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Abstract

We present the formulation of a kinetic mapping scheme between the Direct

Simulation Monte Carlo (DSMC) and the Lattice Boltzmann Method (LBM)

which is at the basis of the hybrid model used to couple the two methods in view

of efficiently and accurately simulate isothermal flows characterized by variable

rarefaction effects. Owing to the kinetic nature of the LBM, the procedure we

propose ensures to accurately couple DSMC and LBM at a larger Kn number

than usually done in traditional hybrid DSMC—Navier-Stokes equation models.

We show the main steps of the mapping algorithm and illustrate details of the

implementation. Good agreement is found between the moments of the single

particle distribution function as obtained from the mapping scheme and from

independent LBM or DSMC simulations at the grid nodes where the coupling

is imposed. We also show results on the application of the hybrid scheme based

on a simpler mapping scheme for plane Poiseuille flow at finite Kn number.

Potential gains in the computational efficiency assured by the application of the

coupling scheme are estimated for the same flow.
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1. Introduction

Research in gas flows characterized by a large range of scales and by dis-

parate levels of non-equilibrium effects poses a challenge to statistical physics

modelling and rises interest in industry for simulating flows in micro-, nano-

electromechanical systems and in material processing tools [1–3]. The extent of

the departure of a flow from the equilibrium state is traditionally measured in

terms of the Knudsen number:

Kn =
λ

`
≈ λ

Q

∣∣∣∣dQd`
∣∣∣∣ , (1)

where λ is the gas mean free path, ` is the smallest hydrodynamic charac-

teristic scale and Q is a fluid dynamic quantity of interest such as the gas

pressure, velocity, temperature [4]. According to the Knudsen number, the gas

flows can be classified into the hydrodynamic (Kn< 0.01), slip (0.01<Kn<0.1),5

transition (0.1<Kn<10) and free molecular regime (Kn>10). The kinetic de-

scription of gases based on the Boltzmann equation, valid at any Kn, allows

to cover flow conditions from the very rarefied to the hydrodynamic limit [5].

The two limits, rarefied and continuum, have traditionally been studied nu-

merically by approximating the Boltzmann equation via the Direct Simulation10

Monte Carlo (DSMC) [6] or by solving the Navier-Stokes equations which can

be derived from truncation at first order of the Chapman-Enskog procedure [7].

While the DSMC method is particularly suited to rarefied gas flow (transitional

regime), its computational costs make it unpractical to study hydrodynamic

flows [2]. Conversely, the continuum description of the flow provided by solv-15

ing the Navier-Stokes equations and applying the no-slip boundary condition

is not accurate whenever Kn>0.01 [8]. Corrections to the boundary conditions

of Navier-Stokes equations such as to reproduce the velocity slip and temper-

ature jump at the gas-surface interface in case of slip flow regime are often
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not accurate and may also predict incorrect qualitative behavior of the flow20

[9, 10]. Moreover, the derivation of extended hydrodynamic equations employ-

ing higher-order Chapman-Enskog approximations (Burnett and super-Burnett

equations) have shown limited success [8]. Alternatively, macroscopic trans-

port equations can be originated from moments expansion methods such as the

Grad’s method [11, 12]. However, difficulties in imposing boundary conditions25

for those moments without a clear physical meaning, as well complexity in the

resulting systems of equations prevent the application of the method for the

simulation of flows of industrial interest.

It is therefore evident that whenever the flow presents a large range of Kn, due

to the current computational and modelling limitations of the available meth-30

ods, a multiscale hybrid model has to be used.

When dealing with multiscale models, domain decomposition techniques repre-

sent the most natural way to handle the problem. Within this approach, the

domain is decomposed according to a continuum breakdown parameter between

regions where continuum-level macroscopic equations (either Euler or Navier-35

Stokes equations) are valid and regions where substantial non-equilibrium effects

are present and kinetic methods, typically DSMC, are needed (see Refs. [8, 13–

19]). Then a special treatment is imposed to couple the flow fields in the areas

of overlap between the different regions, e.g. [20–22].

For completeness, the domain decomposition technique is not the only method40

adopted in the literature as alternative approaches are proposed. For example

in [23], the Boltzmann equation is solved for a short period of time to obtain

the rate of change of the average flow variables which are then used to update

the continuum-level velocity field. In [24], instead, macroscopic equations are

modified so to include effects due to kinetic contributions which take into ac-45

count perturbations from the equilibrium state of the velocity distribution.

The approach that we introduce here follows the domain decomposition tech-

nique as commonly done in models proposed in literature but it departs from

those as the flow at the continuum level and at moderate rarefied conditions is

simulated with the Lattice Boltzmann Method (LBM).50
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Moreover, since it has been largely demonstrated that LBM, due to its intrinsic

kinetic nature, is an accurate and efficient numerical solver not only for flows at

Navier-Stokes description level but also for flows at finite Kn number (see Refs.

[25–37]), the present model has the advantage, over the other hybrid methods

which use traditional Navier-Stokes solvers, that the need for using the com-55

putationally expensive DSMC solver can be postponed to larger values of Kn.

This is equivalent to say that the size of the domain where DSMC solver is still

needed can be significantly reduced, thus improving the overall computational

efficiency of the simulation.

In this work we principally focus on the most delicate aspect of any hybrid60

coupling model, i.e. the two-way extraction and transfer of information at the

interface between the two numerical methods. The mapping schemes we de-

veloped, in fact, allow to pass from DSMC to LBM domains and vice versa

correctly transferring also the non-equilibrium information. The amount of

non-equilibrium information that can be passed is then essentially determined65

by the LB model and in particular by the chosen set of discrete velocities and

the isotropy conditions the set is able to fulfill.

Simulations performed to validate the mapping scheme show that an accurate

transfer of information is achievable for flows up to Kn=0.25 for a 39-points

Gauss-Hermite quadrature with sixth-order isotropy (D3Q39), under the as-70

sumption that the flow is isothermal, i.e. no external heat source is present,

and viscous dissipation or other thermal effects are negligible.

Finally, to check functionality of the DSMC-LBM hybrid model and assess its

computational efficiency, tests, based on a simpler mapping scheme, are also

performed showing, for the particular simulated flow, a significant speed-up75

with respect to a full DSMC simulation.

