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Abstract

The optimal scheduling problem of a system with two fluid queues attended
by a switching server is addressed from two angles, the optimal steady-state
and the optimal transient problem. The considered system includes features,
such as setup times, setup costs, backlog and constraints on queue contents,
cycle times and service times. First, the steady-state problem is formulated
as a quadratic problem (QP), given a fixed cycle time. Evaluation of the QP
problem over a range of cycle times results in the optimal steady-state trajectory,
minimizing the total cycle costs or time average costs. Second, given initial
conditions, we derive the optimal transient trajectory that leads to the optimal
steady-state trajectory in a finite amount of time at minimal costs. For systems
with backlog, we introduce additional costs on the number of cycles required to
reach the steady-state trajectory in order to simplify the transient trajectory.
The transient switching behavior and optimal initial modes are also addressed.
Furthermore, we show by means of an example that the method can be extended
to multi-queue switching servers.

Keywords: Switching server, Optimization, Quadratic programming,
Steady-state trajectory, Transient trajectory

1. Introduction

Optimal scheduling of systems with switching behavior is a problem of great
importance. This problem, for even the most simple system, i.e., a server at-
tending two queues, has been investigated by many researchers, see for exam-
ple [1, 4, 5, 6, 7, 8, 10, 11, 14], and references therein. We follow the general
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framework introduced by [9] and model the production flow as continuous rather
than discrete. The system considered in this paper is a server that can attend
two fluid queues, where only a single queue can be attended at a time. Switching
service to another queue might require a setup process, which might take time
or involves switching costs. These systems arise in numerous contexts, such as
manufacturing systems, signalized traffic intersections, computer communica-
tion networks and hospital rooms. Usage of optimal schedules can reduce time
or costs. For instance, optimal schedules can reduce costs for manufacturing
systems via lowering the required storage capacity and shortening lead times,
or, for traffic signals at signalized intersections, optimal schedules can reduce
congestion and thereby improve mobility and reduce the amount of environmen-
tally harmful emissions.

In the aforementioned literature, the two queue switching servers are re-
stricted in the sense that either setup times, setup costs, backlog or limited
queue contents are required, omitted or not allowed. Also, most studies assume
the simplifying condition that the system is symmetric, see [1, 4, 8, 11]. In the
current work, a two queue switching server is considered without restrictions on
any parameters and with the flexibility of allowing setup times, setup costs and
backlog, as well as constraints on cycle time, service time and queue contents.

In this paper, we divide the optimal scheduling problem into two subprob-
lems: the derivation of optimal steady-state trajectories and the derivation of
optimal transient trajectories. The current study is an extension of the work
in [17]. Similar to [15, 17], we formulate both subproblems as Quadratic Pro-
gramming (QP) problems, with the addition of backlog and setup costs. Once
the optimal steady-state trajectory is known, we study the best way of reaching
it from any initial state, i.e., with minimal costs. This is a transient optimiza-
tion problem, occurring for instance in case of a machine which is failure prone,
or in case of a traffic intersection which gives priority to busses [16]. In these
cases, we assume that deviations from the steady-state trajectory rarely occur,
allowing the system to recover to the steady-state situation after each interrup-
tion. For systems without backlog and without capacity constraints, the policy
for optimal transient behavior is presented. For systems with backlog, we intro-
duce additional costs on the number of cycles required to reach the steady-state
trajectory in order to simplify the transient trajectory.

Furthermore, we show by means of an illustration that the proposed methods
can be extended to multi-queue switching servers, given the order of service of
queues.

The remainder of this paper is organized as follows. Section 2 describes
the system and presents the constraints. The optimal steady-state problem
is addressed in Section 3 and examples of optimal trajectories are presented.
In Section 4, the optimal transient problem is addressed. An illustration of
optimal trajectories for a multi-queue switching server is presented in Section 5.
Conclusions are provided in Section 6.
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2. System description

We consider a system of two queues served by a single switching server.
Fluid arrives at each queue i = 1, 2 with arrival rate λi. The content of queue
i at time t is denoted by xi(t). The server is limited to serve only one queue
at a time. If the server serves queue i, the service rate is given by ri ∈ [0, µi].
Three examples of the system under consideration are presented in Figure 1, a
signalized traffic intersection with two flows in Figure 1a, a 2-queue switching
server in Figure 1b and a 2-product manufacturing system in Figure 1c. The
latter system has constant demands λi instead of constant arrivals.

x2

x1

λ1

λ2

μ2
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(a) Signalized intersection
with 2 flows.

x1

μ1
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(b) Switching server with 2
queues.

x1

λ1

x2

λ2
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σ12 σ21

(c) Manufacturing system
with 2 jobs.

Figure 1: Different two queue switching server layouts.

Typically, switching service between different queues implies a setup process,
either a setup time σi,j ≥ 0 for switching from queue i to queue j, setup costs
si,j or a combination of these. For instance, a setup time can be reserved for
vehicles to leave the intersection after the queue has received a red light (end of
service), thereby preventing collisions, or for a machine to adjust configurations
or to perform cleaning. In the latter case, also switching costs might be involved.
A cycle consists of the setup and service of both queues. The total setup time
in a cycle is denoted by σ = σ1,2 + σ2,1 and the total setup costs in a cycle by
s = s1,2 + s2,1.

Given the setup times and cyclic behavior, we assume that the system can
operate in four modes, denoted by m ∈ {1, 2, 3, 4}. Without loss of generality,
the first mode, m = 1, indicates a setup to serve queue 1 and possible idling of
the server, m = 2 indicates serving queue 1, m = 3 indicates a setup to serve
queue 2 and possible idling of the server and m = 4 indicates serving queue 2.
Note that for a system without setup times, i.e., σ = 0, modes 1 and 3 can have
a duration of zero time units. The state x of the system not only consist of
queue levels x1 and x2, but also of the remaining idle time x0 (including setup
times) and mode m, i.e., x(t) =

[
x0(t), x1(t), x2(t), m(t)

]
.

A service time is defined as the uninterrupted interval during which the
queue is served. The duration of a service time for queue n is nonnegative and
is denoted by τn. Once the server is allocated to serve queue n, the server
requires an idle period τ0n, which consists of the setup time and a possible idle
time, i.e.,

σj,n ≤ τ0n, n, j = 1, 2, n 6= j. (1)
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In this paper, we distinguish between a system with and a system without
backlog. In case of backlog, denoting an accumulation over time of work waiting
to be done or orders to be fulfilled, the contents of queue n can be negative and
are therefore divided into an inventory level x+n (t) = max(xn(t), 0) and a backlog
level x−n (t) = min(xn(t), 0). Hence, xn(t) = x+n (t) + x−n (t) and at each time
instance either the backlog or inventory level is zero, i.e., x+n (t)x−n (t) = 0, ∀t.
For a system without backlog, xn(t) = x+n (t), the indicator + is often omitted.
Also, for this system it is shown in [13] that for optimal policies, a server, once
serving a queue does not idle and serves at maximal rate. Hence, the service
time allocated at queue n is divided into two parts,

τn = τµn + τλn .

where the duration of serving at maximal rate is indicated by τµn and the du-
ration of serving at arrival rate by τλn . Note that serving at arrival rate, i.e.,
τλn > 0, occurs only if the queue is empty. This duration is referred to as
slow-mode, since capacity is wasted. However, as indicated in [14] and shown
in Section 3, using a slow-mode might result in optimal trajectories, since it
enlarges the cycle time and thereby reduces the fraction of time spent on set-
ups, which also wastes capacity. For systems with backlog, we assume that
the server, once serving a queue, can serve the queue at the maximal rate and
subsequently can serve the queue at the arrival rate.

The cycle time T is the time it takes to serve both queues in a cycle. The
cycle time consists of idle and service periods for each queue, i.e.,

T = τ01 + τµ1 + τλ1 + τ02 + τµ2 + τλ2 .

