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Abstract—The tuning of state-space model predictive control

(MPC) based on reverse engineering has been investigated in

literature using the inverse optimality problem ( [1] and [2]). The

aim of the inverse optimality is to find the tuning parameters

of MPC to obtain the same behavior as an arbitrary linear-

time-invariant (LTI) controller (favorite controller). This requires

equal control horizon and prediction horizon, and loop-shifting

is often used to handle non-strictly-proper favorite controllers.

This paper presents a reverse-engineering tuning method for

MPC based on transfer function formulation, also known as

generalized predictive control (GPC). The feasibility conditions of

the matching of a GPC with a favorite controller are investigated.

This approach uses a control horizon equal to one and does not

require any loop-shifting techniques to deal with non-strictly-

proper favorite controllers. The method is applied to a binary

distillation column example.

I. INTRODUCTION

Model predictive control (MPC) is a popular advanced
process control technology due to its ability to handle system
constraints explicitly. Apart from the obvious advantage of
handling constraints, interpreting the available degrees of
freedom in the MPC cost function while the constraints are
inactive is not straightforward ( [3]). Among various ways of
selecting the cost function (the tuning parameters) of MPC
in literature ( [4]), the tuning methods which enable MPC to
inherit the characteristics of an arbitrary LTI controller are
of particular interest. When MPC operates closely to the con-
straints and active constraints occur frequently, the system will
take advantage of the traditional ability of MPC. When MPC
operates away from the constraints (e.g. at commissioning),
the system can inherit the characteristics of an LTI controller,
e.g. its robustness.

The matching of MPC with an LTI controller when MPC is
formulated in the state space has been investigated by several
authors ( [5], [6], [7], [3] and [8]). In that case, the uncon-
strained solution of MPC can be written as a state feedback
control law and the aim of the matching is to minimize the
error between the state feedback gain of the favorite controller
and that of MPC. The foundation of this approach is the
inverse problem of linear optimal control, laid by [1] and
[2]. The inverse optimality problem is extended to a more
general cost function in [9] with a cross-product term between
the state and the control input. In [7], a matching method
based on formulating an optimization problem with linear
matrix inequality (LMI) or bilinear matrix inequality (BMI)

constraints is proposed. The cost function of the optimization
problem is the error between the control action of the MPC
and the favorite controller. The matching methods based on
the inverse problem of linear optimal control usually consider
the case in which the MPC is equivalent to a linear-quadratic
regulator (LQR) and the states of the system are available.

In many applications, the states of the system are not
measurable and the use of a state observer is required. In
[5], the observer is designed with the loop-shaping procedure
introduced in [10] and the tuning parameters of MPC are found
by investigating the inverse problem of the normalised left co-
prime factorization (NLCF) optimal control. In [6], separate
designs of the robust observer and state feedback gain are
used for the matching purpose, and non-convex optimization
techniques are employed to perform the matching when the
terminal weight is not used.

In [11], it is shown that robustness is not guaranteed even
when one attempts to design a “good” observer and a state
feedback gain. Based on this observation, [3] makes use of
the observer realization techniques described in [12] to divide
a favorite controller into the observer part and state feedback
part before performing the matching. A major drawback of
this approach is that if a favorite output feedback controller
contains a feed-through term from the outputs to the control
inputs (i.e. a non-strictly-proper controller), loop-shifting tech-
niques must be used to “transfer” the feed-through term to
the dynamics of the plant so that the matching is feasible.
Introducing some assumptions, [8] has proposed a solution
to the problem by considering the feed-through term in the
framework of reference tracking.

