
 

Integration of magnetic gravity compensation and spherical
actuation for robotic applications
Citation for published version (APA):
van Ninhuijs, B. (2016). Integration of magnetic gravity compensation and spherical actuation for robotic
applications: a novel actuator concepts towards a smart arm-support system. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 06/06/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/785de3a6-72c9-48f8-ac6b-36826957a914


Integration of Magnetic Gravity Compensation
and Spherical Actuation for Robotic Applications

A Novel Actuator Concept Towards a Smart Arm-Support System

proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de rector magnificus, prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties

in het openbaar te verdedigen
op maandag 6 juni 2016 om 16.00 uur

door

Bob van Ninhuijs

geboren te Helden



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A.B. Smolders
promotor: prof.dr. E.A. Lomonova MSc
copromotoren: dr.ir. J.W. Jansen

dr. B.L.J. Gysen MSc (Prodrive Technologies)
leden: prof.dr.ir. S. Stramigioli (UT)

dr. B. Dehez (UCL)
prof.dr. K. Ito

adviseur: prof.dr. C.V.C. Bouten

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening



Aan mijn ouders



This research is part of the Pieken in de Delta program and is funded by Rijksdienst
voor Ondernemend Nederland (RVO), an agency of the Dutch Ministry of Economical
Affairs, and the provinces Noord-Brabant and Limburg, the Netherlands.
This research received funding from the Promobilia Foundation.

B. van Ninhuijs, Integration of Magnetic Gravity Compensation and Spherical Actuation
for Robotic Applications, Eindhoven University of Technology, 2016

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-4088-4

Copyright © 2016 by B. van Ninhuijs. All rights reserved.



Summary

Integration of Magnetic Gravity Compensation and Spherical
Actuation for Robotic Applications

A Novel Actuator Concept Towards a Smart Arm-Support System

Mobile arm-support systems provide an aid during the activities of daily living
to enhance the user’s quality of life. With this robotic application the user’s in-
dependence increases and, consequently, the demand for caretakers reduces. The
goal of a smart arm-support system is to improve the user’s independence by ex-
tending the functionality in mobile system. The arm-support systems found in the
literature show that there is a balance between functionality and mobility. Func-
tionality is defined as how many degrees of freedom of support can be provided,
which of these degrees are actuated and whether gravity compensation is applied.
The current devices use single-degree-of-freedom actuators to actuate each degree
of freedom. Consequently, to mimic the shoulder joint at least three actuators are
necessary. In addition, the applied constructions have a predefined sequence of
axes and are often bulky and cumbersome. To avoid these issues, a novel spherical
actuator topology is proposed. In this actuator, a passive magnetic gravity com-
pensator is integrated to reduce the power dissipation. Therefore, the proposed
design is more suitable for mobile applications in contrast to the spherical actua-
tor topologies from the literature. This thesis presents the theoretical description,
design, and experimental validation of a ’first in the world’ spherical actuator with
integrated gravity compensator.

The spherical actuator with integrated gravity compensator has a three dimen-
sional design. Therefore, alternative computational methods to finite element anal-
ysis (FEA) are investigated to reduce the computation time. Two semi-analytical
modeling methods are evaluated, namely spherical harmonic modeling and mag-
netic charge modeling. These methods are extended and applied in the spherical
coordinate system. The harmonic model can include infinitely permeable bound-
aries and an uneven number of permanent magnets in a spherical array. The mag-
netic charge model obtains the magnetic flux density for each permanent magnet



vi Summary

segment separately. Therefore, this method can include more diverse permanent
magnet arrays, whereas the harmonic model can only be applied for a closed spher-
ical permanent magnet array. Furthermore, infinitely permeable boundaries are
taken into account with the implementation of spherical imaging. A discrepancy
of 4% between the semi-analytical models and finite element analysis has been
achieved. Hence, with both models the magnetic flux density of spherical shaped
permanent magnets and magnet arrays can be accurately predicted.

A spherical magnetic spring is researched to realize the integrated gravity com-
pensator. The spherical shape supports the multi-degree-of-freedom motion nec-
essary to mimic the shoulder joint. This spring is composed out of two concentric
hemispherical permanent magnets. Different combinations of radial and paral-
lel magnetization are investigated. The torque production of these combinations
have been predicted with the magnetic charge model. For the applications of arm-
support systems, a sinusoidal torque characteristic is required to compensate for
the gravity force. The topology that complies with this characteristic combines a
radial and parallel magnetization for the outer and inner hemispherical permanent
magnet, respectively. For the concept of the spherical magnetic spring, a patent
has been filed.

The spherical actuator requires an unconventional hemispherical design because of
the integrated gravity compensator. This unique design complies with the require-
ments for the range of motion of the arm-support system. Only slotless topologies
are considered because in case of sudden power failure a user may not able to
control the arm-support system. The changing pole pitch due to the spherical
geometry requires a single-phase commutation algorithm to excite the coils. This
algorithm applies a two-norm minimization of the torque constants which are ob-
tained with the magnetic charge model. A comparison is made between multiple
topologies based on their predicted power dissipation. The topology with the
lowest power dissipation is integrated with the gravity compensator. In this inte-
gration, the back-iron behind the permanent magnet array has to be segmented
to minimize the interaction between both devices.

The spherical actuator with integrated gravity compensator has been experimen-
tally verified with measurements on a proof-of-principle. In this demonstrator,
segmentation and scaling of the theoretical design are applied due to manufactur-
ing limitations. The measurements on the separated gravity compensator show a
3.6% deviation with respect to FEA on the expected sinusoidal torque character-
istic. The torque measurements of the spherical actuator have an rms error of 7%
and 11% with the FEA and the analytical model, respectively. The commutation
of the coils to create a torque about one axis have a rms discrepancy within 9%
over the complete range of motion. The integrated device has a cross-coupling of
0.6% and 0.7% with respect to the separated gravity compensator and spherical
actuator respectively.
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Chapter 1

Introduction

1.1 Background

A world without any robotic systems becomes evermore harder to imagine nowa-
days. Especially in industrial environments, such systems are widely applied. It
started in the 1960s [29] when robots replaced the human operators in factories to
carry out hazardous and harmful tasks. The market for robotics that automate in-
dustrial processes has been growing ever since. The major reason for this growth
is the declining costs of such systems while the costs of human labor increases.
Especially through the 1990s the robotic market grew fast. Furthermore, robots
are not only getting cheaper, but robotic systems become better: more effective,
faster, more accurate, and more flexible [20].

Parallel to the industrial robotic evolution, other types of robots made their en-
trance such as mobile robotics and walking robots in 1968, and humanoid robots
in 1972 [29]. Another robotic technology idea, as presented in [19], is to create an
exoskeleton that enhances the human capabilities or that can be used for telema-
nipulation. This idea was developed in 1965 and is intended to be used in military
or industrial environments. Eventually, the first applications of an exoskeleton
arm were proposed for telemanipulation [115].

One of the first upper extremities support system is the rancho electric arm [87]
which uses exoskeleton technology and was developed in 1969. This arm-support
system uses tongue-switches to control the actuators. In the period between 1969
and 2000 only a handful of comparable systems were developed. A review of arm-
support systems published in 1995 [41] presents 20 prototypes. Today, there are
tens of prototypes and several commercial devices [36, 71, 74, 108]. From the
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overview of actuated arm-support systems as presented in [90] it can be found
that 93% of the discussed prototypes have been developed after the year 2000.

In contrast to the widely employed industrial robotics, the application of auto-
mated rehabilitation in clinics is rare. In [107] three main reasons are given namely,
robots lack the skills, robots are unsafe, and robots might replace the therapist.
Therapists gain their skills through experience and guidance by expert mentors.
Furthermore, an alert and perceptive therapist adjusts the ongoing therapy on
the patient’s state and progress. When robots would move the arm and are not
intelligent enough to detect contra-indications, they could harm the patient. The
fear for replacement comes from industrial robots that took the place of assembly
workers in factories. In contrast to industrial robotics, rehabilitation robots are
developed to provide an aid during therapy, not to replace the therapist. Hence,
the patient can practise therapy on their own resulting in more therapy at less
costs (i.e. partial automation).

Aside from the use in rehabilitation centres, arm-support systems are being devel-
oped to be used at home. In general, these systems have to be small and mobile
because they are mounted on an (electric) wheelchair. Currently, arm-support
systems that are used at home, provide gravity compensation using a mechanical
spring. Some designs can adjust the tension with an electrical machine. There are
currently no commercially available actuated mobile arm-support systems that can
control more than one degree of freedom. A multi-degree-of-freedom arm-support
can provide more support during activities of daily living. Hence, the level of
independence increases and, consequently, the quality of life improves. To some
extend such systems could also be used for rehabilitation through e.g. serious gam-
ing [89]. Furthermore, such smart arm-support system can extend the time that
an individual with, for example, a neuromuscular disorder is able to use its own
arm before a robotic manipulator is necessary. Recent research shows that the
functional deterioration in wheelchair-dependent boys with Duchenne Muscular
Dystrophy could be delayed with assisted training [52].

To provide the necessary support during the activities of daily living, at least the
shoulder and elbow joint of the human arm have to be mimicked by an arm-support
system. The elbow joint has only one degree of freedom and can be assisted with
an one-degree-of-freedom actuator. The shoulder joint has multiple degrees of
freedom. Furthermore, this joint needs a support a longer arm length and higher
mass than the elbow joint; hence, it requires a higher torque. Consequently, the
largest challenge is to create a design of an actuated solution for the shoulder
joint. Therefore, this thesis is focused on the design of a multi-degrees-of-freedom
actuator.
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1.2 Research goals and objectives

In robotic applications such as arm-support systems, there is always a trade off
between the actuated degrees-of-freedom and the mobility of the robotic arm.
When multiple joints are actuated, a separate actuator is usually used for every
degree of freedom. In addition, arm-support systems need to compensate for
a static load due to the weight of the human arm. Consequently, the multi-
degrees-of-freedom joints result in large, cumbersome, and sometimes complex
constructions that have a predefined sequence of rotation axes.

To reduce the power consumption and provide free robotic arm movement, an
integrated design of a gravity compensator and an actuator with multi-degrees-of-
freedom is proposed. An electromagnetic solution is considered which is capable
of providing these requirements in a configuration such that the active and passive
device does not influence each other’s electromagnetic behavior.

This thesis is concerned with the research, three-dimensional modeling, analysis,
design, and realization of a spherical actuator with integrated gravity compen-
sator for the application in a smart arm-support system. The following objectives
concerning this matter are identified and researched:

• Investigation of the electromechanical specifications for an actua-
tor to mimic a human shoulder joint. A set of specifications is required
to design a realistic spherical actuator with integrated gravity compensator.
These specifications are obtained by combining a categorization of the re-
ported actuated arm-support systems in the literature and an analysis of the
shoulder joint.

• Extension of fast semi-analytical magnetostatic field modeling tech-
niques in the spherical coordinate system. Research is performed on
the application of semi-analytical modeling techniques in the spherical coor-
dinate system. These techniques allow fast and comprehensive evaluations
of multiple actuator and compensator topologies, in contrast to existing nu-
merical techniques such as finite element analysis (FEA).

• Research of topologies and designs of passive spherical magnetic
springs. Arm-support systems have large static loads due to the weight of
the human arm. Therefore, passive compensation can significantly reduce
the power consumption in an arm-support system. Such spherical gravity
compensator should demonstrate a spring type behavior in one rotational
direction while have zero stiffness in the other rotational directions.

• Design of a spherical actuator in which the gravity compensator
can be integrated. It is a necessity to integrate a spherical actuator with
the gravity compensator to actively control the arm-support system. This
unique integrated design has to provide an extended range of motion to
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mimic the shoulder joint movements during a basic set of activities of daily
living. For that reason, an unconventional hemispherical actuator design has
been optimized using the semi-analytical magnetostatic field modeling tools.

• Experimental verification of a realized spherical actuator with in-
tegrated gravity compensator. Realization of the integrated actuator
demonstrates the working principle of the gravity compensator, the spheri-
cal actuator, and their integration. The cross coupling between the gravity
compensator and spherical actuator is validated. Furthermore, the perfor-
mance of the actuator is quantified through measurements.

1.3 Thesis outline

The thesis continues in Chapter 2 with an overview of actuated arm-support
systems. The aim of this chapter is to obtain a set of actuator specifications for
an arm-support system. The retrieved information from the literature about the
applied actuators is investigated and analysed. In addition, the performance of
the human shoulder joint is evaluated to obtain the requirements for a basic set
of activities of daily living.

In Chapter 3, Maxwell’s equations are used to derive expressions that describe
magnetostatic fields in spherical coordinates. These expressions are obtained with
two different methods which result in a spherical harmonic model and a magnetic
charge model. The discrepancies among the obtained models and FEA including
the corresponding calculation time are compared.

Novel spherical magnetic spring topologies, based on only permanent magnets,
are researched in Chapter 4. It is demonstrated that the spring behavior is
determined by the magnetization pattern. The design that complies with the
arm support specifications is optimized with respect to its volume. Subsequently,
manufacturing issues are discussed.

Chapter 5 presents a design methodology for the spherical actuator with inte-
grated gravity compensator. Two optimization procedures are performed. The
first optimization routine determines the actuator topology with the lowest power
dissipation. Multiple topologies for the hemispherical permanent magnet array,
coils and coil arrays are investigated. For the second optimization procedure, a
parametric search is performed on the geometry to achieve the smallest volume
that complies with the thermal specifications.

In Chapter 6, a scaled prototype of the spherical actuator with integrated gravity
compensator is realized. With this prototype, the working principle of the grav-
ity compensator, spherical actuator and their integration are validated through
measurements.

Finally, the conclusions and recommendations of the thesis are given inChapter 7.



Chapter 2

Overview of actuated arm-support
systems and their applications

Abstract - During the last decades a large diversity of actuated arm-support
systems have been developed to provide support throughout daily tasks, during
training or for persons in an industrial environment. The arm support systems
found in the literature are categorized to obtain an overview of the actuator spec-
ifications. In addition, the human shoulder joint is analysed to determine the
torque delivered during the activities of daily living. By comparing the shoulder
joint properties with the categorization a set of requirements for a novel spherical
actuator towards a smart arm support system is obtained.

This chapter is based on
• B. van Ninhuijs, L. A. van der Heide, J. W. Jansen, B. L. J. Gysen, D. J. van der Pijl,

and E. A. Lomonova, ”Overview of actuated arm support systems and their applications,”
Actuators, vol. 2, nr. 4, pp. 86-110, 2013.

• L. A. van der Heide, B. van Ninhuijs, A. Bergsma, G. J. Gelderblom, D. J. van der Pijl
and L. P. de Witte, ”An overview and categorization of dynamic arm supports for people
with decreased arm function” Prosthetics and Orthotics Int., vol. 38, nr. 4, pp. 287-302,
2013.
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2.1 Introduction on arm-support systems

Arm-support systems are developed to complement the capabilities of the human
arm. Assistive arm-support systems augment the arm functionalities of persons
with upper extremity limitations. These systems are used during activities of daily
living (ADL) [42, 46, 48] or for training and rehabilitation purposes [75, 99, 101].
Other arm-support systems enhance the human capabilities of healthy persons
[9, 77, 128] or facilitate teleoperation and virtual reality [8, 27, 84].

Various overviews and reviews on arm-support systems with a different focus are
presented in the literature. The majority of these overviews and reviews con-
sider rehabilitation devices used for neurological lesions. A categorization of these
devices is given by Loureiro et al. [74] on the mechanical construction and the
supporting segments (i.e. shoulder, elbow, etc.). The clinical use is evaluated with
respect to the mechanical degrees of freedom by Riener et al. [108]. Reinkensmeyer
et al. [106] reviews the costs reduction by automating some aspects of therapeutic
help. Van der Heide et al. [43] analyses the user functionality of arm-support sys-
tems designed for use at home. Reviews from a more technical perspective are also
provided in the literature. The global development of exoskeletons is presented by
Guizzo and Goldstein [36]. The progression of control strategies for rehabilitation
devices is evaluated by Marchal-Crespo and Reinkensmeyer [76]. The mechanical
requirements are classified for active upper limb exoskeletons on the supporting
segments, degrees of freedom, actuation technology, power transmission method,
and purpose of the robot by Gopura and Kiguchi [32]. An analysis of rehabilitation
robots including the actuator technology, mechanical construction, and control is
presented in [71]. A more general review of robotic systems is provided by van der
Smagt et al. [118] on actuation principles, sensing methods, and control strategies.

In this chapter a technical overview is given with the focus on the specifications
of the applied actuators in arm-support systems. The found arm-support systems
in the literature are categorized on application, used actuation principle, and the
actuator configuration. The actuator configuration depicts the position of the
actuators with respect to the mechanical construction. For each application a
subdivision is made on the actuation technology which is again subdivided by the
actuation configuration. This categorization is illustrated in Fig. 2.1. Further-
more, the torque required by the human arm during activities of daily living is
determined. The correlation between this torque and the actuator specifications
found in the literature is investigated. In addition, other aspects of the actuators
in arm-support systems are discussed in more detail such as compliance, band-
width, backdrivability, and the degrees of freedom. More insight is gained in the
operation of actuators in arm-support system with this analysis.

The literature study in this chapter has been performed with the Inspec database.
The majority of the used data has been published in journals. The reported results,
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Figure 2.1: Proposed overview of the arm-support systems

facts, numbers, and recommendations have not been validated.

2.2 Actuated mobile arm-support requirements

2.2.1 Applications

The arm-support systems found in the literature can be categorized on their ap-
plications namely, ambulatory, rehabilitation, and industrial applications. These
categories are in relation with the usage environment such as at home, rehabilita-
tion center or in the workplace. The functionality necessary for these applications
define the requirements of the arm-support system.
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Ambulatory

Ambulatory arm-support (AAS) systems are intended for users with diminished
arm functionality, due to e.g. neuromuscular disorders, to help during the activities
of daily living. These activities consist of, for example, eating, drinking, using the
computer or writing. Usually, a partial range of motion (ROM) of a healthy
human body is covered to compensate for the muscle activity lost or to avoid
muscle fatigue. For this category of arm-support systems, it can be desirable to
be inconspicuous; hence, stigmatization can be avoided. Additionally, a certain
movement characteristic can be required, such as following the arm movements
naturally or providing a stable support. Flexibility and simple mounting, e.g. on
a wheelchair, are often required. When mounted on an electric wheel chair, the
energy consumption has be small to avoid recharging of the wheelchair battery
during the day. A typical example of this category is the Armon arm-support
system [78]. This work shows the evolution of the arm-support design to provide
support during activities of daily living. It is also suggested that AAS systems
can be used for people who suffer from, for example, repetitive strain injury and
muscle fatigue.

Rehabilitation

Rehabilitation arm-support (RAS) systems are developed to assess the human
arm impairments [123] and to regain the arm functionality by training [101]. Peo-
ple who suffer from, e.g. the repercussions of a stroke or an accident benefit from
these support systems. The research of Jansen et al. [52] shows that the progressive
neuromuscular disorder Duchenne can be delayed with assisted training. A RAS
design is proposed by Perry et al. [101] that can provide assistance during the ther-
apeutic exercises over the range of motion required for the activities of daily living.
Usually, RAS systems are situated in rehabilitation centers, and are designed to
be stationary. However, some devices provide rehabilitation at home [3, 130, 135].
These systems have a small lightweight mechanical construction; hence, they are
easy to carry, occupy a small volume, and have a low power consumption. For
therapy sessions, it can be beneficial to store the progress for monitoring, which
is used to evaluate the effectiveness of RAS systems by Riener et al. [108]. In
general, stationary RAS systems have a larger volume, more complex mechanical
structures, and more powerful actuators in comparison with mobile rehabilitation
systems and AAS systems.
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Industrial

Industrial arm-support (IAS) systems are intended to enhance the physical capa-
bilities of healthy humans or to use them as master/slave devices. The designed
IAS system of Martinez et al. [77] enhances the human capabilities to perform
heavy physical work and to improve ergonomics. For such functionality, an ad-
ditional energy supply is necessary. Master/slave devices are used to carry out
procedures remotely (i.e. teleoperated) such as dismantling nuclear installations
[25], or in virtual environments [8]. In the research of Frey et al. [27] it has been
shown that haptics can provide the user a more realistic experience in this environ-
ment. In general, enhancing the human capabilities requires high torque, whereas
the teleoperated and virtual environments only need to provide haptic feedback.

2.2.2 Actuation principle

In the literature, three actuation principles and one damping method can be dis-
tinguished: electromagnetic, pneumatic, hydraulic, and semi-active damping.

Electromagnetic actuators

Electromagnetic actuators convert electrical energy into mechanical motion. The
majority of arm-support systems use electrical rotary motors which provide one-
degree-of-freedom (DoF ) rotary motion. Most of the applied electrical motors are
permanent-magnet machines. From the permanent magnet motors, brushed DC
motors [3, 33, 79, 83, 86, 87, 94, 95, 103] and brushless DC motors [31, 48, 60, 104,
110, 130] are selected the most.

Permanent magnet brushed DC motors are excited using brushes and a DC source
such as the battery of an electric wheelchair. Brushless DC motors (without
brushes) have more than one phase, in general three phases, that need excitation
to produce a torque. For both machine topologies, a drive is required to control
the mechanical motion. This drive is usually not taken into account in the power-
to-weight calculations. The catalog [2] shows that for the electrical machine sizes
used in the arm-support systems found in the literature, the brushed DC motors
provide a higher efficiency, and higher torque than brushless motors.

High-speed and low-torque electrical motors have a smaller volume and are pre-
ferred over high-torque low-speed electrical motors to avoid large and cumbersome
constructions and to lower the costs. The output speed can be reduced and the
torque can be increased by using gears. Commonly, gear ratios of 100:1, 300:1 or
even higher are selected. The disadvantage of such high gearing is their low effi-
ciency. For example, the efficiency of standard Maxon gears [2] are equal to 70%
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(100:1) to 50% (300:1 and higher). These values are obtained when the maximum
continuous torque is applied to the gear.

Pneumatic actuators

Three different pneumatic actuators are applied in arm-support systems namely,
pneumatic cylinders, McKibben muscles, and pneumatic muscle actuators (pMAs).

In pneumatic cylinders, pressurized air is injected which produces a force that
moves the piston in the cylinder in a linear direction. Pneumatic cylinders can
be double-acting (push and pull) or single-acting (push or pull). The McKibben
muscle injects pressurized air into a pneumatic bladder. As a result, the bladder
expands and the end parts contracts. This actuator is also referred to as an arti-
ficial muscle because it is similar to the human muscle. The McKibben muscle is
only single-acting (pull). The pMA presented by Davis et al. [23] is an improve-
ment of the McKibben muscle using enhanced modeling techniques and a novel
construction. In [77] the modeling and control of a commercial pneumatic muscle
required extra work due to its high non-linearity, in comparison with electrical DC
machines.

The power-to-weight ratio of pneumatic actuators considering only the cylinder
is high. However, the required compressor is not included in this ratio. The air
can also be compressed externally and transported to the actuator. However, for
mobile applications this can be very inconvenient, especially for AAS systems.
Additionally, pneumatic actuators are often associated with noise which can be
experienced as unpleasant.

Hydraulic actuators

From the applied actuator principles in arm-support systems, it is shown by Brown
et al. [11] that hydraulic actuators have the highest power-to-weight ratio and
positional stiffness. Similar to the pneumatic actuator, this ratio is determined
without the hydraulic pump. In the literature, the following hydraulic actuation
principles can be distinguished: hydraulic cylinders [67], a hydraulic bilateral-servo
actuator (HBSA) [127], and a rotational hydroelastic actuator rHEA [122].

With a hydraulic pump, fluid is injected into a hydraulic cylinder and, similar
to the pneumatic actuator, a force is generated to move the piston in a linear
direction. Hydraulic cylinders can be constructed to be double-acting or single-
acting. To increase the actuators force output and decrease the mass of the arm-
support system a HBSA is proposed by Umemura et al. [127]. The HBSAs are
very similar to the hydraulic cylinders, however, an electric motor is combined
with a lead screw to pressurize the fluid. The motor is directly attached or placed
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very close to the hydraulic cylinder. Therefore, this combination can be seen as
one actuator. This actuator has low transmission losses because of the nearby
placement of the compressor. If multiple HBSAs are incorporated, each HBSA
requires its own electric motor, whereas multiple hydraulic cylinders require only
one hydraulic pump. The rHEA is a rotational hydraulic actuator combined with
a mechanical spring. Comparable with hydraulic cylinders, a rotational hydraulic
actuator uses blades to produce a force that is converted to a rotational motion.

The risk of leakages in hydraulic actuators, even when carefully designed, is un-
derlined by Brown et al. [11]. Therefore, a high level of maintenance is required.

Semi-active damping

Technically, semi-active dampers cannot be classified as an actuator since they
provide a (speed-dependent) reaction force and not an active force. Semi-active
dampers consist of a piston, and a fluid which viscosity can be adjusted using an
electromagnetic field. One of the semi-active dampers used in arm-support systems
is the magnetorheological (MR) damper. By using this damper as a clutch, it was
found in [39] that a minimal reaction torque is present when no magnetic field
is applied, and the reaction torque can be enlarged by increasing the magnetic
field. The semi-active damper design proposed in [14] for arm-support systems to
suppress tremors shows a reaction torque of 1.1 Nm.

2.2.3 Compliant and back-drivable actuation

A compliant actuator moves when an external force is applied, and it returns to its
original state when the force is no longer present. This corresponds with an elastic
output behavior. Compliant actuators are designed into arm-support systems to
provide more comfort [103], safety [134] or a combination of both [67]. These
actuators have a smaller impact force compared to stiff actuators, and a sudden
external force on the output of the system is less likely to damage the mechanical
construction or gears.

A back-drivable actuator moves when an external force is applied, and it does
not return to its original state when the force is no longer present. Direct-drive
electromagnetic actuators can be highly back-drivable if the controller does not
anticipate on the external force. A comparison between direct-drive and geared
actuators has been presented in [141] which underlines this property. In this
work, it is concluded that with a rigid (i.e. non back-drivable) implementation,
the gearbox can be damaged by a sudden impact of a high external force on its
output.

Pneumatic actuators are inherently compliant because of the compressibility of
air [82, 124, 126, 134, 137]. For other actuation principles such as, electromag-
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netic actuators with high gearing and hydraulic actuators, back-drivability and
compliance can be accomplished through hardware and software. An often used
hardware solution for compliant actuation is the series elastic actuator (SEA)
[67, 96, 103, 122]. The SEA has a mechanical spring in series with the actuator
output and the mechanical construction. An adjustable compliant actuator was
investigated in [130, 131] by controlling the tension of the mechanical spring with
an additional electrical motor. A SEA can also be applied to pressurize the fluid of
a hydraulic disk brake for passive actuation, as concluded by Stienen et al. [121].
Back-drivability is achieved by Johnson et al. [55] with slip clutches to provide
safety for people with spasms. Compliant and back-drivable systems can also be
realized through control. By measuring the force exerted on the output of the
actuator with an additional sensor, the position can be adjusted [13, 27, 33, 42].

Actuators can be made inherently compliant or back-drivable with a hardware
solution, whereas with a software solution a delay exists that limits the maximum
achievable actuator bandwidth. Therefore, a hardware implementation copes bet-
ter with sudden impacts. However, adding a mechanical spring, introduces more or
lower resonances in the mechanical system that can result in a reduction of band-
width. In human-machine interactions, compliant and back-drivable actuation by
hardware is preferred because of safety [106]. When no power is available or when
a sudden power loss occurs, compliant and back-drivable actuation achieved by
hardware is still present, whereas a software controller is no longer functional.

2.2.4 Actuator configuration

The actuator configuration defines the position of the actuators within the mechan-
ical construction of the arm-support system. Several actuation configurations can
be distinguished: directly-on-the-joint, externally positioned, and gravity compen-
sated. In addition, the inertia, the actuator bandwidth, the number of DoFs , and
the difference between exoskeleton and end-effector are discussed in this section.

Configurations

The mechanical construction of the directly-on-the-joint arm-support system is
illustrated in Fig. 2.2a for rotational actuators and in Fig. 2.2b for translational
actuators. In this configuration the actuators are placed close to or aligned at the
joint that they control. Both illustrations show one DoF in the shoulder joint and
one DoF in the elbow joint.

Externally positioned actuators are usually placed on the stationary part of the
arm-support system and use cable-drive transmissions to transfer a force or torque.
In the literature two mechanical constructions can be distinguished namely: an
exoskeleton design and a cable suspension design. The exoskeleton design uses
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Rotational actuators

(a)

Translational actuators

(b)

Figure 2.2: Schematic examples of directly-on-the-joint actuation configuration for: (a)
rotational, (b) translational.

cable-drive transmission that follows the human arm as illustrated in Fig. 2.3a
[6, 98, 101], whereas the cable suspension design approaches the human arm from
above as shown in Fig. 2.3b [73, 75, 94, 111]. A cable suspension is able to provide
a larger range of motion with less DoF compared to the exoskeleton structure.
A cable suspended RAS systems is developed in [111] with only three degrees of
freedom that can include non-trivial spatial paths for upper limb rehabilitation.
In [75, 94], the constructions are optimized to include a large range of motion.