The workload of queue n is defined by ρn = λn
µn

. An important notion for steady-
state trajectories is stability. A system is called stable if all queue contents
remain bounded. For switching servers, cf. [2, 3, 12], this definition is commonly
used. To achieve a stable system, the system capacity should be able to meet
the inflow, i.e., is it possible to process all incoming fluid? For the considered
two queue switching servers, all incoming fluid can be processed if ρ1 + ρ2 ≤ 1.
Note that the total workload for systems with setup times should be strictly
less than 1, i.e., if the total workload equals 1 the server lacks capacity to serve
the fluid that has arrived during setups. In a stable system the service periods
must satisfy

λnT = µnτ
µ
n + λnτ

λ
n , n = 1, 2. (2)

Condition (2) also ensures that the queue contents at the start of the cycle are
identical to the queue contents at the end of the cycle, and therefore ensures
steady-state behavior. If (2) is not satisfied, the system behavior is transient.
Note that we can impose additional constraints regarding service periods and
queue contents, depending on the system under consideration. These constraints
can originate from, e.g., operational or safety issues. We remark that these
constraints are not mandatory, but can be included if required. Some of them
are discussed below.
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Cycle time constraints can originate from, for instance, limiting the cycle
time of a manufacturing system to the operator’s available time or requiring a
minimal cycle time for safety reasons in traffic intersections. Therefore, minimal
and maximal cycle times, respectively Tmin and Tmax, can be taken into account,

Tmin ≤ T ≤ Tmax. (3a)

Furthermore, bounds on service times, denoted by τmin
n and τmax

n , can be re-
quired, e.g., minimal and maximal service (green) times for traffic intersections.
The service time constraints are imposed via

τmin
n ≤ τn ≤ τmax

n n = 1, 2. (3b)

In addition to the constraints on cycle and service periods, the queue lengths
can be bounded, e.g., finite queue capacity, and also a minimal queue level (or
maximal backlog level) can be desired, i.e.,

xmin
n ≤ xn(t) ≤ xmax

n , n = 1, 2. (3c)

Note that we can impose additional constraints, regarding service times and/or
queue contents. Given the system description and the constraints, we present a
method to derive the optimal steady-state trajectory in Section 3. This trajec-
tory is used in Section 4 to derive the optimal transient trajectory.

3. Optimal steady-state trajectory

Multiple performance criteria exists for evaluating the trajectory. For the
system under consideration, cycle time, flow-time, total costs or average costs
are commonly used criteria. In this paper, we focus on minimizing the cycle
time or the costs. However, other criteria can be easily incorporated.

3.1. Cycle time

The minimal cycle time T ∗ required to serve all arrivals during a cycle can
be easily derived. Idling of the server, or wasting capacity due to service at
arrival rate both elongate the cycle time and are therefore not optimal, unless
required to satisfy any constraints. For the unconstrained system, i.e., without
constraints (3), the minimal cycle time follows from T = ρ1T+ρ2T+σ. Required
lower bounds on service periods, given by (3b) or by (3c) via

τn ≥ T −
xmax
n − xmin

n

λn
, n = 1, 2,

also affect the minimal cycle time. In the remainder of this paper, we assume
that τmin

n is such that

τmin
n ≥ T − xmax

n − xmin
n

λn
, n = 1, 2.
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From the relations T = τ1+τ2+σ, τ1 = max(ρ1T, τ
min
1 ), and τ2 = max(ρ2T, τ

min
2 ),

we obtain (by considering all four cases):

T ∗ = max

(
τmin
1 + τmin

2 + σ,
σ

1− ρ1 − ρ2
,
σ + τmin

1

1− ρ2
,
σ + τmin

2

1− ρ1

)
.

If we also consider the lower bound on the cycle time (3a), where without loss
of generality we can assume Tmin ≥ τmin

1 + τmin
2 + σ, the minimal cycle time

follows from

T ∗ = max

(
Tmin,

σ

1− ρ1 − ρ2
,
σ + τmin

1

1− ρ2
,
σ + τmin

2

1− ρ1

)
. (4)

Then, τ1 = ρ1T
∗ and τ2 = T ∗ − σ − τ1 are the, not necessarily unique (if

T ∗ = Tmin), service periods from a steady-state trajectory with minimal cycle
time.

3.2. Total costs

Total costs during a cycle is another performance criterion. This criterion is
used, for instance, in [6]. Costs can arise from switching service between queues,
i.e., setup costs s. Also, costs can be related to the queue contents. We consider
inventory costs c+n , which are proportional with x+n (t), and backlog costs c−n ,
proportional with x−n (t), which for instance arise when production is behind on
the demand for the system depicted in Figure 1c. This results in the following
total costs Jc for the steady-state trajectory

Jc =

∫ T

0

[
c+1 x

+
1 (t) + c−1 x

−
1 (t) + c+2 x

+
2 (t) + c−2 x

−
2 (t)

]
dt+ s. (5)

The trajectory minimizing Jc is the optimal steady-state trajectory. The opti-
mal trajectory is a trade-off between loss of capacity due to setups, slow-modes
and the average setup costs. Elongating the cycle time, by including a slow-
mode or creating backlog, results in less switches over time where capacity is
lost due to setups and thereby lowers the average setup costs. It can be seen
in (5) that the setup costs s do not influence the optimal steady-state trajectory.
However, these costs do play a role for the time average costs as performance
indicator.

The total inventory and backlog of a queue during a cycle can be derived
regarding the service periods, due to the fluid flows and cyclic behavior. Figure 2
presents the contents of queue n during a single cycle. All idle and service
periods are indicated, together with the slope rates.

The minimal content of queue n in a steady-state trajectory is denoted by
xn. For the optimal steady-state trajectory, this value is bounded, as presented
in the following lemma.

Lemma 3.1. For the optimal trajectory it holds that

max(xmin
n , (λn − µn)τµn ) ≤ xn ≤ min(xmax

n + (λn − µn)τµn , 0), n = 1, 2,
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Figure 2: Evolution of xn during a cycle, including setup and service periods
and rates of increase/decrease.

Proof. The proof is twofold. First, consider a trajectory where xn > 0 and
xmin
n < 0, depicted by the solid line in Figure 3a. Then, an alternative trajectory

exists with identical service periods and xn = 0, depicted by the dashed line.
The alternative trajectory has lower costs, i.e., it has xnT less total inventory,
presented by the gray area. If xmin

n > 0, for the same reasoning, xn = xmin
n is

optimal. Second, consider a trajectory where xn < (λn−µn)τµn , i.e., the maximal
queue content is less than zero (xn(t) < 0 for all t ∈ [0, T )). This trajectory is
presented by the solid line in Figure 3b. Then, an alternative trajectory exists
with identical service periods and xn = (λn−µn)τµn , depicted by the dashed line.
The alternative trajectory has lower costs, i.e., it has (xn + (µn − λn)τµn )T less
total backlog, presented by the gray area. If xmax

n < 0, for the same reasoning,
xn = xmax

n + (λn − µn)τµn is optimal.

T

xn

xn

0

(a) Trajectory with xn > 0.

T

xn

xn

0

(b) xn < −λn(τ0j + τµj + τλj + τ0n).

Figure 3: Graphical representation of Lemma 3.1.

Based on Lemma 3.1, the inventory and backlog can be easily derived for
a steady-state trajectory. Total inventory of queue n during a cycle is denoted
by w+

n and total backlog by w−n . These values depend on the queue content
constraints xmin

n and xmax
n , n = 1, 2.
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If xmin
n ≤ 0 ∧ xmax

n ≥ 0, the total inventory and backlog are given by

w+
n =

∫ T

0

x+n (τ)dτ =
1

2

λnµn
µn − λn

(T − τn)2 + xnT + w−n , (6a)

w−n =

∫ T

0

x−n (τ)dτ =
x2n
2

(
1

µn − λn
+

1

λn
) + τλnxn, (6b)

where (6a) can be readily obtained from Figure 2 as the area above xn from
which we subtract −xnT − w−n .

