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Abstract Retinal images provide early signs of diabetic
retinopathy, glaucoma, and hypertension. These signs can
be investigated based on microaneurysms or smaller vessels.
The diagnostic biomarkers are the change of vessel widths
and angles especially at junctions, which are investigated
using the vessel segmentation or tracking. Vessel paths may
also be interrupted; crossings and bifurcations may be dis-
connected. This paper addresses a novel contextual method
based on the geometry of the primary visual cortex (V1)
to study these difficulties. We have analyzed the specific
problems at junctions with a connectivity kernel obtained
as the fundamental solution of the Fokker–Planck equation,
which is usually used to represent the geometrical structure
of multi-orientation cortical connectivity. Using the spectral
clustering on a large local affinity matrix constructed by both
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the connectivity kernel and the feature of intensity, the ves-
sels are identified successfully in a hierarchical topology each
representing an individual perceptual unit.

Keywords Retinal image analysis · Fokker–Planck
equation · Cortical connectivity · Spectral clustering ·
Gestalt

1 Introduction

1.1 Clinical Importance of Retinal Blood Vessels

Epidemic growth of systemic, cardiovascular, and ophthal-
mologic diseases such as diabetes, hypertension, glaucoma,
and arteriosclerosis [38,48,67], their high impact on the qual-
ity of life, and the substantial need for increase in health
care resources [43,68] indicate the importance of conducting
large screening programs for early diagnosis and treatment
of such diseases. This is impossible without using automated
computer-aided systems because of the large population
involved.

The retina is the only location where blood vessels can
be directly monitored non-invasively in vivo [77]. Retinal
vessels are connected and form a treelike structure. The
local orientation and intensity of vessels change gradually
along their lengths; however, these local properties may vary
highly for different vessels. Studies show that the quantitative
measurement of morphological and geometrical attributes of
retinal vasculature, such as vessel diameter, tortuosity, arte-
riovenous ratio, and branching pattern and angles are very
informative in early diagnosis and prognosis of several dis-
eases [11,28,35,40,46,65,71]. More specifically, since two
blood vessels with the same type never cross each other
and arteries are more likely to cross over veins, studying
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the behavior of blood vessels at crossings for detecting the
branch retinal vein occlusion (occlusion of the vein) and
arteriovenous nicking helps in diagnosis of hypertension
(increased arterial blood pressure), arteriosclerosis (harden-
ing of arteries), and stroke [32,75,76]. The other clinically
highly promising but still underrated information is based
on studying the smaller vessels, because it is expected that
the signs of diseases such as diabetic retinopathy appears in
smaller vessels earlier than in larger ones.

1.2 Vessel Extraction and Its Difficulties

The vasculature can be extracted by means of either pixel
classification or vessel tracking. Several segmentation and
tracking methods have been proposed in the literature [9,
26,31]. In pixel classification approaches image pixels are
labeled either as vessel or non-vessel pixels. Therefore, a
vessel likelihood (soft segmentation) or binary map (hard
segmentation) is created for the retinal image. Although
the vessel locations are estimated in these approaches, they
do not provide any information about vessel connectivities.
On the contrary, in tracking-based approaches, several seed
points are selected and the best connecting paths between
them are found [2,10,12,16–18,34,57,58,78]. The main
benefit of vessel tracking approaches is that they work at
the level of a single vessel rather than a single pixel and
they try to find the best path that matches the vessel pro-
file. Therefore, the information extracted from each vessel
segment (e.g., diameter and tortuosity) is more accurate and
reliable.

There are several difficulties for both vessel segmentation
and tracking approaches. Depending on imaging technology
and conditions, these images could be affected by noise in
several degrees. Moreover, non-uniform luminosity, drift in
image intensity, low contrast regions, and also central vessel
reflex make the vessel detection and tracking complicated.
Several image enhancement, normalization, and denoising
techniques havebeendeveloped to tackle these complications
(e.g., [1,29,50]).

The tracking methods are often performed exploiting
the skeleton of the segmented images. Thus, non-perfect
segmentation or wrong skeleton extraction results in topo-
logical tracing errors e.g., disconnections and non-complete
subtrees as discussed in several methods proposed in the
literature [2,16,17,34,44]. Typical non-perfections include
missing small vessels, wrongly merged parallel vessels, dis-
connected or broken up vessel segments, and the presence
of spur branches in thinning. Moreover, the greater difficulty
arises at junctions and crossovers: small arteriovenous cross-
ing angles, complex junctions when several junctions are
close together, or presence of a bifurcation next to a cross-
ing makes the centerline extraction and tracing challenging.
These difficulties are mentioned as the tracking limitations in

the literature. Some of these challenging cases are depicted
in Fig. 1 with their corresponding artery/vein ground truth
labels. Arteries and veins are annotated in red and blue col-
ors, respectively. The green color represents the crossing and
the types of the white vessels are not known.