Devices with gravity compensation generally use a compressed mechanical spring
that can be adjusted by an actuator as illustrated in Fig. 2.4. This compressed
mechanical spring provides a passive force; hence, no energy is consumed. Designs
are proposed in which the user can adjust the spring tension with a button to
account for extra load, e.g. to lift a cup of water [46, 59]. These designs provide
support in only one DoF , and therefore, have less functionality compared to the
aforementioned actuated arm-support systems. According to [7] the long-term
acceptance of such systems depend on simplicity and cosmetics.

Inertia

In general, multi-DoF arm-support systems which use directly-on-the-joint actu-
ator configurations have stacked single-DoF actuators. This is visualized in the
simplified schematic in Fig. 2.2a. In this figure, the first actuator (i.e. the shoulder
joint actuator) of the 2-DoF arm-support system needs to account for the gravity
and inertia of the second actuator (i.e. the elbow joint actuator). The more DoFs,
the more actuators are stacked, which results in bulky systems.

The stacked actuator construction is avoided by externally positioning the ac-
tuators, for example, at the base of the arm-support system. Because of this
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Pulleys

Cable transmissionActuators

(a)

Cable transmission Actuators

(b)

Figure 2.3: Schematic examples of external positioned actuation configuration for: (a)
placed on the stationary part, (b) cable suspended.

Pulleys

Mechanical spring

Actuators

Figure 2.4: Schematic example of adjustable gravity compensation using mechanical
springs.
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positioning, the mass of the dynamic part of the arm-support system decreases.
Additionally, a low-mass structure has less inertia which provides a better dynam-
ical performance. By placing the actuators externally, a mass reduction of 60%
was achieved in [101]. To exert the torque at the joint a cable-drive transmission
can be used. The analysis in [75] shows the disadvantages which are: maintaining
the tension of the cable-drive transmission, friction or even variable friction can
be caused by the cables and pulleys, only a pulling force can be achieved and the
mechanical design poses complexity e.g. cables may not interfere with the user’s
movement.

A combination of directly-on-the-joint and externally positioned actuation is also
possible. Such design is proposed in [99] to create space near the subject’s head.
Another combination of a pneumatic actuator as shown in Fig. 2.2b and the grav-
ity compensation as shown in Fig. 2.4 is presented in [134]. In this design, the
pneumatic actuator is placed parallel to the mechanical spring; hence, the actua-
tor has to account for only the acceleration and deceleration of the arm-support
system.

Bandwidth

For arm-support systems, a closed-loop control bandwidth is desirable which has
the same or a higher range than that of a human. These human properties have
been investigated by Brooks [10]. From a survey it was shown that the position
control bandwidth of a healthy human depends on the experience that is present.
For newly introduced actions, the bandwidth is in the range of 1 Hz-2 Hz, for repet-
itive actions the bandwidth range is 2 Hz-5 Hz, for learned actions a bandwidth of
5 Hz can be obtained, and for reflexive actions 10 Hz is reached.

Each actuator configuration has its own set of specifications and adding hardware
such as gears and mechanical springs can have a significant impact on the system
bandwidth. Electrical actuators have a high force control bandwidth (typically
higher than 100 Hz) that is in general significantly higher than the mechanical
resonances of the arm-support system. These resonances occurred around 6 Hz to
8 Hz in [48, 101] and 40 Hz in [116]. The combination of a low gear ratio (35:1)
and a brushed DC motor limited the mechanical bandwidth to approximately
50 Hz in [116]. The SEA developed in [103] consists of a brushed DC motor and
a spring with a stiffness of 2.51 Nm/rad, resulting in a force control bandwidth of
3.15 Hz. The rHEA of Stienen et al. [122] has a torque bandwidth of 18 Hz with
a spring stiffness of 150 Nm/rad. A position control bandwidth in the range of
6.5 Hz-7.2 Hz was achieved in [67] using a linear hydraulic actuator in series with
a adjustable mechanical spring.

Pneumatic actuators have a bandwidth in the same range of the mechanical reso-
nances. Using pneumatic muscles, a force control bandwidth of 3.5 Hz was achieved
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while tracking a 5 cm peak to peak sine wave in [134]. In [12] A positional control
bandwidth of approximately 1.4 Hz was achieved.

Degrees of freedom

The human arm can be simplified by 7 active DoFs, namely: 3 DoFs for the shoul-
der joint, 1 DoF for the elbow, 1 DoF for the forearm and 2 DoFs for the wrist
[18, 42, 85]. Additionally, active or passive DoFs can be added to e.g. provide joint
alignment with the operator’s physiological joints, although these DoFs are redun-
dant. Usually, a limited number of DoFs are applied to decrease the complexity
of the mechanical design and the control strategy. It is not necessary to provide 7
DoFs of support during ADL, for example gravity compensators can have 5 DoFs
[8, 46, 59] (3 DoFs for the shoulder, 1 DoF for the elbow, and 1 DoF for the
forearm). In [117], the applicability of 1 DoF to suppress tremors is investigated.
The system in [27] provides in total 10 DoF (7 DoFs for the arm and 3 DoFs for
the fingers). In [116] an exoskeleton system is designed with 14 DoFs (6 DoFs for
the shoulder, 2 DoFs for the elbow, 1 DoF for the forearm, 2 active DoFs and 3
passive DoFs for the wrist) to mimic the human arm.

Support type

The design of the arm-support system depends on the type of support that is
demanded. Different designs can be applied, such as placement of the arm-support
system behind, aside, or in front of the user as illustrated in Fig. 2.5.

An exoskeleton type of arm-support system is attached to the upper arm, forearm
and sometimes also the wrist/hand as shown in Fig. 2.5a [8, 31, 42, 55, 67, 75,
101, 104, 116]. With this configuration, each individual movement of the limb
can be controlled accurately; this can be beneficial for training. A disadvantage is
the possible damage that occurs in the human joints when these are not perfectly
aligned with the exoskeleton joints. Especially the shoulder joint is fragile since it
is easily dislocated.

An arm-support system can consist out of multiple systems that provide sup-
port independently from each other as illustrated in Fig. 2.5b. These systems are
both attached to the solid world and the human arm. In [49, 125] two commer-
cially available industrial robotic arms are used. Another commercial robot, the
HapticMaster, is applied for exploring the possibilities of using virtual reality in
rehabilitation [72] and for assessment of human motor impairments [123].

Providing support at a single point, e.g. at the forearm from the back or aside the
user, as illustrated in Fig. 2.5c, is referred to as an end-effector [46, 59, 103, 127,
134]. Such a device can also be positioned in front of the user in [4, 60] and is
attached to the forearm and human hand as illustrated in Fig. 2.5d. End-effectors
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provide support on one point of the human arm; hence, no joint alignment is
required. This simplifies the installation and there is no direct danger of damaging
a joint. Furthermore, the kinematics do not have to be exactly the same as a human
arm. However, the motion of the human arm cannot be controlled accurately.

2.2.5 Specifications

The specifications of the applied actuators in arm-support systems, which have
been found in the literature, are analysed in this section. These systems are cate-
gorized according to their application, the actuation principle, and the actuation
configuration. A summary is given in Tables 2.1, 2.2 and, 2.3 for the three applica-
tions, namely ambulatory, rehabilitation, and industrial, respectively. In general,
it is found that all arm-support systems can be placed in one of these three tables,
however, some of them can be placed in more than one. In this case, the found
system is placed in the category with the most comparable actuators based on
their volume. In each table, the developed prototypes are sorted on their publica-
tion year. In this thesis the focus is on the shoulder joint and, therefore, the speed
and power of this joint are included.

Ambulatory arm-support systems

The number of publications that give the specification of the actuator is too limited
to obtain a trend from Table 2.1. The directly-on-the-joint actuation configura-
tions have a torque range of 7 Nm-23 Nm. An externally positioned actuator is
able to provide a torque of 98 Nm for the shoulder joint and 28.4 Nm for the el-
bow joint [34]. The distinction in torque between these configurations is explained
by the difference in power and speed. The gravity compensators only specify a
force to indicate the amount of support on the forearm. The systems with gravity
compensation have a comparable force of 45 N and 50 N [46, 59].

Only one publication specified the force of the applied pneumatic muscle [134].
The applied actuator in this work is able to provide a force of 220 N and has the
most power usage of the listed AAS actuation specifications.

There is one arm-support system with a hydraulic actuator which specifies the
torque properties [127]. This actuator is the HBSA and provides an elbow torque
of 89 Nm. The shoulder joint torque in this arm-support design provides a torque
of 63.6 Nm which is lower than the elbow joint. This difference is the result of
the applied mechanical construction of the arm-support system. Furthermore, this
arm-support system has the highest torque for the elbow compared with the other
actuation principles.
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(a) (b)

(c)

(d)

Figure 2.5: Arm-support systems configurations: (a) exoskeleton, (b) multiple end-
effectors, (c) end-effector placed behind or aside the user, (d) end-effector
placed in front of the user.
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Rehabilitation arm-support systems

In rehabilitation arm-support (RAS) systems, a large variety of actuator configu-
rations are applied which results in a large diversity of force, torque, and power
specifications as shown in Table 2.2. The directly-on-the-joint actuator configu-
ration presented by [86] provides a force of 151 N with a ball screw and a 150 W
electric motor. Only one publication specifies a shoulder joint torque which is
20 Nm [13]. This arm-support system has a remarkable high speed specification,
namely 1146◦/s. This speed is by far the highest compared to the other arm-
support systems.

Two externally positioned electromagnetic actuators have a specified torque that
has a large variation for the shoulder joint, namely 62 Nm and 200 Nm, whereas,
for the elbow joint a torque of about 32 Nm is applied. The force range of the cable
suspended arm-support systems [75, 111] are both in the same range, namely 45 N-
50 N. The power needed to produce 50 N in [111] is 231 W, whereas the dedicated
RAS in [86] produces 150 N and requires only 150 W. This difference is caused by
incorporating a high gear ratio by means of a ball screw.

The two pneumatic actuators provide a torque of 15 Nm and 30 Nm for the shoul-
der joint. The specifications of the elbow joint are 6 Nm and 15 Nm. The arm-
support system in [124] uses the same torque for the shoulder joint as for elbow
joint namely, 15 Nm. The other system in [126] produces a torque of 30 Nm for
the shoulder joint and 6 Nm for the elbow joint.

The torque provided by the hydraulic actuator, 15 Nm, is in the same range as the
torque generated by the pneumatic actuators. However, the hydraulic actuator
provides a speed that is 9.38 times higher. Therefore, this actuator has a larger
power consumption compared to the pneumatic actuator.

In the listed specifications, some numbers standout such as the 200 Nm torque
used for the shoulder joint actuation [99] and the applied force of 151 N in [86].
The force of 151 N can be explained because the majority of this force is necessary
to lift the arm support itself, however, the 200 Nm is probably oversized.

Industrial arm-support systems

Two types of arm-support systems can be distinguished in the literature, mas-
ter/slave devices and for enhancement of the human body. For master/slave de-
vices, a haptic feedback is provided in the range of 19 Nm to 20 Nm for the shoulder
joint and 4 Nm to 10 Nm for the elbow joint [8, 116]. A pneumatic actuator is
employed for enhancing the human body and can exert a force of 200 N [128].
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Table 2.1: Specified actuator properties of the torque and force applied in AAS systems

Actuation technology Actuator configuration
Tmax [Nm]

Fmax [N] Speed Power [W] Reference Publication year
Shoulder Elbow

Electromagnetic
actuators

Directly-on-the-joint
23 23 - 48◦/s 19 [87] 1969
15a 7.2a - 75◦/s 19.6 [55] 2001

External positioned 98 28.4 - 95◦/s 185b [34] 2008

Gravity compensation
- - 45 0 0 [46] 2006
- - 50 0 0 [59] 2007

Pneumatic Directly-on-the-joint - - 220c 1.1m/s 242 [134] 2006
Hydraulic Directly-on-the-joint 63.6 89 - - - [127] 2009

aDesign specifications
bCatalog specification
cpressure of 600kPa used
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Table 2.2: Specified actuator properties of the torque and force applied in RAS systems

Actuation technology Actuator configuration
Tmax [Nm]

Fmax [N] Speed Power [W] Reference Publication year
Shoulder Elbow

Electromagnetic
actuators

Directly-on-the-joint
- 28 151 - 150d [86] 2006
- - 12 - - [49] 2007
20 - - 1146◦/s 400 [13] 2008

Externally positioned

- - 50 - 312d [111] 2007
62e 33e - - - [101] 2007
200 32 - 35◦/s 122 [99] 2008
- 45 - - [75] 2012

Pneumatic Directly-on-the-joint
30 6 - 64◦/s f 33.5f [126] 2003
15 15 - 50◦/s 13 [124] 2007

Hydraulic Directly-on-the-joint - 15 - 469 ◦/s fg 123 fg [67] 2011

dCatalog specification of rated power
eTorque based on gear ratio
fEstimated from figure
gA 1.1kW compressor used

Table 2.3: Specified actuator properties of the torque and force applied in IAS systems

Actuation technology Actuator configuration
Tmax [Nm]

Fmax [N] Speed Power [W] Reference Publication year
Shoulder Elbow

Electromagnetic
actuators

Directly-on-the-joint 20 10 - - - [8] 1994
Externally positioned 19.3 4.5 - 150h [116] 2011

Pneumatic Directly-on-the-joint - 200i 10◦/s - [128] 1999

hCatalog specified rated power
ipressure of 400kPa used
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2.2.6 Discussion of the literature research

In the literature only a limited number of publications provided the specifications
of the actuators applied in the arm-support systems. The AAS system category is
the most related to the smart arm-support system researched in this thesis. For
this category only seven arm-support systems are listed that provide the actuator
specifications. From this list, no coherent set of requirements can be derived, how-
ever, an overal typical torque of 20 Nm is shown. In addition, the torque range
of the directly-on-the-joint configuration is equal to 7 Nm-23 Nm and corresponds
with the desirable functionality of the smart arm-support system. The obtained
actuator specifications show a high dependency on the application and the func-
tionalities. These elements influence the eventual design of the arm-support system
and, therefore, the requirements of the actuators.

From this literature study, it appears that the shoulder joint poses the most chal-
lenges for the mechanical construction and actuator design. The highest torque
is required compared to the elbow, forearm and wrist. Furthermore, this joint
has multiple degrees of freedom. By designing a novel multi-degree-of-freedom
actuator which can mimic the shoulder joint, the complexity of the arm-support
construction can be significantly reduced.

2.3 Human shoulder joint specification

The intention of the smart arm-support system is to assist during activities of
daily living. Therefore, the set of requirements can also be obtained by analysing
the movements of the human arm during the activities of daily living. A set of
torque requirements for the actuator design can be derived with this analysis. In
addition, the performance to lift an additional mass such as a can or cup is taken
into account.

2.3.1 Movement definitions

The human shoulder consists of multiple bones (collarbone, shoulder blade, upper
arm bone) that form a ball and socket joint. This joint is kept in position with
different muscle groups that can produce movements in multiple degrees of free-
dom. Each movement has a name that depends on the used muscle group. These
movements are flexion, horizontal flexion, and rotation as illustrated in Fig. 2.6
[57]. At rest, the arm points to the ground, with the palm of the hand pointing
towards the human body as shown in Fig. 2.7. For the activities of daily living,
only a reduced set of arm movements is considered.
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Figure 2.6: Shoulder movements: (a) flexion, (b) horizontal flexion, (c) rotation.

Figure 2.7: The rest position of the human arm.
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Table 2.4: Male human arm length of Dutch adults of 20-30 years using a gaussian dis-
tribution [1]

Dimensions in Mean Standard deviation 90% 95%
sitting position [m] [mm] [mm] [mm]

Shoulder height 624 34 44 56
Elbow height 262 28 36 46
Elbow grip length 364 20 26 34

Shoulder height

Elbow height

Elbow grip length

Figure 2.8: The parameters of the human arm as defined by the DINED project [1].

2.3.2 Properties of the human arm

The uniqueness of every human body results in different dimensions of the human
arm. Therefore, a range is considered that provides a maximum and minimum
torque requirement. The dimensions of a large quantity of Dutch subjects are
obtained in the DINED anthropometric database [1]. This database provides a
Gaussian distribution of different arm lengths as defined in Fig. 2.8. The arm
length of male subjects in the age of 20-30 years has a mean and standard deviation
as listed in Table 2.4. The length of the upper arm, the elbow height and the
shoulder height have a variation. The database has not specified the length of the
upper arm separately. However, from the analysis of the shoulder height and the
elbow height, it shows that the elbow grip length is about the same length as the
upper arm. Hence, the elbow grip length is also used as upper arm length.

The mass of all body parts have a ratio with respect to the total body mass.
This ratio has been obtained from [40] and is listed in Table 2.5. According to
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Table 2.5: Percentages of the body part with respect to the total human weight [40]

Body part Ratio [%]

Head 7
Trunk 43
Upper arm 3.5
Forearm 2.3
Hand 0.7
Thigh 11.4
Lower leg 5.3
Foot 1.8

Table 2.6: Estimated human arm specifications of people with diminished arm function-
ality.

Body part
Mass [kg]
min max

Upper arm 1.1 2.2
Elbow grip length 0.90 1.8
Total 2.0 4.0

the DINED database the mean body mass of a male between 20-30 years is 80 kg
with a standard deviation of 10 kg. This results in a range of minimal 4.29 kg and
maximum 6.11 kg for the human arm. However, the arm support is intended for
people with diminished arm functionality. Especially, for subject with neurological
disorders, the muscles deteriorate and the mass of the human arm decreases. It
is assumed that this deterioration causes a reduction of about 2 kg of the human
forearm. This results in a human arm mass range of minimum 2 kg and maximum
4 kg as listed in Table 2.6.

The required acceleration is estimated with an inertial measurement unit, iNEMO,
attached to the wrist of a healthy person. This estimation is based on movements
during activities of daily living such as drinking coffee and using the computer.
The resulting acceleration of the shoulder joint were obtained for movements with
a stretched and 90◦ bent elbow. A range for the angular acceleration is obtained
which is listed in Table 2.7. These accelerations take the range of the human arm
length and mass into account.

During the activities of daily living, it is sometimes required to lift an additional
mass such as a cup of water or a can of cola. This extra mass also needs to be
considered in the arm support design. For the requirements of the arm-support
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Table 2.7: Angular acceleration of the shoulder joint with a stretched and bent forearm
measured on a healthy subject

Shoulder joint α [rad/s2]
min max

Stretched arm 2.3 5.0
Elbow bent 90◦ 4.5 7.6

system the minimum mass that needs to be considered is 0.35 kg (can of cola) and
a maximum of 0.5 kg.

2.3.3 Torque analysis

Static

A static torque is required from the shoulder joint to keep the arm in a steady
position. To calculate this torque for the human arm, an equal distributed mass
is assumed as illustrated in Fig. 2.9. The length difference of 2 mm between the
elbow grip length and the upper arm length together with the mass difference of
0.5% are neglectable with respect to the total length and mass. The upper limit
of this static torque for the shoulder joint, (Tsj), can be calculated with

Tsj =luaFgs (2.1)
=lua (mua +mf +mh) g (2.2)

where lua is the length of the upper arm, Fgs is the gravity force of the upper arm
and forearm, mua is the mass of the upper arm, mf is the mass of the forearm,
mh is the mass of the hand and g is the gravitational acceleration. The torque
required to lift an additional object is not included in the distributed mass. The
weight of this object is not a static load such as the human arm and, therefore,
needs to be actively compensated. Hence, the torque required from the shoulder
joint to lift an additional mass, Tsa, is obtained by

Tsa = (lua + legl)Fga (2.3)
= (lua + legl)madd g. (2.4)

where legl is the elbow grip length, madd is the additional mass, and Fga is the
gravity of the additional mass. This equation accounts for the torque required for
a stretched arm; hence it provides the upper torque limit. If the elbow is bent at
90◦, the elbow grip length will be zero.



2.3: Human shoulder joint specification 27

Tss

upper arm forearm hand additional mass

Fgs
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lua legl

Figure 2.9: Used model of the human arm to obtain the static torque requirements.

Table 2.8: Required static torque for the gravity compensation at β = 90◦

Shoulder flexion
Torque [Nm]

Additional mass Human arm
min max min max

Stretched arm 2.2 3.9 6.5 16
Elbow bent 90◦ 1.1 1.9 4.3 10

Motion in the vertical direction needs to account for the gravity force as illustrated
in Fig. 2.10a. The static torque to counteract gravity is obtained by

Tss(β) = (Tsj + Tsa) sin(β). (2.5)

This equation shows that the movement of the human arm requires a sinusoidal
torque characteristic as function of the β displacement. Furthermore, it indicates
an instable point at the initial position of β = 0◦. Movement in the horizontal
plane, indicated as the γ-direction in Fig. 2.10b, is not dependent on the gravity
force. Hence, during this movement the static torque has to remain constant.

For the sinusoidal torque characteristic the torque amplitude value is at the arm
position of 90◦ shoulder flexion movement. Therefore, the torque is obtained in
this position and the required torque in the other positions can be obtained with
(2.5). The static torque is determined with the properties obtained of the human
arm as listed in Table 2.6 and the specified additional mass. The results for this
load are listed in Table 2.8 for a stretched arm and the arm with the elbow bent
90◦.
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Figure 2.10: Schematic representation of a human upper limb and the torque generated
by the shoulder joint: (a) top view, (b) side view.
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upper arm forearm hand additional mass

lua lgel

αs

Figure 2.11: Used model of the human arm to obtain the dynamic torque requirements.

Dynamic

The accelerations of the human arm and lifting an additional mass during activities
of daily living are considered as the dynamic behavior. The dynamic torque is
determined with the human arm model as illustrated in Fig. 2.11. With an equally
distributed arm mass, this torque can be obtained for the shoulder joint by

Tds = (mua +mf +mh) l2uaαs (2.6)

where αs is the angular acceleration. The torque required to accelerate the addi-
tional mass is obtained by

Tda = madd (lua + legl)
2
αs. (2.7)

This equation gives the upper torque limit required to accelerate the additional
mass. With the obtained acceleration measurements as listed in Table 2.7 the
dynamic performance range is obtained and listed in Table 2.9.
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Table 2.9: Required torque for the acceleration of the additional mass and human arm

Shoulder joint
Torque [Nm]

Additional mass Human arm
min max min max

Stretched arm 0.33 1.6 0.50 3.2
Elbow bent 90◦ 0.17 0.60 0.44 2.7

The dynamic performance of the shoulder joint only needs to consider the ac-
celeration and deceleration to a certain speed. No torque is necessary when the
human arm is at a constant speed and its gravity is compensated. Therefore,
the derived torque requirement is not a continuous specification. For the design
of the actuator, these specifications will be translated into a continuous torque
requirement.

2.3.4 Range of motion

By analysing the activities of daily living, a range of motion for the shoulder joint
can be found. The most essential activities to be performed independently are
eating and drinking. Other activities such as writing and using a computer are
also taken into account. By monitoring the shoulder joint during these activities,
a movement space as listed in Table 2.10 is found. This table shows that for the
daily routine a range of minimal 55◦ and maximal 90◦ is required.

Activities such as grabbing something from the floor or petting a small dog are not
considered because these tasks would also involve the motion of the upper body.
Other activities for which a larger angle than 90◦ are necessary such as reaching to
a top shelf or opening a hanging cupboard are not included. Instead of providing
support for these activities, it is easier to adjust the surroundings. For example,
lowering the kitchen counter such that people in an electric wheelchair can cook
on it.

2.4 Actuator design consideration

Comparison of the results from the shoulder joint analysis and the literature
overview shows that there is a correlation between these two. The human shoulder
joint requires a static torque range of 4.3 Nm to 16 Nm and an active torque range
of 0.56 Nm to 3.2 Nm. This range is comparable with the range found for the AAS
directly-on-the-joint configuration which is 7 Nm to 23 Nm.
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Table 2.10: Important activities of daily living and their range of motion specifications

Tasks Movement Min angle [◦] Max angle [◦]

Eating, drinking
Flexion 0-20 75-90
Horizontal flexion 0-20 75-90
Rotation 0-20 75-90

Computer, writing
Flexion 0 10-15
Horizontal flexion 0 10-15
Rotation 90 10-15

To mimic the shoulder joint during the activities of daily living at least three de-
grees of freedom are necessary. In the literature, this is achieved with complex me-
chanical constructions that have a predefined sequence of rotation axes. To avoid
this complexity and the predefined sequence, a multi-degree-of-freedom actuator
can be employed that has a ball and socket joint construction similar to the human
shoulder joint. The inclusion of multiple degrees of freedom in a single electrical
actuator such as planar motion [51], spherical motion [139] and, combined rotary
and linear motion [81] has been intensively researched. From these actuators,
the spherical actuator provides the suggested ball and socket joint construction.
This actuator topology is a direct drive and, therefore, it is back-drivable and can
be made compliant through control. Because of these properties, the spherical
actuator is considered for the smart controlled arm-support system.

Only support during activities of daily living is considered with the obtained set
of requirements for the smart arm-support system. Such an arm support can
also provide rehabilitation. In general, RAS systems have a higher torque range
compared to the AAS systems as found in the literature. Therefore, only a limited
set of rehabilitation exercises can be performed and to include the complete set
an actuator with a higher torque specification is needed.

2.5 Conclusions

The arm-support systems obtained from the literature have been divided based on
their applications, actuation technology, and actuator configuration. Three differ-
ent applications have been distinguished namely, ambulatory, rehabilitation, and
industrial. Ambulatory arm-support systems are used at home and their power
consumption is often limited by a mobile power source such as a battery. A wide
range of rehabilitation arm-support systems exists for a wide variety of neurologic
lesions and to provide training possibilities. Therefore, more flexibility is required
for this application compared to the ambulatory application. However, mobile
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rehabilitation arm supports are usually dedicated and, therefore, less flexible. In-
dustrial arm-support systems are designed for enhancement of the human body
or to function as a master/slave device. For enhancement of the human body,
powerful actuators are needed, whereas master/slave devices require haptics. The
degrees of freedom necessary for these applications depend on the supported ac-
tivities.

The actuation principles that are applied in existing arm-support systems are
electromechanical actuators, pneumatic actuators, hydraulic actuators, and semi-
active dampers. For safety reasons, compliance and back-drivability are important
properties when choosing the actuation technology. If actuators do not have one
of these properties inherently such as pneumatic actuators, it can be achieved with
hardware or software.

The actuation configuration is the mechanical construction method of the actua-
tion technology in the arm-support system. Positioning the actuators externally
decreases the mass and inertia of the arm support itself, which is beneficial for the
dynamic behavior. However, a more complex mechanical construction is required.
The configuration with externally positioned actuators have been subdivided into
two groups, exoskeletons and cable suspensions. A cable suspension provides a
larger range of motion with less degrees of freedom compared to other arm-support
systems. However, a construction above the user is required. The gravity com-
pensator is an actuation configuration that provides support in only one degree of
freedom. To compensate for the gravity, a mechanical spring or counterweight is
used that is adjustable with an actuator. Consequently, a low power consumption
is required by prestressing the mechanical spring.

The provided torque of the human shoulder joint is determined with a set of arm
properties obtained from the literature. This torque is separated in the required
static torque and dynamic torque. A static torque range of 4.3 Nm to 16 Nm and
an active torque of 0.44 Nm to 3.2 Nm has been found. This range corresponds to
the found AAS directly-on-the-joint configuration. Additionally, it has been found
that at least three degrees of freedom are required to mimic the shoulder joint.

A three degrees of freedom motor can be realized with one spherical actuator
because of the similar ball and socket joint construction as the shoulder joint.
This actuator topology has no predefined sequence of axes and, therefore, reduces
the complexity of the mechanical construction.
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Chapter 3

Modeling of spherical magnetic
structures

Abstract - Fast semi-analytical modeling techniques are researched to design
multi-degree-of-freedom spherical electromechanical systems. Two techniques are
investigated, namely the magnetic charge model and the harmonic model. Both
modeling techniques are extended to model a region with an infinitely permeable
material. This region is included in the boundary conditions of the harmonic
model. For the magnetic charge model, this region is modeled with the extension
of spherical imaging. Furthermore, the magnetic flux density of a radial magne-
tization is predicted with this modeling technique. Both models are applied to a
benchmark problem to compare the results on accuracy and limitations.

This chapter is based on
• B. van Ninhuijs, T. E. Motoasca, B. L. J. Gysen, and E. A. Lomonova, ”Modeling of spher-

ical magnet arrays using the magnetic charge model,”IEEE Transactions on Magnetics,
vol. 49, no. 7, pp. 4109-4112, 2013.

• B. van Ninhuijs, T. E. Motoasca, and E. A. Lomonova, ”Accurate analytical computation of
magnetic flux density of spherical permanent magnet arrays,” in 2012 XXth International
Conference on Electrical Machines (ICEM), Sept 2012, pp. 2746-2751.

• B. van Ninhuijs, J. W. Jansen, B. Gysen, and E. A. Lomonova, ”Comparison of Har-
monic and Magnetic Charge Model for Spherical Magnetic Structures with a Neumann
Boundary,” IEEE Transactions on Magnetics, vol.51, no.11, pp.1-4, 2015
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3.1 Introduction on spherical modeling

The interaction of electromagnetic fields in a spherical structure produce forces and
torques in multiple directions. These fields can originate from permanent magnets,
coils, or a combination of both and their behavior is described by Maxwell’s equa-
tions. Spherical actuators use a combination of permanent magnets and coils to
produce a torque. This torque can be controlled by the excitation of the cur-
rent through the coils. Combining multiple permanent magnets, a passive torque
can be produced which can be used for a spherical magnetic spring in a gravity
compensator application. These applications are investigated in Chapter 4 and
Chapter 5.

