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Abstract— The singular value decomposition of (SVD) of the
Toeplitz matrix in the quadratic performance index of Model
Predictive Control (MPC) is studied. The underlying goal is
to find connection between the frequency domain information
and the finite time optimal control and use this connection as
a basis for stability, robust performance analysis and tuning of
the dynamic MPC criterion. In a recent work by the authors, it
was shown that the singular value decomposition of the Toeplitz
matrix provides gain and phase information of the associated
system for sufficiently long prediction and control horizons.
This work is extended to MIMO case and is shown that singular
value decomposition of the Toeplitz matrix can be used for
stability analysis of closed loop system.

I. INTRODUCTION

In refining and petrochemical industries, model predictive
control (MPC) is the standard control technology due to its
ability to make the system operate closely to its operational
constraints ([1]). At each time instant, MPC solves an
optimisation problem based on a model of the plant. The
solution to the optimisation problem is the future sequence
of control inputs and only the first element of the sequence
is implemented on the plant. When the next measurement is
available, the same procedure is repeated.

A major problem of any model-based operation system is
that the lifetime performance degrades over time if proper
supervision is not performed. Besides the changes in the
disturbances, the changes in dynamics of the real plant due
to material ageing or changes in operating condition may
also result in a poor performance. A good maintenance
strategy for model-based systems is then needed for retaining
a good lifetime performance in the presence of such model
uncertainty.

Control design that deals with uncertainty is investigated
in depth using frequency domain approaches ([2], [3], [4]).
Moreover, frequency-domain information is directly con-
nected to the natural behaviour of the system and shows how
close to instability the system is. To use similar frequency-
domain-based techniques in designing finite-time MPC sys-
tems, a relation between the two domains is needed. To
this end, initial studies were done in [5], [6], and [7]. They
showed the link between the singular values of the Hessian
matrix and the gain of the associated system in the frequency
domain. In [8], the singular value decomposition technique

is used to analyse the asymptotic behaviour of the Toeplitz
matrix in single-input-single-output (SISO) systems. In [9]
and [10], a similar technique was used to investigate the
characteristics of inner systems and non-minimum phase
behaviour.

This paper builds on those results and studies the be-
haviour of the Toeplitz matrix for multivariable systems.
Section II gives background on MPC and also introduces
it in the framework of an internal model control (IMC)
scheme. Section III discusses the asymptotic behaviour of
the Toeplitz matrix and Section IV provides results on the
link to closed-loop stability. Section V illustrates the results
with an example and Section VI discusses potential future
research directions.

II. PRELIMINARIES

MPC computes the future behaviour of the system based
on a prediction model. Assume a system of n

y

outputs and
n
u

inputs is described by the impulse response model:

y(k) =

1X

i=0

H(i)u(k � i) (1)

where H(i) 2 Rny⇥nu is the ith element of the impulse
response sequence. The sequence of predicted output of
a multivariable system of n

y

outputs and n
u

inputs is
calculated as follows:

Y
f

= H
a

U
p

+ TU
f

(2)

where U
p

2 RMnu⇥1, U
f

2 RNnu⇥1 and Y
f

2 RPny⇥1

denote the vector of past inputs up to the past horizon M ,
the vector of the future inputs up to the control horizon
N and the future outputs up to the prediction horizon P ,
respectively:
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Y
f

=

2

666664

y(k)
y(k + 1)

...
y(k + P � 2)

y(k + P � 1)

3

777775
; U

p

=

2

6664

u(k �M)

...
u(k � 2)

u(k � 1)

3

7775

U
f

=

2

666664

u(k)
u(k + 1)

...
u(k +N � 2)

u(k +N � 1)

3

777775

T 2 RPny⇥Nnu is the Toeplitz matrix:

T =

0

BBBBBBBBBBBBB@

H(0) 0 . . . . . . 0
H(1) H(0) 0 . . . 0

H(2) H(1) H(0)
. . .

...
...

...
...

. . . 0
H(N � 1) H(N � 2) H(N � 3) . . . H(0)
H(N) H(N � 1) H(N � 2) . . . H(1)

...
...

...
...

H(P � 1) H(P � 2) H(P � 3) . . . H(P �N)

1

CCCCCCCCCCCCCA

(3)
and H

a

2 RMnu⇥Pny is the Hankel matrix:

H
a

=

0

BBB@

H(M) H(M � 1) . . . H(1)

H(M + 1) H(M) . . . H(2)

...
...