1.3 Gestalt Theory and Cortically Inspired Spectral
Clustering

Visual tasks like image segmentation and grouping can be
explained with the theory of the Berliner Gestalt psychology,
that proposed local and global laws to describe the proper-
ties of a visual stimulus [70,73]. In particular, the laws of
good continuation, closure, and proximity have a central role
in the individuation of perceptual units in the visual space,
see Fig. 2. In [54], perceptual grouping was considered to
study the problem of finding curves in biomedical images.
In order to study the property of good continuation, Field,
Hayes, and Hess introduced in [27] the concept of an associ-
ation field, that defines which properties the elements of the
stimuli should have to be associated to the same perceptual
unit, such as co-linearity and co-circularity. In [7], Bosking
showed how the rules of association fields are implemented
in the primary visual cortex (V1), where neurons with similar
orientation are connectedwith long-range horizontal connec-
tivity. A geometric model of the association fields based on
the functional organization of V1 has been proposed in [13].
This geometric approach is part of the research line proposed
by [37,45,49,56,63,80] and applications to image process-
ing can be found in [6,23,24].

In this work, a novel mathematical model based on this
geometry has been applied to the analysis of retinal images
to overcome the above-mentioned connectivity problems in
vessel tracking. The proposed method represents an engi-
neering application of segmenting and representing blood
vessels inspired by the modeling of the visual cortex. This
shows how these models can be applied to the analysis of
medical images and how these two fields can be reciprocally
used to better understand and reinforce each other.

This method, which is not dependent on centerline extrac-
tion, is based on the fact that in arteriovenous crossings there
is a continuity in orientation and intensity of the artery and
vein, respectively, i.e., the local variation of orientation and
intensity of individual vessels is very low. The proposed
method models the connectivity as the fundamental solution
of the Fokker–Planck equation, which matches the statistical
distribution of edge co-occurrence in natural images and is a
good model of the cortical connectivity [60].

Starting from this connectivity kernel and considering the
Euclidean distance between intensities of blood vessels, we
build the normalized affinity matrix. Since at crossings the
vessels have different intensities (types), including this fea-
ture in the construction of the affinity matrix adds more
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Fig. 1 A sample image
selected from the DRIVE
dataset [66] with centerlines
extracted by applying the
morphological skeletonization
on the segmented image (top
left), and its corresponding
artery/vein ground truth from
the RITE dataset [39] (top
right). Several difficult cases are
highlighted in this figure. C1
complex junction with the
presence of a bifurcation and a
crossing with a narrow crossing
angle; C2 interrupted lines and
missing small vessels; C3 high
curvature vessel; C4 complex
junction, a crossing and
bifurcation, wrong thinning at
crossing; C5 two nearby parallel
vessels merged as one group; C6
missing small vessel, merged
parallel vessels, and interrupted
segment

(a) (b) (c)

Fig. 2 Examples of a good continuation, b closure, and c proximity
Gestalt laws

discriminative information. This spectral approach, first pro-
posed for image processing, is inspired by [15,55,64,72].
Moreover, recent results of [62] show how the spectral analy-
sis could actually be implemented by the neural population
dynamics of the primary visual cortex (V1). Finally, we use a
spectral clustering algorithm to find and group the eigenvec-
tors linked to the highest eigenvalues of the affinity matrix.
Wewill describe how these groups represent different percep-
tual units (vessels) in retinal images. Originally, the spectral
clustering was exploited for good continuation, closure, and
proximity, see Fig. 2. It excelled in finding connections, e.g.,
broken vessel segments. In this paper, we go further by solv-
ing many challenges at vessel crossings and bifurcations.

1.4 Paper Structure

The remainder of the article is organized as follows. In
Sect. 2, after describing the geometry of the functional archi-
tecture of the primary visual cortex, it is explained in detail
how to lift the stimulus in cortical space using a specific
wavelet transform. This lifting converts the image from the
space of positions (R2) to the joint space of positions and
orientations (R2 × S1). Then the connectivity kernel and the
construction of the affinity matrix based on this kernel and
the intensity is described. Next step is the spectral clustering
algorithm, that is used to extract the grouping information of
the stimuli, explained in Sect. 3. The experiments applied on
retinal images are explained step by step and the results are
presented in Sect. 4. Finally, the paper is concluded in Sect. 5
by briefly summarizing the proposed method, discussing its
strengths in preserving the connectivities in the retinal vas-
culature network and proposing potential improvements as
future work.