The torque of electromagnetic spherical constructions can be predicted by solving
Maxwell’s equations with semi-analytical models or finite element analysis (FEA).
FEA divides the solution region into a finite number of subregions [28]. This
discretization requires a large computational effort and time, especially, for 3D
problems. To decrease this computational time significantly, semi-analytical are
researched that provide a fast and accurate prediction. This reduction is especially
beneficial for a broad optimization of multiple actuator topologies.

Semi-analytical modeling techniques such as the magnetic equivalent circuit model
(MEC), harmonic model, and a distributed multipole model have been applied to
spherical magnetic structures. A lumped element network for the magnetic circuit
is created for each permanent magnet (PM) array with the MEC method. Changes
in the PM topology, e.g. the number and magnetization directions of PMs, require
the construction of a new MEC model. Hence, this is a time-consuming technique
for design and optimization. This method has been applied on spherical mag-
netic structures in [68]. The harmonic modeling method provides a solution to
a boundary value problem [37]. This model has been applied on a two by four
spherical permanent magnet array in [133] to obtain a semi-analytical model. A
full analytical expression is found considering only the first harmonic in [139] and
the first three harmonics in [112]. The distributed multipole model, which uses
a known analytical solution, utilizes the magnetic charge of every dipole and the
summation of all dipoles provide the total magnetic field solution [64, 66]. An-
other modeling method is the magnetic charge model. This technique replaces the
permanent magnets by an equivalent spatial (volume or surface) distribution of
magnetic charges [53].

The magnetic charge model and harmonic model are derived from Maxwell’s equa-
tions and both models are extended in this chapter. The magnetic charge model is
applied in the spherical domain. In addition to a parallel magnetization, the mag-
netic field of a radial magnetization can be predicted with this modeling technique.
To model a boundary of highly permeable material, the magnetic charge is further
extended with spherical imaging. Further, a harmonic model is derived that can
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also include such boundaries. This model can include an asymmetrical spherical
permanent magnet array. The spherical coordinate system which is applied in this
chapter is defined in Appendix A. The modeling techniques are compared with a
bench mark model that has 32 spherical permanent magnets.

3.2 Electromagnetic modeling

The magnetic field solution is derived from the Maxwell equations. In differential
form, these equations are given by,

∇× ~H = ~J +
∂ ~D

∂t
(3.1)

∇ · ~B = 0 (3.2)

∇× ~E = −∂
~B

∂t
(3.3)

∇ · ~D = ρc (3.4)

where ~H is the magnetic field strength, ~J is the current density, ~D is the electric
flux density, ~B is the magnetic flux density, ~E is the electrical field strength and
ρc is the free electric charge density. To obtain the magnetic flux density from
the static Maxwell equations, the magnetic flux density, ~B, and the electric flux
density, ~D, are assumed to be independent of time, which results in

∂ ~B

∂t
= 0 (3.5)

∂ ~D

∂t
= 0. (3.6)

With this assumption the static Maxwell equations can be listed as

∇× ~H = ~J (3.7)

∇ · ~B = 0. (3.8)

The magnetic material is modeled by introducing a magnetization vector ~M . In
general, the magnetization vector consists of two components, described by

~M = ~M0 + ~Ms. (3.9)

The vector ~M0 results from the remanent magnetization present in hard magne-
tized material such as permanent magnets. Due to this magnetization a resulting
magnetic field ~H arises, which causes a secondary magnetization, Ms, since the
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material has a finite magnetic susceptibility χ. The relation of the secondary
magnetization ~Ms with the magnetic field strength is given by

~Ms = χ ~H. (3.10)

Using these definitions it can be shown that the magnetic flux density and the
magnetic field strength is related as given by

~B = µ0( ~H + ~M) (3.11)

= µ0µr ~H + µ0
~M0 (3.12)

where µ0 is the permeability of vacuum and

µr = (1 + χ) (3.13)

is the relative permeability. By introducing a magnetic scalar potential ϕ which
is defined as

~H = −∇ϕ (3.14)

and assuming a current free region and substituting (3.14) in (3.8), and (3.12) the
magnetic scalar potential can be expressed as

∇2ϕ =
∇ · ~M0

µr
. (3.15)

This type of equation is also referred to as the Poisson equation. This equation can
be solved in two ways. Either with separation of variables and solving the boundary
value problem with harmonic modeling or by using the free space Green’s function
with the magnetic charge modeling.

3.3 Torque calculations

An accurate prediction of the mechanical torque that is produced by interacting
electromagnetic fields, is essential to obtain a design that complies with a prede-
fined set of specifications. The torque is obtained by

~T = ~rd × ~F (3.16)

where ~T is the torque, ~rd is the displacement vector, and ~F is the force. The force
~F can be obtained with the Lorentz force and Maxwell stress tensor method.
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3.3.1 Lorentz force

The Lorentz force equation describes the relation between the force ~F on a charged
particle q which moves through an external magnetic field ~B with a velocity of ~υ
or in an electric field ~E

~F = q( ~E + ~υ × ~B). (3.17)

For magnetostatic problems it is assumed that the electric field ~E is zero. Conse-
quently, the force density, as provided by [136], can be written as,

~f = lim
δV→0

∑
i

qi ~υi × ~Bi
δV

(3.18)

where qi, and ~υi refer to all the particles in the volume δV and ~Bi is the flux
density experienced by qi. When it is assumption that all particles within δV
experience the same flux density ~B and with the definition of free current density
as given by

~J = lim
δV→0

∑
i

qi ~υi
δV

(3.19)

the Lorentz force density can be written as

~F =

∫
V

~J × ~B dV. (3.20)

Assuming perfectly spherical shaped coils with no current flowing in the radial
direction, the force is given by

~F =

∫
V

((JθBφ −BθJφ)~eρ +BρJφ ~eθ − JθBρ ~eφ) dV. (3.21)

The torque is obtained as described in (3.16) with a displacement vector equal to

~r =

ρ~eρ0~eθ

0~eφ

 (3.22)

which results in

~T =ρ

∫
V

(−JθBρ ~eθ +BρJφ ~eφ) dV. (3.23)

This equation shows that the produced torque is not dependent on the tangential
magnetic flux density components Bθ and Bφ.
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3.3.2 Maxwell stress tensor

The force resulting from a magnetic field interactions can be calculated with the
Maxwelll stress tensor. This method is usually given in the Cartesian coordinate
system [53] and in the cylindrical coordinate system [80]. The Maxwell stress
tensor is derived for the components of a spherical coordinate system starting from
the Lorentz force equation (3.20). Assuming a magnetostatic system, Ampére’s
circuit law can be substituted. This results in

~F =

∫
V

(∇× ~H)× ~B dV. (3.24)

The constitutive relation (3.12) in a source free medium with a constant relative
permeability results in

~B = µ ~H. (3.25)

Substituting this relation in the force equation (3.24) results in

~F =
1

µ

∫
V

(∇× ~B)× ~B dV. (3.26)

Applying the vector identity

(∇× ~A)× ~A = ( ~A · ∇) ~A− 1

2
∇( ~A · ~A) (3.27)

it can be found that

~F =
1

µ

∫
V

( ~B · ∇) ~B − 1

2
∇( ~B · ~B) dV. (3.28)

With the assumption of a right-handed orthogonal coordinate system with three
axes, ν1, ν2 and, ν3, the found expression of the force results in

~F =
1

µ

∫
V

[
(B1

∂

∂ν1
+B2

∂

∂ν2
+B3

∂

∂ν3
)

B1 ~eν1
B2 ~eν2
B3 ~eν3


−1

2


∂
∂ν1

~eν1
∂
∂ν2

~eν2
∂
∂ν3

~eν3

 (B2
1 +B2

2 +B2
3)

 dV.

(3.29)

In the Cartesian coordinate system these vectors are described by the magnetic
flux density components. Because the spherical coordinate system is also a right-
handed orthogonal coordinate system, the spherical magnetic flux density compo-
nents Bρ, Bθ, and Bφ can be applied in the same way as the Cartesian components.
Simplification of the found expression [136] results in:

Fm =
1

µ

∫
V

Bn
∂Bm
∂νn

− 1

2

∂

∂νm
B2
k dV (3.30)
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where n is the index of the scalar component, m is the index of the vector com-
ponent,

B2
k = B2

1 +B2
2 +B2

3 (3.31)

and

Bn
∂

∂νn
= B1

∂

∂ν1
+B2

∂

∂ν2
+B3

∂

∂ν3
(3.32)

= B · ∇. (3.33)

By introducing the Kronecker delta

δmn =

{
1 when m = n

0 when m 6= n
(3.34)

it is found that

Fm =
1

µ

∫
V

Bn
∂Bm
∂νn

− δmn
2

∂

∂νn
B2
k dV. (3.35)

The products of derivatives can also be stated as

Fm =
1

µ

∫
V

∂BnBm
∂νn

−Bm
∂Bn
∂νn

− δmn
2

∂

∂νn
B2
k dV (3.36)

where

Bm
∂Bn
∂νn

= Bm∇ ·Bn = 0. (3.37)

Hence, the expression for the force results in

Fm =
1

µ

∫
V

∂

∂νn

(
BnBm −

δmn
2
B2
k

)
dV (3.38)

where the Maxwell stress tensor is given by

T = BnBm −
δmn

2
B2
k. (3.39)

An expression of the force in function of the Maxwell stress tensor is provided by

~F =
1

µ

∫
V

∇ · TdV. (3.40)

Applying the Divergence theorem [28] this expression can be written as

~F =
1

µ

∮
S

T · ~nds. (3.41)
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Because the spherical coordinate system is a right-handed orthogonal coordinate
system, the tensor in the spherical domain results in

T =


B2
ρ−B2

θ−B2
φ

2 BρBθ BρBφ

BθBρ
B2
θ−B2

ρ−B2
φ

2 BθBφ

BφBρ BφBθ
B2
φ−B2

ρ−B2
θ

2

 . (3.42)

The force produced between two concentric spherical permanent magnets can be
obtained with the Maxwell stress tensor and results in

~F =
1

µ

∮
S

(
B2
ρ −B2

θ −B2
φ

2
~eρ +BθBρ ~eθ +BφBρ ~eφ

)
ds (3.43)

with the spherical displacement vector as defined in (3.22), the expression of the
torque results in

~T =
ρ

µ

∮
S

(−BφBρ ~eθ +BθBρ ~eφ) ds. (3.44)

3.4 Charge modeling

The magnetic charge model replaces the permanent magnets with a distribution of
equivalent magnetic charges. In the magnetostatic field equations, these equivalent
magnetic charges are used as source terms and the magnetic fields can be obtained
by e.g. the free space Green’s function [28]. This model calculates the magnetic
field solution of one single spherical shaped magnet and the total field solution of
the spherical permanent magnet array is obtained by means of superposition. Since
the magnetic charge model obtains the magnetic flux density for each spherical
permanent magnet separately, this method can include different spherical magnetic
structures such as hemispheres.

3.4.1 General solution

Assuming a free-space problem, i.e. no boundary surfaces, and a relative perme-
ability of one, a general solution to the Poisson equation (3.15) is obtained with
the free-space Green’s function

ϕ = − 1

4π

∫
∇′ ~M0(~r′)
|~r −~r′|

dv′ (3.45)

where ~r is the observation point, ~r′ is the source point and, ∇′ operates on the
primed coordinates. Assuming that the magnetization ~M0 is confined to a volume
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V (of permeability µ0) and falls abruptly to zero outside this volume. The magnetic
scalar potential can be written as

ϕ =
1

4π

∫
V

ρm(~r′)
|~r −~r′|

dV ′ +
1

4π

∮
S

σm(~r′)
|~r −~r′|

ds′ (3.46)

where

ρm = −∇′ · ~M0 (3.47)

is the magnetic volume charge density and

σm = ~M0 · ~n (3.48)

is the magnetic surface charge density and ~n is the normal vector of the closed
surface S [28].

The magnetic volume charge density and magnetic surface charge density are ob-
tained with a divergence or a scalar product, hence, both densities are scalars.
Therefore, the magnetization can be expressed in the Cartesian coordinate system
or the spherical coordinate system as long as the other component of the scalar
product is expressed in the same coordinate system. This can be beneficial when
a certain magnetization topology is easier to describe in one of the two coordinate
systems.

The scalar potential has a relation to the magnetic field strength ~H as defined
in (3.14) and substitution of the magnetic scalar potential (3.46), provides the
following expression for the magnetic field strength

~H =
1

4π

∫
V

ρm(~r′)∇ 1

|~r −~r′|
dV ′ +

1

4π

∮
S

σm(~r′)∇ 1

|~r −~r′|
ds′. (3.49)

The Euclidean distance between the observation point and the source point in the
Cartesian coordinate system can be written as

|~r − ~r′| =
√

(x− x′)2 + (y − y′)2 + (z − z′)2. (3.50)

After conversion of this expression to the spherical coordinate system (A.5), the
Euclidian distance is obtained by

|~r − ~r′| =
√
ρ2+ρ′ 2−2ρρ′ [sin(θ) sin(θ′) cos(φ− φ′) + cos(θ) cos(θ′)]. (3.51)

The gradient in the spherical coordinate system results in

∇ 1

|~r − ~r′|
=− ρ+ ρ′ [sin(θ) sin(θ′) cos(φ− φ′) + cos(θ) cos(θ′)]

a3/2
~eρ

+
ρ′ [cos(θ) sin(θ′) cos(φ− φ′)− sin(θ) cos(θ′)]

a3/2
~eθ

− ρ′ sin(θ′) sin(φ− φ′)
a3/2

~eφ

(3.52)
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where

a = ρ2 + ρ′ 2 − 2ρρ′ [sin(θ) sin(θ′) cos(φ− φ′) + cos(θ) cos(θ′)] . (3.53)

The magnetic flux density is obtained outside the permanent magnets with the
relation between the magnetic field strength and the magnetic flux density as
shown in (3.12) and (3.49).

Analogously, an expression for the magnetic field of a cylindrical permanent mag-
net can be obtained. The Euclidian distance between two points in this coordinate
system can be obtained by

|~r − ~r′| =
√
ρ2+ρ′ 2−2ρρ′ cos(φ− φ′) + (z − z′)2 (3.54)

and the gradient is determined by

∇ 1

|~r − ~r′|
=
−ρ+ ρ′ cos(φ− φ′)

a3/2
~eρ −

ρ′ sin(φ− φ′)
a3/2

~eφ +
z − z′

a3/2
~ez, (3.55)

where

a = ρ2+ρ′ 2−2ρρ′ cos(φ− φ′) + (z − z′)2. (3.56)

With this expression, the magnetic field of a radial and parallel magnetized cylin-
drical permanent magnet can be obtained [105]. As alternative to a radial mag-
netized spherical permanent magnet, a segmentation of parallel magnetized cylin-
drical magnets can be applied to achieve this magnetization as is presented later
on in this thesis (Chapter 4).

3.4.2 Parallel magnetization

To find the magnetic flux density with the magnetic charge model, an expression
for the magnetic volume density and magnetic charge density has to be found.
A parallel magnetization is uniform inside the permanent magnet and, therefore,
the volume charge density is zero inside this volume, i.e. ∇ · ~M0 = 0; hence, only
the surface charge density remains. In addition, it is assumed that the problem
consists of three different regions as illustrated in Fig. 3.1. Regions 1 and 3 contain
air and in region 2 a magnetic source is employed, such as a permanent magnet.
For all three regions the magnetic charge model assumes a relative permeability
of µr = 1, including the region that contains the permanent magnets.

The magnetic surface charge density (3.48) depends on the magnetization vector
and the normal vector of the surface. This implies that, the magnetic surface
charge distribution is different for each surface. A spherical segment with six
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Region 3

Rout Rin

Region 1

Region 2

z

yx

Figure 3.1: Regions and geometric parameters definitions of a spherical permanent mag-
net array.

different surfaces is shown in Fig. 3.2. The normal vectors of these surfaces can
be defined in the spherical coordinate system as

~n1 =

1~eρ

0~eθ

0~eφ

 ~n2 =

−1~eρ

0~eθ

0~eφ


~n3 =

0~eρ

1~eθ

0~eφ

 ~n4 =

 0~eρ

−1~eθ

0~eφ

 (3.57)

~n5 =

0~eρ

0~eθ

1~eφ

 ~n6 =

 0~eρ

0~eθ

−1~eφ

 .
With the six normal vectors, the magnetic charge densities of the surfaces can be
obtained depending on the magnetization.

The magnetic surface charges can be obtained by substitution of the parallel mag-
netization vector (3.115) and the normal vectors of each surface (3.48) in (3.48)
which results in

σm;1 = Mρ(θ, φ) (3.58)
σm;2 =−Mρ(θ, φ) (3.59)
σm;3 = Mθ(θ, φ) (3.60)
σm;4 =−Mθ(θ, φ) (3.61)
σm;5 = Mφ(θ, φ) (3.62)
σm;6 =−Mφ(θ, φ). (3.63)
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Figure 3.2: Side view of a single permanent magnet segment defining the normal vectors
of the six surfaces: (a) xz-view, (b) xy-view.

A spherical permanent magnet array can be defined with a pole pitch of τpθ in
the θ-direction, τpφ in the φ-direction, an inner radius Rin and an outer radius
Rout. The definition of these pole pitches is shown in Fig. 3.2. Substitution of
these geometric parameters, the surface charge densities in (3.49), and (3.12), the
magnetic flux density of every surface of a single permanent magnet segment is
obtained by

~B1,2 =− µ0

4π

∫ τpθpθ

τpθ(pθ−1)

∫ τpφpφ

τpφ(pφ−1)
σm;1,2∇

1

|~r −~r′|
ρ′2 sin(θ′) dθ′ dφ′ (3.64)

~B3,4 =− µ0

4π

∫ τpφpφ

τpφ(pφ−1)

∫ Rout

Rin

σm;3,4∇
1

|~r −~r′|
ρ′ sin(Θ) dρ′ dφ′ (3.65)

~B5,6 =− µ0

4π

∫ τpθpθ

τpθ(pθ−1)

∫ Rout

Rin

σm;5,6∇
1

|~r −~r′|
ρ′ dρ′ dθ′. (3.66)

where pθ and pφ are the magnet numbers in the θ- and φ-direction respectively.

The total magnetic flux density produced by one permanent magnet segment is
obtained by

~Bpθ:pφ =

6∑
i=1

~Bi (3.67)

where the subscript of Bpθ:pφ denotes the magnetic flux density of the pthθ perma-
nent magnet segment in the θ-direction and pthφ permanent magnet segment in the
φ-direction where the subscript i represents the flux density generated by the ith
surface. The magnetic flux density of the complete spherical permanent magnet
array is obtained by

~Btot =

Pθ∑
pθ=1

Pφ∑
pφ=1

~Bpθ:pφ . (3.68)
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For a spherical segment consisting of less than six surfaces such as a hemispherical
shell, only three normal vectors exist. Such spherical magnet only has three normal
vectors. The same model as presented above can be applied; however, only (the
relevant) three magnetic flux densities will be nonzero.

The expression for the magnetic flux density has a combination of a square root
of trigonometric functions in the denominator because of the spherical coordinate
system. Therefore, the required integration is solved numerically. For each ob-
servation point this numerical integration needs to be performed. The calculation
time depends mainly on the number of included observation points and the size of
the spherical permanent magnet array.

3.4.3 Radial magnetization

To find the magnetic flux density with the magnetic charge model of a radially
magnetized magnet, an expression for the magnetic volume charge density and
magnetic surface charge density has to be found. As the magnetization is not
uniform through the volume of the magnets, a volume charge density exists. This
volume charge density can be evaluated with (3.47) and (B.2) which results in

ρm = −2M0

ρ
. (3.69)

Contrary to a parallel magnetization, the magnetic charge density is distributed
over only two surfaces, resulting in two magnetic surface charges for a permanent
magnet segment. Only on the surfaces with a constant radius, a magnetic charge
density exist, namely at ρ = Rout and ρ = Rin. The normal vectors of these
surfaces are

~n1 =

1~eρ

0~eθ

0~eφ

 (3.70)

~n2 =

−1~eρ

0~eθ

0~eφ

 (3.71)

and the surface charge densities are given by

σm;1 = M0 (3.72)
σm;2 = −M0. (3.73)

The magnetic flux density produced by a spherical permanent magnet can be
separated into three components, firstly, the magnetic volume charge density, ~Bvol,
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secondly, the magnetic surface charge density, ~B1, of the first surface with radius
Rout, and finally the magnetic surface charge density, ~B2, of the second surface
with radius Rin. The magnetic flux density as function of the pole pitches of the
spherical permanent magnet array is given by.

~Bvol =− µ0

4π

∫ τpθpθ

τpθ(pθ−1)

∫ τpφpφ

τpφ(pφ−1)

∫ Rout

Rin

ρm∇
1

|~r −~r′|
ρ′2 sin(θ′) dρ′ dθ′ dφ′

(3.74)

~B1 =− µ0

4π

∫ τpθpθ

τpθ(pθ−1)

∫ τpφpφ

τpφ(pφ−1)
σm;1∇

1

|~r −Rin|
ρ′2 sin(θ′) dθ′ dφ′ (3.75)

~B2 =− µ0

4π

∫ τpθpθ

τpθ(pθ−1)

∫ τpφpφ

τpφ(pφ−1)
σm;2∇

1

|~r −Rout|
ρ′2 sin(θ′) dθ′ dφ′. (3.76)

The magnetic flux density of one permanent magnet segment is obtained by

~Bpθ:pφ = ~Bvol + ~B1 + ~B2 (3.77)

where the subscript of Bpθ:pφ denotes the magnetic flux density of the pthθ per-
manent magnet segment in the θ-direction and pthφ permanent magnet segment in
the φ-direction. The magnetic flux density of the complete spherical permanent
magnet array is calculated by superposition:

~Btot =

Pθ∑
pθ=1

Pφ∑
pφ=1

~Bpθ:pφ . (3.78)

The integrals to obtain the magnetic flux density are solved numerically. Instead
of six surfaces, the radial magnetization consists of two numerical surface integrals
and a numerical volume integration.

3.5 Imaging

The method of images reduces a boundary-value problem, i.e. with material inter-
faces, into a free-space problem, i.e. without material interfaces. In this method
the material is replaced by image sources that provide the appropriate boundary
conditions at the interface. With these image sources, free-space models such as
the aforementioned magnetic charge model, can take an interface with a constant
radius and a different relative permeability into account.

The position and size of the image source, i.e. the imaged spherically shaped per-
manent magnet, can be obtained with the method of inversion [50]. This method
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Figure 3.3: The inversion circle theory [50].

can be explained by means of the circle inversion illustrated in Fig. 3.3. From the
similar triangles, OQP and OQP ′, it follows that

OP

k
=

k

OP ′
(3.79)

where k is the inversion radius. From this equation, it can be derived that

dD = k2. (3.80)

A sectional view of a spherical magnet with a continuous boundary is shown in
Fig. 3.4a. The equivalent of this figure, according to the method of inversion, is
depicted in Fig. 3.4b. Hence, the position of the imaged magnetic charges to model
a highly permeable boundary is obtained with this method.

As the geometry of the image source is different with respect to the original source,
the magnetic volume charge density and magnetic surface charge density alter. Ac-
cording to the method of inversion, the relation between the radius of the original
permanent magnet and imaged permanent magnet is given by

ρ′′ =
k2

ρ
(3.81)

where k is the radius of the high permeability boundary, ρ is the radius of the
original permanent magnet and ρ′′ is the radius of the image source. The magnetic
volume charge density of the image source results in [50]

ρ′′m(ρ′′, θ, φ) =

(
k

ρ′′

)5

ρm

(
k2

ρ′′
, θ, φ

)
(3.82)

and the magnetic surface charge density can be obtained by

σ′′m (ρ′′, θ, φ) =

(
k

ρ′′

)3

σm

(
k2

ρ′′
, θ, φ

)
. (3.83)
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Figure 3.4: Sectional view with continuous boundaries of a spherical permanent magnet
array with: (a) the iron boundaries, (b) imaged permanent magnets.

The magnetic flux density of the image source is obtained in the same way as the
original source. The complete magnet field solution is obtained by the superposi-
tion principle. With this method the magnetic flux density of the region between
the spherical permanent magnets and the infinitely permeable boundary can be
obtained. The magnetic flux density inside the region that contains the highly
permeable material cannot be obtained with this method. Additionally, only a
completely enclosed spherical boundary can be included. A region that partially
consists of a highly permeable material cannot be included.

3.6 Harmonic modeling

The harmonic modelling method provides a solution to a boundary value problem.
A boundary value problem considers multiple regions which can have a different
relative permeability µr or a source present. Each region is described by differential
equations and can be solved by means of separation of variables. This separation
results in a harmonic expression for every region. By linking these expressions
together with the boundary conditions, the set of equations is solved.
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3.6.1 General solution

A Poisson equation has be solved to find the solution to the magnetic scalar poten-
tial, (3.15). The solution to this equation depends on the applied magnetization.
When an equally distributed magnetization is applied, its divergence is zero which
results in a Laplace equation given by

∇2ϕ = 0. (3.84)

The homogeneous solution for the Laplace equation can be obtained with the
spherical harmonics [35] described by

ϕ(ρ, θ, φ) =

∞∑
n=0

n∑
m=−n

(aρn+bρ−(n+1)
)
Smn P

m
n (cos(θ))ejmφ (3.85)

wherem and n are the harmonic numbers, j is the imaginary unit and, Pmn (cos(θ))
is the associated Legendre function of the first kind described by

Pmn (x) = (n− x2)|m|/2
(
d

dx

)|m|
Pn(x) (3.86)

and Pn(x) is the nth Legendre polynomial, defined by the Rodrigues formula:

Pn(x) =
1

2nn!

(
d

dx

)n
(x2 − 1)n. (3.87)

and Smn is a normalization factor defined as,

Smn =

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

. (3.88)

In the literature, the dependencies of θ and φ are often abbreviated to [35, 112,
133, 139]

Y mn (θ, φ) = Smn P
m
n (cos(θ))ejmφ. (3.89)

To find a solution to the Poisson equation, first a solution to the spherical differ-
ential equation (B.7) has to be found. A solution to this equation is presented
in [112] by considering only the first three harmonics of a radial magnetization.
However, a general solution for a radial magnetization has not been found. There-
fore, a harmonic model that can predict the magnetic flux density produced by a
radial magnetization is not included in this thesis.
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3.6.2 Boundary conditions

For the application of spherical permanent magnet arrays, the problem is divided
into spherical shells with different radii. Each different shell represents a region.
Certain conditions on the boundaries of these regions should hold to find the
magnetic field solution [38].

The boundary conditions depend on the region and the material of the region.
Firstly, the magnetic flux density at the origin has to be finite and the far field
has to be zero, which results in

~B|ρ→0 6=∞ (3.90)
~B|ρ→∞ = 0. (3.91)

Secondly, the magnetic flux density has to be continuous at the boundaries; this
means that the normal component of the magnetic flux density of region i is equal
to region i+ 1 which can be defined in the spherical domain as

Biρ = B(i+1)ρ (3.92)

Furthermore, the tangential component of the magnetic field strength has to be
continuous. In the 3D domain and in the absence of a free surface current density,
this boundary condition can be written in terms of the scalar potential [102, 120]
and is given by

ϕi = ϕ(i+1). (3.93)

Both aforementioned conditions are referred to as continuous boundary conditions.
Lastly, when adding a region consisting of highly permeable material [88] it is often
assumed that µr =∞. With this assumption it has to hold at the boundary that

ϕi = 0 (3.94)

where the subscript i denotes the region which is adjacent to the region that
contains highly permeable material.

The regions that contain highly permeable material have to be completely spher-
ically enclosed with this method. Hence, a region that partially consists of highly
permeable material cannot be modeled.

3.6.3 Magnetization description

The magnetization of the spherical permanent magnets is included in the boundary
conditions and also in the Poisson equation if ∇M 6= 0. An expression for this
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magnetization is found with the spherical harmonics [139] by

Mκ(θ, φ) =

∞∑
n=0

n∑
m=−n

Cmn;κe
jmφSmn P

m
n (cos(θ)) (3.95)

where

Cmn;κ = ε

∫ 2π

0

∫ π

0

Mκ(θ, φ) sin(θ)Smn P
m
n (cos(θ))e−jmφ dθ dφ (3.96)

where

ε =

{
(−1)m if m ≥ 0

1 if m ≤ 0

and subscript κ denotes one of the spherical variables ρ, θ or φ and, Mκ(θ, φ) is
the magnetization vector. Application to a spherical permanent magnet array, the
spherical harmonics can be written as

Cmn;κ = (−1)m
Pφ∑
pφ=1

Pθ∑
pθ=1

(−1)pθ−1(−1)pφ−1
∫ τpφpφ

τpφ(pφ−1)

∫ τpθpθ

τpθ(pθ−1)

Mκ(θ, φ) sin(θ)Smn P
m
n (cos(θ))e−jmφ dθ dφ

(3.97)

where τpθ is the pole pitch in the θ-direction, and τpφ is the pole pitch in the
φ-direction as indicated in Fig. 3.8. The magnetization of each permanent magnet
is modeled separately, and the magnetization of the complete spherical perma-
nent magnet array is obtained by summation of all harmonics. Hence, an uneven
permanent magnet array in the φ- and θ-direction can be described. Despite an
asymmetric array can be modeled, this formulation of the harmonic model cannot
account for a hemispherical permanent magnet array. In addition, the integral
of this expression can be solved analytically for the φ-dependency once the mag-
netizations are known because this integration concerns a complex exponential
function. The integration for the θ-dependency needs to be solved numerically.
This expression involves the Legendre functions and, therefore, no analytical ex-
pression has been found.

