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Chapter 1

Introduction

As the title of this thesis makes abundantly clear, this work is about the physics
of solar cells. Our choice for this title deserves some extra clarification, since the
physics of solar cells is a very broad and developed field and one would probably
expect to find such a title on a student handbook instead of a PhD thesis.
There already exist sophisticated software packages that have implemented
detailed physical and mathematical models and that are capable of predicting
the efficiencies of complex cell designs, so the physics of solar cells might appear
to be a closed chapter for the most part; a finished work. Then why do we
devote a PhD thesis to it? Our short answer to that question is, bluntly, that
we still need to understand solar cells better than we currently do. Naturally,
when we talk about understanding solar cells, we talk about improving them1

since photovoltaics (PV) is not a purely academic subject that we study just
for the science of it. The question then rises what the role of physics is (or
should be) in the design of solar cells. The ideal we normally have of science
and physics is that we study a subject to learn about it and then use this
knowledge improve what whatever it was that needed improvement. However,
this ideal is not as straightforward to realise as we would often like and the
step from knowledge to improvement is not always trivial (as is often assumed,
unfortunately). We can ask a computer to calculate the efficiency a certain
cell design and we would get a very accurate answer, but what we would much
rather do is ask the computer to calculate a cell design that achieves, e.g., a
26 % efficiency given certain practical constraints. The physics of solar cells
may provide us with very accurate models, but in the end it seems that for
solar cell design we still need something else; something nebulous we usually
call “ingenuity”, “art” or “deeper understanding” or something like that.

1The term “improvement” can mean many different things in this context. Indeed, there
is a very fruitful discussion to be had about what we mean by “improvement of solar cells”.
For the purposes of this work, we will mostly be talking about cell efficiency since that gives
us a clear physical and thermodynamical measure of performance. For the argument in this
paragraph, though, any other metric of performance can be substituted if necessary.
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So let us try to analyse this limitation of current solar cell physics a bit
further. The first thing to note is that physics in general is, in its roots, a
science based on an alternating loop of observation and prediction. A physicist
observes a system and based on his observations he makes predictions. Next,
he tests his predictions by further observations. However, if we want to improve
a solar cell, we are not primarily interested in continually making predictions
and then observing if the cell does indeed follow the mathematical model we
made of it. Instead, what we are effectively trying to achieve is to “force”
a particular observation we are interested in: the cell that performs best (see
Figure 1.1). So while physics is very good at making good models of solar cells,
that does not immediately mean that these models are immediately useful for
making good cells. One could say that the problem of solar cell design is an
inverse problem (i.e, one is trying to improve the observation rather than the
model that makes the predictions) compared to ordinary empirical science.2

At the start of this research project in November 2011, we set out to gain
a better understanding of the crystalline silicon (c-Si) heterojunction solar cell
(abbreviated as SHJ cell) in order to come up with other potentially interesting
and cost-efficient ways to create a cell out of a wafer. At the time there was
still some debate about the success of the heterojunction between hydrogenated
amorphous silicon (a-Si:H) and c-Si (see Figure 1.2), which was –and at the
time of writing still is– achieving unusually high open circuit voltages (VOC)
for a silicon solar cell. Early 2012, De Wolf et al. of EPFL published a review
of this type of solar cell [1] and from this paper it becomes clear that the
success of the a-Si:H/c-Si heterojunction was only partially understood. The
low defect density of the a-Si:H/c-Si interface was mentioned as an important
contributor to the high VOC, but it was clear that this alone cannot be the
whole story. De Wolf et al. write:

“Key to the success of SHJ devices is the separation of highly recombination-
active (ohmic) contacts from the crystalline surface by insertion of a passivat-
ing, semiconducting film with a wider bandgap [2]. For SHJ devices, ideally,
charge trickles through this buffer layer sufficiently slowly to build up a high
voltage, but fast enough to avoid carriers recombining before being collected.
The buffer layer may thus be considered as a semi-permeable membrane for
carrier extraction [3].”

It is very significant to note that the authors here make no use of terms
like “space charge region” (SCR), “drift current”, and “diffusion current” that

2Without getting to far ahead of ourselves, it is worth mentioning here that there is one
branch of physics that specialises in these kinds of optimisation (i.e., engineering) problems.
We are talking, of course, about thermodynamics. There is perhaps a certain irony in the fact
that the physical theory that deals with optimisation of energy conversion is also the one that
does not really care about microscopic details. Our first instinct as scientist to understand
something is to take it apart, but are more details always the best way to get to a better
device?
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Figure 1.1: The contrast between learning about solar cells and improving them. Both
disciplines are rooted in experiment and observation, but for science the ultimate goal is to
improve the mathematical models of solar cells while engineering is concerned with improv-
ing the cell itself. Of course, the two are not mutually exclusive: engineering can lead to
interesting new questions science can investigate (top red arrow) while the scientific models
can help to find new solutions to engineering problems (bottom red arrow).
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Figure 1.2: Schematic layout of the a-Si:H/c-Si heterojunction cell as described by, e.g.,
De Wolf et al. [1]. It is fabricated by depositing films of intrinsic a-Si:H on both sides
of a texturised silicon wafer (usually n-type), followed by films of doped a-Si:H of opposite
polarities on either side. Typically, the a-Si:H films are have a combined thickness of around
10 nm. These films form the electron and hole selective membranes that allow the different
charge carriers to be extracted at opposite sides of the wafer. On top of the a-Si:H films one
then deposits TCO (short for transparent conductive oxide) films that provide low-resistance
current pathways to the metal contacts. Commonly used TCOs include tin-doped indium
oxide (ITO) and aluminium-doped zinc oxide (ZnO:Al). SHJ cells of this simple planar
design have proven to be relatively easy to fabricate in only a few low-temperature (< 200 ◦C)
processing steps while still achieving very respectable efficiencies; some of them rivalling the
world record such as Panasonic’s 750 mV SHJ cell from 2011 [4]. In fact, a modified version
(also by Panasonic) of the SHJ cell holds the current world record for single junction c-Si
cells [5]. What makes this record cell different, is that it has both the n-type and p-type
doped a-Si:H films on the rear side of the cell in a configuration often called “interdigitated
back contacts” or IBC. The IBC SHJ solar cell design is a solution to the main drawback of
the planar SHJ cell, namely its parasitic absorption. As it turns out (and as we will discuss
in greater depth later), the photons absorbed in the a-Si:H films in the SHJ cell contribute
relatively little to usable current. Thus, by putting the a-Si:H films at the back of the cell in
the IBC design, the amount of absorption in the amorphous films in minimised so that it can
provide more current. The main disadvantage of the IBC SHJ cell is that it is significantly
more complex to design and fabricate.
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are traditionally used to explain how homojunction solar cells work. Instead,
they rely on the relatively new idea of semi-permeable membranes, first coined
by Peter Würfel. Reading his book Physics of Solar Cells made it clear that
Würfel has a very different view of solar cells than the one presented in most
text books on semiconductor physics, even though Würfel never really disputes
the validity of the equations those text books use. Würfel demonstrates that
there is more to the physics of solar cells than just the equations that describe
them: there is also a bigger picture –an overall philosophy if you will– consisting
of easily identifiable elements and a clear understanding of how they interact.

So while the equations of solar cell physics are mostly clear and cut, the
big picture view of solar cells is still developing. But what does that mean,
exactly? How can such a framework improve? Needless to say, a general idea
like Würfel’s selective membrane model should not clash with the fundamental
solar cell equations; otherwise it would be no more than a superstition or
misconception. This means that its predictive power (the usual metric by which
we judge a physical theory) should not be different than that of the basic solar
cell equations. It also means that we cannot choose between two competing
pictures purely based on their predictive power: both should be physically
correct to begin with. Instead, if we have to choose between two such pictures,
we should look at how much they simplify the process of improving solar cells.
In other words, we are looking for a language that allows us to have meaningful,
clear discussions about solar cells and that makes it easy to find design flaws
in cells we want to improve. Thus, a good overall picture of solar cells is very
important to solve the inverse problem of solar cell design mentioned earlier.

In the summer of 2012 the author of this thesis was lucky enough to meet
Würfel in person and have some discussions with him. It became apparent
that, at the time, he was not very optimistic about the general acceptance of
his ideas. Three years later, we think that his reservations are, fortunately,
unwarranted: during the many discussions with different researchers in (as
well as outside of) the field, we noticed that the semi-permeable membrane
model has a universal appeal due to its intuitive simplicity and most people
we introduced it to were quick to adopt it. In fact, we have heard people
admit more than once that they never felt like they really understood much
about solar cells before we introduced them to Würfel’s ideas. In our own
experience, it is a very powerful way of thinking about solar cells that makes
the discussions about solar cell design much more transparent and less naive
compared to what we had before (see Figure 1.3). Still, even though the
selective membrane model is steadily gaining ground, the old solar cell picture
(left in Figure 1.3) is still commonly found in literature, especially in articles
from authors that originate from other fields (such as graphene processing, see
e.g., [6, 7]) that pay a short visit to the world of PV. Even in the field of silicon
PV there are still authors who, e.g., attribute the success of the SHJ cell to
–in our opinion quite erroneously– the inversion layer in the c-Si [8]. In fact,
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the reader will see in Chapter 5 (which is a paper we wrote in 2013) that we
had some trouble in the past as well to completely shed our old conceptions of
solar cells and adopt the selective membrane model.

Würfel’s ideas raise new and interesting questions that need to be answered.
What exactly is a semi-permeable membrane in the context of solar cells and
how do you make one? What makes it effective? Apparently the bandgap of
such a membrane is important (see the quote of De Wolf et al.); why? And is
that the only thing that matters? What makes the semi-permeable membrane
model a useful way to look at solar cells and how does it follow from the basic
underlying physics? Questions like these we have tried to address over the
last four years and in this thesis we hope to answer them to the reader. As
always turns out to be the case, simple ideas can become pretty complicated
when you examine them closely, so it is important to guard against pitfalls and
oversimplification.

If rules of thumb and heuristic explanations are not investigated and their
limitations explained, the risk exists that they become rigid laws in the minds
of researchers that steer them away from potentially interesting directions of
thinking. Take, for example, the often used rule that the VOC of a single-
junction cell cannot be larger than the bandgap of the semiconductor. This
rule is often taken for granted, but what does it mean, exactly? For one, what
do we exactly mean by “the bandgap”: the optical or the electrical bandgap?
Looking at Figure 1.4 it seems that the electrical bandgap is rather immaterial
to the question, even though that is the number most people have in mind.
Indeed, it has already been pointed out by Yablonovitch [9] (among others)
that a very effective cell should have a dense internal photon field, just in the
situation shown in the figure. The next (rather difficult) question is then what
the exact limitations are when it comes to confining the internal photons by
energy-selective mirrors; a question that would remain unasked if one would
not venture to take a close look at the rule that the VOC cannot be larger than
the bandgap. Unfortunately, for c-Si based cells the possibility of achieving a
VOC larger than 1.124 V can be ruled out because Auger recombination will
always dominate over radiative recombination in silicon3 [10]. Still, Figure
1.4 demonstrates why it is important to take a hard, critical look at broad
ideas about the way solar cells work; the selective membrane model is no
exception and in Chapter 3 we will take a closer look at it. In that section
we demonstrate that the selective membrane model is indeed a useful way of
thinking about solar cells. The main reason for this is that the functions of
the selective membranes and the photon absorber in the cell are so dissimilar
that they require very different material properties to be effective at their
job. Because of this complementarity of functions, it makes sense to mentally

3This is also the reason that the photonic design principles of solar cells will not be treated
in great depth in this thesis, since the main focus is on c-Si based cells. In Sections 2.4 and
2.5 we will briefly deal with this issue in broad terms.
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Figure 1.3: Two competing pictures of solar cell junctions. The left picture is a rather
naive visualisation of the operation of a solar cell for several reasons. First of all, it puts
great emphasis on the build-in voltage Vbi and the space charge region (SCR) and the forces
the electric field exert on the carriers. However, the electrostatic force is only part of the
total (thermodynamic) force that the carriers experience. Drawing an electron that falls of
a electrostatic potential hill makes sense if that electron exists in a vacuum between two
plates of a capacitor, but not in a solar cell where the motion of a single electron is both
unpredictable and unimportant. Moreover, the left picture leaves the incorrect impression
that the electric field drives the current, but an electric field cannot perform net work since
it is a conservative force. The left picture also depicts the thermalisation of the energy of an
electron-hole pair after excitation. This is also slightly naive, since the (total) energy of an
electron-hole pair is, thermodynamically speaking, rather inconsequential: the total energy is
not necessarily the amount of energy one can convert into work. In fact, the diagram shown
on the left is in equilibrium; in this situation none of the energy of the excited pair can be
extracted as work in the same way one cannot extract thermal energy from a silicon wafer
and use that to power a machine. The right picture (Würfels’) is a thermodynamically less
naive presentation of a solar cell and it puts the emphasis on the quasi Fermi levels EFn,p
that represent the free energy of the ensembles of electrons and holes. This also means that
the red and blue dots do not represent individual electrons and holes: they represent the
average of a large number of particles. These averaged particles do not feel electrostatic
forces (the gradients of EC,V) but electrochemical forces (the gradients of EFn,p). Because
EFn and EFp come together in the metal, there will always be electrons flowing towards the
hole-collecting contact and the only way to do something about that is by making sure that
the electrons encounter much more resistance (represented by rectangular resistor symbols)
than the holes on their way from the bulk to the contact. This asymmetry between electron
and hole resistance is what we call selectivity. Note that the SCR in this picture suddenly
becomes rather unimportant: as it turns out, the SCR contributes only a little to selectivity
of the membrane (see Section 3.3). The free energy also allows us to provide a new, more
insightful, view of thermalisation losses associated with photon absorption, because the free
energy is the maximum energy one can hope to extract as useful work from the system.
For example, by considering free energy thermalisation rather than energy thermalisation it
suddenly becomes obvious why photon absorption in selective membranes is less effective than
in the bulk of the cell: in the membranes the Fermi level splitting is less and the free energy
thermalisation losses are larger. In practise, these thermalisation losses manifest themselves
as parasitic absorption; a well-known problem in a-Si:H-based SHJ cells [1].
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divide the cell into these different parts and understand how they work and
interact. Furthermore, this complementarity also immediately makes it clear
that heterojunction cells provide the design flexibility we need to push the cell
efficiency to its limit.

Halfway through 2012 we started playing around with ideas for making new
heterojunction concepts based on Würfel’s selective membrane model. Our
research group has had significant success in the past with the material Al2O3,
which is a surprisingly good passivation layer for silicon [11]. Passivation (the
last word in the title of this thesis that has gone unmentioned so far) is the
practise of making the surface of a silicon wafer (where it is not contacted by
metal leads) less recombination active. This is important, because ordinarily
surfaces are very defective and poorly passivated surfaces will cause significant
losses in a cell. The reason that aluminium oxide is a good passivation layer is
because of the low defect density of the Al2O3/c-Si interface and because of the
negative fixed charge in this interface that generates a hole inversion layer at the
c-Si surface [12]. Under the motto “If you have a good hammer, why not look
for some more nails to hit?”, we started to think if it would be possible to extend
the application of Al2O3 to selective membranes. In Chapter 5 the results of this
research are described. One of our conclusions at the time was that one on hand
we need a thin (∼1 nm) film of Al2O3 to make it possible for the holes to tunnel
through the oxide into the ZnO (which we used as a transparent conductor),
but on the other hand that very thin oxide films also lead to large recombination
losses and low carrier lifetimes. This result should have tipped us off that the
contact we were trying to make is actually not selective enough. Indeed, we
were trying to make a hole-selective membrane by creating a hole inversion
layer in the c-Si and we now know (see Section 3.3) that such an inversion
layer simply cannot provide enough selectivity to make a good cell; an insight
that we simply did not have at the time4. The Al2O3 itself, unfortunately, does
not provide hole-selectivity either5. At the time we were still a bit stuck in
the past in that regard and we focussed a lot on passivation (interface defect
reduction) and on the hole inversion layer (i.e., the SCR). Of course, passivation
is very important when it comes to making selective heterojunction membranes:
precisely because the inversion layer cannot provide selectivity, the defects at
the c-Si interface need to be reduced as much as possible or you lose your
carriers before the selective membrane even gets to do something (see also
Section 3.6). So in this thesis when we are talking about using heterojunctions
to make a selective contacts, we really mean passivating selective contacts.
However, when it comes to making selective contacts, passivation is only the
first step: between the passivated c-Si interface and the metal there needs

4In fact, much of the work in Chapter 3 is motivated precisely by our initial inability to
get a better understanding of the results from the Al2O3/ZnO experiments.

5If anything, quite the opposite: looking at the tunnelling barriers in Figure 5.2, the Al2O3

itself should be electron selective
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Figure 1.4: Is it possible to make a cell with a higher voltage than its bandgap? (Coun-
terclockwise from the top-left.) 1: If enough carriers are injected into the semiconductor,
both the electrons and holes become degenerate. The optical bandgap EG,opt (the minimal
photon energy that can be absorbed by the semiconductor) widens and becomes equal to the
Fermi level splitting instead of the electrical bandgap EG,el. 2: Photons are then emitted
by radiative recombination in the energy range between EG,el and EG,opt. 3: The emitted
photons will de-excite nearby electrons due to stimulated emission, generating even more
photons and causing rapid loss of electron-hole pairs. 4: To avoid this avalanche reaction, it
is necessary to confine the photons in the [EG,el, EG,opt] range by selective mirrors so that
internal equilibrium between the photons and e−–h+ plasma can form, just like in a semi-
conductor laser. In this case we clearly have VOC < EG,opt, since the VOC is the maximum
possible Fermi level splitting. However, it seems likely that VOC > EG,el is possible if the
photons inside of the cell can be confined well enough by the mirrors. Interestingly, in this
situation the free energy thermalisation losses in the cell are significantly lower than if the
electron-hole pairs were non-degenerate.
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to be some sort of layer that provides a source of selectivity, otherwise too
many minority carriers will end up in the wrong metal contact, which is just as
bad as interface recombination. Sometimes the term passivating contacts (or
passivated contacts) can also be heard in the solar cell world, but we think that
this term gives the wrong impression that it is somehow possible to passivate
a metal; to make it less recombination active. This is simply not the case: all
you can really do is make it as difficult as possible for one type of carrier to
reach the metal in the first place.

We then tried to salvage the situation by inserting a little bit of a-Si:H
between the c-Si and Al2O3, even though this was the material we initially set
out to avoid. The unfortunate thing about a-Si:H is that it is a strong photon
absorber, which is something you do not want out of a selective membrane since
it leads to parasitic absorption (see Figure 1.3, Section 3.5, and also De Wolf et
al. [1]). As expected, the a-Si:H improved the measured carrier lifetimes. At
the time we attributed this effect mainly to a reduction of the defect density
at the c-Si/a-Si:H interface (compared to the original Al2O3/c-Si interface),
but the interface defects are probably only part of the story. Looking back at
the data in Chapter 5 with the insights we have gained since then, we now
think it is very likely that the main reason for the improved carrier lifetimes
should be attributed to a significant increase in the resistance the electrons
experience on their way to the contact (for which we used ZnO). In a sense,
the fixed charges in the Al2O3 act as a sort of induced p-type doping in the
a-Si:H. So while the induced SCR in the c-Si only has a very low selectivity,
the SCR induced in the a-Si:H actually is resistive enough to make a good
selective contact. However, we also found that the hole-selective contacts we
fabricated with these materials (ZnO, a-Si:H and Al2O3) were too resistive
for holes. Here, we think that the original conclusions from Chapter 5 still
stand and that the main problem is the choice of ZnO as a TCO (transparent
conductive oxide), which simply does not have a large enough electron affinity
to efficiently collect holes (as demonstrated by modeling the contact like an
Esaki diode; see Figure 5.2 and Figure 5.3). Ultimately, the idea behind the
TCO/a-Si:H/Al2O3 stacks is still sound enough to warrant further investigation
of this concept and those related to it (such as the successful MoOx-based hole
contacts by Battaglia et al. [13, 14]). The attractive feature of these concepts is
that they use a thin, transparent metal oxide layer to replace the doped a-Si:H
in traditional SHJ cells so that only the intrinsic a-Si:H is needed. So while the
problem of parasitic absorption cannot be completely solved by fixed-charge
dielectrics such as Al2O3, at least they provide feasible alternatives to doped
a-Si:H without having to discard the good qualities of intrinsic a-Si:H.

Graphene is another material that caught our attention as potentially in-
teresting for the fabrication of selective membranes. Of course, graphene is
a very unique material with remarkable properties matched by a remarkable
hype to go with it. It should not come as a surprise that many researchers

16



have already made solar cells by putting graphene on a silicon wafer –just to
see what happens– but so far this field has been explored mainly by experts
of graphene and not so much by solar cell experts. We therefore thought it
was a good idea to review this very active field from our own perspective to
see if graphene can indeed live up to the hype when it comes to PV. This is
the subject of Chapter 6, where we tried to give an overview of the physics of
graphene that are relevant for a solar cell researcher to make the entry into
this field a little simpler. Furthermore, these physics are then used to see if
the electrical properties of graphene are indeed remarkable enough to make
a relevant contribution to the toolbox of the silicon solar cell designer. As it
turns out, the answer to this question is a tentative “yes”. For one, the con-
ductance of a single sheet of graphene can, in principle, be high enough to act
as a transparent electrode for a c-Si solar cell. However, this high conductance
is far from straightforward to achieve since the 2D material is rather sensitive
to its surroundings and its substrate. As a selective contact is shows more
potential since it seems to behave like a metal with a tunable work function
and an extremely low (for metal standards) effective Richardson constant. In
fact, the Richardson constant of graphene could potentially be so low that the
graphene/silicon Schottky junction could be the exception to the old rule of
thumb that Schottky junctions cannot make good solar cells. Unfortunately,
the literature data so far cannot prove for certain that this is actually possi-
ble and more focussed experiments are necessary to confirm this hypothesis.
Additionally, graphene is known to be a material that is difficult to dope (and
good doping control is definitely necessary for PV applications) and difficult to
process, so graphene is certainly not a material that will just solve any problem
without creating new ones as the hype might sometimes lead you to believe.
Still, it is not unlikely that at some point it will earn its place in the field of
PV.

Parallel to the selective membrane model we also developed a thermody-
namical view of solar cells in this thesis. Indeed, Würfel’s book is also rather
explicit about the importance of thermodynamics when it comes to understand-
ing solar cells and in a sense this is a natural thing to do since thermodynamics
is the natural language of energy conversion. The mere idea to view a solar cell
as a thermodynamic energy converter that turns heat from the sun into work
is already a valuable concept to broaden the discussion about what solar cells
are (and are not) capable of. It may seem like a trivial idea, but many fellow
physicists we have spoken to (especially those not directly involved with PV)
were surprised at first when presented with the idea of applying thermodynam-
ics to solar cells6. There seems to be a sort of implicit consensus that electrical
devices are not really in the realm of thermodynamics for some reason. Some

6Even though it is actually not a new idea at all; it can already be found the famous
Shockley-Queisser paper [15] and in earlier works cited by that paper
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physicists also seem to have an aversion to the thought that sunlight is a form
of heat because it does not come in the form of thermal vibrations7.

So if a thermodynamic treatment of solar cells is not new, what is our mo-
tivation for presenting one? The thing about thermodynamics is that there are
different ways to approach the subject depending on the a priori assumptions
you make about your system. Our goal is to make thermodynamics accessible
to solar cell researchers and that means we want to stay relatively close to the
semiconductor physics they are (hopefully) already familiar with. We do this to
demonstrate that the thermodynamics of solar cells is more than just academic
discussions about the upper efficiency limit of hypothetical devices: the science
of thermodynamics is, from its very roots, an engineering toolbox8. Yet in the
solar cell community it is not usually recognised as such and we think that
this is because the languages of thermodynamics and semiconductor physics
have been rather distinct. That is not to say that it is all bad: the efforts of
Würfel and other authors have already helped to spread some thermodynamic
ideas in the PV community, such as the view that the quasi Fermi levels rep-
resent the free energy (i.e., the energy one can hope to extract as useful work)
of electrons and holes. However, there are still open ends and many works
(including Würfel’s) rely on traditional equilibrium thermodynamics and then
make a sudden leap to the non-equilibrium problem of describing a working
solar cell without really motivating how such a leap can be made.

In our opinion, the missing link between thermodynamics and semiconduc-
tor physics is the book Non-equilibrium Thermodynamics by De Groot and
Mazur [16]. In its own field, it is a well-known work that is known for being
thorough yet rather dense. When cast in the right form, the theory of De
Groot and Mazur can produce the thermodynamic equivalent of semiconduc-
tor physics without much trouble, as we will show in Chapter 2. In the end,
this means that one does not have to learn many new things to discuss solar
cells thermodynamically: semiconductor physics actually were a form of non-
equilibrium thermodynamics all along. By recognising this equivalence, we
suddenly gain access to all kinds of thermodynamical tools that were hidden
before, such as the entropy generation rate that tells us where in the cell (and

7To be fair, there are some peculiarities about photons that cannot be glossed over. What
makes photons strange is that they cannot interact with each other: if you throw a bunch
of light particles together, they will not equilibrate because they cannot interact. However,
they can equilibrate with a dense collection of charged particles, such as the plasma of the
sun’s surface. Thus, in the sun the photons can reach equilibrium with the photosphere and
because of the zeroth law of thermodynamics this also means that they are in equilibrium
with each other, even though they do not feel each other. Then they are send off to earth and
maintain that equilibrium until they interact with the solar cell (ignoring the atmosphere).
Thus, the interaction of sunlight with a solar cell can be viewed as a form of heat transfer
from the photosphere to that cell.

8After all, Carnot was an engineer who was very much interested in solving practical
problems.
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how much) potential output power is being wasted.
Then in Chapter 4 we will use the derived expression of the entropy gener-

ation rate to set up a mathematical model called VEGM (variational entropy
generation minimisation) that can predict efficient cell designs. VEGM is, in
principle, the mathematical answer to the inverse problem that was posed at
the start of this chapter: how can you make a computer spit out the most effi-
cient cell for a given set of practical constraints? The reader may notice that
Chapter 4 does not actually contain a computer calculation that implements
the VEGM model. This is not for lack of trying, but it turned out that the
differential algebraic equations produced by VEGM are not straightforward to
implement into an existing solver (we tried COMSOL Multiphysics®, but ran
into convergence issues) and at the moment we are of the opinion that this
implementation requires dedicated effort from an expert on numerical compu-
tation.

To conclude this introduction, we would like to present a brief helicopter
view of the content in the next chapters in Figure 1.5. The central theme of
this dissertation is the optimisation problem of solar cells we introduced in the
first two paragraphs of this chapter: how do you “invert” the known solar cell
physics so that you can predict which cell is the most efficient? This question
is approached from two different angles, namely that of the selective membrane
model and that of thermodynamics. The thermodynamics provide the physical
foundation necessary to quantitatively understand the loss mechanisms in solar
cells while the selective membrane model provides a qualitative language that
helps to get a better intuitive grasp of the overall design of a cell as well as the
strengths and weaknesses of its components.

We hope that between these two complementary angles the reader finds
new insights that will help him or her come up with fruitful new ideas about
how to improve the cell he or she is working on. Of course, if you are left with
any questions, you are kindly invited to contact the author. You are kindly
referred to the contact details in the CV on page 210.
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Figure 1.5: Overview of the themes in this thesis and the contents of the chapters.
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Chapter 2

The physics of solar cells:
semiconductor physics
enhanced by thermodynamics
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Symbols used in Chapter 2 and Chapter 3

Sym. Definition

Ai General thermodynamic
variable when U is used as
the potential. E.g., S, V .
i = 1, ..., l.

B Magnetic field (T).
Bi General thermodynamic

variable when S is used as
the potential. i = 1, ..., l.

Dn,p Electron/hole diffusion coef-
ficient (cm2 s−1).

e Elementary charge (C).
EC Conduction band energy

level EC = −φ− χ (eV).
EF Equilibrium Fermi level

(eV).
E Electric field (V cm−1).
EFn,p Quasi Fermi energies for

electrons/holes (eV).
EG Semiconductor bandgap

(eV).
EV Valence band energy level:

EV = −φ− χ− EG, (eV).
fi Conjugate variable to Ai

when U is the potential:
fi = ∂U/∂Ai, i = 1, ..., l.

Fi Thermodynamic force. i ∈
{U, S,Q, n, p}.

F1/2 Fermi-Dirac integral.

F←1/2 Inverse of the Fermi-Dirac
integral.

FF Fill factor.
gi Conjugate variable to Bi

when S is the potential:
gi = ∂S/∂Bi, i = 1, ..., l.

Sym. Definition

G Generation rate of electron-
hole pairs (cm−3 s−1).

Gnet Net generation rate of
electron-hole pairs G − R
(cm−3 s−1).

Ji Thermodynamic current (or
flow) of quantity i. i ∈
{U, S,Q, n, p}. The par-
ticle currents Jn,p are in
cm−2 s−1.

Jn,p 1D electron/hole particle
flux (cm−2 s−1).

JSC Short circuit current density
((A cm−2)).

kB Boltzmann constant
(J K−1).

Lij Scalar transport coefficient
that relate force Fj to flux
Ji.

Lij Second order tensor trans-
port coefficient that relate
force Fj to flux Ji.

n Electrons density (cm−3).
ni Intrinsic carrier

density: n2
i =

NCNV exp(−EG/kBT )
(cm−3).

neh Density of electron-hole
pairs (cm−3).

NC,V Conduction/valence band
effective density of states
(cm−3).
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Sym. Definition

Nn,p Total number of elec-
trons/holes (dimensionless).

Ndop Semiconductor doping den-
sity (cm−3).

Neh Total number of electron-
hole pairs (dimensionless).

p Hole density (cm−3).
P Pressure (N cm−2).
qi Source term in continuity

equation for quantity i. i ∈
{U, S, n, p}.

Q Heat (J).
Qnp Total electron-hole charge

divided by e (cm−3).
R Recombination rate

of electron-hole pairs
(cm−3 s−1).

RRad Radiative recombination
rate of electron-hole pairs
(cm−3 s−1).

R̃ Pseudo resistance
(C Ω cm2).

Ř Intrinsic resistance
(C Ω cm2).

s Volumetric entropy density
(J K−1 cm−3).

S Entropy (J K−1).

S̃ Pseudo conductance
(S cm−2 C−1).

Š Intrinsic conductance
(S cm−2 C−1).

t Time (s).
T Temperature (K).
u Volumetric internal energy

density (J cm−3).

Sym. Definition

U Internal energy (J).
V Volume (cm3).
VOC Open circuit voltage (V).
VT Thermal voltage = kBT/e

(V).
x Position coordinate (cm);

can be 1, 2, or 3 dimen-
sional.

β Inverse temperature 1/T
(K−1).

γ Index that indicates that a
symbol pertains to photons.

δ Variational differential.
E.g., when f(x) is a func-
tion of position, δf(x)
represents a small deviation
of that function.

∆ηeh Fermi level splitting or
electrochemical potential
per electron-hole pair
(eV). ∆ηeh = ηn + ηp =
EFn − EFp.

∆n Injection level; excess car-
rier density (cm−3).

ε Dielectric constant εrε0
(F cm−1).

ηn,p Electron/hole electrochemi-
cal potential (eV). ηn =
EFn, ηp = −EFp.

η̃n,p βηn,p.
∆η̃eh β∆ηeh.
ηPC Photovoltaic conversion ef-

ficiency, PCE (dimension-
less).
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Sym. Definition

µn,p Electron/hole mobility
(cm2 V−1 s−1).

µc
n,p Electron/hole chemical po-

tential (eV).
νn,p Selectivity of an elec-

tron/hole selective mem-
brane (dimensionless).

ρnet electron-hole charge density
divided by e (cm−3).

σirr Total entropy genera-
tion rate per unit volume
(J K−1 s−1 cm−3).

Σirr Total entropy generation
rate (J K−1 s−1).

σn,p Electron/hole conductivity
(S cm−1).

ΦQ Conjugate variable of Qnp
when U is the potential:
ΦQ = ∂U/∂Qnp (J).

Φ̃Q Conjugate variable of Qnp
when S is the potential:
Φ̃Q = ∂S/∂Qnp (J).

φ Electrostatic energy (eV).
χ Electron affinity (eV).
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2.1 The theory of non-equilibrium thermodynamics

The description of solar cells is usually framed in the language of semiconductor
physics (SCP) because many photovoltaic devices rely on the unique proper-
ties of semiconductors to work. The literature on SCP has accumulated a large
wealth of detailed models (such as recombination and mobility models) that
can be used to accurately predict the efficiencies of industrial device designs.
Paradoxically, this level of detail can also be detrimental to the global under-
standing of the device because only a computer can work out the complex SCP
models so that it quickly becomes unclear which details are the most important
and what parts of the device need to be addressed to yield the largest gains
in efficiency. Indeed, for a long time there have been misconceptions in the
PV field about the general principles of photovoltaic energy conversion such
as the idea that the electric field in the space charge region of a junction is
responsible for driving the photocurrent [1, 2].

An alternative way to look at solar cells is by considering it as a ther-
modynamic system. The motivation for this viewpoint is that, unlike most
semiconductor devices, a solar cell is first and foremost an energy convertor
and the natural language of energy conversion are thermodynamics. Specifi-
cally, since a solar cell is always operating under non-equilibrium1 conditions,
it should be described by non-equilibrium thermodynamics (NET) rather than
equilibrium thermodynamics (ET). The advantage of thermodynamics is that
it provides methods to characterise losses of free energy (i.e., useful output
power). In literature many different thermodynamic descriptions of solar cell
physics can be found [4, 5, 6, 7, 8, 9, 1, 10, 11] and addition, several works
have presented thermodynamic frameworks for SCP in general [12, 13, 14, 15]
without specific application to PV. Yet despite these efforts, the SCP view of
solar cells is still by far more common than the thermodynamic view, especially
in engineering domain of c-Si based cells. About the reasons for this difference
one can hypothesise:

� The PV community simply does not see the value of an alternative model
as long as SCP does a good job of predicting cell efficiencies.

� Thermodynamics is thought of as a subject that is mainly useful for
academic discussions about the maximum possible efficiency of highly
hypothetical devices under idealised circumstances. Indeed, many exist-
ing works on solar cell thermodynamics focus on a very broad description
of the device rather than on the detailed engineering that is necessary to
improve the efficiency of practical designs.

� NET is a relatively new field that is still developing and thus has not fully

1There seems to be no general consensus about the spellings “non-equilibrium” vs.
“nonequilibrium”. In this work the spelling by De Groot and Mazur [3] will be followed.
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crystallised yet. This is in stark contrast to the SCP description of solar
cells, which has been solidified into a uniform shape. As was mentioned,
different formulations of solar cell thermodynamics exist and potentially
this gives the impression that there are no established methods yet one
can safely rely on.

� The PV community is simply not aware enough of the progress in the
area of thermodynamics to appreciate the value of the many tools that
have become available throughout the last few decades.

� A combination of some or all of these factors.

Under scrutiny, these objections do not hold up. Van Vliet [12], Linde-
felt [14], and Parrot [15] already demonstrated that SCP can quite readily be
incorporated into NET as a specialised area. Furthermore, the use of ther-
modynamics is very common in other engineering disciplines (chemistry being
the prime example), so the question rises why this should be different for solar
cells. The main goal of this chapter is to build up a comprehensive treatment
of NET applied to solar cell physics that will be referred to as NETPV. The
end product of this treatment is a theory that combines the strengths of SCP
(i.e., detailed models for the engineering of practical solar cell designs) and of
NET (i.e., generality and a clear interpretation of free energy losses).

In NETPV, certain assumptions relevant to PV will be made from the start
to allow for simplifications and to avoid unnecessary abstraction. The common
grounds between NETPV and SCP will be made as clear as possible by choosing
notation familiar from SCP, especially in Chapter 3. Where necessary, it will
be stated how NETPV interprets or describes physical phenomena differently
compared to SCP. Special attention will be drawn to cases where NETPV

potentially extends SCP or even disagrees with it.

To give a firm foundation for NETPV, the book “Non-equilibrium Ther-
modynamics” by De Groot and Mazur (abbreviated as GM) [3] is used as the
starting point. This work, first published in 1962 and republished in 1984, is
widely considered to be a standard work in its field and is commonly referenced
by more modern works [16, 17, 18]. Their theory for the description of non-
equilibrium systems (abbreviated as NETGM) is very well equipped to describe
the energy conversion processes in solar cells. One of the main goals of this
chapter is to present an accessible and comprehensive application of NETGM

to solar cells, since the book by GM is known to be rather dense. It should be
noted, though, that the thermodynamic description of solar cells requires some
unique considerations related to the interaction between the device and the
sunlight. These subtleties are not treated in the sources mentioned above and
deserve some extra attention. The main references for the thermodynamics of
light are the works by Würfel [8, 1] and Landsberg [19].
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It is assumed that the reader of this thesis is familiar with the basics of
the SCP description of solar cells, but for clarity a brief summary is given in
Appendix A.1.

2.1.1 Literature discussion

Perhaps surprisingly, it seems that most authors in the field of c-Si PV (even
those that have given thermodynamic descriptions of solar cells) are unaware
of the work on non-equilibrium thermodynamics by GM, even though some
(but certainly not all) of its methods have found their way into the field of PV
indirectly. Unfortunately, the book by GM is not indexed in major publication
databases, making it difficult to determine precisely how influential it is in
various fields of research or in the field of PV in particular. All that can be
said for sure is that none of the work by GM can be found in the 2-generation
backward citation maps of the works by Brendel [10], Greulich [11], Harder [9],
P. Würfel [8], and U. Würfel [2].

The closest link between the PV literature and the work by GM seems to
be the work of J.E. Parrot, who refers to GM in his work “Thermodynamic
theory of transport processes in semiconductors” [15]. However, in his earlier
works on solar cell thermodynamics [4, 6] it seems that influences from GM are
absent. An expression for the irreversible entropy generation rate in a solar cell
is obtained in his article “Thermodynamics of solar cell efficiency” [6], but this
derivation relies on an earlier paper [13] that uses microscopic theory based on
the Boltzmann transport equation rather than the macroscopic theory of GM.

2.2 Overview of NETPV

Here in Section 2.2, a brief overview will be given of NETPV with its methods
and goals. This should provide the reader with a map that will hopefully
reinforce a sense of direction while also providing some motivation as to why
NETPV is worth learning.

These are the steps and ingredients that go into NETPV:

1. Because of the fact that microscopic physics cannot give a definitive foun-
dation for thermodynamics, the first step towards a mathematical model
for NETPV is perhaps the most crucial one: the choice of variables. In
NET, the choice of variables is motivated by ET and to do so, it is nec-
essary that the system under study (i.e., a solar cell in our case) has an
equilibrium state that more or less resembles the non-equilibrium state
one wishes to describe. Therefore, the ET description of a solar cell will
be described in Section 2.3 and its meaning elaborated on. It is assumed
that the reader has a basic understanding of ET, but to make sure that
the reader is on the right page, Section 2.3 will also give a brief overview
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of the subject in general terms. This section does not aim to give a de-
tailed account of all of the mathematical methods from ET, but focuses
more on the underlying assumptions and ideas that are useful for NETPV

as well.

It will also be explained how the equilibrium description can be extended
to non-equilibrium situations: this is done by dividing the cell into many
small subsystems that are each approximately in equilibrium and then
assigning thermodynamics variables to every subsystem. In a sense, the
NET description of the cell is very similar to the ET description, but the
number of thermodynamic variables is significantly greater in the non-
equilibrium situation. The potential pitfalls in the generalisation step
from equilibrium to non-equilibrium are also discussed in Section 2.3.

2. The description of operating solar cells mostly focuses on non-
equilibrium steady state conditions, but any system that is insulated
from its environment will return to equilibrium. This means that the
operating state of a cell is inherently characterised by its environment.
The interaction of a solar cell with its surroundings is not straightforward
due to the non-local nature of light absorption and will be considered in
Section 2.4.

3. After specifying the relevant thermodynamic variables (step 1) and the
interaction of the cell with its environment (step 2), the next step is to
obtain the equations that describe the cell. This is done by generalising
the first law of thermodynamics to a local form and then writing down
continuity equations for the conserved quantities. Section 2.5 will discuss
this step.

4. The continuity equations introduce new quantities, namely the fluxes
(i.e., currents) of the conserved quantities. To describe these fluxes, the
theory of Onsager [20] is used, which provides a general framework for
obtaining flux-force relations. To find the thermodynamically correct
fluxes and forces in Onsager’s theory, the local entropy production rate
is of crucial importance. The flux-force relations will be discussed in
Section 2.6.

5. Finally, symmetry considerations (such as isotropy of the material and
reversibility of microscopic physical laws) can be used to establish some
important simplifications. The most important of these are the Onsager
reciprocal relations and they will be discussed in Section 2.7. There are
also material symmetries relevant to solar cells and these will be discussed
by using what is known as the Curie principle.

Finally, Section 2.8 will wrap up the discussion about NETPV by giving an
overview of the main take-home messages.
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2.3 The thermodynamic formulation of solar cell
physics step 1: Equilibrium and thermodynamic
variables

The goal of Section 2.3 is twofold. First of all, the aim is to get the reader to
appreciate what a thermodynamic description of a solar cell actually encom-
passes. This is done by giving a broad introduction to ET in general terms,
especially about its underlying assumptions rather than the mathematical for-
malism. Whereas the mathematical formalism of ET is well established, the
motivation for arriving at that formalism can differ significantly from author to
author. This section does not follow one source in particular, though most of
the influences come from the texts by Callen [21], Chandler [22] and Zemansky
[23]. These books (especially Callen) are recommended for the critical reader
who needs more background than the brief discussion below.

The second aim of this section is more practical, namely to explain how
ET can be applied to solar cells. This application is intermixed with the gen-
eral discussion of ET to ground some of the more abstract ideas with practical
examples relevant to the reader. However, a solar cell is not an ideal demon-
stration system for all thermodynamic notions, so other examples will be used
as well. The works by Peter Würfel, e.g., his book “Physics of Solar Cells” [1],
are important sources for the ET description of solar cells.