2 Geometry of Primary Visual Cortex

2.1 Lifting of the Stimulus in the Cortical Space

In this section we recall the structure of the geometry of
the primary visual cortex (V1). Hubel and Wiesel [42] first
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Fig. 3 Visual comparison
between cake and Gabor
wavelets (top and bottom rows,
respectively). a and b real and
imaginary parts of the wavelets
in spatial domain, c the wavelet
in Fourier domain, and d the
illustration of Fourier space
coverage by wavelets in 36
orientations

(a) (b) (c) (d)

discovered that the visual cortex is organized in a hyper-
columnar structure, where each point corresponds to a simple
cell sensitive to a stimulus positioned in (x, y) and orienta-
tion θ . In other words, simple cells extract the orientation
information at all locations and send a multi-orientation field
to higher levels in the brain. Also, it is well known that
objects with different orientations can be identified by the
brain even when they are partly occluded, noisy, or inter-
rupted [41].

Motivated by these findings, a new transformation was
proposed [21,22], to lift all elongated structures in 2D images
to a new space of positions and orientations (R2 × S1) using
elongated and oriented wavelets. By lifting the stimulus,
multiple orientations per position could be detected. Thus,
crossing and bifurcating lines are disentangled into separate
layers corresponding to their orientations.

Constructing this higher-dimension structure simplifies
the higher-level analysis. However, such representation is
constrained and the invertibility of the transformation needs
to be guaranteed using the right wavelet. Cake wavelets as
a class of proper wavelets [21,22,33] satisfy this constraint
and avoid loss of information. Cake wavelets are directional
wavelets similar to Gabor wavelets and have a high response
on oriented and elongated structures. Moreover, similar to
Gabor wavelets, they have the quadratic property; so the real
part contains information about the symmetric structures,
e.g., ridges, and the imaginary part contains information
about the antisymmetric structures, e.g., edges. Although
blood vessels can have several scales, using the cakewavelets
multi-scale analysis is not needed, because they capture the
information at all scales.Avisual comparison betweenGabor
and cakewavelets is presented in Fig. 3.As seen in this figure,
using the cakewavelet in all orientations, the entire frequency
domain is covered; while the Gabor wavelets, depending on
their scale cover a limited portion of Fourier space. There-

fore, they are scale dependent. The reader is referred to [5]
for more detail.

For lifting the stimulus and constructing the higher-
dimension representation,U f : SE(2) → C, the input image
f (x, y) is correlated with the anisotropic cake wavelet ψ

[21,22,30]:

U f (x, θ) = (Wψ [ f ])(x, θ) = (Rθ (ψ) � f )(x)

=
∫
R2

ψ(R−1
θ (y − x)) f (y)dy,

(1)

where Rθ is the 2D counter-clockwise rotationmatrix and the
overline denotes the complex conjugate. Using this transfor-
mation and considering only one orientation per position (the
orientation with highest transformation response), the points
of a curve γ = (x, y) are lifted to new cortical curves and
are described in the space (x, y, θ):

(x, y) → (x, y, θ).

These curves have been modeled in [13] as integral curves
of suitable vector fields:

X1 = (cos θ, sin θ, 0), X2 = (0, 0, 1). (2)

The points of the lifted curves are connected by integral
curves of these two vector fields such that:

γ : R → SE(2), γ (s) = (x(s), y(s), θ(s)) (3)

γ ′(s) = (k1(s)X1 + k2(s)X2)(γ (s)), γ (0) = 0.

These curves projected on the 2D cortical plane represent a
goodmodel of the association fields, as described in [13] (see
Fig. 4).

In order to include the intensity term,we use the Euclidean
distance between the intensities of two corresponding points.
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Fig. 4 a The integral curves of
the vector fields X1 and X2 in
the (x, y, θ ) space. In blue the
projections of the integral
curves on the xy plane. b The
distribution of the integral
curves, modeling the
connectivity between points

(a) (b)

If f (x, y) represents the image intensity at position (x, y)
the stimulus is lifted to the extended 4-dimensional feature
space:

(x, y, θ) → (x, y, θ, f (x, y)).

An admissible curve in this space is defined as the solution
of the following differential equation:

γ ′(s) = (k1(s)X1 + k2(s)X2 + k4(s)X4)(γ (s)) (4)

γ (0) = (x1, y1, θ1, f1), γ (1) = (x2, y2, θ2, f2),

where the vector fields are:

X1 = (cos θ, sin θ, 0, 0), X2 = (0, 0, 1, 0), (5)

X4 = (0, 0, 0, 1)

and the coefficients k1 and k2 represent a distance in the
(x, y, θ) domain and k4 is a Euclidean distance. Starting from
these vector fields we can model the cortical connectivity.

2.2 The Connectivity Kernels

The cortical connectivity can be modeled as the probability
of connecting two points in the cortex and is represented by
the stochastic counterpart of the curves in Eq. 3:

(x ′, y′, θ ′) = X1 + N
(
0, σ 2

)
X2, (6)

where N (0, σ 2) is a normally distributed variable with zero
mean and variance equal to σ 2.