...
H(P +M � 1) H(P +M � 2) . . . H(P )

1

CCCA

(4)
At each iteration, the MPC solves the minimisation prob-

lem of the quadratic cost function:

min

Uf

V = kY
ref

� Y
f

k2
Q

+ kU
f

k2
R

(5)

where Q and R are the weighting matrices on output errors
and inputs respectively, Y

ref

2 RPny is the reference
trajectory. From (2), it implies that:

V = kY
ref

� TU
f

�H
a

U
p

k2
Q

+ kU
f

k2
R

(6)

The solution to optimisation problem (5) is given by:

U
f

= (T>QT +R)

�1T>Q(Y
ref

�H
a

U
p

) (7)
= H�1T>Q(Y

ref

�H
a

U
p

) (8)

where H is the Hessian matrix. When Q = I , R = 0, N = P
and T is of full rank, the solution U

f

reduces to:

U
f

= T�1
(Y

ref

�H
a

U
p

) (9)

The first element of U
f

is implemented until the next
measurement is available. In the case of no active constraints,
this control can be considered as an approximate inverse of

Fig. 1. IMC scheme

the process transfer matrix. When the prediction horizon is
infinite, it is equivalent to an IMC scheme given in Fig. 1.
The equivalence between MPC and IMC is elaborated in
[11].

From the IMC scheme in Fig. 1, it follows that:

Y = d+
⇣
I +G

c

(G
p

� ˜G
p

)

⌘�1
G

p

G
c

(R� d) (10)

U =

⇣
I +G

c

(G
p

� ˜G
p

)

⌘�1
G

c

(R� d) (11)

Hence, the stability of the closed-loop system depends on
the term

⇣
I +G

c

(G
p

� ˜G
p

)

⌘�1
.

Assume the plant has input uncertainty:

G
p

=

˜G
p

(I +�) (12)

it implies that

⇣
I +G

c

(G
p

� ˜G
p

)

⌘�1
=

⇣
I +G

c

˜G
p

�

⌘�1
(13)

Therefore, the open-loop characteristics of G
c

˜G
p

are inves-
tigated to analyse the the stability of the closed-loop system,
based on Nyquist-like techniques ([12] and [3]). In order to
apply these techniques to the finite-time domain MPC, the
behaviour of the Toeplitz matrix is studied.

III. ASYMPTOTIC BEHAVIOUR OF THE TOEPLITZ MATRIX
FOR THE MIMO CASE

The behaviour of the Toeplitz matrix in the SISO case is
presented in [8]. It is shown that the magnitude and phase
of the frequency response of a SISO system can be found
in the singular values and singular vectors of the Toeplitz
matrix. The singular values of the Toeplitz matrix are the
gain of the open-loop system and the singular vectors give
corresponding phase information. For the MIMO case, the
SVD of the Toeplitz matrix is also studied. It is shown
in [6] that the singular values of the Toeplitz matrix are
exactly the singular values of the frequency response when
the frequency varies from 0 to ⇡. Here, we investigate the
phase and directionality information in the singular values
and how this information is linked to the stability of the
closed-loop system.
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A. Gain, phase and directionality information in the Toeplitz
matrix

For the sake of simplicity, we only consider square systems
(n

u

= n
y

). Consider a square n
io

⇥ n
io

open-loop system
and its frequency response G(ej!). The singular value de-
composition of G(ej!) is given by

G(ej!) = U(ej!)⌃(!)V⇤
(ej!) (14)

where U 2 Cnio⇥nio , V 2 Cnio⇥nio and ⌃(!) =

diag{�1(!), . . . ,�nio(!)}. It can be deduced from [6] that
in the MIMO case, the eigenvalues of the Hessian matrix
converge to the singular values of the frequency response
(i.e. �

i

(!)), with the following matrix of eigenvectors:

E
N,!

=

1p
N

2

6664

V(ej!)
ej!V(ej!)

...
ej(N�1)!V(ej!)

3

7775
(15)

with ! =

⇡

N

p, p 2 0, . . . , N � 1. Let V(ej!) =⇥
v1 v2 · · · v

nio

⇤
, it follows that in a certain input

direction v
i

(of size 1⇥n
io

), the following holds in the limit
N ! 1:

H

2

6664

v
i

ej!v
i

...
ej(N�1)!v

i

3

7775
= �2

i

(!)