If xmin
n > 0, and therefore also xmax

n > 0, it holds that

w+
n =

∫ T

0

x+n (τ)dτ =
1

2

λnµn
µn − λn

(T − τn)2 + xnT,

w−n = 0,

and for xmax
n < 0, and therefore xmin

n < 0, the contents are given by

w+
n = 0,

w−n =

∫ T

0

x−n (τ)dτ =
1

2

λnµn
µn − λn

(T − τn)2 + λnτ
λ
n (T − τn)− (xn + (µn − λn)τµn )T.

It can be seen that the expressions for w+
n and w−n in (6) are quadratic in the

optimization variables τn and xn. Hence, the optimization problem is formulated
as a Quadratic Programming (QP) problem, given by

J∗c = s+ min
τ0
n,τ

µ
n ,τλn ,xn

2∑
n=1

(
c+nw

+
n + c−nw

−
n

)
,

s.t. τmin
n ≤ τn ≤ τmax

n , n = 1, 2, (7a)

xn ≤ xmax
n − (µn − λn)τµn , n = 1, 2, (7b)

λnT = µnτ
µ
n + λnτ

λ
n , n = 1, 2, (7c)

T = τ01 + τµ1 + τλ1 + τ02 + τµ2 + τλ2 , (7d)

where (7b) follows from (3c), i.e., the maximal queue content is given by xn +
(µn − λn)τµn , as can be seen in Figure 2. Note that the objective is quadratic,
as the total inventory and backlog levels (6) are a quadratic combination of the
optimization variables.

For the system without backlog, the minimal total costs J∗c can be analyti-
cally derived, which is presented in Section 3.3. For the system with backlog and
for systems with multiple queues or networks of switching servers, the analytical
derivation is, if possible, much more complex.

3.3. Time average costs

The time average costs are commonly used as performance indicator, also
referred to as time average weighted work in process for manufacturing systems
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or time average weighted queue lengths. In [1, 4, 8, 11, 14], this performance
indicator is also considered. The time average costs, given a fixed cycle time T ,
are given by

Jw =
1

T
Jc. (8)

For the system without backlog, the minimal time average costs, as well as
the total costs, can be analytically derived. First, consider the unconstrained
system. We assume, without loss of generality, that c1λ1 ≥ c2λ2. Recall that,
under optimal policies the server, once attending a queue, does not idle, i.e.,
τ0n = σj,n. The time average costs, see (6) for xmin

n ≥ 0, are given by

Jw(T ) =
1

T

[
a1(T − ρ1T − γ([1− ρ1 − ρ2]T − σ))2+

+a2(T − ρ2T − (1− γ)([1− ρ1 − ρ2]T − σ))2 + s
]

+ c1x
min
1 + c2x

min
2 ,
(9a)

an =
cn
2

λnµn
µn − λn

, n = 1, 2.

The minimal required service time is given by (ρ1 +ρ2)T . The remainder of the
service time, i.e., ([1− ρ1 − ρ2]T − σ), is divided in (9a) over both queues using
γ ∈ [0, 1], which denotes the fraction of remaining service allocated at queue 1.
The optimum of (9a) for T > T ∗ with respect to γ is given by

γ∗ = min

 [c1λ1(1− ρ2)− c2λ2ρ1]T − c2λ2σ[
c1λ1

1−ρ2
1−ρ1 + c2λ2

]
(1− ρ1 − ρ2)T − c1λ1σ 1−ρ2

1−ρ1 − c2λ2σ
, 1

 .

(9b)

Note that γ∗ > 0 for T > T ∗, as the denominator of (9b) is strictly positive
if T > T ∗ and the nominator is zero if both T = T ∗ and c1λ = c2λ and
strictly positive otherwise. From (9b), we find that all additional service time
is allocated at serving the first queue, i.e., γ∗ = 1, if

T ≤ c1λ1σ

c2λ2(1− ρ1)− c1λ1ρ2
∨ c1λ1ρ2 ≥ c2λ2(1− ρ1). (9c)

Hence, for c1λ1ρ2 ≥ c2λ2(1 − ρ1), a slow mode at queue 2 is never optimal.
We first present the optimization problem if (9c) is satisfied. Given (9c), i.e.,
γ∗ = 1 (all additional service allocated at queue 1), the time average costs are
given by

Jw(T ) = (a1ρ
2
2 + a2(1− ρ2)2)T + 2a1σρ2 + c1x

min
1 + c2x

min
2 +

a1σ
2 + s

T
, (9d)

and the optimal cycle time T opt yields

T opt =

√
[a1ρ22 + a2(1− ρ2)2] (s+ a1σ2)

a1ρ22 + a2(1− ρ2)2
,

9



and J∗w = Jw(T opt). Next, the effect of the constraints on this system are
regarded. By adding bounds on the cycle time (3a), the feasible area changes,
i.e., T ∈ [T ∗, Tmax]. Capacity constraints, i.e., bounds on service times and
bounds on queue lengths, both limit the service time duration, as discussed
in Section 3.1. For the system satisfying (9c) together with minimal service
period constraints, the time average costs are given by (9d) if τmin

2 ≤ ρ2T ∗, i.e.,
τ2 ≥ τmin

2 . Otherwise

Jw(T ) =
a1(σ + τmin

2 )2 + a2(T − τmin
2 )2 + s

T
+ c1x

min
1 + c2x

min
2 , if T <

τmin
2

ρ2
,

(9e)

which exceeds the time average costs given by (9d), as additional service time is
allocated at queue 2. Note that the lower bound on the service period of queue
1 can only affect the minimal cycle time, as all extra service time is allocated at
queue 1. Moreover, an upper bound on the service duration bounds the cycle
time via

T ≤ τmax
n

ρn
, n = 1, 2. (9f)

If both (9c) and (9f) are satisfied, the maximal service time constraints only
affect Jw if τmax

1 ≤ T − σ − ρ2T , as for these cycle times the duration of the
slow mode in queue 1 is limited. Then, the time averaged costs are given by

a1(T − τmax
1 )2 + a2(σ + τmax

1 )2 + s

T
+ c1x

min
1 + c2x

min
2 , if T >

τmax
1 + σ

1− ρ2
,

(9g)

which also exceeds the time averaged costs for the unconstrained system for
similar reasoning. Then, the optimal time averaged costs J∗w for the system
satisfying (9c) is the minimum of the following optimization problems

minimum of (9e) for max
(
T ∗, Tmin

)
≤ T <

τmin
2

ρ2
,

minimum of (9d) for max

(
T ∗, Tmin,

τmin
2

ρ2

)
≤ T ≤ min

(
Tmax,

τmax
1 − σ
1− ρ2

)
,

minimum of (9g) for
τmax
1 − σ
1− ρ2

< T ≤ Tmax,

which can be easily derived. As an example, consider a heterogenous (non-
symmetric) system without backlog, with parameters

λ1 = 2, µ1 = 8, σ2,1 = 3, c+1 = 8,

λ2 = 1, µ2 = 4, σ1,2 = 7, c+2 = 1.
(10)

A graphical representation of Jw(T ) for the system with parameters (10) (sat-
isfying (9c)) is presented in Figure 4. The solid line presents the time average

10



costs for the unconstrained system. The costs for the system with τmin
2 = 10

is depicted by the dashed line and the costs for the system with τmax
1 = 40

is depicted by the dotted line. Note that the optimum for the unconstrained
system and system with the maximal service period constraint on queue 1 is
located at T opt = 32. If the minimal service period for queue 2 is required, the
optimum is located at T = 40.
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1 = 40

Figure 4: Time average costs for the system with parameters (10).

If the additional service time is allocated at service of both queues, i.e., (9c)
does not hold, the time average costs are given by substituting (9b) into (9a),
resulting in

Jw(T ) =
c1λ1c2λ2(T + σ)2

2[c1λ1(1− ρ2) + c2λ2(1− ρ1)]T
+
s

T
+ c1x

min
1 + c2x

min
2 .