3.6.4 Parallel magnetization

The harmonic model is applied to an example problem considering three regions
and an infinitely permeable boundary as illustrated in Fig. 3.5. Regions 1 and 3
contain air, and region 2 is a source region which consists of permanent magnets.
Each region has its own general solution for the magnetic scalar potential. This
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results in

ϕi(ρ, θ, φ) =

∞∑
n=0

n∑
m=−n

(
anm,iρ

n+ bnm,iρ
−(n+1)

)
Smn P

m
n (cos(θ))ejmφ (3.98)

where the subscript i of ϕi, anm,i and bnm,i denotes the region. To comply with
the boundary condition in the origin (3.90), the coefficient bnm,1 has to be zero.
The remaining coefficients can be obtained with the other boundary conditions
described by

ϕ1|ρ=Rin = ϕ2|ρ=Rin (3.99)
ϕ2|ρ=Rout = ϕ3|ρ=Rout (3.100)
ϕ3|ρ=Rs = 0 (3.101)

µ0µr;1H1;ρ|ρ=Rin = µ0µr;1H2;ρ|ρ=Rin + µ0Mρ (3.102)
µ0µr;2H2;ρ|ρ=Rout + µ0Mρ = µ0µr;3H3;ρ|ρ=Rout (3.103)

where µr;i denotes the permeability of region i. To compare the harmonic model
with the magnetic charge model, a relative permeability of one is chosen for this
example. In practice, sintered NdFeB permanent magnets have a relative perme-
ability in the order of 1.03-1.10 [129]. By solving the set of equations the solution
of the coefficients is given by

anm;1 =Mρ(θ, φ)R−nin R
−2n−1
s R−nout(

R2n+1
s (RoutR

n
in −RinRnout) +RninR

n
out

(
Rn+2
in −Rn+2

out

))
(1 + 2n)Smn P

m
n (cos(θ))ejmφ

(3.104)

anm;2 =Mρ(θ, φ)
R−2n−1s R−nout

(
Rnout

(
Rn+2
in −Rn+2

out

)
+RoutR

2n+1
s

)
(1 + 2n)Smn P

m
n (cos(θ))ejmφ

(3.105)

bnm;2 =Mρ(θ, φ)
−Rn+2

in

(1 + 2n)Smn P
m
n (cos(θ))ejmφ

(3.106)

anm;3 =Mρ(θ, φ)
R−2n−1s

(
Rn+2
in −Rn+2

out

)
(1 + 2n)Smn P

m
n (cos(θ))ejmφ

(3.107)

bnm;3 =Mρ(θ, φ)

(
Rn+2
out −Rn+2

in

)
(1 + 2n)Smn P

m
n (cos(θ))ejmφ

. (3.108)
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With these coefficients the magnetic flux density in all three regions can be calcu-
lated. Hence, the magnetic flux density in region 3 results in

B3;ρ(ρ, θ, φ) =

∞∑
n=0

n∑
m=−n

−
µ0C

m
n;ρ

2n+ 1
ρ−n−2R−2n−1s

(
Rn+2
in −Rn+2

out

)
(
nρ2n+1 + (n+ 1)R2n+1

s

)
Smn P

m
n (cos(θ))ejmφ

(3.109)

B3;θ(ρ, θ, φ) =

∞∑
n=0

n∑
m=−n

µ0C
m
n;θ

2n+ 1

ρ−n−2

sin(θ)
R−2n−1s

(
ρ2n+1 −R2n+1

s

)
(
Rn+2
in −Rn+2

out

)
Smn ((n+ 1) cos(θ)Pmn (cos(θ))

+ (m− n− 1)Pmn+1(cos(θ)))ejmφ

(3.110)

B3;φ(ρ, θ, φ) =

∞∑
n=0

n∑
m=−n

−
µ0C

m
n;φ

2n+ 1

jm

sin(θ)
ρ−n−2R−2n−1s

(
ρ2n+1 −R2n+1

s

)
(
Rn+2
in −Rn+2

out

)
Smn P

m
n (cos(θ))ejmφ

(3.111)

The harmonic model provides a solution in terms of a finite number of harmonic
components. For the presented harmonic model, an analytical expression is found
for the dependency in the φ-direction, whereas the dependency in the θ-direction
is solved numerically. An analytical solution for the integration of the Legendre
function to obtain the variable Cmn;κ is not known. This numerical integration
depends on the integration step size in the θ-direction and the harmonic numbers.
Consequently, the calculation time mainly depends on the number of harmonics
taken into account. Therefore, the time to calculate one harmonic is taken as a
measure to indicate the time performance of this method.

If two regions are considered (only regions 2 and 3 in Fig. 3.1), and the center is
modeled as infinitely permeable material as presented in [88], the expression for the
coefficients are less susceptible for an arithmetic overflow. Furthermore, when the
relative permeability of multiple regions are taken into account, the complexity
increases significantly. Due to this complexity, the expression for the magnetic
flux density earlier reaches an arithmetic overflow. This overflow is caused by an
expression such as (n+ 1)R2n+1

s in (3.109). This operation is returned as infinite
when the number of harmonics becomes too high. The influence of this overflow
is shown in the next sections.
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Figure 3.5: Regions and geometric parameters definitions of a spherical permanent mag-
net array with an infinitely permeable boundary.

Table 3.1: Geometric parameters of the benchmark topologies

Parameter Value Unit Description

Rin 40 [mm] Inner radius of the benchmark
Rout 55 [mm] Outer radius of the benchmark
Rs 56 [mm] Infinite permeable boundary radius
Br 1.3 [T] Remanent magnetic flux density
µr 1 [-] Relative permeability

3.7 Benchmark topology

The derived semi-analytical models are applied to a benchmark model to compare
their accuracy and limitations. This benchmark consists of 32 spherically shaped
permanent magnets as shown Fig. 3.6 and has the same three regions for the
modeling example as illustrated in Fig. 3.5. The spherical permanent magnets have
an angular size of τpθ = 45◦ and τpφ = 45◦. Due to the spherical shape they do
not have equal volumes. To comply with the assumptions of the magnetic charge
model, both benchmarks consist of a free-space problem considering a relative
permeability of one. To validate the results, the FEA is also carried out with a
relative permeability of one. The dimensions of this benchmark model are listed
in Table 3.1.
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Figure 3.6: Spherical permanent magnet structure to validate the modeling techniques
consisting of 32 permanent magnets.

3.7.1 Parallel magnetization

The function to characterize the parallel magnetization vector is derived in the
Cartesian coordinate system. In this coordinate system, the magnetization vector
of each permanent magnet can be described with the angles λθ and λφ as indicated
in Fig. 3.7. For the benchmark model, the angles are chosen in the centre of each
spherical permanent magnet segment and are obtained with

λθ =
π

Pθ
(pθ −

1

2
) (3.112)

λφ =
2π

Pφ
(pφ − 1) (3.113)

where Pθ is the total number of permanent magnets in the θ-direction, pθ =
1, 2, ....Pθ, Pφ is the total number of permanent magnets in the φ-direction and
pφ = 1, 2, ....Pφ. Based on these angles the Cartesian components of the magneti-
zation vector are given by

~M0 =

Mx ~ex

My ~ey

Mz ~ez

 =

M0 sin(λθ) cos(λφ)~ex

M0 sin(λθ) sin(λφ)~ey

M0 cos(λθ)~ez

 (3.114)

where M0 = Br
µ0

and Br is the remanent magnetic flux density of the perma-
nent magnets. The magnetization vector is converted to the spherical coordinate
system, as described in (A.1), for the harmonic model, which results in

~M0 = (−1)
pθ+pφM0

(cos(λφ − φ) sin(λθ) sin(θ) + cos(λθ) cos(θ)) ~eρ

(cos(λφ − φ) sin(λθ) cos(θ)− cos(λθ) sin(θ)) ~eθ

sin(λθ) sin(λφ − φ)~eφ

 . (3.115)



56 Chapter 3: Modeling of spherical magnetic structures

y

x

λφ

(a)

z

x

λθ

(b)

Figure 3.7: The 2D projection of the benchmark topology with a parallel magnetization
in the xy-plane (a), and zx-plane (b).

3.7.2 Radial magnetization

The radial magnetization of a sphere can be defined directly in the spherical co-
ordinate system. As the word radial already suggests the direction of the mag-
netization vector of each permanent magnet is in the ρ-direction. The resulting
2D projection of the benchmark with a radial magnetization is shown in Fig. 3.8.
This magnetization pattern can be described by

~M0 =

(−1)
pθ+pφM0 ~eρ

0~eθ

0~eφ

 (3.116)

where pθ = 1, 2, ....Pθ, pφ = 1, 2, ....Pφ, Pθ is the total number of permanent
magnets in the θ-direction and Pφ is the total number of permanent magnets in
the φ-direction.

A radial magnetization in a spherical direction poses some manufacturing chal-
lenges. For anisotropic material, a radial magnetic field has to be applied during
the manufacturing process. If an isotropic material is used, a magnetizer that can
produces a radial field is required to create this magnetization.
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Figure 3.8: The 2-D projection of the benchmark topology with a radial magnetization
in the xy-plane (a), and zx-plane (b).

3.8 Comparison

The magnetic flux density of the benchmark topology is obtained with the mag-
netic charge model, harmonic model and the commercial FEA software Maxwell.
This benchmark has 32 spherical permanent magnets for which a radial and par-
allel magnetization is considered. Since no harmonic expression is found to model
a radial magnetization, the harmonic model is not included in the comparison of
this magnetization.

The magnetic flux density on the radius of 56 mm is calculated. An airgap of
1 mm is simulated with this radius. The results are shown over a range of θ =
0◦-90◦ and φ = 0◦-90◦ as indicated in Fig. 3.6.

3.8.1 Parallel magnetization

Application to the unbounded benchmark topology

The magnetic flux density of the benchmark model, predicted with the magnetic
charge model, is shown in Fig. 3.10. These results are obtained with a numerical
integration dθ = π/N and dφ = 2π/2N where N is 300. This integration step size is
determined for a rms discrepancy below 0.1%. The convergence of the numerical
integration as function of the integration step N is shown in Fig. 3.9. The applied
numerical integration step size corresponds with a spatial step size of 0.42 mm for
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the surfaces at Rin and 0.58 mm for the surfaces at Rout. The resulting calculation
time for this step size is equal to 0.36 s for each observation point. In addition,
this integration step can be decreased further because the magnetic charge model
is not numerically limited. Therefore, the discrepancy of the harmonic model and
FEA is obtained with respect to the magnetic charge model. This discrepancy is
calculated by

εrms =
rms(Bref )− rms(B)

rms(Bref )
(3.117)

where B is the magnetic flux density compared to the reference magnetic flux
density Bref .

The obtained discrepancy between the harmonic model and the magnetic charge
model is shown in Fig. 3.11. These results are obtained with a numerical inte-
gration of dθ = π/300. This integration step resulted in a calculation time per
harmonic of 0.071 s. For the obtained results a maximum of 149 harmonics could
be taken into account. This corresponds with a spatial period of 2.4 mm. In-
creasing the number of harmonics resulted in an arithmetic overflow. This can
be avoided with numerical methods, however, this also increases the computation
time. The discrepancy with the harmonic model shows a remainder of the har-
monic description due to the limited number of harmonics that can be taken into
account. Further, there is the Gibbs effect [30] that occurs at the transition be-
tween the spherical permanent magnet segments. The discrepancy of the harmonic
model with respect to the magnetic charge model is calculated with (3.117). The
resulting discrepancies, listed in Table 3.2, are within 0.03%. Hence, it can be
concluded that the harmonic method and the charge modeling are in very good
agreement with each other.

The resulting discrepancy between the obtained results from the FEA and the
magnetic charge model is shown in Fig. 3.11. These results show a small amplitude
difference for the radial magnetic flux density of 7.9 mT. Furthermore, numerical
noise of the FEA and the numerical integration of the magnetic charge model
is visible. The discrepancies as listed in Table 3.2 of the magnetic flux density
components are all within 1%.

FEA discretizes the problem into elements to approximate the solution of the
complete problem. The accuracy of this model depends on the distribution of
the mesh elements. When the complete solution is obtained, the magnetic flux
density on each arbitrary point can be interpolated. The simulation time of FEA
strongly depends on the number of mesh elements used to solve the problem. A
mesh of 2 mm was assigned at a radius of 56 mm. The total number of 947015
mesh elements required a simulation time of 39.5 min. For this simulation, FEA
was limited by the 16GB of internal memory of the pc.
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Figure 3.9: Convergence of the numerical integration of the magnetic charge model.

Application to the bounded benchmark topology

An region of infinite permeable material encloses the benchmark topology to eval-
uate the magnetic charge model in combination with spherical imaging. The mag-
netic flux density at this boundary is evaluated where a zero tangential field is
assumed, therefore, only the radial magnetic field component is considered in this
analysis. The radius of this boundary is 56 mm and is listed with the rest of the
geometry properties in Table 3.1.

The obtained magnetic flux density with the magnetic charge model is shown in
Fig. 3.12. These results show a magnetic flux density increase of 47% by adding
an infinite permeable boundary. For the numerical integration it is chosen that
dθ = π/N and dφ = 2π/2N where N=300. This resulted in a 0.72 s calculation time
per observation point including the original source and image source. This time
is doubled with respect to the unbounded benchmark topology due to the imaged
sources.

The harmonic model has a discrepancy with the magnetic charge model as shown
in Fig. 3.12. In this figure the remainder of the harmonic description is visible in
the φ-direction and the Gibbs effect is present. Due to the inclusion of an infinitely
permeable boundary, the number of harmonics is limited to 122 before reaching
the arithmetic overflow. This corresponds with a spatial period of 2.9 mm. The
discrepancy with respect to the magnetic charge model is equal to 1.6%; hence,
the models are in good agreement of each other.

In the FEA, a region with a relative permeability of µr = 4000 is simulated that
surrounds the permanent magnet array. In this analysis, a mesh size of 2 mm is
assigned at the boundary. This result in a discrepancy as shown in Fig. 3.12c with
respect to the magnetic charge model. In this simulation, 1185710 mesh elements
are used and a calculation time of 35.7 min is required. In this figure mostly
numerical noise is visible and a small amplitude of about 7 mT is present. The
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Figure 3.10: Magnetic flux density of the unbounded benchmark topology obtained with
the magnetic charge model at a radius of 56 mm in the third region of
component: (a) Bρ, (b) Bθ, and (c) Bφ.
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Figure 3.11: The discrepancy of the magnetic charge model with respect to the harmonic
model: (a) ∆Bρ, (b) ∆Bθ, (c) ∆Bφ, and to the FEA: (d) ∆Bρ, (e) ∆Bθ,
(f) ∆Bφ.
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Table 3.2: The rms discrepancy of FEA and the harmonic modeling with respect to the
magnetic charge models considering the 32 spherical permanent magnet array
with a parallel magnetization Table 3.1, Fig. 3.11.

Boundary Modeling method Bρ [%] Bθ [%] Bφ [%]

Unbounded
Harmonic 0.025 0.028 0.0017

FEA 1.0 0.63 0.88

Bounded
Harmonic 1.6 - -

FEA 1.6 - -

discrepancy is the highest at the transitions between the permanent magnets.

3.8.2 Radial magnetization

A radial magnetization is modeled with the magnetic charge model and FEA. Since
no semi-analytical harmonic expression is found for the radial magnetization, this
model is not included for the comparison of the radial magnetizations.

The magnetic flux density is obtained with the magnetic charge model and the
results are shown in Fig. 3.13. These results show a concave radial magnetic flux
flux density, whereas with a parallel magnetization a convex radial magnetic flux
density is produced. The amplitude of the radial magnetic flux density is 20%
smaller compared to the parallel magnetization.

For the magnetic charge densities, a numerical integration step of dθ = π/N and
dφ = 2π/2N with N = 300 is used. An numerical integration of the volume charge
density is performed with dρ = Rout/N, dθ = π/N and dφ = 2π/2N where N is
150. The convergence is below 0.1% with this numerical integration step size. The
calculation time is equal to 0.60 s for each observation point. The computation
time per observation point is 1.3 s for the method of imaging. In comparison to
the unbounded benchmark topology, this time is more than twice the simulation
time because the imaged geometry is larger and the integration step is kept equal.
Furthermore, the volume charge density which requires a numerical volume in-
tegration. Due to this integration, more computation time is necessary. Hence,
there is a trade of between accuracy and computation time.

The discrepancy between the two modeling techniques is shown in Fig. 3.14. The
majority of the visible discrepancy is noise and the visible amplitude of the radial
magnetic flux density is neglectable small. The simulation time of FEA is 36 min
with an assigned mesh of 2 mm at the boundary.

The rms discrepancies of the unbounded and unbounded benchmark topologies
with a radial magnetization are obtained with (3.117) and listed in Table 3.3. For
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Figure 3.12: Application to the bounded benchmark topology: (a) Radial magnetic flux
density at Rs = 56 mm obtained with the magnetic charge model, (b) dis-
crepancy between the harmonic model and magnetic charge model, (c) dis-
crepancy between FEA and the magnetic charge model.
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Table 3.3: The rms discrepancy of the FEA with respect to the magnetic charge models
considering the benchmark topology with 32 radial magnetized permanent
magnets

Boundary Bρ [%] Bθ Bφ

Unbounded 1.4 1.0 1.3
Bounded 3.8 - -

the unbounded topology, the magnetic charge model and FEA have a discrepancy
within 2%. Hence they are in good agreement with each other. For the bounded
topology, a discrepancy of 3.8% is obtained; hence, also for this topology the
models are in good agreement.

3.9 Conclusions

Two different 3D semi-analytical models to obtain the magnetostatic field solu-
tion of spherical magnetic structures have been presented. The scalar potential,
obtained from Maxwell’s equations, is solved by separation of variables resulting
in a harmonic model and by the free-space Green’s function resulting in a mag-
netic charge model. With these semi-analytical models the interaction between
multiple spherical permanent magnets or with coils can be obtained. The effect
of this interaction can be predicted in terms of force and torque with the Lorentz
force method and the Maxwell stress tensor. It has been shown that the Lorentz
force method only requires the radial magnetic flux density to obtain the torque
for spherical magnetic structures. In addition, the Maxwell stress tensor has been
derived from the Lorentz force law in the spherical coordinate system.

The magnetic charge model is implemented in the spherical coordinate system
to model parallel and radial magnetizations. The radial magnetization requires
the inclusion of the magnetic volume charge density. Furthermore, these models
are extended with spherical imaging by applying the method of inversion; hence,
the magnetic charge model can account for an infinitely permeable boundary for
both magnetizations. In addition, the field solution in each observation point is
obtained for each permanent magnet individually, and by superposition the total
field solution is found. Therefore, this method provides a high flexibility because
partially spherical permanent magnet arrays can be taken into account. This
model is completely solved numerically. A higher accuracy than the presented
harmonic model and FEA can be achieved because in the magnetic flux density
prediction of the benchmark topology it has not been numerically limited. The
FEA was limited by the internal memory of the computer, and the harmonic model
had an arithmetic overflow at a certain number of harmonics.
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Figure 3.13: Magnetic flux density results of the unbounded benchmark topology with 32
radial magnetized permanent magnets obtained with the magnetic charge
model at a radius of 56 mm of component: (a) Bρ, (b) Bθ, and (c) Bφ.
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Figure 3.14: Discrepancy between the charge model and FEA of the unbounded bench-
mark topology with 32 radial magnetized permanent magnets of component:
(a) ∆Bρ, (b) ∆Bθ, and (c) ∆Bφ.
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A harmonic model has been presented that can include a boundary of highly per-
meable material and is extended to account for asymmetrical permanent magnet
arrays. In contrast to the magnetic charge model, the presented harmonic model
cannot account for hemispherical permanent magnet arrays. However, the mag-
netic flux density of an array with an uneven number of permanent magnets can
be predicted. Due to the numerical limitations a maximum number of harmonics
that can be taken into account, the solution of the benchmark always has a certain
discrepancy.

The magnetic charge model and harmonic model are applied to a spherical perma-
nent magnet array containing 32 permanent magnets. The magnetic flux density
produced by a parallel magnetization is obtained with both semi-analytical models
and FEA. For both the bounded and unbounded benchmark topology, a maximum
discrepancy of 1.6% has been achieved between the models; hence, the three mod-
eling methods are in good agreement with each other. The presented harmonic
model cannot include a radial magnetization and, therefore, the magnetic flux den-
sity of the spherical permanent magnet array has been obtained with the magnetic
charge model and FEA. For this magnetization a discrepancy within 4% has been
calculated and it can be concluded that both models are in good agreement with
each other.



68 Chapter 3: Modeling of spherical magnetic structures



Chapter 4

Spherical magnetic gravity
compensator

Abstract - A passive gravity compensator that is integrated in an actuator could
significantly reduce the power consumption in robotic applications. To compensate
for the gravity, a rotational spherical magnetic spring is investigated. This spring
is constructed out of two concentric hemispherical permanent magnets. All combi-
nations of a parallel and radial magnetization are investigated to find the topology
which has the required torque characteristic. Consequently, the spring topology
with a parallel and radial magnetization is designed as a gravity compensator for
an arm support application.

This chapter is based on
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tems,” IEEE Transactions on Industry Applications, vol. 50, nr.6, pp. 3628-3636, 2014.

• B. van Ninhuijs, B. L. J. Gysen, J. W. Jansen, and E. A. Lomonova, ”Gravity compensation
using a spherical magnetic spring,” patent 2015/0137923, 2015.

• B. van Ninhuijs, B. L. J. Gysen, J. W. Jansen, and E. A. Lomonova, ”Multi-degree-of-
freedom spherical permanent magnet gravity compensator for mobile arm support sys-
tems,” Proceedings of the 2013 IEEE International Electric Machines and Drives Confer-
ence (IEMDC), Chicago, Illinois, May 12-15, pp. 1443-1449, 2013.
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4.1 Passive compensation

The gravity is a constant force in a known direction. Therefore, this force can
be compensated passively to reduce the required power consumption of a system.
For devices that operate only in a plane perpendicular to the gravity force, such
as vibration isolators [53, 142] and tray systems [58], this force is equal to the
gravity force. Idealized, these systems have zero stiffness in all directions. The
vibration isolator presented in [53] creates positive and negative stiffness with
permanent magnets to suspend a mass of 750 kg. This system is designed for
minimal stiffness with an achieved power consumption of only 0.3 W to keep the
mass in position. Devices such as a robotic arm with only rotational joints that
operate in the complete three dimensional space have to compensate for the gravity
with a varying counteracting force.

In contrast to the aforementioned gravity compensators, a variable force/torque is
required to provide gravity compensation during rotational movement. In Chap-
ter 2 it is shown that there is a sinusoidal relation between the necessary torque
and the angle formed by the arm and the axis of gravity. However, the compensa-
tion torque is not position dependent for motion in the plane perpendicular to the
gravity force. Hence, a constant torque (zero stiffness) is required. A compensator
design for a smart arm-support system has to comply with both requirements.
Therefore, a rotational spring with multi-degrees of freedom is required.

With permanent magnets, a magnetic spring can be realized. The repulsion of two
equal poles or the attraction of two different poles provides a positive or negative
stiffness, respectively. The force is produced by the interaction between the mag-
netic fields of the magnets and contact is not necessary. The torque is reduced
proportionally to the square of the magnetic field which decreases rapidly and
nonlinearly as function of the distance to the magnet. Therefore, linear systems
as illustrated in Fig. 4.1a can have difficulties coping with a large stroke. The
production of torque and force can be manipulated by changing the configuration
of the permanent magnets. Hence, spring configurations can be designed for linear
and rotary motion. Multiple spring designs are presented in [109] from a simple
two pole vertical spring as illustrated in Fig. 4.1a to multipole permanent magnet
array designs for linear motion. In the patent of [97] multiple magnetic spring
topologies are proposed such as a magnetic spring for rotational movement with
multiple equilibrium points. One of these topologies consists of two cylindrical
quasi-Halbach arrays as illustrated in Fig. 4.1b. The torque as function of the
displacement has a period of 120◦ with a total of three equilibrium positions. Be-
cause the cylinders are concentric, the distance between both magnet arrays (the
airgap) does not change in contrast to the topology for linear motion as illustrated
in Fig. 4.1a. Another shape besides a cube and cylindrical, is a sphere. A mag-
netic spring constructed out of concentric spherically shaped permanent magnets
as illustrated in Fig. 4.2 allows rotation about the three Cartesian axes.
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displacement

(a)

displacement

(b)

Figure 4.1: Examples of magnetic spring topologies for: (a) linear motion, (b) rotational
motion.

In this chapter, a spherical magnetic spring is designed to provide gravity compen-
sation in a robotic arm application. The spherical gravity compensator is designed
for the robotic application of a smart arm-support system. The ball and socket
joint construction of the spherical gravity compensator, which is similar to the
human shoulder joint, enables it to provide the required support specified for the
smart arm-support system. Especially the ability to provide multiple degrees of
freedom is beneficial in mimicking the shoulder in particular.

4.2 Specifications

The specifications to provide gravity compensation in an arm-support system are
derived from the human shoulder joint analysis presented in Chapter 2. In this
analysis it is shown that to compensate for the gravity, a sinusoidal torque is
required. In the spherical coordinate system, the sinusoidal torque is necessary
for Tφ(θ, φ) as function of θ. For motion in a plane perpendicular to the gravity
force which corresponds to Tφ(θ, φ) as function of φ zero stiffness is required. The
coordinate definitions of θ and φ are shown in Fig. 4.2. Furthermore, the torque
Tθ(θ, φ) has to be zero, otherwise this would create a movement about the z-axis.
The amplitudes of the sinusoidal torque characteristic for multiple scenarios are
listed in Table 2.8. For the gravity compensator design it is assumed that the elbow
is bent at 90◦ during most of the time during the activities of daily living. For this
scenario, it is shown that a torque of 10 Nm is required to compensate for the mass
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θ

φ

Figure 4.2: Proposed spherical permanent magnet gravity compensator.

of the human arm. For the mass of the arm support itself including an actuator
to actively control the shoulder joint, an additional 2 Nm is added. Hence, a total
torque of 12 Nm is required from the gravity compensator. In this arm support
design no actuation for the elbow joint is taken into account. However, if an elbow
actuation of 2 kg is added an average additional torque of 7 Nm is required.

4.3 Spherical magnetic spring design

The properties of the human arm show two equilibrium points, when the arm is
at rest position (stable point) and when the arm is pointing upwards parallel to
the gravity force (unstable point). The angle between these points is β = 180◦,
where β is in the opposite direction of θ as shown in Fig. 4.2. To provide these
equilibrium points, the gravity compensator can consists of only two permanent
magnets that rotate with respect to each other. According to the maximum range
of motion (β) 0 − 90◦, the gravity compensator will only cross one equilibrium
point namely, the rest position. For the gravity compensator this is an instable
point because according to (2.5) an increasing torque is required when moving out
of this position. This behavior can be provided with two spherically shaped per-
manent magnets with an opposite magnetization direction. In this direction, the
gravity compensator has a negative rotational stiffness, whereas the motion in the
γ-direction requires zero rotational stiffness (as defined in Fig. 2.10). The angle γ
is equal to the φ-direction. To realize zero rotational stiffness, a symmetrical mag-
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Figure 4.3: The magnetization topologies of the outer and the inner hemispheres: (a)
radial-radial, (b) parallel-parallel, (c) radial-parallel, (d) parallel-radial.

netization configuration about the z-axis is employed. Hence, the magnetization
direction with respect to each other does not change when one of the permanent
magnets is rotated about this axis.

For the initial spring design, two permanent magnets with a hemispherical geom-
etry are chosen for practicality reasons. The specified torque characteristic has a
rotational period of 180◦. This period corresponds to a hemispherical and a full
spherical shape of the permanent magnets. For the inner permanent magnet a
hemispherical shape is preferred because it is easier to mount it on a supporting
structure as indicated in Fig. 4.2. The outer permanent magnet has an hemispher-
ical shape because it otherwise cannot achieve the specified range of motion. For
example, a full spherical shape for the outer permanent magnet interferes with the
supporting structure of the inner permanent magnet.

The research on gravity compensators and magnetic springs shows that the force
and torque characteristics depend on the magnetization combination chosen. Ex-
amples of such combinations are aligned magnetizations [109], perpendicular mag-
netizations [142] or the usage of a combination of both in for example a quasi-
Hallbach magnet array [5, 54]. For the spherical spring, a magnetization in the
radial (spherical) direction, parallel (axial) direction and the combination of both
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Figure 4.4: The magnetic gravity compensator geometry parameters.