2. Mapping schemes

Since both LB and DSMC are widely documented in the literature, only

a few basic aspects are discussed in this paper. For an exhaustive treatment
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about DSMC and LBM methods, the reader should refer to [6] and [38].80

Both methods aim to determine the fluid motion as described by the Boltz-

mann equation. The main feature which clearly distinguishes the LBM from

the DSMC, is the reduction of the degrees of freedom of the velocity space. In

fact in LBM particles at each lattice site x can only propagate along a finite

number of directions with an assigned speed ξa, while in DSMC the velocity85

space is not constrained to a set of discrete velocities.

Before introducing the mapping scheme between the DSMC and LBM, we note

that in order to quantitatively reproduce DSMC solutions for finite-Kn number

flows, the LB model needs three basic ingredients:

1. kinetic boundary conditions, [37, 39–43];90

2. higher-order lattice (HOL), [29, 44];

3. regularization procedure, [29, 45].

Few words on the two lattices used in this work are in order. The conventional

D3Q19 LB model, satisfying isotropy conditions up to the fourth order, is able

to describe the flow up to the Navier-Stokes level of description. In order for LB95

to accurately simulate rarefied gas flows, it is essential that the set of discrete

velocities satisfies higher order isotropy conditions. In this work we shall take

a step further, beyond the standard D3Q19 model, requiring that the lattice

satisfies isotropy conditions up to the sixth order. A lattice able to fulfil this

requirement, and still maintaining the Cartesian coordinate implementation is100

the D3Q39 model as described in [44]. In Table 1 the D3Q39 lattice discrete

velocities ξa and weights wa are collected. For comparison, the same is done

also for the D3Q19 model.

The main idea at the basis of the mapping scheme is that the single particle

distribution function f(x, ξ, t) can be expanded in terms of the dimensionless

Hermite orthonormal polynomials, H(ξ), in the velocity space ξ as [11, 12, 44]:

f(x, ξ, t) = ω(ξ)

∞∑
n=0

1

n!
a(n)(x, t)H(n)(ξ), (2)
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LB model ξa wa a

D3Q19 (0, 0, 0) 1/3 0

(±1, 0, 0) 1/18 1 - 2

(0, ±1, 0) 1/18 3 - 4

(0, 0, ±1) 1/18 5 - 6

(±1, ±1, 0) 1/36 7 - 10

(±1, 0, ±1) 1/36 11 - 14

(0, ±1, ±1) 1/36 15 - 18

D3Q39 (0, 0, 0) 1/12 0

(±1, 0, 0) 1/12 1 - 2

(0, ±1, 0) 1/12 3 - 4

(0, 0, ±1) 1/12 5 - 6

(±1, ±1, ±1) 1/27 7 - 14

(±2, 0, 0) 2/135 15 - 16

(0, ±2, 0) 2/135 17 - 18

(0, 0, ±2) 2/135 19 - 20

(±2, ±2, 0) 1/432 21 - 24

(±2, 0, ±2) 1/432 25 - 28

(0, ±2, ±2) 1/432 29 - 32

(±3, 0, 0) 1/1620 33 - 34

(0, ±3, 0) 1/1620 35 - 36

(0, 0, ±3) 1/1620 37 - 38

Table 1: Sets of discrete velocities and weights for the D3Q19 model (lattice speed of sound,

c2s = 1/3) and the D3Q39 model (c2s = 2/3).
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where ω(ξ) is the weight function associated with the Hermite polynomials, and

a(n) are the rank-n tensors representing the dimensionless expansion coefficients

defined as:

a(n) =

∫
f(x, ξ, t)H(n)(ξ)dξ. (3)

The first coefficients of the series, due to the definition of the Hermite polynomi-

als (see Appendix B for the definition of Hermite polynomials), can be identified

as the hydrodynamic moments (or a combination of those) of the distribution

f(x, ξ, t):

a(0) =

∫
f(x, ξ, t)H(0)(ξ)dξ =

∫
f(x, ξ, t)dξ = ρ, (4)

a(1) =

∫
f(x, ξ, t)H(1)(ξ)dξ =

∫
f(x, ξ, t)ξdξ = ρu (5)

a(2) =

∫
f(x, ξ, t)H(2)(ξ)dξ =

∫
f(x, ξ, t)

(
ξξ − c2sδ

)
dξ = P + ρ

(
uu− c2sδ

)
(6)

a(3) =

∫
f(x, ξ, t)H(3)(ξ)dξ =

∫
f(x, ξ, t)

(
ξξξ − c2sξδ

)
dξ =

Q + ua(2) − (D − 1)ρuuu

(7)

and analogously for higher-order coefficients. In Eqs. (6) and (7), δ represents

the Kronecker delta function while P and Q represent the full second and third

order moments which have the usual appearance if the intrinsic velocity, c =

ξ − u(x, t), is used:

P = m

∫
fccdc (8)

Q = m

∫
fcccdc (9)

Due to the orthonormality of the Hermite polynomials,

f(x, ξ, t) ≈ fN (x, ξ, t) = ω(ξ)

N∑
n=0

1

n!
a(n)(x, t)H(n)(ξ) (10)
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and fN (x, ξ, t) has the same leading N velocity moments as the complete

f(x, ξ, t).105

It is possible now to describe the two mapping procedures:

- the DSMC2LB (or projection) step that allows to project the DSMC hy-

drodynamic variables (fine level of description) onto the LBM discrete

distributions (coarse level of description);

- the LB2DSMC (or reconstruction) step that allows to reconstruct from110

the LBM discrete distributions (coarse level), the continuous, truncated,

distribution function (fine level) from which the velocities of the DSMC

particles can be sampled, e.g. via acceptance/rejection method.

It has to be noted that the following procedures can be extended to any suit-

able LB stencil whose discrete speeds are actually abscissae of a Gauss-Hermite115

quadrature.

2.1. DSMC2LB mapping scheme

Firstly, we present the DSMC2LB projection step. As a remark, the main

characteristic of this coupling step is that, instead of directly using information

from DSMC particles, namely their velocities, we chose to adopt a different

approach which uses the DSMC hydrodynamic moments, and Grad’s formalism,

to determine the discrete non-equilibrium distribution functions to be advanced

in time by the LB solver. In this way, not only the coupling step is fully

consistent with the LB Grad’s formalism, but it has also the advantage to reduce

possible stability issues related to the large fluctuations inherent to the DSMC

representation. More considerations on stability issues are given in Section 2.3.

In correspondence with the DSMC cells/LBM nodes where the coupling occurs,

the cumulative averages of the DSMC hydrodynamic variables, properly scaled

(see Appendix A on how to perform such scaling), are used to compute the

coefficients a
(n)
DSMC of the truncated distribution fNDSMC(x, ξ, t) in Eq. (10).