Furthermore, for the system with minimal and maximal service time constraints,
the costs Jw(T ) are given by

a1(T − τmax
1 )2 + a2(σ + τmax

1 )2 + s

T
+ c1x

min
1 + c2x

min
2 , if T >

τmax
1 + γ∗σ

ρ1 + γ∗(1− ρ1 − ρ2)
,

a1(σ + τmax
2 )2 + a2(T − τmax

2 )2 + s

T
+ c1x

min
1 + c2x

min
2 , if T >

τmax
2 + (1− γ∗)σ

ρ2 + (1− γ∗)(1− ρ1 − ρ2)
,

a1(T − τmin
1 )2 + a2(σ + τmin

1 )2 + s

T
+ c1x

min
1 + c2x

min
2 , if T <

τmin
1 + γ∗σ

ρ1 + γ∗(1− ρ1 − ρ2)
,

a1(σ + τmin
2 )2 + a2(T − τmin

2 )2 + s

T
+ c1x

min
1 + c2x

min
2 , if T <

τmin
2 + (1− γ∗)σ

ρ2 + (1− γ∗)(1− ρ1 − ρ2)
,

Then, along the same lines as presented above, the optimum is given by the
minimum of all optimization results within the feasible cycle time range. If the
objective is to optimize the total costs in a cycle, a similar approach can be used
where Jc = TJw.

To derive the optimal steady-state trajectory using QP, e.g., for the system
with backlog or for systems with multiple queues, the cycle time T is required
to be a constant value. Otherwise, as the cycle time depends on service and idle
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periods, the objective function (8) is non-linear. Then, the solution Jw(T ) with
minimal costs for cycle times within the range

T ∗ ≤ T ≤ min

(
Tmax,

τmax
n

ρn

)
, n = 1, 2,

renders the optimal steady-state costs J∗w, which can be easily found.
The optimal trajectory, within the constraints, is a trade-off between loss

of capacity due to setups, slow-modes and the average setup costs. Elongating
the cycle time by including a slow-mode or creating backlog, results in less
switches over time where capacity is lost due to setups and lowers the average
setup costs. For a system without backlog, a typical steady-state trajectory
is depicted in Figure 5. The trajectory consists of six characteristic points,
labeled in alphabetical order A−F . The optimal trajectory for systems without
constraints contains at most one slow-mode, i.e., F = A or C = D. Furthermore,
if no setup periods are considered, D = E and A = B. Optimal policies
will serve queue i until the other queue j reaches a threshold. Therefore, the
trajectory can include slow-modes at both queues. A special case of this model,
with µ1 = µ2 and c1 = c2 has been studied in [1, 4, 7, 8, 11] and it is shown
that the optimal policy is a clearing policy, i.e., the server empties a queue and
then switches to serve the other queue.

A

B
C
D

E

x2

x1 F

Figure 5: Optimal steady-state trajectory, with characteristic points A− F .

3.4. Illustrations

Using the method described above, we illustrate some optimal steady-state
trajectories for the two queue switching server. We consider again the system
with parameters (10). Note that, at first, backlog is not allowed for this system.
From (4), we find the minimal cycle time T ∗ = 20. The corresponding steady-
state trajectory with minimal costs is presented in Figure 6. Here, in the figure
on the left, the evolution of the queue contents during a cycle are presented. In
the figure on the right, the periodic trajectory, i.e., x1 versus x2, is presented.
It can be seen that no slow-mode occurs in the trajectory, as expected by con-
sidering the minimal cycle time. This trajectory also yields the optimal total
costs J∗c = 2550 (and Jw = 127.5). For the time average costs as performance
indicator, the trajectory with minimal cycle time does not result in the optimal
trajectory. The steady-state costs are depicted in Figure 7a. The minimum
is located at T = 32, and the corresponding trajectory, depicted in Figure 7b,

12
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(a) Queue contents versus time.
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(b) Optimal trajectory.

Figure 6: Optimal queue contents over time (left) and periodic trajectory (right)
during a cycle for the system with parameters (10) and T = T ∗ = 20.
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(b) Optimal trajectory.

Figure 7: Time average costs versus cycle time (left) and optimal trajectory for
T = 32 (right) for the system with parameters (10).

is the optimal steady-state trajectory. The optimal costs are J∗w = 120 with
service periods τµ1 = 6, τλ1 = 8, τµ2 = 8 and τλ2 = 0.

Next, the effects of setup costs, backlog and the constraints are presented
in a stepwise manner. Starting from the system with parameters (10), without
setup costs, without constraints on service periods and no backlog, we add
parameters and restrictions step by step and analyze the steady-state trajectory
optimizing the time averaged costs. Note that, for each trajectory, the previous
constraints are preserved. Adding setup costs s2,1 = 300 and s1,2 = 200 to
the system results in the optimal trajectory depicted in Figure 8a. The optimal
cycle time, costs, service periods and minimal queue contents for each trajectory
are presented in Table 1. Compared to the trajectory depicted in 7b, it can be
seen that the addition of setup costs elongates the cycle time and increases the
duration of the slow-mode. This is also expected, since it is beneficial to enlarge
the cycle time as the costs of switching become larger.

Allowing backlog, with backlog costs c−1 = 50 and c−2 = 3, shifts the optimal
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trajectory downwards and enlarges the cycle time, see Figure 8b. For queue 2,
the inventory and backlog costs are equal. Note that no backlog occurs at queue
1, which is optimal due to the long slow-mode and the high costs of backlog.
Next, the service period of queue 1 is restricted (τmax

1 = 15), resulting in the
optimal trajectory depicted in Figure 8c. The service period of queue 1 for this
trajectory is the maximal service period, see Table 1. Adding upper bounds on
the queue contents, xmax

1 = 35 and xmax
2 = 16, also reduces the cycle time, see

Figure 8d. Also, both upper bounds are reached in the trajectory. In Figure 8e,
the optimal trajectory of the system with a maximal cycle time Tmax = 25 is
depicted. This trajectory has a cycle time of 20 time units, the minimal required
cycle time (no slow-modes), and also queue 1 has backlog.

For systems that require a minimal amount of products in the queue, or a
maximal allowed amount of backlog, we add minimal queue constraints to the
model. In Figure 8f, the optimal trajectory is depicted where the content of
queue 1 is at least 2 and the backlog of queue 2 can not exceed 2, i.e., xmin

1 = 2
and xmin

2 = −2. Unlike the previous trajectory, the optimal trajectory is not the
trajectory with the minimal cycle time and queue 2 reaches both boundaries.
Finally, in Figure 8g the optimal steady-state trajectory for this system without
setup periods is depicted. Due to the setup costs, this trajectory is not the fixed
point (2, 0). The optimal cycle time is 20 time units, which is not the minimal
cycle time for this system.

Fig. T J∗w τµ1 τλ1 τµ2 τλ2 x1 x2
7b 32 120 6 8 8 0 0 0
8a 38,78 134,13 6,57 12,52 9,70 0 0 0
8b 40,65 130,41 6,72 13,77 10,16 0 0 -7,62
8c 33,33 131,93 6,11 8,89 8,33 0 0 -6,25
8d 30 134,06 5,83 6,67 7,5 0 0 -6,5
8e 20 134,07 5 0 5 0 -4,14 -3,75
8f 24 158,06 5,33 2,67 6 0 2 -2
8g 20 60,37 1,67 13,33 5 0 2 -2

Table 1: Optimal cycle times, costs, service periods and minimal queue contents
for the trajectories depicted in Figures 7-8.

4. Optimal transient trajectory

The transient optimization problem is that of steering the system towards
the optimal steady-state trajectory at minimal costs. Machine failure in a man-
ufacturing application or bus priorities in a signalized traffic intersection are
two examples that can remove the system from the steady-state trajectory. We
assume that deviations from the steady-state trajectory rarely occur, allow-
ing the system to recover to the steady-state situation after each interruption,
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which is reasonable for systems such as traffic intersections or manufacturing
applications.

15



0 10 20 30 40

0

10

20

30

x1

x
2

(a) s2,1 = 300 and s1,2 = 200.
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(b) c−1 = 50 and c−2 = 3.
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(d) xmax = [35, 16]>.
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(e) Tmax = 25.
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(g) No setup periods.

