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ARTICLE INFO ABSTRACT

Available online 4 February 2016 The Pickup and Delivery Problem with Time Windows and Scheduled Lines (PDPTW-SL) concerns
Keywords: scheduling a set of vehicles to serve freight requests such that a part of the journey can be carried out on
Freight transportation a scheduled public transportation line. Due to the complexity of the problem, which is NP-hard, we
Pickup and delivery problem propose an Adaptive Large Neighborhood Search (ALNS) heuristic algorithm to solve the PDPTW-SL.
Heuristic algorithm Complex aspects such as fixed lines' schedules, synchronization and time-windows constraints are
Scheduled lines efficiently considered in the proposed algorithm. Results of extensive computational experiments show

that the ALNS is highly effective in finding good-quality solutions on the generated PDPTW-SL instances
with up to 100 freight requests that reasonably represent real life situations.
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A successful integration of passenger and freight transportation creates a seamless movement of people and freight. This integration achieves
socially desirable transport options economically viable in urban areas as it reduces the impact of congestion and air pollution [21]. Actual
integration is already being observed in long-haul freight transportation (e.g., passenger aircraft and ferries). Norwegian Hurtigruten carries freight
and people efficiently and seamlessly in the region of Northern Europe [18,16]. However, short-haul passenger and freight (i.e., small packages)
transportation is rarely integrated, although these services largely use the same infrastructure.

This paper investigates opportunities and the feasibility of using available public transportation vehicles, which operate according to pre-
determined routes and schedules, for transporting freight. A successful synchronization of pickup and delivery (PD) vehicles with scheduled lines
(SLs) is directly related to coordination and consolidation of transport. Coordination assures the precision and timing of each leg's movement. On
the other hand, consolidation implies that the amount of freight transferred to/from SLs fits with capacities of PD and SL vehicles. Considering both
coordination and consolidation of such integrated system, we introduce the Pickup and Delivery Problem with Time Windows and Scheduled Lines
(PDPTW-SL).

There exists a rich literature on PDP-related problems. The interested readers are referred to Berbeglia et al. [3] for a literature survey
on the solution methodologies for PDPs. A special case of PDPs where passengers need to be transported from their origin to their
destination by considering service level constraints are called dial-a-ride problems (DARP). An overview on the mathematical models and
the solution methodologies for single as well as multiple-vehicle DARPs can be found in Cordeau and Laporte [6].

In another extension of the PDP, it is possible to consider transfer opportunity between PD vehicles at predefined transfer nodes (PDP-
T). Shang and Cuff [29] proposed an insertion heuristic algorithm to solve instances with up to 167 requests for the PDP-T. Cortes et al. [7]
proposed an exact decomposition method, namely Branch-and-Cut (B&C), and solved PDP-T instances with up to six requests. Moreover,
Masson et al. [22,23] proposed an ALNS to solve PDP-T and DARP-T, respectively. In both cases, the authors solved instances with up to 100
requests. The PDP with cross-docking opportunities has been studied by Petersen and Repke [25], who proposed a large neighborhood
search heuristic to solve instances with up to 982 requests.

To the best our knowledge, Nash [24] is the first author who conceptually introduced the idea of transporting freight using public
transportation. One of the first attempts to combine scheduled line services with DARP was done by Liaw et al. [20]. The authors
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formulated the problem where transfers to public scheduled transportation are allowed for passengers and wheelchaired persons. The
authors proposed two types of heuristics (i.e., online and offline) and solved instances with up to 120 requests. Later, Aldaihani and
Dessouky [1] considered an integrated DARP with public transport and proposed a two-stage heuristic algorithm to solve instances with
up to 155 requests. Hall et al. [15] introduced a mixed-integer program to solve an integrated dial-a-ride problem (IDARP). The authors
considered transfers to fixed lines without modeling schedules of the public transportation. The authors solved small-sized instances with
up to 4 requests. Trentini and Malhene [31] presented a review of solutions for combining freight and passenger transportation used in
practice. In a related study, Trentini et al. [32] investigated a two-echelon VRP with transshipment in the context of passenger and freight
integrated system. The authors proposed an ALNS to solve instances with 50 customers.

As a real-life application of the integrated transport system, a project, called City Cargo Amsterdam [5], was held as a pilot experiment in
the Netherlands in 2007. Two cargo trams were used to transport freight in the city center of Amsterdam. The goods were transferred from
cargo trucks onto trams to be delivered to the inner part of the city. In 2009 the project was quit due to lack of funds.

In this paper, we consider two transport scenarios: (i) an integrated transportation system and (ii) the pickup and delivery problem where
transfers to scheduled lines are not allowed. These two scenarios are intended to provide plausible and sufficient reasons to implement such
system by comparing them in terms of the total operating costs of the PD vehicles. The PDPTW-SL is NP-hard, which means that its com-
putational complexity exponentially increase when the problem size increases. It is shown that only instances with a limited number of
requests can be solved to optimality within a reasonable time limit. Therefore, we have designed a metaheuristic algorithm to generate good-
quality routing solutions. In particular, we present an ALNS algorithm which is based on the destroy and re-create principle.

The contribution of the paper is three-fold: (i) to adapt the classical ALNS heuristic algorithm to solve PDPTW-SL, (ii) to efficiently
handle synchronization constraints within the proposed ALNS framework and finally (iii) to analyze the cost savings due to the use of
scheduled lines in freight transportation. The rest of this paper is structured as follows. In Section 2, we present an arc-based mathe-
matical formulation for the PDPTW-SL. Section 3 describes the proposed ALNS heuristic algorithm for the PDPTW-SL. The experimental
results are given in Section 4. Finally, conclusions are provided in Section 5.