We now take advantage of the fact that the distribution fNDSMC(x, ξ, t) can be

completely and uniquely determined by its values at a set of discrete velocities
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and, if the Gauss-Hermite quadrature is used, then the coefficients a
(n)
DSMC can

be expressed as:

a
(n)

DSMC =

∫
fN
DSMC(x, ξ, t)H(n)(ξ)dξ =

d−1∑
a=0

wa

ω(ξa)
fNDSMC(x, ξa, t)H(n)(ξa),

(11)

where wa and ξa are the weights and abscissae of a Gauss-Hermite quadrature

of algebraic precision of degree ≥ 2N , and d is the total number of discrete

velocities of the quadrature.

The definitions of the first hydrodynamic moments in the LBM are:

ρ =
∑
a

fa, ρu =
∑
a

faξa, P =
∑
a

faξaξa − ρuu, Q =
∑
a

faξaξaξa − ρuuu

(12)

and similarly for higher-order moments.

Comparing Eq. (11) with Eq. (12) and recalling the definitions of the Hermite

polynomials H(n) and that the coefficients a(n) are the velocity moments of

the fN (x, ξ, t), or a proper combination of those, it is immediate to see that

the discrete distributions are the scaled values of the continuous distribution

function evaluated at the Gauss-Hermite quadrature abscissae ξa:

fDSMC2LB,a(x, t) =
waf

N
DSMC(x, ξa, t)

ω(ξa)
. (13)

In essence, once the fNDSMC(x, ξ, t) is built from the DSMC hydrodynamic

moments according to Eq. (10) and evaluated at the quadrature abscissae,

fNDSMC(x, ξa, t), the discrete (non-equilibrium) distributions to be supplemented120

to the LBM solver at the coupling nodes can be computed from Eq. (13).

2.2. LB2DSMC mapping scheme

The inverse reconstruction step (LB2DSMC) requires that at the LBM lat-

tice nodes/DSMC cells where the coupling occurs, the velocities of the DSMC

particles are sampled from a continuous distribution function.

At those lattice sites, the LBM discrete non-equilibrium functions fLB,a, are
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used to compute the coefficients of the expansion in Eq. (10):

a
(n)
LB =

d−1∑
a=0

fLB,a(x, t)H(n)(ξa) (14)

These allow to build the continuous truncated distribution fNLB(x, ξ, t). To gen-

erate the velocities of the DSMC particles, the distribution should be sampled.

Several algorithms can be employed to this aim. We chose to adopt an accep-

tance/rejection algorithm similar to the one presented in [22]. However, while in

[22] a Chapman-Enskog distribution was sampled, in the present case a Grad’s

distribution has to be sampled but, nonetheless, most of the steps presented

there can be used here.

The Grad’s velocity distribution, truncated up to order N , can be written as

gN (x, ξ, t) = g(0)(ξ)G(x, ξ, t) (15)

where g(0)(ξ) is the weight function associated with the Hermite polynomials

g(0)(ξ) = ω(ξ) =
1

(2π)D/2
exp

(
−ξ

2

2

)
(16)

with D being the dimensionality of the flow problem. Eq. (16) represents also

a global Maxwell-Boltzmann distribution at thermodynamic equilibrium (here

we set a constant temperature T = 1 as we are interested in isothermal flows).

At thermodynamic equilibrium G(x, ξ, t) = 1, while away from that condition,

it can be expressed as:

G(x, ξ, t) = 1 +
1

2!
a
(2)
LBH

(2)(ξ)

+
1

3!
a
(3)
LBH

(3)(ξ) + · · ·+ 1

N !
a
(N)
LB H

(N)(ξ)

(17)

The steps followed in the generation of the velocities of DSMC particles are

outlined in Table 2. Some comments on those steps. The acceptance/rejection

method needs to define an envelope function γ(ξ) such that γ(ξ) ≥ g(ξ) for any125

ξ. In step 3, an amplitude parameter C is set. In this way it is guaranteed that

the function γ(ξ) = Cg(0)(ξ) envelops most of the Grad’s distribution func-

tion below it. The larger this parameter, the less probable is the chance that

G(x, ξ, t) is larger than the envelop function, but at the same time, the smaller

10



Sampling acceptance/rejection algorithm

for the Grad’s distribution LB2DSMC

1. Compute the coefficients

a
(2)
LB,ij =

∑
a

fLB,a(ξa,iξa,j − δij) (18)

and similarly for the higher-order ones

2. Find

M ≡ max
(∣∣∣a(2)LB,ij

∣∣∣ , ∣∣∣a(3)LB,ijk

∣∣∣ , . . . , ∣∣∣a(N)
LB,ijk...

∣∣∣)
(19)

3. Set the parameter

C = 1 + 30M (20)

4. Sample a try particle velocity ξtry from the

Maxwell-Boltzmann distribution g(0)(ξ) using e.g.

the Box-Müller transformation method

5. Accept the ξtry if CR ≤ G(x, ξtry, t) with R

a uniform deviate in the interval [0, 1) otherwise

reject it and go back to step 4

6. Generate the DSMC particle velocity as

vj,LB2DSMC =

(
2kBTDSMC

mDSMC

)1/2

ξtry + uLB (21)

Table 2: Steps of the sampling acceptance/rejection algorithm for the LB2DSMC reconstruc-

tion mapping scheme used to generate the velocities of DSMC particles from LBM data.

the efficiency of the sampling method since the efficiency is equal to 1/C. In130

step 6, the particle velocity is generated as the sum of the thermal velocity and

of the local fluid velocity. In Eq. (21), the thermal velocity is determined ac-

cording to the temperature value and to the molecular mass of the gas as set in
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the DSMC simulation.

Apart from the velocity, also the number of the DSMC particles, NLB2DSMC,135

must be set in order to guarantee conservation of mass at the coupling sites so

that the density from LBM and the density from DSMC, appropriately scaled,

match with each other.

In Figure 1, the schematic showing the main steps involved in both the mapping

schemes is drawn.140

It is interesting to try to identify sources of inaccuracy in the proposed mapping

scheme. In the reconstruction and projection steps, in fact, some information

is inevitably lost. In particular, in the LB2DSMC reconstruction step, the

truncated distribution, fNLB (x, ξ, t), is derived from the discrete distributions,

fLB,a(x, t). This truncated distribution is such that only the first N moments145

are the same as those of the non-truncated continuous distribution f (x, ξ, t),

with the value of N essentially depending on the particular quadrature used.