This process, first described in [49], is discussed in
[3,4,61,74].We denote v the probability density to find a par-
ticle at the point (x, y) considering that it started from a given
location (x ′, y′) and that it ismovingwith someknownveloc-
ity. This probability density satisfies a deterministic equation

known in literature as the Kolmogorov forward equation or
Fokker–Planck equation:

∂tv = X1v + σ 2X22v,

where X1 is the directional derivative cos(θ)∂x + sin(θ)∂y
and X22 = ∂θθ is the second-order derivative.

This equation has been largely used in different fields
[3,4,23,74]. In [61] its stationary counterpart was proposed
to model the probability of co-occurrence of contours in nat-
ural images. The Fokker–Planck operator has a nonnegative
fundamental solution Γ1 that satisfies:

X1Γ1((x, y, θ), (x ′, y′, θ ′)) + σ 2X22Γ1((x, y, θ), (x ′, y′, θ ′))
= δ(x, y, θ)

which is not symmetric. The connectivity kernelω1 obtained
by symmetrization of the Fokker–Planck fundamental solu-
tion is:

ω1((x, y, θ), (x ′, y′, θ ′)) = 1

2
(Γ1((x, y, θ), (x ′, y′, θ ′))

+ Γ1((x
′, y′, θ ′), (x, y, θ)).

In order to measure the distances between intensities we
introduce the kernelω2((xi , yi ), (x j , y j )). This new intensity
kernel is obtained as:

ω2( fi , f j ) = e

(
− 1

2

( fi− f j
σ2

))2
(7)

The final connectivity kernel can be written as the product
(as these are probabilities) of the two components:

ω f ((xi , yi , θi , fi ), (x j , y j , θ j , f j ))

= ω1((xi , yi , θi ), (x j , y j , θ j ))ω2( fi , f j ).
(8)
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2.3 Affinity Matrix

Starting from the connectivity kernel defined previously, it is
possible to extract perceptual units from images by means of
spectral analysis of suitable affinity matrices. The eigenvec-
torswith the highest eigenvalues are linked to themost salient
objects in the scene [55]. The connectivity is represented by
a real symmetric matrix Ai, j :

Ai, j = ω f ((xi , yi , θi , fi ), (x j , y j , θ j , f j )) (9)

that contains the connectivity information between all the
lifted points. The eigenvectors of the affinity matrix are inter-
preted as perceptual units [62].

3 Spectral Analysis

The goal of clustering is to divide the data points into sev-
eral groups such that points in the same group are similar
and points in different groups are dissimilar to each other.
The cognitive task of visual grouping can be considered as a
form of clustering, withwhich it is possible to separate points
in different groups according to their similarities. In order
to perform visual grouping, we will use the spectral clus-
tering algorithm. Traditional clustering algorithms, such as
K-means, are not able to resolve this problem [51]. In recent
years, different techniques have been presented to overcome
the performance of the traditional algorithms, in particular
spectral analysis techniques. It is widely known that these
techniques can be used for data partitioning and image seg-
mentation [47,55,64,72] and they outperform the traditional
approaches. Above that, they are simple to implement and
can be solved efficiently by standard linear algebra methods
[69]. In the next section we will describe the spectral clus-
tering algorithm used in the numerical simulations of this
paper.

3.1 Spectral Clustering Technique

Different algorithms based on the theory of graphs have been
proposed to performclustering. In [55] it has been shownhow
the edge weights {ai j }i, j=1,...n of a weighted graph describe
an affinity matrix A. This matrix contains information about
the correct segmentation and will identify perceptual units
in the scene, where the salient objects will correspond to
the eigenvectors with the highest eigenvalues. Even though
it works successfully in many examples, in [72] it has been
demonstrated that this algorithm also can lead to clustering
errors. In [47,69] the algorithm is improved considering the
normalized affinity matrix. In particular we will use the nor-
malization described in [47]. Defining the diagonal matrix
D as formed by the sum of the edge weights (representing

the degrees of the nodes, di = ∑n
j=1 ai j ), the normalized

affinity matrix is obtained as:

P = D−1A (10)

This stochastic matrix P represents the transition probabil-
ity of a random walk in a graph. It has real eigenvalues
{λ j } j=1,...n where 0 ≤ λ j ≤ 1, and its eigenvectors
{ui }i=1,...K , related to the K largest eigenvalues λ1 ≥ λ2 ≥
... ≥ λK , represent a solution of the clustering problem [69].
The value of K determines the number of eigenvalues and
eigenvectors considered informative.