Due to the nature of the inverse optimality problem ( [1],
[2] and [9]), the controller matching is often studied with a
state-feedback MPC law and an observer design. Nevertheless,
MPC can also be formulated by transfer functions and this
formulation is also well adopted by several MPC providers in
process industry ( [13]). The MPC based on transfer function
models (GPC) was introduced in [14], [15] and further devel-
oped in [16]. Although there is certain equivalence between
the GPC and the state-feedback MPC, there are differences
in formulating the cost function and computing the solution.
Hence, the matching of GPC with a favorite controller is
investigated to overcome the limitations of the matching
problem in state space. [17] and [18] proposed a tuning method
for the GPC such that the poles and zeros of the closed-loop
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system approximates certain desired ones. [19] makes use of
optimization techniques to find an output feedback gain that
minimizes the difference between the closed-loop behavior of
the GPC and the desired behavior in the frequency domain. In
that work, the tuning parameters are found by solving a convex
optimization problem with LMI constraints. The approach is
limited to the case where the control horizon is 1.

The focus of this paper is to match a GPC with a favorite
controller when the constraints are inactive. Instead of using
optimization techniques, we solve a set of linear equations
to find the output feedback gain of GPC. To this end, the
rank conditions of coefficient matrices are investigated. Once
the rank conditions are fulfilled, an output feedback gain
that guarantees the matching can always be found. Then, a
convex optimization problem with LMI constraints similar to
[7] is used to find the tuning parameters which provide the
computed output feedback gain. The degrees of freedom of
the problem are increased by extending the objective function
of the GPC with cross-product terms between the outputs and
inputs. The proposed approach does not require any loop-
shifting technique to tackle the feed-through term from output
to input in the controller.

This paper is organized as follows. Section II presents
the formulation and notations used throughout the paper.
Section III formulates the problem and Section IV provides
the method to find the output feedback gain for the matching.
The approach to computing the tuning parameters is given in
Section V. Section VI illustrates the method with a binary
distillation column model and Section VII gives conclusive
comments.

II. PRELIMINARIES: GENERALIZED PREDICTIVE CONTROL

The prediction of GPC hinges upon the Controlled auto-
regressive integrated moving average (CARIMA) model (
[16]). Consider a linear system with nu inputs and ny outputs:

D(z)yk = N(z)uk +
T (z)
�(z)

vk (1)

where N(z)ny⇥nu and D(z)ny⇥ny are the numerator and
denominator matrices of the system in the backward shift
operator z�1, respectively; T (z) = t(z)Iny

is a diagonal
transfer matrix used to model the disturbance signal and
usually considered as a design parameter ( [14] and [15]);
�(z) is the difference operator �(z) = 1 � z�1; yk 2 Rny ,
uk 2 Rnu and vk 2 Rny represents the output, input and a
zero-mean random variable at time instant k, respectively.

In the rest of the paper, a square system where nu = ny =

nd is considered for the sake of simplicity. It is also typical of
MPC to make use of down squaring to make the system square
( [16]). The output reference is assumed to be incorporated in
the model and the aim of the controller is to steer the outputs
of the system to zero.

From (1), it follows:

D(z)�(z)T�1(z)yk = N(z)T�1(z)�uk + vk (2)
) D(z)�(z)ỹk = N(z)�ũk + vk (3)

where ỹk = T�1
(z)yk is the filtered outputs and �ũk =

T�1
(z)�uk is the filtered inputs. With the assumption that

the considered system is strictly proper, let

D(z)�(z) = I +D1z
�1 +D2z

�2 + . . . Dn+1z
�n�1 (4)

and

N(z) = N1z
�1 +N2z

�2 + . . .+Nnz
�n. (5)

Let Hp denote the prediction horizon, the prediction model
of the system is constructed as follows (with the assumption
that the best prediction of vk is zero):

ỹk+1 +D1ỹk + . . .+Dn+1ỹk�n =

N1�ũk + . . .+Nn�ũk�n+1

ỹk+2 +D1ỹk+1 + . . .+Dn+1ỹk�n+1 =

N1�ũk+1 + . . .+Nn�ũk�n+2

...
ỹk+Hp +D1ỹk+Hp�1 + . . .+Dn+1ỹk+Hp�1�n =

N1�ũk+Hp�1 + . . .+Nn�ũk+Hp�n (6)