The moments of order higher than N , in fact, will not be the same as those of

the original continuous distribution. This, in turn, reflects in the fact that the

DSMC particles will be given a velocity which is sampled from a distribution150

which accurately recovers up to the first N moments. If, then, the sampling

process were perfectly able to sample the velocity distribution fNLB (x, ξ, t), then

also the moments computed from the velocities of the particles would be per-

fectly reproduced in the limit of an infinite number of independent samples.

However, since only a finite number of samples can be obtained, measurements155

of moments will be affected by statistical noise which will be also present in the

discrete distribution functions fDSMC2LB,a(x, t).

Analogously, in the DSMC2LB projection step, the loss of information derives

from the fact that only the first N moments are used to evaluate the truncated

discrete distributions fDSMC2LB,a(x, t), while, in principle, the DSMC solution160

possesses information on all the moments up to N →∞. The truncation, again,

is performed according to the algebraic degree of accuracy of the particular LB

quadrature. To be more precise, this does not imply that moments of order

larger than N cannot be evaluated but it means that they are not accurately
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computed. If the so found discrete distributions were used to build a continuous165

distribution from which to sample the velocities of the DSMC particles, then

the source of inaccuracy would be mainly related to the acceptance/rejection

algorithm and in particular on the choice of parameter C in Eq. (20) which

determines the extension of the envelope function γ(ξ).

A further remark on the coupling steps is warranted. While the DSMC method170

has direct access to the temperature field, in order for the LB to accurately sim-

ulate also thermal effects, different approaches can be followed. Among those,

three main strategies can be envisaged: the double distribution function ap-

proach where, besides the usual distribution function for the velocity field, a

second distribution function is used for the temperature or internal energy field,175

[46], and standard lattices are used; the multispeed approach where lattices pos-

sessing higher isotropy conditions are used, [47]; the mixed method where the

velocity field is studied with the usual LB model while the energy equation is

solved by different numerical method, usually finite-difference or finite-volume

methods, [48]. Within the present multiscale scenario, the most natural among180

the three aforementioned schemes is the multispeed one, as it derives from the

Hermite expansion approach. The extension to non-isothermal flows of the

present coupling schemes, however, will be object of future works.

2.3. Stability issues for the coupling schemes

When dealing with the DSMC2LB coupling step, concerns about stability

issues arise. Those are essentially related to the fact that fluctuations on the

DSMC hydrodynamic variables may harm positivity of the LB equilibrium dis-

tribution functions. For the particular flows discussed in this paper, as we are

interested in the stationary state, we choose the cumulative DSMC moments to

build the single particle distribution function of Eq. (10). This choice, combined

with the fact that the studied flow is at low Mach number, practically, staves

off the aforementioned risks. For flows where the transient flow is of interest, or

for which a stationary state does not exist, the instantaneous DSMC moments

should be used in Eq. (10). Also in this more demanding case, positivity of the
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Figure 1: Schematic showing the main steps of the top-down LB2DSMC reconstruction (left)

and bottom-up DSMC2LB projection (right) mapping schemes as described in Section 2. P

and Q represent the second and third order momentum flux tensors, respectively. Symbol 〈 〉

represents the cumulative average measurements of hydrodynamic moments from the DSMC

solver.

LB equilibrium distribution functions can be guaranteed if a sufficiently large

number of particles is employed. Fluctuations on hydrodynamic variables can

be estimated by applying equilibrium statistical mechanics consideration, see

[49]. For example, referring to fluctuations of the fluid velocity components

within a cell, it is possible to see that the distribution of fluid velocity compo-

nents realizations follows a normal distribution with standard deviation given

by:

σ =

√
kB〈T 〉
m〈N〉

(22)

where kB is the Boltzmann constant, m is the gas molecular mass, 〈T 〉 and 〈N〉185

are the mean local temperature and number of particles, respectively. For the

settings of the simulations reported in next Sections, it is easy to see that the

instantaneous fluid velocity is such that Ma < 0.3 for 99.7 % of the possible real-

izations (3σ rule is applied). Moreover, from Eq. (22), it is also evident the role

of the number of DSMC particles in decreasing the intensity of the fluctuations.190

As a consequence, to guarantee the positivity of equilibrium distributions, a

slightly larger number of DSMC particles than what would be strictly necessary

for the method to provide accurate results may be needed.
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3. Numerical results

3.1. Comparison between DSMC and LBM data195

To understand and determine the extent of the overlap region where both

DSMC and LBM provide comparable accuracy in simulating rarefied gas flows,

we performed independent force-driven plane Poiseuille flow simulations with

two parallel plates at x = 0 and x = H and compared results obtained from

D3Q19 and D3Q39 LB models with DSMC data. Even if the flow is strictly

a monodimensional flow, we used 3D solvers since our final aim is to be able

to simulate more complex flows. This choice reflects in the fact that double

periodic boundary conditions are imposed along the y− and z− directions.

Tests are performed at different Kn number, based on channel height, while

keeping constant the Ma number, based on the flow centerline velocity, umax:

Ma = umax/cs = 0.1. The Ma number is set to such a value to guarantee that

the lattice equilibria in LBM, expressed as a second-order (D3Q19) or a third-

order (D3Q39) expansion in Ma number of the local Maxwellian, are positive

defined, but it is still sufficiently high to prevent DSMC simulations from be-

coming impractically computationally expensive.

Moreover, as a result, this allows to treat the flow as a isothermal one. From

DSMC simulations, in fact, the temperature increase is never found to exceed

0.5K, which is fairly negligible as compared to the reference temperature 273K.

In the BGK-LBM simulations, we set the flow Kn number imposing the relax-

ation time τ according to the relation [50, 51]:

τ =

√
π

8

c

cs
KnH + 0.5 (23)

where c/cs is equal to
√

3 for the D3Q19 model and to
√

3/2 for the D3Q39

model, and H is the number of lattice sites along the channel height. Once

Kn and H are set, τ is also set. For both D3Q19 and D3Q39 models, kinetic

boundary conditions and regularization procedure are applied.

In the DSMC simulations, we set the Kn number imposing the height of the

channel, H, and the mean free path λ. To set λ, a proper number density n and
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Figure 2: The velocity profiles of the planar force-driven Poiseuille flow for Kn=0.15. The LBM

results with both the D3Q19 and D3Q39 models are compared with the DSMC solution. For

both the LB models the regularization procedure is applied. Fully diffuse reflection is imposed

at the walls, x/H = 0 and x/H = 1, for both the LBM and DSMC simulations.

a collision model should be defined. In the case of Hard Sphere (HS) model, the

relation between λ and n (at equilibrium) is given by [6]:

λ =
1√

2πd2refn
(24)

where dref is a reference molecular diameter. The determination of λ from Eq.