2

6664

v
i

ej!v
i

...
ej(N�1)!v

i

3

7775
(16)

where H is the Hessian matrix and �
i

(!) is ith element
of ⌃(!) (associated with direction i). Since the Hessian
matrix is the square of the Toeplitz matrix, it implies that
�
i

(!) are the singular values of the Toeplitz matrix and
the corresponding right singular vector is (note that index
i indicates the direction and p indicates the frequency in the
range [0;⇡]):

V
i,p

=

1p
N

2

6664

v
i

ej!v
i

...
ej(N�1)!v

i

3

7775
(17)

Since the vector above is complex and the Hessian and
Toeplitz matrices are real, we introduce their real singular
vectors as follows. Let

v
i

=

2

6664

A
i1e

j'i1

A
i2e

j'i2

...
A

i2nio
ej'inio

3

7775
(18)

Note that ! =

⇡

N

p with p 2 {0, . . . , N �1}, which makes
! vary from 0 to ⇡. As the singular values �

i

(!) are real,

the real right singular vectors of the Toeplitz matrix are just
the real part of the complex singular vectors and given by:

V
i,p

=

r
2

N

2

6666666666666666666666666664

A
i1 cos('i1)

A
i2 cos('i2)

...
A

inio
cos('

inio
)

A
i1 cos('i1 + !)

A
i2 cos('i2 + !)

...
A

inio
cos ('

inio
+ !)

...

...
A

i1 cos ('i1 + (N � 1)!)
A

i2 cos ('i2 + (N � 1)!)
...

A
inio

cos ('
inio

+ (N � 1)!)

3

7777777777777777777777777775

(19)

The singular vectors V
i,p

now have two indices: i is the
input direction associated with V

Gi

(ej!) in the frequency
domain and p is the index which shows its frequency content.
When p varies from 0 to N � 1 and i from 1 to n

io

,
expression (19) generates N.n

io

right singular vectors, which
is consistent with the size Nn

io

⇥ Nn
io

of the Toeplitz
matrix. We now propose the following theorem that relates
the phase and directional information of the system with the
singular vectors of the Toeplitz matrix

Theorem 1: Consider a square system of size n
io

⇥ n
io

and its frequency response G(ej!). Its SVD is given by

G(ej!) = U(ej!)⌃(!)V⇤
(ej!) (20)

with V(ej!) =

⇥
v1 v2 · · · v

nio

⇤
and U(ej!) =⇥

u1 u2 · · · u
nio

⇤
. As shown in [13], the angle be-

tween singular subspaces (i.e. directional information) is
defined as

�(i,!) = arccos ||v⇤
i

(ej!)u
i

(ej!)|| (21)

and the phase difference between singular vectors is given
by

�✓(i,!) = arg(v⇤
i

(ej!)u
i

(ej!)) (22)

Consider the Toeplitz matrix T 2 RNnio⇥Nnio with
prediction horizon N

T =

0

BBBBBBBBBB@

H(0) 0 . . . . . . . . . 0

...
. . . . . .

...

H(k0) . . . H(0) 0

...

0

. . . . . . . . .
...

...
. . . . . . . . .

0

0 . . . 0 H(k0) . . . H(0)

1

CCCCCCCCCCA

(23)
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where H(i) =

2

6664

h11(i) h12(i) · · · h1nio(i)
h21(i) h22(i) · · · h2m(i)

...
...

. . .
...

h
nio1 h

nio2 · · · h
nionio

(i)

3

7775
is the

matrix of impulse response of each pair of input-output at
time instant i. The SVD of T is given by: T = USV >, with

V =[V1,1 V1,2 · · ·V1,N V2,1 V2,2 · · ·V2,N · · ·
· · ·V

nio,1 V
nio,2 · · ·Vnio,N

] (24)

where V
i,p

is given in (19) and similarly

U =[U1,1 U1,2 · · ·U1,N U2,1 U2,2 · · ·U2,N · · ·
· · ·U

nio,1 U
nio,2 · · ·Unio,N

] (25)

S is a Nn
io

⇥Nn
io

diagonal matrix of the principal gains
of the frequency response. Then, in the limit N ! 1, the
following equality holds:

