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Optimal Household Appliances Scheduling Under
Day-Ahead Pricing and Load-Shaping Demand

Response Strategies
Nikolaos G. Paterakis, Student Member, IEEE, Ozan Erdinç, Member, IEEE,

Anastasios G. Bakirtzis, Fellow, IEEE, and João P. S. Catalão, Senior Member, IEEE

Abstract—In this paper, a detailed home energy management
system structure is developed to determine the optimal day-
ahead appliance scheduling of a smart household under hourly
pricing and peak power-limiting (hard and soft power limitation)-
based demand response strategies. All types of controllable assets
have been explicitly modeled, including thermostatically control-
lable (air conditioners and water heaters) and nonthermostati-
cally controllable (washing machines and dishwashers) appliances,
together with electric vehicles (EVs). Furthermore, an energy
storage system (ESS) and distributed generation at the end-user
premises are taken into account. Bidirectional energy flow is also
considered through advanced options for EV and ESS opera-
tion. Finally, a realistic test-case is presented with a sufficiently
reduced time granularity being thoroughly discussed to investi-
gate the effectiveness of the model. Stringent simulation results
are provided using data gathered from real appliances and real
measurements.

Index Terms—Demand response (DR), distributed generation
(DG), electric vehicles (EVs), energy storage system (ESS), home
energy management, smart household.

NOMENCLATURE

The main nomenclature used throughout this paper is stated
as follows:

Sets:
m Set of shifting appliances.
p Set of operating phases of appliances.
t Set of time periods.
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Parameters:
a Ratio of increase over maximum daily price

for pricing excessive power drawn from the
grid.

Ai Element area (m2).
ca Thermal capacity of air (kJ/kg ·◦C).
C Electric water heater (EWH) thermal capaci-

tance (kWh/◦C).
CEESS Charging efficiency of energy storage system

(ESS).
CEEV Charging efficiency of electric vehicle (EV).
COP Coefficient of performance.
DEESS Discharging efficiency of ESS.
DEEV Discharging efficiency of EV.
Lt Inflexible load (kW).
li Element thickness (m).
L1 House length (m).
L2 House width (m).
L3 House height (m).
Ma Mass of air (kg).
M EWH tank size (gallons).
mt Hot water usage (gallons).
Nm Number of times an appliance has to be oper-

ated during a day.
PL1 Upper limit for the power drawn from the grid

(kW).
PL2 Upper limit for the power sold back to the grid

(kW).
PLt

1 Time varying upper limit for the power drawn
from the grid (kW).

PAC Air conditioner (AC) rated power (kW).
PPV,PRO
t Available photovoltaic (PV) power (kW).

P ph
m,p Rated power of an operating phase of a cycle

of a nonthermostatically controllable appli-
ance (kW).

Q EWH capacity (kW).
R EWH thermal resistance (◦C/kW).
Req Equivalent thermal resistance (h·◦C/J).
RESS,ch ESS charging rate (kW).
RESS,dis ESS discharging rate (kW).
REV,ch EV charging rate (kW).
REV,dis EV discharging rate (kW).
SOEESS,ini Initial state-of-energy (SOE) of ESS (kWh).
SOEESS,max Maximum SOE of EV (kWh).

1551-3203 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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SOEESS,min Minimum SOE of EV (kWh).
SOEEV,ini Initial SOE of EV (kWh).
SOEEV,max Maximum SOE of EV (kWh).
SOEEV,min Minimum SOE of EV (kWh).
SPt AC temperature set point (◦C).
T a EV arrival time.
T a
t Outdoor air temperature (◦C).

T d EV departure time.
T dur
m,p Duration of an operating phase of a cycle of

a nonthermostatically controllable appliance
(periods).

T c,w
t Inlet water temperature (◦C).

Th,w,min Minimum hot water temperature (◦C).
Th,w,max Maximum hot water temperature (◦C).
Vhouse Volume of the house (m3).
ΔT Duration of time interval (h).
δair Air density (kg/m3).
λbuy
t Price at which power is bought from the grid

(cents/kWh).
λsell
t Price at which power is sold back to the grid

(cents/kWh).
σi Element thermal coefficient (J/h ·m · ◦C).
β Roof angle (◦).

Variables:
PAC
t AC power (kW).

PESS,ch
t ESS charging power (kW).

PESS,dis
t ESS discharging power (kW).

PESS,sold
t ESS power injected to grid (kW).

PESS,used
t ESS power used in household (kW).

PEV,ch
t EV charging power (kW).

PEV,dis
t EV discharging power (kW).

PEV,sold
t EV power injected to grid (kW).

PEV,used
t EV power used in household (kW).

PEWH
t EWH power (kW).

P grid
t Power drawn from grid (kW).

P grid,ex
t Excessive energy drawn from grid (kW).

Pmach
m,t Nonthermostatically controllable appliance

power (kW).
PPV,sold
t PV power injected to grid (kW).

PPV,used
t PV power used in household (kW).