Thermodynamics is the study of macroscopic systems based on macroscopic
variables and this means that one cannot fully reproduce thermodynamics
from microscopic laws alone. This gives thermodynamics a unique position in
physics: it never attempts to reduce a system to its elementary parts or to give
a first principles explanation of a system (based on, e.g., quantum mechanics).
Instead, thermodynamics can be seen as a sort of recipe that prescribes how to
build a model for a system. In this recipe there are certain requirements that
the model should satisfy (such as energy conservation), but thermodynamics
also leave degrees of freedom in the way that the problem can be described
rather than prescribing everything a-priori. Because of this freedom a physi-
cist is allowed to insert new ideas into the model if that is deemed necessary,
giving thermodynamics a wide range of application.

It would be incorrect to say that thermodynamics is completely discon-
nected from microscopic phenomena and fundamental laws, since it is well
known that statistical mechanics provide a valuable link between microscopic
and macroscopic views. However, to establish this link, statistical mechanics
rely on its own set of assumptions that (in general) cannot be derived from first
principles, such as the assumption of ergodicity and the assumption that all
microscopic states with equal energy are equally likely to occur. The thermo-
dynamic and microscopic descriptions of a system therefore have an interesting
mutual dependency: the microscopic description can illuminate the underlying
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mechanisms behind macroscopic observations, while the macroscopic laws pro-
vide a benchmark for the microscopic models and assumptions. In this work,
most of the emphasis will be on the macroscopic point of view, though some
ideas from and links with microscopic physics will be briefly indicated.

Thermodynamics rely only on a small set of assumptions that will be briefly
reviewed here. It is common to take as the first assumption the law of con-
servation of energy, which has been solidified in the celebrated First Law of
Thermodynamics. There is a reason why energy is such a crucial quantity
for thermodynamics, even though there is a whole range of other conserved
quantities (momentum, angular momentum, charge, etc.): energy is the only
conserved quantity that has many different manifestations. Whereas quantities
such as momentum only manifest themselves macroscopically in one way (e.g.,
the centre of mass motion of the system), energy has many forms: mass, kinetic
energy, electromagnetic fields, chemical potential and more. Most physicists
will agree that the first law is among the most secure in the whole of physics
and is unlikely to be overturned any time soon, making the foundation of ther-
modynamics very firm. In a sense, thermodynamics can be seen as the branch
of physics that tries to make the very most out of the law of conservation of
energy.

Before continuing, it is interesting to note that it is not strictly necessary
to start with the law of conservation of energy. In Callen’s view (chapter
21), symmetries of the fundamental laws of physics are the real foundations
of thermodynamics. Central to this view is Noether’s theorem, which is a
purely mathematical result that states that “for every continuous symmetry
of the dynamical behaviour of a system there exists a conservation law for
that system”. As an example, the (continuous) time-translation symmetry
of the laws of physics (i.e., the physics of today are the same as those of
today + ∆t for any given ∆t) implies the existence of a conserved quantity,
namely energy. By the same argument, space-translation symmetry implies
conservation of momentum and rotational symmetry implies conservation of
angular momentum.

The law of conservation of energy, at its bare minimum, does not predict
much yet. All it says is that associated with any system there is a number called
internal energy U and that this number U will not change unless you allow
energy to flow into the system or leave the system. The law of conservation
of energy does not prescribe how to measure U or how it can be exchanged
between systems. To be of any value, additional rules need to be imposed on
how U transforms. In thermodynamics, this is done by assuming that the state
of the system is determined by U as well as a number of additional extrinsic
macroscopic variables, which will be referred to as Ai in general, with the
index i running from 1 till l. The Ai are sometimes also called thermodynamic
coordinates. The Ai are measurable properties of the system itself (as opposed
to space and time coordinates, that are independent of the system), such as
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volume V and number of particles of species α, Nα. The variables Ai are
required to be extensive, meaning that the magnitude of every Ai is linear in
the size of the system. In practice, this means that if two identical samples of a
certain material (say, two samples of gas) are added together, then the Ai (e.g.,
the volume) for the composite system is also twice as great2. Every system
also has an extensive property S called entropy that, because of its ubiquity,
will always be associated with i = 1 (i.e., A1 = S). For now it suffices just to
know that entropy exists; its meaning will be discussed in a separate subsection
below.

In general, the Ai can be identified with some special combination of the
microscopic coordinates of the system. These combinations are special in that
they are essentially constant in time, even though most microscopic coordinates
fluctuate on a time scale of 10−15 s, making them macroscopically completely
inaccessible. To quote Callen:

“Only those few particular combinations of atomic coordinates that are
essentially time independent are macroscopically observable.”

In addition, macroscopic coordinates also need to be well defined over a
large length scale to be measurable. To give an example of how microscopic
freedoms can give rise to macroscopic coordinates, consider the phonon modes
of a solid in the long wavelength limit λ → ∞, i.e., macroscopic vibrations.
Phonons with large λ are simply sound waves and their frequency ω is given
by ω = 2πvsound/λ (with vsound the speed of sound in the solid). As can be
seen, ω vanishes in the limit λ→∞. To realise why this is significant, consider
what would happen if this were not the case: if the phonons with macroscopic
length scales would have a nonzero frequency, they would be fluctuating and
the solid would exhibit random expansions and contractions. This would mean
that the volume of the solid would not be constant. It can be concluded
that the vanishing frequency of the long-wavelength phonons gives rise to a
macroscopically well-defined quantity, namely volume. It is not an accident
that the long-wavelength phonons have zero frequency: this is a consequence
of a quantum mechanical result known as Goldstone’s theorem (see Callen
chapter 21). It is beyond the scope of this section to go into details about
Goldstone’s theorem, but here it suffices to state that, like Noether’s theorem,
it is again a theorem about (broken) symmetry. This emphasises the central
role of symmetries in thermodynamics.

The values of the variables Ai together characterise the thermodynamic
state of a system {Ai} = {S,A2, ..., Al}. It is assumed that the internal energy

2Note that this means that extra care has to be taken when the interface of a substance
contains energy. For example, when two identical samples of a liquid with a strong surface
tension are added together, the volume of the composite system will be twice large, but not the
surface. In this case, it is necessary to treat the surface as a (2 dimensional) thermodynamic
system of its own.
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is a unique function of the thermodynamic state, so that it is possible to write3:

U = U(S,A2, ..., Al). (2.1)

The exact functional form of U(S,A2, ..., Al) is known only in the simplest cases
(e.g., the ideal gas), but all that really matters is that it exists in principle.
This statement is stronger than it might initially sound: by assuming U =
U(S,A2, ..., Al), it is immediately asserted that the history of the system is not
important: all that matters is the values of the variables Ai right now. The
mere fact that U has the functional form postulated here is the basis for many
useful thermodynamic results, such as the Maxwell relations. In this light it is
also common to refer to U as the fundamental thermodynamic potential.

It is commonly assumed that U is also differentiable with respect to the
extensive variables Ai. This makes it possible to relate changes in U to changes
in Ai. This is important, because changes in quantities are generally much
more experimentally accessible than absolute values of those quantities. The
partial differentials ∂U/∂Ai are measurable thermodynamic quantities and are
denoted by fi:

fi(S, ..., Al) =
∂U(S, ..., Al)

∂Ai
. (2.2)

Because both U and the Ai are extensive, the fi are independent of the size
of the system (i.e., the differential divides out the scale of the system). This
makes the fi intensive quantities. The reader may recall from ET that it
is possible to use a Legendre transformation to trade a coordinate Ai with
its conjugate fi as independent variable. This procedure gives rise to different
thermodynamic potentials, such as the Helmholtz free energy F = U−TS that
depends on temperature T rather than S. However, for NETPV the Legendre
transformation is not of great interest so it will not be discussed in detail here.

To give a concrete example of how thermodynamic coordinates are picked,
a solar cell under equilibrium is now considered. A solar cell is commonly
modelled to a good degree of accuracy as a container with a mixture of two
gases: an electron gas and a hole gas. The thermodynamic coordinates that
describe such a gas mixture are entropy S, volume V , the number of free
electrons Nn, and the number of free holes4 Np. This choice of variables is not
unique: depending on the situation, different and/or more variables can be used
as well. For example, it is also possible to replace Nn and Np by two different
coordinates that are sometimes more convenient: the number of electron-hole

3By immediately postulating that U = U(S,A2, ..., Al), several of the finer points of
thermodynamics (that are outside of the current scope) are glossed over. The critical reader
is referred to the textbooks mentioned at the start of this section.

4Free electrons and free holes will be indicated in the rest of the text simply by electrons
and holes for brevity unless confusion can arise.
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pairs Neh and the total electron-hole charge Qnp. It should also be clarified that
S is not only the entropy of the electron-hole gas but also of the background
lattice of the semiconductor. In principle, it is possible to split up S in the
entropy of the electrons S−e , the entropy of the holes S+

h , and the entropy of the
lattice Slat. However, it will be assumed throughout (both for equilibrium and
non-equilibrium conditions) that all three of these subsystems are in thermal
equilibrium so that they have the same temperature. For this reason it is only
necessary to consider the sum S = S−e + S+

h + Slat. Furthermore, at this stage
it is important to note that the energy in the field of photons in the solar cell
is explicitly not included in the thermodynamic description, even though the
photons obviously play a crucial role in the operation of the device. In Section
2.4 it will be explained that (and why) the photons will be considered as a part
of the environment rather than the solar cell, though this is a matter of choice
and convenience rather than necessity.

The partial differentials corresponding to S, V , Nn, and Np are tempera-
ture T , (negative) pressure −P , and the electrochemical potentials ηn,p. The
electrochemical potentials deserve some extra explanation. Like their names
suggest, ηn,p are the sum of electrostatic energy (+φ for holes, −φ for elec-
trons) and chemical energy µc

n,p
5. Electrostatic energy, in turn, is related to

charge while chemical energy is related to an amount of particles. In a solar
cell, however, charge and particle number are both quantised in one and the
same entity, namely the electron (and consequently also the hole). Because
of this fundamental coupling between charge and particle number it is impos-
sible to remove charge from the system without removing particles and the
distinction between electrostatic and chemical energy cannot be made in prac-
tise. Thus, only the electrochemical energies are thermodynamically relevant.
Electrochemical energies (or potentials, when divided by e) are not mysterious
new quantities either: it was shown by Würfel [1] that a regular Volt meter
actually measures electrochemical potential rather than electrostatic potential,
as is often believed.

The electrochemical potentials are basically the same quantities as the quasi
Fermi levels commonly used in semiconductor physics [1]. The only difference
is one minus sign for the holes: EFn = ηn, EFp = −ηp. In a thermodynamic
context the minus sign can make equations confusing to read, so the choice was
made to use ηn,p in this chapter. The intensive variables relevant for a solar

5Furthermore, there is also a contribution to ηn,p from the material in which the electrons
and holes a located. These contributions are expressed using the electron affinity χ and
bandgap EG, see Eqs. (A.3) in Appendix A.1
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cell are defined by:

T =
∂U(S, V,Nn, Np)

∂S
=

(
∂U

∂S

)
V,Nn,Np

, (2.3a)

−P =
∂U(S, V,Nn, Np)

∂V
=

(
∂U

∂V

)
S,Nn,Np

, (2.3b)

ηn =
∂U(S, V,Nn, Np)

∂Nn
=

(
∂U

∂Nn

)
S,V,Np

, (2.3c)

ηp =
∂U(S, V,Nn, Np)

∂Np
=

(
∂U

∂Np

)
S,V,Nn

. (2.3d)

As will be discussed in the next section, T is always the intensive variable
corresponding to S. The somewhat peculiar notation on the rightmost sides
of Eqs. (2.3) is used in thermodynamics to remind the reader what remain-
ing variables are considered to be the independent freedoms of the system.
This also means that for this choice of variables the intensive quantities are
functions of S, V , Nn, and Np as well (e.g., T = T (S, V,Nn, Np)). This is es-
pecially important when Legendre transformations are used to trade extensive
coordinates for intensive ones.

The idea that U is a differentiable function of several coordinates is com-
monly stated briefly using the Gibbs form of the first law. The general form
is:

dU =
l∑

i=1

fi dAi. (2.4)

The differential d is used here to denote what is called an exact differential.
This simply means that U can be considered to be a function of the Ai, as
is required. If the differentials were inexact (denoted by d̄), it would not be
possible to consider U as a function of the Ai. When Eq. (2.4) is applied to
solar cells, it becomes:

dU = T dS − P dV + ηn dNn + ηp dNp. (2.5)

In a sense, Eq. (2.5) can be considered as a condensed version of Eqs. (2.3).
Eq. (2.5) can also be given in terms of Neh and Qnp by using the following
transformations:

dNeh =
1

2
( dNn + dNp) , (2.6a)

dQnp = dNp − dNn. (2.6b)
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Note that Qnp is defined here in units of cm−3. With these definitions, the
first law can be written as:

dU = T dS − P dV + (ηn + ηp) dNeh +
1

2
(ηp − ηn) dQnp,

dU = T dS − P dV + ∆ηeh dNeh + ΦQ dQnp. (2.7)

Here ∆ηeh = (ηp + ηn) is the free energy per electron-hole pair and ΦQ =
(ηp − ηn)/2 is the conjugate variable for the charge. The latter should not
be confused with the electrostatic energy φ since it is not possible to extract
charge from the cell without extracting electrons or holes. In other words,
ΦQ accounts for both the changes in electrostatic energy as chemical energy
when charge is removed/added to the system. If the carrier statistics (either
Maxwell-Boltzmann or Fermi-Dirac) expressions for the electrons and holes
are used (Eqs. (A.3) in Appendix A.1), then the thermodynamic energy per
charge ΦQ is

ΦQ = φ+ χ+
EG

2
+
kBT

2

[
F←1/2

(
p

NV

)
− F←1/2

(
n

NC

)]
(2.8)

and it can be seen that it includes φ, the electron affinity χ, the bandgap EG,
as well as terms that take into account that charge has to be changed by adding
(or removing) electrons/holes in such a way that the e−–h+ plasma stays in
equilibrium.

The discussion above should make it clear that the first step in making
a thermodynamic description of a system is to identify the variables Ai for
the system under study and that this first step is crucial to the success of the
thermodynamic approach. If not all relevant variables are found, there is a
great chance that thermodynamics cannot be applied unless special conditions
are met. If one tries to describe the system as U(S, ..., Al−1) (i.e., without
taking Al into account), the thermodynamics will only work as long as Al
stays constant during the experiment (and is therefore essentially still under
experimental control) or if U is insensitive to Al (meaning that Al is simply
not relevant to the physics at hand).

Suppose, for example, one would like to describe a pure gas (such as N2) in
a sealed-off container and one would identify S and V as the relevant coordi-
nates. In this example, the number of molecules N has been deliberately left
out, perhaps as a simplification. The proper thermodynamic function for the
internal energy is denoted by Ugas(S, V,N). Because the container is sealed-off,
N = N0 is constant and for the sake of the experiment at hand, the description
in terms of just {S, V } will work just as well as that in terms of {S, V,N}. The
internal energy for this experiment is denoted by Ũgas(S, V ) = Ugas(S, V,N0)
and Ũgas(S, V ) will be referred to as a reduced potential. However, the moment
N is no longer constant (think of, e.g, a safety valve that releases gas when
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the pressure reaches a critical value), the reduced potential Ũgas(S, V ) will no
longer contain enough information to give a thermodynamic description of the
system. Conversely, by using the original description {S, V,N} one has already
made a lot of implicit assumptions about the physics relevant for the gas. For
example, all possible chemical reactions that N2 can have with itself have been
neglected because they are so rare in practice.

Note how the volume of the cell can be omitted in the solar cell descrip-
tion U(S, V,Nn, Np) proposed earlier in this section. Of course U is not truly
independent of V , but this (reduced) representation of U is still useful because
the volume of a cell is constant to a very good approximation under most ex-
perimental conditions. For this reason, V will be omitted in most discussions
of solar cell thermodynamics in this work to simplify the mathematics. How-
ever, care should be taken because certain thermodynamic results cannot be
used when working with reduced potentials. For example, the Euler equation6

states that if:

U(λS, λA2, ..., λAl) = λU(S,A2, ..., Al), (2.9)

for every scaling factor λ, then:

U =

l∑
i=1

fiAi. (2.10)

The Euler equation applies to every system where all the extensive Ai cor-
respond to effects of the same dimensionality (e.g., all Ai are bulk-related
variables or they are all surface-related variables). For a solar cell, S, Nn, and
Np are all bulk coordinates, however if one wishes to use the Euler equation,
it is necessary to include V as a variable as well. The correct expression for U
is:

U = TS + ηnNn + ηpNp − PV. (2.11)

Here, P = −(∂U/∂V )S,Nn,Np is the pressure of the (ideal) free electron-hole
gas. The pressure is the sum of the partial pressures of the electrons and holes:

P = P−e + P+
h =

kBT

V
(Nn +Np). (2.12)

Note that a naive application of the Euler equation on the reduced potential
U(S,Nn, Np) would give the incorrect result U = TS + ηnNn + ηpNp, which
misses the −PV term.

6It is somewhat confusing that so many equations and mathematical results carry Euler’s
name due to his incredible productivity. The Euler equation referred to here is also known
as the Euler homogeneous function theorem.
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The situation of describing a system while using insufficient thermodynamic
variables is somewhat analogous to the phenomenon of degeneracy in quantum
mechanics (QM): in QM, degeneracy occurs whenever a certain quantum num-
ber no longer uniquely specifies the state of the system and more quantum
numbers need to be added to make the specification unique again. In the same
way, the energy of the system Ũgas(S, V ) is degenerate in the numbers S and
V because extra information about the particle number N is needed to specify
the energy uniquely. The similarity with QM is not just a superficial one: just
like in QM, degeneracy of variables in thermodynamics can happen because
of symmetries that suddenly become important. A famous example given by
Callen is the case of ortho- and para-hydrogen molecules: in an ortho-hydrogen
molecule the proton spins of two atoms are in a triplet state, while in para-
hydrogen they are in a singlet state. At high temperatures, these two different
types of hydrogen gas can be described by a single particle number NH because
they behave essentially the same. At very low temperatures, however, the fun-
damentally different symmetries of ortho- and para-hydrogen necessitate the
use of two particle numbers Northo and Npara.

The case of ortho- and para-hydrogen should illustrate that it can be a bit
of an art to find coordinates Ai such that the system can be described by a
function U(S, ..., Al). In other words: thermodynamics provides a prescription
for how to build a macroscopic model of a system, but ultimately that model
will have to be verified by experiment just like any other physical model. It
was demonstrated that too few variables will lead to inconsistencies in the de-
scription, so how about the other extreme of the spectrum? Obviously, one
can always resort to a fully microscopic description and use all internal quan-
tum mechanical degrees of freedom, which will be denoted by νi. So in this
case Ai = νi. No doubt this will result in a mathematically correct model: no
matter what system is under scrutiny or even how close or far away it is from
equilibrium, the quantum mechanical equation of motion guarantees that the
energy is a unique function of the νi. From a practical point of view, though,
it is desirable to not invoke more variables than strictly necessary and cer-
tainly not as many as the full microscopic description demands. Moreover, as
was indicated previously in this section, only very few specific combinations of
the νi are accessible on macroscopic temporal and spatial scales. Invoking the
remaining inaccessible degrees of freedom will only lead to a theory that is com-
pletely disconnected from experiment. Still, for the sake of the argument it will
sometimes be pretended that the choice Ai = νi is a pseudo-thermodynamic
(denoted as: “thermodynamic”) description. As a result, there is now a whole
spectrum of thermodynamic descriptions ranging over the number of coordi-
nates used: at one extreme there are the formalisms that use too few variables
and at the other end there are those that use too many. A formalism with
too few variables is mathematically inconsistent while one with too many is no
longer empirical and therefore has no physical content.
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The previous discussion shows where the limitation of thermodynamics lies:
the moment one loses track of the variables that describe where energy is hiding
during the experiment is the moment the thermodynamic description breaks
down. In principle, every system, whether it is in thermodynamic equilibrium
or not, can be described by adding enough coordinates to the description. After
all, the conservation of energy should apply to any system and the energy is,
microscopically, only a function of the current state and never of its history or
future. Ultimately, one can keep adding variables until every internal freedom
has been accounted for, though doing so quickly makes it impossible to exert
control over all of these variables.

2.3.1 Entropy

So far the entropy S has only been mentioned in passing as one of the ther-
modynamic coordinates Ai. The role of S in thermodynamics has a couple
of different facets and properties. These will be outlined below, though the
following list should be treated as not more than a list of known results: no
hard proofs will be presented here.

1. Entropy is an important state variable for the calculation of efficiencies of
work-producing apparatus. As an example, consider a heat engine that
operates between a hot reservoir at temperature Th and a cold reservoir at
temperature Tc. Then the efficiency is always bounded by η = W/QH ≤
1−Tc/Th, with Qh the amount of heat extracted during one cycle and W
the work produced during that cycle. If during the cycle also S amount
of entropy is produced, then the work W done by the engine is given by:

W =

(
1− Tc

Th

)
QH − TcS = ηmaxQH − TcS. (2.13)

As can be seen, the production of entropy is in direct relation with the
loss of useful work that can be extracted from the engine. A solar cell is
no different in that regard: any production of entropy inside of the device
diminishes the output power and leads to extra production of low-quality
heat.

2. The internal energy U(S, ..., Al) is a monotonically increasing function of
S and the slope of U vs S is defined to be the temperature T . In short:(

∂U

∂S

)
A2,...,Al

= T > 0. (2.14)

Especially the property ∂U/∂S > 0 is very significant: it means that U
can be inverted with respect to S so that the entropy can be considered
to be a function of U and the remaining Ai:

S = S(U,A2, ..., Al). (2.15)
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By using this inversion it becomes possible to do thermodynamics with S
instead of U as the fundamental potential. In fact, it will turn out that for
non-equilibrium systems, S is actually a more convenient potential than
U because U is a conserved quantity and is therefore more suitable to
be used as an independent variable than S. To avoid notational clutter,
whenever S is used as a potential, the variables it depends on will be
called Bi, with B1 = U and Bi = Ai for i ≥ 2. The partial differentials
of S are called gi = (∂S/∂Bi)Bj ,j 6=i so that the change in entropy of a
system can be written as:

dS =
l∑

i=1

gi dBi. (2.16)

For a solar cell, the differential form of S can be found by inverting Eq.
(2.5):

dS =
1

T
dU − ηn

T
dNn −

ηp
T

dNp

= β dU − η̃n dNn − η̃p dNp (2.17)

The conjugates coordinates β and η̃n,p have been introduced for conve-
nience: the tilde indicates that the quantity has been divided by T . In
terms of Neh and Qnp, dS is given by:

dS = β dU − ∆ηeh
T

dNeh −
ΦQ

T
dQ

= β dU −∆η̃eh dNeh − Φ̃Q dQnp. (2.18)

3. The Second Law of Thermodynamics states that the entropy of a closed
system (meaning: a system that has no exchange of energy of any kind
with the outside world) cannot decrease. Closely related to the second
law is the maximum entropy principle (explained in detail below), which
is a crucial tool for the analysis of the thermodynamic equilibrium of a
system. It states that the entropy of a closed equilibrium system takes the
highest possible value consistent with the internal constraints imposed on
that system.

4. From a microscopic point of view, the entropy S(U,B2, ..., Bl) is related
to the number of possible microstates of a closed system with macro-
scopic parameters Bi. This number of microstates will be denoted by
Ω(U,B2, ..., Bl) and the famous Boltzmann result then states that:

S(U,B2, ..., Bl) = kB ln Ω(U,B2, ..., Bl). (2.19)
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Note the dependence of Ω on the variables Bi: not only does Ω depend
on the values of the Bi, but also on the choice of the set of variables. The
most extreme example of this second dependency is the “thermodynamic”
description based on the full set of microscopic coordinates νi: in that
case, every “thermodynamic” state is a microstate so that Ω(ν1, ..., νl) =
1 and:

S(ν1, ..., νl) = kB ln 1 = 0. (2.20)

This means that the value of the entropy depends on what is assumed to
be known and what not. If this sounds surprising, it is helpful to think
of the analogous problem of the interpretation of probabilities. Consider
the question “What is the probability that a coin is head side up?”.
Obviously, this question cannot be answered in a meaningful way without
further details about the coin. Was it flipped just now or did someone put
it on its side on the table? Who needs to answer the question and did this
person see the coin? Is the coin fair? Questions about probability can
only have meaningful answers in a framework of all of the prior knowledge
that is involved and assumed. Entropy is no different in that regard (see
also, e.g., Öttinger [17]).

The maximum entropy principle deserves some clarification, since it will
be used in Section 2.6. A simple example of this principle can be given by
considering the equilibrium state of a solar cell. For example, if the cell is
insulated from its environment, the system is free to find its own values for
Nn and Np because electrons and holes can be generated and annihilated in
pairs. Imagine that the system spontaneously generates a small amount of
δNeh electron-hole pairs. Because the cell is insulated, the total energy and
charge of the cell cannot change spontaneously, so δU = δQnp = 0. Then from
Eq. (2.18) the total first order entropy change can be calculated:

δS = −∆η̃ehδNeh = −∆ηeh
T

δNeh. (2.21)

The maximum entropy principle now states that under equilibrium any such
variation δNeh will decrease the entropy so that ∀δNeh : δS ≤ 0. Since δNeh can
be both positive and negative, this yields the familiar result that ∆ηeh = EFn−
EFp = 0, i.e., there is no Fermi level splitting in equilibrium and electron-hole
pairs are in electrochemical equilibrium and have no free energy. In principle
this means that under equilibrium Neh is a thermodynamic variable that can
be neglected, but the essential feature of a solar cell is that ∆ηeh > 0 so for
the generalisation to non-equilibrium Neh is retained.

The imaginary change in Neh is an example of applying an internal con-
straint. By considering what kind of internal freedoms a closed system has,
equilibrium conditions can be obtained. In the example above, only the first
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order variation in S was considered, which usually yields a necessary condi-
tion for equilibrium, but not a sufficient condition. This is because the first
order variations of S usually yields δS = 0, so if the second order variation
δ2S would be positive, the equilibrium would still be unstable. Therefore, to
obtain sufficient conditions (often referred to as stability criteria), higher order
terms in the variation of S need to be considered as well. The second order
variation in entropy for electron-hole variations δNeh is given by:

δ2S =
1

2

∂2S

∂N2
eh

δN2
eh = −1

2

(
∂∆η̃eh

∂Neh

)
U,Qnp

δN2
eh ≤ 0, so:(

∂∆η̃eh

∂Neh

)
U,Qnp

≥ 0. (2.22)

This result means that the creation of an electron-hole pair will increase the
Fermi level splitting, which is a crucial property that makes it possible to
generate useful work from a solar cell.

2.3.2 Generalisation to non-equilibrium

So far only the equilibrium state for a solar cell has been considered, which
can be described by the three coordinates S, Nn and Np. The question that
will be addressed now, is how this equilibrium description can be expanded
upon to give a description of a solar cell under non-equilibrium conditions.
The main idea that will be used here is that a thermodynamic description
of a non-equilibrium system is not fundamentally different, except that the
choice of variables can be significantly more difficult. In such systems the
energy can be distributed over many different phenomena depending on the
exact nature of the non-equilibrium situation. For example, in a laminar fluid
flow the energy can be traced quite easily and in such a situation NET can
be used to obtain transport equations (i.e., the Navier-Stokes equations) for
the fluid [3]. However, when the flow transitions from laminar to turbulent it
suddenly becomes very difficult to find out how much energy is in the turbulent
vortices. Clearly, the energy associated with a vortex is some sort of kinetic
energy, but unless the exact flow pattern of the vortex is known, this energy
generally cannot be accounted for. It is just as undesirable to calculate the
exact flow of a vortex as it is to track heat by considering the kinetic energy of
individual particles. Furthermore, in non-equilibrium thermodynamics it can
become very difficult to assure that the extensive variables truly scale with the
size of the system. If one scales a block of ice to ten times its original size,
nothing special happens. However, if a system with a fluid flow is scaled in
size, the flow might change completely (going from laminar to turbulent, for
example), so in NET it is not always possible to scale extensive variables like
in Eq. (2.9).
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It suffices to say that there is no single method that can reliably provide a
functional set of thermodynamic coordinates that describe any non-equilibrium
system, but fortunately there is a method that works well for reasonably well-
behaved systems (like solar cells) that do not suffer from complications such as
turbulence. This is the method of De Groot and Mazur which basically uses
the ET description of a system as a starting point. In NETGM the assump-
tion of local thermodynamic equilibrium (LTE) is used. This means that the
system is divided into many small (but still macroscopic) subsystems, each of
which is approximately in equilibrium so that they can be described by the
same thermodynamic coordinates that were used in the ET description. Each
subsystem is labeled with a space coordinate xj with j ∈ {1, ...,M} and M
the number of subsystems. The entropy S is used as thermodynamic potential
and the variables for the system are then denoted by Bi,xj . In general, the
coordinates are also allowed to depend on time, though this possibility is not
considered here since the main goal is to describe the steady-state operation
of a solar cell. The functional dependence of S is now given as:

S = S (Ux1 , ..., UxM , B2,x1 , ..., B2,xM , ..., Bl,x1 , ..., Bl,xM ) , (2.23)

i.e., there are l×M independent variables. For a solar cell this means that the
Gibbs form of the first law in NETPV generalises Eq. (2.17) and becomes:

dS =

M∑
j=1

[
βxj dUxj − η̃n,xj dNn,xj − η̃p,xj dNp,xj

]
. (2.24)

As can be seen, NETPV uses 3M coordinates. Obviously, M has to be large
enough that there is enough spatial resolution to, e.g., assign a proper temper-
ature Txj to each subsystem. Yet at the same time 3M still has to be much
smaller than the number of microscopic coordinates, otherwise NETPV would
be overdetermined and would not qualify as a practical macroscopic descrip-
tion. Besides these two requirements, there is no clear criterion for how large
M should be. This means that the resulting theory should be independent of
M over a wide range of values.

The generalisation of Eq. (2.17) to Eq. (2.24) is mathematically simple,
but its physical implications are substantial. It is important to realise that in
Eq. (2.17) the three variables U , Nn and Np (or their conjugates β and η̃n,p)
are in principle experimentally accessible. However, it cannot be expected that
the experimentalist has simultaneous control over all 3M variables occurring
in Eq. (2.24), so it can be said that a non-equilibrium system is more dif-
ficult to control because its description involves more variables. This loss of
experimental control can be considered to be the reason that non-equilibrium
systems generate entropy.

Because the description of the cell should not depend on the choice of M
(as long as M is large enough), it is more convenient to write Eq. (2.24) as
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a integral over the cell. The integration domain will be referred to as Ω and
the integration densities will be denoted by lower case letters. For example,
dUxj = du(x) dx3 = du dx3. The dependence of u on x will be suppressed
to save space unless extra attention needs to be called to it. Eq. (2.24) then
becomes:

dS =
y

x∈Ω

dx3 (β du− η̃n dn− η̃p dp) (2.25)

=
y

x∈Ω

dx3 ds. (2.26)

Here, s has been introduced as the local entropy density. It is worth noting
that in the book by GM slightly different definitions are used for the densities
s, u, n, and p since there the densities are normalised to the mass density. In
a solar cell with electrons and holes, however, the concept of mass is not very
useful and it is more convenient to work with volumetric densities instead.

The notation in Eq. (2.25) is mathematically sloppy since du refers to a
change in a thermodynamic variable while dx3 is simply a volume element for
the integration. Nevertheless, for convenience this is the form that will be used
and the expression x ∈ Ω is placed under the integral to remind the reader that
the integration is over x. However, despite its appearance, Eq. (2.25) should
still be treated formally as a finite sum: the use of an integral is nothing more
than mathematical and notational convenience.

If the maximum entropy principle is applied to Eq. (2.25), it can be
demonstrated that under equilibrium all of the intensive variables are con-
stant throughout the system. As before, the e−–h+ density neh(x) and charge
density ρ(x) are the most convenient coordinates to work with. The first order
variation of S is given by:

δS =
y

x∈Ω

dx3
(
βδu−∆η̃ehδneh − Φ̃Qδρ

)
= 0. (2.27)

The δu(x), δneh(x), and δρ(x) can be considered to be unknown functions that
represent how the system can potentially rearrange its internal configuration
and the equality should hold for every conceivable combination of such func-
tions. Since the variation δneh is unconstrained, it can be concluded again (like
in the equilibrium case) that its prefactor has to be zero: ∆ηeh = 0. Note that
this is why δS = 0 has been imposed, rather than δS ≤ 0. Since the system is
closed, the total variations in U and Qnp have to be zero:

δU =
y

x∈Ω

dx3δu = 0, (2.28)

δQnp =
y

x∈Ω

dx3δρ = 0. (2.29)
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These constraints can be imposed by using Lagrange multipliers, but here a
different method is introduced based on displacement vectors δDu,ρ(x). These
displacement vectors describe how the internal energy and charge can be re-
distributed through the solar cell. In the continuum limit, the total change in
energy or charge in a subvolume at position x is then:

δu = −∇ · δDu, (2.30)

δρ = −∇ · δDρ. (2.31)

The internal constraint that the system is insulated completely can then be
imposed by demanding that δDu,ρ ·n̂ = 0 on the boundary ∂Ω (with n̂ the unit
normal vector). This means that no displacements will take energy or charge
in or out of the system. Eq. (2.27) then becomes (recall that ∆ηeh = 0):

δS =
y

x∈Ω

dx3
(
−β∇ · δDu + Φ̃Q∇ · δDρ

)
=

{

x∈∂Ω

dx2 n̂ ·
(
−βδDu + Φ̃QδDρ

)
+

y

x∈Ω

dx3
(
δDu · ∇β − δDρ · ∇Φ̃Q

)
= 0. (2.32)

The surface integral (x ∈ ∂Ω) is zero because δDu,ρ · n̂ = 0. From the volume
integral it can be concluded that ∇β = ∇Φ̃Q = 0, since that is the only way
the integral can be zero for all vector fields δDu,ρ. Thus, β, ∆η̃eh = 0, and
Φ̃Q are all constant as claimed. This justifies why in ET, e.g., only a single
temperature is needed to describe the cell: it is possible to use more than
one non-local temperature, but the maximum entropy principle can be used
to immediately prove that all temperatures are equal anyway. Note how the
problem of the number of variables has also sorted itself out in this situation:
by pretending that dS can be written in the integral form of Eq. (2.25),
one formally assumes an infinite number of coordinates, which is certainly too
many from a practical point of view. However, for the equilibrium situation
this infinitude of variables can be quickly reduced to three, so this gives a
vote of confidence that (as long as the mathematics are applied correctly) the
integral form of dS does not lead to big inconsistencies or overdetermination
of the problem.

Finally, note that the idea of rearranging internal variables in a closed
system only makes sense when extensive coordinates are used as the primary
independent variables for the system. Constraints such as Eqs. (2.28) and
(2.29) cannot be applied to quantities like (local) temperature and neither is
it possible to talk about displacements or flows of temperature. This is one
of the reasons why in NETGM extensive coordinates are often preferred over
intensive ones.
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2.4 The thermodynamic formulation of solar cell
physics step 2: Interaction with the environ-
ment

So far the discussion of the solar cell thermodynamics has been almost exclu-
sively about closed systems. In fact, the maximum entropy principle was used
to demonstrate that in a closed system it does not matter if one divides the
cell into subsystems with different temperatures etc.: in the end, the cell will
only have just one well-defined temperature. To prove this, the assumption
that the cell is a closed system was crucial, otherwise it would not be possible
to conclude that the boundary term in Eq. (2.32) is zero.

Interaction with the environment is essential for understanding non-
equilibrium situations, especially those that show steady-state behaviour, like
a solar cell does. Of course, it would be impossible for a solar cell to generate
useful work if it were completely closed off from the rest of the universe and it
would be equally impossible to extract that work. However, for a solar cell the
interaction with the environment is more complex than for most systems. To
see why, it is instructive to first understand how non-equilibrium steady-state
situations can occur for simple systems.

In most systems (the solar cell being an important exception, as will be
explained) the only interaction with the environment happens at a clearly
defined interface that separates the inside world from the outside. For most
systems it is possible to draw an imaginary box around the system and to
account for the influence of the environment by specifying boundary conditions
at the surface of that box. For example, when a metal rod is placed such that
one end is in contact with a cold reservoir (T = Tc) and the other end is
in contact with a hot reservoir (T = Th > Tc), then it can be said that the
environment forces two different temperatures at either end of the rod. As was
shown in Section 2.3, thermodynamics tries to achieve∇T = 0 inside of the rod,
but because of the BCs imposed by the environment this is simply not possible
(unless discontinuities in T are allowed, but those would not make physical
sense). After a while, a steady-state non-equilibrium situation is achieved
where the temperature in the rod assumes a non-uniform distribution over
its length that gradually goes from hot to cold and stays constant in time.
Of course, in the long run the combined system of “rod+environment” will
reach an equilibrium nonetheless: the rod will conduct heat from hot to cold
and eventually the temperature difference will be equalised. However, the key
aspect here is that this global equilibration time is much slower than the time
it takes the rod to arrive at an internal steady-state non-equilibrium situation.
Note, however, that it is not always the case that a system reaches a steady
state just because the BCs provided by the environment change much slower
than the internal dynamics of the system. As an example, a steady stream of
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fluid that is guided through a partially obstructed canal can develop turbulence
and the flow will not reach a steady state even though the BCs have no time
dependence. In this case, the erratic behaviour is intrinsic to the system itself.

In non-equilibrium situations there is always generation of entropy and since
this entropy cannot accumulate inside of the system (because of the steady-
state assumption), entropy has to be ejected from the system continuously. For
example, consider the metal rod again over a short period of time dt. During
this time, the hot reservoir injects a certain amount of heat d̄Qh > 0 into the
rod. It is assumed that the hot reservoir and the local temperature of the rod
are equal, so d̄Qh is reversible heat and therefore the hot reservoir also injects
an amount of entropy dSh = d̄Qh/Th into the rod. Because of the steady-state
condition, the same amount of heat d̄Qc = −d̄Qh is ejected from the rod at
the cold reservoir, along with an amount of entropy dSc = d̄Qc/Tc. Note that
dSh + dSc < 0, yet the steady-state assumption asserts that the entropy of the
rod cannot have changed, so clearly extra entropy dSirr has been created inside
of the rod such that dSh + dSc + dSirr = 0. This is the entropy generation
associated with the irreversible process of heat conduction inside of the rod.
The main conclusion to draw from this thought experiment is that irreversible
entropy production is related to gradients in intensive variables (∇T 6= 0) and
flows of extensive variables (in this example the flow of energy that heats up the
cold reservoir). In Section 2.5 this relation will be discussed more thoroughly.

In the case of a solar cell, the interaction with the environment is more com-
plex than for the heat conducting metal rod. This is because the environment
is providing energy to the cell in the form of a constant stream of photons that
do not interact with the cell at a well-defined interface. In fact, some of the low
energy photons can travel all the way through the cell and reflect on internal
interfaces several times before either being absorbed or exiting the cell. This
means that if one chooses to do the energy bookkeeping by putting an imagi-
nary box around the cell and then imposing BCs on the edges of that box, it is
important to keep track not only of the cell itself but also of the photons inside
in order to make the sure the balance adds up. As a consequence, it is then
required to include thermodynamic coordinates for the energy in the photon
field and to model transport of energy due to radiative recombination (RR)
and reabsorption of photons, which is a formidable task. A model whereby the
photons are considered as part of the thermodynamic system will be referred
to as a bilateral model. This terminology refers to the fact that the photons
can affect the electrons and vice versa. The complexity of such a description
invites the use of additional simplifications. Such a simplification can be to
consider the photons as part of the environment, meaning that the photons
affect the electrons in the cell, but not the other way around. This is called
a unilateral description and in this case there are no thermodynamic variables
that describe the photons inside the cell. To see how the thermodynamic de-
scription of a solar cell (which is bilateral in principle) can be simplified to
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a unilateral one, it is instructive to first consider how the problem is usually
handled in semiconductor physics.

In solar cell simulations (especially for c-Si devices), it is common practise to
separate the optical and electrical description of the device. First, an optical
simulation is done using, e.g., a Lambert-Beer model or ray tracing. The
optical simulation calculates how the light propagates through the cell and
how much light is absorbed in the semiconductor at every position and then
the result of the optical model is used as an input for the electrical model
of the device that calculates the electron and hole densities from transport
models. In this procedure, the absorption profile is calculated from known
material properties (i.e., the complex dielectric function or refractive index) and
does not depend on the non-equilibrium situation of the cell (e.g., the electron
and hole densities, which are not even known yet at this first stage). The
reason this unilateral coupling of optical and electrical models generally works
well, is that there is a great asymmetry in the way photons interact with the
electrons/holes in the cell. Whereas the main source of photons is the external
influx from the sun, the main source of electrons and holes is the generation
due to photons. The exceptions to this rule are high-efficiency devices based
on direct-bandgap semiconductors: in those, the radiative recombination (and
possibly even stimulated emission) provides a significant contribution to the
photon field [24], making it absolutely necessary to couple the optical and
electrical models bilaterally rather than unilaterally. Thus, if one wishes to
push the efficiency of solar cells to the absolute limit, it becomes essential
to explicitly include the thermodynamic coordinates of the photons into the
model.

The question of whether to use a unilateral or bilateral coupling of photons
and electrons can be rather subtle. It is discussed briefly in the paper by
Lindefelt [14], where he remarks that for the accuracy of a calculation it is best
to either use a full bilateral coupling between electrical and optical model or to
use a fully unilateral model. The in-between option, whereby RR is included
as a loss mechanism for the electron-hole pairs but not as a source term for the
photon field, is less accurate according to Lindefelt and he bases that claim on
a paper [25] that numerically compares these three methods for a GaAs device.
The idea is that in RR the photons that are generated are often recycled since
the strengths of emission and absorption are proportional to each other. Thus,
if in a unilateral model the RR is included, reabsorption is not considered and
the recombination losses are overestimated. In the modelling of c-Si solar cells,
however, it is not uncommon to use a unilateral model together with RR. The
situation for c-Si (which has an indirect bandgap) is different than for GaAs (a
direct bandgap semiconductor), since in c-Si the RR is generally much smaller
than the Auger recombination and because the reabsorption of photons is very
unlikely due to the very low absorption coefficient for photons with energies
close to the c-Si bandgap.
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Figure 2.1: Schematic representation of the extension of equilibrium to non-equilibrium
thermodynamics for a solar cell: the equilibrium variables become localised and the system
is no longer insulated from its environment.