Table 4.1: Geometric parameters of the investigated gravity spherical springs

Parameter Value Unit Description

Rin 25 [mm] Outer radius of the inner magnet
ga 1 [mm] Airgap length
Rout 36 [mm] Outer radius of the outer magnet
Br 1.3 [T] Remanent magnetic flux density
µr 1 [-] Relative permeability

as illustrated in Fig. 4.3 are investigated.

The geometric parameters which are listed in Table 4.1 and defined in Fig. 4.4 are
applied for the evaluation of the magnetization combinations. The resulting torque
characteristics of the compensator topologies are shown in Figs. 4.5 through 4.8.
The results have been obtained with the magnetic charge model and the torque
is predicted with the Maxwell stress tensor in the airgap. All topologies have
no torque production for Tθ(θ, φ). The torque, Tφ(θ, φ), shows different torque
characteristics that all have zero stiffness as function of φ.

A radial magnetization for both hemispheres, as shown in Fig. 4.3a, results in a
square wave torque characteristic and is presented in Fig. 4.5. The radial mag-
netization creates an constant magnetic flux distribution in the airgap of both
hemispheres. This topology provides a square-wave torque characteristic and,
therefore, has almost zero stiffness over a range from θ = 20◦ to θ = 160◦. This
torque behavior corresponds with gravity compensators as used for vibration iso-
lators as presented in [53]. However, this is not the desirable characteristic for a
robotic arm. When the topology arrives at its meta-stable (initial position) and
stable position the torque goes relatively fast to zero.
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With a parallel magnetization for both permanent magnets as shown in Fig. 4.3b,
a torque as visualized in Fig. 4.6 has been found. With the combination of the
spherical geometry and the parallel magnetization, the magnetic flux is focused
at the top of the sphere inside the airgap. This results in an almost constant
stiffness in the range of θ = 40◦ and θ = 140◦. In addition, this magnetization
topology has two stable positions, namely the initial (θ = 0◦) and the end position
θ = 180◦ (of the human arm). In the middle, at θ = 90◦ a meta-stable position is
present. In the initial position as depicted in Fig. 4.3b, the magnetization direction
are opposed to each other. Because of the symmetry and flux focussing there is
magnetic field interaction on the flat size of the hemisphere which is referred to
as end-effects. These end-effect produce a negative torque that is larger than the
positive torque that results from the opposite magnetizations, that create a stable
position.

The combination of a radial magnetized outer hemispherical permanent magnet
and a parallel magnetized inner spherical permanent magnet, as shown in Fig. 4.3c,
produces a torque as shown in Fig. 4.7. This topology combines the constant
magnetic flux density of the radial magnetization with the flux focussing of the
parallel magnetization. This results in a sinusoidal torque characteristic as shown
in the figure. This topology provides a positive stiffness in the first part, θ = 0◦

to θ = 90◦ and a negative stiffness for the second part, θ = 90◦ to θ = 180◦.

The inverted combination, radial-parallel as shown in Fig. 4.3d, provides a torque
characteristic as given in Fig. 4.8. The torque characteristic shown in this figure is
similar to the torque characteristic of the parallel-parallel magnetization combina-
tion, but it is inverted. The torque amplitude, however, is very low in comparison
to the other topologies. Because the magnetic flux density of the outer hemispher-
ical permanent magnet closes within its own structure [91], the magnetic fields
only have little interaction. Consequently, there is almost no coupling between the
hemispheres.

To ensure the torque characteristics are consistent for different geometric param-
eters, the ratio between the inner and outer sphere radii is investigated. This
investigation is performed with a variable outer radius Rout and a constant inner
radius, Rin, and airgap, ga. Consequently, the airgap volume in which the mag-
netic field interacts, is kept constant. The resulting torque for the different ratios
is shown in Fig. 4.9. According to these results, the topologies, except for the
radial-parallel configuration, show a range where the stiffness is zero or a constant
that decreases when the radius increases. This range can be extended by expand-
ing the outer spherical shape of the permanent magnet towards a full sphere. The
radial-parallel configuration only shows a change in amplitude and, therefore, it
is concluded that the geometry change does not influence the torque characteris-
tic. In these 2D figures the torque characteristics are more clearly visible for the
different topologies such as the almost zero stiffness in Fig. 4.9a and the almost
linear stiffness in Fig. 4.9b.
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Figure 4.5: Torque of the radial-radial magnetization combination rotating the outer per-
manent magnet about: (a) φ-axis, (b) θ-axis.
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Figure 4.6: Torque of the parallel-parallel magnetization combination rotating the outer
permanent magnet about: (a) φ-axis, (b) θ-axis.
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Figure 4.7: Torque of the radial-parallel magnetization combination rotating the outer
permanent magnet about: (a) φ-axis, (b) θ-axis.
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Figure 4.8: Torque of the parallel-radial magnetization combination rotating the outer
permanent magnet about: (a) φ-axis, (b) θ-axis.
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Figure 4.9: The torque of the different magnetization combinations for different ratios at
Rx = 0◦: (a) radial-radial magnetization, (b) parallel-parallel magnetization,
(c) radial-parallel magnetization, (d) parallel-radial magnetization.
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4.4 Magnetic gravity compensator design

To compensate for the gravity in the robotic application of a mobile arm-support
system it is shown in Chapter 2 that a sinusoidal torque characteristic is required.
This torque characteristic corresponds with the radial-parallel spherical spring
topology and, therefore, investigated further. Additionally, this magnetic spring
has zero stiffness in the other rotation as shown in Fig. 4.7, which corresponds
with movement in the horizontal plane (perpendicular to the gravity direction).
Therefore, a magnetic gravity compensator is designed and optimized using this
spherical magnetic spring topology.

4.4.1 Optimization of the geometry

The magnetic gravity compensator has to provide a torque of 12 Nm with the
aforementioned magnetization topology. For the smart arm-support system, it
is desirable to minimize its volume to guarantee flexible mounting on an electric
wheelchair. In addition, the geometrical optimization also results in minimized
mass which is beneficial for the mobility of the system. This optimization is per-
formed with the magnetic charge model that assumes a relative permeability of
µr = 1. A parametric search for a range of inner and outer radii and a fixed airgap
length of ga = 1 mm has been carried out to. The analysis in Fig. 4.9c shows that
the radial-parallel spherical spring topology produces a sinusoidal torque charac-
teristic for different Rout. Therefore, only θ = 90◦ is evaluated. The amplitude
of the torque, Tφ, as function of the inner and outer radius is shown in Fig. 4.10.
The minimal magnet thickness is equal to 1 mm. From the parametric search,
the optimal torque as function of the outer radius can be obtained and is shown
in Fig. 4.11. Identification of this figure, shows a quadratic relation between the
torque production and the outer radius of the gravity compensator.

From the figures created with the parametric search (4.10 and 4.11), the optimal
design for the spherical gravity compensator is obtained. For the design with a
specified torque of T = 12 Nm a dimension of 43 mm for the outer radius and
29 mm for the inner radius is found. The geometric parameters for this final
design are listed in Table 4.2. For alternative cases, for example when the smart
arm support is equipped with an actuator for the elbow joint, the minimal radii
can be obtained from Fig. 4.11. This results in an outer radius of 49.6 mm and
an inner radius of 35 mm. Hence, a smart arm-support design with an actuated
shoulder joint requires a torque increase of 58% that can be achieved by increasing
the volume with 36%.
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Table 4.2: Geometric parameters of the final design for the gravity compensator

Parameter Value Unit Description

Rin 29 [mm] Outer radius of the inner magnet
Rout 43 [mm] Outer radius of the outer magnet
ga 1 [mm] Airgap length
Br 1.3 [T] Remanent magnetic flux density
µr 1 [-] Relative permeability
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Figure 4.10: The torque about the y-axis as a function of Rin and Rout obtained at the
position θ = 90◦ where the black line represents the torque requirement
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Figure 4.11: The amplitude of the torque production as function of the outer radius
obtained from the position θ = 90◦.
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4.4.2 Force analysis

The magnetic spring consists of two permanent magnets that are configured in
a radial-parallel magnetization that have an opposite direction. Aside from a
sinusoidal torque production, forces are produced. These forces between the hemi-
spherical permanent magnets as function of the rotation angle θ are shown in
Fig. 4.12. Although, the instable initial position might suggest a repulsive force,
this figure shows an attraction force of 533 N instead. According to the flux lines
as shown in Fig. 4.13, the radial magnetization at the end of the hemispheres pulls
the parallel magnetized inner hemisphere towards the outer hemisphere. These
end-effects have such a concentration of flux lines that it counteracts the repulsion
of the oppositely directed magnetizations. At an angle of θ = 36◦ the force in the
z-direction becomes negative and the outer permanent magnet repels the inner
permanent magnet. This force reaches its maximum of 124 N at θ = 60◦. In this
position there are less end-effects.

For a correct operation of the magnetic gravity compensator, it is important that
the hemispherical permanent magnets are concentric. Otherwise, the sinusoidal
torque characteristic cannot be maintained. The bearing has to withstand both at-
tractive and repulsion forces. The forces in the x- and y-directions always push the
inner hemisphere towards the outer hemisphere because of the enclosing spherical
geometry. A positive force in the z-direction is also an attraction force between the
hemispheres. To account for the negative force in the z-direction, the bearing has
to include an additional mechanical construction mounted on the outer hemispher-
ical permanent magnet that encloses the inner hemispherical permanent magnet.

There are multiple possible bearings to employ the gravity compensator with, such
as an air, plain, and ball bearing. The airgap in an air bearing can be made very
small and has the least friction among the mentioned bearings. However, external
equipment is necessary to produce pressurized air. A plain bearing uses material
that has a low friction coefficient. Despite this low friction, it has the largest
stick and slip effect of the aforementioned bearing topologies. A ball bearing has
less friction than the plain bearing. However, the gravity compensator requires a
spherical spacer to keep the balls at their position. With this type of bearing, the
airgap depends on the size of the bearing balls. Furthermore, these balls cannot be
made of magnetic material because they would disrupt the magnetic field. Hence,
other material has to be used such as non-magnetic stainless steel or ceramic. A
spherical ball bearing for the gravity compensator is presented in Chapter 6.



4.4: Magnetic gravity compensator design 81

4.4.3 Demagnetization

The produced magnetic field by a permanent magnet is characterized by the mag-
netic flux density, B, and the magnetic field strength, H. The B(H)-curve describes
the magnetic hysteresis loop of the magnetic material. This loop intersects the pos-
itive side of the ordinate at the remanence magnetic flux density, Br atH = 0 A/m.
This curve is part of the hysteresis loop and has a knee point at which the per-
manent magnet is permanently demagnetized. The NdFeB permanent magnet
material is more susceptible for demagnetization at higher temperatures because
the location of the knee point is influenced. This knee point is in direct relation to
the coercivity of the permanent magnet, indicated by the magnetic field strength,
often indicated with Hcj . This magnetic field strength is defined as the point at
which the polarization of the magnetic field is zero.

To determine the working point of the permanent magnet, the magnetic flux den-
sity component in the direction of the magnetization is obtained. These com-
ponents are radial, Bρ, for the outer and in the z-direction, Bz, in the inner
hemispherical permanent magnet. The minimum demagnetizing flux density as
function of the rotation, θ, is shown in Fig. 4.14. Both hemispherical permanent
magnets have the highest opposite magnetic flux density at the initial position,
θ = 0◦. These magnetic flux densities are visualized with a sectional view in
Fig. 4.15.

The magnetic flux density of the inner permanent magnet in Fig. 4.15a shows
that the hemisphere is the most susceptible at the corners on the bottom of the
hemisphere. This corresponds with the end-effects as shown with the flux lines in
Fig. 4.13. The lowest magnetic flux density in the system is equal to -0.1 T and it
mostly occurs at the corners.

The magnetic flux density in the outer permanent magnet is visualized in the sec-
tional view of Fig. 4.15b. In this figure the lowest magnetic flux density in the
system occurs about the z-axis. This corresponds with the flux lines as shown
in Fig. 4.13 where the lines of the inner hemispherical permanent magnet closes
through the outer hemispherical permanent magnet. The maximum opposite ra-
dial magnetic flux density is equal to -0.6 T.

For the demagnetization of the hemispherical permanent magnets, it can be con-
cluded that mainly the radial magnetized permanent magnet has a risk to be
permanently demagnetized. In the design of this passive device it is assumed that
it does have high temperature rises. Therefore, a remanent of 1.3 T is realistically
chosen for the radial permanent magnet. For the inner hemispherical permanent
magnet, this remanent magnetic flux density is conservatively chosen. Hence, the
presented design is considered feasible.
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Figure 4.12: The force that occurs between the hemispherical permanent magnets during
motion about the x-axis.

Figure 4.13: Flux lines of the radial-parallel magnetization combination in the initial
position (θ = 0◦).
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Figure 4.14: The minimal magnetic flux density in the direction of the magnetization
as function of the rotation angle θ present in the hemispherical permanent
magnets: (a) Bz for the inner magnet, (b) Bρ for the outer magnet.
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Figure 4.15: Magnetic flux density shown in a sectional view for the position with the
highest risk of demagnetization for: (a) the inner hemispherical permanent
magnet, (b) the outer hemispherical permanent magnet.
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4.5 Manufacturability

For the design of the gravity compensator, the magnetic properties of sintered Nd-
FeB permanent magnets are taken into account. This alloy has a high magnetic
flux density with respect to other available materials such as ferrites, AlNiCo and
samarium-cobalt [28]. The sintered manufacturing process uses a powdered per-
manent NdFeB alloy which is pressed into a shape while a bias field is applied to
align all the elements in the powder. These permanent magnets are able to achieve
a remanent magnetic flux density that can go up to 1.47 T [129]. For bonded per-
manent magnets a different manufacturing method is applied. Bonded permanent
magnet are a mixture of permanent magnet material and other materials for ex-
ample a plastic; hence it can be used for injection moulding. Due to this mixture
the density of the magnetic material is lower and, therefore, a lower magnetic field
can be created. Furthermore, the resulting magnetization is isotropic; hence, the
magnet has no preferred magnetization direction. However, a magnetic field can
be applied during the injection moulding process creating anisotropic material [28].
With the bonding method, exotic geometries are easier to accomplish compared
to the sintered manufacturing method. However, a remanence of only 0.65 T can
be achieved.

Spherical sintered permanent magnets are commercially available. Therefore, it
is realistic to assume a remanence property of 1.3 T for the inner hemispherical
permanent magnet. The outer hemispherical permanent magnet is more difficult
to produce because it is hollow. Therefore, it may be interesting to create this
with a bonded permanent magnet. Application of a bonded outer hemispherical
permanent magnet (Br = 0.65 T) combined with a sintered permanent magnet in
the final design, as listed in Table 4.2, the torque amplitude reduces to 6.1 Nm. In
the case both hemispherical permanent magnets are produced out of bonded ma-
terial, the torque reduces to 3.0 Nm. Hence, the application of bonded permanent
magnet significantly reduces the torque amplitude.

The hemispherical permanent magnet with the parallel magnetization can be cre-
ated by machining it from a block of sintered NdFeB material. Because this
material is very hard and brittle, machining methods such as wire eroding and
vertical eroding are preferred over milling. The radial magnetization is more diffi-
cult than the parallel magnetization. Another method is approximating the radial
magnetization with segmentation. This method uses a series of parallel magne-
tized permanent magnets to approximate the radial magnetization. The accuracy
of this approximation is determined by the number and size of the segmented per-
manent magnets. This method allows fast prototyping and is, therefore, applied
for the realized prototype design in Chapter 6. In this prototype design, the ra-
dial magnetization is approximated with 178 cylindrical permanent magnet with
a radius of 2 mm and a height of 13 mm. These geometric parameters correspond
to those of the final design as listed in Table 4.2. Due to the spherical shape,
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this segmentation results in 74% less magnetic material resulting in an amplitude
torque of 3.3 Nm.

Instead of a hemispherical shape for the inner permanent magnet, a full sphere can
be used. This geometry is investigated in [91] for the gravity compensator design
as presented in this chapter. According to this work the torque amplitude in-
creases with 200% with respect to the hemispherical permanent magnet geometry.
However, it is also shown that the sinusoidal torque characteristic only holds for
hemispherical or full spherical shapes. Only the inner permanent magnet can be
employed out of a full sphere. Otherwise, the range of motion cannot be achieved.
However, a hemisphere is chosen for the inner permanent magnet array because it
results in a more stable construction when mounted on the supporting structure.

4.6 Conclusions

A novel magnetic gravity compensator has been designed that is able to provide
support in multiple degrees of freedom. A spherical magnetic spring is created with
two concentric hemispherical permanent magnets. Different torque characteristics
can be realized depending on the combination of parallel and radial magnetizations.
It has been shown that a change of the hemisphere radii only results in a change
in torque amplitude and not in the characteristic.

An arm-support system requires a sinusoidal torque characteristic. This charac-
teristic corresponds to the combination of a radial magnetization for the outer
hemispherical permanent magnet and a parallel magnetization of the inner spher-
ical permanent magnet. An average torque requirement of 12 Nm has been found
by identifying the human arm movements. By mapping the torque performance
of the compensator for different inner and outer radii, an optimal torque den-
sity with respect to its volume has been found. Considering a permanent magnet
grade with a remanent magnetic flux density of 1.3 T, a radius of 29 mm and a
radius of 43 mm for the inner and outer permanent magnet have been obtained,
respectively. Commercial spherical permanent magnets are available that can be
used for the inner hemispherical permanent magnet. However, the manufacturing
of the outer hemispherical permanent magnet is not evident. Furthermore, this
permanent magnet has a risk of demagnetization when employed in the gravity
compensator.
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Chapter 5

Integrated design of a spherical
actuator

Abstract - Actively controlled arm support systems provides more support for
activities of daily living compared to passive arm support systems. Therefore,
a spherical actuator with integrated gravity compensator is designed as a multi-
degrees-of-freedom robotic joint. Because of the integration of the compensator, in
an unconventional hemispherical actuator is designed. The gravity compensator
is concentrically placed inside the actuator. These two devices are decoupled by a
spherically shaped segmented back-iron which is positioned in between the devices.
Multiple slotless actuator topologies are compared based on their predicted power
dissipation. In addition, the power dissipation of the resulting design is further
minimized. Finally, the design suitable for an arm support system is presented.

This chapter is based on
• B. van Ninhuijs, B. L. J. Gysen, J. W. Jansen, and E. A. Lomonova, ”Topology comparison

of slotless permanent magnet semispherical actuators,” IEEE Transactions on Magnetics,
vol. 50, nr.11, 2014.
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5.1 System topology and specifications

Actuated arm-support systems can provide more support during activities of daily
living compared to passive systems. Usually, passive mobile systems only com-
pensate for the gravity. At a certain stage, persons that suffer from a progressive
neuromuscular disorder are limited by non-ideal phenomena such as friction in the
arm-support system. An actuated system can compensate for these phenomena,
and also provide support for the acceleration and deceleration of the arm. Further-
more, the gravity force of additional weight, for example a cup of coffee, can be
actively compensated. Arm-support systems are usually mounted on an electric
wheelchair; hence, mobility and power consumption are important aspects.

A multiple-degrees-of-freedom spherical actuator with integrated gravity compen-
sator is proposed. The spherical actuator has a similar ball and socket joint as the
compensator and has an equal number of degrees of freedom (DoF). These degrees
of freedom are necessary to comply with the range of motion requirements. In this
chapter, it is shown that a passive compensator can be integrated into a spherical
actuator. A design is presented towards a smart mobile arm-support application.

5.1.1 Spherical actuation

There are several spherical actuator topologies described in the literature. The
design of these actuators are often application specific. For example, a gyroscope
for aerospace purposes is presented in [112]. This design has a completely encap-
suled rotor which can rotate unlimitedly in three DoF. In most cases, contact with
the rotor is required. For example in a sorting stage for a conveyor belt or in omni
wheels [24]. These applications require a design with a stator that covers the rotor
only partially. Some designs provide unlimited rotation about only one axis and
a limited tilting motion about the other axes [69, 139]. Other applications need
to exert a force in combination with a rod, such as a camera joint or a robotic
manipulator. This rod is connected to the rotor of the spherical actuator and,
therefore, the design has a limited rotation movement in two [139] or three [92]
DoF.

The majority of the spherical actuators found in the literature use permanent
magnets in combination with slotless coils and an interior rotor [47, 62, 66, 69,
112, 139, 140]. A permanent magnet spherical actuator with an exterior rotor is
proposed in [66]. In addition, slotted topologies with an interior rotor are proposed
by [132] and [56]. Typically, the spherical actuator designs provide a torque below
4 Nm with rotor radii ranging from 25.5 mm to 46.5 mm. The design presented
by [56] has high number of permanent magnets (112) and slotted coils (96) and an
interior rotor with a radius of 325 mm. This design provides a torque of more than
40 Nm in all degrees of freedom. Different techniques can be applied to produce
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Figure 5.1: Initial design of the spherical actuator with integrated magnetic gravity com-
pensator.

a torque with a spherical actuator. In [65, 70] a variable reluctance machine is
designed capable of providing 3 DoF. The possibilities of an induction machine are
explored in [22] and [24] in which several topologies are investigated. A spherical
actuator with two DoF is presented in [63] using electromagnets for the rotor and
stator.

In this chapter, a spherical actuator topology is investigated with an integrated
gravity compensator capable of moving with a large range of motion. In this design,
an unconventional hemispherical permanent magnet array is applied as depicted
in Fig. 5.1. A set of specifications for the design are obtained from the shoulder
joint analysis presented in Chapter 2. The analysis of rotary actuators in [26, 100]
shows that permanent magnet technology provides the highest torque density. This
technology is preferred because the volume can be minimized. The combination
of the integrated gravity compensator and the specifications, result in mechanical
constraints. Due to these constraints, the design deviates from the traditionally
chosen full spherical structure for the permanent magnet array. The integrated
topology has two airgaps, namely one in the compensator and one in the actuator.
Multiple configurations of the hemispherical permanent magnet arrays, coil arrays
and back-iron configurations are investigated. The power dissipation is predicted
with the models derived in Chapter 3. Subsequently, the gravity compensator
is integrated in the spherical actuator. Next, the geometry parameters of the
spherical actuator topology are minimized and the thermal behavior is modeled.
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5.1.2 User scenarios

A spherical actuator is designed towards the application in a smart arm-support
system. These systems are usually mounted on a wheelchair where limited space is
available. In addition, a small volume reduces the stigmatization and increases the
social acceptance. Therefore, the optimization objective is to minimize the volume
of the spherical actuator. This volume is determined by the torque specification
and maximum allowable temperature on the outside of the actuator.

Each individual performs the activities of daily living differently and, therefore,
require unique motion profiles to be followed by the actuator. Hence, the requested
performance of an actuator in an arm support varies for each person. Therefore,
the spherical actuator is designed to be suitable for multiple users. The torque
specifications, as derived in Chapter 2, consider the torque required for certain
positions. In practice, the human arm is at rest (zero torque is required) in between
activities. In case an individual uses his arm (too) frequently, the muscles become
tired and the person has to let his arm rest. This property of the arm should
corresponds with the duty cycle of the spherical actuator.

There are two types of scenarios considered during the activities of daily living.
The first scenario depicts an activity that can be repeated continuously. It is
assumed that this scenario represents a worst case when maximal acceleration or
deceleration is required every second with a bent elbow. Such a scenario should
also cover activities such as drinking where the mass is higher but the repetition
is lower. The second scenario is considered as an activity that requires a short
peak torque and is not repeated often. For this scenario, the user should be able
to stretch his arm for 20 s. This position requires additional gravity compensation
from the spherical actuator.

5.1.3 Mechanics

The mechanical construction of the spherical actuator is constrained by the re-
quired range of motion and the integration of the gravity compensator. The rotor
of the integrated actuator consists of the outer permanent magnet of the gravity
compensator and the permanent magnet array of the actuator. This array is lim-
ited by a hemispherical shape, otherwise the range of motion cannot be achieved
due to the obstructing supporting structure of the gravity compensator. For the
robotic application, a rod has to be connected to the rotor to exert the produced
torque. This rod and the range of motion requirements determine the maximum
width of the coil array. According to Table 2.10 this range is 90◦ about each axis
for the most essential activities of daily living. Rigid body dynamics are assumed,
and consequently the superposition principle is applied to the force and torque
calculations.
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The dissipated power in the coils requires cooling. Possible cooling methods are
forced air cooling, water cooling, and natural convection. Forced air cooling is
undesirable due to possible sound production. Water cooling is impractical in the
application because of the required additional pumping system with the additional
risk of leakages. Hence, natural convection is preferred. For natural convection
it is beneficial to place the heat source close to a convection surface which is as
large as possible. Therefore, the coils are placed on the outside of the integrated
actuator. Furthermore, placement of the coils on the outside is also beneficial of
the torque production. Because the radius is larger a higher torque is produced
with the same force production.

5.1.4 Specifications

The technical specifications for the spherical actuator with integrated gravity com-
pensator are chosen for a continuous and peak torque. The continuous torque is
obtained from the shoulder-joint analysis performed in Chapter 2. In this chapter
it is found that to accelerate with 7.6 rad/s2, a torque of 2.7 Nm is required. This
torque is required for 0.15 s to accelerate to a speed of 65◦/s with the elbow bent
at 90◦. This speed is estimated based on the ambulatory directly-on-the-joint ac-
tuator specifications as listed in Table 2.1. The repetition of the torque is every
1 s, resulting in a duty cycle of 15%. The produced torque has a quadratic relation
with the dissipated power. Therefore, the continuous torque is obtained with

Tcon = T
√
δ (5.1)

where Tcon is the continuous torque, T is the peak torque, and δ is the duty cycle.
The resulting continuous torque is 1.0 Nm.

The peak torque is based on the difference between the maximum gravity com-
pensation required for an arm with a bent elbow at 90◦ and a stretched arm as
listed in Table 2.8. This torque is 6 Nm and should be provided for a duration of
20 s and is not repeated for at least 2.5 hours.

The thermal specifications is defined as the temperature increase at the outside
of the actuator. For the arm-support application, a maximum increase of 40◦C is
acceptable. When the user is able to directly contact the metal of the stator it
can be required that this specification reduces to 20◦C. All aforementioned design
specifications for the spherical actuator are listed in Table 5.1.
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Table 5.1: Technical specifications for the spherical actuator design

Specification Value Unit

Continuous torque 1.0 [Nm]
Duty cycle continuous mode 15 [%]
Peak torque 6.0 [Nm]
Maximum temperature rise 40 [deg]
Range of motion (all DoF ) 90 [deg]

5.2 Analysis method

5.2.1 Flux density

Multiple actuator topologies are evaluated and compared based on the predicted
power dissipation. A slotless coil topology is chosen for the spherical actuator
design to avoid cogging torque. From a safety point of view, cogging is undesir-
able because it interferes with the sinusoidal torque characteristic of the gravity
compensator. Hence, when a sudden power failure occurs, it is possible that the
user is no longer capable of controlling the arm-support system. Nevertheless, the
configuration with back-iron behind the coils is investigated in Section 5.7. It is
shown that the power dissipation to compensate for the cogging torque does not
justify the increase in magnetic flux density. Fig. 5.2 shows the integration of the
gravity compensator and the geometric parameters which are listed in Table 5.2
and Table 5.3.

Table 5.2: Geometric parameters as defined in Fig. 5.2

Parameter Value Unit
Outer radius of the magnet array 63 [mm]
Outer radius of the coil array 74 [mm]
Magnet height, hm 10 [mm]
Coil thickness, hc 10 [mm]
Airgap length, ga 1 [mm]
Remanent magnetic flux density, Br 1.3 [T]
Assumed magnet relative permeability, µr 1 [-]

Spherical actuator topologies are evaluated with the developed magnetic charge
model as presented in Chapter 3. Regions that consist of highly permeable material
are modeled with spherical imaging. The back-iron for the permanent magnet
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Figure 5.2: Sectional view of the spherical actuator with integrated gravity compensator:
(a) side view, (b) front view.

array as indicated with hbm in Fig. 5.2 has a partial spherical. A partial spherical
region has been approximated with a full region by the magnetic charge model and
spherical imaging. The accuracy of this approximation is validated with FEA. In
this validation only the radial component is taken into account because it produces
the torque according to the Lorentz force law in (3.23).

For the topology with a hemispherical permanent magnet array and a full sphere
as back-iron for the magnets, the magnetic flux density predicted with the semi-
analytical tool is shown in Fig. 5.3a. In this projection of the magnetic flux density,
the permanent magnet array is positioned in the Cartesian coordinate system as
presented in Chapter 3, Fig. 3.6. This full spherical permanent magnet array is cut
in half at the zy-plane to create the hemispherical permanent magnet array. The
discrepancy with FEA is shown in Fig. 5.3b and the amplitude difference between
FEA and the semi-analytical analysis is 0.65%. Hence, both models are in good
agreement. There is a discrepancy at the edge of the hemispherical permanent
magnet, located at φ = 90◦ and φ = 270◦ in this figure. This is caused by
the full sphere taken into account with the magnetic charge model instead of a
hemispherical shape as modeled in FEA.