2. The Pickup and Delivery Problem with Time Windows and Scheduled Lines

The PDPTW-SL is an extension of the standard PDPTW that additionally considers the flexibility of using available scheduled lines, such
as bus, train, and metro. Due to the fact that public transportation systems have a certain coverage (i.e., rural or urban), some delivery trips
of the PD vehicles may overlap with SL services. Thus, using public transportation as a part of freight transportation may lead to cost and
environmental benefits for the whole transportation system. For instance, due to less driving time of the PD vehicles, logistics service
providers may experience substantial operating cost savings. As a consequence, less traveling time of the vehicles also leads to fewer
carbon dioxide-equivalent (CO,e) emissions at the global level for the whole society [9,11]. Furthermore, using scheduled lines for carrying
freight gives extra cost benefits for public transport service providers as the utilization of SL services increases. An example application
which is based on the current metro system of Amsterdam can be illustrated as in Fig. 1.

The system depicted in Fig. 1 contains four scheduled lines and five transfer nodes (end-of-lines stations). Note that T3', T33, T3* as well
as T3? and T5* can be merged into two transfer nodes as these denote the same locations. Each metro line has one single route with one
destination in each direction. To use this metro system as a part of the transportation plan, package(s) can be delivered to one of its end-
of-line stations and transported to other side of the line considering available capacity and schedules of the metro line.

2.1. A formal description of the PDPTW-SL

In this section we give a formal description of the PDPTW-SL. All information (e.g., requests, demands, travel times, time windows) is
considered known beforehand, and a possible transport plan for the whole planning horizon (e.g., one day) should be generated before the
execution of the transport activities. A solution to the problem is a routing plan and schedules for both requests and PD vehicles. We now
define the PDPTW-SL on a digraph G = (N, A), where A represents the set of nodes (i.e., depots, pickup, delivery and replicated transfer
nodes') and A represents the set of arcs. We note that i, j, r, v, w, and t are used as indices in this paper.

® Request: Each request r e P is associated with an origin node r and a destination node r+n, where n is the number of requests to be
satisfied. Each request is associated with two desired time windows: one for the origin ([, u,]), and one for the destination point ([/;, p,
Uy, n]). Furthermore, demand d, is known for each request.

® PD vehicle: A set of PD vehicles is given by V. In addition, each vehicle v € V is associated with the carrying capacity Q,, the depot (origin
and destination) o0,, and time window [l,,, u,, ]

® Travel and service time: Travel and service times are known beforehand and remain unchanged during the planning horizon. Each arc
(i, j) e A is associated with travel time Y ;. The service time at node i e A\ is represented as s;.

® Scheduled line: A set of all physical transfer nodes is given as S and the set of all physical scheduled lines is given as &, which is defined
by the directed arc between the start and the end of the line (i, j), such that i,j e S. For example, between two transfer nodes i and j,
there are two scheduled lines considered that are one arc for each direction, (i, j) and (j, i). Each scheduled line has a set of indices k¥ for
the departure times from i (the start of fixed line), such that the departure time is given as p}, V(i,j)e £, w e K (e.g. pT1 r, = 30). We
note that each scheduled line may have different frequencies than other lines, thus the size of the ¥ may differ. Furthermore, it is
assumed that SL vehicles are designed to carry a limited number of packages, thus implying a finite carrying capacity kj;, ¥ (i,j) € £.

We state the following additional assumptions related to SL services.

® The package carrying capacity is not influenced by the passenger demand on SL services.

1 See more detailed explanation in Section 2.2.
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Fig. 1. An illustration of the metro system in Amsterdam (2014).

Each transfer node is considered as a coordination and a consolidation point for requests (e.g., [12]). In other words, a storage space for
to-be-shipped packages is available at the transfer nodes. The packages can be stored until the vehicle's departure time (i.e., scheduled
line or PD). Furthermore, it is considered that multiple PD vehicles can be serviced simultaneously at a transfer node. In other words, we
assume that the loading/unloading infrastructure is always available for multiple vehicles at a time.

In case of multiple freight carriers using SL services, it is assumed that each carrier has a limited storage space at the transfer node and
on the SL vehicle (e.g., contract-based agreement). Hence, it is assured that the considered capacity is not affected by the demand of
other actors involved.

It is assumed that cost #7;; per each unit of parcels shipped on the SL (i, j) includes transportation, handling (transshipment) and storage
costs. Handling of the packages during transshipment is assumed to be under the responsibility of the SL service provider (e.g., the
driver of the SL vehicle).

Since the focus of the present problem is related to the operational-level aspects, we disregard all investments needed, such as the re-
design of the SL vehicle and the physical storage space required at the transfer nodes. Obviously this assumption may affect the
outcome of the system (i.e., might lead to less benefits).

It is assumed that all data is known beforehand. In practice, this might not be the case because of the uncertainty in travel times and
demands. Disregarding these aspects in the planning process might eventually lead to infeasible plans and expensive repair (recourse)
actions to tackle such violations.



V. Ghilas et al. /| Computers & Operations Research 72 (2016) 12-30 15

a b T .
/’ \\\
I, \\
T I/ @ T > \\
—————————— ~ 4 N
_-- S~o / \
Pid ~ 1 \
. SN 1 \
~ \\ \ !
\
' \ ]
: @4_ o >@ " ‘\ v /I
\
\ ) \ ’
\\ 4 N -> /I,
\\\ ’// \\‘ ,,
Physical fixed line Virtual fixed line

Fig. 2. An illustration of a replicated fixed line.