P sold
t Power injected back to grid (kW).

Sd
t Deviation of the indoor temperature from the

ideal point to down side (◦C).
Su
t Deviation of the indoor temperature from the

ideal point to upper side (◦C).
SOEESS

t ESS SOE (kWh).
SOEEV

t EV SOE (kWh).
Th,w
t Hot water temperature (v).

T r
t Room temperature (◦C).

uAC
t Binary variable—1 if AC is operating, else 0.

uESS
t Binary variable—1 if ESS is charging, else 0.

uEV
t Binary variable—1 if EV is charging, else 0.

uEWH
t Binary variable—1 if EWH is operating, else 0.

ugrid
t Binary variable—1 if power is drawn from the

grid, else 0.

uph
m,p,t Binary variable—1 if nonthermostatically con-

trollable appliance is in operating phase p, else 0.
yphm,p,t Binary variable—1 if nonthermostatically con-

trollable appliance starts operating phase p,
else 0.

zphm,p,t Binary variable—1 if nonthermostatically con-
trollable appliance finishes operating phase p,
else 0.

I. INTRODUCTION

A. Motivation and Background

T HE SMART grid vision aims to enable more active end-
user participation rather than just considering them pas-

sive consumption points, where smart households have gained
increasing interest recently [2], [3].

Towards enabling smart end-user premises at household
level, a home energy management system (HEMS) plays a
vital role for the efficient and effective operation of such end-
user points coordinated by load serving entities (LSEs) under
demand response (DR) strategies [4].

HEMS receives relevant input information (such as pricing
data that can be day-ahead, hour-ahead, peak power limits,
and warnings for planned contingencies) from LSE and plans
the operation of all electrical aspects of the household with a
predefined aim under imposed constraints by means of LSE
restrictions, consumer preferences, among others [5], [6].

Here, different electrical aspects provide several pros and
cons in terms of effective HEMS-based operating strategy.
There are several types of electrical appliances that can be
classified as thermostatically controllable (ACs, EWHs, etc.),
nonthermostatically controllable (washers, dryers, etc.), and
noncontrollable appliances [7]. Here, as new electrical aspects,
EVs in terms of a load or even a mobile storage unit,
distributed generation (DG) such as roof-top PV units, as
well as ESSs are also gaining importance nowadays within
end-user premises with incentives given to local production
and use of energy in consumption points in many coun-
tries all around the world. To capture the benefits of all
such electrical aspects as well as to cover consumer prefer-
ences and limitations, an effective HEMS structure is strongly
required.

B. Literature Overview

A broad literature is recently dedicated to implementation of
different HEMS strategies for smart households.

Chen et al. [11] and Tsui and Chan [12] developed an opti-
mization strategy for the effective operation of a household
with a price signal-based DR. Li and Hong [13] proposed a
“user-expected price” based DR strategy for a smart house-
hold, including also a battery-based ESS aiming at lowering
the total electricity cost by charging and discharging the ESS
at off-peak and peak price periods, respectively. However, the
impact of including an additional EV load that can also be help-
ful for peak clipping in certain periods when EV is at home
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and the possibility of an own production facility have not been
evaluated in [13].

Zhao et al. [14] considered the HEMS strategy-based control
of a smart household, including PV-based own production facil-
ity and availability of EV and ESS. However, vehicle-to-home
(V2H) and further possible vehicle-to-grid (V2G) operating
modes of EV have not been taken into account in [14]. Restegar
et al. [15] developed a smart home load commitment strat-
egy considering all the possible operating modes of EV and
ESS. However, that paper neglected the impact of an extra peak
power-limiting strategy that is probable to be imposed by an
LSE, not considered also in [11]–[15].

Pipattanasomporn et al. [16] and Kuzlu et al. [17] presented
an HEMS strategy considering peak power-limiting DR strat-
egy for a smart household, including both smart appliances
and EV charging. Shao et al. [18] also investigated EV for
DR-based load shaping of a distribution transformer serving a
neighborhood.

However, References [16]–[18] did not provide an optimum
operating strategy considering price variability with the aim of
obtaining the lowest daily cost apart from just limiting peak
power drawn from the grid by the household in certain periods.

Matalanas et al. [19] applied an HEMS based on neural net-
works with experimental results for a household including PV
and ESS. However, the impacts of varying price as well as other
types of DR strategies have not been evaluated in [19].

de Angelis et al. [20] performed the evaluation of an HEMS
strategy considering the electrical and thermal constraints
imposed by the overall power balance and consumer prefer-
ences. Chen et al. [21] provided an appliance scheduling in a
smart home considering dynamic prices and appliance usage
patterns of a consumer. Missaoui et al. [22] provided a smart
building energy management strategy based on price variations
and external conditions, as well as comfort requirements. The
pricing data-based energy management has also been suggested
by Hu and Li [23] together with a hardware demonstration.
Erdinc [24] considered both pricing and peak power-limiting
DR, but neglected the possibility of two-way energy trading for
EV and ESS with the grid, which can further improve the eco-
nomic advantage of the HEM structure by increased flexibility.
Erdinc et al. [25] imposed distributed renewable energy contri-
bution to reduce load demand on utility side, V2H option of EV
to lower the demand peak periods, and two-way energy trading
capability of EV (with V2G) and a possible ESS together with
different DR strategies. However, the study in [25] neglected
the operating strategy of thermal loads such as ACs and EWHs
that have a vital role in end-user comfort-level supply and
energy consumption variation within a residential area. Besides,
only a hard peak power-limiting strategy and a single type of
pricing strategy have been considered in [25] with a time gran-
ularity of 1 h that prevents a more detailed analysis of appliance
scheduling and impacts of further different DR strategies.