(24) and estimates on the molecular speed allows to define the space and time

discretizations.

Once the number of cells along the channel height is determined from DSMC

parameters, an equal number of lattice sites is imposed in the LBM simulation

so that the cells centers in DSMC and the LBM lattice sites overlap. In Fig-

ure 2, the velocity profiles along the direction of the forcing, obtained from the

LB models and DSMC, normalized with the centerline velocity, are shown for

Kn=0.15. The velocity profiles are normalized with the applied forcing (ρg)

and then the DSMC velocity profile is used as a reference for the LB velocity

profiles. This is done to acknowledge the different speed of sound in the two
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Figure 3: Relative error between LBM results and DSMC data, according to Eq. (26) for

Kn=0.10 - 0.25. Dashed vertical lines represent the boundaries of the Knudsen layer. Error

bars from DSMC simulations on fluid velocity are shown.
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lattices.

In the DSMC an Argon-like gas has been simulated and the grid resolution, kept

the same for all performed tests, is based on the requirements of a DSMC simu-

lation at Kn=0.05. In all the DSMC simulations, 100 computational molecules

are initially placed in each cell of the domain.

LB solution has been considered as converged to the final solution once the

following criterion is fulfilled:∑
i

|u(xi, t)− u(xi, t− 1)|
|u(xi, t)|

< 10−6. (25)

In Eq. (25), u(xi, t) represents the fluid velocity at the lattice nodes at time

t. For DSMC, instead, a 1% fractional error on fluid velocity components is set

as the requirement to assume the solution as converged; see Section 5 for the

implications in the number of required time steps to achieve such error.

Plots similar to the one of Figure 2, have been drawn also for other Kn numbers

but they are not reported here. It is more informative, in fact, to inspect the

relative errors between DSMC and LBM data as done in Figure 3. The relative

error is defined as:

∆v =
vLBM − vDSMC

vLBM
(26)

and it is shown for simulations at Kn=0.10-0.25.

In the plots of Figure 3, moreover, the boundaries of the Knudsen layer (black

dashed vertical lines) are also drawn. The Knudsen layer is a region in proximity

of a solid wall which extends within the flow domain up to a distance of the order

of one mean free path. Inside this region non-equilibrium effects of the flow are200

stronger [52, 53]. The D3Q19 model, recovering only up to the Navier-Stokes

equations level of description, shows to depart from the DSMC solution also

within the bulk of the flow and the error increases as the Kn number increases.

The D3Q39 model, instead, is able to reproduce the DSMC data to a much

better degree of accurary. However, already at Kn=0.25, it is possible to notice205

some deviations especially within the Knudsen layer as the maximum relative

error is about equal to 7.5%. This behavior can be explained taking into account
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that non-equilibrium effects at an order higher than the third may start to play

a role.

With this statement, we do not imply that LBM is able to reliably simulate210

rarefied gas flows only for Kn≤0.25, but that with the current LB model we

found reasonable agreement with DSMC data up to that Kn number. With

larger Gauss-Hermite quadratures, in fact, being able to go beyond the third-

order in Hermite polynomials expansion guaranteed by the D3Q39, further non-

equilibrium effects should be correctly captured. However, we decided not to go215

further because the next quadrature possessing a high enough algebraic precision

to allow an accurate fourth-order in Hermite polynomials expansion involves 91

discrete speeds [54].

3.2. Numerical results for the DSMC2LB mapping scheme

Having concluded that the LBM D3Q39 model provides, for the problem at220

hand, a reasonable accurate solution for Kn ≤ 0.25, we analyze results related

to the mapping scheme step that allows to project the DSMC hydrodynamic

variables onto the LBM discrete distribution functions for the D3Q39 lattice

(DSMC2LB projection step).

To be noted that the unit conversion as delineated in Appendix A to pass from225

SI units, proper of the DSMC method, to the lattice units, proper of the LB

method, is applied during simulations. To validate the procedure outlined in

Section 2.1, we ran two sets of independent DSMC and LBM simulations un-

der the same force-driven plane Poiseuille flow with Ma based on the centerline

velocity equal to 0.1 and for several Kn numbers. We verified the accordance230

between the discrete distributions functions as computed from the LBM, fLB,a,

and as obtained from the DSMC2LB projection scheme, fDSMC2LB,a, applying

Eq. (13). In Figure 4, a sketch showing the procedure to compare the fLB,a with

the fDSMC2LB,a is depicted. Data refers to the first fluid node/cell in proximity

to the wall located at x = H as shown in the sketch of Figure 5. In Figure 6 the235

ratio fDSMC2LB,a/fLB,a is plotted for all discrete speeds a = 0, . . . , d− 1 and for

Kn=0.15 and Kn=0.25. The larger errors that can be detected are about equal
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to 2% (fDSMC2LB,36/fLB,36 ≈ 1.02) and to 5% (fDSMC2LB,36/fLB,36 ≈ 1.05) for

the simulations at Kn=0.15 and 0.25, respectively. Most of the other ratios are

such that the error is below 1%.240

The error bars present in the plots derive from the fact that we use the DSMC

hydrodynamic moments to build the truncated distributions fNDSMC(x, ξa, t) and

those are inherently characterized by statistical noise.

We also note that the larger error bars are present for the discrete speeds with

larger module. This may be attributed to the fact that the magnitude of the245

discrete distribution function, fa, is smaller the larger the module of the corre-

sponding discrete speed, ξa, while the statistical noise does not depend on the

particular discrete speed.

From the comparison of the discrete distributions, fa, only, however, it is dif-

ficult to understand if the projection mapping scheme is providing accurate250

results. So it is more informative to compute the hydrodynamic moments from

fLB,a and from fDSMC2LB,a at the same node depicted in Figure 5. The first

few moments are reported in Table 3.

It can be seen that a good matching is found always within the error bars.

Concluding, the projection mapping scheme is able to pass from the DSMC hy-255

drodynamic quantities to the LBM discrete distributions preserving a reasonable

level of accuracy.

Kn=0.15 ρ [l.u.] ρuy [l.u.] Pxy + ρuxuy [l.u.]

LBM 1.0 0.0282 -0.0151

DSMC2LB 1.002 ± 0.007 0.0277 ± 0.0042 -0.0146 ± 0.0027

Kn=0.25 ρ [l.u.] ρuy [l.u.] Pxy + ρuxuy [l.u.]