In order to model waiting times of the PD vehicles and multiple visits at the transfer nodes, each physical scheduled line (i.e., (i,j) € £, e.g., arcs
(1,2) and (2, 1) in Fig. 2a) is replicated n times as in Hall et al. [15]. In addition, each replication is assigned to one request, and only that specific
request can travel on the assigned scheduled line (see Fig. 2b). This is done to reduce the number of decision variables. Therefore, the set of all
replicated scheduled lines is given as F (e.g, (1a, 2a), (1b, 2b), (2a, 1a) and (2b, 1b) in Fig. 2b).

Furthermore, the replication process means that each physical transfer node in S (e.g., nodes 1 and 2 in Fig. 2a) is replicated n times
(e.g., T ={1a, 1b, 2a, 2b} in the considered example). For the sake of modeling let y*, Vt € T be the physical transfer node represented by
the replicated transfer node t (e.g., yw'®=w'’=1). Consequently, set 7¢ can be defined as {ie 7|y =y',i#t},vteT (e.g. in Fig. 2b,
T2 = (2b}, as 2a and 2b represent physical transfer node 2).

The proposed model is not limited to only one fixed line (e.g., (1, 2) and (2, 1)). Different topologies may be considered, such as square, triangle,
star or any other complex networks. Furthermore, the requests are allowed to be shipped from one scheduled line to the other. The additional
parameters used in our model are given in Table 1.

Table 1
Parameters.
Notation Definition
1) Number of depots
d; Demand of request r
Y Traveling time from node i to node j
S Service time at node i
kij Freight carrying capacity on the fixed line (i, j)
Qy Carrying capacity of the vehicle v
[, u] Time window of node i
i Departure time from transfer node i on the scheduled line (i,j), indexed by w
W Physical transfer node that is represented by replicated transfer node t
T Number of replicated transfer nodes (i.e., |7])
fi 1 if node iisr,
0 if node i e N3\ {r;r+n}( see Table 2),
—1 ifnodeiisr+n.
0, The routing cost per one time unit of vehicle v
nij The cost of shipping one unit of package on the SL (i, j)

Using the parameters above, the notation of sets is given in Table 2.

Table 2
Sets.
Notation Definition
Vv Set of PD vehicles
@ Set of depots, O=[1,...,5](i.e. 0, € O,Vve V)
P Set of requests or pickup nodes, P=[5+1,...,6+n]
D Set of delivery nodes, D=[s+n+1,...,6+2n]
T Set of replicated transfer nodes, 7 =[6+2n+1,...,6+2n+7](see nodes 1a, 1b, 2a and 2b in Fig. 2b)
Tt Set of replicated transfer nodes associated the same physical transfer node as t (e.g. in Fig. 2b, 72¢ = {2b}, 7' = {1b}, etc.)
N Set of nodes in the graph G; PUDUOUT =N
Ny Set of nodes that are related to requests (P U D)
N> Set of nodes that represent requests and replicated transfer nodes (P U DU T)
£ Set of physical SLs which is defined as (i, j), with associated k¥ and kij
K Set of indices for the departure times from the physical transfer node i on SL (i,j) e £
F Set of replicated SLs which is defined as (i, j) with associated K"’
Fr Set of replicated SLs associated with request r (e.g. in Fig. 2, ¢ = {(1a, 2a), (2a, 1a)}
Ft Set of replicated SLs connected to the replicated transfer node t (e.g. in Fig. 2, F'¢ ={(1a,2a), (2a, 1a)}
Fi Set of replicated SLs associated with a physical SL (i, j) € £ (e.g. in Fig. 2, 12 ={(1a, 2a), (1b, 2b)}, 72! ={(2a, 1a), (2b, 1b)}
A Set of arcs in G defined by A/ x N, (note that A\A1 =F U{(i,)j)ieO,je N2} U{(,j)lie N, je O}

Al = N3 x No\F
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The decision variables used to handle routing and scheduling of the PD vehicles, along with the flow and the timing of the requests are
given in Table 3.

Table 3
Decision variables.

Notation Definition

X" A binary variable equal to 1 if arc (i, j) is used by PD vehicle v, 0 otherwise, V (i, j)e A, ve V

ay A continuous variable which shows the time at which vehicle v returns to its depot, ¥ ve V

Bi A continuous variable which shows the departure time of a vehicle from node i, V ie A/

y,fj A binary variable equal to 1 if arc (i, j) is used by request r, 0 otherwise, Vi, je N3, re P

7 A continuous variable which shows the departure time of request r from node i, Vie A5, re P

q;” A binary variable equal to 1 if replicated fixed line (i, j) is used by request r that departs from i at time p}}, O otherwise, Yre P, (i, j)e 7', we K

2.2. Mathematical formulation of the PDPTW-SL

The PDPTW-SL can be formalized as the following mixed-integer program:

Minimize > M 0. yxi+> > > nydiq) @

(ijye AveV rePaj) e F'y, o wivd

Term (1) minimizes the total travel cost of the PD vehicles and the cost of using SLs for transferred requests:
subject to