Modeling a hemispherical permanent magnet with two infinite permeable bound-
aries, to approximate the back-iron behind the magnet array and the coil in case
it is present, results in a magnetic flux density as shown in Fig. 5.4a. In theory,
an infinite number of images are required to predict the magnetic field. However,
in practise only a limited number of images can be taken into account. therefore,
the accuracy is investigated for two and four images. The back-iron for the coils
covers the hemispherical permanent magnet array only partially, namely between
θ = 62◦ and θ = 124◦ and is depicted with wc in Fig. 5.2 (b). This back-iron
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has a different interaction with the magnetic field of the permanent magnets when
the position is changed. Hence, besides an increase in magnetic flux density in
the airgap, this configuration introduces a cogging torque. To validate the correct
prediction of the magnetic flux density, two positions are taken into account. The
position with zero cogging torque at the initial position and the position with max-
imum cogging torque when rotated 15◦ in the θ-direction. The results are shown
in Fig. 5.4b and Fig. 5.4c, respectively. It is found that in the region in which the
coils are located, the amplitude discrepancy between the semi-analytical model
and FEA is 9.11% and 4.5% with two and four images, respectively. Increasing
the amount of images provides a higher accuracy with respect to FEA, however,
this also increases the calculation time. The number of four images is considered
to be a good compromise between accuracy and calculation time. The magnetic
flux density amplitude with two infinitely permeable boundaries is 44% larger than
the magnetic flux density with only back-iron behind the permanent magnets as
shown in Fig. 5.3a.

5.2.2 Commutation algorithm

Due to the hemispherical permanent magnet array, the spherical actuator is not
a balanced system. Furthermore, the actuator should be able to produce torque
components in three directions independently. Hence, it is not possible to actuate
the spherical actuator with a balanced three phase system. Consequently, each
coil has to be separately excited. To determine the excitation of each coil, the
current is decoupled from the torque with a mapping of the torque constants for
each position of each coil resulting in a decoupling matrix defined as [51]

~T =

TxTy
Tz

 =

Γ1,x Γ2,x . . . Γn,x

Γ1,y Γ2,y . . . Γn,y

Γ1,z Γ2,z . . . Γn,z




i1

i2

i3
...
in

 (5.2)

=Γ(Rx, Ry, Rz)~i (5.3)

where ~T is the produced torque predicted with the Lorentz force equation 3.20,
Γl,k is the mapping of the torque and current for coil l about the k-axis, and il is
the current through coil l. The torque model required for this method is validated
in [92]. A two-norm minimization can be applied to find the current distribution
through the coils with this decoupling matrix. This results in

~i =
(
Γ>
(
ΓΓ>

)−1) ~Td (5.4)
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Figure 5.3: The magnetic flux density in the middle of the airgap is obtained at 69 mm
with the magnetic charge model and spherical imaging to model a full back-
iron behind the permanent magnets: (a) the predicted magnetic flux density,
(b) discrepancy between the charge model and FEA.
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Figure 5.4: The magnetic flux density in the middle of the airgap at 69 mm of the mag-
netic charge model with in total four spherical images to model the back-iron
behind the coils and permanent magnet array: (a) the predicted field, (b)
discrepancy between the charge model and FEA at the position with zero
cogging torque, and (c) discrepancy between the charge model and FEA at
the position with maximum cogging torque.
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where ~Td is the desired torque. This equation minimizes the ohmic losses and,
consequently, the power dissipation of the actuator. The power dissipation is
obtained by predicting the optimized current distribution through the individual
coils for a predefined torque requirement. By averaging this power dissipation over
the complete range of motion, the different actuator topologies are compared.

5.2.3 Optimization strategy

There are two optimizations performed for the spherical actuator design with in-
tegrated gravity compensator. Firstly, an optimization is performed to obtain the
topology with the lowest power dissipation. Secondly, the geometric parameters
are optimized to minimize the power dissipation further and the resulting design
is verified with a thermal model. Finally, the resulting design is presented in a
topology suitable for the smart arm-support system.

5.3 Topology optimization

In search for the optimal spherical actuator topology, multiple configurations of
hemispherical permanent magnet arrays, coil shapes and coil arrays are evaluated.
The objective is to minimize the average power dissipation by optimizing the coil
to pole pitch ratio of the different topologies. These topologies are derived from
permanent magnet rotary machine designs, planar actuator designs, and spherical
actuator designs from the literature.

The structure to exert the torque, depicted as rod in Fig. 5.1, is neglected in the
topology optimization. The design of the rod is highly dependable on material
properties, required stiffness, mechanical construction and application. For the
final design, the rod is taken into account because together with the required
range of motion, it defines the maximum allowable coil pitch.

5.3.1 Permanent magnet arrays

The considered hemispherical permanent magnet arrays are chosen while taking
mobility and the integration with the gravity compensator into account. For the
mobility of the arm-support system, it is beneficial to reduce the number of perma-
nent magnets in the array. The required number of coils decreases for a reduction
in permanent magnets because there is a direct link between these two. Conse-
quently, the amount of electronics, such as power amplifiers, decreases for a lower
number of coils. Hence, less additional volume to control the spherical actua-
tor. An asymmetric permanent magnet array is undesirable because it influences
the symmetric torque production of the gravity compensator. Therefore, a layout
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Figure 5.5: Investigated hemispherical permanent magnet arrays: (a) τm = 45◦, (b)
τm = 36◦, and (c) τm = 30◦.

with half sized permanent magnets on the edge of the array is used. This layout
provides symmetry in the magnetic field and reduces the end effects.

Not all magnet sizes are equal due to the spherical shape of the permanent magnet
array. Therefore, the pole pitch of the permanent magnet arrays are defined as
an angel. Three hemispherical permanent magnet arrays are investigated with a
pole pitch of τm = 45◦, 36◦, and 30◦. These arrays are shown in Fig. 5.5. The
power dissipation is predicted with the complete coil array to evaluate the actuator
topologies. The effect of the variable magnet size is included by averaging the
power dissipation over different positions covering the complete range of motion.

5.3.2 Coil arrays

For each coil array two different coil topologies are investigated, namely with a
circular shape and an elongated shape. The circular coil topology is often used
in combination with a spherical permanent magnet array [56, 64, 139, 140]. The
elongated coil topology is employed in a similar actuation technology, i.e., the pla-
nar actuator [113]. The geometric parameters and variables of these topologies are
listed in Table 5.2 and Table 5.3, respectively. The definition of these parameters
and variables are shown in Fig. 5.6 and Fig. 5.2. The coils have a spherical shape
to achieve a constant airgap. An array is constructed for both coil topologies as
function of the coil pitch, τc, as illustrated in Fig. 5.7. To obtain the optimal ratio
between pole pitch, τm and coil pitch τc, the comparison is made by varying the
coil pitches for each defined hemispherical permanent magnet array. In this com-
parison, the coil height, hc, is optimized and adapted for each permanent magnet
array.

For the coil topology optimization, an initial ratio between the gap of the bobbin
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Gw and the conductor bundle Cw of 25% is chosen, resulting in

Gw =
1

4
Cw. (5.5)

Optimization and verification of this ratio is presented in Section 5.5. The place-
ment of the coils in the array is defined in terms of the coil pitch as shown in
Fig. 5.7. The radius of the circular coil topology is limited by the distance be-
tween the center of two coils. When the radius is larger than this diagonal the
coils would overlap. Hence, the maximal coil radius can be calculated by

Gw + Cw =
1

2

√(τc
2

)2
+
(τc

2

)2
(5.6)

=

√
2τc
4

(5.7)

where τc is the coil pitch. To account for manufacturing tolerances, the outside
radius is reduced by 10%.

The elongated coils are positioned such that the array results in a herringbone
structure as illustrated in Fig. 5.7b. In this array, the coils are rotated in the
opposite direction, αc = 45◦ and αc = −45◦, with respect to each other. The
relation between the geometric variables and the coil pitch is

Gw + Cw =
1

4
τc (5.8)

where Gw is the elongated coil gap width. A similar coil distribution as the circular
shape is achieved with this ratio. The maximum gap length, Gl, is obtained with
the distance between the coil centers and is found by

Gl =

√(τc
2

)2
+
(τc

3

)2
− 2CwGw. (5.9)

The outer size is, similar to the circular coils, reduced by 10% to account for
manufacturing tolerances.

5.3.3 Power dissipation

The power dissipation at multiple positions over the complete range of motion is
obtained with a predefined torque, Td. Subsequently, the results are averaged for
each actuator topology. In these positions, one of the three torque components is
set to Td = 1 Nm and the other components are set to zero. This is done for each
component x, y, and z resulting in a power dissipation Px, Py, and Pz.

The power dissipation for the topology with τm = 45◦ and τc = 52◦ is shown in
Fig. 5.8. The results in this figure consider the rotations about the y-axis, Ry, and
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Table 5.3: Geometric variables as defined in Fig. 5.2 and Fig. 5.6

Variable Symbol/Value Unit
Coil pitch τc [deg]
Pole pitch τm [deg]
Conductor bundle width Cw [deg]
Coil gap width Gw [deg]
Coil gap length Gl [deg]
Rotated angle elongated coil αc [deg]
Coil back-iron height hbc [m]
Coil height hc [m]
Permanent magnet height hm [m]
Permanent magnet back-iron height hbm [m]

CwGw

(a)

Cw

Gw

Gl

αc

(b)

Figure 5.6: Coil topologies and their geometric variables: (a) circular coil, (b) elongated
coil.
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Figure 5.7: Investigated coil array topologies: (a) circular coil array, (b) elongated coil
array.

about the z-axis, Rz. The figure shows peaks in the power dissipation at certain
positions. It is investigated whether the peaks are singular points by determining
the condition number of the torque matrix, Γ−, where

Γ− =
(
Γ>
(
ΓΓ>

)−1)
. (5.10)

The condition number of Γ− is a measure for the sensitivity of the matrix inversion
for small input changes [51]. The input of the inversion matrix is the mapping
of the torque as function of the position and currents through the coils. If the
condition number is sufficiently small, any torque can be accurately achieved. As
a rule of thumb, if the condition number is 10k, then k indicates the number of
digits lost in accuracy [17]. The condition number of the torque matrix in these
positions is in the order of 10, whereas for the other locations this is equal to
2.5. In addition, the positions at the peaks occur for Px, Py, and Pz are not the
same. Hence, in these positions there is only torque in one direction that cannot
be provided. This can be caused by, for example, coils with an opposite torque
production or when only one coil is able to provide torque in this direction. It is
chosen that the issues of the power dissipation peaks in the actuator design need
to be solved in the kinematics and control algorithm by avoiding these positions
for the arm support application.

The power dissipation is obtained as function of the coil pitch for the different
hemispherical permanent magnet arrays. This power dissipation is averaged over
3375 positions which corresponds to 15 rotations about each axis. The peaks in
the power dissipation are included in the averaging with this resolution. Addition-
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Figure 5.8: Power dissipation with one torque vector component set to 1 Nm and the
others to 0 Nm with τm = 45◦ and τc = 52◦: (a) Tx = 1 Nm, Px (b) Ty =
1 Nm, Py (c) Tz = 1 Nm, Pz.
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ally, the number of coils in the arrays are reduced for larger coil pitches to avoid
overlapping coils. If such an overlap occurs, coils are removed at the back side of
the hemispherical permanent magnet array (negative z-direction). The coil pitch
of the circular coil topology ranges from 40◦ ≤ τc ≤ 51 with 14 coils, 52◦ ≤ τc ≤ 60
with 12 coils, and 61◦ ≤ τc ≤ 70 with 10 coils. The elongated coil topology has a
range of 30◦ ≤ τc ≤ 45 with 16 coils, and 46◦ ≤ τc ≤ 60 with 12 coils.

The average power dissipation over the specified range of motion is obtained for
multiple back-iron configurations. These configurations are approximated with
a full spherical region with an infinitely permeable boundary. Therefore, pos-
sible cogging torque is not taken into account. For the circular coil topology
without back-iron, with back-iron for the permanent magnets and with back-iron
for the magnets and coils, the power dissipation is shown in Fig. 5.9, Fig. 5.10,
and Fig. 5.11, respectively. For the elongated coils these are shown in Fig. 5.12,
Fig. 5.13, and Fig. 5.14, respectively. In each of these figures, a comparison of the
power dissipation between the three hemispherical permanent magnet topologies,
τm, are shown.

The power dissipation of the circular coil topology without back-iron, as presented
in Fig. 5.9, has a minimum average power dissipation with a hemispherical per-
manent magnet topology of τm = 45◦ and a coil pitch of τc = 58◦. The power
dissipation of the other two back-iron configurations as shown in Figs. 5.10 and
5.11 with a magnet pitch of τm = 45◦ is the lowest for all coil pitches.

The elongated coil topology has the lowest power dissipation when the magnet
pitch is τm = 45◦. For the configuration without back-iron, this occurs for a
coil pitch of τc = 57◦ as shown in Fig. 5.12. The other configurations have the
lowest power dissipation for all coil pitches with τm = 45◦ as shown in Figs. 5.13
and 5.14. The power dissipation of the different back-iron configurations shows a
similar trend for both the circular and elongated coil topologies as function of the
coil pitch.

The topologies with the lowest power dissipation are listed in Table 5.4. The
average of the three power dissipations, Px, Py, and Pz is given, and the ratio
between the pole and coil pitch is included in this table. The actuator topologies
with an equal pole pitch, τm, and coil topology have a similar result for this ratio.
Hence, the back-iron has almost no influence on the pole to coil pitch ratio.

The relative change in power dissipation for the different magnet pitches, τm,
increases for the different back-iron configurations. This change is caused by the
different sizes of the permanent magnets. The hemispherical permanent magnet
arrays with τm = 36◦ and τm = 30◦ have a higher number of magnets on the same
surface of the rotor than the topology with τm = 45◦. Therefore, the amplitude of
the magnetic flux density in the airgap is lower. Consequently, the effect of adding
back-iron reduces. This is visible in Table 5.5 where the decrease in the power
dissipations becomes less when the pole pitch decreases. Therefore, the topology
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Figure 5.9: Average power dissipation over the complete range of motion as function of
the coil pitch of the circular coil array without back-iron: (a) Px, (b) Py, and
(c) Pz.
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Figure 5.10: Average power dissipation over the complete range of motion as function of
the coil pitch of the circular coil array with back-iron behind the permanent
magnet array: (a) Px, (b) Py, and (c) Pz.
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Figure 5.11: Average power dissipation over the complete range of motion as function of
the coil pitch with back-iron behind of the circular coil array and permanent
magnet array (cogging is not taken into account): (a) Px, (b) Py, and (c) Pz.
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with a hemispherical permanent magnet of τm = 45◦, represented by a full line in
the figures, has the lower power dissipation for all coil pitches when back-iron is
considered. In addition, the power dissipation Py, is the lowest because the most
coils are distributed about the y-axis. Furthermore, the circular coil topology
provides a lower overall power dissipation in comparison to the elongated coil
topology.

The decrease of power dissipation when adding back-iron can be predicted with
the quadratic relation between the magnetic flux density and the power dissipa-
tion. Assuming an equal torque production, the increase in magnetic flux density
results in a decrease in current density because of their linear relation as shown in
the Lorentz force law (3.23). The applicability of this relation is validated with the
prediction for the hemispherical permanent magnet array with τm = 45◦ . With
respect to the configuration without back-iron, an increase of 26% and 80% (shown
in Figs. 5.3a and 5.4a) is achieved when placing back-iron behind the permanent
magnets, and behind the magnets and coils, respectively. A predicted decrease of
37% and 69% in power dissipation is obtained by the quadratic relation. Calcu-
lation of the decrease in power dissipation with the values presented in Table 5.4
results in 32% and 66%. These values are in good agreement with the prediction
based on the magnetic flux density. The deviation of the predictions is caused by
a difference in the spatial magnetic flux density characteristic between the back-
iron configurations. Hence, when a region partially consists of highly permeable
material, in case back-iron is segmented, the increase in magnetic flux density can
be obtained with FEA. Subsequently, the power dissipation can be approximated
with the magnetic charge model by applying this relation.

The configuration with back-iron for the permanent magnets, τm = 45◦ and the
circular coil shape is preferred. This topology has the lowest power dissipation
with respect to the other actuator topologies. The configuration with back-iron
behind the coils is not considered due to the cogging torque. However, this cogging
torque is investigated in Fig. 5.7.

5.4 Integration of the gravity compensator

The selected spherical actuator design configuration has back-iron behind the per-
manent magnets. In the integrated actuator design, the gravity compensator is
adjacent to this back-iron. Therefore, the influence that this back-iron has on the
gravity compensator is investigation. This investigation is performed with non-
linear 3D FEA and a back-iron height of hbm = 10 mm. The gravity compensator
should provide a sinusoidal torque characteristic with the gravity compensator
when the actuator is not active. In case of a sudden power failure, the user has
to be able to keep the smart arm-support system under control. When the torque
characteristic is not sinusoidal a user with deteriorated muscles could be too weak
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Figure 5.12: Average power dissipation over the complete range of motion as function of
the coil pitch of the elongated coil array without back-iron: (a) Px, (b) Py,
and (c) Pz.
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Figure 5.13: Average power dissipation over the complete range of motion as function of
the coil pitch of the elongated coil array with back-iron behind the perma-
nent magnet array: (a) Px, (b) Py, and (c) Pz.



110 Chapter 5: Integrated design of a spherical actuator

 

 

τm = 30◦ 12 coils

τm = 30◦ 16 coils

τm = 36◦ 12 coils

τm = 36◦ 16 coils

τm = 45◦ 12 coils

τm = 45◦ 16 coils

P
x
[W

]

τc [◦]
30 35 40 45 50 55 60

10

20

30

40

(a)

 

 

τm = 30◦ 12 coils

τm = 30◦ 16 coils

τm = 36◦ 12 coils

τm = 36◦ 16 coils

τm = 45◦ 12 coils

τm = 45◦ 16 coils

P
y
[W

]

τc [◦]
30 35 40 45 50 55 60
5

10

15

20

25

(b)

 

 

τm = 30◦ 12 coils

τm = 30◦ 16 coils

τm = 36◦ 12 coils

τm = 36◦ 16 coils

τm = 45◦ 12 coils

τm = 45◦ 16 coils

P
z
[W

]

τc [◦]
30 35 40 45 50 55 60

10

20

30

40

(c)

Figure 5.14: Average power dissipation over the complete range of motion as function of
the coil pitch with back-iron behind the elongated coil array and permanent
magnet array (cogging is not taken into account): (a) Px, (b) Py, and (c) Pz.
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Table 5.4: The average of the three power dissipations Px, Py, and Pz are given for the
different coil and magnet pitch that have the lowest power dissipation

Coil topology back-iron configuration P [W] τm τc τm/τc

Circular

without
29.6 45◦ 58◦ 0.78
30.9 36◦ 57◦ 0.63
31.3 30◦ 53◦ 0.56

magnet
20.1 45◦ 60◦ 0.75
23.1 36◦ 58◦ 0.62
27.0 30◦ 48◦ 0.63

magnet and coil
9.8 45◦ 59◦ 0.76
12.1 36◦ 58◦ 0.62
15.2 30◦ 49◦ 0.61

Circular

without
30.6 45◦ 57◦ 0.79
37.4 36◦ 54◦ 0.67
44.3 30◦ 41◦ 0.73

magnet
21.0 45◦ 57◦ 0.79
27.9 36◦ 54◦ 0.67
35.4 30◦ 42◦ 0.71

magnet and coil
10.6 45◦ 57◦ 0.79
15.0 36◦ 54◦ 0.67
20.4 30◦ 42◦ 0.71

Table 5.5: The decrease in power dissipation when back-iron is added with respect to the
configuration without back-iron

Magnet array topology PM back-iron PM and Coil back-iron
τm = 45◦ 32% 66%
τm = 36◦ 22% 60%
τm = 30◦ 14% 51%
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to keep the smart arm-support system in position.

A segmented back-iron for the hemispherical permanent magnet array is proposed
as alternative to a full hemispherical back-iron. This segmentation is a compromise
between no or a hemispherical back-iron. The outer permanent magnet of the
gravity compensator and the spherical permanent magnet array of the actuator
are mounted on a supporting structure. This supporting structure contains the
back-iron of the hemispherical permanent magnet array and is attached to the rod
that exerts the produced torque. A full and segmented hemispherical back-iron
for the spherical permanent magnet array is illustrated in the sectional view of
Fig. 5.15a and Fig. 5.15b, respectively.

The size of the back-iron segments is varied as indicated with ξ in Fig. 5.15b which
results in a gravity compensator torque performance as shown in Fig. 5.16. The size
of the segments is defined with ξ where 45◦ represents a full hemispherical back-
iron and 0◦ represents no back-iron. For a full hemispherical back-iron, the gravity
compensator does not provide an exact sinusoidal torque. This back-iron topology
short circuits the magnetic field of the gravity compensator. In case of segmenta-
tion, the reluctance of the air is dominant with respect to the iron parts because
of the high difference in relative permeability. The application of the segmented
back-iron of ξ = 35◦ increases the torque production of the gravity compensator
with 3%. However, the magnetic flux density in the airgap of the spherical ac-
tuator, produced by the hemispherical permanent magnet array, decreases due to
the segmentation of the back-iron. Hence, a compromise is made between the seg-
mentation size, sinusoidal torque of the compensator and the mechanical stiffness
of the supporting structure. Furthermore, when the space between the elements
is too small, the supporting structures is more difficult to realize due to manufac-
turing limitations. Consequently, a segment size of ξ = 35◦ is chosen. With this
segmentation, the magnetic flux density in the airgap of the spherical actuator
increases with 19% instead of 26% in case of a full hemispherical back-iron. Fur-
thermore, for larger values of ξ the distance between the elements becomes very
small. This distance defines the geometry of the supporting structure in which the
elements are embedded.

To avoid saturation in the back-iron behind the permanent magnet arrays a height
of hbm = 10 mm is used. For comparison, the magnetic field in the back-iron is
shown for a height of hbm = 5 mm and hbm = 10 mm in Fig. 5.18a and Fig. 5.18b,
respectively. The maximum magnetic flux density for a height of 5 mm is 2.3 T
and for a height of 10 mm is 1.6 T. In this case, there is a difference of 12% between
the magnetic flux densities in the airgap due to the saturation effect. The back-
iron of the coils shows a maximum magnetic flux density of 1.4 T with a height
of hbc = 5 mm. Hence, no saturation occurs and, therefore, a larger height is not
investigated.
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Figure 5.15: Sectional view of the spherical actuator integrated with the gravity compen-
sator with: (a) full hemispherical back-iron, b) segmented spherical back-
iron.
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Figure 5.16: Torque performance of the gravity compensator for various back-iron seg-
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Figure 5.17: Segmented backiron in combination with the hemispherical permanent mag-
net array.

(a) (b)

Figure 5.18: The total magnetic flux density in the middle of the permanent magnet back
iron with a height of: (a) hbm = 5 mm, (b) hbm = 10 mm.
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5.5 Optimization of the geometry

The goal for the final design of the spherical actuator with integrated gravity com-
pensator is to minimize its volume without exceeding the thermal requirements.
The topology with the lowest power dissipation has circular coils and a pole pitch
of τm = 45◦. The coil pitch is constrained by the diameter of the rod (depicted in
Fig. 5.1) and the required range of motion. It is assumed that for the smart arm
support system a rod diameter of 20 mm is sufficient. Hence, to comply with the
range of motion requirements, the coil pitch is limited to 55◦. Within this limited
range, the power dissipation is the lowest with a coil pitch of τm = 52◦.

The volume of the spherical actuator is minimized with a parametric search. This
parametric search concerns the conductor bundle width, height of the coils, and
the permanent magnet height. It is assumed that there is no coupling between
the conductor bundle width and the other two parameters based on the separation
of variables in (3.85). The power dissipation as function of the conductor bundle
width is shown in Fig. 5.19. According to these results the power dissipation is
minimal after a ratio of 0.75 between the conductor bundle width and the coil size.

The geometric parameters of the coil height and magnet height are optimized for
two back-iron configurations. Both configurations have back-iron behind the per-
manent magnets, however, one is with and the other is without back-iron behind
the coils. Furthermore, to model the segmentation of the back-iron behind the
permanent magnet array, this analysis is performed with FEA. In the evluation,
three different positions are taken into account for the coil array, namely a rota-
tion about the x-axis of 0◦, 22.5◦, and 45◦. The influence of the hemispherical
permanent magnet sizes, due to the spherical geometry, is averaged with these
three positions.

In the parametric search for the optimal coil height, the radius of the permanent
magnet array is kept constant. The radius of the back-iron behind the coils is
adjusted for each coil height variation. The resulting power dissipation as function
of the coil height is shown in Fig. 5.20a and Fig. 5.20b with and without back-iron
behind the coils, respectively. The coil height for the configuration with back-
iron behind the coils has the lowest power dissipation for hc = 9 mm. The other
configuration has the lowest power dissipation when hc = 13 mm. However, the
results in this figure shows a relative constant power dissipation for all three axis
from a height of hc = 9 mm. This height is preferred for the minimization of the
volume.

The optimization of the permanent magnet array height, hm, is shown in Fig. 5.21
for the two configurations. In the trade off between the increase in torque produc-
tion, mass, and costs, a height of 10 mm is chosen as maximum for both topologies.
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Figure 5.19: The power dissipation as function of conductor bundle width for the slotless
spherical actuator topology with circular coils.
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Figure 5.20: Obtained power dissipation as function of the coil height for the configura-
tion: (a) with coil back-iron, (b) without coil back-iron.
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Figure 5.21: Obtained power dissipation as function of the permanent magnet height for
the configuration: (a) with coil back-iron, (b) without coil back-iron.

5.6 Thermal analysis

The dissipation of power is constrained by the thermal requirement of the actua-
tor. Therefore, a thermal model is used to determine the temperature rise during
operation. The heat flow rate in the spherical actuator is caused by the power
dissipation (ohmic losses) in the coils and the heat is conducted through the coils
to the back-iron or support structure where the convection occurs. The material
chosen for the support structure is aluminum. This material is non-magnetic and
has a high thermal conductivity.

The configuration with only a segmented back-iron behind the permanent mag-
nets is taken as the most suitable topology for the application. This topology pro-
vides the most magnetic flux density in the airgap without introducing a cogging
torque. In this thermal analysis, the power dissipation is predicted by modeling
the configuration without any back-iron. These results are adjusted knowing that
the segmentation increases the magnetic flux density with 19% as shown in Sec-
tion 5.4. This method allows a fast analysis over the complete range of motion
with 3375 positions.

The thermal behavior of the continuous torque and peak torque modes are in-
vestigated. In the continuous torque mode, the actuator reaches its steady state
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temperature. The relation of this temperature to the radius of the spherical actu-
ator is analysed. The peak torque is produced by a short burst of power; hence, a
peak current flows through the coils. This current causes a rise in the temperature
as function of time. In addition, this temperature rise in combination with the
cool down period determines the time that the peak current can be applied.

In the thermal analysis it is assumed that the main heat removal occurs through
convection. Consequently, the rise in temperature reaching the steady state can
be obtained by Newton’s law [45]:

∆T =
Q

hA
(5.11)

where Q is the heat flow rate, A is the area, ∆T is the temperature difference
between the cooling medium and the surface being cooled, and h is the convection
heat-transfer coefficient. This heat-transfer coefficient is a combination of radiation
and convection which results in a value between 12 W/(m2K) and 16 W/(m2K)
[119]. Every surface that is in contact with the surrounding environment is taken
into account for the convection surface, A. It is assumed that the thermal resis-
tance due to convection is dominant compared to the thermal resistance due to
conduction inside the actuator. Therefore, thermal conduction is neglected. In this
thermal analysis, the value for the heat-transfer coefficient is chosen conservatively,
namely h = 12 W/(m2K).

According to Newton’s law, the steady-state temperature of the spherical actuator
is directly related to the outer surface of the stator. Therefore, the temperature is
also directly related to the outer radius. This radius also influences the magnetic
flux density in the airgap and, consequently, the torque production. Hence, for
the analysis of the steady-state temperature with respect to the size, both these
effects have to be included. In this analysis, the height of the permanent magnets,
airgap length, coil height and coil supporting structure height is kept constant
at, hm = 10 mm, ga = 1 mm, hc = 9 mm, and hbc = 5 mm, respectively. The
resulting temperature rise, ∆T , as function of the outer radius of the actuator is
shown in Fig. 5.22 for the continuous power dissipation of Q = 30.3 W. These
results show that with an outer radius of 78 mm, the actuator complies with the
required thermal specification, ∆T = 40◦C. Furthermore, these results shows that
with an outer radius of 87 mm for the spherical actuator, the temperature rise
stays within ∆T = 20◦C. From this analysis, it is found that the torque has a
quadratic relation as function of the outer spherical actuator radius for a constant
∆T . This corresponds with standard rotary electromechanical machines which
have a torque as function of the radius and stack length of the machine for a
constant temperature rise [44].

A transient thermal FEA is applied to model the temperature rise for the peak
torque mode. The transient behavior is analysed with an axial symmetric 2D
finite element model, as shown in Fig. 5.23, with the commercial software Flux
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Figure 5.22: The steady state temperature rise as function of the outer radius of the
actuator with a predefined torque of Td = 1 Nm about the x, y, and z axis
resulting in a power dissipation Px, Py, and Pz.

Convection boundary

Coil supporting structure

Air

Coil

Axis of symmetry

Adiabatic boundary

Figure 5.23: Transient axial symmetric finite element model applied for the thermal anal-
ysis representing 1⁄12 of the spherical actuator.