The important step is selecting the best value of K, which
can be done by defining an a-priori significance thresh-
old ε for the decreasingly ordered eigenvalues λi , so that
λi > 1−ε,∀1 ≤ i ≤ K . However, selecting the best ε value
is not always trivial, and the clustering results get very sensi-
tive to this parameter in many cases. Hence, considering the
diffusionmap approach of [15] and following the idea of [14],
using an auxiliary diffusion parameter (τ , big positive integer
value) to obtain the exponentiated spectrum {λτ

i }i=1,...n , the
gap between exponentiated eigenvalues increases and sen-
sitivity to the threshold value decreases very much. Using
this new spectrum, yields to the stochastic matrix Pτ , that
represents the transition matrix of a random walk in defined
τ steps. The difference between thresholding the eigenval-
ues directly or the exponentiated spectrum is shown in an
example in Fig. 5. As seen in this figure, selecting the best
discriminative threshold value for the eigenvectors (Fig. 5c)
is not easy, while with the exponentiated spectrum (Fig. 5d)
the threshold value can be selected in a wide range (e.g.,
0.05 ≤ 1 − ε ≤ 0.9). The value of τ need to be selected as
a large positive integer number (e.g., 150).

After selecting the value of K, the number of clusters is
automatically determined using Algorithm 1.

Algorithm 1 Spectral clustering algorithm
1: Define the affinity matrix Ai, j from the connectivity kernel.
2: Evaluate the normalized affinity matrix: P = D−1A.

3: Solve the eigenvalue problem Pui = λi ui , where the order of i is
such that λi is decreasing.

4: Define the thresholds ε, τ and evaluate the largest integer K such
that λτ

i > 1 − ε, i = 1, . . . , K .
5: Let U be the matrix containing the vectors u1, . . . , uK as columns.
6: Define the clusters k = argmax j {u j (i)} with j ∈ {1, . . . , K } and

i = 1, . . . , n.
7: Find and remove the clusters that contain less than aminimumcluster

size elements.

Possible neural implementations of the algorithm are dis-
cussed in [14]. Particularly, in [8,25] an implementation
of the spectral analysis is described as a mean-field neural
computation. Principal eigenvectors emerge as symmetry
breaking of the stationary solutions of mean-field equations.
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(d)(c)(b)(a)

Fig. 5 a A sample image patch at a crossing, b its affinity matrix (A)
built upon a connectivity measure, c the eigenvalues (λi , i = 1, ...n) of
the normalized affinitymatrix (P) and the threshold value (1−ε = 0.7),

represented in red. d The exponentiated spectrum (λτ
i , i = 1, ...n) with

τ = 150 and threshold value of 0.7 in red

In addition, in [62] it is shown that in the presence of a visual
stimulus the emerging eigenvectors are linked to visual per-
ceptual units, obtained from a spectral clustering on excited
connectivity kernels. In the next section the application of
this algorithm in obtaining the vessel clustering in retinal
images will be presented.

4 Experiments and Results

In this section, the steps proposed for analyzing the connec-
tivities of blood vessels in retinal images and validating the
method are described. In addition, the parameter settings and
the obtained results are discussed in detail.

4.1 Proposed Technique

In order to prove the reliability of the method in retrieving
the connectivity information in 2D retinal images, several
challenging and problematic image patches around junctions
were selected. First step before detecting the junctions and
selecting the image patches around them, is to apply pre-
conditioning on the green channel (I ) of a color fundus
retinal image. The green channel provides a higher con-
trast between vessels and background and it is widely used
in retinal image analysis. The preconditioning includes: (a)
removing the non-uniform luminosity and contrast variabil-
ity using the method proposed by [29]; (b) removing the high
frequency contents; and (c) denoising using the non-linear
enhancement in SE(2) as proposed by [1]. A sample color
image before and after preconditioning (Ienh) are shown in
Fig. 6a, b, respectively.

In next step, soft (Isoft) and hard (Ihard) segmentations
are obtained using the BIMSO (biologically inspired multi-
scale and multi-orientation) method for segmenting Ienh as
proposed by [1]. These images are shown in Fig. 6c, d,
respectively. The hard segmentation is used for detecting the
junctions and selecting several patches with different sizes

around them; while soft segmentation is used later in con-
nectivity analysis.

In order to find the junction locations automatically, the
skeleton of Ihard is produced using the morphological skele-
tonization technique. Then the method proposed by [52] is
applied on this skeleton and the junction locations are deter-
mined as shown in Fig. 6e. Using the determined locations,
several image patches with similar sizes (s = 10 pixels) are
selected at first stage. However, as seen in Fig. 6e, some of
the junctions are very close to each other and their distances
are smaller than s/2. For these junctions, a new patch includ-
ing both nearby junctions (with a size equal to three times
the distance between them) is considered, and its center is
used for finding the distance of this new patch with the other
ones. These steps are repeated until no more merging is pos-
sible or the patch size reaches the maximum possible size
(we assumed 100 as the maximum possible value). Thus, all
nearby junctions are grouped in order to decrease the number
of patches that overlap in a great extent. This results in having
different patch sizes (0 ≤ spi ≤ 100, 1 ≤ i ≤ m) that could
include more than one junction all over the image. Figure 6f
shows the junction locations and the corresponding selected
patches overlaying on artery/vein ground truth.