Routing and flow constraints

ZZX}}Z] VjENl (2)

ieNVeV

> xp <1 VveV 3)
ie Ny

DD <1 VteT “)
ieNvVeV

ZX;}_ZX%ZO VieN, veV )

jeN jeN

S V=Y yi=fi VreP, ieN; (6)

jeN; jeN;
S =Y Sy veer g
ieNVeEY reP(,‘J‘)e]:f

Constraints (2) assure that all pickup and delivery nodes are visited exactly once. Constraints (3) ensure that each vehicle leaves its
depot at most once and Constraints (4) assure that each replicated transfer node is visited at most once. Flow conservation for PD vehicles
is considered in Constraints (5). Constraints (6) assure flow conservation for the paths of each request. Constraints (7) ensure that if a
request uses a scheduled line, a PD vehicle should pick it up/drop it off at a transfer node related to that specific SL:

Scheduling constraints

Yi=l=yjzyi+Yj+s; VreP, ijeN; 8)
ZX}]’-:I = fi=fi+Yi+s; VieN, jeN, 9)
veV
Xo,=1=ay>Pi+Yio,+5, VieN, veV (10)
Prin=Pr+Yrrin+Srin VreP an
Li<pi—si<u; VieN; 12)
l, <ay<u,, VveV (13)
S o =y; VreP, (iLjeF" (14)
we kv

q’=1 and y;=1=y]=pf vreP,Gj)eF, we k¥ (15)
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ST digiy <ky V(ij)eE wek? (16)
reP(a,b)e]:ij

> dy <> Quy V(e Al 17
repP veV

Timing for each request is considered in Constraints (8). Similarly for PD vehicles, scheduling is updated in Constraints (9) and (10).
Constraints (11) assure precedence relationship of each request. Constraints (12) and (13) force the time windows to be respected.
Constraints (14) and (15) assure that if a request uses a scheduled line, it departs at a scheduled departure time. Constraints (16) ensure
that package carrying capacity on the scheduled line is not exceeded. Constraints (17) consider the capacity of each PD vehicle:

Synchronization constraints

d Vi=1=y=p; VrepP, ieT (18)
jeN:
Zyi’j:1:>y,4’:[7’,- VreP, ieN; (19)
JjeN
2 Vieen=1=Vien=Pron VreP 20
1N,
Yi=1=yi=p VreP, teT, jeT" (21)

The set of constraints (18)-(21) ensure the synchronization between requests' and vehicles' schedules. Constraints (18) force departure
times of requests and vehicles from a replicated transfer node to be equal if there is a request flow from that node towards a pickup/
delivery node. Constraints (19) force departure times of requests and vehicles from a pickup/delivery node to be equal if there is a request
flow from that node. Constraints (20) force arrival time at the destination node of a request be equal to departure time of a vehicle from
that node. Constraints (21) assure time synchronization between vehicles and requests at each transfer node, with regards to flow
between replications of the same original transfer node:

Decision variable domains

Xie(0,1) V(j)eA, veV 22)
Yjel0,1} VijeN, reP (23)
ayeR" vveVv (24)
yreR" VieNy re?P (25)
PieRt VieN (26)
q" (0,1} VreP,Gj)eF, wek¥V (27)

Note that Constraints (8)-(10), (15) and (18)-(21) are formulated as implications, and standard linearization techniques can be used to
express them using one or two linear inequalities.

3. An adaptive large neighborhood search heuristic algorithm for the PDPTW-SL

The proposed metaheuristic (ALNS) is an extension of the Large Neighborhood Search (LNS) heuristic, which is first introduced by Shaw
[30]. The ALNS metaheuristic was first used to solve several vehicle routing problems by Rgpke and Pisinger [28], Pisinger and Repke [26].
Unlike LNS, where one large neighborhood is usually used, the ALNS applies several neighborhood operators. The neighborhood of a given
set of feasible routes is investigated by removing some requests and reinserting them back to the solution. The operators that performed
well in previous iterations, are given higher chances to being chosen than the ones that proved poor performance. Thus, each operator is
assigned a probability of being selected. The newly generated solution is accepted if the criteria defined by the master search framework is
satisfied.

3.1. Initialization stage

A greedy insertion heuristic is used to obtain a feasible initial solution to the PDPTW-SL. All requests are initially stored in a list £ and inserted
one by one in a random order in their best available positions (for more detail on greedy insertion (GI) - see Section 3.4). The feasibility with
regard to the capacity of PD and SL vehicles and time windows is always maintained.

3.2. Probability adjustment procedure

A roulette-wheel mechanism is used to control the selection of the neighborhood operators. At the beginning, the probability of removal and

insertion operators are uniformly assigned. As in the implementation of Rgpke and Pisinger [28], every N,, iterations, each operator is given a score

;. The probability is updated as PE,“ = Pi(1—r1p)+rpm;/w;, where 1, is the adjustment parameter, 7; is the accumulated score of operator i and ;
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shows the amount of times the operator was used. The score of the operators is increased by o; if a new best solution is obtained. The score is
increased by o, if the newly generated solution outperforms the current solution. Finally, if a deteriorated solution is accepted, the score is
increased by os.

3.3. Removal stage

Ten removal operators are used in our ALNS heuristic algorithm. All operators are adapted from or inspired by Shaw [30], Repke and
Pisinger [28] and Demir et al. [8]. The removal stage mainly consists of removing ¢ requests from the current solution and adding them to
the so-called removal list £ as shown in Algorithm 1. The algorithm starts with a given feasible routing solution X and returns a solution
where some requests are disregarded. A chosen operator is used to remove a set of requests (i.e., pickup, delivery and transfer nodes if
used) from the solution. The parameter ¢ defines the number of requests to be removed. Removed pickup and delivery nodes are then
inserted into list £.