[16]. In this model, the spherical actuator is simplified by considering only one
coil and the convection boundary corresponds with 1⁄12 part of the convection area
of the spherical actuator. The thermal parameters used for this model are listed
in Table 5.6.

The time the spherical actuator requires to cool down after providing a peak torque
needs to comply with the specified duty cycle of 2.5 hours. This time depends on
the thermal capacitance and on the duration the peak torque is applied. The
spherical actuator with an outer radius of 78 mm dissipates 848 W when a peak
torque of 6 Nm is produced. In the FEA, the coil is excited with 1⁄12 of this
power for one period of time and then set to zero to simulate the cool down
period. The resulting cool down time for the different excitation times are listed
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Table 5.6: Thermal parameters of the transient FEA

Thermal conductivity [W/mK] Specific heat [J/cm3K]
Coil 1 3.45
Aluminum 205 3.42

Table 5.7: The peak temperature increase, Tp, reached for several excitation times of the
coils to achieve the peak torque and the time to cool down, tambient, to the
ambient temperature afterwards for an outer radius of 78 mm.

Excitation time [s]
Tp [◦] tambient [hours]

Stator Coils Stator Coils

5 2.2 6.4 1.25 1.25
10 5 15 1.8 1.8
15 8 23 2.2 2.2
20 11 30 2.5 2.5
25 14 37 2.6 2.6

in Table 5.7. These results show that the excitation time has a maximum of
20 s, otherwise the cool down time is larger than 2.5 hours which does not comply
with the specifications. With this excitation time, the coils and their supporting
structure have a transient behavior as shown in Fig. 5.24. In this figure, the
maximum temperature rise of the supporting structure is ∆T = 11◦C. The heat of
the coils is transferred without a large increase of the temperature of the supporting
structure because of its large heat capacitance. This results in a fast decrease
in temperature of the coils with respect to the supporting structure until their
temperature is almost equal. The peak of the temperature rise occurs after 4 min
and, subsequently, the structure cools down to its initial temperature after 2.5
hours.

5.7 Cogging torque

There are two parasitic torques, namely a cogging and reluctance torque. The
magnetic field produced by the coils is small with respect to the magnetic field
produced by the permanent magnets. The height of the permanent magnets,
9 mm, which prevents the magnetic field of the coils to reach the back-iron of the
permanent magnets. Therefore, the reluctance torque that the coils create with
the back-iron can be neglected.

Although it is not preferred to introduce cogging in the actuator because of the
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Figure 5.24: Temperature rise of the outside of the actuator and the coils with an exci-
tation time of 15 s and an outer radius of 78 mm.

arm support application, it is investigated what the effects of introducing back-
iron behind the coils are. High permeable material as back-iron for the permanent
magnets and coils can be added to increase the magnetic flux density in the airgap.
For the back-iron of the coils, a full sphere cannot be employed because otherwise
the specified range of motion cannot be achieved. Therefore, the structure has
two edges that interact with the magnetic field of the permanent magnets, which
results in a cogging torque.

An additional torque is required to compensate for the cogging. This additional
torque can be necessary to accelerate or compensate for an extra mass. Hence, a
certain amount of the gained torque density by introducing back-iron is required
to counteract the cogging torque. This amount determines if it is justified to add
back-iron or that it provides an equal or lower performance. Therefore, several
back-iron geometries are evaluated, to find a design with minimized cogging torque.

The proposed actuator design has a back-iron surrounding the spherical permanent
magnet array completely about the y-axis. Hence, rotation about this angle does
not change the energy in the system and, therefore, this motion produces no
cogging torque. Furthermore, because of the symmetry of the spherical actuator,
the initial position as shown in Fig. 5.25 has zero cogging torque. However, when
the actuator rotates about the x or z-axis, cogging torque occurs. This cogging
torque characteristic is equal for both rotation direction because of the spherical
symmetry. Therefore, only the cogging torque about the x-axis is shown.

The cogging torque of the back-iron design of the initial actuator, as shown in
Fig. 5.25, produces a cogging torque when rotated about the x-axis as shown
in Fig. 5.27a. The results in this figure shows a sinusoidal characteristic. In
addition, there is not much variation in amplitude for the different back-iron widths
(indicated with an angle), wc.
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Figure 5.25: The spherical actuator without the gravity compensator and the initial de-
sign for the back-iron behind the coils.

Alternative shapes for the coil back-iron are proposed as shown in Fig. 5.26. The
first shape consists out of two separated rings, and the second shape has undu-
lated sides. The distance between the two separate rings is indicated with, s, in
Fig. 5.26a. The width of the back-iron is kept at a constant wc = 56.8◦ which
corresponds with the width of the geometrically optimized spherical actuator. It
is investigated whether the cogging torque caused by one edge can be counteracted
by the cogging torque produced by the other edge. The undulated sides topology
is an attempt to improve the smoothness of the transition of the back-iron with re-
spect to the permanent magnets of the hemispherical array. The undulated shape
corresponds with the location of the coils.

The two separated rings have a cogging torque as shown in Fig. 5.27b for different
distances, s, between the rings. These results show an increasing cogging torque
when enlarging the distance between the rings. This indicates a minimum cogging
torque when the distance between the rings is zero. Therefore, the cogging torque
can not be reduced with this topology.

The topology with the undulated sides has a cogging as shown in Fig. 5.27c for
different width of the back-iron, wc, as indicated in Fig. 5.26b. In contrast to the
other two topologies, the undulated sides cause a cogging torque about all three
axes. The amplitudes are the lowest of all three topologies, however, in total they
present a comparable cogging torque with the other topologies.

For all three back-iron topologies, the cogging torque has an larger amplitude
than the required continuous torque of 1 Nm. Therefore, it is concluded that the
cogging torque is too high and a configuration without back-iron behind the coils
is preferred.
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Figure 5.26: Alternative coil back-iron geometries consisting of: (a) two separate spher-
ical rings, (b) undulated sides

5.8 Final design

The final design of the spherical actuator with integrated gravity compensator
is presented in Fig. 5.28. The geometric parameters and specifications of this
design are listed in Table 5.8. The spherical actuator with integrated gravity
compensator is designed for a smart arm-support system. The compensator has to
be positioned accounting for the gravity direction, whereas the spherical actuator
has to be position to comply with the specified range of motion required for the
activities of daily living. In the illustration of the final design, the rod is shown
transparently to clearly visualize the position of the gravity compensator. The flat
side of the inner hemispherical permanent magnet of the gravity compensator is
aligned with the horizontal xy-plane. This magnet is supported by a construction
positioned in an angle of 45◦ with the gravity direction. In this configuration the
integrated actuator complies with the range of motion required for the activities
of daily living.

The position of the integrated gravity compensator in the illustration (Fig. 5.28)
corresponds with 90◦ flexion. This motion represents the rotation about the y-
axis and is the motion in which the gravity compensator provides the sinusoidal
torque characteristic. The other motions, horizontal flexion and rotation, can
be supported with the rotation about the z- and x-axis, respectively. There is
zero rotation stiffness for these rotations because the magnetization of the gravity
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Figure 5.27: Rotation of the coil back-iron about the x-axis results in a: (a) cogging
torque for the initial spherical actuator design which has only a non-zero
x-component, (b) cogging torque for the spherical actuator design consist-
ing out of two separated rings which has only a non-zero x-component,
and (c) cogging torque for all three components for the back-iron with the
undulated sides.
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Figure 5.28: The final design of the spherical actuator with integrated gravity compen-
sator.

compensatory is symmetrical.

For other robotic applications, the design can be different. Such as the placement
of the gravity compensator with respect to the spherical actuator to change the
range of motion. This novel integrated actuator topology is suitable in more
applications than only mobile arm-support systems.

5.9 Conclusions

A spherical actuator with integrated gravity compensator has been designed for a
smart arm-support system. The stator consists of the inner hemispherical perma-
nent magnet of the gravity compensator and the coils of the spherical actuator.
Both these elements are mounted on the same supporting structure. The rotor
consists of the outer hemispherical permanent magnets of the compensator and
the permanent magnet array of the actuator. These magnets are employed on
a supporting structure that contains the segmented back-iron for the hemispher-
ical permanent magnet array. The produced torque of the actuator is exerted
through the supporting structure. The integrated design has two airgaps, namely
the airgap of the gravity compensator and of the airgap of the spherical actuator.

The magnetic charge model is used to estimate the magnetic flux density of a
hemispherical permanent magnet array for three configurations. The first con-
figuration considers no back-iron, the second only behind the permanent magnet
array and the third behind the magnet array and coils. The accuracy of the first
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Table 5.8: Geometric parameters of the spherical actuator design

parameter Symbol/Value Unit
Outer radius of the magnet array 63 [mm]
Outer radius of the coil array 73 [mm]
Airgap length, ga 1 [mm]
Coil height, hc 9 [mm]
Coil supporting structure, hbc 5 [mm]
Magnet height, hm 10 [mm]
Coil pitch, τc 52 [deg]
Pole pitch, τm 45 [deg]
Conductor bundle width, Cw 14.7 [deg]
Coil gap radius, Gw 3.7 [deg]
Stator width, wc 56.8 [deg]
Specifications
Continuous torque 1.0 [Nm]
Peak torque 6.0 [Nm]
Temperature increase, ∆T 40 [◦C]

configuration has been validated in Chapter 3. The second and third configu-
rations have been approximated with the magnetic charge model combined with
spherical imaging. This approximation requires to be validated with FEA. The
magnetic flux density of the second configuration has been predicted with an am-
plitude discrepancy of 0.65%. In the third configuration, four spherical images
have been applied to achieve an amplitude discrepancy of 4.5%. This prediction
is only accurate in the region in which the coils are positioned.

The spherical actuator design has been minimized according to the requirements
of the smart arm-support system. Multiple topologies have been compared based
on their power dissipation. This power dissipation has been determined with the
commutation algorithm. For the coil arrays, two different coil topologies have
been included namely, circular and elongated. In this analysis it has been found
that the circular coil topology has a lower average power dissipation than the elon-
gated topology. The optimal coil and hemispherical permanent magnet topology
applicable for the application are a coil pitch of τc = 52◦ and a pole pitch of
τm = 45◦.

The inclusion of back-iron for the hemispherical permanent magnet array of the
spherical actuator has been investigated. A full hemispherical shell short circuits
the magnetic field of the gravity compensator and, therefore, influences its torque
characteristic. To decouple both devices, the back-iron is segmented and segment
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sizes of ξ = 35◦ have been employed. This back-iron structure has been config-
ured such that any present interaction between the spherical actuator and gravity
compensator is shielded to ensure the decoupling. The torque amplitude of the
gravity compensator has been increased by 3%, and the magnetic flux produced
by the hemispherical permanent magnet increased by 19% with this back-iron
configuration.

By introducing back-iron for the supporting structure of the coils, a higher torque
density can be achieved. However, the inclusion of this back-iron results in a cog-
ging torque. To minimize this cogging, three different geometries have been inves-
tigated. Besides the initial geometry design, two alternative supporting structures,
one with two separated rings and one with undulated sides, have been examined.
A cogging torque that is larger than the continuous torque specifications has been
found. Therefore, it has been concluded that back-iron behind the coils is not
beneficial.
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Chapter 6

Realization and experimental
verification

Abstract - A scaled prototype of the spherical actuator with integrated gravity
compensator is presented in this chapter. The torque characteristic of the novel
gravity compensator and the spherical actuator are treated, and the torque produc-
tion is measured and compared with the predictions. In addition, the applicability
of the commutation algorithm combined with the theoretical results is validated.
Subsequently, the torque production of the separated and integrated devices are
compared. The coupling between both devices is quantified with this comparison.
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6.1 Prototype design

The prototype is a scaled design of the gravity compensator and the spherical
actuator as presented in Chapter 4. The design needs to be scaled due to manu-
facturing limitations. Commercially available permanent magnets are employed in
the gravity compensator for the inner and outer hemispherical permanent magnet.
Consequently, the size is determined by the largest parallel magnetized spherical
permanent magnet available. The radial magnetization is approximated with a
segmentation of multiple cylindrical permanent magnets.

The size of the spherical actuator is adjusted to the prototype design of the grav-
ity compensator to investigate the interaction between both devices. Therefore,
a different scaling is applied to the spherical actuator than to the gravity com-
pensator. The spherical permanent magnet array of the actuator is constructed of
cylindrically shaped permanent magnet pieces to approximate the spherical shape.

The realized prototypes allow experimental validation of their working principles.
Furthermore, the design methods and theoretical predicted results are verified. In
addition, any coupling between the compensator and actuator in the integrated
device are identified.

6.2 Test benches

Two test benches are manufactured to perform measurements on the prototypes.
The test benches for the gravity compensator and spherical actuator are shown in
Fig. 6.1 and Fig. 6.2, respectively. These test benches have three rotation axes,
x−, y− and, z as indicated in the figures. Each rotation axis can be locked to
perform static measurements. The rotation about the x− and y−axis are realized
with a stainless steel bush through the aluminum frames. There is a difference
in the construction of the rotation about the z-axis between the test benches.
This difference improves the dynamic behavior of the test setup for the spherical
actuator. The rotation about the z-axis is realized by two aluminum disks rotating
over each other for the gravity compensator. For the spherical actuator, there is
a ring made of POM between the aluminum disks to reduce friction. The rotor
can be locked in different positions with the test bench to keep it in position with
respect to the stator for the measurements. In this setting, the spherical bearing is
not included in gravity compensator to avoid alignement problems. Furthermore,
due to the predefined sequence of rotation axes of the test benches, not every
motion profile can be realized.

The measurement equipment used in the different test benches are almost the
same. To measure the torque, an ATI delta SI-165-15 load cell is used. This load
cell is capable of measuring six DoF, namely the forces and torques in the Cartesian
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Figure 6.1: Test bench to measure the torque performance of the gravity compensator.

directions. The measurements of the load cell are provided through analog signals
to a dSPACE system. The angular displacement of the rotation axes are measured
with three optical Renishaw encoders. The rotations about the x- and y-axis, are
measured with two incremental angular ATOM4T1-300 encoders and the rotation
about the z-axis is measured with an incremental linear ATOM4T0-150 encoder.
Both encoders have a resolution of 1 µm, and provide a digital to a dSPACE
system. The measurements are performed with two different dSPACE systems,
namely a 1104 system and a 1007 system for the gravity compensator and the
spherical actuator, respectively. The dSPACE 1007 is also capable of controlling
the single-phase three axes Prodrive PADC3AX59/6 PWM amplifiers to excite the
coils. These amplifiers are capable of providing a continuous current of 2 A rms
and a peak current of 6 A. They operate at a voltage of +/-59 V.

6.3 Magnetic gravity compensator

6.3.1 Construction

The realized prototype for the magnetic gravity compensator is shown in Fig. 6.3
and its geometry parameters are listed in Table 6.1. This prototype consists out
of six parts as depicted in the exploded view shown in Fig. 6.4.

The inner hemispherical permanent magnet is created out of a full sphere of NdFeB
grade N45 with a parallel magnetization and a radius of 25.4 mm. Wire eroding
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Figure 6.2: Test setup design for the spherical actuator with integrated gravity compen-
sator.

Table 6.1: Dimensions of the prototyped gravity compensator topology, which are de-
picted in Fig. 4.4

Parameter Value Unit

Outer radius of the inner magnet, Rin 25.4 [mm]
Airgap length, ga 2.5 [mm]
Outer radius of the outer magnet, Rout 40.4 [mm]
Height of the cylindrical magnets, hmc 12.5 [mm]
Diameter of the cylindrical magnets, hd 4 [mm]
Wall thickness, hb 0.5 [mm]
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Figure 6.3: Photo of the spherical gravity compensator prototype.
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Figure 6.4: Exploded view of the gravity compensator prototype.
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Figure 6.5: Inner hemispherical permanent magnet of the gravity compensator glued on
the supporting structure.

is used to machine the NdFeB sphere into a hemisphere. For safety reasons, this
permanent magnet was demagnetized by a decaying alternating magnetic field
and afterwards magnetized again. The processed hemisphere is then glued on
the supporting structure as depicted in the exploded view (Fig. 6.4). A photo of
the realized part is shown in Fig. 6.5. Stainless steel, RVS304, is chosen for the
material of the supporting structure because it has a low relative permeability (µr
= 1.008). Furthermore, this material has a higher hardness than aluminium which
was required for the fine screw thread.

An approximation of the radial magnetization with a segmentation of 178 cylindri-
cal permanent magnets allows fast prototyping. A photo of the realized structure
is shown in Fig. 6.6a. The geometrical parameters of the cylindrical permanent
magnets are listed in Table 6.1 and defined in the sectional view of this construction
shown in Fig. 6.6b. This figure also shows that on the inside of the construction
the cylindrical permanent magnets are close to each other, whereas on the outside
there is more space between the cylindrical permanent magnets. This is due to
the spherical shape and results in 68% less magnetic material compared to a full
hemisphere for the specified radii in Table 6.1. The cylindrical permanent mag-
nets are made of a N42 grade which specifications are listed in Table 6.2. These
magnets are placed in a blind chamber of a supporting structure. These chambers
are blind to provide a smooth surface for the spherical bearing. The wall thickness
of the bearing cage, as indicated with hb in Fig. 6.6b, is equal to 0.5 mm. This
wall thickness together with the diameter of the bearing balls (2 mm), creates an
airgap of 2.5 mm. The sectional view also shows the locking washer in combina-
tion with the supporting structure of the inner hemispherical permanent magnet
array (depicted in a dashed line). The washer forms a cavity that encloses the
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Figure 6.6: Segmented outer hemispherical permanent magnet: (a) realization, (b) sec-
tional view

Table 6.2: Material properties of neodymium grades

NdFeB grade Br [T] Hcb [kA/m] Hcj [kA/m]

N45 1.32-1.37 860-955 ≥ 955
N42 1.29-1.32 860-955 ≥ 955

inner hemispherical permanent magnet with its spherical shape. The height of
the washer is a trade off between the mechanical stresses to cope with and the
required range of motion. With a larger washer, the mechanical stresses are more
distributed, however, the angle between the bottom side of the washer and the
supporting construction, depicted with θ in Fig. 6.6b, decreases.

A cylindrical permanent magnet with a diameter of 4 mm is chosen for the seg-
mentation. This size is easy to handle during assembly but small enough to ap-
proximate the spherical shape. To determine the cylinder length, its relation to
the torque is investigated as shown in Fig. 6.7. These results are obtained with
the presented magnetic charge model in the spherical and cylindrical domain of
Chapter 3. The amplitude of the sinusoidal torque characteristic of the gravity
compensator is obtained for the different cylindrical permanent magnet heights.
The figure shows that the torque converges at a height of 50 mm to a torque of
5.2 Nm. However, when this length is applied the majority of the outer hemispher-
ical structure consists of non-magnetic material resulting in an inefficient use of
volume. It is recommended to increase the amount of magnetic material in the
outer hemispherical volume to improve the torque, for example, by a radial seg-
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Figure 6.8: A radial segmentation to increase the torque performance of the spherical
gravity compensator.

mentation as shown in Fig. 6.8 and also proposed in [138]. A compromise between
efficient use of volume and torque performance is found in a commercially available
size of hmc=12.5 mm.

The predicted torque production of the prototype with the segmentation of the
outer hemispherical permanent magnet is equal to 2.6 Nm. A torque production
of 3.3 Nm can be achieved when the proposed segmentation is applied to a gravity
compensator with the dimensions of the designed gravity compensator in Chap-
ter 4. Hence, this segmentation causes a torque reduction of 72.5% with respect
to the design specification of 12 Nm. The inner and outer radii of the prototype
are 3.6 mm and 2.6 mm smaller with respect to the design presented in Chapter 4,
respectively.

The segmented outer hemispherical permanent magnet array is the most suscep-
tible for local permanent demagnetization. The demagnetization properties of the
two magnet grades, N42 and N45, are listed in Table 6.2. The magnetic flux in-
side the permanent magnets is obtained with 3D FEA and shown in Fig. 6.9a and
Fig. 6.9b for the cylindrical magnets and the hemispherical magnet, respectively.
These figures show the worst case position in which the magnetization inside the
magnets is the lowest. In the tip of the cylindrical permanent magnets the mag-
netic flux density reduces to 0 T. According to the permanent magnet properties,
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Figure 6.9: Magnetic flux density obtained with 3D FEA shown in a sectional view for the
position with the highest risk of demagnetization: (a) cylindrical permanent
magnets, (b) hemispherical permanent magnet.

local permanent demagnetization can occur here. The magnetic flux density in-
side the inner hemispherical permanent magnet is shown in Fig. 6.9b. This figure
shows a maximum flux density of 0.3 T which poses no risks for permanent de-
magnetization.

To manage the mechanical stresses of the magnetic gravity compensator, a spher-
ical ball bearing has been developed. The ball bearing is preferred over other
possible bearings such as plain bearings or air bearings because it has less fric-
tion and does not require additional hardware outside the gravity compensator.
A photo of the developed ball bearing is shown in Fig. 6.10a. To assemble the
spherical bearing in the gravity compensator, the bearing has to be smaller than a
hemisphere. Otherwise, it cannot be placed over the inner permanent magnet due
to its spherical shape. Therefore, the bearing consists out of two parts. Assembled,
this bearing provides a constant airgap over the complete range of motion of the
gravity compensator. The hemispherical parts of the spherical bearing are visible
in the exploded view of (Fig. 6.4). The ball bearing is constructed out of a cage
and bearing balls with a diameter of 2 mm. To avoid magnetic interaction between
the bearing balls and the compensator, a ceramic material is chosen for the balls.
The principle of the cage is visualized in Fig. 6.10b. The cavities in the cage for
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Figure 6.10: Spherical bearing: (a) photo of the realized prototype, (b) part of the sec-
tional view to visualize the placement of the bearing balls.

the bearing balls are spherical with a slightly larger diameter (2.14 mm) such that
the diameter of the entrance is 1.91 mm (which is smaller than the diameter of
bearing balls of 2 mm). The cage is made out of UV cured acrylic polymer which
is a flexible material. As a result, the bearing balls can be pressed in the cavity
and are able to rotate freely without falling out of their cavity. To avoid contact
between the cage and the inner and outer hemispheres which could result in fric-
tion or wear and tear, the wall thickness of the cage is smaller than the airgap
namely, 1 mm as indicated in Fig. 6.10b. The cage is created with a 3D printer
(Multijet modeling (MJM) process).

The airgap length depends on the smallest bearing ball diameter for which a
cage can be manufactured. Therefore, the possibilities of manufacturing a cage
with 3D print technology are explored. A cage is realized that can hold bearing
balls with a diameter of 1 mm. This cage design has a wall thickness of 0.5 mm
to avoid contact with the inner or outer hemispherical permanent magnet. The
airgap length decreases from 2.5 mm to 1.5 mm with this spherical bearing design.
Consequently, the torque increases with 12% to 2.9 Nm. However, there is a higher
risks of making scores with 1 mm balls than with 2 mm balls. Hence, this spherical
bearing is not considered for the prototype due to the expected risks for a little
torque increase.
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Figure 6.11: Measured torque of the gravity compensator prototype with the spherical
coordinate system as defined in Fig. 4.2: (a) Tφ, (b) Tθ.

6.3.2 Measurement results

The measured torque of the prototyped gravity compensator is shown in Fig. 6.11.
According to the results found in Chapter 4, a sinusoidal torque and zero torque
is expected for Tφ and Tθ, respectively. The torque Tφ has a sinusoidal shape,
however, the amplitude value is reached at approximately 80◦ instead of 90◦. The
torque Tθ shows a torque variation between 0 and 0.051 Nm as function of φ in
Fig. 6.11b instead of an overal zero torque. This variation is 2.0% of the 2.4 Nm
maximum torque of the prototype.

A comparison between the measurements, 3D FEA and the analytical magnetic
charge model is shown in Fig. 6.12. The measurements show an error of 3.9% with
FEA when the typical relative permeability of the permanent magnets is taken
into account. The typical relative permeabiliteit for the permanent magnet grades
N42 and N45 are µr = 1.11 and µr = 1.14, respectively. The measurements show a
good agreement for the range of θ = 0◦−80◦ with FEA. The shifted peak from 90◦

to 80◦ is also visible in the FEA results. Therefore, this can be partially caused by
the segmentation of the outer hemispherical permanent magnet. Because the last
ring of cylindrical permanent magnet is not completely horizontal as is shown in
Fig. 6.6, this approximation does not have a complete hemispherical shape. The
error between the magnetic charge model and the measurements is equal to 16%.
Comparison of the charge model with a FEA that considers a µr = 1 shows a
discrepancy of 2.3%. Hence, the error between the magnetic charge model and
measurement is mainly caused by the relative permeability of µr = 1 limitation of
the magnetic charge model.
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Figure 6.12: Comparison between the results of the measurements, analytical model, and
with two FEA models with different relative permeabilities, namely µr = 1
and the typical value belonging to the magnet grade.

6.4 Spherical actuator with gravity compensator

The realized spherical actuator with integrated gravity compensator mounted in
the test setup is shown Fig. 6.13. An exploded view of the spherical actuator
parts and the gravity compensator is shown in Fig. 6.14. This view shows that the
stator consists of the coils and their support structure combined with the inside
of the gravity compensator. The rotor is constructed of a supporting structure on
which the permanent magnet array and outer magnet of the gravity compensator
is mounted. For the assembly of the integrated actuator, the stator can be split
up in two parts as indicated in the exploded view.

The back-iron segments slightly deviate from a spherical shape in the radial di-
rection due to manufacturing limitations. The alternative shape is visible in the
sectional view of the rotor of the actuator in Fig. 6.15a. It is found with 3D
FEA investigation that this deviation only affects the torque production of the
spherical actuator. These back-iron segments increase the magnetic flux density
in the airgap with 17.6% instead of 19% compared to the configuration without
back-iron. The alternative back-iron segments have more distance between each
other on the outside of the supporting structure than on the inside. Hence, the
magnetic flux density is affected because there is less highly permeable material in
the supporting structure. The realized supporting structure for the hemispherical
permanent magnet array is shown in a photo in Fig. 6.16a. In this figure, the
back-iron segments can be distinguished from the aluminium support.

In the actuator prototype, the height of the support structure and the height
of the permanent magnets are kept equal to the design in Chapter 5, namely
hbm = 10 mm and hm = 10 mm. Hence, their radius is decreased with 2.6 mm to
fit directly on the gravity compensator prototype. A cylindrical segmentation in
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Figure 6.13: Photo of the spherical actuator with integrated gravity compensator proto-
type in the test bench.

one direction is applied to realize the hemispherical permanent magnet array. This
segmentation results in a magnet array as shown in the sectional views of Fig. 6.16.
These permanent magnet segments are machined out of a rectangular block of
sintered NdFeB with wire eroding. This machining method is not capable to create
the required spherically shaped permanent magnets. Therefore, cylindrical shaped
segments are produced to approximate the permanent magnet array. It could
be possible to approximate the spherical shape more accurately with additional
machining, for example with vertical eroding. However, this possibility is not
investigated.

The cylindrical permanent magnets are glued on the structure resulting in the
hemispherical permanent magnet array in the photo shown in Fig. 6.16b. The
airgap of the spherical actuator is not constant due to the segmentation. The
minimum and maximum radii of the hemispherical permanent magnet array are
equal to 60.4 mm and 61.58 mm, respectively. The maximum and minimum clear-
ances are equal to 2.6 mm and 1.42 mm with respect to the inner coil array radius
of 63 mm. Hence, the average airgap length is equal to 2 mm. The permanent
magnet material used is VACODYM 633HR, and the properties are listed in Ta-
ble 6.3.

For the coils a grade 1B wire is used with a bare copper diameter of 0.8 mm and
they are wound orthogonally. The number of turns is equal to 208. The coils have
a copper fill factor of 0.75. To achieve the spherical shape, the coils are pressed in a
spherically shaped mould. These coil have a resistance of 0.6 Ω and an inductance
of 670 µH.

The geometry parameters of the realized spherical actuator are listed in Table 6.3.
The prototype geometry differentiates from the spherical actuator design presented
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Figure 6.14: Elements of the spherical actuator with integrated gravity compensator.
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Permanent magnets Back-iron
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Figure 6.15: Different sectional views of the supporting structure and mounted spherical
permanent magnet array: (a) front view, (b) side view.