LBM 1.0 0.0352 -0.0180

DSMC2LB 0.999 ± 0.007 0.0340 ± 0.0042 -0.0167 ± 0.0024

Table 3: Comparison between the first few moments as computed from fDSMC2LB,a obtained

from the projection mapping scheme and from the native LBM simulations, fLB,a, at the

node depicted in Figure 5. Moments are expressed in lattice units.

20



DSMC  (N
j
,v

j
)

DSMC
(x,t=0)

LBM  f
LB,a

(x,t=0) f
LB,a

(x,t=t
k
)

DSMC2LB

time

(<ρ>,<ρu>,<P>,<Q>)
DSMC

(x,t=t
k
)

f
DSMC2LB,a

(x,t=t
k
)

Figure 4: Schematic representing the procedure used to compare the discrete populations

built from the DSMC hydrodynamic moments following the projection DSMC2LB algorithm,

fDSMC2LB,a(x, t = tk), with native discrete populations obtained from an independent LBM

simulation, fLB,a(x, t = tk), under the same flow conditions, namely Kn and Ma, at time

t = tk, when the steady-state condition is reached.

Figure 5: Sketch showing the location of the node (red node at i = 1) where data plotted in

Figures 6 and 8 are taken. ~g represents the body force driving the fluid.
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Figure 6: Ratio fDSMC2LB,a/fLB,a where fDSMC2LB,a are computed from Eq. (13) for plane

Poiseuille flow at Kn=0.15 (top) and at Kn=0.25 (bottom).

3.3. Numerical results for the LB2DSMC mapping scheme

We now move on to analyse the results related to the reconstruction map-

ping scheme step that allows to reconstruct from the LBM discrete distributions,260

fLB,a, the continuous truncated distribution function from which the velocities

of the DSMC particles can be sampled (LB2DSMC reconstruction step).

The unit conversion as delineated in Appendix A to pass from lattice units,

proper of the LB method, to the SI units, proper of the DSMC method, is

applied during simulations. As done for the previous step, to validate the pro-265

cedure outlined in Section 2.2, we ran two independent set of DSMC and LBM

simulations under the same force-driven plane Poiseuille flow with Ma=0.1 and

for several Kn numbers.

As shown in Figure 7, we compared the velocity distribution functions as ob-

tained from the DSMC simulation collecting the velocities, vj,DSMC, of the270
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Figure 7: Schematic representing the procedure used to compare the distribution function of

the velocity component, vj,DSMC, obtained from a native DSMC simulation with the distri-

bution function of the velocity of the particles, vj,LB2DSMC, obtained from the reconstruction

mapping algorithm LB2DSMC, under the same flow conditions, namely Kn and Ma, at time

t = tk, when the steady-state condition is reached.

particles residing at the cell identified in Figure 5 and as obtained from the

velocities of the particles sampled from the velocity distribution function built

as in Eq. (15) using the algorithm outlined in Table 2, vj,LB2DSMC.

In Figure 8, in particular, the distributions for the velocity component along

the direction of the forcing, vy, are compared for Kn=0.15 and Kn=0.25, re-275

spectively.

The mean and the standard deviation for the two cases are collected in Table 4.

The velocities of the particles are collected for both cases after a steady-state

Kn=0.15 〈vy〉 m/s σvy m/s

DSMC 10.1 238.6

LB2DSMC 10.5 239.3

Kn=0.25 〈vy〉 m/s σvy m/s

DSMC 12.8 238.8

LB2DSMC 13.4 239.6

Table 4: Comparison of the means and standard deviations of the distributions of Figures 8,

expressed in DSMC units.

condition has been reached. The deviations between the means, about 4% for

the case at Kn=0.15 and about 5% for the case at Kn=0.25, are in line with280
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Figure 8: Distribution functions for the y-component, vy , of the velocity of the particles,

expressed in DSMC units, as obtained from the native DSMC simulation and from the recon-

struction mapping scheme using the algorithm LB2DSMC outlined in Table 2 for Kn=0.15

(top) and Kn=0.25 (bottom), for the cell identified in Figure 5.
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the deviations that are present in Figure 3. The standard deviations of the two

distributions differ for about 0.3% for both the cases. Related to this, it has to

be recalled that the temperature of Eq. (21) is the reference temperature im-

posed in the DSMC simulation. The magnitudes of these standard deviations

are compatible with the reference temperature (T=273 K) and the molecular285

mass (m = 6.63 · 10−26 kg) for the gas used in the DSMC simulation.

It is important, however, that also the distributions of the realizations of the

fluid velocity as obtained from DSMC and from the reconstruction mapping

scheme match with each other. This is checked computing the fluid velocities as

the instantaneous average velocity from all the velocities of particles residing in290

the chosen cell at regular time intervals (samples are taken once every 50 time

steps) so to have uncorrelated samples. Also in this case, data are collected

once the flow has reached a steady-state condition.

In Figure 9, the fluid velocity distributions are plotted for the case Kn=0.15.

Both the mean and standard deviations of the distributions obtained from the295

two methods are in good agreement, demonstrating that the LB2DSMC recon-

struction step correctly maps the discrete LB distribution functions into the

velocities of the DSMC particles.

4. Hybrid model application

As a proof of concept of a prospective LB-DSMC coupling, we applied a

hybrid model to a plane Poiseuille flow with Kn=0.05 and Ma=0.1, based on

centerline velocity.

In Figure 10, the geometry for the application of the hybrid method is drawn.

The domain is divided into two subdomains. In each subdomain, one solu-

tion method is applied. In particular, we assume that, at a section located at

y = L0/2, the two subdomains overlap and this buffer layer is composed by

one cell along the flow direction and extends across the whole height H of the

channel.

For simplicity, since we wanted to set up the functionality of the coupling, we
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Figure 9: Fluid velocity distribution functions for the y-component, uy , expressed in DSMC

units, as obtained from the native DSMC simulation and from the reconstruction mapping

scheme using the algorithm LB2DSMC outlined in Table 2 for Kn=0.15, for the cell identified

in Figure 5.

use a D3Q19 LB model with kinetic boundary conditions and no regularization.

The mapping scheme, also, is simpler than the one proposed in Section 2. In

particular, we imposed that, at the centers of DSMC cells/LBM lattice sites

within the buffer layer, the local equilibria are evaluated according to the hy-

drodynamic moments computed from the DSMC solution.