U>
i,p

V
i,p

= cos (�(i,!)) cos (�✓(i,!)) (26)

with ! =

p

N

⇡, p 2 {0, . . . , N � 1}, i 2 {1, . . . , n
io

}.
Proof:

From the relation between the gain of the system and the
singular values of the Toeplitz matrix described above and
(16), it follows that

TV
i,p

= �
i

(!)U
i,p

(27)
)V >

i,p
TV

i,p

= �
i

(!)V >
i,p
U
i,p

(28)

where T is given in 23 and V
i,p

in 19. Using the trigono-
metric identity:

cosx cos y =

1

2

(cos(x+ y) cos(x� y)) for x; y 2 R (29)

after some calculations, we obtain

V
>
i,p

TVi,p = Re

⇢ 1

N

h

v⇤
i e�j!v⇤

i · · · e�j(N�1)!v⇤
i

i

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

H(0) 0 . . . . . . . . . 0

.

.

.
. . .

. . .
.
.
.

H(k0) . . . H(0) 0

.

.

.

0

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . . 0

0 . . . 0 H(k0) . . . H(0)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

2

6

6

6

6

6

6

4

vi
ej!vi

.

.

.
ej(N�1)!vi

3

7

7

7

7

7

7

5

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(30)

= Re

⇢ 1

N

⇣

Nv
⇤
i H(0)vi + (N � 1)v⇤

i e
�j!

H(1)vi + · · ·

+(N � k0)v⇤
i e

�j!k0H(k0)vi

⌘o

(31)

= Re

(

v⇤
i H(0)vi +

N � 1

N
v
⇤
i e

�j!
H(1)vi + · · ·

+
N � k0

N
v⇤
i e

�j!k0H(k0)vi

)

(32)

In the limit N ! 1, N�k

N

! 0 with k constant. Hence, the
equality above leads to

V >
i,p
TV

i,p

= Re

(
v⇤
i

 
k0X

l=0

e�j!lH(l)

!
v
i

)
(33)

= Re

�
v⇤
i

G(ej!)v
i

 
(34)

) Re(V >
i,p
TV

i,p

) = Re(v⇤
i

G(ej!)v
i

) (35)

On the other hand, we have

G(ej!)v
Gi

= �
i

(!)u
Gi

(36)
) v⇤

Gi

G(ej!)v
Gi

= �
i

(!)v⇤
Gi

u
Gi

(37)

= �
i

cos�(i,!)ej�✓(i,!) (38)
) Re(v⇤

Gi

G(ej!)v
Gi

) = �
i

cos (�(i,!)) cos (�✓(i,!))
(39)

From (28), (34) and (39), it follows that

U>
i,p

V
i,p

= cos (�(i,!)) cos (�✓(i,!)) (40)

(Q.E.D)

IV. LINK TO THE STABILITY OF THE CLOSED-LOOP
SYSTEM

From Theorem 1, it is shown (in equality (26)) that the
inner product of the left and right singular vectors of the
Toeplitz matrix in the time domain gives the multiplication
of the directional angle and phase angle of the corresponding
left and right singular vectors of the frequency response in
the frequency domain. This section discusses the relation
between this product and the stability of the closed-loop
system with a unity feedback and provides preliminary
results.

Consider the same system with frequency response G(ej!)
as in the previous section. The eigendecomposition of
G(ej!) is given by:

G(ej!) = W⇤
(ej!)⇤(!)W⇤

(ej!)�1

where ⇤(!)nio⇥nio is the diagonal matrix whose non-
zero elements �

i

(!) are the eigenvalues of G(ej!) and
W(ej!)nio⇥nio is the matrix of the corresponding eigenvec-
tors:

W⇤
(ej!) = [w1 w2 . . .w

nio
] (41)