Algorithm 1. The overall structure of the removal operators.

input: A feasible solution X and the number of requests to be removed ¢
output: A partially destroyed solution X,
Initialize removal list (£ « @)

for ¢ iterations do
{Apply removal operator to remove a request r (includes two nodes; pickup and delivery)

W N =

L—LUT

The removal operators used in our implementation are introduced below:

® Random removal (RR): This operator randomly removes ¢ requests from the solution, and runs for ¢ € [¢, @] iterations, where ¢ and ¢
are the lower and the upper limits on the number of requests to be removed and ¢ is a random integer number within the
specified range.

® Route removal (ROR): This operator removes a complete route from a given solution. The route that is to be removed is randomly
selected. The ROR operator then iteratively selects a node j from the selected route until it is emptied. The corresponding node of j, i.e.,
its pickup or delivery node, is removed irrespective of which route it is positioned in.

® [ate-arrival removal (LAR): For every request r, this operator calculates the difference between the service start time and [, I,
respectively, and then removes the request with the largest total difference (i.e., r* =arg max; c p{| [, —Sr — -1+ [ . n —Sr+n—lr+nll},
where f is the departure time from node x). Similarly to RR, this operator runs for ¢ € [¢, ¢] iterations.

e Worst-distance removal (WDR): This operator repeatedly removes costly requests. The cost is considered to be the total distance from the
pickup and delivery nodes of a request to the prior and succeeding nodes within given routes, i.e., it removes node
r*=argmaX;cp{|Yi_1;+Yriv1+Yj—1r4n+Yrinjr11}, where i—1 and j—1, are predecessors and i+1 and j+1 successors of the
pickup and delivery nodes, respectively.

® Shaw removal (SR): The objective of the SR operator is to remove requests that are similar in terms of certain aspects. The algorithm randomly
selects a request r; and adds it to £. Let I, -, = —1 if two nodes, one related to r; (i.e,, r; or r1 +n) and another to r; (i.e., 1, or r,+n) are in
the same vehicle route, and 1 otherwise. This operator picks the request r*=arg min, cp{(II1[Yr, 5, +¥r,+ nr2+n]+10[ f, —
Br | +1Br sn—=PBry s n| 1+ 13l v, +114| dy, —dy, | }, where IT;-I1, are normalized weights. The operator is applied ¢ e [Q, ¢] times by selecting
a request, which is not yet added in £ and which is the most similar to the last added request.

® Proximity-based removal (PR): This operator removes a set of requests that are similar in terms of distance. In other words, it is a special
case of SR operator with 7, =1, and I1, =115 =11,=0.

® Demand-based removal (DR): This operator is a special case of SR with I1y =11, =113=0, and [14,=1.

Time-based removal (TR): This operator is a special case of SR with [T, =1l5=11,=0, and 11, =1.

® Historical knowledge removal (HR): This operator stores the position cost of every request r. The cost is assumed to be the total distance
from the origin and destination nodes of request r to the prior and succeeding nodes within the routes, and determined as ¢, =1;_1,
+Yrit1+Yj_1r4n+Yrinjs1 at every iteration of the algorithm. Note that i—1 and j—1 are the preceding nodes of the origin and,
respectively, destination nodes of r and i+ 1 and j+1 are their successors in the corresponding PD-vehicle routes. The best position cost
¢t of request r is set to be the minimum of all values found so far. The HR operator then selects the request r* with the largest cost
difference from its best position cost, i.e., r* = arg max, . p{c; —c*}. Request r* is added to £. This operator iterates ¢ € [¢, P].

e Worst removal (WR): This operator removes ¢ € [, ¢] requests with the highest cost. The cost in this case is computed as follows: given
a solution, the cost of a request r is the difference in the objective function between the current solution (with r) and the same solution
without serving r. Note that the difference between WR and WDR is that WR uses the total cost (including transfer cost) of the requests
as objective, whereas WDR focuses only on the distance. In addition, WR also takes into account the length of the newly introduced arcs
(i—1,i+1) and (j—1,j+1) when removing nodes i and j from a route.

3.4. Insertion stage

We have used 5 insertion operators in the proposed ALNS heuristic algorithm. With the help of insertion operators, the removed requests in £
can be inserted into the existing routes, if possible. The general schematic overview of an insertion procedure is shown in Algorithm 2. It is
noteworthy that in Line 5 of the insertion algorithm, we do not consider every possible insertion. In order to avoid redundant computations in
repairTransfers(X, r, T") and feasibleSchedule(X) due to time windows, a preliminary time window check is applied as described in Braekers et al. [4].
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Due to the fact that PD-vehicle capacity constraints can be fully verified only after applying repairTransfers(X, r, T) procedure, capacity violations
for the routes with no transferable requests can be easily detected. Note that feasibleSchedule(X) and feasibleCapacity(X, c(X), 1) (see Line 11 in
Algorithm 2) methods are described in Section 3.5.