Figure 8: Optimal steady-state trajectories for the system with parameters (10),
minimizing the time average costs. The system is subsequently extended with
setup costs (a), backlog (b), maximal service period (c), maximal queue contents
(d), maximal cycle time (e) and minimal queue contents (f). In (g), no setup
periods are considered.
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A transient solution is defined as a trajectory in the x1 − x2 space that
leads to the optimal steady-state trajectory in a finite amount of time. An
optimal transient solution is a transient solution which minimizes the costs of
reaching the optimal steady-state trajectory. For the remainder of this paper,
we define the initial state x(0) as the state immediately after removal from the
periodic solution, e.g., after the machine failure or bus priority. In order to
reach the steady-state trajectory from every possible initial state in finite time,
the steady-state trajectory requires a slow-mode, since serving at a lower rate,
i.e., not at full capacity, provides the transient trajectory to ‘catch up’ with the
steady-state trajectory.

For a fixed number of cycles C, we present the transient optimization prob-
lem as a QP problem. A cycle, starting at mode m, is defined as the series of
operations until the end of the previous mode (which is 4 for mode 1, 1 for mode
2, etc.). Denote by τi,c the service time of queue i for the c-th cycle (c ≤ C),
consisting of the service time at maximal rate τµi,c and the service time at arrival

rate τλi,c. Also, xn,c denotes the content of queue n at the end of the c-th cycle:

xn,c+1 =xn,c + λn(Tc − τλn,c)− µnτµn,c, n = 1, 2, c = 1, 2, ..., C,

where xn,0 = xn(0). In the remainder of this paper we assume that the initial
mode is 1, i.e., start setting up to serve queue 1, and derive the QP problem
for this particular case. The QP problems for the other initial modes can be
derived similarly. Constraints for the transient problem (c.f. (1) and (3)) are
listed below. Minimal and maximal cycle time constraints are:

Tmin ≤ Tc ≤ Tmax, c = 1, 2, ..., C, (11a)

with Tc = τ01,c + τµ1,c + τλ1,c + τ02,c + τµ2,c + τλ2,c. Minimal and maximal service
periods:

τmin
n ≤ τn,c ≤ τmax

n , for n = 1, 2, c = 1, 2, ..., C, (11b)

and minimal idle time

σj,n ≤ τ0n,c, n, j = 1, 2, j 6= n, c = 1, 2, ..., C. (11c)

If the transient optimization problem is considered for an infinite number of
cycles, the transient trajectory would remain on the steady-state trajectory
once it is reached. However, due to the finite number of cycles considered in
the QP problem, a termination effect occurs. Clearly, the direct costs vary over
the optimal periodic orbit, and typically, at the end of a service mode the direct
costs are less than the average. Therefore, assuming the transient solution is on
the periodic orbit at the final cycle, prolonging this final cycle by enlarging τλ2,C
(instead of switching) is beneficial. To negate this termination effect, we enforce
the final state of the final cycle C of the transient solution to be identical to the
final state of the steady-state solution, i.e.,

xn,C =x∗n, n = 1, 2, (11d)
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with x∗n the content of queue n at the start/end of the optimal steady-state
trajectory, i.e., the content at the start of the setup to serve queue 1. If (11d)
holds, the trajectory is defined as a feasible transient trajectory, otherwise the
trajectory is infeasible. Deriving the optimal transient trajectory is discussed for
two classes of two queue switching servers: servers without backlog and servers
with backlog.

4.1. System without backlog

For the system without backlog, the transient costs are defined by

Jp=lim inf
t→∞

∫ t

0

[c+1 x1(τ) + c+2 x2(τ) + s21v1(τ) + s12v2(τ)− J∗w]dτ, (12)

with vn(t) = 1
σj,n

, j 6= n during a setup to queue n and vn(t) = 0 otherwise,

and recall that J∗w is the optimal time average steady-state cost of the system.
Furthermore, service is at maximal rate if the queue is nonempty, otherwise at
arrival rate. The total queue contents wn,c of queue n for cycle c satisfies:

w1,c =(x1,c−1 + 1
2λ1τ

0
1,c)τ

0
1,c + (x1,c−1 + λ1τ

0
1,c − 1

2µ1τ
µ
1,c)τ

µ
1,c+

+ (x1,c−1 + λ1τ
0
1,c − µ1τ

µ
1,c)τ

λ
1,c + (x1,c−1 + λ1τ

0
1,c+ (13a)

+ 1
2λ1(τ02,c + τµ2,c + τλ2,c)− µ1τ

µ
1,c)(τ

0
2,c + τµ2,c + τλ2,c), c = 1, 2, ..., C,

w2,c =(x2,c−1 + 1
2λ2(τ01,c + τµ1,c + τλ1,c + τ02,c))(τ

0
1,c + τµ1,c + τλ1,c + τ02,c)+

+ (x2,c−1 + λ2(τ01,c + τµ1,c + τλ1,c + τ02,c)− 1
2µ2τ

µ
2,c)τ

µ
2,c+ (13b)

+ (x2,c−1 + λ2(τ01,c + τµ1,c + τλ1,c + τ02,c)− µ2τ
µ
2,c)τ

λ
2,c, c = 1, 2, ..., C.

Using (13), the transient costs (12), considering C cycles, can be written as

Jp(C) =C(s1,2 + s2,1) +Qp(C),

whereQp(C) is the solution to the quadratic programming problem, for C cycles,
given by

Qp(C) = min
τ0
n,c,τ

µ
n,c,τλn,c

2∑
n=1

C∑
c=1

[
c+i wn,c − J

∗
w(τ0n,c + τµn,c + τλn,c)

]
, (14)

subject to constraints (3c), (11), (13), and

x1,c ≥ λ1(τ02,c + τµ2,c + τλ2,c), c = 1, 2, ..., C, (15a)

x2,c ≥ 0, c = 1, 2, ..., C, (15b)

x1,c−1 ≤ xmax
1 − λ1τ01,c, c = 1, 2, ..., C, (15c)

x2,c ≤ xmax
2 − (µ2 − λ1)τµ2,c, c = 1, 2, ..., C, (15d)

where constraints (15a) and (15b) follow from xi(t) ≥ 0, and constraints (15c)
and (15d) follow from (3c).
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Given a system with the initial state outside the steady-state trajectory, the
number of cycles required to derive the optimal transient trajectory is not eas-
ily determined. However, a lower bound on the number of cycles required for a
feasible transient trajectory Cmin can be determined by using a clearing policy,
regarding the initial state and considering a system without capacity or service
period constraints. For a system with capacity or service period constraints,
this number of cycles is usually not enough to reach the steady-state trajectory.
Starting from this lower bound, and by adding extra cycles, we solve the QP
problem until a feasible transient trajectory is derived. Note that this transient
trajectory is not necessarily the optimal trajectory, i.e., adding more cycles may
lower the costs. Therefore, the number of cycles considered in the QP prob-
lem (14) is increased until the total costs required for the transient trajectory to
reach the steady-state trajectory does no longer change, i.e., J∗p (C) = J∗p (C+i),
∀i > 0. Then, adding more cycles does not result in a different transient trajec-
tory, in the sense that it only adds steady-state cycles to the solution. Hence,
this suggests that the transient solution is the optimal one.

4.1.1. Illustrations

For the system with parameters (10) and without constraints on queue
length, cycle time and service periods, the optimal transient trajectory for ini-
tial state x(0) =

[
3, 6, 25, 1

]
is presented in Figure 9a by the solid line.

The optimal steady-state trajectory is depicted by the dashed line. Note, that
the initial mode is 1, and that the steady-state trajectory is reached during the
second cycle. It can be seen that for this initial state a clearing policy (until the
steady-state trajectory is reached) yields the optimal performance. However, the
optimal trajectory for the system with initial state x(0) =

[
3, 30, 23, 1

]
,

presented in Figure 9b, gives a different result. First, after the setup, queue 1
is emptied. Second, after the setup, queue 2 is served until a content of 3.43 is
reached, then the system switches to serve queue 1. Note that queue 2 is not
emptied. Next, queues 1 and 2 are both cleared before reaching the steady-state
trajectory.
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(a) x(0) =
[
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(b) x(0) =
[
3, 30, 23, 1

]
.