It is known that the stability of the closed-loop system
with a unity feedback is determined based on the locus
of the eigenvalues �

i

(!) over the frequency range [0;⇡].
For a stable open-loop system, the closed-loop system is
stable if the characteristic loci of the eigenvalues do not
encircle the point (-1;0) ([12]). The closed-loop system is
marginally stable if the locus cross the point (-1;0), i.e. there
is some frequency where the eigenvalue is -1. Let �

i

(!)
be an arbitrary eigenvalue associated with its eigenvector
w

i

(!). The singular values and the pair of singular vectors

3787



of the frequency response at the corresponding frequency are
denoted �

i

(!) and u
i

(!), v
i

(!), respectively.
In this paper, symmetric open-loop transfer matrices are

considered. When the product of the controller and the
process is symmetric, the directionality of the process is not
affected by the controller. In a simple 2⇥2 system, it means
that the weight on output 1 is equal to that on output 2 and the
weight on input 1 is equal to that on input 2. It is shown in [9]
that if the process is ill-conditioned, this choice is a decent
tuning strategy to avoid aggressiveness of the inputs and
to obtain more robustness for the system. For a symmetric
open-loop system, the SVD of G(ej!) coincides with the
eigen-decomposition, i.e. the eigenvalue matrix ⇤(!) are also
the singular value matrix ⌃(!) and the eigenvectors w

i

are
equal to the singular vectors v

i

. Moreover, the SVD of the
Toeplitz matrix gives the same information as the SVD of
the frequency response as shown in previous sections. Hence,
the characteristic loci of the eigenvalues of G(ej!) can also
be found in SVD of the Toeplitz matrix.

V. EXAMPLE

Consider the following symmetric open-loop transfer ma-
trix, which is supposed to be the product of the controller
and the process model in the Laplace domain:

 1
s

2+2s+1
1

s+2
1

s+2
1

s+1

�
(42)

The system is discretised with a sampling period of 1
minute. The characteristic loci of ⇤(!) is given in Fig. 2.
The loci show that for each direction, the gain margins are
1/0.6941 = 1.4407 and 1/0.2892 = 3.4578, respectively. The
characteristic loci of the system can be interpreted as the
Nyquist plot of the multi-variable system. From the loci,
one can derive the stability of the closed-loop system. In this
example, the gain margins 1.4407 and 3.4578 show that if the
gain of the open-loop system is increased by 1.4407 times
without affecting the directionality, the closed-loop system
will go unstable.

The Toeplitz matrix of the open-loop system is then
constructed in order to show that the same information
in the frequency domain can also be obtained from this
time-domain-based matrix. The matrix is constructed with
a horizon of 200 samples. The horizon is chosen to be high
for illustrative reason, as the complete matching between the
frequency-domain information and time-domain information
is obtained when the horizon tends to infinity (Theorem 1).
The SVD of the Toeplitz matrix is analysed to illustrate the
results of Theorem 1. Fig. 3 illustrates equality (40), which
shows that the inner product of the left and right singular
vectors of the Toeplitz matrix coincide with that of the left
and right singular vectors of the frequency response over
the frequency range [0,⇡]. The frequency where the inner
product is -1 is also the critical point of the characteristic loci.
Fig. 4 shows that the singular values of the Toeplitz matrix
match the singular values of the frequency response of the
open-loop system. At the critical frequency where the inner
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Fig. 3. Inner product of left and right singular vectors of the Toeplitz
matrix coincides with the directional and phase information in the frequency
domain

product of the singular vectors of the Toeplitz matrix is -1,
the same gain margins are obtained from the Toeplitz matrix
for both directions (-3.17 dB and -10.98 dB, respectively).
In summary, the information on the stability of the closed-
loop system can be obtained from the SVD of the Toeplitz
matrix. Note that the horizon is also the number of frequency
points of the singular vectors taken from the Toeplitz matrix.
Therefore, reducing the horizon will provide fewer frequency
points, while the general matching of the two domains still
remains.

VI. CONCLUSION AND FUTURE WORK

The asymptotic behaviour of the Toeplitz matrix in sym-
metric multivariable systems is investigated. For such sys-
tems, the SVD of the frequency response coincides with
the eigen-decomposition and the Toeplitz matrix can then
cover all the frequency-domain characteristics of the systems.
This can be considered as the first step to analyse the time-
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Fig. 4. Gain of the open-loop system. Gain margins coincide with the
characteristic loci.

domain MPC based on frequency-domain techniques such
as Nyquist-like techniques. To extend the work to the non-
symmetric case, the structure of the product of the singular
vectors in different directions must be studied. Since most
of the results are based on infinite horizon, an investigation
into the effect of receding horizon and of the time-varying
control is still needed. Then a proper choice of the horizons
in MPC may follow.
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