When a control horizon Hc < Hp is considered, the inputs
become constant from time instant k + Hc if the prediction
is made at time instant k: �uk+Hc+l = 0 for l � 0. In this
work, a control horizon of 1 is considered. The extension to
the case where Hc > 1 is inspired by [7] and has also been
investigated but it is not presented here. It should be noted
that although �uk+1+l = 0 for l � 0, it does not necessarily
lead to �ũk+1+l = 0 for l � 0 due to the filtering effect
of T�1

(z). Therefore, a so-called filter horizon Hf is defined
such that �ũk+Hf+l ⇡ 0 for l � 0. Hence:

CD

2

66664

ỹk+1

ỹk+2

...
ỹk+Hp

3

77775

| {z }
ỹ
�!k

= �HD

2

66664

ỹk

ỹk�1

...
ỹk�n

3

77775

| {z }
ỹ
 �k

+ CzN

2

66664

�ũk

�ũk+1

...
�ũk+Hf�1

3

77775

| {z }
� ũ�!k�1

+HzN

2

66666664

�ũk�1

�ũk�2

...
�ũk�n

�ũk�n�1

3

77777775

| {z }
� ũ �k�1

(7)

where

CD =

2

666666664

I 0 · · · 0

D1 I · · · 0

D2 D1 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

3

777777775

;HD =

2

666666664

D1 D2 · · · Dn+1

D2 D3 · · · 0

D3 D4 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

3

777777775

;

CzN =

2

666666664

N1 0 · · · 0

N2 N1 · · · 0

N3 N2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

3

777777775

;HzN =

2

666666664

N2 N3 · · · Nn 0 0

N3 N4 · · · 0 0 0

N4 N5 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

777777775

.

The predicted output is then given by:
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ỹ
�!k

= H� ũ�!k�1
+ P� ũ �k�1

+Q ỹ
 �k

(8)

where H = C�1
D CzN , P = C�1

D HzN and Q = �C�1
D HD. To

compute the solution of the MPC, a prediction model based
on y

�!k
and � u�!k�1

is needed. Define T (z) = I + T1z
�1

+

T2z
�2

+ . . . + Tn+1z
�n�1 where Ti = tiInd

, ti 2 R and
tn+1 6= 0. It implies that:

y
�!k

=

2

6666664

I 0 · · · 0

... I
. . .

...

Tn+1

. . . 0

0 Tn+1 · · · I

3

7777775

| {z }
CTy(Hpnd⇥Hpnd)

ỹ
�!k

+

2

6666664

T1 · · · Tn+1

... . .
.

0

Tn+1 . .
. ...

0 · · · 0

3

7777775

| {z }
HTy(Hpnd⇥(n+1)nd)

ỹ
 �k

(9)

and

� u�!k�1
= CTu� ũ�!k�1

+HTu� ũ �k�1
(10)

where CTu 2 RHfnd⇥Hfnd and HTu 2 RHfnd⇥(n+1)nd are
constructed similarly to CTy and HTy . From (8), (9) and (10),
it follows:

y
�!k

= H̃�uk + P̃� ũ �k�1
+ Q̃ ỹ
 �k

(11)

where ˜H = CTyHC�1
Tu� with � = [ Ind⇥nd

0 . . . 0 ]

>,
˜P = CTyP � CTyHC�1

TuHTu and ˜Q = HTy + CTyQ. The
model in (11) is used to compute the optimal input sequence
that minimizes a cost function:

Jk = y
�!k

>Q y
�!k

+� u�!k�1

>R� u�!k�1
(12)

where Q 2 RHpnd⇥Hpnd and R 2 Rnd⇥nd are the weighting
matrices penalizing the outputs and input increments. It is
common that Q and R are chosen to be positive definite. The
unconstrained solution to the MPC at time instant k is then
given by:

�uk = �Ñk ỹ
 �k
�

^

D̃k� ũ �k�1
(13)

where
8
><

>:

^

D̃k =
⇣
H̃>QH̃ +R

⌘�1
H̃>QP̃ = K̃MPC P̃

Ñk =
⇣
H̃>QH̃ +R

⌘�1
H̃>QQ̃ = K̃MPCQ̃.