In the literature, there are many methods to formulate
an HEMS-based optimal in-home power scheduling problem.
Methods such as particle swarm optimization [26], genetic
algorithms [27], and game theory [28] comprise a part in the
relevant literature. There are also studies using mixed-integer
linear programming (MILP) approach [24], [25]. There are two

main advantages of MILP as opposed to the other proposed
approaches. First, the solution is guaranteed to be global opti-
mum and, second, the structure of an MILP model is modular
and may be easily modified to adapt to the required customiza-
tions. Finally, there is one more important group of DR studies
also including residential consumers that comprise the effect
of DR in distribution networks considering power flow and
other system operational constraints [29], [30]. However, such
considerations are out of the scope of this study.

These papers together with many other studies not referred
here have provided valuable contributions to the application
of smart grid concepts in household areas. However, many
of the mentioned papers failed to address a combined eval-
uation of V2H operation of EV, impacts of an additional
DG, bidirectional operation of ESS, and different appliances
including both thermostatically and nonthermostatically types
with a sufficiently reduced time granularity under several DR
strategies.

C. Contributions

In this paper, an MILP model of the HEM structure is pro-
vided to investigate a collaborative evaluation of different pric-
ing and peak power-limiting-based DR strategies, a PV-based
DG system, the capability of an EV and ESS based on V2H and
ESS-to-home (ESS2H), and different types of both thermostat-
ically and nonthermostatically controllable appliances, such as
AC, EWH, washing machine, and dishwasher.

To the best knowledge of the authors, this is the first study in
the literature combining all aforementioned operational possi-
bilities in a single HEMS formulated in an MILP framework,
which is the main novelty of this paper. Besides, a reduced
time granularity (minute-scale) is employed to better analyze
the effectiveness of the appliance scheduling part of HEMS
strategy. Moreover, a thermal model of the household is also
provided to consider the impacts of ambient conditions on in-
house thermal dynamics for a more realistic consideration of
thermal load operations.

Different case studies including dynamic pricing based-, and
hard and soft peak power-limiting-based DR strategies have
been conducted. Both economic and technical impacts of these
strategies are deeply analyzed in terms of total cost of daily
operation and improvement of the load factor (LF) to have a
more flat load pattern that is also the interest of the LSE.

D. Organization

This paper is organized as follows. Section II provides the
methodology employed in the study. Afterward, Section III
includes the case studies for evaluating daily DR-based oper-
ating strategies for the smart household. Finally, concluding
remarks are presented in Section IV.

II. MATHEMATICAL FORMULATION

In this section, the formulation of the smart-household
energy management system (Fig. 1.) under an MILP approach
is thoroughly analyzed.
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Fig. 1. Smart-household structure.

A. Assumptions

In order to mathematically formulate the problem, several
assumptions are adopted. First, the degradation of the EV bat-
tery by the charging (home to vehicle—H2V) and discharging
cycles (V2H and V2G) is neglected considering that the house-
hold participates in a battery rental business program offered by
EV manufacturers (e.g., Renault [31]). These programs offer
a free-of-charge change of EV battery when battery degrades
to a level that requires replacement and demands a monthly
paid regular rental fee to the manufacturer [32]. Besides, due to
fact that the small sized and cheap battery system (such as the
mature lead-acid battery technology) considered as ESS in this
study has been calculated to have a negligible cost for degrada-
tion per cycle compared to electricity rates, the cost that may
be related to ESS degradation is also neglected for the sake of
simplicity.

The presented model receives the 24-h day-ahead hourly
price signal through the smart-meter several hours before its
activation. It is to be noted that this is not the actual price that
the consumers will pay, but it provides an indication about the
expected prices of the next day. The actual prices are announced
in real time. It is to be stated that this is a common practice in
real-life dynamic retail-pricing schemes [33].

Finally, all the required parameters are considered perfectly
known. In practice, an adaptive system that learns from the
end-users behavior may be employed or the occupants may
insert these data themselves. Parameters such as the ambient
temperature may be obtained by forecasting available online or
by a local data-acquisition system, i.e., a weather station.

The required infrastructure to enable the communication
between the household elements with the HEMS has been
described in [18].

B. Objective Function

The objective is to determine the least-cost daily operation of
the smart household by optimally controlling the consumption
of several types of appliances. This is expressed by (1).