Algorithm 2. The generic structure of an insertion i* (X},,,, £, Xcurrent) procedure.

input: A partially destroyed current solution X,,,, a list of removed requests £, and current solution Xcyrrent

output: A feasible solution obtained after the insertion procedure

1 for (each request r in £) do
2 Xnew < NULL
3 C(Xroy) < +00
4 for (each route Q and route M) do
5 for (each position q within a route Q and each position m within a route M) do
6 Insert r and r+n in positions q and m, respectively, in solution X,,,
7 if (Q # M) then
8 | (X, £, 65, ) < repairTransfers(X},,,, 7, T')
9 else
10 (Xt <X
11 if (feasibleCapacity(X:, c(X), 1) and feasibleSchedule(X:)) then
12 if (acceptance criteria of i* is satisfied) then
13 { [Xnew <Xt
14 L
15 if (Xnew # NULL) then
16 |X§ew ‘_Xnew
17 else
L Lretum XCLerEH[
18 return X*

new

The feasibility with respect to the capacity, SL schedules and time windows is always kept. Note that checking the feasibility is not trivial, since
pickup and delivery nodes of the same request can be located in different PD routes, and hence, a tour must include at least one scheduled line.
Such partial solutions need to be repaired by adding transfer nodes. Therefore, repairTransfers(X, r, T") procedure is run to insert corresponding
replicated transfer nodes in a greedy fashion. As proposed for the MIP formulation, each original transfer node is replicated n (number of requests)
times, hence each request gets assigned a list of replicated transfer nodes. The overview of the repair mechanism is shown in Algorithm 3.

Algorithm 3. The generic structure of the repairTransfers(X, r, T") procedure.

input: A partial solution X, a request r and T  replicated transfer nodes related to r

output: A feasible solution X; and a origin and a destination transfer nodes (t}, t7, ,) of r in the current solution X,
Q < the route related to r

M «the route related to r+n

t* — transfer node e T" with the cheapest insertion in route Q, sequenced after r

T =T"\t}

t¥, , < transfer node e T" with the cheapest insertion in route M, sequenced earlier than r+n

X —updated X given minimal cost insertions of t} and t},
return (X, t7, 7, )

N U A WN =

A transferable request r is assigned two related replicated transfer nodes: t} (i.e., origin transfer node), and ¢}, ,
transfer node).
We now describe the insertion operators. We note that the requests are randomly chosen from the removal list L.

(i.e., destination

e Greedy insertion (GI): This operator iteratively inserts a request (both pickup and delivery nodes) in the best possible position of the
routes. 4] Ji is the objective function value when the pickup node of r is inserted in route I (position i) and its corresponding delivery
node is inserted in route J (position j). Thus, A;Jj*= arg min{4;, }.

® Second-best insertion (SI): This new operator chooses the second best insertion for randomly selected unassigned request. The main idea
of using this operator is to diversify the search.

® Greedy insertion and noise function (GIN): This operator is similar to the GI and involves certain flexibility in selecting the best insertion
of a request. This flexibility is obtained by changing the cost for request r: Updated Cost = Actual Cost+due, where d is the largest
distance between nodes, y is a noise parameter used for diversification and is set equal to 0.1, and € is a random number between
[—1,1]. Updated Cost is computed for each request in L.

® Second-best insertion and noise function (SIN): This operator is similar to the SI and involves the same noise function that is used in GIN
operator.
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® Best out of A feasible insertions (AFI): This new operator is similar to GI but chooses the best insertion out of the first A feasible
insertions. The parameter A is a randomly generated integer number between 1 and y. For each unassigned request we generate a
set of possible insertions associated with corresponding distance-based costs (disregarding distance to the corresponding transfer
nodes), while considering precedence constraints. These positions are not necessary feasible in terms of time windows.
Additionally, in order to filter out some more of the infeasible insertions, the time windows of the subsequent nodes visited
within the considered routes are verified. The generated set is sorted in increasing order based on insertion costs. Hence the
operator investigates the cheapest insertions overall routes first.

Moreover, additional five variants of these operators are also used, where the requests are sorted in £ in terms of their time flexibility
(i.e., the least flexible first). The flexibility of request r can be computed as |uy,—1|.

3.5. Feasibility of the routes and schedules

Scheduling (time windows) constraints bring complexity to the PDPTW-SL since the requests may be picked up by a PD vehicle
and delivered by another one. This implies that PD vehicles and SLs must be synchronized. This problem can be handled as shown in
Algorithm 4.

Algorithm 4. The generic structure of the feasibleSchedule(X) procedure

input: A solution X
output: Boolean value: TRUE if feasible, FALSE if infeasible
list — @
ﬂt;s«—O, ﬂ[¢+"<—0, VreP
for (each route I in X) do
for (each node i in I) do
Pi—max{f, +Yp i+si Li+si}
if (B; > u;+s;) then
|return FALSE
if i=t7,,, VreP)then
list —list U i
L’«— end route

© O N U AhWN-=

—
(=]

11 while (list ) do

12 for (t7__, in list) do

13 if (B > 0) then

14 path, < generatePath(t*, t, )

15 Py —determineTime(f3, path,)
16

for (each successor node i of t7, ) do

:; Pi—max{f, + ¥y i+si; Li+si)
19 if (#; > u;+s;)then

|return FALSE
20

21 if (i= t:‘] +ne Vrie P)then

list list U i
22 { .

i<—end route
23 L
24 list < list\t},
25

if (=0, V fx € list) then
| Lreturn FALSE
26 return TRUE

All 3 values for the transfer nodes are reset to 0 in Line 2. The first block of the algorithm (Lines 3-10) sets the time for all nodes at the
earliest possible value (depending on the start of the time window and the departure time from the preceding node p;). The algorithm
switches to the next route whenever a destination transfer node is reached. This node is added to a list that contains all destination
transfer nodes which do not have an updated synchronized time. The second part of the algorithm (Lines 11-25) runs until the list of
destination transfer nodes is emptied or a cycle (see Fig. 4) is found.