(14)

Define

Ñk(z) = Ñk

⇥
I z�1 · · · z�n

⇤> (15)
^

D̃k(z) =
^

D̃k

⇥
z�1 z�2 · · · z�n�1

⇤>
. (16)

The transfer matrix representation of the control law is given
by:

✓
I + T�1(z)

^

D̃k(z)

◆
�uk = �T�1(z)Ñk(z)yk (17)

)
✓
T (z) +

^

D̃k(z)

◆
�uk = �Ñk(z)yk (18)

) D̃k(z)�uk = �Ñk(z)yk. (19)

III. PROBLEM FORMULATION

Let a favorite proper (but not necessarily strictly proper)
controller be given by:

�
I +A1z

�1 +A2z
�2 + . . .+Apz

�p�uk

=
⇣
B̃0 + B̃1z

�1 + . . .+ B̃pz
�p

⌘
yk. (20)

Hence:
�
I +A1z

�1 + . . .+Apz
�p��uk

=
⇣
B̃0 + B̃1z

�1 + . . .+ B̃pz
�p

⌘ �
1� z�1� yk (21)

)A(z)�uk = �B(z)yk (22)

where A(z) = I +A1z
�1

+ . . .+Apz
�p and B(z) =

B0 +B1z
�1

+ . . .+Bp+1z
�p�1.

To investigate the matching problem, two subproblems are
studied:

• Matching transfer matrices: Find the controller gain
˜KMPC in (14) such that ˜Nk(z) = B(z) and ˜Dk(z) =

A(z).
• Finding the tuning parameters: Find cost function (12)

such that
⇣
˜H>Q ˜H +R

⌘�1
˜H>Q =

˜KMPC .

IV. MATCHING TRANSFER MATRICES

The aim of the matching is to equate B(z) with ˜Nk(z) and
A(z) with ˜Dk(z), while the order of B(z) is p+1, ˜Nk(z) is n,
A(z) is p and ˜Dk(z) is n+1. Due to the orders of the transfer
matrices, the prediction model must be over-parameterized if
n < p + 1 and the controller must be over-parameterized if
n > p + 1. The simplest over-parametrization technique is
adding zero coefficients to high order terms of the transfer
functions. Assume that n = p+ 1, the target of the matching
is to find ˜KMPC such that:

K̃MPC P̃ =
⇥
A1 . . . Ap 0 0

⇤
�

⇥
T1 . . . Tn+1

⇤

K̃MPCQ̃ =
⇥
B0 . . . Bp+1

⇤
.

(23)

The problem above is feasible for arbitrary⇥
A1 A2 . . . Ap

⇤
and

⇥
B0 B1 . . . Bp+1

⇤
if

both following conditions hold:
• Matrix [

˜P ˜Q ] is full rank.
• Matrix [

˜P ˜Q ] is square or skinny.
As the number of rows of [

˜P ˜Q ] is Hpnd and the
number of columns is 2(n + 1)nd, the second condition can
be satisfied if Hp � 2(n+1), which is typically the case since
Hp is usually chosen long enough to cover the main dynamics
of the system. Given ˜P and ˜Q as:

P̃ = CTyP � CTyHC�1
TuHTu

= CTyC
�1
D HzN � CTyC

�1
D CzNC�1

TuHTu (24)

Q̃ = HTy � CTyC
�1
D HD. (25)

we investigate the rank of [ ˜P ˜Q ]. Since CTy and CD are
square and full-rank, it follows that:

rank(P̃ ) = rank
�
HzN � CzNC�1

TuHTu

�
(26)

rank(Q̃) = rank
�
CDC�1

TyHTy �HD

�
. (27)
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Theorem 1. Given model (1) and matrices ˜P , ˜Q in (11),
rank([ ˜P ˜Q ])  (2n+1)nd if Hf = 1 or Hp�Hf < n+1.