The preceding discussion shows that it is not always entirely clear how to
simplify a bilateral description to a unilateral one, but the main idea is clear:
first the absorption profile of the photons is calculated from predetermined
material parameters and then this generation profile is used as a source term
for the thermodynamic processes in the solar cell. These source terms will
be addressed in Section 2.5. So to conclude, the environment couples to a
solar cell in two distinct ways: at the cell boundaries there is the thermal
and electrical contact with the environment which is described by boundary
conditions. Inside of the cell there is the interaction between the light field
and the electron-hole gas which is (approximately) taken into account through
source terms.

2.5 The thermodynamic formulation of solar cell
physics step 3: Continuity equations

Figure 2.1 illustrates the main ideas that were discussed so far in Sections 2.3
and 2.4. At this point it is time to develop the mathematics that describe
the solar cell. It was explained how the equilibrium solar cell description was
generalised to non-equilibrium by dividing the cell in M small subsystems with
coordinates xj and assigning thermodynamic coordinates to each subsystem.
This made it possible to write dS as a sum of the local entropy dsxj over the
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subsystems, with ds given by:

ds = β du− η̃n dn− η̃p dp. (2.33)

Eq. (2.33) can be considered to be the local form of the first law. Recall that,
for mathematical convenience, the sum over xi was treated as a volume integral
and that the densities u, n, and p were used as the independent thermodynamic
coordinates for the solar cell.

The description of a working solar cell does not only deal with densities
but also with flows. Flows (denoted by J) are introduced into the model by
postulating continuity equations for the densities of extensive variables, just
like in SCP. However, a significant difference between NETGM and SCP is that
in the former the entropy continuity equation is of central interest while in SCP
the main focus tends to be on the conservation laws for electrons and holes.
The continuity equations for s, u, n, and p are given by:

∂s

∂t
+∇ · Js = qs, (2.34a)

∂u

∂t
+∇ · Ju = qu, (2.34b)

∂n

∂t
+∇ · Jn = qn, (2.34c)

∂p

∂t
+∇ · Jp = qp. (2.34d)

The symbol q is used to represent source terms in the continuity equations and
the ∂/∂t terms have been included for completeness because they will be neces-
sary for deriving the expression for qs in the next subsection. For the remainder
of this chapter, however, the time derivatives will be set to zero because only
steady-state solutions are of interest here. Eqs. (2.34) put constraints on what
flows can be considered, but they do not give a unique definition since J only
appears inside of a divergence in each equation. The unique definitions of the
flows will be given in Section 2.6, but first the continuity equations, and the
entropy source term qs in particular, will be considered on their own merits.

The source terms qu,n,p in Eqs. (2.34) are, in principle, known quantities
and will be discussed first because they are important for deriving qs. They
are:

qu = εγ(x)G(x)− εγ,RadRRad, (2.35a)

qn = G(x)−R(n, p, ...), (2.35b)

qp = G(x)−R(n, p, ...). (2.35c)

Here, G is the generation rate of electron-hole pairs obtained from an optical
model, εγ the average absorbed photon energy, εγ,Rad the average energy of
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photons emitted by radiative recombination7, and R (RRad) the (radiative)
electron-hole recombination rate. At this point it is important to make a
clear distinction between two different type of sources: those that are due to
interaction with the environment and those that are due to internal irreversible
processes in the system. This will be especially important when considering the
entropy source term, since there is a fundamental difference between entropy
that is generated due to irreversible dynamics and entropy that is transferred
between the system and its surroundings.

Section 2.4 discussed that in a solar cell the photons interact with the
cell all the way throughout the bulk. If the photons were represented by a
set of thermodynamic coordinates, then such an interaction would not change
the energy density and qu = 0. However, the choice for a unilateral coupling
between photons and electrons necessitates the use of a nonzero source term
qu > 0 which represents the interaction between the environment and the cell.
Note that the source term for u depends on whether or not the background
semiconductor lattice of the cell is considered as part of the thermodynamic
system or not8: if only the electron-hole gas would considered (assuming it is
non-degenerate), then qu would instead be given by:

qu,electron-hole gas = (EG + 3kBT )G− εγ,RadRRad +H, (2.36)

with EG the bandgap of the semiconductor. The 3kBT term is the average
kinetic energy of an electron-hole pair and H is the energy transferred be-
tween the lattice and the e−–h+ gas9. To put it succinctly: qu in Eq. (2.35a)
represents all the energy transferred to and from the cell by the photons and
includes the heating of the semiconductor lattice, whereas qu,electron-hole gas in
Eq. (2.36) only represents the energy transferred to and from the electron-hole
pairs.

Looking at the source terms qn,p, it can be seen that these have two dif-
ferent contributions: the generation G that represents an interaction with the
environment and the recombination R that is mostly due to the internal dy-
namics of the cell. The exception to the latter is radiative recombination RRad,
which also represents a coupling to the environment. For now, RRad = 0 will
be assumed for the reasons given by Lindefelt (see Section 2.4) and this choice
also makes the distinction between internal dynamics (R) and interaction with

7Which is equal to the semiconductor bandgap if broadening effects are ignored
8recall from Section 2.3 that the choice was made to include the lattice in the thermody-

namic description presented here.
9Usually in the from of heat, hence the symbol H. Note that the energy thermalisation

loss upon the excitation (the average difference between the absorbed photon energy and
the energy of an electron hole pair) of an e−–h+ pair is not included in H because only
thermalised electrons and holes are considered to be part of the system. This means that the
thermalisation energy transfer is directly from the photons to the lattice, both of which are
part of the environment here.
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the environment (G) more clear. In situations where RR is of interest, it will
be accounted for explicitly by writing R+RRad.

2.5.1 The entropy source term qs

Now that the role of the other source terms is clear, it is time to obtain an
expressions for qs and for Js and to interpret their meaning. Deriving them is
done by combining the local form of the first law Eq. (2.33) with the continuity
equations (2.34). The former is used to obtain ∂s/∂t:

∂s

∂t
=
∂s

∂u

∂u

∂t
+
∂s

∂n

∂n

∂t
+
∂s

∂p

∂p

∂t
(2.37)

= β
∂u

∂t
− η̃n

∂n

∂t
− η̃p

∂p

∂t
. (2.38)

Next, the continuity equations are used to eliminate all ∂/∂t:

qs −∇ · Js = β (qu −∇ · Ju)− η̃n (qn −∇ · Jn)− η̃p (qp −∇ · Jp) (2.39)

The next step is to push β and η̃n,p inside of the divergences by using the
product rule f∇ ·w = ∇ · (fw)−w · ∇f . This gives:

qs −∇ · Js = βqu − η̃nqn − η̃pqp + Ju · ∇β − Jn · ∇η̃n − Jp · ∇η̃p
−∇ · (βJu − η̃nJn − η̃pJp) . (2.40)

At this point there are two methods that are commonly used in literature
to obtain expressions for qs and Js. Lindefelt [14], for example, proceeds by
postulating that:

TJs = JQ = Ju − ηnJn − ηpJp, (2.41)

with JQ the heat flow. This definition of Js appears to be motivated by Eq.
(2.33) and seems reasonable, but there is no clear argument why Eq. (2.41)
necessarily follows from Eq. (2.33) since flows are not a type of differential.
The advantage of postulating (2.41) is that qs then follows immediately from
Eq. (2.40):

qs = βqu − η̃nqn − η̃pqp + Ju · ∇β − Jn · ∇η̃n − Jp · ∇η̃p. (2.42)

Another convenient form for the entropy source term is obtained by replacing
Ju with JQ using Eq. (2.41):

Tqs = qu − ηnqn − ηpqp − JQ ·
∇T
T
− Jn · ∇ηn − Jp · ∇ηp. (2.43)

The second method to obtain Eqs. (2.41) and (2.42) is found in, e.g., the book
by De Groot and Mazur [3]. Here it is asserted that in Eq. (2.40) the parts
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inside of the divergence have to be equal (yielding Eq. (2.41)) as well as the
parts outside of the divergence (yielding Eq. (2.42)). The authors assert that
this split of Eq. (2.40) is uniquely determined by two additional requirements,
namely that of Galilei invariance and the requirement that qs becomes zero
when global thermodynamic equilibrium is reached. This assertion is made
without proof, however, so it remains unclear which method is the best to
justify Eqs. (2.41) and (2.42). Fortunately, this does not mean that the ac-
curacy of these equations is in serious doubt, since there are also works that
derive very similar results from microscopic principles (see, e.g., Parrot [13]
and Greulich [11]).

2.5.2 Loss processes in the bulk of a solar cell and the entropy
generation rate

Having derived qs in Eq. (2.42), it is time to discuss its physical meaning. As
was stated earlier, the entropy source term can be split up into two different
contributions: entropy that is transferred from the environment (i.e., the sun-
light) to the cell qs,env→cell and entropy that is generated due to irreversible
processes qs,irr. The irreversible contribution can again be split up into en-
tropy generation due to (non-radiative) recombination and due to transport
phenomena. According to the second law of thermodynamics, irreversible pro-
cesses always generate net entropy, even locally. Thus, the entropy source term
for the solar cell qs can be written as:

qs = qs,env→cell + qs,irr, (2.44a)

qs,env→cell = βqu − (η̃n + η̃p)G, (2.44b)

qs,irr = qs,rec + qs,trans ≥ 0, (2.44c)

qs,rec = (η̃n + η̃p)R ≥ 0, (2.44d)

qs,trans = Ju · ∇β − Jn · ∇η̃n − Jp · ∇η̃p ≥ 0. (2.44e)

It was discussed in Section 2.3 that the creation of entropy goes at the cost
of useful work that can be extracted from the cell, making the entropy source
term a useful tool for understanding loss processes. However, it is important
to keep in mind that neither of the terms qs and qs,irr are equal to the total
entropy production rate in the complete photovoltaic process, since there is also
an entropy source term associated with the photon field, which will be referred
to as qs,γ (with γ referring to photons). Due to the unilateral treatment of
the interaction of photons with the cell, this term remained outside of the
scope of the discussion, but of course it does matter in the greater scheme.
The exact form of qs,γ can be deduced from the entropy formula for radiation
presented by Landsberg (Eq. (5.6) in his article [19]) and depends on the
spectral shape of the radiation field (which varies throughout the cell) and on
the angular distribution of the photon propagation directions. So, for example,
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a collimated laser beam has a very low entropy because it has a very low
spread in both energy and angular distribution. Sunlight is also well-collimated
but has a large spread in its photon energy distribution and therefore also a
larger entropy. There is generally no entropy generation associated with the
(reversible) propagation of light through a refractive medium, so if all light
propagation in the cell is reversible then all contributions to qs,γ are due to
absorption and emission of photons. Irreversible (i.e., non-refractive) scattering
of light, such as Rayleigh scattering and scattering with free electrons, can also
increase the entropy of the photons by increasing the angular spread of the
radiation [1]. These scattering contributions can be included in qs,γ as well, if
necessary.

Usually qs,γ is negative because the light field is transferring energy to the
solar cell, though it can be positive if there is locally more radiative recombina-
tion than absorption or if the light is being irreversibly scattered. Furthermore,
the loss of entropy from the radiation field due to loss of energy qs,γ does not
necessarily cancel against the gain in entropy in the cell due to absorption (or
emission) of energy βqu. Only if the transfer of energy between the cell and
the radiation field is reversible (which is usually not the case) are these terms
equal and opposite. In this work, the symbol σirr will be used to indicate the
total entropy production rate in the combined system “solar cell + photons”.
The second law states that the total entropy production rate is always larger
than zero:

σirr = qs + qs,γ +RRad(η̃n + η̃p)

= qs,γ + βqu + β∆ηeh(R+RRad −G)

+ JQ · ∇β − βJn · ∇ηn − βJp · ∇ηp ≥ 0. (2.45)

Recall the convention to mention RRad explicitly when necessary. The terms in
Eq. (2.45) capture all local loss processes that can occur in the bulk of a solar
cell. No exact form for qs,γ will be given or used here, but some general con-
siderations about the role of qs,γ in solar cell design are in order and these are
presented below. In particular, it will be motivated why qs,γ is ultimately not
of great importance for the optimisation of many types of solar cells, especially
those based on c-Si. To see why this is the case, it is important to understand
the physical meaning of the entropy generation processes and what possible
practical methods are available to reduce the corresponding losses. To put it
in different words: for the purpose of solar cell optimisation it is unnecessary
to consider entropy generation terms that belong to loss processes one is not
willing to (or incapable to) address anyway.

The bulk losses can be categorised and interpreted as follows:

� Generation related losses. These are losses associated with the absorption
of photons and the production of e−–h+ pairs. The most important loss
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in a c-Si cell is of course the thermalisation of an e−–h+ pair directly after
the absorption of a photon with energy ≥ EG. The entropy generation
associated with thermalisation loss is β(qu − ∆ηehG). In practice, the
most feasible method to reduce thermalisation losses is to increase the
product ∆ηehG as much as possible. This can be achieved by letting
generation take place in parts of the cell with a large Fermi level splitting
and by building multi-junction cells with different bandgaps for each
junction. Note that the benefit of increasing EG is that this also increases
∆ηeh. Often, great emphasis is put on the value of EG, but ultimately it
is the free energy per e−–h+pair ∆ηeh that determines how much useful
energy can be extracted per absorbed photon. For illustration, recall that
for an electron-hole gas satisfying Maxwell-Boltzmann statistics ∆ηeh is
given by:

∆ηeh = EG + kBT ln

(
np

NCNV

)
, (2.46)

which not only shows that ∆ηeh increases with EG, but also that other
quantities matter just as well. Indeed, it is even possible to increase ∆ηeh
by using materials with low NC and NV as was also noted by Osterloh
[26]. Since NC,V ∼ (m∗n,p)

3/2, this means that it is beneficial to use
materials with a low effective mass.

The term qs,γ contains generation related contributions that depend on
the angular distribution of the photon propagation directions and the
spectral distribution of the photon energies. Those contributions basi-
cally characterise how well the photon field can be trapped inside of the
cell to absorb as much of the incident light as possible. In the design of
a solar cell this problem is usually optimised beforehand and separately
from the electrical design. Thus, considering qs,γ becomes important
once the solar cell has been improved so extensively that disjointed op-
timisation of optical and electrical design can no longer yield any gains.
Some of the optimisations that are possible by considering qs,γ are highly
academical, though. For example, it is possible to redirect photons emit-
ted from the cell (through thermal radiation or radiative recombination)
back towards the sun as much as possible. This way, the lifetime of the
sun is extended and more solar energy can be extracted in the long run
(see also Würfel [1] section 2.5). Of course such an optimisation scheme
is not very interesting in practice. This should help to illustrate that for
solar cell engineering it is not necessary to consider every entropy gen-
eration contribution imaginable and that one should always consider the
physical content of the loss terms one is trying to reduce. An interesting
discussion of optical design principles is presented by Polman [27].

� Recombination related losses. Non-radiative recombination is accounted
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for by the product ∆ηehR and since it is undesirable to reduce ∆ηeh this
just means that the total recombination over the whole cell

Rtot =
y

x∈Ω

R dx3, (2.47)

needs to be kept as low as possible to reduce the total entropy gener-
ation associated with recombination. This is achieved by reducing the
number of recombination-active defects (i.e, making the integrand of Rtot

smaller) and by keeping the cell as thin as possible (i.e., making the inte-
gration domain Ω smaller). The entropy generation due to RR requires
some extra consideration since this process makes positive contributions
to the terms qs,γ and β∆ηehRRad while giving a negative contribution to
βqu (since energy is ejected from the cell). Because of this, the entropy
generation due to RR is usually lower than due to other recombination
processes. The physical reason for this is that the photons emitted due
to RR have a well-defined energy which makes it possible to use special
optical tricks (energy-selective mirrors etc.) to keep them inside of the
cell. However, it is still a spontaneous process, so the total contribution
to all three terms together has to be ≥ 0. This example further illus-
trates how the practical limitations can influence the interpretation of
loss processes: if one is not considering to use special optical techniques
to capture photons from RR, then for the optimisation of the cell it is
unnecessary to consider the entropy generation terms corresponding to
RR.

The remaining loss terms JQ · ∇β, −βJn · ∇ηn, and −βJp · ∇ηp are the
transport losses and they will be the subject of Section 2.6 below.

2.6 The thermodynamic formulation of solar cell
physics step 4: Onsager theory

So far no specific mathematical form has been given for the currents Js, Ju,
Jn, and Jp. As was briefly alluded to in Section 2.4, the NETGM view of flows
is that they always arise from gradients in local intensive variables: tempera-
ture gradients drive heat flows; pressure gradients drive mass flows; gradients
in chemical potential cause diffusion etc.10 Interestingly, in SCP a common
viewpoint is that diffusive flows are driven by gradients in density (which is,
from a thermodynamic point of view, a local extensive variable) rather than

10In fact, the idea that gradients in thermodynamic quantities drive flows is a useful starting
point to separate the interesting transport phenomena from trivial ones such as uniform
motion of the whole system.
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chemical potential. The diffusive flow Jdiff
n of electrons (with density n) is

given in Fick’s law:

Jdiff
n = −Dn∇n, (2.48)

with Dn the diffusion constant. If the current is considered to be driven by the
chemical potential µc

n, however, the expression should be written instead as:

Jdiff
n = −σn

e2
∇µc

n. (2.49)

If the electrons are considered to be an ideal gas, then µc
n = kBT ln(n/NC) (see

also Eqs. (A.3) in Appendix A.1) and:

Jdiff
n = −µnn

e
∇
[
kBT ln

(
n

NC

)]
= −kBT

e
µn∇n. (2.50)

The motivation for writing the proportionality constant as a conductivity
σn = eµnn is that ∇µc

n is a force (unit: N) just like ∇φ and it is common
practice to write currents driven by forces as “mobility × density × force”.
Note that the two rightmost expressions in Eq. (2.49) are only valid when
the electrons can be described by Boltzmann statistics and when T and NC

are constant. Indeed, these are crucial assumptions for the validity of Fick’s
law as well. By comparing Eqs. (2.48) and (2.49) the well-known Einstein
relation Dn = µnkBT/e is obtained, demonstrating that µn in Eq. (2.49) is
the familiar carrier mobility from SCP. Usually the Einstein relation is derived
by comparing diffusion to another flow-driving force such as gravity, but this
is not strictly necessary: all that is needed is to identify the chemical potential
as the driving force of diffusion.

In NETGM the gradients of intensive variables that drive flows are called
“thermodynamic forces” or “generalised forces”. In some works (such as Le
Bellac [28]) those two terms are already reserved for other quantities and then
new jargon is introduced by the author (“affinities”, for example), but in this
work the terminology based on forces is used throughout because this expresses
the central idea most intuitively. When the context is clear the thermodynamic
forces will simply be referred to as forces for brevity.

The identification of the right thermodynamic forces and the flows is not
trivial if one has to do this based on first principles, but fortunately NETGM has
a standard procedure for obtaining the correct flux-force pairs (and the trans-
port relations between them) from the entropy generation rate. The method
is based on the work by Lars Onsager [20] and on Einstein fluctuation theory
[29] but the details of those works will not be discussed here. The main result
can be summarised as follows as follows:

1. First an expression for the irreversible entropy generation rate in the
semiconductor (qs,irr) is written out. As was shown in Section 2.5 there
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are various possible forms for qs,irr that can be obtained by substitutions,
such as:

qs,irr = (η̃n + η̃p)R+ Ju · ∇β − Jn · ∇η̃n − Jp · ∇η̃p, (2.51)

or:

qs,irr = β∆ηehR− JQ ·
∇T
T 2
− Jn · β∇ηn − Jp · β∇ηp. (2.52)

Both of these expressions can be used, resulting in different flux-force
pairs. Of course, the different choices for qs,irr lead to equivalent thermo-
dynamic descriptions of the fluxes in the solar cell, though there often is
a practical preference for a particular expression for qs,irr. In this case it
will turn out that Eq. (2.52) is more convenient to work with than Eq.
(2.51).

2. From each term in qs,irr a flux-force pair of the form Ji · Fi is identified,
so the terms in Eq. (2.51) yield the pairs:

Ju ↔ Fu = −∇T
T 2

= ∇β, (2.53a)

Jn ↔ Fn = −∇(βηn), (2.53b)

Jp ↔ Fp = −∇(βηp). (2.53c)

Alternatively, one can identify from Eq. (2.52) the pairs:

JQ ↔ FQ = −∇T
T 2

= ∇β, (2.54a)

Jn ↔ Fn = −β∇ηn, (2.54b)

Jp ↔ Fp = −β∇ηp. (2.54c)

As can be seen, care should be taken with the symbols Fn,p: depending
on the form of qs,irr that is used the forces take different forms. For the
rest of Section 2.6 the forces FQ,n,p from Eqs. (2.54) will be used because
they have the advantage that the inverse temperature β does not appear
under the gradient in Fn,p.

The perceptive reader may have observed that the term β∆ηehR has not
been discussed here. Indeed, associated with this term are the scalar flux
R and the scalar force β∆ηeh, but these can be ignored for now and will
be discussed in Section 2.7.

3. Finally, Onsager’s theory asserts that the fluxes (measured in the refer-
ence frame of the cell) can be written as a general linear combination of
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the forces. The coefficients in this linear combination are denoted by the
symbols Lij with i and j labelling the fluxes and forces:

JQ = LQQFQ + LQnFn + LQpFp, (2.55a)

Jn = LnQFQ + LnnFn + LnpFp, (2.55b)

Jp = LpQFQ + LpnFn + LppFp. (2.55c)

These equations can be stated more compactly as:

Ji =
∑
j

LijFj (2.56)

It should be noted that these equations are valid for transport in an
isotropic system. In Section 2.7 the consequences and limitations of this
assumption will be analysed, but for now the assumption of isotropy will
be used to simplify the discussion.

In Eqs. (2.55), the diagonal terms LQQFQ, LnnFn, and LppFp account
for well known transport phenomena such as heat diffusion due to a
temperature gradient (i.e., Fourier’s law) and charge transport due to
gradients in the electrochemical potentials. The off-diagonal elements
like LQnFn account for effects such as the Peltier effect whereby heat
is transported along with the flow of electrons. The cross-terms LnpFp
and LpnFn represent momentum exchange between electrons and holes
due to microscopic collisions [14] arising from short-range interactions
between electrons and holes that are quantum mechanical in nature. For
example, at close proximity an electron-hole pair can temporary form
an exciton, which is a quantum mechanical state similar to that of the
hydrogen atom (i.e., a bound state between two oppositely charged par-
ticles). During this binding the two particles can exchange momentum
and in this manner the electrons can exert a short-range force on the
holes and vice versa. Macroscopically this force then gives rise to the
off-diagonal transport terms LnpFp and LpnFn. It is expected that this
effect becomes stronger in materials with a strong exciton binding en-
ergy, which are usually materials with a low dielectric constant (see, e.g.,
Ibach and Lüth [30]) such as polymers. The effect of these short-range
interactions should be distinguished from the long range Coulombic in-
teractions between electrons and holes in a solar cell that are accounted
for by the electrostatic potential φ (which modifies ηn,p and Fn,p) and
the Poisson equation (see Eq. (A.1) in Appendix A.1).

Due to the linear form of Eqs. (2.55) it is sometimes said that NETGM

is a linear theory, but care should be taken when interpreting this statement
because NETGM only asserts that the fluxes are always linear in the forces,
(meaning that the Lij cannot depend on the FQ,n,p). However, the coefficients
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Lij are not necessarily constant: they can depend on other thermodynamic
quantities such as T , ηn,p, n, p and on x explicitly. For example, the electron
electrical conductivity and Lnn can be related as Lnn = Tσn/e

2 = Tµnn/e,
so Lnn is not constant. When Eqs. (2.55) are inserted into the continuity
equations Eqs. (2.34), the resulting transport equations are therefore generally
non-linear11.

The flux-force equations (2.55) can be used to rewrite the transport dissi-
pation term qs,trans from Eqs. (2.44):

qs,trans = JQ · FQ + Jn · Fn + Jp · Fp (by definition of the forces)

=
∑
j

(
LQjFj · FQ + LnjFj · Fn + LpjFj · Fp

)
=
∑
i,j

LijFi · Fj ≥ 0. (2.57)

The inequality qs,trans ≥ 0 immediately imposes a constraint on the coefficients
Lij : since the Lij are independent of the forces Fj , the inequality qs,trans ≥ 0
has to hold for every possible combination of forces FQ, Fn, and Fp. This is
only possible if the elements Lij form a positive-definite matrix, meaning that
all of its eigenvalues are positive. Consequently, the diagonal elements LQQ,
Lnn and Lpp are all positive as well. The off-diagonal elements can be negative,
but their absolute values are bounded. For example, a simple bound for the
elements Lnp and Lpn is given by:

4LnnLpp ≥ (Lnp + Lpn)2 . (2.58)

In Section 2.7, the Onsager relations are discussed and these require that Lnp =
Lpn, so that LnnLpp ≥ L2

np. The off-diagonal coefficients have a significant
influence on the transport losses that occur in the cell. To illustrate this,
consider for the moment only the dissipation due to the electron and hole
forces in a 1D solar cell. For simplicity it is assumed that FQ = 0. There
is a total charge current Jcharge = e(Jp − Jn) running through the cell and
then the problem is to find the ideal values of Fn,p for a given set of transport
coefficients. This optimum is found by solving a constrained minimisation
problem for qs,trans. Using the method of Lagrange multipliers, the following
quantity Λ is minimised with respect to Fn, Fp, and the multiplier λ:

Λ = qs,trans + λ

[
Jcharge

e
− (Jp − Jn)

]
= LnnF

2
n + LppF

2
p + 2LnpFnFp

+ λ

[
Jcharge

e
− (LppFp + LnpFn − LnnFn − LnpFp)

]
. (2.59)

11see also the remarks from the authors in preface to the Dover edition of their work [3].
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By setting ∂Λ/∂Fn = ∂Λ/∂Fp = ∂Λ/∂λ = 0 and solving, the following solution
is obtained:

Fp = −Fn =
Jcharge/e

Lnn + Lpp − 2Lnp
, (2.60)

qs,trans =
(Jcharge/e)

2

Lnn + Lpp − 2Lnp
. (2.61)

This shows that the ideal way to drive a current Jcharge is by making sure
that the electron and hole forces are equal and opposite. Recall that Lnn ≥ 0
and Lp ≥ 0, so due to the constraint LnnLpp ≥ L2

np the entropy production is
always positive. As can be seen, qs,trans is smaller for materials with greater
Lnn and Lpp because those materials that are more conductive. Furthermore,
the entropy production is lower for materials where Lnp < 0 than for those with
Lnp ≥ 0. The physical reason is that whenever Lnp < 0, the electron force Fn
pushes the holes in the opposite direction and vice versa, thereby facilitating
charge separation. To put it differently: the electron force is helping the holes
and the other way around. Since the entropy generation terms are Jn ·Fn and
Jp · Fp, it is beneficial to drive the electron current Jn towards its collecting
contact by forces other than Fn (and vice versa). Conversely, when Lnp > 0
the electrons and holes tend to be transported together in the same direction,
making the photovoltaic conversion less efficient. Indeed, it is known that this
co-directional transport of electrons and holes is one of the limiting factors in
organic solar cells. For a material in which Lnn = Lpp and that achieves the
thermodynamically allowed limit Lnp = −

√
LnnLpp, the reduction of charge

transport losses can be up to 50 % compared to Lnp = 0. This demonstrates
that both the diagonal and the off-diagonal transport coefficients can have a
significant influence on the rate of entropy production.

Traditionally, the SCP description of solar cells does not consider the off-
diagonal transport coefficients Lnp and Lpn. Presumably, the error that occurs
from this (implicit) assumption is not severe given the success with which
SCP can model photovoltaic devices. However, this does not necessarily mean
that Lnp = Lpn = 0, since it is always possible to transform Eqs. (2.55) to
a diagonal form (i.e., through diagonalisation of the matrix Lij). By doing
so, the effects of Lnp and Lpn are incorporated into Lnn and Lpp (i.e., the
electron and hole conductivities). However, the diagonalisation of Lij also
muddles the distinction between electrons and holes and this has repercussions
for other empirical models such as the expression for the recombination rate
and the mobility. It is therefore worth exploring whether greater accuracy and
mathematical and/or physical simplicity can be achieved for these empirical
models when the off-diagonal transport coefficients Lnp and Lpn are explicitly
incorporated in the transport equations.

Conversely, off-diagonal transport coefficients can also arise when a change
in variables is made to a transport problem that was originally diagonal. Such
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a transformation of fluxes and forces can sometimes provide advantages that
weigh up against the added complexity of having a more complicated matrix of
transport coefficients. As an example, it is possible to transform the electron
and hole currents Jn,p to the current of electron-hole pair Jeh = 1/2(Jn + Jp)
and the charge current Jc = Jp−Jn. This is exactly analogous to the situation
in Section 2.3 (Eqs. (2.5) and (2.7)) where one can choose between using the
numbers of electrons and hole (Nn and Np) as thermodynamic variables or,
instead, the number of electron-hole pairs (Neh) and the electron-hole charge
(Qnp). The advantage of this transformation is, of course, that the charge
current has no source term (i.e., ∇ · Jc = 0) since charge is always conserved.
The accompanying forces for Jeh and Jc are:

Jeh ↔ Feh = −β∇∆ηeh = −β∇(ηn + ηp), (2.62a)

Jc ↔ Fc = −β∇ΦQ =
β

2
∇(ηn − ηp). (2.62b)

It can be verified that these are indeed correct flux-force pairs since:

Jeh · Feh + Jc · Fc = Jn · Fn + Jp · Fp, (2.63)

which demonstrates that the change in variable from Jn and Jp to Jeh and
Jc (along with the correct change in forces) leaves the irreversible entropy
generation rate (Eq. (2.52)) invariant. Now suppose that the original transport
matrix for Jn and Jp is diagonal so that Jn = LnnFn and Jp = LppFp. It can
then be readily verified that the transport matrix for Jeh and Jc is not, since
some algebra demonstrates that the Onsager relations for the new fluxes are:

Jeh =
Lnn + Lpp

4
Feh +

Lpp − Lnn
2

Fc, (2.64a)

Jc =
Lpp − Lnn

2
Feh + (Lnn + Lpp)Fc. (2.64b)

Thus, the convenience of having a flux with zero divergence should be con-
trasted against the inconvenience of have more complicated flux-force relations.

Finally, it should be noted that in various literature sources a theorem called
the principle of minimum entropy generation is frequently mentioned. It will
not be discussed in detail here, but it is worth mentioning that this theorem
does not apply to solar cells. This is because a critical condition for the validity
of the minimum entropy generation principle is that the transport coefficients
Lij are true constants (i.e., independent of thermodynamic variables like n and
p as well as x) [3]. This condition is not fulfilled in the case of solar cells so
the theorem can be disregarded.
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2.7 The thermodynamic formulation of solar cell
physics step 5: Symmetry, the Onsager recipro-
cal relations and the Curie principle

The transport coefficients Lij are purely empirical from a macroscopic point of
view, so to specify them further one either has to measure them; calculate them
from microscopic theory; or make ad-hoc assumptions about them. Typical
theoretical tools that can be used to link the Lij to microscopic phenomena
like collisions include the Boltzmann transport equation, Kubo formalism, and
fluctuation theory. The books by De Groot [3] and Le Bellac [28] are among the
sources that can be referred to for more details on the microscopic description
of the transport coefficients.

However, even without microscopic models for the Lij it is possible to obtain
some important universal results for the transport coefficients. For example,
in Section 2.6 it was already mentioned that the Lij have to form a positive
definite matrix because entropy cannot decrease. Recall from Section 2.3 that
thermodynamics is a theory about symmetries of the underlying microscopic
physics of a system and here in Section 2.7 two important symmetries along
with their consequences for the transport coefficients will be discussed, namely
time-reversal symmetry and material isotropy.

2.7.1 The Onsager reciprocal relations

Time reversal symmetry is a fundamental property of all microscopic laws that
ultimately govern the behaviour of everyday macroscopic objects. Newton’s
laws of motion, Maxwell’s laws of electromagnetic fields and quantum mechan-
ics are all symmetric under the reversal of the flow of time. In some cases
one has to transform certain quantities when time is reversed (e.g., magnetic
fields get a minus sign when time is reversed) but ultimately it is not pos-
sible to distinguish the forward and reverse directions of time flow based on
microscopic physics: only on the macroscopic scale is there a clear breaking of
symmetry that manifests itself as the second law of thermodynamics12. The
microscopic time reversal symmetry has interesting macroscopic consequences
that are known as the Onsager reciprocal relations. Applied to a solar cell,
these relations state that the matrix of the transport coefficients is symmetric,

12Even though much work has been devoted to explaining how microscopically reversible
laws can give rise to macroscopically irreversible phenomena, this question is still an active
topic of debate and will not be discussed here since it is far beyond the scope of the current
text.
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i.e.:

LQn = LnQ, (2.65a)

LQp = LpQ, (2.65b)

Lnp = Lpn, (2.65c)

or simply Lij = Lji. This result may seem surprising at first. The sceptical
reader is advised to verify that, e.g., the coefficients LQn and LnQ have the
same units before accepting that they are, in fact, equal. The Onsager relations
present an important link between phenomena that superficially appear unre-
lated such as the Peltier effect and the Seebeck effect. The derivation of the
reciprocal relations will not be given here; it can be found in various literature
sources [20, 3]. However, it is possible to gain some heuristic understanding
of the reciprocal relations by considering that time reversal also reverses cause
and effect. If one would assert that a flow of electrons Jn causes a flow of heat
JQ along with the electrons (Peltier effect), then the principle of time-reversal
symmetry states that it is equally valid to assert that a flow of heat JQ causes
a flow of electrons Jn (Seebeck effect). In other words, the reciprocal relations
express the idea that, macroscopically, it is impossible to distinguish which
of the two phenomena is the cause and which is the effect. It should be em-
phasised that the principle of time reversal symmetry does not imply that the
flows JQ, Jn, and Jp are reversible: macroscopic flows generate entropy and
are therefore always irreversible.

2.7.2 The Curie principle

The Curie principle (named after Pierre Curie) is the general idea that a
symmetric system cannot give rise to phenomena that break the symmetries of
the original system. For example, a gas in a container is completely isotropic
in every direction and therefore it will conduct heat in the same way regardless
of the direction of the heat current. In other words, if the heat conduction is
described by Fourier’s law JQ = −(LQQ/T

2)∇T from Eqs. (2.55), then LQQ
has to be a scalar constant for the gas rather than a tensor. The Curie principle
is a useful concept, but it has limitations. A good example of a violation of
the Curie principle is (ironically) the cooling of a ferromagnet from above
its Curie temperature Tc to below. At T > Tc, the magnet is completely
isotropic (or at least has a highly symmetrical crystal structure). Yet once it
is cooled to T < Tc, the symmetry of the system spontaneously breaks and the
material develops a net magnetisation M . In more general it can be said that
phase transitions can give rise to broken symmetries in otherwise completely
symmetric systems, so care should be taken when applying the Curie principle
when phase transitions can occur. Fortunately, this is not a very important
limitation in solar cell physics.
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Most parts of a solar cell (such as the bulk of a c-Si wafer) are to good
approximation isotropic and it is therefore instructive to review what conse-
quences this isotropy has on the macroscopic physics of the device. This way,
one can also appreciate what kind of special phenomena can be expected in
parts of the device where the isotropic symmetry is broken. While formulating
the flux-force equations Eqs. (2.55) it was already assumed that the system is
isotropic to simplify the discussion, because for a non-isotropic system signif-
icantly more terms are needed in Eqs. (2.55). To understand why, recall that
the flux-force pair in Eqs. (2.54) were obtained from the terms that occur in
the irreversible entropy generation rate qs,irr. In Section 2.6, qs,irr was sugges-
tively written out in vector form, but is of course also possible to expand the
inner products in Cartesian components as follows:

qs,irr = β∆ηehR− JQ · ∇β − Jn · β∇ηn − Jp · β∇ηp

= β∆ηehR− JQ,x
∂β

∂x
− JQ,y

∂β

∂y
− JQ,z

∂β

∂z

− Jn,xβ
∂ηn
∂x
− Jn,yβ

∂ηn
∂y
− Jn,zβ

∂ηn
∂z

− Jp,xβ
∂ηp
∂x
− Jp,yβ

∂ηp
∂y
− Jp,zβ

∂ηp
∂z

. (2.66)

This form of qs,irr suggests that there actually are nine flux-force pairs related
to heat and charge transport instead of three. Consequently, there are also
nine flux-force relations with nine terms in each equation instead of the three
terms shown in Eqs. (2.55). This means that strictly speaking, each of the
coefficients Lij in Eqs. (2.55) is actually a second order tensor rather than a
scalar. For clarity, tensors will be denoted in roman symbols as:

Lij =

 Lxxij Lxyij Lxzij
Lyxij Lyyij Lyzij
Lzxij Lzyij Lzzij

 . (2.67)

The Onsager reciprocal relations for these tensors are:

Lij = LT
ji, i, j ∈ {Q,n, p}, (2.68)

where T denotes the transpose operation. Note that Eq. (2.68) also implies
that LQQ, Lnn and Lpp are always symmetric.

The reason it is possible to reduce the tensors Lij to scalars Lij is the Curie
principle: if the system does not exhibit broken symmetry between the three
Cartesian directions, then neither should the transport equations. In fact, it
is not even completely necessary for the system to be completely isotropic:
even in a system that only has cubic symmetry (which is a common symmetry
type for many crystals, such a c-Si) the tensorial transport coefficients still
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reduce to scalars and for the purposes of this text cubic symmetry can be
considered equivalent to complete isotropy. In the works of GM and Kuiken,
general mathematical methods are given that can reduce the complexity of the
transport coefficients for any given type of symmetry of the system [3, 16].

However, the Curie principle does more than just assert that the flux-force
relations are isotropic. At this point the reader is asked to recall from Section
2.6 that qs,irr in Eq. (2.52) also has the term β∆ηehR that yields the scalar
flux-force pair R ↔ β∆ηeh. Since β∆ηeh is a thermodynamic force, it should
also be able to drive the currents JQ,n,p. In other words, in Eqs. (2.55) the
following terms are also expected:

JQ = ...+LQR β∆ηeh, (2.69a)

Jn = ...+LnR β∆ηeh, (2.69b)

Jp = ...+LpR β∆ηeh. (2.69c)

As can be seen, the transport coefficients LQR, LnR, and LpR are necessarily
vectors since they relate the scalar force β∆ηeh to the vectorial fluxes JQ,n,p.
Conversely, there should also be a flux-force relation for the scalar flux R:

R = LRQ · FQ +LRn · Fn +LRp · Fp + LRRβ∆ηeh. (2.70)

Again, the coefficients LRQ, LRn, and LRp have to be vectors, since the inner
product is the only way to make a general linear transformation from the
vectorial forces FQ,n,p to the scalar flux R. Of course, there are also Onsager
relations for the vectorial transport coefficients LiR and LRi that have been
introduced just now:

LQR = LRQ, (2.71a)

LnR = LRn, (2.71b)

LpR = LRp. (2.71c)

The cross effects between recombination and transport in Eqs. (2.69) and
(2.70) were not mentioned in Section 2.6 because these cross phenomena do
not occur in an isotropic medium. This is again a consequence of the Curie
principle: in an isotropic system no preferential direction can exist, so the
vectors like LQR and LRQ have to be zero since they are material properties.
In other words it can also be said that in an isotropic medium the scalar force
β∆ηeh cannot drive a vectorial current since there is no direction the current
can be forced towards.

In conclusion, for a fully non-isotropic system, it is necessary to generalise

67



Eqs. (2.55) to:

JQ = LQQFQ + LQnFn + LQpFp +LQR β∆ηeh, (2.72a)

Jn = LnQFQ + LnnFn + LnpFp +LnR β∆ηeh, (2.72b)

Jp = LpQFQ + LpnFn + LppFp +LpR β∆ηeh, (2.72c)

R = LRQ · FQ +LRn · Fn +LRp · Fp + LRRβ∆ηeh. (2.72d)

Here it is understood that terms such as LQQFQ represent matrix multiplica-
tions. Having compared the isotropic flux-force relations with the fully non-
isotropic form in Eqs. (2.72), it is time to consider what kind of departures from
isotropy can be expected in a solar cell. The first possibility is that the bulk
material of the cell itself has an inherent anisotropy due to its crystal structure.
However, many materials relevant for solar cells are either amorphous (a-Si:H,
polymers) or have cubic crystal symmetry and both of these types of materials
can be considered isotropic to a good degree of accuracy. Material isotropy
will therefore not be considered in detail. Secondly, and more importantly, the
isotropy of the system can be reduced by the presence of electric or magnetic
fields (see also Kuiken [16] for a detailed mathematical treatment of symmetry
breaking due to electromagnetic fields). It is well known that electric fields are
commonly encountered in solar cells and in, e.g., c-Si-based cells they can be
as strong as 106 V m−1, which is enough to alter the electrical properties of the
crystal. To discuss the macroscopic consequences of such an electric field, it is
assumed that the field E is in the z direction (so that E = Eẑ) in an otherwise
isotropic medium. The tensorial transport coefficients in the general flux-force
relations in Eqs. (2.72) can then be shown to reduce to the form:

Lij =

 L⊥ij 0 0

0 L⊥ij 0

0 0 L
‖
ij

 , i, j ∈ {Q,n, p}. (2.73)

As can be seen, transport in the plane perpendicular to E is still isotropic,
but a different coefficient appears for the transport along E. Furthermore, the
vectorial transport coefficients all become scalar multiples of E:

LQR = LRQ = LQRE, (2.74a)

LnR = LRn = LnRE, (2.74b)

LpR = LRp = LpRE. (2.74c)

Heuristically, it can be said that broken symmetry makes it possible to couple
scalar and vector processes. Because the electric field is the source of this
broken symmetry, the transport coefficients LQR, LnR, and LpR that couple
the scalar and vectorial processes have to be co-directional to E. In the first
order, the prefactors LQR, LnR, and LpR are independent of the strength of E,
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but for strong electric fields they can become dependent on the field strength
E ·E.