Figure 9: Optimal transient trajectories with different initial states. In (a) the
clearing policy is optimal, in (b) it is not.
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For the trajectory depicted in Figure 9b, it is clearly shown that a trade-off
exists between a build-up of the much more expensive queue 1 and switching
before emptying queue 2. This behavior is not present in symmetric systems,
as a clearing policy is optimal for symmetric systems, see for instance [1, 11].

Each optimal transient trajectory contains switching points. A switching
point is the state x =

[
x0, x1, x2, m

]
at which the system switches to serve

the other queue, i.e., switching between modes m = 2 and m = 3 and between
modes m = 4 and m = 1. Experimentally combining the switching points of
optimal trajectories, i.e., solving the transient problem for a set of initial states
and collecting the switching points, results in a switching curve. A switching
curve characterizes the optimal transient structure for any given initial state,
provided that the server works at maximal rate. Note that for a system with
constraints on the service period, switching curves may not exist in general,
as the switching points are affected by the constraints and will depend on the
initial state. For the system without service time constraints, switching curves
can possibly be derived analytically as follows. Starting from the steady-state
trajectory, an area can be characterized from which the transient trajectory con-
verges with a single operation to the steady-state trajectory. Next, an area can
be characterized for which the system converges to the steady-state trajectory
in two steps, and the optimal service times can be derived. Continuing these
steps might result in the switching curves.

The (experimentally determined) switching curves for the system with pa-
rameters (10) are presented in Figure 10, along with a trajectory for initial state
x(0) =

[
3, 45, 80, 1

]
. The switching curve for a transition between modes

m = 2 and m = 3 is given by the line starting from x1 = 0 and x2 ≥ 17, where
(0, 17) is the switching point of the optimal steady-state trajectory. The switch-
ing curve for a transition between modes m = 4 and m = 1 is discontinuous
with linear segments. These segments do not overlap, i.e., each initial state has
a single optimal trajectory.
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Figure 10: Discontinuous switching curves (black), for the system with param-
eters (10), and transient trajectory (gray) for x(0) = [3 45 80 1].

For the system with parameters (10) and c+1 = 2, the switching curve is
continuous, see Figure 11a. Here, the switching curve for a transition between
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modes m = 4 and m = 1 is piecewise linear.
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(a) Unconstrained system
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(b) Bounds xmax
1 = 75 and xmax

2 = 92.

Figure 11: Switching curves (black), for the system with parameters (10) and
c+1 = 2, and transient trajectory (gray) for x(0) = [3 40 80 1].

Adding maximal queue length constraints xmax
1 = 75 and xmax

2 = 92 to this
model results in the switching curves depicted in Figure 11b. The figure also
displays the optimal transient trajectory for x(0) =

[
3, 40, 80, 1

]
. It can

be seen that the switching curves, originating from the queue level constraints,
are located λnσj,n below xmax

n , as the queue length increases during the setup.
The initial queue contents, for starting in mode 1, are limited to x1(0) ≤ xmax

1 −
λ1σ2,1 and x2(0) ≤ xmax

2 − λ2σ.
For an optimal transient policy, the switching curves can be used to indicate

the switching moments. From our experiments we find that for c+nµn ≥ c+j µj ,

queue n is always emptied and the optimal policy for c+nµn = c+j µj is, as ex-
pected, a clearing policy (unless prohibited by restrictions (11)).

Alongside the switching curves, for an optimal transient policy, also the op-
timal initial mode (given contents x0(0), x1(0) and x2(0)), if it is not predefined,
can be derived. Together with the switching curves, this gives the policy for
optimal transient behavior given initial queue contents. Once the optimal initial
state is known, the queues are served until a switching point is reached, switch
to the successive mode, until converging to the optimal steady-state trajectory.
If all initial modes are allowed, the states with setup modes m(0) = 1 and
m(0) = 3 are of course not optimal. Therefore, a comparison of the transient
costs starting with both modes m(0) = 2 and m(0) = 4 results in the optimal
initial mode. For the system with parameters (10) and c+1 = 2, the optimal
initial modes are presented in Figure 12, along with the switching curves. For
initial queue contents in the gray area the optimal initial mode is m(0) = 2,
m(0) = 4 otherwise.

Note that, for the system without backlog, the optimal transient trajectory
does not include idling of the server. Also, a slow-mode only occurs while on the
steady-state trajectory or to converge to this trajectory. For the system with
backlog, presented next, idling of the server and slow-modes can occur in the
optimal transient trajectory.
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Figure 12: Switching curves (black) and optimal initial mode for the system with
parameters (10) and c+1 = 2, m(0) = 2 in the gray area, m(0) = 4 otherwise.

4.2. System with backlog

For the system with backlog, the transient costs are defined by

Jp = lim inf
t→∞

∫ t

0

[c+1 x
+
1 (τ) + c−1 x

−
1 (τ) + c+2 x

+
2 (τ) + c−2 x

−
2 (τ)+

+ s2,1v1(τ) + s1,2v2(τ)− J∗w]dτ,

Since Lemma 3.1 does not hold for each cycle in a transient trajectory, the
inventory and backlog can not be calculated by (6). Therefore, extra variables
β and δ are introduced, representing the duration of which the queue content
is either positive or negative in a mode, to calculate the inventory and backlog.
Consider queue 1 that starts cycle c in mode 1. The queue contents during this
cycle are depicted in Figure 13.

τ1,c τ1,c τ2,c τ2,c

0

τ1,c τ2,c
μ λ μ λ0 0

x1,c

x1,c

x1,c

x1,c-1
δ1,c δ1,cβ1,cβ1,cδ1,cβ1,c

x1,c,0 x1,c,0x1,c,0

Figure 13: Evolution of x1 during cycle c.

The periods in which the queue contents change, i.e., all periods except those
serving at arrival rate, are divided into a part in which the content of queue
n is positive, with a duration of δn,c ≥ 0, and a part in which the content is
negative, with a duration of βn,c ≥ 0. For queue 1 it holds that

δ̄1,c + β̄1,c = τ01,c, δ̂1,c + β̂1,c = τµ1,c, δ1,c + β1,c = τ02,c + τµ2,c + τλ2,c. (16)

Furthermore, we denote by x̄1,c the content of queue 1 in cycle c after the idle
period τ01,c and by x̂1,c the content of queue 1 in cycle c after the period of
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maximal service τµ1,c, see Figure 13. We also denote by x̄1,c,0, the contents of

queue 1 in cycle c when the idle period has taken β̄1,c, by x̂1,c,0 the content of

queue 1 in cycle c after the period of maximal service has taken δ̂1,c, and by
x1,c,0 the content of queue 1 in cycle c when the period of serving queue 2 has
taken β1,c, see Figure 13.