Proof: If Hf = 1,

CzN =

2

66666666664

N1

...
Nn

0

...
0

3

77777777775

. (28)

It implies that

HzN � CzNC�1
TuHTu

=

2

6666666666664

N2 · · · Nn 0 0

... . .
.

. .
. ...

...

Nn . .
. ...

...
0 · · · · · · 0 0

...
...

...
0 · · · · · · 0 0

3

7777777777775

�

2

66666666664

N1

...
Nn

0

...
0

3

77777777775

C�1
TuHTu (29)

=


�nnd⇥(n+1)nd

0(Hp�n)nd⇥(n+1)nd

�
(30)

) rank(P̃ )  nnd (31)
) rank([ P̃ Q̃ ])  (2n+ 1)nd. (32)

The rest of the proof shows that rank([ ˜P ˜Q ])  (2n+

1)nd if Hp � Hf < n + 1. For simplicity, assume n = 1,
Hf = 3 and Hp = 4,

rank(([ P̃ Q̃ ]))

= rank([ HzN � CzNC�1
TuHTu CDC�1

TyHTy �HD ]). (33)

Note that C�1
Ty =

2

6664

I 0 0 0

�T1 I 0 0

�T2 + T 2
1 �T1 I 0

X �T2 + T 2
1 �T1 I

3

7775
,

matrix V := CDC�1
TyHTy �HD is:

2

666664

T1 � D1 T2 � D2

(D1 � T1)T1 + T2 � D2 (D1 � T1)T2

(�T2 + T2
1 � T1D1 + D2)T1 + (D1 � T1)T2 (�T2 + T2

1 � T1D1 + D2)T2

Y Z

3

777775
.

It is obvious that �T2V1j � T1V2j = V3j for j = 1; 2.
The calculation of HzN � CzNC�1

TuHTu also shows identical
linear dependency. Hence, rank([ ˜P ˜Q ])  3nd while
size([ ˜P ˜Q ]) = 4nd. The proof can be extended to general
n by employing the expression of the inverse of Toeplitz
matrices given in [20] for CTy and CTu but this is omitted
here due to limited space.

Theorem 1 shows that Hf and Hp must satisfy 1 < Hf and
Hp �Hf � n+ 1 so that matrix [

˜P ˜Q ] is full rank.

Corollary 1. Assume Hf > 1, Hp �Hf � n+ 1 and matrix
[

˜P ˜Q ] is full rank. If Hp = 2n+ 2, a solution ˜KMPC to

(23) is unique. If Hp > 2n + 2, there are infinite number of
solutions ˜KMPC since matrix [

˜P ˜Q ] has more rows than
columns.

Proposition 1. Hf is chosen based on the settling time of
T�1

(z) and Hp � max (2(n+ 1);Hf + n+ 1) so that matrix
[

˜P ˜Q ] is full rank and to obtain a decent prediction model.

V. FINDING THE TUNING PARAMETERS

Section IV explains how to match ˜KMPC to favorite
controller (20). This section describes how to find the tuning
parameters after finding ˜KMPC . When cost function (12)
is used, the problem of finding the tuning parameters can
be formulated as a convex optimization problem with LMI
constraints as shown in [7], [17], [18] and [19]. The problem
is given by:

min
Q,R

���
⇣
H̃>QH̃ +R

⌘
K̃MPC � H̃>Q

���
2

(34)

s.t. Q � 0 and R � 0. In [7], raising the prediction horizon
is a method to increase the degrees of freedom in the LMI
to obtain a lower error when matching the state feedback
gain. Nevertheless, this work as well as [17], [18] and [19]
solve the matching of the output feedback gain ˜KMPC , whose
size depends on the prediction horizon. This is a fundamental
difference that limits the benefit gained by increasing the
prediction horizon to obtain more degrees of freedom. As
shown in Corollary 1, when Hp > 2n + 2, there are infinite
number of ˜KMPC that satisfies (23). Let M be the set of all
˜KMPC’s that satisfy (23). One method to increase the degrees

of freedom is to use ˜KMPC as an optimization variable in the
optimization problem, subject to ˜KMPC 2 M . However, this
approach will lead to a bilinear optimization problem, which
is difficult to solve and not considered in this work.