Thus, the broken symmetry due to the electric field can influence the cur-
rents of the electrons and holes by the terms:

Jn = ...+ LnREβ∆ηeh, (2.75a)

Jp = ...+ LpREβ∆ηeh. (2.75b)

It should be emphasised again that this contribution is not directly due to the
electrostatic force of the electric field on the charge carriers, since this force
is already accounted for in Fn and Fp in the flux-force equations. In fact,
the electric field does not act like a thermodynamic force at all in this case
but only a factor in a transport coefficient: β∆ηeh is the thermodynamic force
that drives the current. From a microscopic point of view, the electric field
creates an asymmetry between recombination of electrons/holes with differ-
ent momenta by distorting the recombination potential, as shown an Figure
2.2. Thus, if electrons (holes) with a certain momentum are more likely to
recombine than those with the opposite momentum, this will macroscopically
influence the current Jn (Jp). The idea that electric fields affect carrier recom-
bination is not new and has been described by microscopic physics (see, e.g.,
Schenk [31]). On the other hand, the conclusion that the recombination there-
fore also acts as a force for Jn,p is not immediately obvious from microscopic
physics (and has not been pointed out before, to the author’s knowledge) while
this consequence follows in a straightforward manner from a thermodynamic
description. This illustrates how macroscopic physics can help to illuminate
the consequences of microscopic processes and correlate seemingly unrelated
phenomena. From a pure modeling point of view it is probably more natural
to write the recombination contributions to Jn,p as:

LnRβ∆ηehE = CnRRE, (2.76)

LpRβ∆ηehE = CpRRE, (2.77)

where the coefficients CnR and CnR measure the asymmetry in recombination
probability between electrons/holes moving with or against the electric field
E.

Having demonstrated that in the space-charge region of a solar cell it is pos-
sible for cross-phenomena to occur between recombination and charge trans-
port, the question arises how this affects the generation of entropy. As was
illustrated in Section 2.6 for the off-diagonal transport coefficients Lnp = Lpn,
the understanding of cross-phenomena can help to make the device more effi-
cient. When considering the coupling coefficients LnR and LpR, it can be seen
that it would be beneficial to look for materials where LnR ≤ 0 and LpR ≥ 0
since in that case the scalar force β∆ηeh will provide extra driving terms for
Jn,p that guide the electrons and holes to their respective contacts.
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Figure 2.2: Comparison of the Coulomb potentials of electrons near a hole. In the presence
of an external electric field E the symmetry between electrons moving left and those moving
right is broken and one of the two can become more likely to recombine. In the recombination
mechanism described by Schenk [31] (Figure 1 in his article), the electron moving from left
to right in the second image would be the one more likely to recombine.

It is worth mentioning that there is a significant difference between the
description of (non-radiative) recombination between SCP and NET. In SCP,
bulk recombination rates are usually parameterised as:

R = α(np− n2
i ), (2.78)

with ni the intrinsic carrier density and α a parameter (not necessarily a con-
stant) that is commonly a polynomial in powers of n and p. The factor (np−n2

i )
(which is essentially the exponent of ∆ηeh) occurs naturally to make sure that
R = 0 under equilibrium conditions. With Eq. (2.78) it is possible to con-
veniently model collisions between two, three or more carriers as terms with
varying powers of n and p. On the other hand, NET prescribes the bulk re-
combination as a scalar flux-force relation:

R = LRRβ∆ηeh = LRRkB ln

(
np

n2
i

)
, (2.79)

since the remaining terms from Eq. (2.72d) do not occur in the bulk. There
is no true disagreement between Eqs. (2.78) and (2.79), since the parameter
LRR is not necessarily constant and because Eq. (2.79) also yields R = 0
under equilibrium. However, the strong non-linearity of LRR makes Eq. (2.79)
less practical for the modeling of recombination than Eq. (2.78). In their
own work, GM already remark that the scalar flux-force relations for chemical
reactions are often not very useful because of the strong non-linearity of the
coefficients (LRR in this case) that occur in real systems. This suggests that
strong deviations from chemical equilibrium often happen in practice. Indeed,
the strong non-equilibrium of electrons and holes is precisely what characterises
a solar cell and what allows it to generate power.
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2.8 Wrap up: what does thermodynamics tell us?

The mathematical formalism of NETGM has strong parallels with that of SCP.
Both rely on the continuity equations and use empirical laws for the fluxes.
The main difference is that SCP also introduces the Poisson equation for the
electrostatic potential φ and the Boltzmann (or Fermi-Dirac) expressions for
the carrier densities:

n = NC exp

(
EFn + φ+ χ

kBT

)
, (2.80a)

p = NV exp

(
−
EFp + φ+ χ+ EG

kBT

)
. (2.80b)

Furthermore, SCP has many detailed models for various transport and recom-
bination phenomena.

There are, however, no limitations to incorporate these elements into NET.
The Poisson equation and carrier statistics can be included as auxiliary equa-
tions while the transport and recombination models simply prescribe the val-
ues of the empirical transport coefficients Lij . This means that any discussion
about solar cells framed in terms of SCP can be translated to NET and vice
versa, so that both disciplines can benefit from the strengths of the other. For
SCP, the main enrichments coming from NET are the addition of entropy as
a tool for discussing losses of useful output power and the systematic analysis
of symmetries (and their consequences) in the system. It would not be an
exaggeration to say that SCP actually is a form of non-equilibrium thermody-
namics that is often just not recognised as such. By making this link explicit,
an invaluable extra level of depth becomes available for the interpretation of
results and calculations from SCP. Due to its generality, NET can also help to
ground the mathematical formalism of SCP on fundamental principles and to
clarify assumptions that are used in SCP.

Moreover, NET can help to point out phenomena predicted by the empir-
ical transport relations (Eq. (2.55) and (2.72)) that are possibly relevant to
investigate. Examples are the cross-effects between electron and hole trans-
port (characterised by the coefficient Lnp, see Section 2.6) or those between
charge transport and recombination (characterised by the coefficients LnR and
LpR, see Section 2.7). An important lesson that is learnt from NET, is that
the discovery of new phenomena (e.g., a new recombination process) also has
consequences for other physical processes in the cell as predicted by the On-
sager reciprocal relations. Finally, NET also demonstrates that the ultimate
solar cell design with the highest possible efficiency can only be achieved if the
entropy generation rates in both the cell and the photon field are considered si-
multaneously since both are an essential in the photovoltaic conversion process
(see Section 2.4 and the discussion following Eq. (2.45)). This means that,
at some point, the unilateral treatment of the light (which is still prevalent
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for most solar cell modeling tools) will reach its limits and no further design
improvement can be achieved without switching to a bilateral description of
the coupling between cell and light.

It can be concluded that there are no arguments left against the use of
thermodynamics in solar cell research: The apparent objections raised at the
start of Section 2.1 can be countered by modern NET and in a sense SCP
can be viewed as a particular application of the work by GM. Non-equilibrium
thermodynamics offer tools that are not only useful for academic research about
the ultimate efficiency potential, but they can also be combined with SCP to
assist the down-to-earth engineering of current cell designs.
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Chapter 3

The physics of solar cells:
semiconductor physics
enhanced by thermodynamics

3.1 The thermodynamics of the selective membrane
model

Chapter 2 and Appendix A.1 review the most important physical equations
that are needed to describe a solar cell and to predict its efficiency. The
equations, however, are only part of the complete understanding of how a
solar cell works and, more importantly, how it can be improved. The set of
equations that describes the charge transport in a cell is highly nonlinear and
even solving numerically on a computer is not entirely straightforward. In a
sense, the transport equations only replace the problem of understanding the
solar cell with another (not necessarily easier) problem: that of understanding
the mathematics underlying the equations. It is no surprise then, that different
concepts and simplifications have been developed to understand solar cells on
a more heuristic level, such as the selective-membrane concept by P. Würfel
[1] and U. Würfel [2]. Indeed, such simplifications are of crucial importance
to the field of PV (and science in general) because they make the exchange of
ideas between people more efficient.

The goal of this section is therefore to present and justify a heuristic de-
scription of solar cells that uses NETPV from Chapter 2 as the main physical
language. First, the selective-membrane concept as developed by P. Würfel
will be presented briefly and will then be used as the main motivation for the
thermodynamic discussion that follows.
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3.2 The selective membrane model

A typical single-junction solar cell consists of three parts that are essential for
the operation of the device: a photon absorber (or just absorber for short)
which forms the centre of the cell and two selective membranes (one for elec-
trons and one for holes) that are located between the absorber and the metal
contacts. The function of the absorber is to convert the incoming light into
useful work in the form electrochemical free energy, meaning that the photon
absorber has to be good at converting light into free charge carriers and also
at sustaining the resulting electron-hole plasma. The function of the selective
membranes is to ensure that the electrochemical energy generated in the ab-
sorber is transported out of the cell as efficiently as possible in the form of
electrical current. The selective membranes are highly conductive to one type
of carrier and highly resistive to the other type. A membrane that allows elec-
trons (holes) to pass while blocking holes (electrons) is called an electron (hole)
membrane or an n–membrane (p–membrane). The combination of a selective
membrane plus metal contact is referred to as a selective contact. Due to the
large asymmetry in the electron and hole conductivities between the two differ-
ent selective membranes, electrons and holes are much more likely to exit the
cell through their respective contacts (see Figure 3.1). It is important to note
that the selective contacts are ideally completely transparent to light so that
there is no charge carrier generation inside of them. Heuristically, the reason
for this is that holes generated in the middle of the n–membrane in Figure 3.1
encounter approximately the same resistance in the path towards the electron
collecting contact as in the path towards the bulk of the cell (and ultimately
the p–contact). Thus, holes generated in the selective contact are likely to be
collected by the wrong electrode, leading to current loss. This phenomenon is
known as parasitic absorption and it will be discussed in more detail in Section
3.6.

As can be seen, the concepts of conductivity and resistivity are key to the
understanding of selective membranes and one of the goals of this chapter is
to give these heuristic concepts a quantitative basis that is straightforward to
interpret. To do so, it is useful to first consider the most common type of solar
cell, namely the doped homojunction where the absorber and the selective
membranes consist of the same material. To create the selective membranes,
a high doping concentration is used to drastically increase the conductivity of
one type of charge carrier. In Figure 3.2 the band diagram of a p–contact and
part of the photon absorber of the cell is shown. For simplicity, the cell under
discussion is assumed to be 1D. The band diagram (as well as all the other
diagrams in this chapter) is shown for operating conditions, since under these
conditions it is the most sensible to analyse the influence of the cell design on
the entropy generation in the cell.

In the bulk of the cell the quasi Fermi levels EFn,p are almost completely
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Figure 3.1: Schematic overview of a working solar cell. The green part of the cell is
the photon (γ) absorber and the red and blue parts are the electron and hole selective
membranes. The asymmetry between electron conductivity (σn) and hole conductivity (σp)
drives a current through the load. In practice it is not possible to differentiate between
electron and hole current inside of a metal, but the underlying idea is that the selective
contacts ensure that the easiest (i.e., least resistive) recombination pathway for the carriers
is through the metal contacts and the external load.
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Figure 3.2: Sketch of the band diagram of a p–contact under operating conditions. The
contact consists of a highly p-doped region between the absorber and the metal. The quasi
Fermi levels are assumed to be continuous, but in practice it is possible to have a discontinuity
in EFn across semiconductor-metal interface. As will be demonstrated in the discussion of
the Schottky contact in Section 3.3, this discontinuity does not complicate the discussion of
the selective contacts significantly.
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flat1. Of course, there have to small gradients in EFn and EFp to drive the
carriers to their collecting contacts, but for a material with a high enough
mobility (such as c-Si) these gradients are typically so small that EFn and EFp
can be considered constant throughout the bulk of the cell. As a rule of thumb
it should be remembered that the quasi Fermi levels EFn and EFp are almost
completely straight in those parts of the cell where there are many electrons
or holes respectively2. If this were not the case, the gradient in EFn (EFp)
would drive a large amount of electrons (holes) in such a way that the gradient
is nullified.

Bulk transport losses are generally small in the 1D cell for materials with
a high mobility like c-Si and they will therefore not be discussed in detail.
However, it is interesting quickly compare the charge transport in the bulk
with the ideal transport requirement from Section 2.6. This requirement stated
that, for given transport coefficients Lnn, Lpp, the optimal way to drive a given
total charge current Jcharge is by making the electron and hole thermodynamic
forces equal and opposite (see Eq. (2.60)). This means that it is desirable to
have E′Fn = E′Fp in the bulk of the cell. Fortunately, it is not necessary to
worry about this requirement, since the bulk of the cell is charge-neutral as
long as the background doping is uniform and from charge-neutrality it can be
derived that:

0 =
d

dx
[p− n+Ndop]

=
d

dx

[
NV exp

(
−
EFp − EV

kBT

)
−NC exp

(
−EC − EFn

kBT

)
+Ndop

]
=

1

kBT

[
NV(E′V − E′Fp) exp

(
−
EFp − EV

kBT

)
−

NC(E′Fn − E′C) exp

(
−EC − EFn

kBT

)]
= 0. (3.1)

Since E′C = E′V, it follows that E′Fn = E′C = E′Fp and that charge neutrality

ensures that the charge transport is optimal3.
Having determined that the transport losses in the bulk are not of great

concern, it remains to analyse the scalar entropy generation processes in the
photon absorber: the absorption of photons and generation/recombination of
electron-hole pairs. The entropy source term for the scalar processes in the bulk
is denoted by qs,bulk. Assuming a constant Fermi level splitting EFn − EFp =

1From this point onward it is more convenient to work with the quasi Fermi levels EFn,p
rather than of ηn,p, since EFn,p are easier to draw in a band diagram. Recall that ηn = EFn
and ηp = −EFp.

2Or, to be more precise: in those parts of the cell where the electron or hole conductivity
is large

3Actually, Eq. (3.1) can be zero while E′Fn 6= E′Fp, but this typically only happens around
very strong local sinks or sources of electron-hole pairs.
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∆ηeh, the total entropy generation (per unit area of the cell) in the bulk is
approximately (see also Sections 2.5 and 2.6):

y

bulk

Tqs,bulk dx =
y

bulk

(qu + ∆ηeh[R(∆ηeh)−G]) dx

= Iu −∆ηehIgen + ∆ηehdbulkR(∆ηeh). (3.2)

Here, Iu is the total absorbed energy flux (per unit area); Igen is the total
generation rate of electron hole pairs in the bulk; and dbulk is the thickness of
the bulk. Recall that R is generally an increasing function of ∆ηeh. It is im-
portant to direct attention to the fact that the thermodynamic thermalisation
losses associated with photon absorption are given by Iu −∆ηehIgen and not,
as commonly pictured, by Iu−EGIgen (see Figure 3.3). In other words, from a
thermodynamic perspective it is important to consider the free energy ∆ηeh of
the generated pairs and not the total energy. This is because part of the total
energy of the electron-hole plasma simply cannot be extracted as useful work
in the same way that it is not possible to cool the cell down and extract the
thermal energy as work.

In Eq. (3.2, the fluxes Iu and Igen are more or less fixed by the properties
of the incident light and the bandgap of the semiconductor, leaving ∆ηeh and
dbulk as the main optimisation parameters to reduce the entropy generation in
the bulk. In practice, this means that dbulk should be as low as possible without
impairing the ability of the cell to absorb all of the incident photons. Indeed, it
is well-known that thin cells tend to have a higher performance (mainly due to
a higher VOC) than thick cells (see, e.g., De Wolf [3]). The Fermi level splitting
∆ηeh is controlled by maintaining a potential across the cell and the optimal
potential is commonly known as the max-power voltage Vmpp. Thus, if the cell
is completely limited by its bulk, the optimal potential is found making the
best trade-off between the terms −∆ηehIgen (i.e, the total production of free
energy) and ∆ηehdR(∆ηeh) (i.e., the loss of free energy).

It can be seen that the Fermi level splitting in the bulk of the cell is crucial
to the operation of the device, so it is useful to consider for a moment what
makes Fermi level splitting possible in the first place. As was demonstrated in
Section 2.3.1, Fermi level splitting is only possible in a non-equilibrium state of
the cell since ∆ηeh = 0 in equilibrium. Put differently, the Fermi level splitting
represents the failing of electrons and holes to reach electrochemical equilibrium
fast enough to counteract the external influences (the incoming light and the
voltage that is maintained over the cell) that are continuously disturbing the
equilibrium. In the semiconductor, an electron is forced to make one big change
in energy to recombine with a hole due to the bandgap of the material which
does not allow the electron to occupy a state with an intermediate energy.
Since such a big change in energy is relatively improbable, the recombination
rate is much lower than if the electron has states available with intermediate
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Figure 3.3: Two different visualisation of thermalisation losses after photon absorption.
Figure (a) show the thermalisation losses of the energy of an e−–h+pair, while (b) shows the
thermalisation losses of the free energy of the same pair. Of course there are no energy states
in the band gap, so (b) should not be interpreted as if the electron and hole are actually
occupying forbidden states.
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energies that would allow the electron to lose its energy gradually step-by-
step (such as when the semiconductor material is impure and has defect states
in the forbidden gap). This is why Fermi level splitting can be achieved in
semiconductors but not in metals, since in a metal there are (by the defining
property of a metal) many intermediate states that make it very easy for the
electrons to reach chemical equilibrium.

Next the selective contacts will be considered. To simplify the discussion,
a p–contact will be taken as a specific example, but what follows applies to
electron contacts with equal validity. Thus, holes are the majority carriers
and the electrons are the minority carriers for now4. Consider a short interval
x ∈ [0, L] close to the a hole-collecting contact, with x = 0 a point in the
bulk and x = L the position of the metal. The first thing to note about the
band diagram of the p–contact in Figure 3.2 is that EFp is almost completely
straight because of the very high hole density. Due to the small gradient, the
transport of holes across the p–membrane is almost lossless, as can be seen
when writing out the transport losses qs,trans (see Eq. (2.57)) for the problem
at hand. There are three equivalent forms for qs,trans that can be obtained by
substitution of the flux-force relations (specifically: Eqs. (A.4) in Appendix
A.1):

Tqs,trans = −E′FnJn + E′FpJp (3.3a)

=
σn
e2

(E′Fn)2 +
σp
e2

(E′Fp)
2 (3.3b)

=
e2J2

n

σn
+
e2J2

p

σp
. (3.3c)

Recall that here the chosen unit of EFn,p is eV and that of Jn,p is cm−2 s−1. Eq.
(3.3c) shows that for a given current Jp (i.e., the photocurrent), qs,trans is small
since σp is very large. Furthermore, Eq. (3.3a) demonstrates that if for some
reason (e.g., Fermi level pinning at the interface) the hole quasi Fermi level
bends upward, a lot of entropy will be generated in the p–contact. A straight
EFp is therefore an absolutely necessary condition for a good p–contact.

It can also be seen in Figure 3.2 that EFn and EFp meet at the metal
contact. As mentioned, the reason for this is that inside of the metal there
can be no Fermi level splitting since metals do not have a bandgap. Note in
particular that EFn bends towards EFp rather than the other way around. This
is because the electron concentration is much lower in the doped region than
in the rest of the cell and this low concentration makes it possible to have large

4When selective contacts are discussed in this chapter, the terms “minority carriers” and
“majority carriers” will always refer to the carriers that are least/most abundant in the
selective membrane. This is different from the common terminology where minority/majority
carriers are designated with respect to the doping of the bulk of the cell. Thus, in a p–
membrane, the majority carriers are holes; in an n–membrane the majority carriers are
electrons.
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gradients in EFn. The bending of EFn is also the reason it is undesirable to have
generation inside of the doped region, since the ∆ηehG product is necessarily
lower in the p–contact than in the bulk, meaning that the generation of e−–h+

pairs in the doped region produces less free energy than in the bulk, leading to
parasitic absorption. It should be emphasised that the high selectivity of the
p–membrane and the decreasing Fermi level splitting inside of it, are strictly
related to one another. Simply put, it is not possible to have a selective contact
that is efficient at absorbing photons. The reason it makes sense to discuss a
solar cells in terms of absorbers and selective membranes can be traced back
to this elementary duality between functions.

The gradient of EFn across the selective contact drives an electron recom-
bination current Jn towards the surface. This gradient and the recombina-
tion current cannot be avoided since a large Fermi level splitting in the bulk
∆ηeh = EFn(0) − EFp(0) > 0 is necessary to generate useful work. In other
words: ∆ηeh is simultaneously the voltage over the cell (this is because the
quasi Fermi levels are nearly constant in the bulk) as well as the driving po-
tential difference of the electrons towards the metal. Thus, there will always
be contact recombination whenever the cell is producing power. Because the
gradient in EFn is unavoidable, Eq. (3.3b) is the most convenient form of
qs,trans to assess the losses due to the minority carrier transport, which shows
that the only way to reduce the entropy generation from the minority carriers
is to make the σn as low as possible.

To gain insight into the relation between Jn, ∆ηeh and the design param-
eters of the solar cell, an approximate solution to the drift-diffusion equation
will given here in a fashion similar to Del Alamo [4]. This approximate solu-
tion will then be generalised and applied to other types of selective contacts
to assess their potential for application in high-efficiency solar cells. The most
important assumption that will be used, is that on the short length scales of
the selective contacts, the source terms G and R have negligible influence on
the shape of EFn and EFp. In a c-Si solar cell, this assumption holds to a good
degree of accuracy for the junction on the rear side of the cell (known as the
back surface field or BSF), so for the moment a BSF will be discussed. At the
front junction of a c-Si cell, though, it is usually not possible to neglect G since
the generation will affect the minority carrier quasi Fermi level significantly.
This issue will be discussed briefly in Section 3.6 and as it will turn out, the
issue of generation in the front membrane can be considered separately from
the selectivity of that membrane, except for the case when the generation also
significantly affects the majority carrier quasi Fermi level (which is uncommon).

In the BSF, the conductivity can be taken as an explicit function of x, so
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that the electron transport equation is:

−σn(x)

e2
E′Fn(x) = Jn = constant, (3.4)

EFn(0)− EFn(L) = ∆ηeh. (3.5)

This equation is straightforward to integrate, giving:

Jn =
∆ηeh∫ L

0
e2

σn(x) dx
. (3.6)

The integral of 1/σn can be interpreted as a resistance (normalised to area), so
Eq. (3.6) expresses (as expected) that the resistance of the region 0 ≤ x ≤ L
determines the recombination current for a given potential difference ∆ηeh over
the region. Eq. (3.6) is therefore simply Ohm’s law, but unfortunately it is
only useful qualitatively since σn = enµn is a function of EFn and therefore the
resistance of the region 0 ≤ x ≤ L cannot be calculated directly. This makes
the ordinary resistance (or conductance) relatively poor tools for understanding
the working of a solar cell, so the next paragraphs will be used to develop two
alternative concepts of resistance that are easier to compute. To obtain these
alternative measures of resistance, first the electron drift-diffusion equation is
written in full by expanding σn using the Boltzmann exponent for n:

σn(x) = eµn(x)NC exp

(
−EC − EFn

kBT

)
. (3.7)

Thus, the electron transport equations is then:

−µn(x)NC

e
exp

(
−EC(x)− EFn(x)

kBT

)
E′Fn(x) = Jn. (3.8)

To solve this equation, it is assumed that EC(x) is already known. Of course, it
is not possible to find the exact shape of the conduction band without solving
all three drift-diffusion equations simultaneously, but in most cases it is possible
to obtain a good approximation to EC(x) without much difficulty using, e.g.,
the Poisson Boltzmann equation under the assumption that EFn is straight
(see Appendix A.2 and the red dashed line in Figure 3.2).

With EC(x) known, Eq. (3.7) can be solved for EFn by noting that:

exp

(
EFn
kBT

)
E′Fn =

d

dx

[
kBT exp

(
EFn
kBT

)]
(3.9)

The solution is therefore:

EFn(0)− EFn(L) = ∆ηeh

= −kBT ln

1− eJn
kBT

∫ L

0

1

µn(x)NC(x) exp
(
−EC(x)−EFn(0)

kBT

) dx

 .

(3.10)
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Rewriting for Jn gives:

Jn = VT S̃n

[
1− exp

(
−∆ηeh
kBT

)]
, with: (3.11)

S̃n =

∫ L

0

1

µn(x)NC(x) exp
(
−EC(x)−EFn(0)

kBT

) dx

−1

=

[∫ L

0

1

µn(x)ñ(x)
dx

]−1

. (3.12)

Here the symbol S̃n is used to denote a quantity that will be called the electron
pseudo conductance of the doped region. It is the conductance that is calcu-
lated by assuming that the quasi Fermi level for the electrons is straight (i.e.,
EFn(x) = EFn(0) for 0 ≤ x ≤ L indicated by the red dashed line in Figure 3.2).
The associated electron density ñ(x) will be referred to as the pseudo electron
density and R̃n = S̃−1

n is the electron pseudo resistance5. In Eq. (3.11), the
last factor is approximately 1 since ∆ηeh � kBT under operating conditions.
Thus, in a sense, Eqs. (3.6) and (3.11) can be interpreted as if one can either
use ∆ηeh or kBT as the driving force for Jn. When ∆ηeh is used as the driving
force, then the real conductance should be used to calculate the recombination
current; when kBT is used as the driving force, then the pseudo conductance
should be used instead.

The pseudo conductance S̃n depends exponentially on ∆ηeh due to the
injection of electrons from the bulk into the doped region, so it is preferable to
split off this trivial exponential dependence in the hope that whatever remains
is approximately independent of ∆ηeh. Thus, Jn is written as:

Jn = VT Šn

[
exp

(
∆ηeh
kBT

)
− 1

]
, (3.13)

= J0,n

[
exp

(
∆ηeh
kBT

)
− 1

]
, (3.14)

The resulting parameter Šn = S̃n exp (−∆ηeh/kBT ) will be called the intrinsic
electron conductance of the selective membrane because it usually does not
depend on the injection level in the bulk of the cell. It is related to the well-
known recombination parameter J0,n by J0,n = VT Šn. Some manipulation

5Because the default unit of current is cm−2 s−1 in this work, eS̃ yields the conventional
measure of area-normalised conductance. Thus [eS̃] = S cm−2 and [R̃/e] = Ω cm2
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yields:

Šn =

∫ L

0

1

µn(x)NC exp
(
−EC(x)−EFp(0)

kBT

) dx

−1

(3.15)

=

[∫ L

0

1

µn(x)ň(x)
dx

]−1

. (3.16)

In words: Šn is the electron conductance calculated by assuming that EFn(x)
= EFp(0). The electron density calculated from this assumption is denoted by
ň and Řn = Š−1

n is the associated resistance. Note that Šn is almost equal to
the electron conductance calculated under equilibrium conditions where EFn =
EFp = EF and ň = neq. The reason it is not identically equal to the equilibrium
conductance is because in the bulk of the cell EFp 6= EF due to injection of
holes and because EC(x) depends on the operating conditions as well. However,
the integral in Eq. (3.15) takes only a small contribution from the bulk, so this
effect only has a small influence on Šn. In the p–membrane, which contributes
the most to Šn, the doping is typically high enough to pin EFp and EC to
their equilibrium positions regardless of injection level. Thus, even though
equilibrium band diagrams cannot provide a complete picture of the operation
of solar cells, they can still be useful for making estimates of the intrinsic
minority carrier conductivities of selective membranes.

To conclude, there are now three different measures of electron conductance:
real, pseudo and intrinsic:

� The real conductance is calculated from the actual electron density n and
the corresponding current driving force is the gradient of EFn.

� The pseudo conductance S̃n is obtained by pretending that EFn is straight
and then calculating the pseudo electron density ñ from that assumption.
The current driving potential corresponding to the pseudo conductance
is VT (1 − exp(−∆ηeh/kBT )) ≈ VT . Thus, the pseudo conductance sub-
stantiates the intuition that the minority carrier recombination current
is thermally driven towards the metal contact.

� The intrinsic conductance Šn is obtained by pretending that EFp is also
the electron quasi Fermi level and calculating the density ň from that
assumption and its current driving potential is VT (exp(∆ηeh/kBT )− 1).
The main advantage of Šn is that it does not depend strongly on the
operating conditions, because the exponential dependence of the current
on ∆ηeh has been absorbed into the driving force. This makes Šn approx-
imately a device parameter, though care should be taken to not mistake
it for a true constant: depending on the exact nature of the device Šn can
still depend on ∆ηeh and if it does, it should be evaluated at max-power
conditions to be of use as a device parameter.

88



3.2.1 What is selectivity?

At this point it is a good moment to reflect on the meaning of the word “se-
lectivity” that has been used a couple of times so far. Indeed, this word is
mentioned more and more frequently in the field of PV, yet no quantitative
measure of selectivity has been proposed (to the author’s knowledge), though
the recombination parameter J0 is commonly mentioned as an important quan-
tity connected to selectivity. However, J0 is not a true measure of selectivity,
since it does not measure the asymmetry between electron and hole conduc-
tance: a contact could have a low J0 by simply being poorly conductive to both
electrons and holes without actually preferring one over the other. To address
this caveat, a selective contact can then be defined by having not only a low
J0 but also a low majority carrier resistivity (as has been assumed throughout
this chapter).

Clearly, these two requirements are a good characterisation of a selective
contact, yet they fail to precisely define what selectivity is by itself and a
mathematical definition of selectivity is still absent. Given the discussion in the
previous paragraphs, the first idea that comes to mind for defining selectivity,
is to introduce a dimensionless number that is obtained by taking the quotient
of some measure of minority carrier resistance and some measure of majority
carrier resistance. Since it is desirable to have a figure of merit that is more
or less independent of the voltage over the device, the intrinsic resistance Řn
is the most suitable candidate for the electron resistance of the p–membrane.
For the holes it can be said that the real, pseudo and intrinsic resistances are
all equivalent and will simply be denoted by Řp. Thus, the selectivity of a
p–membrane would then be Řn/Řp. In terms of the usual definitions of J0 (in
A cm−2) and contact resistance ρc = Řp/e (in Ω cm2) the selectivity can be
expressed as νp = VT /(J0ρc), confirming that high selectivity requires both a
low J0 and a low ρc.

However, this measure of selectivity is somewhat unsatisfactory. To see
why, it is necessary to answer the question why exactly selectivity is important
for a solar cell. Intuition would probably say that a high selectivity is nec-
essary to ensure that the losses due to minority carrier recombination in the
contacts are kept minimal, but this idea is actually not necessarily true and
certainly not the complete story. As an example, consider a simplified model
of a solar cell that is only limited by contact recombination (and perhaps other
recombination mechanisms that can be described by an ideal diode equation).
This means that EFn and EFp are approximately constant in the bulk6. In ad-
dition, it is assumed that the intrinsic conductivities of the n–contact and the
p–contact are both constant, so that the losses in the cell can be described by
a single recombination parameter J0 = kBT (Šn + Šp). Since transport losses

6It is possible to incorporate bulk resistance in the following argument, but it makes the
formulae more complex yet it does not affect the result in Eq. (3.20) significantly.
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are neglected, the total charge current through the cell Jcharge = Jp − Jn is
given by an ideal illuminated diode equation:

Jcharge = Jgen − J0

(
exp

(
∆ηeh
kBT

)
− 1

)
, (3.17)

with Jgen the photo generation current density. To extract as much free en-
ergy from the cell as possible, it is necessary to maintain an optimal potential
∆ηeh = ∆ηmpp (i.e., the max-power potential) across the cell that maximises
the product ∆ηehJcharge. This maximisation of an ideal solar cell is a well-
known exercise and leads to the following transcendental equation for ηmpp:

Jcharge(∆ηmpp)− ∆ηmpp

kBT
J0 exp

(
∆ηmpp

kBT

)
= 0. (3.18)

The solution to this equation is not of real interest here: what should be noted
is that the second term in Eq. (3.18) is almost equal to the power loss due to
contact recombination of minority carriers Ploss. After all, the recombination
current is given by Eq. (3.14) (in which the −1 term can be safely omitted)
and the dissipation is obtained by integrating −E′FnJn over the p–membrane
and E′FpJp over the n–membrane. Since Jn,p are constant, these integrations
results in the loss terms ∆ηmpp|Jn| and ∆ηmpp|Jp|. Thus the total power loss
due to recombination at the max power point is then:

Ploss = ∆ηmppJ0

(
exp

(
∆ηmpp

kBT

)
− 1

)
≈ ∆ηmppJ0 exp

(
∆ηmpp

kBT

)
. (3.19)

According to Eq. (3.18) the power loss due to recombination is:

Ploss = kBTJcharge(∆ηmpp). (3.20)

What makes this result noteworthy and perhaps seemingly paradoxical, is that
Ploss is nearly independent of J0, since it is well-known that for an ideal solar
cell (i.e., a cell described by a diode equation) the max-power current is close
to Jgen, regardless of the recombination parameter. So if the power loss is
approximately constant, what is the use of improving J0? The answer is that
a lower J0 leads to a higher ∆ηmpp, meaning that the majority carriers obtain
more free energy (or, conversely, that there is less entropy generation associated
with photon absorption (see Eq. (3.2) and Figure 3.3). Thus, even though all of
the recombination occurs in the contacts, the most important thermodynamic
losses occur in the bulk of the cell. The optimisation of J0 (and therefore
the selectivity of the contacts) is therefore less about minimising losses in the
contacts and more about maximising gains in the bulk! This example also
serves to illustrate that the optimisation of solar cells is a strongly non-local
problem, meaning that a design flaw in one part of the cell might lead to power
losses in a completely different part.
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Thus, the problem with defining selectivity as Řn/Řp is that these two
resistances affect the cell in completely different ways: Řp (linearly) affects the
ohmic losses in the p–contact, while Řn (logarithmically) affects the generation
losses in the bulk. A better way to define selectivity is obtained by considering
the electrochemical potential. It is the job of a selective contact to enable a
large ∆ηeh in the bulk of the cell while also losing as little free energy as possible
when the majority carriers are conducted out of the cell. From Eq. (3.3a) it was
derived that the gradient in EFp is a good measure of the extraction efficiency
of holes, since Jp is fixed and equal to the photo current. Integrating E′Fp over
the selective contact yields (analogously to Eq. (3.6)):

∆EFp = EFp(L)− EFp(0) = eJpŘp = eJgenŘp. (3.21)

This potential drop should be compared to the max-power potential ∆ηmpp

that the contact can sustain in the bulk of the cell. However, since ∆ηmpp is
slightly difficult to compute, it is more convenient to look at the open circuit
potential ∆ηOC that the contact can sustain (i.e., the potential at which Jn =
Jgen). It is given by:

∆ηOC = kBT ln

(
Jgen

J0
+ 1

)
. (3.22)

Thus, a selective contact is expected to have a high ∆ηOC and a small ∆EFp.
The selectivity of a p–membrane νp will now be defined as:

νp =
∆ηOC

EFp(L)− EFp(0)
=
VT ln

(
Jgen

J0
+ 1
)

JgenŘp
. (3.23)

The physical interpretation of νp becomes clear once its inverse is considered:
ν−1
p is the fractional voltage loss due to ohmic dissipation in the p–contact if

the cell would be completely limited by just that contact.
Having defined the selectivity, it should be noted that selectivity by itself is

not enough to evaluate the performance of a selective contact. For example, the
contact could be selective because its majority carrier resistance is extremely
low rather than having a low J0. Such a contact would not be very useful
for a solar cell. Indeed, no single parameter is capable of characterising a
selective contact completely by itself since any assessment necessarily requires
consideration of both electrons and holes and at the very least two figures of
merit are necessary for this task. In a sense, J0 and ρc already provide this
complete characterisation, so the added value of discussing selectivity is not
that it provides a new figure of merit that yields more information. Instead,
the added value provided by the terminology of selectivity is the fact that the
word selectivity draws attention to concepts of resistance for the understanding
of the operation of solar cells.
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After this general discussion of selective contacts, the equations for the
pseudo and intrinsic conductances/resistances will be used in the next three
subsections to assess the selectivity of three important kinds of selective con-
tact: the homojunction, the heterojunction, and the Schottky-junction. To
keep the formulae simple, most of the attention will be directed towards Šn
and Řn (rather than νp), since these two parameters are the most crucial lim-
iting factors for the contact performance in the examples that will be given.

3.3 The selectivity of Schottky-type junctions

In a Schottky-type junction illustrated in Figure 3.4a, the most important
feature is a space charge region (SCR) in the semiconductor directly adjacent
to the metal contact. In the ideal case, the source of this SCR is the miss-
match between the metal workfunction ΦM and the intrinsic Fermi level of the
semiconductor (see, e.g., Sze [5] or Ibach & Lüth [6]). For the moment this
ideal model of Schottky junctions will be considered; non-ideal factors will be
discussed afterwards.

In the Schottky SCR, one type of carrier (in this example the electrons) is
almost completely depleted, making the SCR more resistive to that carrier type.
Schottky-type junctions are still occasionally proposed as selective contacts
that are potentially relevant for solar cells, so it is a useful exercise to analyse
their potential. For example, several authors have proposed devices based on
graphene/c-Si junctions [7, 8, 9]. To determine the selectivity potential of
a Schottky junction, the intrinsic electron conductance Šn of the SCR will be
estimated. Let the position x = 0 be the edge of the SCR in the semiconductor
and x = L the position of the metal contact, noting that the width of the SCR
depends on the Fermi level splitting ∆ηeh in the bulk and on the total bend
banding across the SCR ∆φ. Next, the expression for Šn can be transformed
by noting that ňp is approximately the equilibrium np = n2

i product since ň
is the electron density computed from EFp (recall that EFp 6= EF , though).
Furthermore, the mobility will also be assumed constant over the SCR. Using
these approximations, the intrinsic electron resistance Řn becomes:

Řn ≈
1

µnn2
i

∫ L

0
p dx ≈ 1

µnn2
i

(QSCR − LNdop) . (3.24)

Here, QSCR is the total amount of space charge (in units of cm−2) and Ndop is
the background charge of the doping in the semiconductor (in units of cm−3).
The reason the integral of p can be rewritten like this, is because the contri-
bution of the electron density to the total space charge is negligible.

Eq. (3.24) is useful to make an estimation of how much space charge is
needed to obtain a contact that is selective enough for a high efficiency cell.
For example, if the aim is to make a c-Si solar cell with a VOC of 750 mV,
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(a) (b)

Figure 3.4: Sketch of the band diagram of a hole-selective Schottky contact under working
conditions. In (a) the interface is assumed to be non-resistive, resulting in a continuous
electron quasi Fermi level. In (b) the interface is modelled as a transition region that links
the bulk descriptions of the two materials. The exact nature of this transition region is
not known, but the current that crosses it can, for example, be modelled by a thermionic
emission model. The resistance of the region creates a discontinuity E−Fn − E

+
Fn > 0 across

the interface.

then the recombination current should not exceed the short circuit current
JSC ≈ 43 mA cm−2 in Eq. (3.13) (with ∆ηeh = 750 meV). This means
that the intrinsic resistance Řn/e should be more than 2.6 · 1012 Ω cm2 and
J0,n < 10 fA cm−2. To achieve this, a total space charge QSCR > 4 · 1016 cm−2

is necessary in the Schottky contact according to Eq. (3.24) (the doping density
has no influence on this result for realistic values of Ndop). To put this num-
ber into context, values of QSCR between 1012 and 1013 cm−2 are commonly
encountered in c-Si inversion/accumulation layers7.

The Poisson Boltzmann (PB) equation in Appendix A.2 can be used to
find QSCR as a function of the total band bending and a straightforward cal-
culation shows that a value of QSCR = 4 · 1016 cm−2 would require more than
80 eV of band bending in the c-Si: an amount that is completely unfeasible
in practice. For a c-Si Schottky junction, the bandgap of silicon (1.124 eV)
is a reasonable upper limit to the amount of (equilibrium) band bending that
can be achieved. This upper limit corresponds to an amount of space charge
of |QSCR| < 1 · 1014 cm−2 (regardless of the voltage over the cell). Accord-
ing to Eq. (3.24), the lower limit for the recombination parameter is then
J0 > 4 · 103 fA cm−2, giving an upper limit of VOC < 600 mV for space-charge
limited Schottky cells.

7This range of charge is, not coincidentally, also the typical amount of fixed charge com-
monly encountered in heavily charged oxide passivation films on c-Si such as Al2O3 [10].
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From this estimation can be concluded that the SCR in a c-Si Schottky
junction can only achieve a limited amount of selectivity. In fact, in the field
of device modeling, the SCR in c-Si cells can frequently be neglected without
introducing significant error in the simulation (see, e.g., the COBO model by
Brendel [11] and the Quokka model by Fell [12]) precisely because the SCR
possesses so little selectivity. Clearly, if a SCR-based cell is to achieve a high
efficiency, then it is necessary to introduce some extra source of selectivity be-
tween the c-Si and the metal. At this point it is worth considering the nature of
the c-Si/metal interface in more detail, since it has been significantly simplified
in the discussions until now. The assumption that EFn is continuous across
the interface essentially assumes that this interface is truly two-dimensional
and therefore does not present any resistance to the carriers that cross it. In
reality this is not true and it is more accurate to regard the interface as a tran-
sition region of small but finite thickness where the bulk descriptions of the two
joining materials fail because of their close proximity (see Figure 3.4b). The
exact nature of this transition region is generally unknown, making it difficult
to formulate a closed transport equation for this region. The most convenient
way to deal with this uncertainty is to use an empirical model that describes
the current through the transition region by imposing a modified boundary
condition on Jn. In a sense, this means that the transition region is integrated
out of the transport equation and by doing so, new empirical parameters are
introduced that need to be correlated with experiment. The process of inte-
grating out the transition region also causes a discontinuity in EFn; the values
of EFn on either side of the region are denoted by E−Fn and E+

Fn as indicated
in Figure 3.4b.