The queue levels at these time instances are divided into a positive and
negative part, i.e.,

xn,c = x+n,c − x−n,c, xn,c,0 = x+n,c − x−n,c,0, n = 1, 2, (17a)

x̄n,c = x̄+n,c − x̄−n,c, x̄n,c,0 = x̄+n,c,0 − x̄
−
n,c,0, n = 1, 2, (17b)

x̂n,c = x̂+n,c − x̂−n,c, x̂n,c,0 = x̂+n,c,0 − x̂
−
n,c,0, n = 1, 2, (17c)

where

x+n,c ≥ 0 x−n,c ≥ 0 x+n,c,0 ≥ 0 x−n,c,0 ≥ 0 n = 1, 2, (17d)

x̄+n,c ≥ 0 x̄−n,c ≥ 0 x̄+n,c,0 ≥ 0 x̄−n,c,0 ≥ 0 n = 1, 2, (17e)

x̂+n,c ≥ 0 x̂−n,c ≥ 0 x̂+n,c,0 ≥ 0 x̂−n,c,0 ≥ 0 n = 1, 2. (17f)

We also add the following equality constraints describing the evolution of the
contents of queue 1 in cycle c, as well as the constraints that for changing queue
levels only the positive respectively negative part is changing.

x̄1,c,0 = x1,c−1 + λ1β̄1,c x̄−1,c,0 = x−1,c−1 − λ1β̄1,c (18a)

x̄1,c = x̄1,c,0 + λ1δ̄1,c x̄+1,c = x̄+1,c,0 + λ1δ̄1,c (18b)

x̂1,c,0 = x̄1,c − µ1δ̂1,c x̂+1,c,0 = x̄+1,c − µ1δ̂1,c (18c)

x̂1,c = x̂1,c,0 − µ1β̂1,c x̂−1,c = x̂−1,c,0 + µ1β̂1,c (18d)

x1,c,0 = x̂1,c + λ1β1,c x−1,c,0 = x̂−1,c − λ1β1,c (18e)

x1,c = x1,c,0 + λ1δ1,c x+1,c = x+1,c,0 + λ1δ1,c (18f)

In terms of these new variables, the total inventory and backlog of queue 1 in
cycle c are defined by respectively

w+
1,c = 1

2 β̄1,cx
+
1,c−1 + 1

2τ
0
1,cx

+
1,c,0 + 1

2 (δ̄1,c + δ̂1,c)x̄
+
1,c + 1

2τ
µ
1,cx̂

+
1,c,0+

+ 1
2 β̂1,cx̂

+
1,c + τλ1,cx̂

+
1,c + 1

2β1,cx̂
+
1,c + 1

2 (β1,c + δ1,c)x
+
1,c,0 + 1

2δ1,cx
+
1,c

(19a)

w−1,c = 1
2 β̄1,cx

−
1,c−1 + 1

2τ
0
1,cx

−
1,c,0 + 1

2 (δ̄1,c + δ̂1,c)x̄
−
1,c + 1

2τ
µ
1,cx̂

−
1,c,0+

+ 1
2 β̂1,cx̂

−
1,c + τλ1,cx̂

−
1,c + 1

2β1,cx̂
−
1,c + 1

2 (β1,c + δ1,c)x
−
1,c,0 + 1

2δ1,cx
−
1,c

(19b)

For queue 2, we use a similar approach to derive the backlog and inventory
during cycle c. The queue contents during this cycle are depicted in Figure 14.
Denote by x̄2,c the content of queue 2 in cycle c after the idle period τ02,c.
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Figure 14: Evolution of x2 during cycle c

The periods during which queue 2 is not served at arrival rate are divided
according to

δ̄2,c + β̄2,c = τ01,c + τµ1,c + τλ1,c + τ02,c, δ2,c + β2,c = τµ2,c. (20)

Then, the total inventory and backlog in cycle c is given by respectively

w+
2,c = 1

2 β̄2,cx
+
2,c−1 + 1

2 (β̄2,c + δ̄2,c)x̄
+
2,c,0 + 1

2 (δ̄2,c + δ2,c)x̄
+
2,c+

+ 1
2τ

µ
2,cx

+
2,c,0 + ( 1

2β2,c + τλ2,c)x
+
2,c, (21a)

w+
2,c = 1

2 β̄2,cx
−
2,c−1 + 1

2 (β̄2,c + δ̄2,c)x̄
−
2,c,0 + 1

2 (δ̄2,c + δ2,c)x̄
−
2,c+

+ 1
2τ

µ
2,cx

−
2,c,0 + ( 1

2β2,c + τλ2,c)x
−
2,c. (21b)

We also have the following equality constraints:

x̄2,c,0 = x2,c−1 + λ2β̄2,c x̄−2,c,0 = x−2,c−1 − λ2β̄2,c (22a)

x̄2,c = x̄2,c,0 + λ2δ̄2,c x̄+2,c = x̄+2,c,0 + λ2δ̄2,c (22b)

x2,c,0 = x̄2,c − µ2δ2,c x+2,c,0 = x̄+2,c + µ2δ2,c (22c)

x2,c = x2,c,0 − µ2β2,c x−2,c = x−2,c,0 − µ2β2,c (22d)

Then, the transient costs (16) for the system with backlog, considering C cycles,
can be written as

Jp(C) =C(s1,2 + s2,1) +Qb(C).

Here, Qb(C) is the solution to the quadratic programming problem, for C cycles,
given by

Qb(C) = min
τµn,c,τλn,c

2∑
n=1

C∑
c=1

[
c+nw

+
n,c + c−nw

−
n,c − J∗w(σn,j + τµn,c + τλn,c)

]
, n 6= j,

(23)

Objective function (23) is subject to constraints (16)–(22), and, from (3c),

x1,c ≤ xmax
1 , x̄1,c ≤ xmax

1 , x̄2,c ≤ xmax
2 .

Note that the constraints (17) only guarantee that x+n,c = max(0, xn,c) + k and
x−n,c = max(0,−xn,c) + k for some constant k ≥ 0. However, minimizing the
objective function (23) with c+n > 0 and c+n > 0 guarantees that k = 0.
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4.2.1. Illustrations

Consider the system with the following parameters

λ1 = 3, µ1 = 8, σ2,1 = 1, c+1 = 2, c−1 = 20,

λ2 = 1, µ2 = 9, σ1,2 = 3, c+2 = 1, c−2 = 10,
(25)

and without setup costs or constraints on capacity or service periods. In Fig-
ure 15, the optimal steady-state trajectory (black solid line) and three optimal
transient trajectories are depicted. The solid (gray) line represents the transient
trajectory with x(0) =

[
3, 10, −10, 1

]
, where the server sets up to serve

queue 2 directly after the setup to queue 1. The dashed line depicts the tra-
jectory starting from x(0) =

[
3, −10, −10, 1

]
. Here, after the setup, the

server idles until x1 = 0 and then converges to the steady-state cycle using a
slow-mode. This example shows that optimal transient trajectories can include
idling of the server, unlike the trajectories for the system without backlog. This
is also intuitive, as idling of the server is the quickest way to remove back-
log. A third trajectory, depicted by the dotted line in Figure 15, starts from
x(0) =

[
3, −10, 10, 1

]
and also converges directly after emptying queue 1

and continuing service at arrival rate.

−10 0 10 20
−10

0

10

x1

x
2

Figure 15: Optimal transient trajectories with different initial states, for the
system with parameters (25).

In Figure 16, three optimal periodic trajectories are presented starting with
a large backlog in queue 1 (x1(0) = −30). The initial state for the trajectory
depicted by the gray solid line is x(0) =

[
3, −30, −5, 1

]
, the trajectory

depicted by dashed line x(0) =
[
3, −30, 0, 1

]
and the trajectory depicted

by dotted line x(0) =
[
3, −30, 15, 1

]
. It can be seen that the backlog

is minimized as fast as possible, by switching to serve queue 2 and serving
this queue or idling until x2 = 0. Note that, for convergence to the steady-
state trajectory, the server can switch earlier to serve queue 1. However, this
reduction in time does not outweigh the extra backlog costs. Moreover, when the
trajectory reaches the origin, the server can immediately switch to serve queue
1, resulting in a lower total inventory. For this system, this reduction in costs
does not outweigh the cost reduction by elongating the cycle time. Therefore,
queue 2 is served at arrival rate a little longer, i.e., until x2 = 2.06.
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Figure 16: Optimal transient trajectories with different initial states, for the
system with parameters (25).

In some cases, the optimal transient trajectory requires a few additional
cycles to converge to the steady-state trajectory after the queue levels are di-
rected to the vicinity of the steady-state trajectory. This trajectory has op-
timal costs, but another transient trajectory, which converges with less cycles
to the steady-state trajectory and almost identical costs, might be desired by
the operator, e.g., for simplicity of the trajectory. As an illustrative example,
Figure 17 presents two different transient trajectories, both with initial state[
3, 10, 0, 1

]
. Figure 17a depicts the optimal transient trajectory, which

requires four cycles to converge to the steady-state trajectory. In Figure 17b,
a transient trajectory is depicted which converges after two cycles, with almost
similar costs, i.e., a difference of 1,7%. This trajectory might be desired over the
optimal trajectory, as the costs are almost similar and the trajectory converges
faster to the steady-state trajectory.