In order to analyze the vessel connectivities for each image
patch (Ipi ), we need to extract the location (x, y), orientation
(θ ), and intensity ( f (x, y)) of vessel pixels in these patches.
Hence for each group of junctions (i) with the size si , two
patches from Ienh and Isoft are selected, called Ienh,pi and
Isoft,pi respectively. Then Isoft,pi is thresholded locally to
obtain a new hard segmented image patch (called Ihard,pi ).
This new segmented image patch is different from select-
ing the corresponding patch from Ihard, because Ihard was
obtained by thresholding the entire Isoft using one global
threshold value, but this is not appropriate at all regions. If
there are regions with very small vessels with low contrast
(often they get a very low probability of being vessel pix-
els), they are normally removed in the global thresholding
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(a) (b) (c)

(d) (e) (f)

Fig. 6 The different steps applied for selecting several image patches
around junctions, a original RGB image, b enhanced image (Ienh), c
soft segmentation (Isoft), d hard segmentation (Ihard), e detected junc-

tions and the skeleton of the segmentation overlaid on color image,
f selected patches overlaid on artery/vein ground truth

approach. Accordingly, wrong thresholding leads into wrong
tracking results e.g., C1, C2, C6 in Fig. 1 are some instance
patches with missing small vessels. In this work, we selected
one threshold value for each patch specifically using Otsu’s
method [53], to keep more information and cover a wider
range of vessel pixels. Consequently, thicker vessels will be
created in Ihard,pi and the results will be more accurate.

By knowing the vessel locations (x, y) other informa-
tion could be extracted for these locations using Ienh,pi . So
f (x, y) equals the intensity value in Ienh,pi at location (x, y).
Moreover, by lifting Ienh,pi using cakewavelets (seeEq. 1), at
each location the angle corresponding to themaximum of the
negative orientation response (real part) in the lifted domain
is considered as the dominant orientation (θd ) as Eq. 11. The
negative response is considered because the blood vessels in
retinal images are darker than background.

θd = argmaxθ∈[0,π ] Re(−U f (x, y, θ)) (11)

Next step is approximating the connectivity kernels. The
first kernel (ω1), was calculated numerically. So the funda-
mental solution Γ1 was estimated using the Markov Chain

Monte-Carlomethod [59] by developing random paths based
on the numerical solution of Eq. 6. This solution can be
approximated by:

⎧⎪⎨
⎪⎩
xs+Δs − xs = Δs cos(θ)

ys+Δs − ys = Δs sin(θ)

θs+Δs − θs = ΔsN (0, σ ),

s ∈ 0, . . . , H,

where H is the number of steps of the random path and σ

is the diffusion constant (the propagation variance in the θ

direction). This finite difference equation is solved for n (typ-
ically 105) times, so n paths are created. Then the estimated
kernel is obtained by averaging all the solutions [36,62]. An
overview of different possible numerical methods to com-
pute the kernel is explained in [79], where comparisons are
done with the exact solutions derived in [19,20,23]. From
these comparisons it follows that the stochastic Monte-Carlo
implementation is a fair and accurate method. The intensity-
based kernel (ω2), the final connectivity kernel (ω f ), and the
affinity matrix (A), were calculated using Eqs. 7, 8, and 9,
respectively. Finally, by applying the proposed spectral clus-
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Fig. 7 A sample 21×21 image patch at a crossing: a Ienh,pi , b Isoft,pi ,
c Ihard,pi , d the differences in intensities are shown in color, e each
oriented line represents the orientation at its position, f final percep-
tual units shown in different colors, g the ground truth artery and vein

labels, h lifted image in SE(2), i connectivity kernel (ω2), j affinity
matrix (A) obtained using both orientation and intensity information,
k thresholding the eigenvalues of the normalized affinity matrix

tering step in Sect. 3, the final perceptual units (individual
vessels) were obtained for each patch.

The above-mentioned steps for a sample crossing in a
21×21 image patch are presented in Fig. 7. After enhancing
the image (Fig. 7a), obtaining soft segmentation (Fig. 7b) and
thresholding it locally (Fig. 7c), the vessel locations, inten-
sity, and orientation have been extracted. As shown in Fig. 7d
arteries andveins have different intensities and this difference
helps in discriminating between them. Though, orientation
information is the most discriminative one. The lifted image
in SE(2) using the π -periodic cake wavelets in 24 different
orientations is shown in Fig. 7h. The disentanglement of two
crossing vessels at the junction point can be seen clearly in
this figure. The dominant orientations (θd ) for the vessel pix-
els are also depicted in Fig. 7e, using line segments oriented
according to the corresponding orientation at each pixel.