Minimize

Cost =
∑
t

(
P grid
t ·ΔT · λbuy

t − P sold
t ·ΔT · λsell

t

)
. (1)

It is to be noted that (1) stands for the actual cost of the
household electricity consumption if only a simple day-ahead
hourly pricing scheme is active. Other artificial or penalty terms
regarding comfort loss or further DR schemes are superimposed
to this basic relationship. These are elaborated in Section II-D.

In addition, there are also other costs related to the main-
tenance, replacement, etc., of existing components (PV, ESS,
etc.) in smart households. However, even if those costs can be
assumed also related to the family of “other” operating costs,
the manuscript focuses on appliance-scheduling-based HEMS
directly aiming to minimize the reduction of costs associated
with the electricity bill of the consumer and therefore, such
additional possible costs are neglected in this study.

C. Constraints

1) EV: The EV model employed in this study is described
by (2)–(8). Equation (2) defines the usage of power that
comes from discharging the EV (V2H or V2G). Constraints (3)
and (4) limit the charging and discharging power of the EV,
respectively. The SOE of the EV battery is defined by (5) and
(6), while (7) stands for the minimum and maximum SOE of
the EV to avoid deep discharge. Finally, (8) states that the EV
should be fully charged at the end of the time horizon

P EV,used
t + P EV,sold

t = DEEV · P EV,dis
t ∀t (2)

0 ≤ P EV,ch
t ≤ REV,ch · uEV

t ∀t ∈ [
T a, T d

]
(3)

0 ≤ P EV,dis
t ≤ REV,dis · (1− uEV

t ) ∀t ∈ [
T a, T d

]
(4)

SOEEV
t = SOEEV,ini + CEEV · P EV,ch

t ·ΔT

− P EV,dis
t ·ΔT if t = T a (5)

SOEEV
t = SOEEV

t−1 + CEEV · P EV,ch
t ·ΔT

− P EV,dis
t ·ΔT ∀t ∈ (

T a, T d
]

(6)
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SOEEV,min ≤ SOEEV
t ≤ SOEEV,max ∀t ∈ [

T a, T d
]

(7)

SOEt
EV = SOEEV,max, t = T d. (8)

2) ESS: The constraints that model the operation of the
ESS (9)–(14) are similar to the ones describing the operation
of the EV. The basic difference is that unlike the EV, the ESS is
available at the household premises all day

P ESS,used
t + P ESS,sold

t = DEESS · P ESS,dis
t ∀t (9)

0 ≤ P ESS,ch
t ≤ RESS,ch · uESS

t ∀t (10)

0 ≤ P ESS,dis
t ≤ RESS,dis · (1− uESS

t ) ∀t (11)

SOEESS
t = SOEESS

t−1 + CEESS · P ESS,ch
t ·ΔT

− P ESS,dis
t ·ΔT ∀t > 1 (12)

SOEESS
t = SOEESS,ini, if t = 1 (13)

SOEESS,min ≤ SOEESS
t ≤ SOEESS,max ∀t (14)

3) Nonthermostatically Controllable Loads: A typical
household contains loads that operate on a predefined cycle,
which means that both the duration of their operation and
their consumption during operational phases are known (e.g.,
washing machine and dishwasher).

The HEMS may shift their operation to exploit low-price
periods. These types of loads are modeled using (15)–(20).
Equation (15) implies that the power that the appliance
m is consuming during period t depends on the operating
phase that is currently active. Constraint (16) states that a
machine cannot be in more than one operating phase simulta-
neously. Equations (17)–(19) enforce the phase sequence logic.
Equation (17) states that the phase p ends exactly T dur

m,p peri-
ods after it starts. Equation (18) enforces the logic of starting
and ending of each phase. Equation (19) states that as soon
as a phase finishes, the next phase should immediately start.
Finally, (20) enforces the number of times a specific appliance
must operate during the horizon. These constraints assume that
there is not a user-preference related to when the appliances
should perform their task. Nevertheless, if such options need to
be considered, desired time limits may be enforced to (15)–(20)

Pmach
m,t =

∑
p

uph
m,p,t · P ph

m,p ∀m, t (15)

∑
p

uph
m,p,t ≤ 1 ∀m, t (16)

yph
m,p,t = zph

m,p,(t+T dur
m,p)

(17)

yph
m,p,t − zph

m,p,t = uph
m,p,t − uph

m,p,(t−1) ∀m, p, t > 1 (18)

zph
m,p,t = yph

m,p+1,t ∀m, p < card(P ), t (19)∑
t

yph
m,p,t = Nm ∀m, p (20)

4) Thermostatically Controllable Loads: In this study, the
operation of two thermostatically controllable loads, namely the
EWH and the AC, is modeled in detail. Such models are impor-
tant because they are linked with both occupants’ comfort and
high energy consumption, as mentioned before. Especially, the

occupants’ comfort is a key factor that determines the success
of a DR program. However, the operation of such loads depends
on the thermal inertia of the water or the air inside the house,
which in turn may be exploited to address the aforementioned
issues.