A commonly used approximation for the transport of electrons between
the semiconductor and the metal is the thermionic emission (TE) model. This
model essentially asserts that the electrons on both sides of the interface behave
like Fermi gases that are separated by an energy barrier of height ΦB = ΦM−χ,
with ΦM the metal work function and χ the electron affinity of the semicon-
ductor. Only an exponentially small fraction of the electrons in the metal have
enough kinetic energy to cross the energy barrier ΦB, while electrons from the
semiconductor are free to move down the energy barrier into the bulk. Thus,
the current JM,S from the metal into the semiconductor is:

eJM,S = A∗T 2 exp

(
− ΦB

kBT

)
, (3.25)

with A∗ an empirical parameter called the effective Richardson constant, which
characterises the microscopic details of the interface. Typically, A∗ is on the
same order of magnitude as the universal Richardson constant A0. At T =
300 K it is given by:

A0T
2 =

4πmek
2
BT

2e

h3
= 1.08 · 107 A cm−2. (3.26)
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Often, A∗ is slightly smaller than A0 due to the quantum mechanical probabil-
ity that electrons reflect from the energy barrier even if (classically) they have
enough energy to cross the interface. Furthermore, A0 only takes the from in
Eq. (3.26) if the bands in the metal and semiconductor are parabolic and if
the charge carriers are not confined to less than 3 dimensions.

The current JS,M from the semiconductor into the metal depends on the
surface electron density n(L) and the conduction band density of states NC:

eJS,M = A∗T 2n(L)

NC
. (3.27)

There is a special motivation for using this form of JS,M that becomes apparent
when JTE = JS,M−JM,S is written out and manipulated into the following form:

JTE =
A∗T 2

e

[
n(L)

NC
− exp

(
− ΦB

kBT

)]
,

=
A∗T 2

e

n(L)

NC

[
1− exp

(
−
E−Fn − E

+
Fn

kBT

)]
. (3.28)

This form suggests that JTE is driven by the electrochemical potential differ-
ence E−Fn−E

+
Fn across the transition region, just like Jn is driven by the ∆ηeh

in Eq. (3.11). Note especially that JTE becomes zero whenever E−Fn = E+
Fn,

showing once more that the gradient in Fermi level across the interface is the
driving force behind the thermionic emission, with electrons flowing from high
to low EFn just like in the rest of the cell. Indeed, it would be a violation
of the second law of thermodynamics if electrons would flow from low to high
EFn across the interface since they would be gaining (rather than losing) free
energy from being transported.

This suggests that the TE interface can be seen as a (zero-dimensional and
non-linear) electron resistance not fundamentally different from the rest of the
cell. Indeed, if the same analysis that led to Eq. (3.11) is carried out for the
Schottky contact with TE transport at the interface, the pseudo and intrinsic
resistances are given by:

R̃n =
kBTNC

A∗T 2ñ(L)
+

∫ L

0

1

µn(x)ñ(x)
dx, (3.29a)

Řn =
kBTNC

A∗T 2ň(L)
+

∫ L

0

1

µn(x)ň(x)
dx, (3.29b)

=
kBT

A∗T 2
exp

(
ΦB

kBT

)
+

∫ L

0

1

µn(x)ň(x)
dx. (3.29c)

Thus, the total resistance the electrons encounter is simply a sum of the resis-
tance of the SCR (given by the integral) and the interface. Eqs. (3.29a) and
(3.29b) show that interface resistance is found by calculating VT /JS,M from ñ or
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ň. Eq. (3.29c) (which is obtained by assuming that the majority carrier Fermi
level EFp is constant throughout the transition region) show that the intrinsic
resistance of the transition region is a constant that only depends on the tem-
perature, the barrier height, and the effective Richardson constant. Note that,
perhaps surprisingly, the intrinsic resistance of the TE interface increases ex-
ponentially with ΦB, even though the electrons cross the semiconductor/metal
barrier in the energetically downward direction. This demonstrates once more
that, when discussing transport of charge carriers, the total energy of the car-
riers is relatively unimportant since only the free energy drives the current.
Thus, the formula Řn ∼ exp(ΦB/kBT ) should not be interpreted as if the elec-
trons have to cross an energy barrier, but rather that the barrier depletes the
electron density near the interface.

It is an interesting exercise to calculate how large the energy barrier should
be to salvage the VOC = 750 mV goal for c-Si Schottky junctions that was
proposed earlier. If the Richardson constant is taken as A∗ = A0, then
ΦB > 1.251 eV will yield a high enough interface resistance to achieve this
goal without taking into account the SCR. This is a rather significant num-
ber and it is not straightforward to achieve such an energy barrier in practice.
However, the value of A∗ can be significantly lower than A0 for some junctions.
As an example, graphene/c-Si junctions, which will be discussed in Chapter 6,
have an effective Richardson constant8 of more than three orders of magnitude
lower than A0 [13], which brings down the requirement on the energy barrier to
ΦB > 1.026 eV; a value that is physically feasible for a graphene/c-Si junction.

As can be seen, if a c-Si Schottky junction is to be successful as a selective
contact, the metal-semiconductor interface is of great importance since that is
the part where most of its selectivity will need to be derived from. Primarily,
this means that metal-semiconductor interface needs to be of high quality: if
the interface is defective, then the electrons will recombine before reaching the
TE interface and the resistance of the interface becomes irrelevant9. Unfortu-
nately, interface defects are common in Schottky-type junctions since the close
proximity of the metal makes impurities in semiconductor very likely. More-
over, even if one succeeds in making an atomically sharp interface, there will
be states in the metal that decay into the semiconductor where they generate a
high density of midgap states called MIGS (Metal Induced Gap States [6, 14]).
These MIGS will often influence the barrier height ΦB significantly and may
even cause EFp to bend due to Fermi level pinning. It is therefore very difficult
to fabricate Schottky junctions that can serve as a good selective contact as
long as the interface consists of nothing more than a metal on a (lowly doped)

8as will be explained in Chapter 6, these junctions actually do not have Richardson con-
stant of the form in Eq. (3.26), but this detail is unimportant for now.

9In fact, as Section 3.6 will demonstrate, the recombination that happens before the
carriers have crossed the interface can simply be regarded as a parallel resistance that shunts
the interface resistance, thus limiting its selectivity.
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semiconductor. An appealing solution is to insert a thin film of oxide between
the semiconductor and the metal that can prevent impurities from reaching
the semiconductor while simultaneously subduing the MIGS. For example, in
graphene/c-Si based junctions, the inclusion of an SiO2 film has already been
shown to lead to a better VOC [9]. However, even with an oxide buffer film,
the Schottky junction still needs to have a high intrinsic ΦB and a low A∗ to
act as a selective contact.

3.4 The selectivity of homojunctions

The next selective membrane that will be considered is the homojunction shown
in Figure 3.2, which is currently the most common type used in industry.
To assess the selectivity potential of the doped p–membrane, a block-shaped
doping profile of width d and uniform doping Ndop is assumed. For such a
profile, S̃n and Šn are straightforward to calculate since the resistance integrals
(Eqs. (3.12) and (3.15)) are completely dominated by the interval L − d ≤
x ≤ L and because the valence and conduction bands are flat in the selective
membrane. Note that the SCR in the bulk induced by the homojunction is
ignored here: just like in the Schottky cell, the SCR in a homojunction can
only achieve a very limited amount of selectivity and its contribution to Šn is
negligible.

If ∆φ is used to denote the band bending across the junction (see Figure
3.2), then the pseudo electron conductivity is approximately:

S̃n ≈
n(0)µn,BSF

d
exp

(
− ∆φ

kBT

)
. (3.30)

Here, µn,BSF is the electron mobility in the doped region (referred to as back
surface field for convenience). In Eq. (3.30) the semiconductor-metal resistance
of the interface at x = L has been neglected (hence the continuous EFn in
Figure 3.2), but it can be added in the same fashion as was done for Schottky
junctions in Eq. (3.29a).

It is appealing to think of ∆φ as an energy barrier that blocks electrons
from diffusing into the metal. This view is perhaps not even completely wrong,
but it is important to remember that ∆φ is not constant but depends on the
carrier densities in the cell. This expression for S̃n can therefore be deceptive.
The intrinsic conductance does not have this problem and some manipulation
yields Šn for a block-shaped doping profile:

Šn =
µn,BSF n

2
i,BSF

dNdop,BSF
=
µn,BSF neq

d
, (3.31)

with n2
i,BSF the equilibrium np product in the doped region, Ndop,BSF the p-

type doping density in the BSF, and neq the equilibrium electron density in the
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BSF. As was alluded to in Section 3.2, the high doping concentration in the
BSF ensures that Šn is a true constant in the homojunction cell. Eq. (3.31)
shows the three main parameters that influence the selectivity of a doped mem-
brane: the minority carrier mobility, the equilibrium electron density and the
depth of the doping profile. In practice, however, µn,BSF and neq both depend
on the doping density Ndop,BSF, since the mobility decreases with increasing
Ndop,BSF. This is because doping creates scattering centres that impede the
transport of electrons. The dependence of neq on the doping level is more
complicated, since neq depends in the intrinsic carrier density ni,BSF, which in
turn also depends on the doping density. There are two different phenomena
that influence ni,BSF, namely bandgap narrowing (BGN) and the transition
from Boltzmann to Fermi-Dirac (FD) statistics for the holes. BGN tends to
increase the intrinsic carrier density because there is more thermal excitation
of electron hole pairs when the bandgap shrinks. FD statistics, on the other
hand, tend to decrease ni,BSF. To see why, first consider the intrinsic carrier
density in the bulk ni where Boltzmann statistics apply. Under equilibrium
there is a single Fermi level EFn = EFp = EF and thus:

n2
i = n0 p0 = NC exp

(
EF − EC

kBT

)
NV exp

(
−EF − EV

kBT

)
= NCNV exp

(
−EG

kBT

)
. (3.32)

The exponential dependence on EG is the reason why ni increases with de-
creasing bandgap. However, in a highly doped BSF where the holes become
degenerate, the intrinsic carrier density changes to:

n2
i,BSF = n0 p0 = NC exp

(
EF − EC

kBT

)
NV F1/2

(
EV − EF
kBT

)
. (3.33)

For high doping densities, EF < EV and the argument of the Fermi Dirac
integral becomes positive. For large arguments, the Fermi function can be
approximated as a step function so that:

F1/2

(
EV − EF
kBT

)
∼
(
EV − EF
kBT

) 3
2

. (3.34)

Thus, by increasing the p-type doping, EF is shifted downward so that the
electrons are depleted exponentially in EF while the hole density only increases
proportionally to (EV−EF )3/2. Overall, this leads to a decrease in ni,BSF since
the decreasing exponent will win over the increasing power law.

The bandgap narrowing with doping has been measured and modelled ex-
tensively, such as in the work by Yan and Cuevas [15, 16] where an easy-to-use
model for BGN in c-Si is presented. From experiments it is know that for c-Si,
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the equilibrium minority carrier density decreases with increasing Ndop so that
highly doped contacts are always better at reducing the contact recombination.
This is particularly true for the degenerately doped regime where the minority
carrier density is more strongly depleted due to FD statistics (see Figure 3.5).
Furthermore, at high doping densities the mobility µn is also reduced, which
impedes electron transport towards the contact even more. However, there is
a limit to the solubility of dopants in semiconductors (see, e.g., Jaeger [17],
Kooi [18], and Vick et al. [19] for the solubility of dopants in silicon) and
once this limit has been achieved, the only design parameter that can increase
the selectivity of the homojunction is the depth of the doping profile d. A
quick back-of-the-envelope calculation shows that achieving a J0 of less than
10 fA cm−2 with a block-shaped doping profile requires that d > 10 µm. This
should be compared to typical c-Si junction depths that are frequently no more
than 1 µm.

Potentially, the selectivity of the doped membrane can be made arbitrarily
large by making it deep enough, but in practice the intrinsic recombination
inside of the membrane (e.g., Auger recombination) will impose a lower limit
on the recombination current into the membrane. This is because the resis-
tance encountered by a minority carrier to the point where it recombines is
significantly lower if that point is somewhere in the middle of the doped region
than if the electron needs to travel all the way to the metal contact. Thus,
at some critical diffusion depth, recombination inside of the doped region be-
comes dominant over recombination at the contact and at that point it will be
no use to make the diffusion even deeper. Furthermore, it is not desirable to
make the junction arbitrarily deep for another reason, namely the fact that the
doped region has the same absorption coefficient as the bulk of the cell. Deeper
doping profiles will therefore result in more generation inside of the selective
membranes, which should be avoided. Of course, for the selective contact at
the rear of the cell, one could also choose to make the absorber very thick so
that no light reaches the selective membrane, but this choice is at odds with the
ideal situation where the cell should be as thin as possible (see the discussion
following Eq. (3.2)).

3.5 The selectivity of heterojunctions

From the discussion of the homojunction cell and selective contacts so far, it
can be concluded that selective membranes ideally have significantly different
material properties than the photon absorber:

1. The bulk of the cell needs to have a high absorption coefficient while the
selective membrane should be completely transparent if possible. Alter-
natively, if the selective membranes are absorptive, then it is necessary
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Figure 3.5: Equilibrium minority carrier densities in doped c-Si as a function of the doping
density. The black line shows the minority carrier density if ni is assumed constant (at
9.65 · 109 cm−3) (i.e., if the carriers are assumed to obey Boltzmann statistics and if the
bandgap is assumed constant) . The deviations of the red (electron density) and blue (hole
density) lines from the black line are due to BGN and Fermi-Dirac statistics (calculated with
the model by Yan and Cuevas [16]). Initially, the BGN opposes the decrease of the minority
carrier density with doping density. However, at the point where FD statistics start to
become influential, the minority carrier density decreases at an accelerated rate with doping.
As shown by Eq. (3.31), it is favourable to have an equilibrium minority carrier density
that is as low as possible. The plot shows that degenerately doped c-Si is therefore the most
suitable for making selective contacts. The arrows show the solubility limits of boron [19]
(red) and phosphorus [18] (blue) in c-Si, demonstrating that n-type doped c-Si can achieve a
much lower minority carrier density.
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(a) (b)

Figure 3.6: Sketch of the band diagram of a selective heterojunction hole contact. Interface
defects are assumed zero here. In (a) the ideal situation is depicted where the valence band
is continuous while the conduction band has an offset. In (b) there is also an offset in the
valence band: this leads to a larger SCR in the selective membrane, decreasing its effective
thickness deff and making it less resistive to electrons. Depending on the exact nature of
the heterojunction, the SCR caused by the valence band offset might also pose a significant
resistance to the hole current which would result in ohmic losses (i.e., FF loss) in the contact.

to direct the light inside of the cell in such a way that the selective mem-
branes do not receive photons with energies above their bandgap.

2. The mobility of the bulk should be high for both electrons and holes, while
a hole (electron) selective membrane ideally has a high hole (electron)
mobility and a very low electron (hole) mobility. In fact, it is possible
to make a working cell by having selective membranes that only differ
in their electron and hole mobility [2]. Typically, though, it is most
important that the minority carrier mobility is low since the majority
carrier conductivity can be increased by doping if necessary.

3. The photon absorber is preferably a (defect-free) direct bandgap semicon-
ductor since that promotes radiative recombination over other intrinsic
recombination mechanisms, making it possible to recycle the photons
emitted by recombining charge carriers. The selective membranes on
the other hand, should simply have as little recombination as possible,
making indirect bandgap materials preferable.

These very different requirements suggest that for homojunction solar cells
it will always be difficult to find one material that performs well as both an
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absorber and as a selective membrane. Heterojunctions do not have this in-
trinsic limitation of conflicting material properties, giving them significantly
more design freedom to achieve higher efficiencies. A frequently proposed ideal
heterostructure is one where the bands of the majority carriers are continuous
across the interface whereas the bands of the minority carriers have a large dis-
continuity. This is illustrated in Figure 3.6a for a hole-collecting contact. The
heterojunction p–membrane can be analysed in the same fashion as the doped
p–membrane in Figure 3.2, namely by solving the electron transport equation
under the assumption that the source term Gnet is negligible and that EFp
is flat. In fact, the former approximation is often much more accurate for a
selective membrane with a high bandgap than for a homojunction. The as-
sumption Gnet = 0 also means that interface defects are neglected. Of course,
for a good selective contact it is vital to have as little recombination-active in-
terface defects as possible: the point of a selective membrane is to place a buffer
between the electron-hole pairs in the bulk and the recombination-active metal,
so if there are many interface defects at the absorber/selective membrane in-
terface the purpose of the heterojunction is completely defeated. Achieving
a low interface defect density is, however, a significant practical challenge in
heterojunction solar cells.

To calculate S̃n and Šn for the heterojunction in Figure 3.6, the interface
with the metal at x = L is assumed free of resistance, though its resistance
can be added without difficulty as before. The heterojunction interface at
x = L− d, on the other hand, is assumed to be resistive (as evident from the
discontinuity in EFn) and will be modelled using a TE model. For simplicity,
the Anderson model [20] is used to describe the conduction band offset, so
∆EC = ∆χ with ∆χ (defined positive in Figure 3.6) the difference between
the two electron affinities of the bulk and the p–membrane. Thus, JTE is given
by:

JTE =
A∗T 2

e

[
n−

NC
− exp

(
− ∆χ

kBT

)
− n+

NC
+

]
=
A∗T 2

e

n−

NC
− exp

(
− ∆χ

kBT

)[
1− exp

(
E+
Fn − E

−
Fn

kBT

)]
. (3.35)

Here, quantities to the left (right) of the discontinuity at x = L−d are indicated
with a superscript minus (plus) sign. Notice how, once more, the difference in
EFn across the interface is the driver of the TE current.
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With the thermionic emission given, R̃n and Řn can be calculated:

R̃n = kBT
NC,bulk

A∗T 2ñ−(L− d)
exp

(
∆χ

kBT

)
+

∫ L

0

1

µn(x)ñ(x)
dx, (3.36)

Řn = kBT
NC,bulk

A∗T 2ň−(L− d)
exp

(
∆χ

kBT

)
+

∫ L

0

1

µn(x)ň(x)
dx, (3.37)

∆χ = χbulk − χsel ≥ 0,

∆φbulk = φ(0)− φ(L− d) ≥ 0,

ñ(x) = NC(x)e
−EC(x)−EFn(0)

kBT = NC(x)e
EFn(0)+φ(x)+χ(x)

kBT ,

ň(x) = NC(x)e
−
EC(x)−EFp(0)

kBT = NC(x)e
EFp(0)+φ(x)+χ(x)

kBT .

Here, the subscript “bulk” indicates material properties of the photon absorber
and the subscript “sel” is for material properties of the selective membrane.
Thus, S̃, and Š are the sum of bulk and interface resistances, indicating that the
heterojunction interface indeed possesses a point-like resistance. The pseudo
or intrinsic interface resistance is calculated by assuming a straight EFn; then
finding ñ or ň in the absorber at the interface; then using that density to cal-
culate the TE current going into the p–membrane (ignoring the reverse current
from the p–membrane into the semiconductor); and then finally dividing that
TE current by the thermal voltage.

The procedure for calculating the resistance of a selective membrane out-
lined in this section generalises to arbitrary stacks of materials in a straightfor-
ward fashion, provided that the underlying assumptions (1D charge transport;
low generation and recombination rates in selective regions; TE transport at
the interfaces; and EFp constant) remain valid. The transport resistance from
the bulk of the layers is taken into account by the integral in Eq. (3.36), while
each interface adds an extra resistance that depends on its band offset ∆χ;
effective Richardson constant A∗; and the pseudo density at the interface ñ.

It is possible to estimate the intrinsic resistance Řn of the selective contact
in Figure 3.6 by making the assumption that the p–membrane has a uniform
and high doping density so that almost all of the band bending occurs in the
bulk of the cell. The resistance of the membrane is then the following sum of
the interface and bulk contributions:

Řn = Řn,TE + Řn,sel, (3.38a)

Řn,TE =
kBT

A∗T 2

Ndop,sel

NV,sel
exp

(
EG,sel

kBT

)
, (3.38b)

Řn,sel =
dNdop,sel

µn,sel n
2
i,sel

(3.38c)

Eqs. (3.38) demonstrate that the most important tuning parameter to sup-
press J0 is the bandgap of the selective membrane EG,sel, since ni,sel decreases
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exponentially with EG,sel and also because EG,sel increases Řn in junctions
where TE is the limiting transport process. As a rule of thumb it can be said
that for solar cells limited by the selectivity of their contacts, the VOC increases
linearly with the bandgap of the selective contact. However, it should not be
overlooked that the electron mobility in the p–membrane as well as its thick-
ness have significant influence on the performance of the contact as well. To
put it a bit more strongly: if the membrane is not thick enough, it is unable to
function as a sufficient resistance to minority carriers. The conduction band
offset in Figure 3.6 should therefore not be merely considered as a barrier to
electrons, because this view leads to the incorrect conclusion that it is only
the interface that provides the selectivity towards electrons. While it is true
that the interface also contributes to the electron resistance, Eqs. (3.38) show
that the interface is only part of the story and that the bulk of the selective
membrane is equally or more important.

The previous discussion does not change much if there is also a valence
band offset such as shown in Figure 3.6b). In that case, the thickness of the
membrane d should be replaced with the effective thickness deff (as shown in
Figure 3.6b) in Eqs. (3.38) and the interface resistance Řn,TE needs to be
revised because the band offset influences the electron density at the inter-
face. Depending on the exact nature of the heterojunction, a large offset in
the valence band can also potentially give rise to a SCR (either in the bulk or
in the selective membrane) that is resistive to the holes. Even though space
charge regions usually do not have a significant resistance when it comes to
reducing minority carrier contact recombination, in SCRs where the majority
carriers are depleted there can be significant resistive losses because the major-
ity carrier current needs to be high under operating conditions. Fortunately,
a heterojunction contact generally gives the cell a high VOC, meaning that the
injection level in the bulk of the cell is also high. This high injection level, in
turn, also leads to extra hole injection into the resistive SCR, increasing its
conductance. As can be seen, valence band offsets can be –but do not need
to be– detrimental to the function of a hole-selective contact and in the end
it depends on the details of the cell whether or not they limit its efficiency.
Unfortunately, band offsets for the majority carriers are often practical hin-
drances that are difficult to control, meaning that one has to engineer around
them.

It can be concluded that heterojunctions have significant advantages as
selective membranes over homojunctions. First of all, heterojunctions have
more degrees of freedom than homojunctions to tune the selectivity of the
membrane for one type of carrier, which makes it possible to keep the selective
membranes very thin. Second of all, heterojunctions offer the possibility to
decouple the optical and electrical optimisation of the selective membrane.
By using a non-absorbing material for the selective contacts, the problem of
parasitic absorption can, in principle, be solved completely. It is an extra
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plus that the demands of transparency and selectivity both demand a material
with a high bandgap. It should be emphasised, though, that absorption in a
wide-bandgap selective membrane is always detrimental despite the fact that
the electron-hole pairs generated in such a wide-bandgap material have more
energy than those that are generated in the bulk of the cell. The crucial point
is that the free energy of the electron-hole pairs ∆ηeh is what really matters
and ∆ηeh is the largest in the bulk and decreases towards the metal contact. As
was noted in the beginning of section this chapter, this is because the minority
carrier quasi Fermi level bends most in the part of the cell where the minority
carrier conductivity is lowest, i.e., in the selective membranes. Heterojunctions
are no exception to this.

The a-Si:H/c-Si heterojunction cell from Panasonic (which holds the cur-
rent world record for c-Si based technology [21]) is a good example to illustrate
the advantages of heterojunctions. Most notably, this cell can achieve a good
VOC of 740 mV due to the higher selectivity of the a-Si:H/c-Si junction com-
pared to an ordinary diffused junction. The wide bandgap and the low mobility
of the a-Si:H are the crucial to the success of the a-Si:H/c-Si heterojunction
cell. Unfortunately, though, this cell is non-ideal in one very important aspect,
namely the optical properties of the materials: a-Si:H is a direct bandgap semi-
conductor with a high absorption coefficient while c-Si has an indirect bandgap
and a low absorption coefficient. Even though the bandgap of a-Si:H is larger
than that of c-Si, it is not large enough to prevent significant parasitic absorp-
tion in the selective membranes [3]. The most successful method so far to deal
with this problem is to fabricate both the n–contact and the p–contact on the
rear of the cell, because only low-energy photons (that are not absorbed by the
a-Si:H) can penetrate all the way through the c-Si bulk.

3.6 Generation and recombination in selective mem-
branes

At the beginning of Section 3.2 the assumption was made that there is no
generation or recombination of carriers in the selective membrane, but this
assumption cannot always be made in practise. To see how generation and
recombination affect the discussion of selective contacts, a small modification
of the original problem is considered. Just like before, EFp is assumed to be
straight in the p–membrane and the electron transport equation is solved on
the interval 0 ≥ x ≥ L, with x = 0 a point in the bulk and x = L the metal
contact. The metal contact is assumed resistanceless, so that EFn is continuous
at x = L.

This time, though, there is a point-like source/sink of electrons somewhere
in this interval at x = a that generates/recombines an amount Jsource of elec-
trons per unit of time. It is straightforward to solve the electron transport
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equation on the subintervals [0, a] and [a, L] and then to patch those two so-
lutions together. For notational convenience, the intrinsic resistance10 of a
subinterval [x1, x2] ⊆ [0, L] will be denoted as:

Řn(x1, x2) =

∫ x2

x1

1

µnň
dx. (3.39)

The electron current flowing from the bulk into the selective membrane is then:

Jn(0) =
VT

Řn(0, L)

[
exp

(
∆ηeh
kBT

)
− 1

]
− Jsource

1 + Řn(0,a)

Řn(a,L)

. (3.40)

In Eq. (3.40), the first term is simply the metal recombination current that
would flow in the absence of a source/sink, while the second term shows how
Jsource affects the total current. Heuristically, Eq. (3.40) can be interpreted
as an ordinary electrical circuit consisting of two series resistances Ř(0, a) and
Ř(a, L) with a current source between them (see Figure 3.7a). This demon-
strates that the intrinsic resistance behaves just like one would expect from a
real resistance.

For a thermodynamic discussion of generation and recombination, it is also
useful to calculate the Fermi level splitting at the source/sink:

EFn(a)− EFp = ∆ηeh + kBT ln

 Řn(a,L)

Řn(0,a)
+ e

−∆ηeh
kBT

(
1 + JsourceŘn(a,L)

VT

)
1 + Řn(a,L)

Řn(0,a)

 .
(3.41)

As an example of how to interpret Eq. (3.40) and (3.41), consider the case
where point a is deep within the selective membrane so that Řn(0, a) �
Řn(a, L). In this situation the source is essentially shielded from the bulk
and only a small fraction of the source influences the current Jn(0) in the bulk.
If Jsource = −Jrec < 0 acts as a recombination centre, this means that the
recombination is not very detrimental to the operation of the cell, since the
carriers would have recombined in the metal anyway even if Jrec were zero.
Thermodynamically speaking, the Fermi level splitting at x = a given by Eq.
(3.41) is significantly less than ∆ηeh in this case so that the recombination does
not generate much entropy. Conversely, if the recombination centre is close to
the bulk so that Řn(0, a) � Řn(a, L), then Jrec adds directly to the total re-
combination current, giving it a significant impact on the cell performance. In
that case, the recombination happens at a point with high Fermi level splitting.

As an alternative view, it is also possible to model the recombination as a
parallel resistor as shown in Figure 3.7b. The recombination resistance Řn,rec

10For this discussion the intrinsic resistance will be used, though it is equally possible to
use the pseudo resistance.
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(a)

(b)

Figure 3.7: The equivalent circuit of the metal electron recombination current through a
selective membrane with (a) a current source in the middle or (b) a parallel resistor that
models bulk recombination. If the recombination rate is proportional to the np product, then
the parallel resistor in (b) is constant; otherwise it is non-ohmic. Recall that the driving
force V that is shown here for the equivalent circuit corresponds to the intrinsic resistance
and should therefore not be confused with EFn. For extra clarity it should be noted that
these circuits only correspond to the minority electron current; the majority hole current is
not considered here.
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is not constant for general recombination processes, but there is an important
class of loss mechanisms that can be modelled by an ohmic resistance, namely
those where the recombination rate is proportional to the np product. To find
Řn,rec, the recombination current is first stated in its general form using its
recombination parameter J0,rec and is then rewritten as follows:

Jrec = J0,rec

[
np

n2
i

− 1

]
=

VT

Řn,rec

[
exp

(
EFn(a)− EFp

kBT

)
− 1

]
. (3.42)

Thus, Řn,rec = VT /J0,rec. The fact that Řn,rec is constant, is due to the expo-
nential dependence on EFn(a)− EFp.

For generation in a p–membrane the discussion is similar as for recombina-
tion. If the generation takes place deep in the p–membrane (i.e., Jsource > 0
and Řn(0, a) � Řn(a, L)), then Eq. (3.40) shows that most of the electrons
generated at x = a are not transported into the bulk but are lost in the
hole-collecting metal contact. In this case, the generation of carriers does not
generate free energy due to the low Fermi level splitting at the source, leading
to parasitic absorption. If Řn(0, a) � Řn(a, L), then the generated electrons
are transported into the bulk and contribute to the power output of the cell.
Perhaps surprisingly, the generation of carriers in the p–membrane has no in-
fluence on its selectivity towards carriers coming from the bulk, since these
carriers still experience the same resistance regardless of the value of Jsource.
This means that the selectivity of the contact can be discussed independently
from its parasitic absorption. The exception to this rule is when Jsource is so
large that not only EFn but also EFp (and thereby Řn) gets affected by the
generation. The high density of holes in the p–membrane makes that unlikely,
though.

The main goal of Section 3.6 is to substantiate the intuition that a selec-
tive membrane can be considered as a series of resistances with sources/sinks
between them and Eq. (3.40) expresses this idea quantitatively and succinctly
for one source. The method outlined here can be extended in a straightfor-
ward fashion to include more than one sinks/sources separated by resistances.
When this procedure is taken to the continuum limit, one essentially obtains
the Green’s function formalism for solving the electron transport equation and
the mathematically inclined reader will perhaps recognise in Eq. (3.40) a dis-
guised form of a Green’s function for the electron current. However, the Green’s
function formalism will not be further developed here, since it will not help to
clarify the message of this section. Moreover, the Green’s function formalism is
complicated further by the fact that it can only provide an implicit solution for
electron transport if the recombination is a function of EFn, which is usually
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the case11.

3.7 Conclusions

The most important conclusion from this chapter is that a cell can be divided
into two parts with complementary functions: the photon absorber and the
selective membranes. The absorber converts photons into free electrochemical
energy and the selective membranes make sure that the electrons and holes exit
the cell through different leads so that a net electric current can flow. These
two functions cannot be mixed: a photon absorber is necessarily not selective
while a selective membrane is necessarily less efficient at converting photons
into electrochemical energy than the absorber. Because of this, the selective
membrane model presents a meaningful way to divide a cell into functional
parts and to discuss the thermodynamic losses in each part, making it a useful
language for discussions about optimisation. As it turns out, not many new
tools are necessary to do so: the familiar recombination parameter J0 can be
interpreted as a type of minority carrier resistance that is related to parameters
of the selective membrane such as its thickness, mobility and bandgap and
the Richardson constants of interfaces. In many cases, this resistance can be
estimated with relatively simple formulae. Furthermore, the thermodynamic
view of solar cells puts a great importance on the quasi Fermi levels EFn,p
that represent the free energy of the electrons and holes. The most important
realisation here is that free energy is simply more thermodynamically relevant
than total energy, since one can in general not expect to extract all energy
from the cell: only free energy is available to generated work. It is therefore
recommended to start viewing thermalisation as free energy thermalisation as
shown in Figure 3.3b.

Finally, because the photon absorber and the membranes have complemen-
tary functions it becomes natural to look for different materials to fulfil these
functions optimally. In short, the heterojunction cell is the way forward if we
really want to push the efficiency limit of solar cells.

11This situation is similar to the one where Green’s function formalism is used for solving
Schrödingers equation in quantum mechanics. See, for example, Chapter 11.4 on the Born
approximation in Griffiths [22]
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Chapter 4

Variational method for the
minimisation of entropy
generation in solar cells

Abstract

In this work a method is presented to extend traditional solar cell simulation
tools to make it possible to calculate the most efficient design of practical solar
cells. The method is based on the theory of non-equilibrium thermodynamics,
which is used to derive an expression for the local entropy generation rate in the
solar cell, making it possible to quantify all free energy losses on the same scale.
The framework of non-equilibrium thermodynamics can therefore be combined
with the calculus of variations and existing solar cell models to minimise the
total entropy generation rate in the cell to find the most optimal design. The
variational method is illustrated by applying it to a homojunction solar cell.
The optimisation results in a set of differential algebraic equations, which de-
termine the optimal shape of the doping profile for given recombination and
transport models.

4.1 Introduction

Following the analysis of the efficiency potential of single-junction solar cells
by Shockley and Queisser [1], the upper limit on the efficiency of solar cells has
been determined in literature under various idealised assumptions (see, e.g.,
[2, 3, 4]). For many practical types of solar cells, however, it is still unclear
how to realise the highest possible efficiency because of the presence of specific
(non-ideal) loss mechanisms that limit the efficiency potential of the cell. For
example, in solar cells based on crystalline silicon (c-Si), Auger recombination
and surface recombination at the metal contacts limit the attainable efficiency
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considerably, whereas in an ideal solar cell only radiative recombination would
occur. Furthermore, these non-ideal loss mechanisms often have complex in-
teractions in the cell design, making it difficult to find the optimal trade-off
between them. In homojunction cells, for example, the high doping densities
in the emitter and back surface field (BSF) function to limit the recombination
at the metal contact, but simultaneously give rise to increased Auger recombi-
nation.

To aid in the practical design of these kinds of non-ideal solar cells, de-
tailed models have been developed to predict their efficiency. Programs like
pc1d [5], afors-het [6], and asa [7] are all efficiency-predictive in this sense.
Efficiency-predictive simulations are commonly used in parametric optimisa-
tion studies where the simulation results of the solar cell design are used to
improve the design iteratively and provide a cost efficient alternative for exper-
imental trials. However, the parameter space for such optimisation problems
can become very large if many different parameters are optimised simultane-
ously. For example, to optimise the doping profile ρ(x) of a homojunction cell
in complete generality, it is in principle possible to parametrise the function
ρ(x) using a spline function with a high density of control nodes, but this will
lead to an unfeasibly large parameter space.

The goal of this work is to introduce the design-predictive method of Vari-
ational Entropy Generation Minimisation (VEGM), which aims to circumvent
iterative optimisation altogether. The VEGM method extends the scope of
current efficiency-predictive methods by making it possible to directly predict
the optimal solar cell design for a given set of physical constraints and non-
ideal loss mechanisms that depend on the materials used. The main difference
with efficiency-predictive methods is in the figure of merit used to optimised
the solar cell. Iterative methods based on efficiency-predictive models optimise
the solar cell based on figures of merit such as the output power POut, open
circuit voltage VOC, and short circuit current JSC. These figures of merit are
determined on the boundary of the solar cell and it is therefore often non-
trivial to understand how changes to the design in the bulk of the cell will
affect POut, VOC and JSC on the boundary. The key point of the new approach
is to de-emphasise the importance the usual boundary figures of merit and
instead focus on the total rate of entropy production QS as a new bulk figure
of merit. Unlike POut, VOC and JSC, the total rate of entropy production QS is
an integral over the bulk of the cell and thus combines local information from
the whole cell. Therefore, QS can be optimised using variational methods to
immediately predict the most efficient cell given a set of geometrical and phys-
ical constraints. In this work the Euler-Lagrange (EL) method will be used
to minimise QS , but in principle any variational optimisation method can be
used.

The type of solar cell considered here is a device that converts blackbody
radiation from the sun into electrochemical energy (in the form of electron-
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hole pairs) and then into work (in the form of an electric current) [8]. Like
any other device that converts heat into work, the solar cell produces entropy
under operation and the more entropy it produces, the more energy is lost
in the form of low-grade heat. Therefore, the problem of maximising POut is
equivalent to that of minimizing QS , which is an integral of the local entropy
production rate qs over the domain of the cell Ω:

QS =

∫
Ω
qs dV. (4.1)

It is important to note that QS should be minimised under the constraints that
the solar cell is operating at maximum power conditions under illumination,
since the absolute minimum entropy generation rate is trivially QS = 0 in the
dark at thermodynamic equilibrium.

Eq. (4.1) shows that qs is the central quantity that is required for the
variational optimisation of a solar cell. The expression for qs will be derived
in the following paragraphs using non-equilibrium thermodynamics, which is a
field that has not found widespread use in the solar cell community. For this
reason the method of De Groot and Mazur [9] is used, which is conceptually
simple and can be related to traditional semiconductor physics (as commonly
practised in the field of photovoltaics) with relatively little effort. A general
background of this method for non-equilibrium thermodynamics can also be
found in the books of, e.g., Kuiken [10], Le Bellac [11], or Kjelstrup [12].
General thermodynamic treatments of semiconductors physics can be found in
the works of, e.g., Lindefelt [13] and Parrott [14].

4.2 Entropy production in solar cells

To derive qs, three components from the theory of non-equilbrium thermo-
dynamics are required: the first law of thermodynamics; the assumption of
local thermodynamic equilibrium (LTE); and the continuity equations for the
extensive variables. The derivation for qs presented below is based on the afore-
mentioned literature sources and has been reduced to the essentials as much
as possible for the sake of accessibility.

For a solar cell in global equilibrium, the relevant thermodynamic quantities
are: entropy S; internal energy U ; temperature T ; volume V ; the electron/hole
electrochemical potentials ηn,p; and finally the total number of electrons and
holes Nn,p. The electrochemical potentials are defined as:

ηn = µc
n − φ, (4.2a)

ηp = µc
p + φ, (4.2b)

with µc
n,p the chemical potentials for the electrons and holes, and φ the elec-

trostatic energy. Because of the fundamental coupling between charge and
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particle, ηn and ηp are the relevant thermodynamic potentials for the elec-
trons and holes and there is no need to consider φ and µc

n,p separately [8].
Related to ηn,p are the more commonly used quasi-Fermi energies EFn,p, given
by ηn = EFn and ηp = −EFp. It is assumed that pressure is not an important
thermodynamic quantity for a solar cell because the kinetic energy and mo-
mentum of the electrons/holes do not play a significant role in the operation
of the device.

It should be noted that there is also entropy associated with the angular
distribution of the radiation field and the consideration of this distribution can
therefore also help to improve solar cells [15] and in principle it is possible to
minimise the entropy generation rate of the total system consisting of the solar
cell and the radiation field taken together. For this work, however, only the
entropy balance of the solar cell itself will be considered and the radiation field
will be regarded as a source term for the processes in the semiconductor. This
simplifying approximation is well-suited for material systems where radiative
recombination is not the main loss mechanism, such as c-Si [13].

With the quantities identified in the previous paragraph, the first law of
thermodynamics for a solar cell in global equilibrium can be stated in terms of
S:

dS =
1

T
dU +

−EFn
T

dNn +
EFp
T

dNp. (4.3)

Observe that in this formulation, U , Nn, and Np are considered to be the
independent thermodynamic variables and S the fundamental potential, so
S = S(U,Nn, Np). To generalise Eq. (4.3) to (non-equilibrium) operating con-
ditions, LTE is assumed. Under this assumption, the system is divided into
finite volumes that are small enough to reach equilibrium with their surround-
ings on a macroscopic timescale, yet microscopically large so that they can be
accurately described by thermodynamic variables. It is furthermore assumed
that the functional form of Eq. (4.3) remains valid locally. The local form of
Eq. (4.3) is stated using volumetric densities of the extensive variables, which
are indicated by a lower case letter: entropy density s, internal energy density
u, and the electron/hole densities n, p. These quantities are all dependent on
time t and position x, but these dependencies will not be stated explicitly in
equations unless confusion can arise. The local form of Eq. (4.3) is therefore:

ds =
1

T
du+

−EFn
T

dn+
EFp
T

dp. (4.4)

The densities s, u, n and p satisfy local continuity equations. Let qs,u,n,p and
Js,u,n,p denote the local sources and currents of s, u, n, and p respectively.
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Then:

∂s

∂t
+∇ · Js = qs, (4.5a)

∂u

∂t
+∇ · Ju = qu, (4.5b)

∂n

∂t
+∇ · Jn = qn = G−R, (4.5c)

∂p

∂t
+∇ · Jp = qp = G−R. (4.5d)

Here, G is the generation rate and R the recombination rate of electron-hole
pairs. Note that Jn,p are defined as particle currents (unit: cm−2 s−1) and
that the currents Js,u,n,p are considered in the barycentric frame of the cell
(so Js,u,n,p = 0 under global equilibrium conditions). To find qs, first the t
derivative of Eq. (4.4) is taken:

∂s

∂t
=

1

T

∂u

∂t
+
−EFn
T

∂n

∂t
+
EFp
T

∂p

∂t
(4.6)

From Eqs. (4.5) and (4.6) the time derivatives can be eliminated. The en-
tropy current Js can then be eliminated by using the following relation for the
currents:1

Js =
1

T
Ju +

−EFn
T

Jn +
EFp
T
Jp. (4.7)

After rearranging, qs is then obtained:

qs =
1

T
qu +

EFn − EFp
T

(R−G)

+ Fu · Ju + Fn · Jn + Fp · Jp, (4.8)

In Eq. (4.8), the forces Fu,n,p are defined by Fu = ∇(1/T ), Fn = ∇(−EFn/T ),
and Fp = ∇(EFp/T ). The expression for qs derived here agrees with expres-
sions for power loss in solar cells derived in literature previously [16, 17], but
also includes thermal effects through the term Fu · Ju, which includes entropy
production due to transport of heat. The heat flux JQ is given by

Ju = JQ + EFnJn − EFpJp, (4.9)

and can be used to rewrite Eq. (4.8) as:

Tqs = qu + (EFn − EFp)(R−G)

− ∇T
T
· JQ −∇EFn · Jn +∇EFp · Jp. (4.10)

1It should be noted that different arguments to obtain this expression for Js can be found
in literature. We adopt the view that the First Law in the form of Eq. (4.4) determines the
relationship between the currents given in Eq. (4.7).
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Figure 4.1: Schematic band diagram of an illuminated solar cell that illustrates the physical
processes corresponding to the terms in the entropy generation rate as given by Eq. (4.10). It
is assumed that the temperature in the cell is higher on the side facing the light, as indicated
by the color gradient.

Eq. (4.10) gives the source term for the entropy balance in the solar cell.
The first two terms correspond to the transfer of entropy from the radiation
field to the solar cell; electron-hole recombination; and the creation of entropy
due to the non-radiative relaxation of electron-hole pairs immediately after
the absorption of a photon. The last three terms in Eq. (4.10) are entropy
production terms that correspond to irreversible transport phenomena. An
overview of the physical meaning of the terms in Eq. (4.10) is given in Figure
4.1.