In the next step, this contextual information (intensity and
orientation) is used for calculating the connectivity kernel
(Fig. 7i) and the affinity matrix (Fig. 7j) as mentioned in
Sect. 2. For this numerical simulation, H, n, σ , and σ2 have
been set to 7, 100000, 0.05, and 0.1 respectively. Next, by
applying the spectral clustering on the normalized affinity
matrix using ε and τ as 0.1 and 150, only two eigenvalues
above the threshold will remain (Fig. 7k). This means that
there are two main salient perceptual units in this image as
it was expected. These two units are color coded in Fig. 7f.
The corresponding artery and vein labels are also depicted
in Fig. 7g which approve the correctness of the obtained
clustering results.

4.2 Validation

To validate the method, the proposed steps were applied
on several image patches of the DRIVE [66] dataset. This
public dataset contains 40 color images with a resolution of
565×584 (∼25µm/px) and a 45◦ field of view. The selected
patches from each image were manually categorized into
the following groups: simple crossing (category A), simple
bifurcation (category B), nearby parallel vessels with bifur-
cation (category C), bifurcation next to a crossing (category
D), andmultiple bifurcations (category E), and each category
narrowed down to 20 image patches. These patches have dif-
ferent complexities, number of junctions and sizes and they
could contain broken lines, missing small vessels and vessels
with high curvature. The parameters used in the numerical
simulation of the affinity matrix and spectral clustering step
(including σ, H, n, σ, σ2, ε, and τ ) are chosen for each patch
differently, with the aim of achieving the optimal results for
each case. Automatic parameter selection remains a chal-
lenging task and will be investigated in future work.

Some sample figures of these cases are depicted in
Fig. 8. For each example, the original gray scale enhanced
image, hard segmentation (locally thresholded), orientation
and intensity information, and finally the clustering result
together with artery/vein labels are depicted (Fig. 8a–f,
respectively). Although the complexity of these patches is
quite different in all cases, the salient groups are detected
successfully. All the vessel pixels grouped as one unit have
similarity in their orientations and intensities, and they follow
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Fig. 8 Sample image patches
selected from the DRIVE
dataset. Columns from left to
right present the image patch at
the green channel, segmented
image, extracted orientation and
intensity, clustering result, and
the artery/vein labels
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the law of good continuation. Therefore, at each bifurcation
or crossover point, two groups have been detected.

In this figure, G1 is a good example of a crossing with a
small angle. Themethod not only differentiates well between

vessels crossing each other even with a small crossing angle,
but it also determines the order of vessels, being at the bottom
or passing over in crossover regions. The image patch inG2 is
a good example showing the strength of themethod in detect-
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Table 1 The parameters used in numerical simulation of the image
patches shown in Fig. 8 and their corresponding sizes

Name size H σ σ2

G1 21 × 21 7 0.02 0.3

G2 21 × 21 8 0.03 0.3

G3 41 × 41 10 0.03 0.1

G4 39 × 39 9 0.03 0.3

G5 33 × 33 8 0.03 0.3

G6 51 × 51 20 0.03 0.3

G7 71 × 71 17 0.07 0.3

G8 73 × 73 24 0.03 0.3

G9 89 × 89 30 0.03 0.3

G10 97 × 97 24 0.03 0.3

ing small vessels. The detected small vessel in this image
is even not annotated in the artery/vein ground truth. How-
ever, this detection is highly dependent on the soft-segmented
image and the threshold value used for obtaining the hard
segmentation. If the small vessel is not detected in the soft
segmentation or if a high threshold value is selected, then it
also will not be available in the final result. Other cases in
this figure are good representations of the robustness of the
method against the presence of a central vessel reflex (as in
G3), interrupted lines (as in G10), or even noise (as in G9).
In G9, noisy pixels are detected as individual units which
are not similar to the other groups. They can be differenti-
ated from others based on their sizes. If there are very few
pixels in one group, then it can be considered as noise and
removed. There are also several cases with complex junc-
tions in this figure. Presence of multiple bifurcations in one
image patch, or presence of several bifurcations close to the
crossing points does not lead to wrong grouping results (as
seen in G5, G6, G7, G8, and G10).

The parameters used during the numerical simulations of
the image patches shown in Fig. 8 and their corresponding
sizes are presented in Table 1. For all experiments the values
of n, ε and τ were set to 100000, 0.1 and 150, respectively
and they remained constant. The key parameters which are
very effective in the final results are H, σ , and σ2. H and
σ determine the shape of the kernel. Based on the experi-
ments, the appropriate value for the number of steps of the
random path generation is approximately 1/3 of the image
width. Selecting this parameter correctly is very important
in connecting the interrupted lines. The parameters σ and
σ2 which determine the propagation variance in the θ direc-
tion and the effect of the intensity-based similarity term do
not have a large sensitivity to variation. To quantify this, the
mean and variance of these two parameters for each of the
above-mentioned categories are calculated and presented in
Table 2. Since the selected patches have varying sizes and H
is dependent on that, this parameter is not presented in this

Table 2 The correct detection rate and the mean and variance of σ and
σ2 used in numerical simulation for each category

Category CDR (%) σ σ2

mean variance mean variance

A 85 0.032 0.0001 0.28 0.0039

B 95 0.033 
 0 0.3 
 0

C 85 0.0269 
 0 0.22 0.01

D 75 0.035 0.00013 0.248 0.0125

E 95 0.03 
 0 0.3 
 0

table. Moreover, to evaluate the performance of the method,
we introduced the correct detection rate (CDR) as the per-
centageof correctly grouped imagepatches for each category.
These values are presented in Table 2. By considering higher
number of image patches per category, the CDR values will
be more realistic.