Alternatively, the use of a cross term S 2 RHpnd⇥Hcnd in
the cost function is proposed to gain more degrees of freedom
in the optimization. The cost function of the MPC is then
given by:

Jk = y
�!
>

k
Q y
�!k

+� u�!
>
k�1

R� u�!k�1

+ y
�!
>

k
S� u�!k�1

+� u�!
>
k�1

S> y
�!k

(35)

The unconstrained control law is given by:

�uk = �K̃MPC

✓
P̃� ũ �k�1 + Q̃ ỹ

 �k

◆
(36)

where

K̃MPC =
⇣
H̃>QH̃ +R+ H̃>S + S>H̃

⌘�1 ⇣
H̃>Q+ S>

⌘
.

(37)

The optimization problem with LMI constraints is then
given by:

min
Q,R,S

���
⇣
H̃>QH̃ +R+ H̃>S + S>H̃

⌘
K̃MPC �

⇣
H̃>Q+ S>

⌘���
2

(38)

s.t.

"
Q S
S> R

#
> 0. When the resulting error is not suf-

ficiently small, the constraint can also be relaxed by forcing
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Weights Low-frequency Crossover High-frequency
gain frequency [rad/min] gain

wu(z) 10�3 0.628 1.0005
we(z) 103.5 0.015 0.5

TABLE I: Input and output weights of the H1 controller.

only the Hessian matrix ˜H>Q ˜H +R+

˜H>S + S>
˜H to be

positive definite as shown in [6]. However, the interpretation

of a non-positive-definite

"
Q S
S> R

#
is still under investi-

gation.

VI. EXAMPLE

The controller matching approach is applied to a binary
distillation column model. A detailed description of the model
is provided in [21]. The considered distillation column consists
of 110 trays and the feed to the column is located at tray 39.
The relative volatility and the liquid holdup are assumed to
be constant at ↵ = 1.35 and M = 30 Kmol, respectively. The
column operates at a feed flow of F = 219 Kmol/min with
a light component composition of zF = 0.65. The model has
2 control variables (top (ytop) and bottom (ybot) purity) and
2 manipulated variables (liquid (LF ) and vapor (V F ) flow
rates). The objective of the controller is to keep the bottom
and top compositions at their set points. The initial set-points
of the compositions are 0.9506 [mole fraction] for the top
product and 0.0529 [mole fraction] for the bottom product.
The model of the column is of second order and obtained
from open-loop identification ( [22]). The sampling rate of
the model is 5 minutes. The transfer matrix of the model is:

Y (k) =
1

D(z)


N11(z) N12(z)

N21(z) N22(z)

�
U(k) (39)

where D(z) = 1 � 1.735z�1
+ 0.7514z�2, N11(z) =

0.0009617z�1 � 0.0008408z�2, N12(z) = �0.001445z�1
+

0.001283z�2, N21(z) = 0.0004101z�1 � 0.0003359z�2 and
N22(z) = �0.0002351z�1

+ 0.0001847z�2. An H1 con-
troller is designed for the distillation column as a favorite
controller. Then the controller matching method is applied in
order to match the MPC with the H1 controller when the
constraints are inactive. The prediction horizon of the MPC is
chosen 10 samples to cover the main dynamics of the model.
The filter horizon Nf is 5, which renders matrix [

˜P ˜Q ]

full rank.
The weights of the H1 controller are both diagonal:

We (z) =


we (z) 0

0 we (z)

�
,Wu (z) =


wu (z) 0

0 wu (z)

�

(40)
where we(z) and wu(z) are scalar weights on outputs and
inputs, respectively, with the characteristics given in Table I.