Back-iron

Alluminium support

(a) (b)

Figure 6.16: Realized: (a) supporting structure, (b) mounted spherical permanent mag-
net array.
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Table 6.3: Geometric parameters of the spherical actuator prototype

parameter Value Unit
Outer radius of the magnet array 60.4 - 61.58 [mm]
Inner radius of the coil array 63 [mm]
Outer radius of the coil array 73 [mm]
Outer radius of the coil supporting structure 78 [mm]
Average airgap length, ga 2 [mm]
Coil height, hc 10 [mm]
Magnet height, hm 10 [mm]
Supporting structure permanent magnets, hbm 10 [mm]
Coil pitch, τc 50 [deg]
Pole pitch, τm 45 [deg]
Conductor bundle width, Cw 15.9 [deg]
Coil gap radius, Gw 4 [deg]
Total number of coils 12 [-]
Number of turns 208 [-]
Vacodym 633 HR [129]
remanent magnetic flux denstity, Br 1.35 [T]
Relative permeability, Hcb 1004 [kA/m]
Relative permeability, Hcj 1389 [kA/m]
Relative permeability, µr 1.078 [-]

in Chapter 5 because of manufacturing limitations. To avoid issues due to the
realization in the coil shape, an average airgap of 2 mm is taken into account
instead of 1 mm. The prototype has a pole pitch of 50◦ instead of 52◦ to account for
manufacturing tolerances which could result in a limitation in the range of motion.
Analysis on the geometry of the prototype resulted in an optimal coil height of
10 mm instead of 9 mm. The back-iron height, permanent magnet height, and
the height of the coil supporting structure are kept equal to the presented design.
As a result, the outer radius of the prototype is equal to 78 mm, which is the
same as the outer radius of the designed spherical actuator. However, the torque
production of the prototype is lower, namely 0.68 Nm instead of 1 Nm.
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(a) (b)

Figure 6.17: Indicated measurement areas of the magnetic flux density around the hemi-
spherical permanent magnet array: (a) above, (b) below.

6.4.1 Spherical actuator measurement results

The gravity compensator is not completely integrated for the magnetic flux den-
sity and torque measurements of the spherical actuator. The segmented outer
permanent magnet of the gravity compensator is assembled in the hemispherical
permanent magnet array while the inner magnet is not present. Together with the
coil array and their supporting structure, they are mounted in the test bench.

The measurements of the magnetic flux density of the hemispherical permanent
magnet array is performed in a horizontal plane as depicted in Fig. 6.17a. In this
plane, the probe is positioned at 1 mm with respect to the highest point of the
array. Only a horizontal plane was possible due to the limitations of the measure-
ment equipment. This measurement is done before and after the integration of the
outer permanent magnet of the gravity compensator. In these measurements there
is no change in magnetic flux density visible when the outer hemispherical perma-
nent magnet of the gravity compensator is assembled. The measurement results
are compared with the predicted magnetic flux density of the FEA as shown in
Fig. 6.18. In the FEA, the cylindrical segmentation of the permanent magnet array
and back-iron is included. The FEA has an error of 3.6% with the measurements;
hence, both results are in good agreement.

The torque model is validated for two coils which are indicated with A and B
in Fig. 6.14. These coils are chosen because of their position with respect to the
hemispherical permanent magnet array. Coil A is positioned at the edge and coil
B is positioned more in the center. These coils are chosen because at least one
has a maximum deflection while the other moves only a little for the considered
rotation axes.
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Figure 6.18: Comparison of measured magnetic flux density and predicted magnetic flux
density with 3D FEA in the horizontal plane 1 mm above the hemispherical
permanent magnet array according to the line depicted in Fig. 6.17a.

The torque measurement of coil A and B are shown in Fig. 6.19 and Fig. 6.20,
respectively. In this figure, the torque predicted of the FEA and the analytical
model is included. The rms error between the measurements and the models is
equal to 7% and 11% for the FEA and the analytical model, respectively. The
analytical model has a larger error because it assumes a relative permeability of
µr = 1. Nevertheless, the analytical model predicts the torque characteristics
accurately.

The coils in the spherical actuator are commutated with the two-norm minimiza-
tion algorithm as presented in (5.4). The torque constants of each coil is obtained
by the Lorentz law as used in the topology optimization of Section 5.3. In this
method, the magnetic flux density is predicted with FEA to include the segmenta-
tion, material properties of the magnets, and the segmented back-iron. The coils
are commutated to produces a torque about each Cartesian axis namely, ~Td =
[0.4;0;0] Nm, ~Td = [0;0.4;0] Nm, and ~Td = [0;0;0.4] Nm. The resulting torque is
measured with the 6 DoF load cell. These measurements are performed over the
full range of motion combining the rotation about the x- and y-axis and the z-
and y-axis. The resulting torque is shown in Figs. 6.21, 6.22, and 6.23. For the
rotation about the x- and y-axis, the test bench was not capable to reach some
positions after Ry = 35◦. Therefore, there are 6 measurement points left out in
the results. Furthermore, one position was not excitable by the amplifiers because
too much power was required. This position is Rx = 10◦ Ry = 10◦ in the figures
6.23a, b, and c. The obtained measurements are averaged for the different rota-
tions and desired torques and the results are listed in Table 6.4. These results are
within 7.5% error with the desired torque. Hence, it can be concluded that the
actuation in each of the three degrees of freedom is decoupled by the commutation
algorithm.
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Figure 6.19: Comparison between the torque prediction with FEA, the analytical model,
and the measurements of a single coil at the edge of the permanent magnet
array for the rotation about the: (a) x-axis, (b) y-axis, and (c) z-axis.
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Figure 6.20: Comparison between the torque prediction with FEA, the analytical model,
and the measurements of a single coil in the middle of the permanent magnet
array for the rotation about the: (a) x-axis, (b) y-axis, and (c) z-axis.
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Figure 6.21: Torque measurements when a desired torque is commutated of ~Td =[0.4 0 0]
for the torque and rotation axes: (a) xy, (b) xy, (c) xy, and (d) zy, (e) zy,
(f) zy.



150 Chapter 6: Realization and experimental verification

 

 

T
x
[N

m
]

Ry [◦] Rx [◦]
−45

−30
−15

0

−50

−25

0
−0.02

−0.01

0

0.01

0.02

−0.1
0

0.25

0.5

(a)

 

 

T
y
[N

m
]

Ry [◦] Rx [◦]
−45

−30
−15

0

−50

−25

0

0.3

0.35

0.4

0.45

0

0.25

0.5

(b)

 

 

T
z
[N

m
]

Ry [◦] Rx [◦]
−45

−30
−15

0

−50

−25

0 −0.01

0

0.01

−0.1
0

0.25

0.5

(c)

 

 

T
x
[N

m
]

Ry [◦] Rz [◦]
−45

−30
−15

0

0

25

50

−0.02

−0.01

0

0.01

0.02

−0.1
0

0.25

0.5

(d)

 

 

T
y
[N

m
]

Ry [◦] Rz [◦]
−45

−30
−15

0

0

25

50
0.34

0.36

0.38

0.4

0.42

0.44

0

0.25

0.5

(e)

 

 

T
z
[N

m
]

Ry [◦] Rz [◦]
−45

−30
−15

0

0

25

50
0

0.02

0.04

−0.1
0

0.25

0.5

(f)

Figure 6.22: Torque measurements when a desired torque is commutated of ~Td =[0 0.4 0]
for the torque and rotation axes: (a) xy, (b) xy, (c) xy, and (d) zy, (e) zy,
(f) zy.
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Figure 6.23: Torque measurements when a desired torque is commutated of ~Td =[0 0 0.4]
for the torque and rotation axes: (a) xy, (b) xy, (c) xy, and (d) zy, (e) zy,
(f) zy.
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Table 6.4: Comparison of the desired torque with the averaged torque measurements

Rotation Desired torque ~Td [Nm] Measured torque [Nm]
axes Tx Ty Tz Tx Ty Tz

x and y
0.4 0 0 0.37 0.02 0.01
0 0.4 0 0.00 0.38 0.00
0 0 0.4 0.01 0.02 0.38

z and y
0.4 0 0 0.38 0.00 0.00
0 0.4 0 0.00 0.37 0.00
0 0 0.4 0.01 0.01 0.39

6.4.2 Integration

Several measurements have been carried out to investigate the decoupling be-
tween the gravity compensator and the spherical actuator. The magnetic flux
density beneath the permanent magnet array of the actuator is measured to in-
vestigate the shielding property of the segmented back-iron. This measurement is
performed at 1 mm beneath the array in a horizontal circular shaped plane as de-
picted in Fig. 6.17b. The resulting magnetic flux density measurements are shown
in Fig. 6.24. The solid circle in these figures indicates the geometric dimension
of the outer hemispherical permanent magnet of the gravity compensator. The
results in the Figs. 6.24a, b, and c are measured before the integration. In these
figures there is almost no magnetic flux density present inside the circle. Hence,
the segmented back-iron shields a large part of the magnetic field produced by the
permanent magnet array. After the integration, the magnetic flux density results
in the measurements as shown in Figs. 6.24d, e, and f. In these results there is a
magnetic flux density present inside the circle. This flux density is produced by
the permanent magnet of the gravity compensator. This gives a first indications
that the magnetic field of the permanent magnet array has no influence on the
magnetic flux density in the airgap of the gravity compensator. However, torque
measurements of the integrated and separated gravity compensator and spherical
actuator are necessary to verify the decoupling.

The measured torque produced by the integrated gravity compensator is shown
in Fig. 6.25. These results are compared to the torque prediction of FEA and the
measured torque of the gravity compensator separated from the spherical actuator.
The integrated compensator has a sinusoidal torque characteristic that is 20%
larger than the separated compensator. This increase is caused by the back-
iron of the spherical actuator. Without this amplitude difference and comparing
solely the torque characteristic, the integrated and separated gravity compensator
have an rms difference of 0.6%. Comparison with the FEA shows a deviation
of the sinusoidal characteristic. The rms discrepancy between the FEA and the
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Figure 6.24: The magnetic flux density measured 1 mm beneath the hemispherical per-
manent magnet according to the plane depicted in Fig. 6.17b before and
after the integration of the outer hemispherical permanent magnet of the
gravity compensator: (a) Bx before integration, (b) By before integration,
(c) Bz before integration, and (d) Bx after integration (e) By after integra-
tion, (f) Bz after integration.
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Figure 6.25: Comparison of the torque produces by the gravity compensator separated of
and integrated in the spherical actuator and the torque prediction of FEA.

measurements is equal to 3.6%.

The torque production of two different coils are measured to determine the influ-
ence of the gravity compensator on the torque production of the spherical actuator.
These coils are depicted in Fig. 6.14 as A and B. This influence is determined by
comparing the torque measurements of these coils for a separated and integrated
actuator. These measurements are shown in Fig. 6.26 and Fig. 6.27, respectively.
The rms discrepancy between these figures is equal to 0.7%. Hence, the influence
of the gravity compensator on the spherical actuator is small.
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Figure 6.26: Comparison between the measurements of a single coil in the middle of the
permanent magnet array for the rotation about the: (a) x-axis, (b) y-axis,
and (c) z-axis.
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Figure 6.27: Comparison between the measurements of a single coil at the edge of the
permanent magnet array for the rotation about the: (a) x-axis, (b) y-axis,
and (c) z-axis.
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6.5 Conclusions

In this chapter the working principle of the gravity compensator has been demon-
strated. In addition, the decoupling of the three degrees-of-freedom of the spherical
actuator has been experimentally verified. Furthermore, the minimized interaction
between the gravity compensator and the spherical actuator has been validated
through measurements.

The prototype has been scaled with respect to the designed spherical actuator
with integrated gravity compensator. In addition, some aspects of this design has
been changed due to manufacturing limitations.

The gravity compensator consists of two concentrically spherically shaped per-
manent magnets. The inner permanent magnet has a hemispherical shape and a
parallel magnetization. The radial magnetization of the outer permanent magnet
has been approximated with a segmentation of cylindrical permanent magnets. In
addition, a spherical bearing has been designed to demonstrate that a functional
prototype outside the test bench is possible. Comparison between the FEA and
the measurements showed a rms error of 3.9%. An rms error between the mea-
surements and the magnetic charge of 16% has been found. The magnetic charge
model has a larger error than FEA because this modeling tool can only take a
relative permeability of µr = 1 into account.

A spherical actuator prototype has been realized in which the created gravity com-
pensator can be integrated. For this design, manufacturing limitations resulted
in a cylindrical segmentation of the hemispherical permanent magnet array. Fur-
thermore, the applied back-iron segments are not completely spherical in shape.
Comparison of these measurements with the prediction of FEA and the analytical
model showed an rms error of 7% and 11%, respectively. The averaged measure-
ment results are within 7.5% error with respect to the desired torque when the
coils are commutated with the two-norm minimization algorithm.

The torques of the gravity compensator and the spherical actuator are measured
before and after their integration. The rms error between these measured char-
acteristic is 0.6% and 0.7% for the gravity compensator and spherical actuator,
respectively. In addition, the rms error between the integrated gravity compen-
sator and FEA is equal to 3.6%.
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Chapter 7

Conclusions and recommendations

This thesis concerns the three-dimensional modeling, analysis, realization and ex-
perimental verification of the integration of a gravity compensator and a spherical
actuator in one device. This device has been designed towards the application in
a smart arm-support system. Categorization of the actuated arm-support systems
described in the literature and an analysis of the human shoulder-joint led to the
formulation of the electromechanical specifications. The integration of a novel
gravity compensator topology, created with a spherical magnetic spring, reduces
the power consumption significantly and provides an equal number of degrees of
freedom as the spherical actuator. The uniqueness and electromagnetic complex-
ity of the integrated design called for a complex yet fast electromagnetic modeling.
An extensive evaluation of integrated actuator topologies has been performed with
the magnetic charge method and the spherical imaging technique. The theoret-
ical analysis has been experimentally validated by measurements of the gravity
compensator and spherical actuator, both separately and integrated.

This chapter provides a summary of the conclusions that correspond to the research
objectives, as stated in section 1.2. Additionally, the scientific contributions of this
thesis are addressed, and recommendations for future research are given.
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7.1 Conclusions

7.1.1 Literature overview of actuated arm-support systems

The arm-support systems found in the literature have been categorized based on
the design choices that influence the actuation requirements. Three applications
of the arm support have been distinguished namely, at home (ambulatory), in
rehabilitation centers, and in the industry. This defines their functionality: sup-
porting, training, or enhancing of the human arm, respectively. These categories
have been further arranged based on the employed actuation technology. Four
technologies can be differentiated from the arm-support systems that have been
found in the literature, namely electromechanical actuators, pneumatic actuators,
hydraulic actuators, and semi-active dampers. Properties such as compliance or
back-drivability can be inherently present or achieved with hardware or software.
The actuators are placed in different ways in the mechanical construction, namely
directly on the joint, positioned externally or a cable suspension is applied. This
mechanical construction influences the required actuator specifications such as the
range of motion, and the inertia of the system.

The torque requirements have been deducted from the analysis of the human shoul-
der joint. A static torque and dynamic torque specification have been obtained
which are required to compensate for gravity and to accelerate the arm, respec-
tively. The human body is different for each person and, therefore, a performance
range is obtained. The range for the static torque is between 4.3 Nm and 16 Nm,
and the dynamic torque ranges between 0.44 Nm and 3.2 Nm. Furthermore, to
achieve the range of motion for a basic set of activities of daily living at least three
degrees of freedom are necessary.

In the literature overview, it has been shown that there is a trade off between the
actuated degrees of freedom and the mobility of the robotic arm. The actuation
of a multi-degree-of-freedom joint is often implemented with a different actuator
for each degree and this results in a large and cumbersome construction with a
predefined sequence of axes. The specifications of arm-support systems show the
need for gravity compensation to reduce the power consumption and the size of
the system. In addition, multi-degree-of-freedom actuation with one device such
as a spherical actuator is desirable to mimic a shoulder joint for the activities of
daily living.
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7.1.2 Electromagnetic modeling

For the optimization of spherical magnetic structures, the 3D semi-analytical mod-
els have been researched for a fast and accurate prediction of the torque of the
spherical actuator with integrated gravity compensator. To obtain the magnetic
field produced by spherically shaped permanent magnets, the scalar potential ob-
tained from Maxwell’s equations has been solved with the Green’s function and
with the method of separation of variables. This has resulted in a magnetic charge
model and harmonic model, respectively.

A spherical harmonic model has been presented that can include an infinitely
permeable boundary and is extended to account for uneven numbers of permanent
magnets in the array in the θ- and φ-direction. In contrast to the magnetic charge
model, the presented harmonic model cannot account for hemispherical permanent
magnet arrays. It has been shown that for a parallel magnetization a maximum
discrepancy of 4% with respect to FEA is achieved for a bounded and unbounded
problem.

The magnetic charge model has been implemented in the spherical coordinate
system to model parallel and radial magnetizations. The radial magnetization
requires the inclusion of the magnetic volume charge density. Furthermore, these
models are extended with spherical imaging by applying the method of inversion.
Hence, the magnetic charge model can account for an infinitely permeable bound-
ary. This modeling method obtains the field solution in an observation point for
each permanent magnet individually, and by superposition the total field solution
is found. Therefore, this method provides a high flexibility because hemispheri-
cal permanent magnet arrays can be taken into account. Validation of the model
with FEA for multiple configurations for the magnetization and infinitely perme-
able boundary resulted in a maximum discrepancy of 1.6%. The magnetic flux
density of hemispherical permanent magnet geometries such as used in the gravity
compensator and in the actuator has been predicted with this method. In ad-
dition, the influence of placing a hemispherical back-iron behind the permanent
magnet and coils in the spherical actuator has been approximated with spherical
imaging in the magnetic charge model.

7.1.3 Spherical magnetic gravity compensator

A novel magnetic gravity compensator has been designed that is able to provide
support in multiple degrees of freedom. A spherical magnetic spring has been
created with two concentric hemispherical permanent magnets. Different torque
characteristics can be realized depending on the combination of parallel and radial
magnetizations. It has been shown that a change of the hemisphere radii only
results in a change in torque amplitude and not in the characteristic.
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An arm-support system requires a sinusoidal torque characteristic. This charac-
teristic corresponds to the combination of a radial magnetization for the outer
hemispherical permanent magnet and a parallel magnetization of the inner spheri-
cal permanent magnet. An average torque requirement of 12 Nm has been found by
identifying the human arm movements. By mapping the torque of the compensator
for different inner and outer radii, an optimal torque density with respect to its
volume has been found. Considering a permanent magnet grade with a remanent
magnetic flux density of 1.3 T, a radius of 29 mm and a radius of 43 mm for the
inner and outer permanent magnet have been obtained, respectively. Commercial
spherical permanent magnets are available that can be used for the inner parallel
magnetized hemispherical permanent magnet. However, the manufacturing of the
radially magnetized outer hemispherical permanent magnet is not evident. Fur-
thermore, this permanent magnet has a risk of demagnetization when employed
in the gravity compensator.

7.1.4 Spherical actuator design with integrated gravity
compensator

A spherical actuator with integrated gravity compensator has been designed to-
wards a smart arm-support system. The stator consists of the inner hemispherical
permanent magnet of the gravity compensator and the coils of the spherical actua-
tor. Both structures are mounted on a stationary support. The rotor is constructed
out of a supporting structure with an embedded segmented back-iron to enhance
the magnetic flux density produced by the hemispherical permanent magnet array
of the actuator. On the inside of this supporting structure the outer hemispherical
permanent magnet of the gravity compensator is mounted. The integrated design
has two airgaps.

The power dissipation of several spherical actuator configurations has been an-
alyzed to obtain the optimal topology. The power dissipation of these configu-
rations has been predicted by applying a commutation algorithm that decouples
the torques and currents. In this optimization, three permanent magnet arrays
with different pole pitches have been investigated. For the coil arrays, two coil
topologies have been included, namely circular and elongated. An optimal coil
and hemispherical permanent magnet configuration suitable for the application
has been obtained, namely a coil pitch of τc = 52◦ and a permanent magnet pitch
of τm = 45◦.

To minimize the influence of the spherical actuator design on the gravity compen-
sator the back-iron behind the permanent magnets has been segmented. It has
been shown that a full hemispherical shell short-circuits the magnetic field of the
gravity compensator. A compromise has been found in a segment size of ξ = 35◦

for the integrated design. This segment size results in an increased torque ampli-
tude of the gravity compensator of 3% without influencing the sinusoidal torque
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characteristic. The magnetic flux density of the hemispherical permanent magnet
array increases with 19%. The inclusion of back-iron behind the coils introduces
cogging which is undesirable for the arm support application. It has been found
that this configuration has a higher power dissipation due to the required com-
pensation for the cogging than the configuration with only a segmented back-iron
behind the hemispherical permanent magnet array.

A spherical actuator with an integrated gravity compensator has been designed ac-
cording to a set specifications. In this integrated design, the gravity compensator
provides the required sinusoidal torque characteristic. The actuator is optimized
to have a minimum power dissipation providing a continuous torque of 1 Nm and
a peak torque of 6 Nm. The steady state temperature for continuous torque op-
eration is ∆T = 40◦C when the outer radius for the integrated actuator design is
equal to 78 mm.

7.1.5 Experimental verification

The working principle of the designed spherical actuator with integrated gravity
compensator has been experimentally verified with a scaled prototype.

The gravity compensator consists of two concentrically spherically shaped per-
manent magnets. The inner permanent magnet has a hemispherical shape and a
parallel magnetization. The radial magnetization of the outer permanent magnet
has been approximated with a segmentation of cylindrical permanent magnets. In
addition, a spherical bearing has been designed to demonstrate that a functional
prototype outside the test bench is possible. The torque has been measurement
of this prototype and comparison between the FEA a rms error of 3.9%. An rms
error between the measurements and the magnetic charge of 16% has been found.
The magnetic charge model has a larger error than FEA because this modeling
tool can only take a relative permeability in the permanent magnet material of
µr = 1 into account.

A spherical actuator prototype has been realized in which the created gravity com-
pensator can be integrated. Manufacturing limitations resulted in a segmentation
of 32 permanent magnets to construct the hemispherical permanent magnet ar-
ray. Furthermore, the applied back-iron segments are not completely spherical in
shape. Comparison of these measurements with the prediction of FEA and the
analytical model showed an rms error of 7% and 11%, respectively. The averaged
measurement results are within 7.5% error with respect to the desired torque when
the coils are commutated.

The torques of the gravity compensator and the spherical actuator are measured
before and after their integration. The rms error between these measured char-
acteristic is 0.6% and 0.7% for the gravity compensator and spherical actuator,
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respectively. In addition, the rms error between the integrated gravity compen-
sator and FEA is equal to 3.6%.

7.2 Scientific contributions

The main scientific contributions of the performed research as presented in this
thesis can be summarized as:

• The development, design, and experimental verification of a passive multi-
degree-of-freedom gravity compensator using two hemispherical permanent
magnets. A spherical magnetic spring has been created, and the torque
characteristic by combining permanent magnets with different magnetiza-
tions has been investigated. The spring topology with a sinusoidal torque
characteristic has been designed as a gravity compensator and integrated in
a spherical actuator. A scaled version of this design has been manufactured
and the working principle has been verified by means of measurements on a
working prototype. A patent has been granted for the concept of a spherical
magnetic spring [93].

• The integration of the magnetic gravity compensator in a spherical actuator
design, and the experimental verification of this concept. A novel spheri-
cal actuator has been created with an integrated gravity compensator. The
power consumption can be reduced significantly in applications that need to
compensator for the gravity of a static load with this device. The spherical
actuator has been designed with a hemispherical permanent magnet array
such that is able to provide a large range of motion without interfering with
the compensator. The interaction between both devices has been minimized
to guarantee that both devices do not influence each other’s torque out-
put. A prototype of this design has been manufactured and validated with
measurements.

• The extension of the three-dimensional magnetic charge modeling for the
evaluation of spherical springs and coreless spherical actuators. The mag-
netic charge model has been applied in the spherical coordinate system, and
is able to predict the magnetic field produced by spherically shaped mag-
netic structures. The magnetic volume charge density has been included
to model the radial magnetization. This magnetization has been applied in
three of the four spherical spring topologies. The modeling of back-iron in
the spherical actuator has been solved by implementing the spherical imag-
ing technique. Hence, multiple infinitely permeable boundaries can be taken
into account.

• The extension of the three-dimensional spherical harmonic modeling tech-
nique to model spherical magnetic structures. The spherical harmonic model
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has been extended by modeling spherical permanent magnet arrays with an
uneven number of permanent magnets, and by including an infinitely per-
meable boundary can be included.

7.3 Recommendations

7.3.1 Development of a design for clinical test

Validation of the concept of the spherical actuator with integrated gravity compen-
sator and its performance to mimic the shoulder joint in an arm-support system
are necessary to ultimately perform clinical trials in rehabilitation and home en-
vironments. For this validation, the integrated actuator has to be built according
to the specifications which were not achieved with the prototype. Implementation
in an arm-support system also requires compact power electronics to excite the
coils of the spherical actuator, a three-degree-of-freedom position sensor, and an
integrated bearing. Furthermore, a robust control solution is required to guarantee
the safety of the user.

7.3.2 Spherical actuator analytical design tools

The development of the analytical modeling tools is focused on the design of a
gravity compensator, a slotless spherical actuator, and the integration of these
devices. This analytical approach resulted in several design decisions made dur-
ing the research. Improvements can be made to increase the accuracy, decrease
the calculation time, and to enlarge the applicability of these tools for spherical
electromagnetic designs such as a slotted spherical actuator. These improvements
can be summarized as:

• Magnetic charge model:

– Include the relative permeability of the permanent magnets [15, 61,
114].

– Improve the numerical implementation of the model, for example, ap-
proximate the numerical integration with elliptic integrals.

• Extend the spherical harmonic model to include hemispherical permanent
magnet structures.

• Include the modeling of regions which consist partially of highly permeable
material such as slotted structures [21, 102].
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7.3.3 A spherical gravity compensator design with variable
torque

The torque produced by the gravity compensator should be made adaptable be-
cause the weight of the upper limb varies for each individual user. However, the
proposed gravity compensator can only be designed for a fixed load. With the
integration of the spherical actuator, a torque can be produced to compensate for
limited variations, maximal 10%, of the load. To cope with a larger variation, an
investigation on gravity compensator designs with a variable airgap is required.

7.3.4 Realization of the gravity compensator

The gravity compensator is realized with one layer of cylindrical permanent magnet
to achieve the radial magnetization of the outer hemispherical permanent magnet.
Consequently, the torque density of the device has been decreased by this segmen-
tation. To improve the torque density of the gravity compensator a production
proces has to be developed that is able to produce or better approximate radially
magnetized hemispherical permanent magnets.



Appendix A

Definition of the Spherical
coordinate system

The analytical tools to predict the torque produced by the gravity compensator
and spherical actuator are implemented in the spherical domain. There are several
definitions of the spherical coordinate system, however, the definition used in this
thesis is defined as shown in Fig. A.1. This definition is quite commonly used in
physics. In mathematics the angle variables θ and φ are switched, because in this
way the angle θ is defined the same as in the cylindrical coordinate system.

According to the defined spherical coordinate system conversion can be made using
for vectors,

~ρ = sin(θ) cos(φ)~ex + sin(θ) sin(φ)~ey + cos(θ)~ez,

~θ = cos(θ) cos(φ)~ex + cos(θ) sin(φ)~ey − sin(θ)~ez,

~φ =− sin(φ)~ex + cos(φ)~ey,

(A.1)

and

~x = sin(θ) cos(φ)~eρ + cos(θ) cos(φ)~eθ − sin(φ)~eφ,

~y = sin(θ) sin(φ)~eρ + cos(θ) sin(φ)~eθ + cos(φ)~eφ,

~z = cos(θ)~eρ − sin(θ)~eθ.

(A.2)

For points in the free space the conversion is,

x =ρ sin(θ) cos(φ), (A.3)
y =ρ sin(θ) sin(φ), (A.4)
z =ρ cos(θ), (A.5)
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φ
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z

Figure A.1: Definition of the spherical coordinate system in the Cartesian coordinate
system.

and,

ρ =
√
x2 + y2 + z2, (A.6)

θ = arctan
(y
x

)
, (A.7)

φ = arccos

(
z

ρ

)
. (A.8)

Further the volume element for the spherical domain is,

dv = ρ2 sin(φ)dρdθdφ, (A.9)

where the different surface areas are given by,

ds(~r′) =


ρ′ 2 sin(θ′) dθ′dφ′ if constant ρ′,
ρ′ sin(θ) dρ′dφ′ if constant θ′,
ρ′ dρ′dθ′ if constant φ′,

(A.10)
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Spherical vector analysis

The gradient operant in the spherical coordinate system is written as

∇f =
∂f

∂ρ
~eρ +

1

ρ

∂f

∂θ
~eθ +

1

ρ sin(θ)

∂f

∂φ
~eφ (B.1)

the divergence is defined as

∇ · ~A =
1

ρ2
∂(ρ2Aρ)

∂ρ
+

1

ρ sin(θ)

∂ (sin(θ)Aθ)

∂θ
+

1

ρ sin(θ)

∂Aφ
∂φ

(B.2)

Further, The jacobian for a spherical volume volume is given by

dv = dρ · ρdθ · ρ sin(φ)dφ, (B.3)

where the different surface areas can be written as

dsρ = ρ2 sin(θ) dθdφ (constant ρ) (B.4)
dsθ = ρ sin(θ) dρdφ (constant θ) (B.5)
dsφ = ρ dρdθ (constant φ). (B.6)

The Laplacian equation of the spherical domain is given by

∇2f =
1

ρ2
∂

∂ρ

(
ρ2
∂f

∂ρ

)
+

1

ρ2 sin(θ)

∂

∂θ

(
sin(θ)

∂f

∂θ

)
+

1

ρ2 sin2(θ)

∂2f

∂φ2
(B.7)
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Appendix C

Definition of the Cylindrical
coordinate system

In the cylindrical coordinate system a radius, ρ, an angle φ, and a height z are
used to define a point in space. A coordinate system as defined in Fig. C.1 is
applied in this thesis.

φ
x y

z

ρ

z

Figure C.1: Definition of the cylindrical coordinate system.
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