If there are somehigh curvature vessels, thendependingon
their curvature increasing σ might help in preserving the con-
tinuity of the vessel. As an example, G4 in Fig. 8 is relatively
more curved compared to the other cases, but the clustering
works perfectly in this case. However, for some cases it does
not solve the problem totally, and other kernels need to be
considered for preserving the continuity. An example 49×49
image patch with a highly curved vessel is shown in Fig. 9,
where the method fails in clustering the vessels correctly.
The parameters used for this case are H = 16, σ = 0.03,
and σ2 = 0.3.

Even though the intensities of arteries and veins in the
gray scale enhanced image are very close to each other in
some images, adding the intensity term in calculating the
final affinity matrix is crucial. By decreasing the value of σ2,
the distance between intensities gets a higher value and it
helps in differentiating better between the groups. Figure 10
represents a sample 67×67 image patch, which includes two
nearby parallel vessels with similar orientations. Figure 10e,
f show the correct and wrong clustering results obtained by
changing σ2 from 0.3 to 1. All other parameters have not
changed (H = 24, σ = 0.02 and n = 100000). The other
important difference between these two results is that the
noisy pixels close to the thicker vessel have been totally
removed in the correct result. Although they seem to be
oriented with the thick vessel their intensities are totally dif-
ferent. Therefore, by increasing the effect of intensity, they
are clustered as several small groups and removed in the final
step of the spectral clustering algorithm.

5 Conclusion and Future Work

In this work, we have presented a novel semi-automatic tech-
nique inspired by the geometry of the primary visual cortex
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(a) (b) (c) (d) (e) (f)

Fig. 9 Failure of clustering in the presence of highly curved vessels. Columns from left to right: a enhanced image; b its segmentation; c intensity;
d orientation information; e clustering results; and f the artery/vein labels

(a) (b) (c) (d) (e) (f) (g)

Fig. 10 The effect of including intensity term in calculating the connectivity kernel. Columns from left to right: a enhanced image; b its segmen-
tation; c intensity; d orientation information; e correct; f wrong clustering results; and g the artery/vein labels

to find and group different perceptual units in retinal images
using spectral methods. Computing eigenvectors of affinity
matrices, which are formed using the connectivity kernel,
leads to thefinal grouping. The connectivity kernel represents
the connectivity between all lifted points to the 4-dimensional
feature space of positions, orientations, and intensities, and
it presents a good model for the Gestalt law of good contin-
uation. Thus, the perceptual units in retinal images are the
individual blood vessels having low variation in their orien-
tations and intensities.

The proposed method allows finding accurate junction
positions, which is the position where two groups meet or
cross each other. The main application of these connectivity
analyses would be in modeling the retinal vasculature as a
set of tree networks. The main graph constructed by these
trees would be very informative in analyzing the topological
behavior of retinal vasculature which is useful in diagnosis
and prognosis of several diseases especially in automated
application in large-scale screening programs.

The detection of small vessels highly depends on the qual-
ity of the soft segmentation, not the hard segmentation. These
vessels could easily be differentiated from noise based on the
size of the group. Noisy pixels have random orientations and
intensities and they build smaller groups. Our method repre-
sents some limitations at blood vessels with high curvature.
One possible solution is tomerge the two detected perceptual
units and form one unique unit, if there are no junctions at
these locations. The other stronger extension is to use other
kernels that take into account the curvature of structures in

addition to positions and orientations. Moreover, it is also
possible to enrich the affinity matrix with other terms e.g.,
the principle curvature of the multi-scale Hessian (ridgeness
or vesselness similarity). All these solutions will be investi-
gated in the future.

With this model we have analyzed many challenging
cases, such as bifurcations, crossovers, small and discon-
nected vessels in retinal vessel segmentations. These cases
not only have been reported to create tracing errors in the
state-of-the-art techniques, but also are very informative for
the clinical studies. Based on the results shown in the numer-
ical simulations, the method is successful in detecting the
salient groups in retinal images, and robust against noise, cen-
tral vessel reflex, interruptions in vessel segments, presence
of multiple junctions in a small area, and presence of nearby
parallel vessels. For this reason, this can be considered as an
excellent quantitative model for the constitution of percep-
tual units in retinal images. To the best of our knowledge, this
is the first time that the vessel connectivities in such complex
situations are solved by one single solution perfectly.
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