The Fu,n,p introduced in Eq. (4.8) are referred to as forces because they
drive the currents Ju,n,p. According to Onsager theory [18] the most general
relation (for an isotropic medium and linear transport phenomena) between
the currents and forces takes the form: Ju

Jn
Jp

 =

 Luu Lun Lup
Lnu Lnn Lnp
Lpu Lpn Lpp

 Fu
Fn
Fp

 . (4.11)

The Lij in Eq. (4.11) are the transport coefficients for the solar cell. Onsager
theory states that the matrix L is symmetric (due to microscopic reversibility)
and positive-definite (due to the fact entropy cannot spontaneously decrease).
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In traditional solar cell modeling, only the transport coefficients Lnn and Lpp
(which are proportional to the electron and hole conductivities) are commonly
used, while the remaining transport coefficients are implicitly assumed to be
negligible.

In most solar cells, recombination of electron-hole pairs at the boundary ∂Ω
of the cell will also contribute to the total rate of entropy generation. The sur-
face entropy production rate QS,surf should be added to the bulk contribution
and can be calculated by:

QS,surf =

∫
∂Ω

EFn − EFp
T

Rsurf dA. (4.12)

In Eq. (4.12), Rsurf is the surface recombination rate (in cm−2 s−1).

Eqs. (4.8) and (4.10) can be used directly to gain additional insight into
simulation results from common solar cell simulation tools such as afors-het.
In order to plot power losses due to recombination and ohmic dissipation in a
solar cell, it is useful to define the dissipative part of qs, which will be denoted
by qdiss:

Tqdiss = (EFn − EFp)R

− ∇T
T
· JQ −∇EFn · Jn +∇EFp · Jp. (4.13)

Because qdiss is always positive, it can be conveniently plotted as a color map
on top of a band diagram calculation to show where the greatest losses of
free energy are occurring. This is illustrated in Figure 4.2. However, it is
important to remark that in order to optimise the solar cell completely, it is
necessary to not only minimise the total dissipation but to also make sure that
the generation of electron-hole pairs takes place in regions of the cell where the
Fermi level splitting is greatest, as can be seen from the term −(EFn−EFp)G
in Eq. (4.10).

It is interesting to note that for a 1 dimensional solar cell at constant
temperature and under steady-state operation, the relation between the total
entropy generation rate QS and output power POut can be obtained by direct
integration. It is assumed that the electrons are extracted at x = 0 and the
holes at x = d. Let eΦ = (EFn(0) − EFp(d)) (with e the elementary charge)
be the voltage over the cell and J0 = e(Jp − Jn) be the total charge current
(which is constant throughout the cell). Then POut = ΦJ0. The total solar

energy absorption in the solar cell will be denoted by QU =
∫ d

0 qu dx. The
recombination rate at the electron contact equals Rsurf(0) = −Jp(0) and that
at the hole contact Rsurf(d) = Jn(d). Using Eqs. (4.5), (4.8), and (4.12), QS
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Figure 4.2: Band diagram calculations (performed in afors-het) of a p-type c-Si ho-
mojunction solar cell (a) with backside diffusion (BSF) and (b) without BSF. The entropy
production rate is shown using a color map. The insets show magnifications near the sur-
face of the cell. The BC EFn = EFp was realised by choosing a sufficiently high surface
recombination velocity.
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is then given by:

TQS =

∫ d

0
Tqs dx+ TQS,surf

=

∫ d

0

(
qu − EFnJ ′n + EFpJ

′
p − E′FnJn + E′FpJp

)
dx

+
∑

x={0,d}

[EFn(x)− EFp(x)]Rsurf(x)

= QU − ΦJ0 = QU − POut. (4.14)

Eq. (4.14) demonstrates that the minimisation of QS indeed leads to the
maximisation of POut, provided that QU has been given (e.g., from optical
modeling) or fixed in some other fashion. This again demonstrates that some
care should be taken when minimizing entropy production, since a cell in equi-
librium in the dark trivially produces no entropy.

4.3 Variational solar cell optimisation

With Eqs. (4.8) and (4.11), the total entropy generation rate QS can now
be considered as a functional that depends on all relevant solar cell variables
such as n, p, φ etc: QS = QS [n(x), p(x), φ(x), ...]. This makes it possible to
minimise QS using variational methods such as the EL method. There are,
however, physical laws that need to be satisfied by the solution, so these laws
need to be added as constraints to the optimisation procedure. In addition,
other practical constraints can be imposed as well. Hence, the VEGM method
consists of four steps:

1. The relevant unknowns are identified as well as the physical equations
that need to be satisfied.

2. The Lagrange multiplier method is used to construct a functional Λ
which, when minimised, will lead to a solution that simultaneously min-
imises QS and satisfies all physical equations and additional constraints.

3. The EL method is used to find the set of differential equations for the
stationarity of Λ.

4. The obtained set of equations is solved using a numerical method.

In the next paragraphs, the first three steps of the VEGM method will be
illustrated by applying it to a homojunction solar cell to optimise the doping
profile ρ(x) (expressed in cm−3). The solar cell will modelled under the assump-
tions commonly used in literature. This means that the device is considered
at constant temperature T (so Fu = 0) and under steady-state operation. It
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is assumed that the boundary of the cell ∂Ω consists of perfectly passivated
surface (meaning that Rsurf = 0) and metal contacts. At the metal contacts
the boundary condition (BC) EFn = EFp is assumed since Fermi level splitting
is not possible in a metal. With these BCs, QS,surf = 0 in Eq. (4.12) and only
bulk contributions to QS need to be considered. This does, however, not mean
that recombination at the metal contacts does not generate entropy, but only
that the entropy is generated in the bulk rather than at the contact (as can be
seen in Figure 4.2).

To obtain a transport model equivalent to ordinary semiconductor physics,
the off-diagonal transport coefficients in Eq. (4.11) Lun = Lnu = 0, Lup =
Lpu = 0 and Lnp = Lpn = 0 are assumed negligible. Taken together, these
assumptions amount to neglecting the Seebeck and Peltier effects as well as
off-diagonal transport effects between electrons and holes. From a microscopic
point of view, the assumption Lnp = 0 means that electron-hole collisions are
neglected [13]. The diagonal coefficients for charge transport are Lnn = Tnµn/e
and Lpp = Tpµp/e (with µn,p the electron/hole mobilities). The mobilities
µn,p = µn,p[ρ(x)] are assumed to depend on the doping density ρ. The local
absorption of solar heat qu is assumed known from optical modeling, as well as
the generation rate G = G(x). For recombination model R the general form

R = R(x, n, p, ρ), (4.15)

is used, indicating that R depends on n, p, and ρ as well as on x explicitly
(due to, e.g., a position-dependent defect density). Furthermore, Boltzmann
statistics will be assumed, so EFn,p are related to n, p, and φ by:

n = NC exp

(
EFn + χ+ φ

kT

)
, (4.16)

p = NV exp

(
−
EFp + χ+ EG + φ

kT

)
, (4.17)

with NC,V the effective densities of states for the conduction and valence bands,
χ and EG the electron affinity and band gap (all assumed to be constant), and
k the Boltzmann constant.

Next, the set of physical functions Y and transport equations Ξ that de-
scribe the solar cell are specified. The set of functions Y that will be used is
given by: Y = {n, p, φ, ρ}. If the equations are stated as ξi = 0, the set of
equations Ξ = {ξi} is:

ξ1 = ∇ ·
(
−µnn

e
∇EFn

)
− (G−R) ,

ξ2 = ∇ ·
(µpp
e
∇EFp

)
− (G−R) ,

ξ3 = ∇2φ+
e2

ε
(p− n+ ρ) .
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Here, ξ1,2 are the drift-diffusion equations and ξ3 is the Poisson equation. Be-
cause ρ is considered to be an unknown, the set Ξ consists of three equations in
the four unknowns Y and is therefore underdetermined. However, the require-
ment that the solution minimises QS is used to make the problem well-posed.

To minimise QS subject to the constraints set by Eqs. Ξ, the following
functional Λ is minimised:

Λ[Y, {λi}] =

∫ (
Tqs +

3∑
i=1

λi(x)ξi

)
dV

=

∫ (
qu − (EFn − EFp) (G−R)−∇EFn · Jn

+∇EFp · Jp +

3∑
i=1

λi(x)ξi

)
dV (4.18)

The functional Λ depends on the four functions Y as well as the three scalar
Lagrange multiplier functions λi(x), which ensure that Eqs. Ξ are satisfied for
all x ∈ Ω.

Because Λ depends on 7 scalar functions, there are also 7 EL equations
that correspond to the stationarity requirement δΛ = 0. The 3 EL equations
for the λi reproduce the 3 Eqs. Ξ, while the EL equations for the 4 functions
Y generate 4 new equations. The latter set of 4 equations can be simplified by
making the substitutions λ1 = λ̂1 − EFn and λ2 = λ̂2 + EFp. The resulting 4
differential algebraic equations (DAEs) are:

∇ ·
(µnn

e
∇λ̂1

)
= n

∂R

∂n

λ̂1 + λ̂2

kT
− Jn · ∇λ̂1

kT
− e2nλ3

εkT
, (4.19a)

∇ ·
(µpp
e
∇λ̂2

)
= p

∂R

∂p

λ̂1 + λ̂2

kT
− Jp · ∇λ̂2

kT
+
e2pλ3

εkT
, (4.19b)

∇ ·
(
µnn∇λ̂1 − µpp∇λ̂2 + e∇λ3

)
= 0, (4.19c)

e2

ε
λ3 +

∂R

∂ρ
(λ̂1 + λ̂2) =

Jn · ∇λ̂1

µn

∂µn
∂ρ

+
Jp · ∇λ̂2

µp

∂µp
∂ρ

. (4.19d)

The BCs for the λ1,2,3 are obtained by considering the natural BCs that make
Λ stationary (see, e.g., Wan [19] and Appendix 4.A at the end of this chapter).
The natural BCs depend on the BCs that have been imposed on the variables
Y as well as on QS,surf . For example, if n and p are fixed at the boundaries
(i.e., Dirichlet BCs) and QS,surf = 0 (as has been assumed here), the natural
BCs require that λ1 = λ2 = 0 on ∂Ω (note that these BCs are stated in terms
of λ1,2 rather than λ̂1,2). The BCs for λ3 depend on those of φ: on boundaries
with a Dirichlet BC for φ the BC λ3 = 0 applies, while on boundaries with a
Neumann BC on φ the BC n̂·∇λ3 = n̂·[2(Jn−Jp)+(µpp/e)∇λ2−(µnn/e)∇λ1]
applies (with n̂ the outward unit normal vector on ∂Ω).
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There are 7 EL equations in 7 the functions Y and λ1,2,3, so the system
of DAEs can be solved by a numerical method to obtain the optimal shape
for ρ. This illustrates the trade-off between parametric optimisation and the
variational method: in the VEGM method the set of differential equations is
larger and has to be derived for each particular optimisation problem, but the
numerical solution has to be computed only once and the shape functions such
as ρ are optimised in complete generality rather than parametrically.

In conclusion, the framework of non-equilibrium thermodynamics offers a
useful perspective for the analysis of local power losses in photovoltaic devices.
By considering the entropy generation rate it becomes possible to take into
account electrical, optical and thermal losses and compare them on a uniform
scale. The total entropy generation rate can be regarded as a functional, mak-
ing it possible to optimise solar cells by taking advantage of the power of the
calculus of variations. The design-predictive method of Variational Entropy
Generation Minimisation can take advantage of detailed models for, e.g., charge
carrier recombination and mobility reduction due to semiconductor doping and
use these models to predict, e.g., the optimal doping profile for a homojunction
solar cell. In short, the VEGM method should be considered as an extension
of the field of numerical solar cell modeling that makes it possible to find the
optimal trade-off between the many complex loss mechanisms that occur in
real solar cells.
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Appendix

4.A Boundary conditions for the VEGM method

Consider the homojunction solar cell in 1 dimension (1D) at constant T for
simplicity. The domain of the cell is the interval Ω = [0, d] and the boundary
of the cell consists of the two points ∂Ω = {0, d}. The cell is described by the
set of physical functions Y = {n, p, φ, ρ} and transport equations Ξ = {ξi}.
This time the effect of the surface entropy generation will be accounted for in
generality, so QS,surf 6= 0. The functional Λ then becomes:

Λ[Y, {λi}] =

∫ d

0

(
Tqs +

3∑
i=1

λi(x)ξi

)
dx+ TQS,surf

=

∫ d

0

(
qu − (EFn − EFp)(G−R)

− E′FnJn + E′FpJp +
3∑
i=1

λi(x)ξi

)
dx

+
∑
x∈∂Ω

[EFn(x)− EFp(x)]Rsurf(x)

=

∫ d

0
L(x) dx+

∑
x∈∂Ω

LB(x). (4.20)

In Eq. (4.20) the symbols L and LB have been introduced. The part inside
of the integral L is often referred to as the Lagrangian of the problem. The
boundary term LB will be called the boundary Lagrangian here, but sometimes
it is also referred to as salvage value or terminal payoff (these terms are more
common in variational problems in economics).

To obtain the proper BCs for the variational problem δΛ = 0, it is necessary
to consider both the first order variation of L as well as that of LB. Calculating

127



this variation gives:

δΛ =

∫ d

0

(∑
y

∂L

∂y
δy +

∂L

∂y′
δy′ +

∂L

∂y′′
δy′′ + ...

)
dx

+
∑
x∈∂Ω

∑
y

(
∂LB
∂y

δy +
∂LB
∂y′

δy′ +
∂LB
∂y′′

δy′′ + ...

)
.

(4.21)

The sum over y runs over all functions Y as well as the λi. Note that δ(y′) =
(δy)′ = δy′ since the functional differential δ commutes with ordinary deriva-
tives such as d/dx. The EL equations are obtained by repeated application of
partial integration on the integral in Eq. (4.21) until no derivatives of the first
order variations (i.e., δy′, δy′′ etc.) appear under the integral anymore:

δΛ =

∫ d

0

∑
y

(
∂L

∂y
−
(
∂L

∂y′

)′
+

(
∂L

∂y′′

)′′
− ...

)
δy dx

+
∑
x∈∂Ω

∑
y

{[
n̂

(
∂L

∂y′
−
(
∂L

∂y′′

)′)
+
∂LB
∂y

]
δy

+

[
n̂
∂L

∂y′′
+
∂LB
∂y′

]
δy′ + ...

}
(4.22)

Here, n̂ is the 1D unit outward normal vector defined by n̂(0) = −1, n̂(d) = 1.
Note that no assumptions have been made on the boundary values of δy and
its derivatives yet. The requirement δΛ = 0 has consequence for both the part
under the integral and for the boundary terms. Under the integral, the first
order variation δy can be any infinitesimal function, so in order for the integral
to be zero, the prefactor of δy has to be zero for every point x. Assuming that
L does not depend on higher derivatives than y′′, the EL equations are:

d2

dx2

(
∂L

∂y′′

)
− d

dx

(
∂L

∂y′

)
+
∂L

∂y
= 0. (4.23)

The EL Eq. (4.23) is a necessary condition for the stationarity of Λ, but it is
not sufficient since the boundary terms in Eq. (4.22) must be zero as well. On
∂Ω, all variations δy and δy′ are independent of each other. This means that
for every term one has to choose between setting the variation equal to zero
(i.e. picking a BC for y or y′) or setting the prefactor of that variation to zero.
The latter choice results in a so-called natural BC.

To illustrate this, consider the boundary terms involving δn and δn′ on
the boundary x = d. It is assumed that this is the hole-collecting bound-
ary and therefore Rsurf(d) = n̂Jn(d). Because the variations in n and n′ are
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independent, each of the terms involving δn(d) and δn′(d) have to be zero, so:(
E′Fn + λ′1 +

(λ1 + EFn − EFp)φ′

kT

)
δn(d) = 0, (4.24a)

(λ1 + EFn − EFp) δn′(d) = 0. (4.24b)

Both Eqs. (4.24a) and (4.24b) have to be satisfied, but δn(d) and δn′(d) cannot
be zero simultaneously since the transport equation for n is second order. This
means that a choice has to be made between imposing either a Dirichlet BC for
n (so δn(d) = 0) or a Neumann BC (δn′(d) = 0). A Dirichlet BC for n leads
to a natural BC for λ1 specified by Eq. (4.24b) while a Neumann BC leads
to a natural BC for λ1 specified by Eq. (4.24a). The BCs for λ3 are similarly
obtained by considering the boundary terms involving δφ and δφ′

In solar cell modeling it is often desirable to consider more general types of
BC than just Dirichlet and Neumann BCs. Such general BCs can be employed
in the VEGM method by the use of Lagrange multipliers. For example, the
recombination at the metal contact can be described by an effective surface
recombination velocity Seff : Rsurf = Seff∆n. Here, ∆n is the injection level,
which is approximately n at the hole-collecting contact. The desired BC for
electron transport is therefore: Jn(d) = n̂Seff n(d). This mixed BC cannot
be used directly in the variational approach since it makes the variations in
δn(d) and δn′(d) interdependent. To remedy this, the BC is enforced with
a (scalar) Lagrange multiplier λn by adding the term λn[Jn(d) − n̂Seff n(d)]
to the boundary Lagrangian LB. After that, Λ is minimised with respect to
λn in addition to all the other variables, thus ensuring that the BC Jn(d) =
n̂Seff n(d) is satisfied by the solution. The boundary terms for δn(d), δn′(d)
and δλn are then: ([

φ′

kT
− n̂

eSeff
kTµn

]
λn + E′Fn + λ′1

+
(λ1 + EFn − EFp)φ′

kT

)
δn(d) = 0 (4.25)

(λ1 + λn + EFn − EFp) δn′(d) = 0, (4.26)

(Jn − n̂Seff n) δλn = 0. (4.27)

In this case natural BCs have to be used to satisfy Eqs. (4.25-4.27), since δn(d),
δn′(d) and δλn are all nonzero. From Eqs. (4.25) and (4.26) the multiplier λn
can be eliminated to obtain the (mixed) BC for λ1.
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Chapter 5

Metal-oxide-based
hole-selective tunnelling
contacts for crystalline silicon
solar cells

Abstract

The goal of this work is to investigate selective hole contacts for crystalline sili-
con solar cells that are highly transparent, passivate the silicon surface and have
low contact resistance. Stacks of Al2O3 and ZnO films are suggested for this
purpose. The charge transport mechanism through these stacks is tunnelling
recombination and it is shown that such stacks can achieve a contact resistance
of ∼1.5 Ω cm2 for an Al2O3 thickness of 1 nm. Furthermore, it is demonstrated
that the surface passivation of such stacks can be greatly improved by the in-
sertion of a 3 nm film of hydrogenated amorphous silicon (a-Si:H) between the
Al2O3 and the crystalline silicon, achieving an effective surface recombination
velocity of ∼20 cm s−1. The stacks with an a-Si:H layer achieve a contact resis-
tance of ∼5 Ω cm2. Furthermore, from applying the theory of tunnel diodes to
the charge transport through the contact, three important elements have been
identified for the reduction of the contact resistance: the negative fixed charge
density in the Al2O3; the doping concentration in the ZnO; and the dielectric
properties of the Al2O3.

5.1 Introduction

In all solar cells that rely on the principle of generation of free electrons and
holes, two key components can be identified: the photon absorber and the
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selective contacts [1]. In the photon absorber, the energy of the light is con-
verted into chemical energy in the form of electronhole pairs. This conversion
is subject to the thermodynamic limit on efficiency, similarly to any other con-
version of heat to a form of higher-grade energy. Next, the selective contacts
in the cell force the electrons to exit the absorber along a different path than
the holes, converting the chemical energy into work by creating an electric cur-
rent. In principle, the efficiency of this second conversion is not subjected to
thermodynamic limitations because no heat is involved. It is the conversion
from chemical energy to work that is the focus of the research described in this
paper.

The selective contacts in a traditional crystalline silicon (c-Si) solar cell are
the diffused emitter and the back surface field (BSF). High n- and p-doping
densities of these contacts result in an increase of the conductivity for one
carrier type while the conductivity for the other carrier type is simultaneously
reduced.

In silicon heterojunction (Si-HJT) solar cells, it is not just the doping in
the deposited hydrogenated amorphous silicon (a-Si:H) layers that makes the
emitter and rear of the cell selective to one type of carrier, but the band
alignment at the a-Si:H/c-Si interface plays a significant role as well [2]. In
fact, higher selectivity can be achieved than with diffused junctions by tuning
the valence and conduction band offsets at the a-Si:H/c-Si interface, which
leads to the well-known high VOC values of Si-HJT cells [2]. One disadvantage
of the a-Si:H layer is that they absorb a portion of the light without converting
it into usable current, a phenomenon known as parasitic absorption [2].

The goal of our research is to investigate the possibility to create selective
contacts by depositing stacks of selected materials on c-Si. The general bound-
ary conditions under consideration in this work (other than high selectivity to
either electrons or holes) are:

(a) The interfaces between the layers and the c-Si should be well passivated to
avoid surface recombination. An effective surface recombination velocity
of 100 cm s−1 is considered the maximum feasible limit.

(b) The contacts should be highly transparent. The light absorption of the
contact should be less than the parasitic absorption in Si-HJT solar cells
to be considered feasible.

(c) The contact resistance should be low enough to compete with current
technologies. Ultimately, the goal is to obtain a contact resistance on the
order of 50 mΩ cm2.

Other considerations are that the deposition methods used should be in-
dustrially scalable and the materials used should be abundant and preferably
environmentally friendly.
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With these requirements in mind, stacks of Al2O3 and ZnO films are sug-
gested to ultimately achieve these goals. The choice for Al2O3 is motivated
by the advances in recent years in silicon surface passivation by Al2O3 films,
prepared by atomic layer deposition (ALD) or otherwise [3, 4], making Al2O3

a very promising material to fulfil requirement (a). The choice for ZnO is
based on the combination of its high bandgap (and thus high transparency),
low resistivity and natural abundance.

In this work, the focus is on three points:

(i) To assess the potential of stacks of Al2O3 and ZnO films as passivating,
transparent and selective contacts.

(ii) To gain a theoretical understanding of charge transport through these
stacks.

(iii) To find ways to improve their performance.

Point (i) is addressed in Sections 5.3.1 and 5.4.1. Section 5.3.1 will demon-
strate how the negative fixed charge density at the Al2O3/c-Si interface [4] can
be used to create a homojunction that separates electrons from holes. Sec-
tion 5.4.1 will show the experimental results on the passivation of c-Si by the
Al2O3/ZnO stacks.

Point (ii) is addressed in Sections 5.3.1, 5.3.2 and 5.4.2. In Section 5.3.1 the
charge transport mechanism through the Al2O3/ZnO stacks will be identified
as tunnelling recombination and will be discussed in more depth in Section
5.3.2. Section 5.4.2 will show that the measured currents corroborate the theory
presented in Section 5.3.2.

Point (iii) is addressed in Sections 5.3.3 and 5.4.3. Section 5.3.3 will identify
from a theoretical perspective three key elements in the Al2O3/ZnO stacks that
influence the current through them and that can be optimised to reduce the
tunnelling resistance. It will also discuss the potential of amorphous silicon in-
terlayers to reduce tunnelling resistance and increase passivation. Section 5.4.3
demonstrates that the passivation of the stacks can be significantly improved
by the insertion of an a-Si:H interlayer between the c-Si and Al2O3. The a-Si:H
films that have been used are significantly thinner than those used in typical
Si-HJT cells.

5.2 Materials and methods

Both the surface passivation and the tunnelling current investigations were
performed on two types of stacks: Al2O3/ZnO:Al (type A) and a-Si:H/Al2O3/
ZnO:Al (type B). These stacks are shown in Figure 5.1a.

For the passivation study, low resistivity (∼3–4 Ω cm) n-type and p-type
c-Si wafers ((281.0± 1.3) µm thick) were used. The wafers were treated with
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Figure 5.1: (a) The stack configurations of type A and type B. For the ZnO:Al films in
stacks of type A, various aluminium fractions (AF) are considered. For stacks of type B,
AF = 0.10. (b) Schematic cross sectional view of the samples used for J–V measurements.

a diluted HF (1 % in DI–H2O) solution right before carrying out the first film
deposition. The surface passivation was always investigated on samples with
the thin films deposited on both sides symmetrically.

The 1-nm-thick Al2O3 and 100-nm-thick ZnO:Al films were deposited us-
ing an ALD open-load reactor (OpAL, Oxford Instruments). A plasma ALD
process was used for the deposition of the Al2O3 films (Al(CH3)3,O2 plasma)
at 200 ◦C and a thermal ALD process was used to deposit the ZnO films
(Zn(C2H5)2,H2O vapour) at 180 ◦C. The ZnO films were doped with differ-
ent Al concentrations by varying the ALD cycle ratio x (1 Al2O3 doping ALD
cycle after every x ZnO ALD cycles). For stacks of type A, the Al doping con-
centration (represented as Aluminium fraction (AF)) was varied from AF = 0
to 0.31; AF being defined as AF = [Al]/([Al] + [Zn]), with [Al] and [Zn] are
the atomic percentages of Al and Zn as measured by X-ray photoelectron spec-
troscopy (XPS). For stacks of type B, AF = 0.10.

The a-Si:H layers of different thicknesses (1.5–6.0 nm) were deposited at
50 ◦C by inductively-coupled plasma chemical vapour deposition (ICP-CVD)
(PlasmalabSystem100 ICP 180, Oxford Instruments) using SiH4 gas.

The stacks of type A were annealed at 400 ◦C for 5 min in a controlled N2

atmosphere before the ZnO:Al film deposition. For stacks of type B, the anneal-
ing was carried out at a lower temperature of 300 ◦C for 1 min in a controlled N2

atmosphere to prevent loss of hydrogen in the a-Si:H. The annealing was per-
formed after the complete stack was deposited. The passivation performance
of the stacks was evaluated from the effective lifetime, τeff , of the minority car-
riers on the silicon wafers. τeff was determined with photoconductance decay
in the transient mode and quasi steady-state-mode (for τeff ≤ 100 µs) using
a Sinton lifetime tester (WCT 100). The upper level for the effective surface
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Figure 5.2: Equilibrium band diagram of an Al2O3/ZnO stack deposited on 3 Ω cm n-type
Si. For the Si only the space charge region is shown. The red dotted band diagram shows
the sensitivity of the simulation to a variation of the band offsets. It has been simulated
using different band offsets (red numbers between brackets) for the ZnO/Al2O3 interface and
Al2O3/c-Si interface.

recombination velocity (SRV), Seff,max, was extracted at an injection level of
1 · 1015 cm−3 by the expression Seff,max = thickness Si-wafer/2τeff . Spectro-
scopic Ellipsometry (SE) was employed to measure the thickness of each layer
of the stacks. SE was also used to measure the optical bandgap (EG,opt) and
the carrier concentration (ne) of the ZnO:Al films using a Drude model [5].

Current density–voltage (J–V ) analysis was carried out to test the tun-
nelling behavior of stacks type A and type B. The front side of the tunnelling
test structure consisted of the stack under investigation and the rear-side of
a 10-nm-thick Al2O3 single film. On both sides 2-µm-thick Al metal contacts
with an area of 1.96 cm2 were deposited by physical vapour deposition (PVD).
Subsequently, high quality p+-doped contacts with a pitch of 200 µm were pro-
duced by laser firing [6] on the rear side. Figure 5.1b shows a schematic cross
section of the tunnelling samples and the stack configurations used.
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5.3 Theory

5.3.1 The ZnO/Al2O3/c-Si system as a selective contact

To demonstrate how a Al2O3 stack can function as a selective hole contact,
Figure 5.2 shows the calculated band diagram of the ZnO/Al2O3/c-Si system,
which is based on AFORS-HET simulations [7]. In the simulation, a negative
fixed charge density (Qf ) of 5 · 1012 e cm−1 [4] (with e the elementary charge)
has been assumed at the interface between Al2O3 and Si. The values for band
gaps and band offsets (eV) have been taken from the literature [4, 8, 9]. It is
known that there is also an SiOx layer between the Al2O3 and c-Si at the inter-
face [4]. This oxide is not included in the model explicitly, but its presence was
taken into account by using an effective dielectric constant k = 6. This is valid
because only the capacitance of the oxide interlayer has an influence on the
equilibrium band diagram calculation. The SiOx/Al2O3 thickness in the model
is 5 nm. It should also be noted that the distance of the Fermi level in the ZnO
to the conduction band is larger in reality than this simulated band diagram
shows. This is due to the fact that AFORS-HET is limited to MaxwellBoltz-
mann statistics, while FermiDirac statistics are needed to correctly determine
the Fermi level in a degenerate semiconductor.

The simulation demonstrates how the Al2O3/ZnO stack serves as a hole-
selective contact on the c-Si. The high density of negative fixed charges at the
interface leads to accumulation of holes at the Al2O3/c-Si interface. Similarly
to a diffused junction, in the inversion layer the conductivity for holes is much
higher than for electrons, so the inversion layer serves as a homojunction.
However, the doping is achieved without adding impurities to the silicon, thus
keeping the bulk recombination low.

If the film is thin enough, a tunnelling current through the Al2O3 is possible
by recombination of electrons from the ZnO and holes in the Si without a
significant voltage loss due to the alignment of the ZnO conduction band with
the c-Si valence band. This is analogous to the case of n-type Si heterojunction
solar cells where the p-type a-Si:H is contacted with an n-type transparent
conductive oxide (TCO) and the current is carried by tunnelling recombination
[2, 10].

In a Si-HJT cell, the hole contact consists of a stack of intrinsic and doped
a-Si:H with a combined thickness of ∼10 nm [2] with on top a TCO of ∼75 nm.
Therefore, compared to the Si-HJT cell, the Al2O3/ZnO stack avoids the use
of a-Si:H, leading to a higher transparency.

5.3.2 Modeling of the tunnelling currents

From a theoretical perspective, it is expected that the tunnelling recombination
junction behaves like an Esaki (or tunnel) diode (see Figure 5.3a) [11], rather
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Figure 5.3: (a) The band diagram of an Esaki diode. An Esaki diode is a homojunction
which has been degenerately doped on both sides, making band-to-band tunnelling recombi-
nation possible. Two important parameters that characterise the diode, are the degeneracies
(indicated by eVn and eVp) of the n-type and p-type sides of the junction. (b) Empirical J–V
characteristic of an Esaki diode (solid blue line) described by Eq. (5.1). The dashed blue line
is the current through the diode in absence of the tunnelling recombination transport, i.e.,
the current predicted from the well-known Shockley equation. The red line is the tangent
V/Rt at V = 0 and indicates the ohmic behavior of the diode at low bias.

than an ideal resistor. To model the J–V characteristic of an Esaki diode in
the circuit, the following empirical relation was used [11]:

JEsaki(V ) =
V

Rt
exp

(
− V
V0

)
+ J0,tunnel

[
exp

(
eV

kBT

)
− 1

]
. (5.1)

Here, kB is the Boltzmann constant and T the temperature. The variables
Rt (the tunnel resistance under low bias), V0 (the voltage where J has a local
maximum) and J0,tunnel were used as fitting parameters. As can be seen in
Figure 5.3b, an Esaki diodes behaves like an ohmic resistance under small for-
ward bias. Under higher bias, the tunnelling recombination current decreases
because the conduction band of the n-type side of the junction is eventually
located completely above the valence band of the p-type side. This results
in a characteristic region where the current through the diode decreases with
the bias, as illustrated in Figure 5.3b. This is known as “negative differential
resistance”. For even higher bias, the tunnel diode starts to function as an
ordinary diode and the second term in Eq. (5.1) starts to dominate, increasing
the current again.

The measured J–V data (to be presented in Section 5.4.2) of the tunnelling
experiments (described in Section 5.2) has been modelled using different cir-
cuits involving an Esaki diode. When fitting the data, it turned out that
the tested circuits with the Esaki diode did not significantly improve the fit
compared to an ordinary double diode fit. This most likely means that the
tunnel junction operates in its ohmic regime so that its contribution cannot
be separated from other contributions to the resistance. However, the model
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of an Esaki diode is still useful for identifying the factors that can lead to
improvement of the tunnelling contact as will be shown in Section 5.3.3.

Because the effect of tunnelling recombination cannot be separated from
other series resistance contributions, the well-known double diode equivalent
circuit is used to model the measured tunnelling currents and to assess the
contact resistance of the stacks. In the double diode fits, the ideality factors of
the diodes were kept constant at 1 and 2, so the fits have four free parameters:
the dark saturation currents of the diodes J01 and J02 (with idealities 1 and 2
respectively), the shunt resistance Rshunt and the series resistance Rseries.

5.3.3 Considerations for improving the contact resistance and
surface passivation

As discussed in Section 5.3.3, the tunnelling recombination in an Esaki diode
decreases strongly when the electrons cannot recombine with holes at the same
energy level. The underlying principle is that the recombination is most effec-
tive when energy is conserved without the need for involving a third particle
(such as a phonon) [11]. Therefore, the alignment of the ZnO conduction band
with respect to the c-Si valence band is crucial for the charge transport through
the tunnelling contact.

From a theoretical perspective, the following factors will be identified that
have influence on the alignment of these two bands: the degeneracies of the
semiconductors on both side of the junction; the band offsets at the ZnO/Al2O3

and Al2O3/c-Si interfaces and the dielectric properties of the Al2O3.

5.3.3.1 Degeneracy of the ZnO and c-Si

Assuming that the model of a tunnel diode applies to the tunnelling recombina-
tion current through the Al2O3 stacks, it is expected that the tunnel resistance
decreases with increasing degeneracy (i.e., the distance of the Fermi level above
the conduction band, eVn in Figure 5.3a) of the ZnO, which is related to the
carrier concentration ne. Similarly, it is expected that an increase in the fixed
charge density in the Al2O3 will decrease the resistance by shifting up the va-
lence band of the c-Si with respect to the Fermi level and thus increasing the
degeneracy, eVp, in the c-Si.

The effect of the doping in the ZnO on the degeneracy, eVn,can be measured
in various ways. First of all, an increase in eVn will increase the optical bandgap
of the ZnO due to the Burstein–Moss effect. A second method to measure eVn
is by the direct relation between the electron density ne and the Fermi level.
If the bands of the ZnO are assumed to be parabolic, then eVn is proportional

to n
2/3
e . A more sophisticated approach would take the non-parabolicity of

the ZnO bands into account [12], but this requires the determination the non-
parabolicity parameter of the ZnO, which is outside of the scope of this paper.
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Another method to measure eVn is through the binding energy of electrons in
the ZnO, but this method will not be used in this work.

Both the optical bandgap and the electron density are measured by SE (see
Section 5.2). The determination of ne uses the effective mass (m∗) of the ZnO
as input parameter. Generally, m∗ depends on the electron concentration (due
to the non-parabolicity of the bands), making it difficult to accurately calculate
eVn from ne. Therefore, the optical bandgap is the preferred measure for eVn
in this work. However, it should be noted that the change in optical bandgap
cannot be attributed to the Burstein-Moss shift alone since the bandgap nar-
rows with increasing ne [13], so care must still be taken in interpreting the
data.

5.3.3.2 Band offsets in the ZnO/Al2O3/c-Si system and the dielec-
tric properties of the Al2O3

To investigate the role that the band offsets play in the ZnO/Al2O3/c-Si system,
the band diagram has been calculated for different values of the ZnO/Al2O3

and Al2O3/c-Si band offsets. The red dotted band diagram in Figure 5.2 that is
superimposed on the original calculation shows how the band diagram changes
when band offsets are used that are less favourable for the alignment of the
ZnO conduction band with respect to the c-Si valence band. It can be observed
that the strength of the electric field in the Al2O3 changes significantly, but
the positions of the bands in the ZnO and c-Si are not very sensitive to the
band offsets used. At the interface, the c-Si valence band is located 0.27 eV
lower than in the original calculation, even though both band offsets have been
changed by 0.5 eV. This illustrates that the Al2O3 fulfils an important third role
besides inducing surface passivation and making the contact selective to holes:
as a dielectric it can sustain a high amount of band-bending that facilitates
the alignment of the ZnO conduction band and the c-Si valence band. It is
known that Al2O3 layers prepared by plasma ALD have a significant breakdown
electric field of ∼9 MV cm−1 [14] and for ultrathin (∼1 nm) Al2O3 layers, values
as high as high as ∼30 MV cm−1 have even been reported [15]. Assuming
a breakdown field of ∼9 MV cm−1, this means that an energy difference of
∼0.9 eV can exist across a 1 nm layer to accommodate for the alignment of
the ZnO bands with the c-Si bands. Therefore, it can be concluded that the
exact values of the band offsets in the ZnO/Al2O3/c-Si system will affect the
tunnelling resistance through the stack, but that the effect of “misalignment”
is diminished by the electric field in the Al2O3.

An interesting question is what factors determine the band offsets between
materials. Knowing this will help in future research to identify other materials
that have a high potential to make a good tunnelling contact. To answer
this question, the physical mechanism that causes band offsets needs to be
addressed. Often, band offsets are calculated using the Anderson model (also
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known as the electron affinity rule) [11, 16], which assumes that the vacuum
energy levels of the two materials align across the interface. This assumption
leads to the equation ∆EC = e∆χ, with ∆EC the conduction band offset and
∆χ the difference between electron affinities of the two materials.

However, the Anderson model is not always satisfactory for predicting band
offsets and other models have been suggested, such as the Tersoff model [17].
This model states that band offsets arise because allowed states in one semi-
conductor cause evanescent states in the forbidden gap of the other. This gives
rise to a quantum dipole at the interface, which results in band offsets. The
Tersoff model asserts that to a good approximation, the quantum dipole tends
to align the so-called branch point energies of the materials. Roughly speak-
ing, the branch point energy of a material (which is a bulk property) is the
energy level (usually somewhere in the forbidden gap) where the (forbidden)
states change from valance band character to conduction band character. This
makes the branch point energy a useful material property for the selection of
materials in tunnelling stacks.

It should be noted that the Tersoff model has been applied to the ZnO/c-Si
system [18, 19], but not to the ZnO/Al2O3/c-Si system and, to the author’s
knowledge, neither to these materials deposited by ALD.

It can be concluded that, when selecting materials for low resistance tun-
nelling stacks, both the electron affinity and the branch point energy of the
materials are relevant parameters for the optimization of the band alignment
of the stack. For an in- depth analysis of the band offsets, detailed calculations
of the quantum dipole at the interface are recommended.

5.3.3.3 The effect of amorphous silicon interlayers

It is known that the chemical passivation of Al2O3 decreases with thickness for
ultrathin films (<5–10 nm) [4], so it is important to investigate ways to improve
the chemical passivation of the ultrathin Al2O3 that is needed to achieve a
good tunnelling resistance. A material that is well known for its excellent
chemical passivation, is a-Si:H. It is therefore expected that an interlayer of
a-Si:H between the Al2O3 and c-Si can complement the surface passivation of
the Al2O3.

There is, however, another motivation for the insertion of a conductive
amorphous interlayer. In the same way that tunnelling recombination is af-
fected by the requirement for energy conservation, momentum should also be
considered. In a crystalline material, momentum is a well-defined quantity that
is conserved, just like energy. However, in an amorphous material, momentum
is not well-defined and it is expected that the insertion of an amorphous in-
terlayer between the c-Si and Al2O3 will relax the requirement for momentum
conservation in the tunnelling recombination mechanism. This would be analo-
gous to the observation that c-Si has an indirect bandgap, while the relaxation
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Table 5.1: Fitted double diode parameters for the J-V characteristics (shown
in Figure 5.5) of the Al2O3/ZnO:Al tunnelling stacks with various aluminium
fractions (AF), except for the sample with AF = 0.31.

AF EG,opt J01

(
mA

cm2 s

)
J02

(
mA

cm2 s

)
Rseries (Ω cm2) Rshunt (Ω cm2)

0 3.29 4.96 · 10−6 1.82 · 10−1 2.41 27.2
0.10 3.55 2.82 · 10−5 4.98 · 10−1 1.74 14.3
0.21 3.69 9.60 · 10−6 3.68 · 10−1 1.45 26.1

of momentum conservation makes a-Si:H a direct bandgap semiconductor. For
this reason, the hypothesis is advanced that a conductive amorphous interlayer
such as a-Si:H will reduce the tunnelling resistance.

In principle, the same reduction of contact resistance could be obtained
if the conductive amorphous layer is inserted between the ZnO and Al2O3

instead of between the c-Si and Al2O3. However, it should be noted that the
surface passivation of Al2O3 can be damaged by high-energy photons [20]. This
makes it more difficult to achieve good surface passivation when plasma-based
methods are used for the deposition of the amorphous layer.

5.4 Results and discussion

5.4.1 Passivation of c-Si by Al2O3/ZnO stacks

The passivation results of the Al2O3/ZnO stacks are presented in Figure 5.4.
As can be seen, the SRV of the stacks depends strongly on the thickness of
the Al2O3 (dAlOx) which was varied between 1, 3 and 10 nm while the ZnO
thickness was kept constant at 40 nm. When the SRV of the stack is compared
with that of a single layer of Al2O3, it is observed that the stacks passivate
better than the single layers for dAlOx > 3 nm and worse for dAlOx < 3 nm. At
dAlOx < 3 nm, the SRV of the stacks is ∼700 cm s−1, which is considered too
high concerning the goal set in Section 5.1. Another observation is that the
passivation of Al2O3/ZnO stacks is mostly independent of the doping level of
the ZnO.

More results on the passivation performance of the Al2O3/ZnO stacks are
presented in reference [21].
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Figure 5.4: Passivation results of Al2O3/ZnO stacks on n-type silicon. The influence of
the Al2O3 thickness is shown (left of the dashed line) as well as the influence of ZnO doping
(right of the dashed line). Data marked with an asterisk (*) were performed on wafers from
a different ingot.
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Figure 5.5: Measured J–V characteristics of selected Al2O3/ZnO tunnelling samples. The
legend shows the aluminium fraction (AF) in the ZnO as measured by XPS.
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Figure 5.6: The fitted series resistance of the Al2O3/ZnO stacks that could be fitted as a
function of the optical bandgap of the ZnO. The dotted line is a linear fit through the data
points and has a slope of −1.9 Ω cm2 eV−1
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5.4.2 Charge transport through Al2O3/ZnO stacks

Measured J-V curves1 for stacks with 1 nm Al2O3 and 100 nm ZnO are shown
in Figure 5.5 and the parameters of the double diode fits of the curves shown in
Fig. 5 are in Table 5.1. Figure 5.6 shows the observed trend in the fitted series
resistance as a function of the optical bandgap of the ZnO for all measured
samples that could be fitted well. First of all, it should be noted that all of the
samples reach current densities higher than 43 mA cm−2 s−1 (i.e., the maximum
possible short-circuit current for a single junction c-Si solar cell under AM1.5
illumination) at voltages lower than the operating voltage of a c-Si solar cell.
For completeness we mention that J-V measurements have also been carried
out on samples with 2 nm of Al2O3, but none of these samples reached currents
higher than 10 mA cm−2 s−1. Two observations can be made from Figures. 5.5
and 5.6.