® For each t}, , e list with the corresponding origin transfer node (i.e., t;) that has already received a timing, generate a shortest path [13]

from ¢} to tf, , (Line 14). Given the shortest path and the departure time from ¢}, the algorithm computes the time at ¢}, , by

considering earliest scheduled departure time later than ﬂtf (i.e., fﬁtﬂ) for every intermediate line used (Line 15). Considered ¢ ,, with
a synchronized timing is removed from the list. Finally, all succeeding nodes of t}, , get assigned a value until a destination transfer

node is reached and added to the list.
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Fig. 3. An interdependency relation of the routes.
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Fig. 4. An example of a two-request cycle.
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® Whenever all ﬂtf is zero Vt}, , € list, the algorithm finds a cycle (see Fig. 4) and stops. Hence, no feasible schedule is possible for a given
solution X.

For a better understanding, we refer to the example shown in Fig. 3. Three requests, namely a, b, and c, are to be delivered to desti-
nation nodes a+n, b+n, and c+n, respectively. All the requests are transferable, thus each request is shipped on a scheduled line. All these
transfer nodes are replications of the original transfer nodes and each replication is assigned to only one request. In the present example,
T, represents the origin transfer node of a, and T, , is its destination transfer node. For the sake of simplicity, each arc has one time unit
and each node does not require any service time. The numbers on top of the nodes indicate the departure time from that specific node. In
this example, three PD vehicles are needed for the transportation of these three requests.

By referring to Fig. 3, the feasibility of the schedule is checked as follows: the process starts in the first route. The algorithm reaches the
transfer node T, , that is a destination transfer node of request a. The algorithm moves to the second route and reaches T, ,, which is a
destination transfer node of request c. Finally, it moves to the last route and updates the timing for the whole route as no destination
transfer node is encountered. The list contains two destination transfer nodes, i.e., T4, and T, ,. A shortest path is generated from T, to
Tcin, and the departure time Sy is updated (i.e. 3). Afterwards, the subsequent nodes of T, for a given synchronized time fr_  get
assigned time values until T, is reached. Similarly, the timing of T, is updated and followed by T} ;.

Note that a cycle implies that the precedence constraints are violated for at least two transferable requests, since such requests need to
be picked up and dropped off twice (see Fig. 4). In addition, cycles may be composed of multiple routes and requests.

The procedure determineTime(/)’t;ﬁ, path, ) (see Algorithm 4, Line 15) computes departure time from ¢}, , for a given departure time from t}.

The capacity constraints of both PD and SL vehicles are verified in Algorithm 5. First, the algorithm checks SL capacity by first gen-
erating scheduled line paths along with every scheduled departure time from the considered transfer nodes (Line 3). The capacity
variables are updated for each SL and each possible scheduled departure. The cost of the solution is updated in Line 6. Whenever the
capacity is violated (Line 7), the algorithm stops and returns FALSE value. The PD-vehicle capacity constraints can be checked in a standard
way with some preprocessing (Line 9). In particular, the destination transfer node of a transferable request r (i.e,, t}, ,) becomes an origin
node on a different route, hence it will have a positive demand (i.e., d,) whereas the origin transfer node of r (i.e., ;') becomes a destination
node and it is assigned a negative demand (i.e., —d,).

Algorithm 5. The generic structure of feasibleCapacity(X, c(X), n;;) procedure.

input: A solution X, routing cost of X, and cost of using SL #; per unit shipped on (i, )
output: A boolean value 6
Initialize my"™ array for the capacity used on the scheduled line (ij) at time p;* and P’ set of transferable requests in solution X
for (r in P') do
set (K, y) < scheduled lines (i,j) used by r and corresponding scheduled departure times Vi
for ((i,j)eX') do
set mE.V «— mE-V +d;
set ¢(X) —c(X)+drm;;
if (m}/ > ky) then
|return FALSE

O NO UL A WN =

9 if (PDvehicleCapacityViolated(X)) then
10 |return FALSE
1 return TRUE
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3.6. Master search framework
In the proposed ALNS, we used simulated annealing (SA). The overall pseudo-code of the proposed algorithm is provided in Algorithm 6.
Algorithm 6. The pseudo-code of the ALNS with SA.

input Removal operators D, insertion operators [, initial temperature T, cooling rate
output A feasible solution Xpes

1 Generate an initial solution by using the Greedy insertion algorithm
2 Initialize probability P for each destroy operator d € D and probability P for each insertion operator il
3 Let j be the iteration counter with initial value of j«1
4 Xeurrent < Xpest < Xinit
5 repeat
6 Choose a removal operator d* e D with probability P
7 Let X}, be the solution generated after using operator d* to Xeurrent
8 Choose an insertion operator i* e I with probability P}
9 Let Xnew be the newly—generated solution after applying operator i* to X%,
10 if c(Xnew) < cXcurrenr) then
1 Xcurrent < Xnew
12 if c(Xcurrent) < C(Xpesr) then
13 LXbest «—Xcurrent
14 Let v« e~ (€Xnew) = cXeurrent))/T
15 Generate a random number € €[0,1]
16 if ¢ <v then
17 lxcurrent <—Xnew
18
19 T—«T
20 Update probabilities using the adaptive probability adjustment procedure
21 jej+1
22 until the maximum number of iterations is reached

The notation Xp.s; shows the best solution obtained, X¢en: presents the current solution, and X, shows a newly generated solution that
can be accepted or rejected at each iteration. Each solution X is associated with a cost ¢(X). Any solution X, can have three outcomes: (i) if
€(Xnew) < c(Xcurrent), then it is accepted, (ii) if cXnew) > c(Xcurrent) and e ~ €Xnew) = Xamren))/T g greater than a random number within [0,1], with T -
temperature, then X, is accepted as well, and finally, (iii) it is rejected. The initial temperature is selected as T. The temperature T diminishes at
each iteration by a rate x, where 0 < k < 1. The algorithm runs for a given number of iterations (i.e., 10,000 iterations).