Operatively, we set the discrete equilibrium distribution functions, f
(0)
DSMC2LB,a,

within the buffer layer as:

f
(0)
DSMC2LB,a = waρDSMC

[
1 +

ξa · uDSMC

c2s

+
(ξa · uDSMC)

2

2c4s
− u2DSMC

2c2s

] (27)

In Figure 11, we plot the evolution in time of the velocity profiles obtained from300

the hybrid method for the test previously introduced.

The three plotted profiles represent the data at the three sections along the

channel located at y = L0/4, y = L0/2 and y = 3L0/4. The section at y = L0/4

is within the DSMC subdomain, while the section at y = L0/2 coincides with the

buffer layer position and the section at y = 3L0/4 is within the LBM subdomain.305
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Figure 10: Schematic picture of the hybrid model application domain. The coupling occurs

at the LBM lattice sites/DSMC cells placed at y = L0/2. The buffer layer comprises only one

cell in the streamwise direction and all the cells along the transversal direction. The positions

y = L0/4 and y = 3L0/4 identify the streamwise positions where the velocity profiles plotted

in Figure 11 are evaluated.

From the plots of Figure 11, it is possible to see that the inherent statistical

noise of the DSMC solution is transferred to the LBM velocity profiles. While

averaging over time, this noise is reduced and also the LBM solution becomes

accordingly, smoothened. Note that, in the DSMC solver, no particular means

to reduce statistical noise, such as variance-reduction methods, [55–57], has been310

adopted. Thus, there is certainly room for significant future improvements.

From inspection of Figure 11, it is possible to detect deviations between the

DSMC velocity profile (y = L0/4) and the LBM velocity profile (y = 3L0/4)

when the steady state is reached (see the plot at t = 1600). These deviations

can be attributed to the limitations of both the LB model and mapping scheme315

adopted in this test, as all the non-equilibrium effects have been discarded.

The deviations will be removed by adopting the LB model able to extend the

range of applicability of the LBM to rarefied gas flows and by including non-

equilibrium effects in the passage of information betweeen the DSMC and the

LBM as described in Section 2. This fully non-equilibrium hybrid model is320

under development.
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Figure 11: Evolution in time of the flow when the simplified mapping scheme DSMC2LB is

activated at y = L0/2. Velocity profiles are plotted in correspondence of the channel sections

identified in Figure 10. The velocity profiles, expressed in lattice units, at y = L0/2 and

y = 3L0/4 are shifted +0.02 and +0.04, respectively, to allow better visualization.
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4.1. Breakdown parameter for the hybrid model

The determination of the location where the coupling between the two meth-

ods is performed should be based on the identification of a breakdown parameter

able to detect when the local non-equilibrium effects can no longer be accomo-325

dated within the given LB scheme. In the literature related to existing hybrid

models, several definitions of the breakdown parameter are offered. The vast

majority of these is based on the evaluation of the local density gradient, see e.g.

[14]. This choice is justified by the fact that those hybrid models are generally

applied to compressible flows problems. Such type of parameter, however, is not330

suitable for the LB method as, in its usual formulation, which is also adopted

in this work, LB is a solver for weakly compressible flows. It is therefore needed

to determine a different way to measure departure from the Navier-Stokes level

of description (or Burnett, or even Super-Burnett level of description, if higher-

order lattices are used).335

While on a practical ground, it appears appropriate to place the interface be-

tween the two methods at least one mean free path away from the walls, a more

rigorous approach might be based on the evaluation and comparison, between

the LB and DSMC, of the coefficients of the Grad’s expansion related to higher

order moments, namely from the 2nd order on, since these are no longer asso-340

ciated with microscopic invariants.

The implementation of such switching criteria, that should also take into due

account the presence of fluctuations in the DSMC hydrodynamic moments, and

which requires additional verification, will be object of future work.

5. Computational efficiency345

We conclude by comparing the computational efficiency of the two methods

and by estimating the computation times of the hybrid method with respect to

a full DSMC simulation.

Both the DSMC and LBM codes are parallelized. All data presented in this

section are from simulations run on a dual-core PC (Intel Core i5-6300U 2.4
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GHz) with hyperthreading enabled and refer to the test cases of Sections 3.1

and 4.

In Figure 12, the wall-clock time per computational time step is plotted as a

function of the flow Kn number for both LBM models (D3Q19 and D3Q39 with

the regularization procedure and kinetic boundary conditions) and DSMC. The

wall-clock time per time step is constant for the LBM simulations while it shows

a dependence on Kn for the DSMC method.

This might be explained considering that in DSMC, as kinetic theory prescribes,

the total number of interparticle collisions scales with the number density. For

the NoTimeCounter (NTC) algorithm, [6], as the one employed here, one has:

Ncollis(tk, xj) =
1

2
NN̄FN (σT cr)max∆t/Vc (28)

where N = n(tk, xj)Vc/FN , with n number density at time tk and cell j, Vc the

cell volume and FN the number of real molecules represented by a simulated

computational particle, N̄ = 〈N〉, σT the molecular cross section, cr the relative

velocity between the selected particles to undergo collision, ∆t is the time step

duration. In Eq. (28), the term (σT cr)max is the maximum value of the product

between the collision cross section and the relative velocity between the selected

particles in each grid cell.

From Eq. (28) the larger the Kn number, the smaller the number density n and

the smaller the total number of collisions. However, since the same number of

cells and particles are used for all the simulations and since the collision step

in the DSMC method is just one part of the algorithm, only a small decrease

in the wall-clock time of the single computational time step is achieved while

increasing Kn number. In the LBM, instead, Kn number determines the relax-

ation time τ but different values of τ do not affect the computational efficiency

of the single computational step.

From Figure 12, it is also evident the fact that LBM wall-clock times are smaller

than the ones for DSMC. In particular, a single computational time step for the

D3Q19 model is 5 times faster and for the D3Q39 model is 2 times faster than

for the DSMC.
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These numbers, however, do not tell the full story because DSMC is intrinsi-

cally characterized by statistical noise due to thermal fluctuations. This greatly

affects the computational efficiency of the DSMC in comparison with LBM.

In fact, to reduce the statistical noise on DSMC hydrodynamic moments, time

(or ensemble) averaging is needed. For example, one standard deviation on the

fluid velocity components measurement, σui
, is given (at equilibrium) by [49]:

σui =

√
kB〈T 〉
m〈N〉

1√
S

(29)

where 〈T 〉 and 〈N〉 are the averages of temperature and number of computa-

tional particles in a cell and S is the number of independent statistical samples.