First of all, the measured series resistance decreases with increasing ZnO
doping. Finite element calculations of the current flow through the ZnO have
been used to investigate the influence of the lateral conductivity of the ZnO on
the fitted series resistance. It was found that the ZnO increases the effective
contact area (assumed to be 1.96 cm in Figure 5.6) by approximately 10–20 %
for all samples. It was also found that the observed trend in the tunnelling
resistance shown in Figure 5.6 cannot be explained by the change in the ZnO
sheet resistance. As can be seen, the decrease of the tunnelling resistance is
observed to be approximately linear with the optical bandgap of the ZnO,
which corroborates the hypothesis advanced in Section 5.3.3.1 that the ZnO
doping improves the alignment between the ZnO conduction band and c-Si
valence band and therefore decreases the tunnelling resistance.

5.4.3 Improved c-Si passivation by a-Si:H/Al2O3/ZnO stacks

Figure 5.7 shows the passivation results and tunnel resistance of the
a-Si:H/Al2O3/ZnO stacks, where the thicknesses of the Al2O3 and ZnO were
kept constant at 1 nm and 100 nm, respectively. The thickness of the a-Si:H
was varied between 1.5 nm and 6 nm. The parameters of the double diode fit
are listed in Table 5.2. As predicted in Section 5.3.3.3, the surface passivation
is already greatly enhanced by the insertion of only 1.5 nm of a-Si:H. This
represents a significant reduction in a-Si:H thickness compared to ordinary Si-
HJT cells, which typically use ∼10 nm or more of a-Si:H [2]. At the same time,
the tunnel resistance increases slightly with a-Si:H thickness.

The hypothesis from Section 5.3.3.3 that the insertion of an amorphous
silicon interlayer would decrease the tunnelling resistance has not been verified

1We would like to highlight that the J-V characteristics of several samples were measured
shortly after deposition and 1 year later again. The results were very reproducible, and
therefore it can be concluded that the electric properties of these stacks are very stable in
time.
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Figure 5.7: The left axis shows the effective SRV of the a-Si:H/Al2O3/ZnO stacks as a
function of the a-Si:H thickness. The passivation has been determined from lifetime samples
on p-type silicon. The right axis shows the total series resistance of the tunnelling samples,
determined by fitting the J–V characteristic with a double diode model.

Table 5.2: Fitted double diode parameters for the J-V characteristics of the
a-Si:H/Al2O3/ZnO:Al tunnelling stacks. The aluminium fraction (AF) of the
ZnO:Al is 0.10.

a-Si:H thick-
ness (nm)

J01

(
mA

cm2 s

)
J02

(
mA

cm2 s

)
Rseries (Ω cm2) Rshunt (Ω cm2)

0 3.21 · 10−6 1.10 · 10−1 3.32 31.2
1.5 5.32 · 10−7 3.38 · 10−2 5.57 95.1
3.0 3.30 · 10−8 1.01 · 10−2 5.39 183
6.0 8.04 · 10−8 1.13 · 10−3 30.8 180
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by the experiments shown in Figure 5.7. Two factors can be advanced that
could have played a role in the increased resistance of the samples with the
a-Si:H interlayer. First is the fact that these samples were annealed at a lower
temperature, most likely reducing the amount of fixed charges at the interface
[4]. As explained in Section 5.3.3.1, a reduction of interface charges most
likely leads to a higher tunnelling resistance. It is also possible that the SiOx

interlayer is thicker in the a-Si:H/Al2O3/ZnO system due to different oxidation
kinetics of a-Si:H compared to c-Si. More careful analysis of the Al2O3/a-Si:H
interface and oxide thicknesses is required to draw conclusions.

5.5 Conclusions and outlook

The potential of using Al2O3/ZnO stacks as contacts on c-Si that are simulta-
neously hole-selective, highly transparent and passivating has been addressed
theoretically and experimentally by selected measurements. Charge transport
through these stacks is considered to occur by tunnelling recombination, which
can be understood by applying the theory of Esaki diodes. This theory demon-
strates that the ZnO conduction band should be at a lower energy than the
c-Si valence band in order to make the tunnelling recombination efficient and
to obtain a low contact resistance. Three key elements have been identified
that can help to achieve the required band arrangement:

(i) The negative fixed charges in the Al2O3, which cause accumulation of
holes at the c-Si surface, shifting up the c-Si valence band.

(ii) The doping of the ZnO, which results in a high concentration of electrons,
shifting down the ZnO conduction band.

(iii) The presence of the large bandgap dielectric Al2O3, which can sustain
a large amount of band bending. This allows the ZnO and c-Si bands
to align with more freedom than they would have been able to in the
absence of the Al2O3.

The influence of the doping of the ZnO on the resistance is demonstrated
by the experimental observation that the contact resistance decreases with
increasing optical bandgap of the ZnO. It has been found that stacks with
1 nm of Al2O3 on p-type c-Si can give contact resistances of ∼1.5 Ω cm2. It was
verified that the electrical properties of the contacts are stable in time for at
least 1 year.

It has also been found that the passivation of Al2O3/ZnO stacks with 1 nm
of Al2O3 is insufficient for application in high efficiency solar cells. Therefore,
samples have been produced with an a-Si:H interlayer between the Al2O3 and
c-Si in order to increase the chemical passivation. It has been demonstrated
that such interlayers can reduce Seff,max to a value as low as 20 cm s−1 while
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still achieving a contact resistance of ∼5 Ω cm2. As the a-Si:H in these stacks
is significantly thinner than in a typical Si-HJT cell, parasitic absorption is
expected to be reduced.

For future research, the following research directions are suggested. The a-
Si:H/Al2O3 interface needs to be better characterized. In particular, the fixed
charge density at this interface needs to be understood. It is also suggested to
make the Al2O3 layer as thin as possible to increase the tunnelling probabil-
ity, while simultaneously making the density of negative fixed charges as high
as possible. To achieve this, the growth of Al2O3 on a-Si:H during the first
few ALD cycles needs to be well-understood and the process tuned for this
application.

Another method to increase the tunnelling current through the Al2O3 is by
engineering defects in the Al2O3 at a specific energy level to promote hopping
transport through the oxide. Doing so will increase the hole-selectivity of the
contact and will most likely also relax the thickness constraints on the Al2O3

so that better passivation can be achieved without introducing a-Si:H in the
stack.

The doping of the ZnO needs to be optimised to make the tunnelling contact
as efficient as possible. ALD offers the prospect of using graded doping schemes
to optimise the contact interface as well as other relevant parameters of the
TCO, such as transparency and sheet resistance. It is also considered important
to start fabrication of real solar cells to test the hole-selectivity of the contacts.
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Chapter 6

Properties of graphene and its
potential applications in
silicon solar cells

Graphene is a relatively new material with unique electrical and optical prop-
erties, the most relevant of which –for the field of solar cells– are its high
mobility combined with a low absorption coefficient. It is therefore frequently
mentioned in literature as a promising new material for c-Si solar cells. In liter-
ature several devices can be found that use graphene to form a hole-extracting
selective contact for c-Si (see, e.g., [1, 2, 3, 4, 5]). The most successful cell
so far is the one made by Song et al. [5], which achieves a respectable 15.6 %
efficiency with a VOC of 595 mV. However, most of the research into this type
of cell is done by researchers that are first and foremost involved in graphene
research rather than photovoltaics (PV) and a comprehensive overview of the
strengths and weaknesses of graphene as a material for c-Si PV is therefore still
absent. The goal of this work is therefore to answer two important questions:

1. Can graphene achieve a high enough conductivity and low enough ab-
sorption coefficient to act as a good transparent electrode in c-Si cells?

2. Is graphene a suitable material for the formation of selective contacts
with c-Si?

These questions will be addressed as much as possible from a physics point of
view. This means that there will be less emphasis on the various devices and
graphene films that have been published in literature, since there are already
comprehensive reviews about these topics [3, 6, 7, 8, 9]. Instead, the relevant
physics of graphene will be discussed to develop a broad understanding of the
possibilities of graphene and to facilitate future research in this area. In Section
6.1 its electronic properties will be reviewed and explained. The conductivity
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and transparency of graphene are of special interest here and its potential as
a selective electrode will be discussed. Then, in Section 6.2, the nature of
c-Si-graphene junctions will be explored to see what is necessary to make a
good selective contact for a silicon solar cell that utilises graphene, as well as
to provide practical tools to perform calculations about these types of cell.

6.1 The electrical and optical properties of graphene

Section 6.1 will give a brief overview of the properties of graphene that are
relevant for its application in solar cells. The theory has been adapted from
the general theoretical papers on graphene by Falkovsky [10], Castro Neto et
al. [11], and Abergel et al. [12].

6.1.1 The graphene dispersion relation and density of states

Graphene has two defining characteristics that give it its unique electrical and
optical properties. These characteristics are the two-dimensional (2D) nature
of the material and the unusual relation between energy E and momentum
~k of electrons1 in the material (i.e., its dispersion relation). In most mate-
rials the dispersion relation is quadratic, meaning that the electrons in those
materials obey a law of the form E = ~2k2/(2m∗), just like classical objects
in Newtonian mechanics. In graphene the dispersion relation is very different.
For completeness sake, Figure 6.1a shows the energy-momentum relation of
graphene over the whole Brillouin zone, but in practice this full dispersion re-
lations is seldom necessary since only the electrons near the Fermi energy are
of interest for transport phenomena. As can be seen in the figure, the π and
π∗ bands (which are basically equivalent to the valence and conduction bands
in semiconductor) touch at specific points called the K-points or Dirac points.
The momentum at these K-points is denoted by K. Around these Dirac points
the dispersion relation can be approximated to be two touching cones:

ε = ±~vFk = ±~vF
√
k2
x + k2

y. (6.1)

Here, ε and k = κ−K are the energy and momentum measured from the Dirac
point (with κ the total momentum measured from the Γ-point). The constant
vF ≈ 1 · 106 m s−1 is called the Fermi velocity of graphene. The shape of the
dispersion relation in k-space is frequently referred to as the Dirac cone. The
energy at the tip of the cone is called the Dirac energy EDirac and is located

1Because the symbol p is also used for hole density, it is preferable to use ~k for momentum
to avoid confusion. Because of the equivalence between k and momentum, k will be called
the momentum and wavenumber interchangeably.
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4.5 eV under the vacuum level2 [14, 15]. The dispersion relation ε = ±~kvF
is reminiscent of the energy-momentum relation of photons E = ~kc. Like
photons, electrons in graphene have a constant (i.e., independent of energy)
group velocity dω/dk = vF , which is why they are often referred to as being
massless. The constant group velocity also is one of the properties that give
graphene its remarkable transport properties since even electrons with very
little energy can travel at a high velocity. For comparison, an electron that
travels at 106 m s−1 in vacuum has an energy of 2.8 eV. Unlike photons, though,
electrons in graphene are allowed to have energies ε < 0.

Just like in any other conductor, each electron occupies a certain volume
of phase space that is limited by the uncertainty relation. Since graphene is
2D, the smallest phase space volume that an electron can occupy is given by
(∆x∆k)2 = 1/(2π)2. The electrons have wave functions that extend over the
area A of the graphene so that (∆x)2 = A. By combining the uncertainty
relation with the dispersion relation (6.1) it is possible to find the density of
states (DOS, DG) of graphene. The DOS is measured in units of cm−2 eV−1

and is given by:

DG(ε) =
2|ε|

π(~vF )2
. (6.2)

This expression includes the spin degeneracy factor 2. With the DOS given by
Eq. (6.2) it becomes possible to relate the electron density to the Fermi energy
of the graphene EFG. When the Fermi level is measured from the tip of the
Dirac cone, it is denoted by εFG = EFG − EDirac. For pure, uncontaminated
graphene the charge neutrality point (CNP) of the Fermi level lies at the Dirac
point (i.e., at εFG = 0), so that the work function (WF) of intrinsic graphene is
φG = 4.5 eV. In agreement with common conventions, all electrons occupying
states with energy ε > 0 will be referred to as free electrons (or simply electrons
if no confusion arises in a given context) while empty states with energy ε < 0
will be called holes. The densities of free electrons and holes are denoted by

2Another frequently quoted value is EDirac = −4.6 eV (see, e.g., Zhong et al. [13]). In this
work EDirac = −4.5 eV will be used, since this seems to be the most accurate experimental
value.
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(a)

(b) (c)

Figure 6.1: (a) The full dispersion relation of graphene as calculated by Eq. (1) by Abergel
et al. [12]. (b) On the left is shown the real space lattice of graphene. On the right one
hexagon from the reciprocal space lattice of graphene is shown with the K and K’-points;
the four remaining corners or the hexagon are linear combinations of these two K-points. It
should be recalled that a point in k-space represents a momentum or a motion. These motions
are drawn in the real space lattice using vectors of corresponding colours. As can be seen, the
motions corresponding to the K-points are along the zigzags of atoms that provide the easiest
routes for electrons to follow. (c) The full dispersion shown in (a) can be approximated as a
cone at the K-points. The cone approximation is drawn as coloured surfaces while the exact
dispersion relation is drawn as a wire frame. The energy range drawn here goes from −2 eV
to 2 eV. As can be seen, the cone approximation starts to lose its accuracy at around ±1 eV.
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nG and pG (in cm−2) and are given by:

nG =

∫ ∞
EDirac

DG(E)fEFG
(E) dE

=
2

π

(
kBT

~vF

)2 ∫ ∞
0

x

1 + exp
(
x− εFG

kBT

) dx, (6.3a)

pG =

∫ EDirac

−∞
DG(E)fEFG

(E) dE

=
2

π

(
kBT

~vF

)2 ∫ ∞
0

x

1 + exp
(
x+ εFG

kBT

) dx, (6.3b)

with fEFG
(E) the Fermi distribution function. At T = 300 K, the prefactor

has the value (2/π)(kBT )2/(~vF )2 = 9.82 · 1010 cm−2. Appendix 6.A discusses
how the integrals in Eqs. (6.3) can be approximated analytically and provides
accurate piecewise approximations for nG and pG in Eqs. (6.29). However, for
many practical purposes it suffices to approximate the Fermi distribution as a
step function to obtain the density of the dominant carriers. This density is
denoted by n (i.e., n = nG when εFG > 0 and n = pG when εFG < 0) and is
given by:

n ≈ 1

π

(
εFG

~vF

)2

≈ 7.35 · 1013 cm−2
( εFG

1 eV

)2
. (6.4)

This commonly used approximation has a relative error of < 10 % for |εFG| >
5.5 kBT and an error of < 1 % for |εFG| > 18.1 kBT compared to the exact
integrals.

With εFG = 0 in Eqs. (6.3), the intrinsic carrier density ni,G of graphene
can be calculated to be:

ni,G =
π

6

(
kBT

~vF

)2

= 8.077 · 1010 cm−2. (6.5)

Note that the intrinsic carrier density is of much more interest to semicon-
ductors than it is to graphene. In semiconductors it is possible that both the
electrons and holes follow Boltzmann statistics (i.e., when the Fermi level is
midgap) so that the law of mass-action is valid: np = n2

i . However, this is not
the case for graphene since graphene is always degenerate for at least one of
the two carrier types. So due to the fact that it does not have a bandgap there
exists no mass-action law for graphene (see also the discussion about intrinsic
carrier density in doped semiconductors in Section 3.4).

From the DOS it can be seen that graphene has one forbidden energy level
at ε = 0, so it can be said that graphene almost has a bandgap. However, a
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Figure 6.2: The (2D) Dirac cone compared to the (3D) parabolic dispersion relations of a
metal and a semiconductor. In all 3 systems, the DOS is proportional to the width of the
cone/parabola (though this is a happy coincidence for these particular systems and not a uni-
versal law). The Fermi level in the graphene shown in this figure corresponds to the intrinsic
level where the numbers of free electrons and holes are equal. In graphene, like in metals,
excited electrons can quickly relax back to the lowest available state by passing through in-
termediate empty states. In semiconductors, exited electrons relax relatively quickly to the
bottom of the conduction band. Since the relaxation to the valance band involves a single
large jump in energy, this process is much slower than the intraband relaxation time. This is
the reason that Fermi level splitting is possible in semiconductors but not in graphene or in
metals.
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proper semiconductor has a range of forbidden energies, so graphene is some-
times called a semimetal. Like a real metal, graphene cannot sustain Fermi
level splitting: any excited electron will quickly decay back through the in-
termediate states to its equilibrium energy level as shown in Figure 6.2 (see
also the discussion of Fermi level splitting in Section 3.2). This means that
graphene is unsuited as an absorber material for solar cells. Unlike a metal,
though, the Fermi level in graphene is not fixed. In a metal the DOS is very
large at the CNP, meaning that a shift in the Fermi level will be accompanied
by a very large change in charge in the material. In intrinsic graphene, on the
other hand, the DOS vanishes at the CNP so that εFG can change by a sig-
nificant amount without adding much charge to it. Conversely, adding charge
to intrinsic graphene can shift εFG up or down by several tenths of an eV. At
room temperature, for example, a Fermi level of εFG = ±kBT = 25.9 meV re-
sults in a charge of ∓1.44 ·1011 cm−2. At εFG = ±10kBT = 0.259 eV the charge
is about ∓5.1 · 1012 cm−2, which is comparable to the fixed charge density in a
typical Al2O3 passivation film.

The act of shifting εFG away from its intrinsic level, thereby increasing
the carrier density, will be referred to as doping. Doping of graphene can be
achieved in different ways and often happens unintentionally because the 2D
nature of the material makes it very sensitive to influences from its surround-
ings. For example, fixed charge can be added in the form of adsorbed ions to
the material, forcing εFG to shift to restore the charge balance. Nitric acid
is a well-known and commonly used adsorbate that can achieve p-type doping
[16, 7], though it is difficult to keep ions adsorbed to the graphene permanently
due to its chemical inertia, making chemical doping of graphene an active field
of research [17]. Contaminating species from the environment (such as CO2,
H2O and NO2 [18]) and the processing of the material are also known to cause
intentional or unintentional doping [19]. The Fermi level in graphene can also
be shifted by putting it on a dielectric substrate (such as a silicon wafer with a
thermal oxide film) and then gating it with an external voltage source. When
the dielectric is thick enough, the is configuration will behave like an ordinary
(i.e., linear) capacitor so that the charge in the graphene can be calculated
from the gate voltage in a straightforward manner from the oxide’s thickness
and dielectric constant [20]. This method can be used to measure the adsorbed
charge density and mobility of the graphene [18] and provides a simple method
to dope graphene while performing optical measurements [21]. Another possi-
ble doping source is the substrate of the graphene itself as will be discussed in
Section 6.2.

The question then rises what limits there are to graphene doping. Though
this question is difficult to answer, carrier densities over 1013 cm−2 [22, 23]
and up to 5 · 1013 cm−2 have been observed in graphene [24]. The Dirac
cone approximation for the graphene dispersion relation breaks down at about
|εFG| = 1 eV (see also Figure 6.1c)) and this corresponds to a carrier density
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Table 6.1: Overview of relevant electrical properties of graphene, semiconduc-
tors and metals. In practice, metals tend to have a more complex dispersion
relation, but for the arguments in this work it is sufficient to regard metals as
an ideal degenerate electron gas.

Material Dimension Bandgap Fermi
level
splitting

EF Dispersion

Graphene 2D Almost No Variable ~vFk
Semiconductor 3D Yes Yes Variable ~2k2

2m∗

Metal 3D No No Fixed ~2k2

2m∗

of n = 7.4 · 1013 cm−2, so this number can be used as an approximate upper
limit for graphene doping.

Table 6.1 presents a brief overview of the most important electrical prop-
erties of graphene as well as the most important differences between graphene,
metals and semiconductors.

6.1.2 Conduction and photon absorption in graphene

For assessing the electrical and optical losses in graphene, the main quantity
of interest is the frequency-dependent (dynamic) complex conductivity3 σ(ω).
Just like the static (DC) conductance σDC = limω→0 σ(ω), the dynamic con-
ductivity is the ratio between the in-plane electric field E‖(ω) and the current
density (unit: A m−1) in the graphene J(ω):

J(ω) = σ(ω)E‖(ω). (6.6)

The real part of σ is associated with currents that are in phase with the electric
field (which are dissipative) while the imaginary part of σ is associated with
out-of-phase currents (which do not dissipate). The frequency dependence
of σ(ω) can be measured by spectroscopy (see, e.g., Horng et al. [21]; Yan
et al. [23]; and Weber et al. [25]) and at wavelengths relevant for a silicon
solar cell, σ is a universal constant σAC = e2/(4~) = 6.09 · 10−5 Ω−1. Due to
the unique conical graphene dispersion relation, this constant is independent
of ω; temperature; the graphene carrier density; and σDC [10]. The optical

3Because graphene is a 2D material, it is possible to measure the electrical conductivity
and resistivity in S and Ω (i.e., the sheet conductance and sheet resistance). There is then no
real distinction between conductance and conductivity or between resistance and resistivity
and the terms can then be used interchangeably. This is the convention that will be used
here. Some authors (such as Weber et al. [25]) choose to express the conductivity of graphene
in S m−1 by normalising to the graphene thickness dG = 0.335 nm.
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conductivity σAC can be used to calculate the transmission through a sheet
of graphene, but in general this transmission depends also on the design of
the cell. Backside reflections from the rear of the cell and the presence of
an anti-reflective coating (either on top of or underneath the graphene) can all
influence how much light the graphene absorbs and reflects. So while the optical
conductivity of graphene is a simple constant, its reflectance and transmittance
depend on the context and can in general only be calculated exactly by solving
the Fresnel equations. Fortunately, for certain geometries there exist simple
approximations. For example, for a sheet of graphene on a bare substrate the
transmission can be calculated to be approximately: [25]:

TsG

Ts
≈ 1− πα

(
1

2
+

1

2(n2
s + 1)

)
= 1− 0.0229

(
1

2
+

1

2(n2
s + 1)

)
. (6.7)

Here, the fraction TsG/Ts is the transmission through the substrate + graphene
normalised to the transmission through the substrate in the absence of the
graphene; ns is the substrate refractive index; and α ≈ 1/137.0 is the fine-
structure constant. Thus, for silicon (ns ≈ 3.44) the transmission loss in the
visible part of the spectrum due to the presence of a sheet of graphene is about
1.2 %.

When looking at the dynamic conductivity in the lower part of the spec-
trum, it is possible that σ shows a feature that resembles a bandgap. This
happens if the Fermi level is shifted far away from its intrinsic position (i.e.,
|εFG| � kBT ). In that case there are no allowed interband transitions at ω <
2εFG due to a phenomenon called Pauli blocking (see Figure 6.3) and should
not be misinterpreted as evidence of an electrical bandgap in the graphene. Be-
cause the Pauli blocking bandgap is related to εFG, this effect provides a useful
method to independently measure the Fermi level and free carrier density in
the graphene.

6.1.2.1 The optical Drude response of graphene and DC conduc-
tivity

Going to even lower frequencies in the infrared (IR), the optical conductiv-
ity shows a pronounced Drude absorption peak due to intraband transitions.
These intraband transitions are also referred to as free carrier scattering be-
cause they mainly involve energy levels close to the surface of the Fermi sea,
which are also the states involved in DC conduction (see Figure 6.3). The
Drude contribution to σ (denoted by σDrude) has the following form [10, 21, 25]:

σDrude(ω) =
iD

π(ω + iτ−1)
=

ie2|εFG|
π~2(ω + iτ−1)

≈ ie2vF
√
n√

π~(ω + iτ−1)
. (6.8)

Here, e is the elementary charge; τ is the scattering time or inverse scattering
rate Γ−1 (Γ is also referred to as the Drude broadening parameter or scattering
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Figure 6.3: Optical transitions in graphene. Interband transitions excite an electron with
energy ε < 0 to a state ε > 0 and are only likely if the k vector of the electron is conserved.
Transitions that do not conserve k are only possible if the difference in momentum is com-
pensated for by, e.g., a phonon and are therefore significantly less probable. Because of k
conservation, only photons with energy > 2εFG can be absorbed in an interband transition.
Thus, the absorption spectrum of graphene does show characteristics of an optical bandgap,
even though it does not have an electrical bandgap. Intraband absorption in graphene is dom-
inated by states close to the Fermi level because those transitions only require small changes
in k. Intraband absorption therefore most pronounced in the IR part of the spectrum and
leads to a characteristic Drude-type feature in the absorption spectrum. This Drude peak
can be used to measure the carrier density and mobility of the graphene [21].
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width). The Drude weight D measures the strength of the interaction between
the light and the free carriers4. Strictly speaking, Eq. (6.8) is only true when
εFG � kBT , but in literature a general Drude form can be found that is also
valid at low doping levels [10].

In the ω → 0 limit, the Drude conductivity becomes the static conduc-
tivity (i.e., inverse sheet resistance) σDC = Dτ/π that measures how well the
graphene can be used as a transparent electrode. Horng et al. [21] showed that
the sheet resistance of graphene can be successfully measured by either four
point probe measurements or by optically measuring the Drude weight D: both
methods are equally accurate, but the optical method yields information about
both the free carrier density and the scattering rate (i.e., about the mobility).

The Drude absorption peak in the IR is of little consequence for the appli-
cation of graphene in solar cells because the peak is so narrow (typically less
than 0.3 eV) that it does not affect photons with energies above the bandgap
of silicon. This is in stark contrast to traditional TCOs, in which the Drude
free carrier absorption and reflection near the silicon bandgap can be substan-
tial. Traditional TCOs therefore have to compromise between a low resistivity
(which requires a high free carrier density) and low absorption/reflection (which
requires a low free carrier density). Only by lowering the scattering rate (and
increasing the mobility) is it possible to escape this compromise, though the
doping of a TCO will always result in ionised impurity scattering, which (to-
gether with phonon scattering) imposes an absolute upper limit on the mobility
a TCO can achieve. Indeed, for indium oxide, this upper limit has almost been
achieved [28, 29]. For graphene, on the other hand, free carrier absorption is
of no consequence to a solar cell due to its very low intrinsic scattering rate;
only the interband transitions matter.

It is interesting to note that the conductivity in graphene is not proportional
to n, like in most materials, but to |εFG| ∼

√
n. To explain this dependence it

is necessary to take a closer look at the Drude model in general. This model
is commonly used to describe the conductivity of metals and semiconductors,
both degenerate and nondegenerate) and provides an easy method to measure
the mobility and carrier density of a material [30]. In the Drude model the
(free) electrons are considered to be an ideal gas so that the energy of the
electrons is assumed to be purely kinetic: E = ~2k2/(2m∗), with m∗ is the
effective mass of the electrons in the lattice of the material. If the electrons
have an effective scattering rate τ , then the DC conductivity of the material

4In practice, it turns out that the measured Drude weight is lower than e2|εFG|/~2 [21].
It would go too far to explain this phenomenon, but the basic idea is that, due to many-body
effects, the scattering electrons experience a lower Fermi velocity (about 0.85 · 106 m s−1)
than the DOS Fermi velocity [26, 27]
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σDC is5 (see, e.g. [32]):

σDC = eµn =
e2τ

m∗
n. (6.9)

This result is very useful, but it gives the false impression that all free electrons
contribute to conduction, which is only the case for a nondegenerate electron
gas (such as the free electrons in lowly doped c-Si). In a degenerate electron gas,
however, only the electrons at the surface of the Fermi sea have the freedom
to contribute to conduction. The reason n appears in Eq. (6.9) is because
of two separate factors that together result in the proportionality σDC ∼ n.
Heuristically, σDC is proportional to the number of electrons at the Fermi
surface Nsurf and to their velocity (i.e. the Fermi velocity vF ):

σDC ∼ NsurfvF . (6.10)

By the same familiar argument that was used in Section 6.1.1, the electrons
in a metal or semiconductor of volume V are completely delocalised. The
uncertainty principle then states:

(∆x)3(∆k)3 = V (∆k)3 =

(
1

2π

)3

. (6.11)

For an ideal degenerate 3D electron gas with N particles at low temperature,
the Fermi wave vector kF is given by the radius of the k sphere that contains
N states. Using Eq. (6.11), kF can be calculated (taking into account the spin
degeneracy of 2):

N = 2
(4/3)πk3

F

∆k3
=

1

3π2
k3
FV. (6.12)

Thus, the well-known result kF =
3
√

3π2n is obtained. The same argument
can be used to show that the number of electrons at the Fermi surface is
proportional to the Fermi surface area 4πk2

F . The velocity of these surface
electrons is proportional to the Fermi wave vector, so Nsurf and vF scale as:

Nsurf ∼ k2
F ∼ n2/3, (6.13)

vF =
∂ω

∂k

∣∣∣∣
E=EF

=
~kF
m∗
∼ n1/3. (6.14)

Hence, σDC ∼ NsurfvF ∼ n as required by the Drude model, but not because
all electrons contribute to conduction. To put it strongly: the proportionality
σDC ∼ n is merely a coincidence. There is therefore no a-priori reason why

5More generally, the dynamic conductivity in the simple Drude model is σ(ω) = iσDC/(ω+
iτ−1) [31].
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σDC ∼ n should be true for graphene, which has a very different kind of
dispersion relation. Indeed, due to the linear dispersion relation ε = ~vFk in
graphene the Fermi velocity is constant and the number of electrons at the
Fermi surface (which is a circle rather than a spherical shell) go as Nsurf ∼
kF ∼ |εFG| ∼

√
n. Hence, the conductivity of graphene is also proportional

to |εFG| and
√
n. To derive Eq. (6.8), it is necessary to resort to calculations

based on, e.g., the Boltzmann transport equation such presented in Ibach and
Lüth [32], but this is not in the scope of the present work. What is important
to remember is that heavy doping of graphene is a somewhat inefficient method
to increase the conductivity because of the

√
n law.

Even though the graphene DC conductivity is no longer proportional to n,
it is still possible to define a (n-dependent) mobility for graphene as σDC = enµ.
This mobility is given by:

µ =
σDC

en
=

evF τ

~
√
πn

=
ev2
F τ

εFG
. (6.15)

Mobility values for graphene are commonly quoted in literature, but unfortu-
nately they can be difficult to compare due to the fact that µ is not constant
with doping. The scattering rate, on the other hand, is found to be constant
with εFG to a reasonable degree of accuracy [33], especially for p-type graphene
[21], making it a convenient independent transport parameter.

Eq. (6.15) can also be compared with the common expression µ = eτ/m∗

to define an effective mass for graphene (mG) as:

εFG = mGv
2
F . (6.16)

Eq. (6.16) is remarkably simple to remember since it closely resembles the
relativistic equation for the equivalence between mass and energy E = mc2.
This result can thus be interpreted as if the electrons in the graphene have
a mass determined by their energy. The mass relevant for Drude scattering
is therefore the mass equivalent to the Fermi energy, since the electrons at
the Fermi level are the ones responsible for transport phenomena. In fact,
the graphene effective mass has other applications as well. For example, it is
also the effective mass that is measured in cyclotron measurements [27]. One
should, however, be careful to not overinterpret these ideas. The effective mass
mG has a very different meaning from the usual effective mass m∗ defined
for ordinary semiconductors, which is directly related to energy-momentum
dispersion relation.

6.1.2.2 Prospects of graphene as a transparent electrode for c-Si

For a solar cell, the transmission losses through a sheet of graphene (calculated
earlier to be on the order of a percent) are on an acceptable level compared
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to other available transparent conductors, but still significant enough that it
quickly becomes unattractive to stack multiple sheets of graphene on top of one
another (such as done by, e.g., Yan et al. [23]). This means that if graphene is
used as a transparent electrode, no more than a few monolayers (and prefer-
ably just one) can be used to achieve the sheet resistance desired for the cell.
It should also be kept in mind that graphene cannot act as a anti reflective
coating (ARC) like a transparent conductive oxide (TCO) can, so the graphene
will have to be combined with a light trapping scheme; preferably one that is
industrially viable. Given the fact that it is no straightforward task to de-
posit materials on top of graphene (and even if it is possible, those films are
likely to degrade the graphene or at least change its properties), realising such
a scheme imposes significant practical design limitations. Mie resonators [34]
are an attractive option to realise a light trapping scheme on top of graphene,
since it does not require the silicon surface to be textured and only needs a
relatively limited amount of the cell surface to be covered with extra material
to minimise the reflectance.

To assess the conductance potential of a single sheet graphene, it is instruc-
tive to compare the Drude theory for graphene with experimental data. In the
work by Horng et al. [21], the scattering rate Γ = τ−1 and the Drude factor
D have been measured optically. They found that the scatting rate Γ(ω) is
approximately constant for p-type doping, meaning that τ does not depend
on the position of the Fermi level εFG. For n-type doping, however, it was
also found that Γ(ω) increases significantly with the doping density, making
n-type graphene less attractive as a transparent electrode. With these data it
becomes possible to address the question if graphene can be a good transparent
electrode. For c-Si solar cells, a typical acceptable upper limit for σDC is about
(100 Ω)−1 = 1.0 · 10−2 S [35].

From the work by Horng et al. it can be readily verified that -as predicted
by theory- the Drude factor scales as D ∼ √p for p-doped graphene. In Figure
6.4, their data have been fitted by plotting D2 against p. However, since D is
not a very practical number, it has been divided by πΓ0, where Γ0 = 105 cm−1

is approximately the broadening parameter they found. By doing so, the unit
of the y axis becomes that of a squared sheet conductance that can be directly
compared to the conductance goal σ2

DC = 1 · 10−4 S2. As can be seen, the trend
is linear and with the obtained fit it is possible to make an estimate for the
required hole density p needed to obtain the desired sheet conductance. By
extrapolating of the fit (and thus assuming that Γ remains constant), a value
p100 Ω = 2.5 · 1014 cm−2 is obtained. In practise, such a high doping density
has not been achieved (as discussed previously in Section 6.1.1), so a scattering
width of 105 cm−1 is most likely too high to achieve the desired sheet resistance.
However, it known that the substrate of the graphene can affect the scattering
of free carriers [36, 33] and SiO2 (the substrate used by Horng et al.) is far
from ideal in this regard. Lower scattering rates have been found by, e.g., Yan
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Figure 6.4: Fit of the square of the Drude factorD (expressed as a conductance (D/(πΓ0))2)
against the hole concentration (assuming a constant scattering rate Γ0 = 105 cm−1). Data
from the work by Horng et al. [21]. The blue crosses indicate data points that were excluded
from the fit, because at low carrier densities σDC deviates from the

√
p law [10]. The bands

indicate 99.9 % single observation prediction confidence intervals based on the quality of the
fit. Note that the authors of the work report an approximate experimental uncertainty of
10 % which is not incorporated into the fit.
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et al. [23], who report a scattering rate of about 50 cm−1 for graphene on a
polymer buffer layer. With this value of Γ the critical doping density comes
down to p = 5.6 · 1013 cm−2, which is a feasible yet still a significant amount.
The question rises how much electron scattering can realistically be suppressed.
According to Chen et al., [37], graphene could achieve a sheet resistance of 30 Ω
at room temperature if all scattering mechanisms other than intrinsic phonon
scattering are absent. However, if also surface phonon interaction with an SiO2

substrate is included this limit shifts up to about 150 Ω, showing that the 100 Ω
goal relevant for solar cells is close to what is theoretically (let alone practically)
feasible. Furthermore, the authors indicate that even for pristine exfoliated
graphene cleaned and measured under ultra high vacuum conditions they still
found a very significant amount of impurity scattering. They attribute this
to charged impurities inside of the SiO2 substrate, the electric fields of which
disturb the transport in the graphene. This illustrates that even if it would
be possible to process very clean and defect-free graphene on an industrial
scale, the substrate underneath the graphene can still substantially degrade
its conductance. In other words, if graphene is to be used as a transparent
electrode, it is very likely that the rest of the cell needs to be engineered
around this idea.

6.2 Junctions of graphene and silicon

Having established the basic properties of graphene, the next step is to review
how these properties come into play when a junction is made between graphene
and c-Si (or another semiconductor similar to silicon). Superficially, such a
junction is similar to an ordinary Schottky junction in which a metal fixes
the Fermi level at the edge of the silicon and thereby induces a space charge
region (SCR) near the interface. However, in graphene the Fermi level is not
fixed so the graphene does not only affect the SCR in the c-Si, but the latter
will, in turn, affect the former as well. Moreover, the behaviour of charge
transport between the two materials is expected to be different than in an
ordinary Schottky junction due to graphene’s unique dispersion relation and
DOS.

The simplest way to illustrate the interaction between graphene and silicon
is to first look at the equilibrium band diagram, which is the subject of Section
6.2.1. After that, the discussion will be expanded to the non-equilibrium case
in Section 6.2.2. Finally, the theory that has been presented will be used to
discuss the relevance of graphene-semiconductor (GS) junctions for the field of
silicon photovoltaics in Section 6.2.3
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6.2.1 Equilibrium conditions

To give a heuristic picture of a GS junction, it is useful to first consider the
two systems separately from each other; particularly the positions of the Fermi
levels of both systems. It was already discussed in Section 6.1.1 that for in-
trinsic graphene the Fermi level EFG is at −φG = −4.5 eV (measured from the
vacuum level). In silicon the equilibrium Fermi level depends on the doping
type and amount. If typical 3 Ω cm wafers are used, the Fermi levels for n-
type and p-type silicon is at EF = −4.30 eV and EF = −4.95 eV respectively.
The conduction and valence bands of silicon are at EC = −χSi = 4.05 eV
and EV = −(χSi + EG,Si) = 5.17 eV, with χSi the silicon electron affinity
and EG,Si = 1.124 eV the bandgap. Thus, when graphene is put directly
on silicon, the Dirac point is close to the midgap energy of silicon Emid,Si =
−χSi−EG,Si/2 = −4.612 eV. Furthermore, the CNP of graphene is lower than
the intrinsic Fermi level of n-type silicon, but higher than that of p-type sili-
con. When the silicon and the graphene are brought in contact, the difference
in intrinsic EF will result in a temporary flow of electrons (holes) from high
(low) EF to low (high) EF . Thus, n-type silicon will donate electrons to in-
trinsic graphene, while p-type silicon will donate holes. This redistribution of
electrons and holes will charge the graphene and change its Fermi level, while
in the silicon a SCR will form and the bands will bend. Since the intrin-
sic graphene has a larger free carrier density after the charge redistribution,
this effect is often referred to as substrate doping. Once equilibrium has been
reached, the surface charge in the graphene is mirrored by an opposite charge
in the SCR and the Fermi level becomes constant throughout the whole struc-
ture so that no more charge flow is possible. For example, it can be calculated
that intrinsic graphene on n-type and p-type 3 Ω cm silicon has a carrier density
of respectively nG = 5.8 · 1010 cm−2 (corresponding to εFG = 10.9 meV) and
pG = 1.56 · 1011 cm−2 (corresponding to εFG = −27.8 meV).

As can be seen from the example in the previous paragraph, the graphene
acts like a surface charge that influences the semiconductor substrate under-
neath it. The semiconductor, in turn, influences the Fermi level in the graphene
and thereby the surface charge in the graphene. The equilibrium band diagram
of a junction between a semiconductor and graphene can therefore be calcu-
lated by using the facts that the structure is globally charge neutral and that
the Fermi level is straight (see also Zhong et al. [38]) throughout. The graphene
charge consists of the free carrier density QG,free = pG − nG as well as any ad-
sorbed ionic species. These adsorbed ions will be referred to as chemical doping
(as is common practise in literature6) and the doping density on the graphene
will be denoted by Ndop,G, which can be positive or negative and is expressed
in units of cm−2. The total graphene charge is QG = QG,free + Ndop,G. It is

6Though this terminology is slightly misleading because chemical doping does not neces-
sarily involve chemical bonds but can also be due to physisorption of ions.
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assumed here that doping of the graphene is ideal, meaning that the dopants
are considered to be adsorbed ions that do not affect the system in any way
other than through their charge. It is also assumed that the charge state of
the dopants is constant (i.e., the position of the Fermi level does not affect the
charge of the dopants).

To calculate an equilibrium band diagram for a general semiconductor de-
vice with a graphene layer, it is sufficient to treat the graphene as a variable
surface charge that depends on the surface potential and Fermi level of the
device. Since most semiconductor modeling tools allow for the insertion of
surface charges, this makes it possible to do these calculations without having
to model the graphene in more detail. To find the graphene charge QG, the
following procedure can be iterated:

1. First, a guess is made for the charge Qin and inserted into the device
simulator.

2. To check if the guessQin is correct, the simulation result is used to read off
the Fermi level and the position of the conduction band EC at the surface.
Next εFG in the graphene is calculated from these quantities (see also
Figure 6.5) to obtain the corresponding surface charge Qout = pG(εFG)−
nG(εFG) + Ndop,G. If the initial guess Qin was correct, then Qin = Qout

and the desired graphene charge QG has been found; otherwise a new
guess needs to be made.

3. To find QG as quickly as possible, various root finding tricks can be used.
For example, one can plot the pairs {Qin,i, Qout,i} (where i is the iteration
number) in a graph and interpolate to find the best next guess for Qin.
From experience it was found that iterating Qin,i+1 = Qout,i does not
lead to quick convergence (or even to divergence) and is therefore not
recommended.

Alternatively, if the program does not support surface charge boundary
conditions (BCs), then one can guess the surface Schottky barrier Φin (i.e.,
the value of EC − EF at the surface). From the simulation results it is then
possible to deduce the surface charge from the electric field at the surface by:

Qout = −εrε0E · n̂
e

, (6.17)

with E = −∇φ the electric field and φ the electrostatic potential (which is
defined as φ = −EVac, i.e, minus the vacuum energy level) at the surface; ε0
and εr the vacuum permittivity and relative dielectric constant; and n̂ the unit
outward normal vector7. From the obtained value of Qout the graphene Fermi

7On a 1D interval [0, L], n̂(L) = 1 and n̂(0) = −1
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level and energy barrier Φout can be calculated and compared with Φin. The
procedure is then iterated until the stabilising value Φin = Φout has been found.