The EWH model is adapted and suitably modified from [7],
being represented by (21)–(24). Specifically, (21) models the
water temperature inside the tank considering both the heat
exchanged with the environment and the heat provided by the
EWH resistance.

It should be stated that the EWH tank is considered to be
located in an area that is immediately affected by the ambient
air temperature. Furthermore, when hot water is drawn from the
EWH, then it is replenished by cold inlet water and the temper-
ature is determined by (22). Lastly, (23) sets the permissible
limits of the hot water temperature, while (24) stands for the
EWH electric power consumption

Th,w
t+1 = T a

t +Q ·R · uEWH
t −

(
T a
t − Th,w

t

)
· e− ΔT

R·C

∀t < Tmax,mt = 0 (21)

Th,w
t+1 =

Th,w
t · (M −mt) + T c,w

t ·mt

M
∀t < Tmax,mt > 0

(22)

Th,w,min ≤ Th,w
t ≤ Th,w,max ∀t (23)

P EWH
t = Q · uEWH

t ∀t. (24)

An AC may be operated in an interruptible manner to reduce
its electricity consumption cost. In order to apply this type
of operation, a model to determine the temperature inside the
house has to be developed. The indoor temperature depends on
several factors such as the thermal properties of air, the heat
exchange between house and ambient, and the thermodynamic
properties of the building structure. In this study, a model based
on the equivalent thermal resistance of the building is devel-
oped. Naturally, this model is based on differential equations
that under several plausible assumptions may be linearized [34]
as in (25)–(27).

Equation (25) considers only the cooling operation, but it
may be easily modified to consider heating as well. The occu-
pants define the required set point for several periods during
which the indoor temperature has to comply (26). The variables
Sd
t and Su

t are positive and define the deviation of the indoor
temperature from the ideal point. They may be fixed by the end-
user to define the AC dead-band (e.g., 1 ◦C around the set point)
or they may be included in the objective function under a high
artificial cost to minimize the comfort violation. Equation (27)
stands for the power used by the AC

T r
t =

(
1− ΔT

1000 ·MacaReq

)
· T r

t−1 +
ΔT

1000 ·MacaReq
· T a

t−1

− uAC
t−1

COP · PAC ·ΔT

0.000277 ·Maca
∀t > 1 (25)

SPt − Sd
t ≤ T r

t ≤ SPt + Su
t ∀t : SPt �= NaN (26)

PAC
t = PAC · uAC

t ∀t. (27)

Note that thermostatically controllable appliances may also
be operated in discrete modes. Such features are consistent with
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the proposed formulation since the discrete modes of operation
of the thermostatically controllable appliances can be modeled
by enforcing additional constraints similar to the ones that are
enforced for the nonthermostatically controllable appliances.

5) Other Constraints: The power balance is described by

P grid
t + P PV,used

t + P EV,used
t + P ESS,used

t

= Lt + P EV,ch
t +

∑
m

Pmach
m,t + P EWH

t + PAC
t ∀t. (28)

Equation (29) implies that the available PV production may
be used to cover household load and if it exceeds it, it is
sold back to the grid. Constraints (30)–(32) define the energy
transactions between house and grid

P PV,used
t + P PV,sold

t = P PV,PRO
t ∀t (29)

P sold
t = P PV,sold

t + P EV,sold
t + P ESS,sold

t ∀t (30)

P grid
t ≤ PL1 · ugrid

t ∀t (31)

P sold
t ≤ PL2 ·

(
1− ugrid

t

)
∀t. (32)

The parameters PL1 and PL2 may be used to impose limits
to the power that may be drawn or injected back to the grid as a
part of an advanced DR strategy. If no power limits are defined,
then these parameters are set to sufficiently high positive
values.

D. Power-Limiting Strategies

The HEMS described by the mathematical model developed
previously aims at allocating as much load as possible during
lowest-price periods.

As a result, a potentially high penetration of smartly oper-
ated household loads that operate with an HEMS optimizer
raises concerns about causing high power peaks during these
periods. This may lead to higher electricity prices during these
normally low-demand and low-price periods, distribution trans-
former overloading, etc. Thus, it is relevant to investigate
several power-limiting strategies.