An estimate on the statistical error on the evaluation of the fluid velocity is

given as:

Eui =
σui

|〈ui〉|
=

√
kB〈T 〉
m〈N〉

1√
S

1

|〈ui〉|

=
1√

γ〈N〉S Ma

(30)

where γ is the gas specific heat ratio (1.67 for Argon) and Ma is the Mach

number.

If a 1% fractional error is desired, for a Ma=0.1 flow and 〈N〉 = 100, S ≈ 3600

independent samples are needed. Generally, to obtain independent samples 10-

100 time steps between the samples are required. In all the simulations in this

work, we decided to perform the sampling every 50 time steps. Calculation of

the correlation coefficients between sampled quantities showed that, for the flow

of these tests, a 50 time steps interval is sufficient, e.g.:

corr(ux, uy) =
〈δuxδuy〉√
〈δu2x〉〈δu2y〉

= −0.008. (31)

Estimates on the number of needed independent samples to reach a given frac-

tional error and on the size of the time steps interval so to obtain independent

samples allow to determine the number of the required total computational time

steps. So, for the tests we performed, at least 180000 time steps are needed.
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For the LBM, instead, a steady-state solution is reached in few thousands time350

steps. About 5000 time steps are sufficient to reach the final solution.

These numbers directly reflect in the comparison between the total wall-clock

times needed for the DSMC and LBM simulations. Using data collected in Fig-

ure 12, if the DSMC is compared with the D3Q19 model, then the latter is about

180 times faster, while if the comparison is made with the D3Q39 model, then355

the latter is about 70 times faster. Moreover, a reduction in the total number

of DSMC particles guaranteed by reducing the domain assigned to the DSMC

reflects in a reduction in the wall-clock time per time step as shown in Figure

13 where a linear scaling is found for the range of particles typically employed

for the flow under consideration.360

Finally, these numbers allow to estimate the potential gain in efficiency that can

be obtained by the application of the hybrid model.

Using the simplified mapping scheme to pass from DSMC to LBM as described

in Section 4 and assuming that the domain is divided into two subdomains of

equal size, then a speed-up of about 1.7 with respect to a full DSMC simulation365

over the whole domain is reachable for the tested Poiseuille flow. To be noted

that the over-head due to the application of the simplified mapping scheme is

very limited since the buffer layer is composed of just one layer of cells/lattice

nodes. For more complicated flows, however, coupling may be required to be

applied over larger overlapping zones.370

6. Conclusions

We developed a kinetic mapping scheme based on Grad’s moments method

and Gauss-Hermite quadrature in view of coupling DSMC and LBM models to

simulate isothermal flows with non-uniform rarefaction effects. The main steps

of the mapping algorithm between DSMC and LBM in order to allow an accu-375

rate passage between the two methods domains were discussed. To extend the

range of applicability of LBM beyond the Navier-Stokes equation level, and thus

postponing the passage to the DSMC solver, the need for adopting a high-order
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Figure 12: Wall-clock time per computational time step in LBM D3Q19, LBM D3Q39 and

DSMC for the test of Section 3.1. While LBM data wall clock time does not depend on

Kn number, DSMC data show a mild dependence on Kn. Note that both LBM and DSMC

simulations, as stated in Section 3.1, are run on a grid based on the requirements for the

DSMC simulation at Kn=0.05 and kept the same for all the simulations at different Kn

number. 32000 particles are employed for the DSMC simulations.
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in a linear reduction of the total wall-clock time of the simulation. The simulated flow is the

same presented in Section 3.1.
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lattice (D3Q39) and a regularization procedure for the LBM is demonstrated by

finding a good agreement between the DSMC and LBM velocity profile for plane380

Poiseuille flow up to Kn=0.25. As a proof of concept of the hybrid method, a

simpler version of the mapping scheme which enforces the passage through local

equilibrium states has been performed for the simulation of a plane Poiseuille

flow at Kn=0.05. We have also estimated that the adoption of the hybrid scheme

significantly increases computational efficiency with respect to a DSMC simu-385

lation performed over the whole domain by a factor equal to 1.7 for the flow

conditions shown in the test case. The adoption within the hybrid model of the

complete mapping scheme including non-equilibrium effects is currently under

development.
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Appendix A. Scaling factors

To be able to apply the proposed methods also in engineering contexts and400

in parallel with experiments, we decided to employ in the DSMC simulations

dimensional variables with SI units. This implies that, prior to any transfer of

information between LB and DSMC, a proper conversion from lattice units to

SI units, or vice versa according to the fact that the DSMC2LB or LB2DSMC

mapping scheme is involved, has to be performed.405

The basic elementary conversion scales are here introduced:

34



- Length scale

Since in LB we assume the lattice spacing ∆x as the space unit and since

we impose that the centers of the DSMC cells overlap with the LB sites,

then the length scale is set as:

L0 = ∆xDSMC [m], (A.1)

where ∆xDSMC is the linear distance between the centers of two adjacent

DSMC cells. Note that this implies that, at least in the buffer layer, the

DSMC cells are cubic;

- Time scale

Similarly, the time unit within the LB simulation is the elementary lattice

time-step. The physical value can be defined through the speed of sound

within the lattice, cs, and of the gas in the DSMC simulation, a, as

T0 =
cs
a

∆xDSMC [s]. (A.2)

- Mass scale

As the mass within the DSMC cells/LB nodes where coupling occurs must

be conserved, and assuming the lattice particles are given a unit mass, then

the mass scale can be defined as follows:

M0 =
FN,DSMC NDSMC m∑

a fLB,a
[kg], (A.3)

where FN,DSMC is the number of real molecules represented by one DSMC410

particle, NDSMC is the number of DSMC particles in a cell, and m is the

gas molecular mass.

From these three scaling factors, it is possible to derive all the other physical

conversion scales.

Appendix B. Hermite polynomials415

The n-th order Hermite polynomial is defined according to Rodrigues’ for-

mula, [58], as:

H(n)(ξ) =
(−1)n

ω(ξ)
∇nω(ξ) (B.1)
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which is a rank-n tensor and a polynomial of degree n in ξ. In Eq. (B.1) ω(ξ) is

the weight function associated with the Hermite polynomials in D-dimensional

Cartesian coordinate ξ:

ω(ξ) =
1

(2π)D/2
exp

(
−ξ

2

2

)
. (B.2)

The first Hermite polynomials, therefore, read as:

H(0)(ξ) = 1, (B.3)

H(1)
i (ξ) = ξi, (B.4)

H(2)
ij (ξ) = ξiξj − δij , (B.5)

H(3)
ijk(ξ) = ξiξjξk − ξiδjk − ξjδik − ξkδij . (B.6)
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