM 9.36 8.79
DFFW-CRBM 9.27 8.71

dishwasher FFW-CRBM 5.49 5.89
DFFW-CRBM 5.41 5.87

washer dryer FFW-CRBM 2.70 2.43
DFFW-CRBM 2.59 2.44

electric heater FFW-CRBM 1.86 1.78
DFFW-CRBM 1.85 1.77

on every appliance.
Both models performed very well obtaining a minimum

prediction error on the power consumption of 1.85% and a
maximum error of 9.36%, while for the time-of-use prediction
the minimum error reached was 1.77% in the case of the
electric heater and the maximum error obtained was 8.79%
for the refrigerator. Even both models show good prediction
capabilities, we may observe, same as in [28], that DFFW-
CRBM has an easy advantage over FFW-CRBM.

V. CONCLUSION

In this paper, we have proposed a novel IoT framework
to perform simultaneously and in real-time flexibility iden-
tification and prediction, by making use of Factored Four
Way Conditional Restricted Boltzmann Machines and their
Disjunctive version. The experimental validation performed
on a real-world database (i.e. REDD) shows that both models
perform very well, reaching a similar performance with state-
of-the-art models on flexibility identification, while having
the advantage of being capable to perform also flexibility
prediction (i.e. real-time estimation of the power consumption
and time-of-use of the flexible appliances). As further research
direction, we intend to understand better how the various
model parameters (e.g. learning rate, number of factors and



hidden neurons) would affect the performance of the proposed
approach.
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