1) “Hard” Power Limit During Several Periods: A power
limit may be imposed to the smart households by responsible
entities according to the DR program they participate. The sim-
plest practice is to impose a limit on the power that may be
drawn during several periods to respond to a contingency or to
control the market price. The HEMS is aware of these limits
through the smart-meter. To impose such limits, the param-
eter PL1 in (31) is substituted by a time-varying limit PLt

1.
Nevertheless, this strategy may still lead to several other peaks
due to load recovery effect.

2) “Soft” Power Limit During the Day: The “hard” limit
may be imposed only for several hours, while a DR event is in
progress. Another strategy that may be used to control the max-
imum power drawn by the grid throughout the day is described
by (33). First, a power limit PLt

1 is set for the applicable peri-
ods. The household is allowed to draw power that exceeds this
limit, but the excessive energy is penalized. In this study, it is
considered that the excessive energy is priced with the high-
est hourly price augmented by a percentage a (e.g., 10%). This

strategy is a combination of time-varying DR and critical peak
pricing [35]

P grid
t ≤ PLt

1 + P grid,ex
t ∀t. (33)

Under this scheme, the objective function is transformed
to (34)

Cost =
∑
t

⎧⎪⎪⎨
⎪⎪⎩

(
P grid
t − P grid,ex

t

)
·ΔT · λbuy

t

+ P grid,ex
t ·ΔT · (1 + a) ·maxt

(
λbuy
t

)
− P sold

t ·ΔT · λsell
t

⎫⎪⎪⎬
⎪⎪⎭

.

(34)

3) Assessment of Power-Limiting Strategy: Generally, it
may be desirable to obtain a power consumption curve as flat
as possible to achieve better controllability of a load at a cer-
tain part of the distribution system. The end-users may be given
incentives to achieve a certain value of the LF index described
by (35), which stands for the ratio of the average net power
drawn from the grid to the peak power. The higher the value of
this index, the more flat the power curve of the household is

LF =
avgt

(
P grid
t − P sold

t

)

maxt
(
P grid
t − P sold

t

) . (35)

Another fact that is important to assess the potential macro-
scopic impacts of the proposed strategies on the operation of
the power system is the load fluctuations that are caused by
the operation of the HEMS. Steep increase or decrease in the
load may require more regulation capacity to be employed
by the system operator (SO), especially as the penetration of
smart-grid-enabling technologies is increasing in the residen-
tial sector. For this reason, the average ramping index (ARI)
that is a modified variant of the load turbulence index [36] is
introduced

ARI =
1

card(T )

∑
t

∣∣∣(P grid
t − P sold

t

)
−
(
P grid
t−1 − P sold

t−1

)∣∣∣ .
(36)

To facilitate the regulation of the load, it is desirable to have
low ARI values. Considering that more customers would enroll
to such programs in the future, more severe power peaks could
occur during relatively low-price periods, causing violations to
the voltage and current limits of the distribution system and
increase market price volatility [30]. As a result, a criterion
according to which a DR strategy should be evaluated is the
smoothness of the induced load profile.

III. TESTS AND RESULTS

A. Input Data

First, the selected time-window for the optimization is 5 min
(0.0833 h). The household comprises several loads, the rated
power of which can be found in Table I. The inflexible load con-
sumption over the scheduling horizon is presented in Fig. 2 for
a four-member household together with the installed PV sys-
tem’s (1 kW) available production. The load profile in Fig. 2 is
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TABLE I
HOUSEHOLD APPLIANCES DATA

Fig. 2. Inflexible load demand and PV production.

TABLE II
OPERATING PHASES OF THE APPLIANCES

gathered from the real appliances-based load profile generation
[37]. In addition, PV production is a real measurement from a
1-kW roof-top PV system.

Apart from these loads, a Chevy volt (EV) is also considered.
It is employed with a charging station that has a charging power
limited to 3.3 kW, while its battery rating is 16 kWh [10]. The
charging efficiency is considered 95%. It should be noted that
the EV arrives at home at 5 P.M. and needs to be fully charged at
6:55 A.M. of the next day. Its initial SOE is considered 8 kWh
(50%). To avoid deep discharge, the lowest limit is set to 4.8
kWh (30%).

The washing machine and the dishwasher are considered
controllable loads. Their operating cycle is described in Table II
[38]. The washing machine consumes 2 kW during the heating
phase, 0.15 kW during the washing and rinsing phase, and
0.3 kW during the spinning phase. The dishwasher consumes
2.2 kW for the washing, hot rinsing, and drying phases, and
0.15 kW for the cold rinse phase.

For the EWH, the water usage pattern and the set points are
required. It is assumed that the shower head has a flow of 2.5
gallons/min, while each shower lasts 10 min (2 periods). During
the shower, the water temperature should not be less than 40 ◦C.
The occupants are assumed to take showers at 7:50 A.M., 1:30
P.M., and 8:30 P.M. During the horizon, the water temperature

TABLE III
STRUCTURAL PARAMETERS OF THE SMART HOUSEHOLD

Fig. 3. Outside air temperature and inlet water temperature.

inside the EWH tank may not exceed 60 ◦C for safety reasons.
The EWH is considered to be located in an area where the tem-
perature is not affected by AC operation. Its rated power is 2 kW
and its water capacity is 50 gallons. Other thermal properties of
the EWH are the same as in [7].