The sensitivity functions S(z) and K(z)S(z) together with
their templates are given in Fig. 1. It is shown that the
functions are below their upper bound with an H1 cost of
� = 1.1614.
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Fig. 1: Sensitivity functions S and KS

The comparison of performance between the H1 controller
and the MPC is conducted by a simulation of 800 samples.
At sample 50, a step change of 2 [Kmol/min] in the feed rate
is made and at sample 300, a step change of -0.01 in the feed
composition is made. The step signals are filtered by a first-
order low-pass filter before entering the column. The cutoff
frequency of the filter associated with the feed rate is 0.0628
[rad/min] and that of the other filter is 0.0314 [rad/min]. The
reason for this choice is that the feed composition tends to
change more slowly than the feed rate. At sample 500, the set-
point of the bottom composition is changed to 0.0429 [mole
fraction] and that of the top composition is changed to 0.9606
[mole fraction].

In this example, T (z) = t(z)I2 with t(z) = (1� 0.7z�1
)

5.
Since the order of the model is 2 and that of the H1 is
p = 3, the prediction model is over-parameterized with zero
coefficients in high-order terms so that n = p+ 1 = 4.

The first step of the matching is to find ˜KMPC such that
the numerator and denominator of the MPC match those
of the H1 controller. Since matrix [

˜P ˜Q ] is full rank,
the command \ of MATLAB R� is used to solve the set of
equations given in (23) to obtain ˜KMPC , which is a 2 ⇥ 20

matrix. With this ˜KMPC , the convex optimization problem
(38) is solved subject to ˜H>Q ˜H +R+

˜H>S + S>
˜H > 0.

The resulting weighting matrices are not shown here due to
limited space. The 2-norm of the error between ˜KMPC and

⇣
H̃>QH̃ +R+ H̃>S + S>H

⌘�1 ⇣
H̃>Q+ S>

⌘
(41)

is 3.7193e-04. The performance of the H1 controller and the
MPC is given in Fig. 2. It can be seen that two controllers
match well when the constraints are inactive.

VII. CONCLUSION AND FUTURE WORK

A tuning method for MPC based on controller matching
is proposed. The MPC is formulated in the transfer function
form (GPC). The main idea of the method is to match
the transfer function of an arbitrary favorite controller and
the MPC. Providing that some rank conditions are satisfied,
perfect matching between the two controllers can be obtained
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Fig. 2: The response of top and bottom compositions to H1
and MPC controller.

when the constraints are inactive. The use of T (z) and over-
parametrization helps to fulfill the rank conditions while
T (z)�1 remains a low-pass filter. Two main steps are followed
in the matching. The first step is to find a gain ˜KMPC that
matches the transfer function given. The second step is to find
the tuning parameters by formulating a convex optimization
problem with LMI constraints.

The use of T (z) helps to satisfy the rank condition of the
coefficient matrices. Moreover, T (z)�1 is usually a low-pass
filter whose bandwidth is preferred to be higher than that of
the model. In this work, T (z) is selected based on engineering
rules in [16]. It should be noted that Hf also affects the quality
of the prediction. A high Hf is needed for a slow T (z) but
leads to rank deficiency in [

˜P ˜Q ] as shown in Theorem
1, which makes the matching infeasible. A fast T (z) will
allow a low Hf but may cause numerical issues since the
coefficients of T (z) will become small. Therefore, a more
analytical approach to the computation of T (z) should be
considered in future work.

As for the finding of the tuning parameters, the convex
optimization problem is easy to solve and some constraints
on the weighting matrices must be removed to obtain a low
error. Unlike the matching of the state feedback gain in [7],
the impact of increasing the prediction horizon on the degrees
of freedom is not clear. One solution to this problem is to
consider the gain ˜KMPC as a decision variable as well, based
on the results of Corollary 1. Nevertheless, this will lead to an
optimization problem with bilinear constraints, which is more
difficult to solve.

Since feed-forward terms are often considered in the predic-
tion model of MPC when measurable disturbances are present,
the inclusion of feed-forward terms in the controller matching
will also be investigated in future work. Scaling the gain
˜KMPC will also be considered when optimization problem

(38) is solved in order to satisfy the definite positiveness of"
Q S
S> R

#
. The case of a control horizon higher than 1 will

also be investigated based on the approach presented in [7].
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