0 5 10 15

0

5

10

15

x1

x
2

(a) Convergence after 4 cycles,
J∗P=105.85.

0 5 10 15

0

5

10

15

x1

x
2

(b) Convergence after 2 cycles,
JP=107.64.

Figure 17: Two trajectories for x(0) = [3 10 10 1].

Also, switching curves for the system with backlog, as presented for the
system without backlog, provide no insight in the optimal transient behavior,
due to this complex convergence for some of the optimal transient trajectories.
To negate the occurrence of extra cycles just before converging, we add costs to
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the number of cycles required to converge. Denote by cc the additional transient
costs of requiring an extra cycle to converge to the steady-state trajectory. Then,
the transient costs J̄p are denoted by

J̄p(C) =C(s1,2 + s2,1 + cc) +Qb(C). (26)

Using (26), for the system with parameters (25) and cc = 5, which is only 31%
of the optimal steady-state costs J∗w, the switching curves and three transient
trajectories are depicted in Figure 18. These switching curves are depicted with
the black solid lines, and are generated by optimizing trajectories for the system
without backlog in the initial states. Also the optimal steady-state trajectory
is depicted (gray) with corresponding switching points. It can be seen that the
switching curves on the left side, which represent a transition between modes
m = 2 and m = 3, consists of three line segments and single switching point
on the steady-state trajectory. In Figure 18a a transient trajectory is depicted,
with x(0) =

[
3, 10, 11, 1

]
and converges to the steady-state trajectory dur-

ing the slow-mode in the second cycle. The transient trajectory presented in
Figure 18b, with initial state x(0) =

[
3, 10, 7, 1

]
, converges to the steady-

state trajectory during service of queue 2 in the first cycle. Due to allowed
backlog, this is possible for a whole range of trajectories, as they switch at the
second line segment of the switching curve. Finally, in Figure 18c a transient
trajectory is depicted for the system with initial state x(0) =

[
3, 10, 0, 1

]
.

Note that the trajectory converges to the steady-state trajectory during service
of queue 1 in the second cycle, while convergence was already possible during
service of queue 1 in the first cycle. However, using two cycles results in lower
costs (even with the added costs cc). For a larger cost cc, the use of this second
cycle can be removed. Trajectories that reach a point on the dashed line, while
serving queue 1, converge to the steady-state trajectory by using a slow-mode
from that point.

For obtaining the results in this section, we used Matlab R2014b on a 1.9GHz
Intel Core i5-4300U CPU. We used quadprog for solving the quadratic programs.
Solving the QP’s for determining the optimal steady-state trajectory took either
0.001s or 0.002s. Solving the QP’s for the transient problem took in between
0.26s and 1.21s with an average of 0.34s.

5. Multi-queue switching servers

Extending this work to multi-queue switching servers imposes several prob-
lems. The first problem is the order of serving the queues. The proposed method
can be extended to derive optimal steady-state and transient trajectories for
multi-queue switching servers if the order of service of queues is predefined, for
instance due to safety issues at traffic intersections or a fixed order of assembly
at manufacturing systems. If the order is not predefined, the optimal trajectory
can be derived by first determining the optimal trajectory for all possible orders
of serving queues, and then selecting the one yielding the best performance.
The second problem is the interpretation of the switching curves and optimal
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(c) x(0) =
[
3, 10, 2, 1

]
.

Figure 18: Switching curves, optimal steady-state trajectory and three transient
trajectories.

transient trajectories. If, for any initial state, the transient trajectories can be
derived, a common policy (as specified by the switching curves) is not easily
found or does not exist.

x1 μ1 = 16

x2 μ2 = 16

x3 μ3 = 16

λ1 = 4

λ2 = 2

λ3 = 1

Figure 19: Three-queue switching server.

For example, consider a three-queue switching server, presented in Figure 19.
The state of the 3-queue server is given by x =

[
x0, x1, x2, x3, m

]
. The

arrival and service rates are indicated in Figure 19, all setup periods have a
duration of 1 and the costs are given by c1 = 4, c2 = 2, c3 = 1. Furthermore,
the server is restricted to serve only one queue at a time. Due to, for example,
operator requirements, the service order of queues is fixed, i.e., assume without
loss of generality that queues are served in the order 1, 2, 3 and then queue
1 again and so on. Also, backlog is not allowed, i.e., the queue lengths are
nonnegative. Furthermore, no restrictions are imposed on the service periods or
queue lengths. For this system, the optimal steady-state trajectory is presented
in Figure 20. This trajectory has a single slow mode, after emptying queue 1.

Then, the optimal transient trajectory is derived similar as presented in Sec-
tion 4.1, with the addition of service of queue 3. The combined switching points,
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Figure 20: Optimal steady-state trajectory of the 3-queue system.

derived by experiments, result in switching areas. A switch to serve queue 2 or
queue 3 occurs when queues 1 or 2 are emptied, i.e., x =

[
0, 0, R, R, 1

]
or

x =
[
0, R, 0, R, 2

]
, respectively. The switching area indicating a switch

between serving queue 3 and setting up to serve queue 1 is presented in Fig-
ure 21. It can be seen that, queue 3 is, once served, not always emptied, as the
switching area is not represented by x =

[
0, R, R, 0, 3

]
. This behavior is

similar to the transient behavior of a two queue system.

Figure 21: Switching area, switch from serving queue 3 to serve queue 1.

For this illustrative example, no constraints are imposed on the service or cy-
cle times. Therefore, the server is allowed to switch to serve the next queue right
after finishing a setup. This occurs for instance if x(0) =

[
1, 200, 200, 200, 1

]
.

The corresponding optimal transient trajectory is presented in Figure 22. It can
be clearly seen that queue 3 is not served in the first cycle, i.e., after emptying
queue 2, the system starts serving queue 1 again. To do this, first a setup to
queue 3 is performed, followed by a setup to serve queue 1. This indicates that,
if the order of service is not predefined, another sequence can result in better
performance.
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Figure 22: Optimal transient trajectory for x(0) = [1, 200, 200, 200, 1].
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6. Conclusions

In this paper we studied the optimal steady-state and transient trajectories
for a two queue switching server. The optimal steady-state trajectory is derived
analytically for the system without backlog. For the system with backlog, and to
allow multi-queue switching servers, the problem is formulated as a QP problem
given a fixed cycle time. By solving the QP over a range of cycle times, the
optimal steady-state trajectory is derived. An advantage of this method is that
it is flexible in adding objectives and constraints, e.g., setup times and/or setup
costs, including backlog and constraints on cycle times, service times and queue
lengths.

Second, we formulated the transient problem, i.e., a transient trajectory
which minimizes the costs of reaching the optimal steady-state trajectory. This
problem is also formulated as a QP problem, depending on the number of cycles
C imposed to reach the steady-state trajectory. Evaluating a range of values C,
results in the optimal transient trajectory, given initial queue contents and initial
mode. For the system without capacity constraints and no backlogs, switching
curves can be derived by combining switching points of optimal trajectories,
i.e., points at which the system switches to serve other queues. These switching
curves are the blueprint of a policy for optimal transient behavior. Furthermore,
the optimal initial mode, if not predescribed, can be derived. Together with the
switching curves, this yields the control policy for optimal transient behavior.
For the system with backlog, we introduced additional costs on the number
of cycles required to converge to the steady-state trajectory, to derive a more
simple schedule and to be able to derive switching curves for the unconstrained
system.

Finally, we have shown that the presented approaches can be extended to
multi-queue switching servers. For a fixed queue routing, i.e., fixed service order
of queues, the approach can be easily extended by adding the extra queues.
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