To control the consumption of the AC, both the equivalent
thermal resistance of the house and the mass of air inside it are
required. These calculations may be performed using (37)–(39)
considering a rectangular geometry and an inclination of the
roof of β◦ [20]

Req =
1

N

∑
i

li
σiAi

(37)

Vhouse = L1 · L2 · L3 + tan (β) · L1 · L2 (38)

Ma = Vhouse · δair. (39)

Generally, the density of the air and its thermal capacity
depend on its thermodynamic properties (temperature, pressure,
etc.). In this study, they are considered constant and utilize stan-
dard values δair = 1.225 kg/m3 and ca = 1.01 kJ/kg◦C. Data
concerning the structural parameters of the house are presented
in Table III. For the given data, the equivalent thermal resistance
is 3.1965 · 10−6 h· ◦C

J . The volume of the house is 1451.729 m3

and as a result, the mass of air is 1778.369 kg. Furthermore,
the AC unit has a rated power of 2 kW and the coefficient-of-
performance (COP) is 2. The occupants set the thermostat set
point to 25 ◦C from 12:30 P.M. to 9 P.M. The dead-band of the
thermostat is set to 0.5 ◦C around the set point.

The outdoor temperature for a hot summer day and the
inlet water temperature are given in Fig. 3. The temperature
is adapted from hourly measured values in Heraklion, Crete,
Greece during July 2014. Detailed data for the inlet water tem-
perature are scarce and as a result for the purposes of our study
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Fig. 4. Day-ahead hourly pricing signal.

Fig. 5. Power drawn from the grid (no power limit).

are constructed as follows. First, an average temperature is con-
sidered (20 ◦C). Then, due to the high thermal capacity of the
ground, it is considered that air temperature affects the inlet
water temperature very little (e.g., a positively superimposed
factor of 1/7). Lastly, Gaussian noise is added at the tempera-
ture in the range of −0.5 ◦C to 0.5 ◦C. The smart-meter receives
the 24-h price signal presented in Fig. 4 that corresponds to a
typical summer day. Day-ahead hourly prices are adapted from
[33]. The PV power may be injected back at a feed-in tariff
(FIT).

B. Simulation Results and Discussion

The presented simulations mainly aim at assessing the capa-
bility of the EMS to respond not only to the dynamic pricing to
allocate the household load in the least-cost operation but also
to specific load-shaped requirements imposed by the grid opera-
tor. In this respect, the capability of the household to sell energy
back to the grid complicates the analysis. Besides, the pricing
policy of selling energy back to the grid (dynamic selling-back
price, FIT, etc.) may affect the result and thus a separate anal-
ysis is required. Nevertheless, this is out of the scope of this
study. In this respect, in this study, it is considered that the
household may not sell back energy to the grid.

Figs. 5–7 depict the power drawn from the grid during the
day, while Figs. 8–10 illustrate the hourly energy allocation to
the different loads as well as the energy contribution of EV,
ESS, PV, and grid. In case no power restriction is set to the
smart household (Figs. 5 and 8), the HEMS allocates the loads
to the least-price periods causing peaks to emerge early in the
morning. Then, a “hard” limit is considered to be active from
12 A.M. to 6:55 A.M., periods in which the electricity prices are
the lowest within the day, and therefore a high load is expected
to occur.

Fig. 6. Power drawn from the grid (4 kW—12 A.M.–6:55 A.M.).

Fig. 7. Power drawn from the grid (4 kW—“soft” limit).

Fig. 8. Hourly energy consumption and source (no power limit).

Fig. 9. Hourly energy consumption and source (4 kW—12 A.M.-6:55 A.M.).

As can be noticed in Figs. 6 and 9, during these periods, the
load is reduced to 4 kW and as a result, the EV is forced to
charge using less power for a longer period. Similarly, the dish-
washer and the washing machine are shifted. Before 11 P.M.,
the load remains essentially the same as that of the previously
described case.

Figs. 7 and 10 correspond to the case where a power limit
equal to 4 kW is enforced throughout the time horizon, allow-
ing for violations under a penalty that is equal to 10% of the
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Fig. 10. Hourly energy consumption and source (4 kW—“soft” limit).

TABLE IV
COMPARISON OF DR STRATEGIES COST AND LF UNDER HOURLY

PRICING

highest price of the day. As it can be noticed in Fig. 10, for
the periods after 11 P.M., the results are similar to that of the
“hard” limit case. The ESS provides energy to the home during
7 A.M. and 1 P.M. to eliminate the peak caused mainly by the
noncontrollable loads operating during this hour. Furthermore,
the EWH and the AC are operated for a longer time to store
energy by means of hot water and building structure thermal
inertia, respectively.

To sum up, comparing Figs. 5–7 demonstrates that the effect
of limiting the power that may be drawn from the grid through
a power-limiting DR strategy in combination with the price-
based DR is the redistribution of the load among the lowest-
price periods that coincide with the hard power limit (Fig. 6).