Sometimes the only quantities of interest are the amount of band bending
in the substrate and the carrier density of the graphene. In those situations
the integrated Poisson-Boltzmann (PB) equation (Eq. (A.13) in Appendix
A.2) provides a simple method for finding the correct charge balance in the
structure. The amount of charge in the semiconductor and the graphene can
be considered functions of the band bending ∆φ and the neutrality requirement
can then be used to find the value of ∆φ that satisfies:

QG(∆φ) +Qsubstrate(∆φ) = 0. (6.18)

This equation can, in general, only be solved approximately by a numerical
root finding algorithm, but since the value of ∆φ is usually between −1 eV and
1 eV the root should be easy to find for a computer.

Examples are given in Figures 6.5 and 6.6, which show equilibrium band
diagrams of graphene on n-type silicon that were obtained using the integrated
PB equation. In Figure 6.5 the graphene has been chemically doped p-type
by adsorbed negative ions (Ndop,G = −5 · 1012 cm−2), the charges of which
are mirrored by positive charges in both the graphene and the silicon. The
hole density in the graphene is pG = 4.9 · 1012 cm−2 here, so almost all of the
negative charge is mirrored in the graphene. In Figure 6.6 a thin Al2O3 film has
been inserted between the graphene and c-Si and this material is known to have
a high density of fixed negative charge Qf when deposited on silicon [39, 40].
These charges can, in principle, also be used as a stable source of doping for
graphene. In Figure 6.6 the assumed charge density is Qf = −5 · 1012 cm−2,
the same value as that for Ndop,G in Figure 6.5. However, the presence of the
dielectric and the closer proximity of the fixed charges to the c-Si result in a
lower doping of the graphene of pG = 4.1 · 1012 cm−2 and more mirror charges
in the c-Si SCR.

One could ask how effective this fixed charge doping scheme for graphene
can be. Figure 6.7 shows a graph of the carrier density in graphene as a
function of the fixed charge in the dielectric for a similar configuration as in
Figure 6.6. The silicon here is assumed to be an n-type 3 Ω cm wafer. As can be
seen, the doping efficiency decreases sharply with the thickness of the dielectric
(which has been expressed as equivalent SiO2 thickness or EOT) and with the
fixed charge density, making it difficult to obtain carrier densities greater than
5 · 1012 cm−2 for typical fixed charge densities |Qf | < 1 · 1013 cm−2.

6.2.2 Non-equilibrium conditions

When non-equilibrium operating conditions are considered, there is no longer
a single, constant Fermi level throughout the whole device. In this situation, it
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Figure 6.5: Equilibrium band diagram of graphene on silicon calculated using the integrated
PB equation. The negative charge of the physisorbed ions (left, Ndop,G = −5 · 1012 cm−2) is
compensated by an induced positive charge in the graphene and silicon. It should be noted
that the graphene is represented by its Dirac cone in k-space; a convention often found in
literature. This makes the graphene readily identifiable and conveniently shows the location
of the Dirac point. The hole density in the graphene is pG = 4.9 · 1012 cm−2 in this situation,
so the negative charge is mirrored mainly in the graphene.
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Figure 6.6: Equilibrium band diagram of graphene on n-type silicon (3 Ω cm) with Al2O3

interlayer. In this situation, there is no negative charge present of the physisorbed ions,
but now the fixed charges at the c-Si-Al2O3 interface (−5 · 1012 cm−2) act as doping for the
graphene. The thickness of the Al2O3 influences how the potential drop across the oxide
∆φox, which in turn determines what fraction of Qf will be mirrored in the graphene and
what fraction will be mirrored in the c-Si. Generally, the thicker the oxide (and the lower its
εr), the greater the fraction of Qf that will be mirrored in the c-Si. In this situation, the EOT
of the oxide is 2 nm and the resulting carrier density in the graphene is pG = 3.5 · 1012 cm−2.
Note how the c-Si valence band has better alignment here with the graphene Fermi level than
in Figure 6.5 due to the potential drop across the oxide layer.
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Figure 6.7: The graphene doping density due to the fixed oxide charge as a function of Qf .
The oxide thickness was varied from an EOT of 0 nm to 10 nm. As can be seen, a thick oxide
reduces the doping efficiency of the fixed charges. The asymmetry around Qf = 0 is due to
the fact that the Dirac point is not precisely midgap, which makes it easier to induce p-type
doping in the graphene. There is also a very minor second effect that stems from the fact
that the substrate is an n-type wafer: it is easier for the fixed charges to nullify the (substrate
induced) n-type doping in the graphene than it is to increase it. It is this effect that shifts
the minimum carrier density to a point slightly left of the y-axis.
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is generally required to solve the complete set of coupled drift-diffusion equa-
tions (Eqs. (A.5) in Appendix A.1) in the device. The graphene can then be
described by applying the correct BCs for this set of equations. Here, a 1D
transport problem on the interval [0, L] will be considered with the graphene
located on the left boundary x = 0. Generally, the transport equations in the
semiconductor require three BCs at x = 0 to provide a unique solution: one
BC for the electrostatic potential φ and two BCs for the transport equations
of the electrons and holes. In addition, a fourth BC is required to fix the Fermi
level in the graphene EFG (or εFG = EFG + φ(0) + φG). Thus, the graphene
boundary consists of a system of four equations with four unknowns. As was
discussed in Section 6.2.1, the whole system should be globally charge neutral,
meaning that one of the equations that should be imposed at x = 0 has to be
the following one:

−∇φ · n̂ = −eQG(εFG)

ε0εr
(6.19)

Eq. (6.19) is not an ordinary Neumann BC for φ (i.e., a BC that prescribes the
normal component of ∇φ), since it also involves the unknown εFG. Eq. (6.19)
is therefore more accurately described as a nonlinear mixed BC.

A second BC is obtained by specifying the bias voltage over the device.
For example, it can be assumed that the graphene is grounded while the other
terminal of the device is biased. The easiest way to implement a bias is by
setting Dirichlet BCs for φ(0) and φ(L), but it should be kept in mind that true
the bias over the device VB is determined by the Fermi level in the graphene
EFG and the Fermi level in the metal at the back contact EF (L) (i.e., VB =
EF (L) − EFG). Since the charge in the graphene and εFG can change with
the voltage over the device, it is important to calculate the correct bias if the
simulation controls the voltage by varying φ(0) and φ(L). This is especially an
issue for near-intrinsic graphene in which the Fermi level is very sensitive to the
bias over the device. In doped graphene, the DOS is nonzero at the position of
the Fermi level, making εFG less sensitive to changes in QG. Thus, the larger
|εFG|, the more graphene behaves like a metal and the less the graphene Fermi
level is influenced by the operating conditions of the cell.

Two BCs remain to be specified at x = 0 and at this point different choices
can be made depending on the current transport model that is assumed at the
GS interface. Here, two different models will be discussed: (a) the continuous
quasi Fermi level (CQFL) model; and (b) the thermionic emission (TE) model.

In the CQFL model it is assumed that the electron and hole quasi Fermi
levels merge together continuously in the graphene:

EFn(0) = EFG, (6.20)

EFp(0) = EFG. (6.21)
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Figure 6.8: Sketch of a non-equilibrium band diagram of graphene on a semiconductor.
The dashed boxed rectangle represents the transition region that connects domain where
ordinary semiconductor physics apply from the graphene. In the transition region, EFn and
EFp are continuous, but the transport coefficients Lnn and Lpp (see Section 2.6 in Chapter
2) are in principle unknown. This makes an exact description of this region difficult, but by
introducing empirical parameters it is possible to incorporate the transition region through
modified BCs on EFn,p, such as the TE BCs. These modified BCs will account for the
resistance of the transition region and generally make EFn,p discontinuous at the graphene
interface, but these discontinuities are understood to be artifacts of the modified description
of the interface rather than fundamental properties of EFn,p.

The advantage of the CQFL model is that it is straightforward to implement,
but it has the drawback that it ignores the resistance associated with the
graphene/semiconductor interface (see Chapter 3, Section 3.3). This makes
the CQFL suitable to simulate cell designs in which the graphene interface is
not the (main) selective element on that side of the cell (i.e., when its primary
function is to act as a transparent electrode).

The TE model does not assume that EFn and EFp have to be continu-
ous across the interface, so generally EFn 6= EFG and EFp 6= EFG. As was
discussed in Chapter 3, Section 3.3, the TE model can be interpreted as an
extension of the CQFL model that includes an unknown transition region in
between the graphene and the semiconductor. The transition region starts at
x = 0 in the graphene and ends at x = d, as shown in Figure 6.8. In principle,
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it would be possible to explicitly include the transition region in the transport
physics and in this case, the Fermi potentials would be continuous everywhere
as shown in the figure. However, since the exact nature of the transition region
is unknown and not of great interest, it is integrated out and included only
implicitly by modifying the BCs. This then results in the TE model, which
uses empirical parameters to characterise the transition region.

For notational simplicity, we will only consider electron currents in the next
paragraph with the understanding that it follows the same line for holes. As was
discussed in Section 3.3, the TE model for an ordinary metal-semiconductor
(MS) interface asserts that the TE current electron current JTE is given by:

eJM,S =
4πem∗

h3
(kBT )2 exp

(
− ΦB

kBT

)
= A∗T 2 exp

(
− ΦB

kBT

)
, (6.22a)

eJS,M = A∗T 2 n

NC
, (6.22b)

eJTE = A∗T 2

[
exp

(
EF,met + φ+ χ

kBT

)
− exp

(
EF,surf + φ+ χ

kBT

)]
= A∗T 2 n

NC

(
exp

(
EF,met − EF,surf

kBT

)
− 1

)
. (6.22c)

Note that here the current is defined as a particle current rather than a charge
current, hence appearance of the elementary charge e in front of the currents.
In Eqs. (6.22), JM,S (JS,M) is the current from the metal into the semiconductor
(and vice versa); ΦB = ΦM − χ is the Schottky barrier height (with ΦM the
metal work function and χ the semiconductor electron affinity); n and NC are
the electron density and effective density of states in the semiconductor at the
interface; m∗ is the effective mass of the electrons in the semiconductor; EF,met

and EF,surf are the Fermi level in the metal and the electron Fermi level in the
semiconductor; and A∗ the effective Richardson constant. The (less common)
form of the TE current across a MS interface in Eq. (6.22c) emphasises that
the difference in Fermi level ∆EF = EF,met−EF,surf across the interface drives
the current and that A∗ is a measure of the resistance of the interface.

The particular T 2 form of the TE prefactor J0 = A∗T 2 is due to the fact
that in the derivation of the TE formulae (see, e.g. [32]) it is assumed that the
electrons in the metal form an ideal degenerate 3D electron gas with a quadratic
dispersion relation ε = ~2k2/(2m∗). From that assumption one then calculates
the number of electrons moving toward the interface that have enough energy
to cross the barrier ΦB without tunnelling. In practice, the value of A∗ can
be different than the form derived from the ideal gas assumption (shown in
Eq. (6.22a)), since the dispersion relation in a metal is usually not perfectly
parabolic over the energy range that needs to be considered. In addition,
quantum mechanical effects can lead to reflection of carriers that classically
would cross the barrier (i.e. the opposite of tunnelling). For this reason A∗
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should be considered as an empirical parameter that needs to be measured by
experiment.

It should be clear that the traditional TE model cannot be applied to
graphene straight away, since graphene has a linear dispersion relation rather
than a quadratic one. Moreover, in graphene the electrons move in a 2D plane
and have little tendency leave the plane by moving in the third, perpendicular
dimension. It is therefore instructive to first consider thermionic emission from
graphene in into the vacuum, as was done by Liang et al. [15]. They assume
that the electrons in the graphene are confined by a finite square quantum well
in the out-of-plane direction and find the following TE expression for vacuum
emission:

eJTE,Vac = βT 3 exp

(
− φG

kBT

)
=
ek3

BT
3

π~3v2
F

exp

(
− φG

kBT

)
, (6.23)

βT 3 = 0.0285A0T
2 = 3.078 · 105 A cm−2 (at T = 300 K).

Here, J0,Vac is the vacuum emission TE prefactor and A0 = 4πek2
Bme/h

3 (with
me the electron mass) is the unmodified Richardson constant. As can be seen,
the exponential dependence on the work function from the usual Richardson
law is retained because the electrons that have sufficient energy to escape the
graphene satisfy Boltzmann statistics. However, the ∼ T 2 law has now been
replaced by a ∼ T 3 law and there is no mention of an electron mass (as is ap-
propriate for graphene). Furthermore, the thermionic emission from graphene
at low temperatures (i.e., room temperature and lower) is significantly reduced
compared to metals.

The next question is whether Eq. (6.23) is also valid for junctions be-
tween graphene and semiconductors. Experimental data by Sinha et al. [41]
show that the TE current under forward bias can be significantly lower for
graphene/silicon Schottky junctions than for similar metal-based devices as
long as the interface is kept very clean. The authors propose their own Lan-
dauer model based on the assumption that electrons with a large enough en-
ergy will leave the graphene with a certain frequency τ−1. They performed
temperature dependent characterisation of the GS junctions in an attempt to
prove their hypothesis, but unfortunately the current was found to be domi-
nated by the temperature dependence in the exponent exp(−ΦB/(kBT )) so that
their data could not distinguish between the Schottky model and the Landauer
model (i.e., both models could fit the data equally well). The exact form of the
graphene TE law should therefore be considered as an ongoing area of research.
Regardless, at T = 300 K the authors obtain an effective Richardson constant
of A∗ = 1.7 · 10−4A0 for their best device operating under forward bias (Figure
1b in their article), meaning that their devices have even less thermionic emis-
sion than the vacuum TE current predicted by Liang et al. The results from
Sinha et al. demonstrate that graphene/c-Si junctions have significantly differ-
ent characteristics compared to metal/c-Si Schottky junctions in that the 2D
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nature of the material makes it more difficult for charge carriers to cross from
a semiconductor to graphene. In addition, part of the low TE current of GS
junctions might be explained by the low DOS of graphene at the c-Si midgap
energy. At metal-semiconductor interfaces, the metal induced a large density
of defect states called MIGS (Metal Induced Gap States, see also Section 3.3)
in the semiconductor forbidden gap. These MIGS lead to extra recombination
at the interface, which can also be regarded as modification of the interface
resistance (as was demonstrated in Section 3.6 in Chapter 3). It is likely that
the low DOS of graphene limits the number of induced defect states, which
would translate to a lower effective TE current.

Thus, from a practical point of view, graphene can be considered as a metal
as long as it is kept in mind that: a) the prefactor for the thermionic emission
law for graphene can be much lower than the one commonly used for metals
(and can also follow a different temperature dependence); and b) the TE barrier
height of graphene is not constant but depends on the substrate, the graphene
doping and the bias of the device8.

6.2.3 Graphene as a carrier selective contact

As was already briefly discussed in Section 3.3, the low A∗ of GS junctions
makes them a potential candidate for a selective contact, unlike regular metal
Schottky junctions which are simply too lossy. In a GS junction, the interface
is the primary carrier selective element, rather than the silicon SCR as is often
believed. Based on the value A∗ = 1.7 · 10−4A0, a GS junction could reach
a VOC of 750 mV (under AM1.5 illumination and if the GS junction is the
limiting factor of the cell) for a barrier height ΦB > 1.026 eV. Assuming that
this value of A∗ is the same for both electrons and holes, such a barrier requires
a graphene electron density of nG > 9.29 · 1012 cm−2 (for an electron-selective
contact) or hole density of pG > 2.46 · 1013 cm−2 (for a hole-selective contact).
These are carrier densities that are well within the physically feasible limits,
as long as a stable doping scheme for graphene can be found that is suitable
for solar cell applications.

Doping control of the graphene can be seen to be of great importance for
making a selective contact out of a GS junction. The doping of the graphene
tunes the barrier height ΦB and thereby the selectivity of the GS interface to
either electrons or holes. It can be calculated that the respective graphene
doping densities that would achieve the VOC = 750 mV limit are Ndop,G >
9.73 · 1012 cm−2 (electron-selective contact) and Ndop,G < −2.50 · 1013 cm−2

(hole-selective contact)9. The required doping densities are slightly higher

8This last effect is demonstrated convincingly by Sinha et al. for the reverse bias of their
devices [41].

9The Landauer model proposed by Sinha et al. [41] yields slightly different values than
the assumption A∗ = 1.7 · 10−4A0 (which is used in this work for simplicity) because in
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than the required carrier densities because the SCR in the c-Si also needs to
be compensated for by the doping.

Doping control of the graphene is also very important to effectively collect
the majority carriers. This is illustrated in Figure 6.9, where two hole-selective
GS contacts have been simulated under max power conditions. Figure 6.9a
shows a band diagram of the GS contact with no graphene doping, while in
Figure 6.9b the doping is Ndop,G = −2.50 · 1013 cm−2. An important difference
between these two contacts is the position of the graphene Fermi level EFG:
in the doped contact, EFG aligns neatly with EFp in the c-Si, meaning that
the holes are collected virtually without loss. This, incidentally, also shows
that the low A∗ value of the GS junction does not lead to a collection problem
for the majority carriers. On the other hand, in the undoped contact there
is a major mismatch of 0.41 eV between EFG and EFp, leading to significant
collection losses even though EFp is very straight in the c-Si. In this case, there
are significant ohmic losses in the transition region between the graphene and
c-Si. The conclusion that should be drawn from these two diagrams is that
graphene doping is not just important to make the graphene selective: even
if another source of selectivity is already present (say, an amorphous silicon
heterojunction), then it is still important that the graphene’s Fermi level aligns
with the majority carrier Fermi level in the cell to prevent collection losses.

6.3 Conclusions

In this chapter, the physics of graphene were discussed that are relevant to
the field of silicon PV. The unique transport properties of graphene stem from
its linear dispersion relation |ε| = ~vFk, which gives the electrons a constant
group velocity so that even carriers with little energy can still contribute signif-
icantly to charge transport. As a transparent top electrode in c-Si solar cells,
graphene shows promise because in principle it should be possible to achieve a
sufficiently low sheet resistance with just a single sheet. However, to obtain a
graphene sheet that is conductive enough, it is necessary to eliminate/minimise
as many scattering processes as possible, including substrate scattering. Dop-
ing of graphene also plays an important role in lowering its sheet resistance,
but it should be kept in mind that in graphene the conductance is propor-
tional to the square root of the carrier density, meaning that increasing the
doping density has diminishing returns. Furthermore, the optical properties
of graphene make the material unsuited to be stacked several times since this
will quickly lead to a prohibitive amount of parasitic absorption. On the bright

the Landauer model A∗ also depends on ΦB. Using their obtained value for the graphene
escape timescale τ = 4.62 · 10−11 s, the maximum required graphene doping density for a
VOC of 750 mV becomes Ndop,G > 1.26 · 1013 cm−2 (electron-selective contact) and Ndop,G <
−2.93 · 1013 cm−2 (hole-selective contact)
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(a) (b)

Figure 6.9: Calculated band diagrams under max-power conditions of hole-selective GS
contacts on n-type (3 Ω cm) silicon using the effective Richardson constant A∗ = 1.7 · 10−4A0.
In (a) the graphene doping density Ndop,G is zero; in (b) it is Ndop,G = −2.50 · 1013 cm−2. A
keen eye can see that in (a) the graphene is slightly n-type in the situation without chemical
doping due to the n-type silicon substrate doping. Both diagrams are zoomed-in on the GS
junction: the rest of the cell is assumed ideal, meaning that there is no bulk recombination
and that the electron-selective contact is perfectly insulating to holes. It should be noted that
the cell in (b) indeed achieves a VOC of 750 mV, as predicted. Simulations were performed in
COMSOL Multiphysics®.

side, though, graphene’s very high mobility makes sure that free carrier absorp-
tion/reflection is completely negligible for solar cell applications, so one does
not have to worry about the balance between parasitic absorption/reflection
and DC conductance like in a traditional TCO.

The electrical contact between graphene and a semiconductor is somewhat
similar to a traditional MS Schottky contact. What makes graphene unique is
that its barrier height is variable and can depend on many different factors; the
most important of which is the graphene doping density. Furthermore, the TE
law that describes charge transport between the semiconductor and graphene
is expected to have a different temperature dependence than the T 2 law that
applies to MS junctions. The exact form of this TE law for GS junctions is still
uncertain, but experimental evidence suggests that the effective Richardson
constant of a GS contact can be made so low that it could potentially be used
as a carrier-selective contact for a high-efficiency c-Si solar cell. To achieve such
a selective contact, it is vital to use highly doped graphene, since the doping
will both reduce the minority carrier leakage current as well as the majority
carrier ohmic collection losses.
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Appendix

6.A Approximate expressions for the graphene car-
rier densities

For some applications it is useful to have approximate expressions for the rela-
tion between the Fermi level in the graphene εFG and the carrier densities. It
is therefore useful to consider two limits for nG and pG, namely the limit where
|εFG| is large compared to kBT and the limit where |εFG| is on the same order
of magnitude (or smaller than) as kBT . First, suppose that εFG is large and
positive so the electrons dominate in the graphene. It is then possible to ap-
proximate the Fermi distribution function for the electrons 1/(1+e(ε−εFG)/kBT )
by a step function, but a significantly more accurate approximation is obtained
by using the Sommerfeld expansion (see, e.g., Le Bellac [31]). This expansion
is given by:∫ ∞

0

DG(ε)

1 + exp
(
ε−εFG
kBT

) dε =

∫ εFG

0
DG(ε) dε+

π2

6
kBT

2D′G(εFG)

+O
(

(kBT )4D
(3)
G (εFG)

)
, (6.24)

and provides an extra correction term for the thermal broadening of the Fermi
distribution. In general, the Sommerfeld expansion can provide more than one
correction terms, depending on how many times the DOS can be differentiated
at ε = εFG. However, since the DOS of graphene is linear, only one correction
term can be obtained this way. The fact that there are no more correction terms
does not mean that the Sommerfeld approximation is exact here. Instead,
the discontinuity in the derivative of DG(ε) at ε = 0 is the reason that the
Sommerfeld formula cannot give more terms. Applying the expansion to nG

for the case εFG � kBT gives:

nG(εFG) ≈ 2

π

(
kBT

~vF

)2
(

1

2

(
εFG

kBT

)2

+
π2

6

)
. (6.25)

Furthermore, for εFG � kBT the distribution function for holes
1/(1 + e(ε+εFG)/kBT ) can be approximated as an exponential by neglecting the
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1 in the denominator, so that the approximation for pG becomes:

pG(εFG) ≈ 2

π

(
kBT

~vF

)2

exp

(
− εFG

kBT

)
(6.26)

Of course, when εFG � −kBT and the holes dominate, the same argument can
be used to show that:

nG(εFG) ≈ 2

π

(
kBT

~vF

)2

exp

(
εFG

kBT

)
, (6.27a)

pG(εFG) ≈ 2

π

(
kBT

~vF

)2
(

1

2

(
εFG

kBT

)2

+
π2

6

)
. (6.27b)

The Sommerfeld and exponential approximations have a relative error of < 1 %
for |εFG| > 3kBT .

On the other hand, when |εFG| is small (i.e. on the order of a few kBT ), it
is possible to expand nG and pG in a Taylor series around εFG = 0:

nG =
2

π

(
kBT

vF~

)2
[
π2

12
+ ln(2)

εFG

kBT
+

1

4

(
εFG

kBT

)2

+
1

24

(
εFG

kBT

)3

− 1

960
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kBT

)7
)]

, (6.28a)

pG =
2

π

(
kBT

vF~

)2
[
π2

12
− ln(2)

εFG

kBT
+

1

4

(
εFG

kBT

)2

− 1

24

(
εFG

kBT

)3

+
1

960

(
εFG

kBT

)5

+O

((
εFG

kBT

)7
)]

, (6.28b)

In this expansion, all even orders > 2 are zero.

As can be seen, there are three approximations for nG and pG: the Som-
merfeld expressions (6.25) and (6.27b) for large densities; the exponential ex-
pressions (6.26) and (6.27a) for small densities; and the Taylor expressions
(6.28) for intermediate densities. These three approximations can be patched
together to obtain piecewise formulae for nG and pG. However, these piece-
wise functions can only be continuous if one uses a third order (rather than a
fifth order) Taylor series to patch the Taylor expression with the Sommerfeld
expression. Therefore, a reasonable approximation for nG and pG that works
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for any value of x = εFG/kBT is:

nG =
2

π

(
kBT

vF~

)2


exp (x) x < −1.97
π2

12 + x log(2) + x2

4 + x3

24 −
x5

960 −1.97 ≤ x < 0
π2

12 + x log(2) + x2

4 + x3

24 0 ≤ x < 2.50
x2

2 + π2

6 2.50 ≤ x

, (6.29a)

pG =
2

π

(
kBT

vF~

)2


x2

2 + π2

6 x < −2.50
π2

12 − x log(2) + x2

4 −
x3

24 −2.50 ≤ x < 0
π2

12 − x log(2) + x2

4 −
x3

24 + x5

960 0 ≤ x < 1.97

exp (−x) 1.97 ≤ x

. (6.29b)

The relative errors of the piecewise approximations in Eqs. (6.29a) and (6.29b)
have local maxima at the patching points x = ∓1.97 (3.4 % error) and x =
±2.50 (1.7 % error). Asymptotically, the relative errors converge to zero in
both directions when x → ±∞. If greater accuracy is required, it is always
possible to include more terms in the Taylor series and recalculate the patching
points.
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Appendix A

Mathematical formulation of
the charge transport in solar
cells

A.1 The drift-diffusion equations

The mathematical description of a c-Si solar cell is based on a set of assump-
tions that are summarised in the points (i) till (v) below. These assumptions
lead to the 7 numbered equations (A.1) till (A.4) (also below): the Poisson
equation; two continuity equations; two equations about carrier statistics; and
two current-force relations.

(i) The operation of a solar cell can be described by considering it as a system
of positive and negative charge carriers that can move freely through a
solid, while simultaneously also being confined to said solid. It is assumed
that this solid is not subjected to any net external forces or torques
and the reference frame of the solid will always be used to describe any
movement of the free carriers inside. A typical example of such a system
includes free electrons (negative charge carriers, e−) and holes (positive
charge carriers, h+) that move freely inside of a c-Si wafer, but cannot
escape it except through (metal) contacts connected to the wafer.

The electrons and holes are characterized by their densities n and p,
which can be dependent on position x and time t. In this work the x and
t dependencies will not be written explicitly unless extra attention needs
to be called to them. If electrons and/or holes (locally) exhibit concerted
net motion, this motion will be called current and will be represented
by a vector field Jn (for electrons) or Jp (for holes). In this work, Jn,p
will always denote particle currents (as opposed to charge currents) and
are measured in units of [Length−2 · Time−1]. Note that x can refer to
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coordinates of one, two or three dimensions: only vector fields such as J
will be printed in bold.

(ii) Since the discussion of the solar cell focusses on charged particles, electro-
magnetic fields play an important role in the description. In solar cells,
magnetic fields are too weak to play a role in the operation of the device
and this makes it possible to reduce the Maxwell equations to a single
equation for the electrostatic potential φ, called the Poisson equation:

∇ · (ε∇φ) = −e2 (p− n+Ndop) = −eρnet. (A.1)

Here, ε = ε0εr is the dielectric constant and Ndop is the background
doping concentration. Note that φ is taken in units of energy here, which
is more convenient in a thermodynamic context because it avoids the
need to multiply φ by e to obtain an energy. Nevertheless, φ will be
referred to as electrostatic energy or potential interchangeably.

(iii) The continuity equations for electrons and holes are given by:

∂n

∂t
+∇ · Jn = G−Rn, (A.2a)

∂p

∂t
+∇ · Jp = G−Rp. (A.2b)

The time derivatives in Eqs. (A.2) are important when discussing cer-
tain solar cell characterisation experiments such as transient photocon-
ductance decay or PCD (i.e., lifetime testing). However, in this work
the main focus is on the steady-state operation of a solar cell when it is
producing net power, so then time derivatives are assumed to be zero:
∂n/∂t = ∂p/∂t = 0. In the steady state it is only necessary to assume
Rn 6= Rp if the trapped charges are still mobile and can hop to nearby
defects. Here, it will be assumed that trapped charges are completely
fixed, so that the simplification Rn = Rp = R can be used. The term
G−R will be frequently abbreviated by Gnet.

(iv) The relation between the carrier density and the potentials, i.e., the car-
rier statistics. If not stated otherwise, it is assumed that Boltzmann
statistics apply, so that:

n = NC exp

(
−EC − EFn

kBT

)
= NC exp

(
EFn + φ+ χ

kBT

)
= NC eµ

c
n/(kBT ), (A.3a)

p = NV exp

(
−
EFp − EV

kBT

)
= NV exp

(
−
EFp + φ+ χ+ EG

kBT

)
= NV eµ

c
p/(kBT ), (A.3b)
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or equivalently:

EFn = kBT ln

(
n

NC

)
− φ− χ,

EFp = −kBT ln

(
p

NV

)
− φ− χ− EG.

Here, χ is the electron affinity, EC,V the energies of the conduction/valence
band edges, and µc

n,p the chemical potentials. Sometimes the use of quasi
Fermi energies EFn,p causes a needless confusion of signs, in which case
it is more convenient to work with the electrochemical potentials ηn,p.
These potentials measure the free energy of free electrons and holes and
are given by:

ηn = EFn = µc
n − φ− χ,

ηp = −EFp = µc
p + φ+ χ+ EG.

Since free electrons and holes are always generated and annihilated in
pairs, another frequently occurring quantity is the free energy per
e−–h+ pair, ∆ηeh:

∆ηeh = ηn + ηp = EFn − EFp = EG + kBT ln

(
np

NCNV

)
.

If Fermi-Dirac statistic are required, the exponential functions in Eqs.
(A.3) have to be replaced by the Fermi-Dirac integral F1/2:

F1/2 (x) =
2√
π

∫ ∞
0

√
y

exp (y − x) + 1
dy.

Note that the argument x is dimensionless here. The factor 2/
√
π is

included such that in the limit of large negative x, F1/2 (x) approaches
the exponential function and Boltzmann statistics are recovered:

lim
x→−∞

F1/2 (x)

exp (x)
= 1.

Like the exponential function, F1/2 has an inverse, which will be denoted
by F←1/2 and which can be considered to be the Fermi-Dirac equivalent of

the logarithm. Much like the logarithm, F←1/2(x) is only well-defined for

arguments x > 0 (as long as only the real numbers are considered).

A common way to evaluate the function F1/2 is by using the Aymerich-
Humet approximation [1]:

F1/2 (x) ≈ 1

exp (−x) + 3
√

π
2

[
x+ 2.13 +

(
|x− 2.13|2.4 + 9.6

) 5
12

]− 3
2

.
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The Aymerich-Humet approximation makes it possible to directly calcu-
late the carrier densities from the potentials without the need to perform
numerical integration. However, there is no closed form for the inverse of
the approximation, so to calculate EFn or EFp from the carrier densities
n and p, it is necessary to use a numerical root-finding method to invert
the equation.

(v) The current-force relation for Jn and Jp. The local balances for electrons
and holes have been specified in Eqs. (A.2), but these are not enough
to arrive at a closed set of transport equations since they only specify
the divergence of the vectors Jn,p. Additionally, if in Eqs. (A.2) the
recombination R depends on n and p (as is almost always the case), it
is necessary to specify how Jn,p relate to the other variables. This is the
point where solar cell physics become truly empirical: all of the previous
equations (i.e., Eqs. (A.1)) through (A.3b) are fundamental or a limiting
case of a fundamental law. The Poisson equation follows from Maxwell’s
equations (with zero magnetic field); the electron and hole balances follow
from conservation of particles and charge; and the carrier statistics can
be traced back to quantum mechanical principles.

Solar cell physics commonly only considers the diagonal elements of the
transport matrix L (see Eqs. (2.55), Section 2.6) and this convention will
also be followed here, unless stated otherwise. The transport coefficients
are expressed as a product of carrier density and mobility µn,p, though
generally the mobilities are not constant but nonlinear functions of the
carrier and doping densities. Thus, Jn,p are given by:

Jn = −nµn
e
∇EFn = −σn

e2
∇EFn, (A.4a)

Jp =
pµp
e
∇EFp =

σp
e2
∇EFp. (A.4b)

Here, σn,p are the electron and hole conductivities of the material ex-
pressed in Ω−1 m−1. It should be noted that the proportionality between
carrier density and conductivity is not entirely self-evident as it may ap-
pear to be. Indeed, in the degenerate regime most carriers are too deep
in the Fermi sea to contribute to conduction. For degenerate semicon-
ductors the conductivity is only proportional to the carrier density if the
bands are parabolic and demonstration of this proportionality requires a
more detailed analysis based on the Boltzmann transport equation (see,
e.g., Ibach & Lüth [2]). For non-standard conductors (such as graphene)
it is therefore always recommended to check if it is permissible to write
the conductivity as a product of density and mobility.

Equations (A.1) through (A.4) are the seven basic physical equations for
the charge transport in a solar cell. Together, the equations can be solved to
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obtain the seven unknowns φ, n, p, EFn, EFp, Jn and Jp. These equations have
to be supplemented with models that specify the generation and recombination
rates G and R; the mobilities µn and µp; and the band gap EG and electron
affinity χ.

It is customary to reduce the seven basic equations (A.1) through (A.4) by
substitution. The most common way to achieve this, is by eliminating EFn,p
and Jn,p, which results in:

∇ · (ε∇φ) = −e2ρnet, (A.5a)

∇ ·
(
−nµn

e
∇
[
kBT F←1/2

(
n

NC

)
− φ− χ

])
= Gnet, (A.5b)

∇ ·
(
pµp
e
∇
[
−kBT F←1/2

(
p

NV

)
− φ− χ− EG

])
= Gnet. (A.5c)

Equations (A.5b) and (A.5c) can be simplified further if Boltzmann statistics
are assumed and if ∇kBT is assumed to be negligible. Then F←1/2 can be
replaced by the natural logarithm and the familiar drift-diffusion equations are
obtained:

∇ ·
(
−Dn∇n+

nµn
e
∇ [φ+ χ]

)
= Gnet, (A.6a)

∇ ·
(
−Dp∇p−

pµp
e
∇ [φ+ χ+ EG]

)
= Gnet, (A.6b)

with Dn,p = kBTµn,p/e the diffusion constants.

A.2 The Poisson-Boltzmann equation

The Poisson-Boltzmann (PB) equation is a useful approximation to the full
solar cell transport equations presented in Appendix A.1. It can be used to gain
quick insights into the shape of band structures without the need to calculate
the currents flowing through the device. A typical example of an application
of the PB equation can be found in the work by Girisch [3], where it is used to
calculate the amount of induced band bending in silicon due to a fixed interface
charge in a dielectric (SiO2 in this case) that has been grown on the silicon.

The derivation of the PB equation uses the approximation that the quasi
Fermi levels EFn,p are constant throughout the region of interest; it is obtained
by simply substituting the equations of the carrier statistics (Eqs. (A.3)) into
the Poisson equation (Eq. (A.1)):

φ′′ = −e
2

ε

[
NV F1/2

(
−Φp + φ

kBT

)
−NC F1/2

(
Φn + φ

kBT

)
+Ndop

]
, (A.7)

Φn = EFn + χ, (A.8)

Φp = EFp + χ+ EG. (A.9)
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Here, the quantities Φn,p have been introduced to simplify the notation. In
equilibrium conditions where EFn = EFp = EF the PB equation is exact,
making it useful for calculating equilibrium band diagrams. In non-equilibrium
situations, on the other hand, the gradients in EFn and EFp can be estimated
from the typical currents that run through the system and the typical elec-
tron and hole densities. For many common devices (such as a c-Si solar cells
working at max-power point under AM1.5 illumination) it is found that the
quasi Fermi levels are approximately constant, so the potential applications
of the PB equation extend beyond simple equilibrium systems. Moreover, in
many cases it can even be used in situations where one of the quasi Fermi
levels is not constant, such as in selective contacts. Consider, e.g., again the
hole selective membranes from Chapter 3: in such selective membrane, EFn is
not constant (as seen in Figures 3.2 and 3.6), but since the electron density
is so low anyway, the value of EFn is immaterial when calculating the charge
density. So for selective contacts it can safely be assumed that EFn is simply
equal to its bulk value (EFn(0) in the figures) everywhere.

Compared to the three coupled, non-linear, drift-diffusion equations (A.5),
the PB equation (A.7) provides a simpler alternative for the calculation of
band diagrams. Furthermore, in situations where it is necessary to evaluate
the full set of transport equations, the PB equation can still provide a good
initial guess of the solution for iterative numerical solvers (such as a Newton
solver).

If the material parameters (Ndop, χ, EG, NC,V) are constant in the interval
0 ≤ x ≤ d, it is also possible to integrate the PB equation analytically. As an
example, take x = 0 as a point somewhere in the bulk of a solar cell and x = L
as the edge of the cell where a fixed-charge dielectric such as Al2O3 is present.
The total surface charge in the dielectric is QFixed (in cm−2). This surface
charge induces a space charge region (SCR) in the semiconductor with an equal
and opposite amount of charge QSCR = −QFixed. The boundary conditions are
then φ(0) = 0 (which is simply a choice of the reference potential) and φ′(0) = 0
(meaning that in the bulk of the cell the electric field has been shielded by the
mobile charges). To get rid of φ′′, the PB equation is first multiplied by φ′ and
then it is integrated from 0 to L. For the left hand side this yields:∫ L

0
φ′φ′′ dx =

1

2
φ′(L)2 (A.10)

Since −φ′/e is the electric field, it is related to the total charge QSCR in the
SCR by:

QSCR = − ε

e2
φ′(L). (A.11)

Integration of the right hand side of the PB equation (after multiplication by

φ′) requires a primitive function of F1/2, which is denoted by F
(-1)
1/2 (the (−1)
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should be interpreted as negative differentiation):

d

dx
F

(-1)
1/2 (x) = F1/2 (x) . (A.12)

In the regime of Maxwell-Boltzmann statistics where F1/2 (x) = exp(x), the

simplest choice for F
(-1)
1/2 (x) is, of course, the exponential function exp(x) again.

In the regime of Fermi-Dirac statistics, the easiest way to proceed is to tabulate
the integral of F1/2 (x) for fast numerical evaluation. The integrated form of
the PB equation is then:

Q2
SCR =

2kBTε

e2

[
NV

{
F

(-1)
1/2

(
−Φp + φ(L)

kBT

)
− F

(-1)
1/2

(
− Φp

kBT

)}

+NC

{
F

(-1)
1/2

(
Φn + φ(L)

kBT

)
− F

(-1)
1/2

(
Φn

kBT

)}
−
φ(L)Ndop

kBT

]
. (A.13)

Thus, Eq. (A.13) relates the surface potential φ(L) to the total amount of
space charge QSCR in the semiconductor. The equation cannot be analytically
inverted (even in the Maxwell-Boltzmann regime) to give φ(L) as a function of
QSCR, so a numerical root-finding algorithm is required if the surface potential
is the unknown. Brent’s method [4] is a robust algorithm that is well-suited
for this task. When solving Eq. (A.13), care should be taken that the sign for
φ(L) (which should be opposite of the sign of QSCR) is correct.
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Summary

Passivating contacts for silicon photovoltaics: Solar
cells designed by physics

The central theme of this dissertation is to investigate how the knowledge of
solar cell physics can be used to contribute to the improvement of solar cell
designs. To answer this question, the traditional semiconductor physics that
are commonly used to describe photovoltaic devices have been reframed in a
thermodynamic language, since this makes it possible to accurately quantify all
efficiency losses in a solar cell. To make a truly thermodynamic description of
solar cells possible, the field of non-equilibrium thermodynamics was reviewed
and applied to the area of solar cell physics. A discussion was presented of
the differences and similarities between the thermodynamic approach and the
traditional semiconductor description of solar cells.

From the thermodynamic view of a solar cell, the local entropy generation
emerged as a new figure of merit to assess the performance of the cell. Where
traditional solar cell performance parameters only provide global measures,
the entropy generation rate provides local information based on all internal
loss mechanisms (such as recombinative and ohmic losses) and measures their
effect all on the same scale. This local information was used to develop a
variational optimization method that can directly predict the most efficient
cell design consistent with the physical limitations of the cell (such as the
recombination mechanisms and the doping dependence of the mobility). The
variational method was illustrated by showing how it can be used to formulate
a system of differential equations that determine the optimal shape for the
doping profile in a c-Si homojunction cell in complete generality.

One of the most important sources of entropy generation in c-Si homojunc-
tion solar cells is the recombination at the metal contacts. This loss mechanism
was discussed in detail and several strategies to reduce contact losses were cate-
gorised and discussed. These strategies are summarised with the term selective
membranes and selective contacts. Key features for high quality selective mem-
branes were identified and discussed from a thermodynamic point of view.

The most successful type of selective membrane found in literature is based
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on hydrogenated amorphous silicon (a-Si:H). The main drawback of this type
of membrane is its very substantial parasitic absorption of light in the a-Si:H.
To reduce the parasitic absorption of a-Si:H, a new type of selective contact
based on Al2O3 was introduced. The passivation and contact performance
of this contact was investigated experimentally. It was concluded that Al2O3

cannot fully replace a-Si:H yet, however it does make the use of thinner a-Si:H
films feasible to reduce the parasitic absorption.

Graphene, a material well known for its high transparency and conductiv-
ity, was also investigated for its potential as a transparent electrode and as
a selective contact. The physics of graphene that are relevant for solar cell
application were reviewed to assess its viability as a contact material c-Si solar
cells. It was concluded that graphene shows potential as a selective contact
because it is significantly less recombination active than an ordinary metal.
However, graphene is only usable in solar cells if a stable doping scheme can
be found to engineer its work function.

In conclusion, the work in this dissertation explores how the physics un-
derlying the operation of solar cells can be used not just to describe the pho-
tovoltaic conversion process (which current semiconductor physics are already
very successful at), but also how to predict the optimal design of solar cells.
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