In case of the “soft” power limit, excessive power can be
procured, but HEMS prevents this to avoid being penalized.
In addition, comparing Figs. 8–10, the rescheduling of dif-
ferent appliances can be better observed by the shifting of
the loads such as EV charging, washing machine, and dish-
washer as mentioned before. To better illustrate the effects of
power-limiting strategies, a parametric analysis is performed
and the results concerning the cost and the LF are presented
in Table IV. The “hard” power-limiting strategy guarantees that
peaks do not occur during 12 A.M. and 6:55 A.M. This leads
to an improved LF for all cases. Cost increases by imposing a
stricter power limit because of shifting energy consumption to
relatively higher price periods for hourly pricing scheme.

The “soft” power-limiting strategy results into flattening the
load curve in comparison with the case in which no power limit
is imposed. An increase in the cost of the power drawn from
the grid is noticed because of two factors: controllable load
is shifted to periods with greater price and also the excessive
energy, mainly because of inflexible load, is penalized. It is
also noticed that as the “soft” power limit becomes lower, the

TABLE V
COMPARISON OF OPTIMAL COSTS FOR DIFFERENT EV PARAMETERS

TABLE VI
LOAD SHAPING EFFECT OF ESS CAPACITY

LF is no longer improved; instead, it slightly decreases. This
is caused by the fact that the energy that may be provided by
the household assets (EV, ESS, and PV) to reduce power drawn
from the grid to cover inflexible load is limited, and thus it is
not possible to mitigate peaks.

In order to evaluate how different consumer behaviors affect
the optimal operational cost of the smart households, different
cases of initial EV SOE and EV arrival time are investigated
and the relevant results are presented in Table V. It can be
noticed that as the EVs arrive later in the day, the operational
cost increases since they offer energy to cover a portion of the
household load via V2H during less costly periods, which in
turn is covered by energy purchased by the grid during higher
price periods. Another observation is that the increase in the ini-
tial SOE by 40.7% renders a 10.8% decrease in the operational
cost, while the reduction of 21.2% in the initial SOE results
in 2.9% higher daily energy procurement cost, considering that
the EV arrival time is 5:05 P.M.

To complete the analysis of the proposed HEMS model,
the impact of ESS as a load-shaping mechanism is studied
(Table VI) both for unconstrained operation of the smart house-
hold and considering a “soft” power limit DR strategy of 5 kW
throughout the day. The ESS capacity varies between 0 and 6
kWh. Note that the initial SOE of the ESS is considered 50% of
the capacity and the charging/discharging rates are adjusted, so
that 20% of this capacity can be charged/discharged per hour.
Lastly, the minimum allowable ESS capacity is considered 25%
of the maximum capacity. First of all, it may be noticed that in
the case in which no power limitation is imposed, increasing the
ESS capacity results into a decrease in the LF and an increase in
the ARI indices, respectively. From the perspective of the SO,
the increased flexibility offered by the higher capacity of the
ESS to the end-user results into a fluctuating load profile that
can macroscopically pose challenges for the system operation
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(i.e., load balancing) as the penetration of smart technologies
increases in the residential sector. When the “soft” limit DR
strategy is enforced, the ESS appears to have a different role.
As the capacity of ESS increases, it can be noticed that LF also
increases, as a result of the HEMS being forced to reduce the
peaks to avoid being penalized. Furthermore, the ARI is also
reduced compared to the previous case of not enforcing the DR
strategy. Note that in all cases, increasing the capacity of the
ESS results into reduced costs.

C. Practical Applicability of the Proposed Approach

The 5-min time frame is adequate to describe in detail the
use of several household appliances, such as a hairdryer and
user behavior (arrival time of EV, duration of showers, etc.). In
general, the number of constraints and variables is indicative of
the computational burden associated with the developed model,
which in turn highly depends on the adopted time granularity.

The model has been coded in GAMS 24.0.2 and has been
solved by the commercial solver CPLEX 12. The dimensions
of the computationally worst simulation are noticeable: 18769
constraints, 20084 variables, and 13413 binary variables. The
average solution time, considering an optimality gap of 0%,
is 16 sec on a modern laptop computer (i7 at 2.4 GHz, 4 GB
of RAM, 64-bit Windows) and less than 1 s in a workstation
(two 6-core processors at 3.46 GHz, 96 GB of RAM, 64-bit
Windows).

As the computational capabilities of embedded systems
that are needed to implement HEMS and monitoring systems
increase, it appears that such complex algorithms will be prac-
tically applicable even for larger scale systems. As a result,
the model presented in this study may indeed be effectively
employed in real-life real-time applications.

IV. CONCLUSION

In this study, an HEMS structure has been described where
thermostatically and nonthermostatically controllable loads
were explicitly modeled using MILP. ESS and DG were also
considered. The aim of the optimization problem was to min-
imize the total cost to meet the electrical energy needs of the
household in a dynamic pricing environment. Furthermore, the
effect of several load-shaping strategies based on hard and soft
peak power-limiting DR was investigated. Then, the model was
tested using a realistic test case with sufficiently low level of
time granularity and the results were thoroughly discussed.
Based on the simulations conducted, despite the considerable
complexity of the mathematical model, the model proved to be
computationally efficient.
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