4. Computational experiments
To analyze the performance of the proposed ALNS, we run a series of experimental tests and present the obtained results in this section.
4.1. Data generation

Three sets of instances, namely R, C, and RC, with three scheduled lines in a triangular topology and a frequency of one departure of
every 30 time units are considered. Each instance contains 100 requests (i.e., 100 pick-up and 100 delivery nodes) over 200 x 200 time
units on an Euclidean space. Instances follow a naming convention of G_n_sl_v, where G is the geographic distribution of the customers, n
is the number of requests that needs to be served, sl is the number of SLs, and v is the number of available PD vehicles. Instances are
classified with regard to the location of the requests. For example, C involves clustered nodes around transfer nodes, R considers uniform-
randomly distributed request nodes, and finally RC involve randomly clustered nodes. More specifically, C and RC have the nodes posi-
tioned within at most 30, respectively 80 time units to one of its three available transfer nodes. In all cases, two depots with 30 het-
erogeneous PD vehicles each are considered.

The planning horizon is set to 10 working hours (i.e., 600 time units). The widths of the time windows are randomly generated
between 26 and 91 time units. Service times are considered to be up to three time units. Each demand is assigned between one and three
units. The capacity of PD vehicle is generated between six and 20 units. The carrying capacity on the considered SLs is assumed to be 15
demand units. Additional instances were also generated such that subsets of requests, PD vehicles, SLs out of R, C, and RC datasets are used.
The datasets (i.e., R, C, and RC) can be found on the web page www.smartlogisticslab.nl.

4.2. Parameter tuning

The proposed algorithm is implemented in NetBeans IDE 7.1.1 using Java. All experiments were conducted on an Intel Core i5 with
2.6 GHz speed and 4 GB RAM. A more detailed tuning was done on the five most sensitive parameters as shown in Table 4. These were
identified during some preliminary tests. Three instances of small sizes (i.e., 8, 16 and 25 requests) were solved 10 times each for the given
combination of parameters. The rest of the parameters were chosen based on some other experiments and our intuition.

In total, the ALNS algorithm involves 16 parameters which are listed in Table 5.


http://www.smartlogisticslab.nl

Table 4

Results of parameter tuning.
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Iterations Destroy rate % o1 o2 o3 Average value € Iterations Destroy rate % o1 o2 o3 Average value €
10,000 0.15 1 0 1 954.09 15,000 0.15 1 0 1 953.72
10,000 0.15 1 0 5 953.08 15,000 0.15 1 0 5 953.61
10,000 0.15 1 3 1 954.18 15,000 0.15 1 3 1 950.98
10,000 0.15 1 3 5 951.86 15,000 0.15 1 3 5 954.02
10,000 0.15 5 0 1 958.49 15,000 0.15 5 0 1 954.03
10,000 0.15 5 0 5 958.52 15,000 0.15 5 0 5 952.59
10,000 0.15 5 3 1 954.66 15,000 0.15 5 3 1 952.94
10,000 0.15 5 3 5 953.00 15,000 0.15 5 3 5 952.57
10,000 0.25 1 0 1 950.04 15,000 0.25 1 0 1 949.80
10,000 0.25 1 0 5 953.80 15,000 0.25 1 0 5 953.82
10,000 0.25 1 3 1 954.87 15,000 0.25 1 3 1 951.89
10,000 0.25 1 3 5 948.25 15,000 0.25 1 3 5 950.64
10,000 0.25 5 0 1 953.16 15,000 0.25 5 0 1 951.42
10,000 0.25 5 0 5 954.14 15,000 0.25 5 0 5 954.47
10,000 0.25 5 3 1 954.10 15,000 0.25 5 3 1 952.34
10,000 0.25 5 3 5 951.46 15,000 0.25 5 3 5 953.02
10,000 0.35 1 0 1 950.63 15,000 0.35 1 0 1 949.67
10,000 0.35 1 0 5 951.08 15,000 0.35 1 0 5 950.36
10,000 0.35 1 3 1 950.53 15,000 0.35 1 3 1 954.97
10,000 0.35 1 3 5 951.65 15,000 0.35 1 3 5 954.01
10,000 0.35 5 0 1 951.77 15,000 0.35 5 0 1 952.77
10,000 0.35 5 0 5 949.89 15,000 0.35 5 0 5 950.59
10,000 0.35 5 3 1 949.72 15,000 0.35 5 3 1 951.11
10,000 0.35 5 3 5 951.88 15,000 0.35 5 3 5 952.34

Table 5

Used parameters in the computational experiments.

Group Parameter Value

I The total number of iterations (N;) 10,000
The number of route-wheel iterations (N,,) 200
The roulette-wheel constant (1) 0.1
New best solution (o7) 1
Improving solution (o7) 3
Deteriorating solution (o3) 5

Il Initial temperature (T) 200
Cooling degree (x) 0.9995
Lower limit of removable requests (¢) 2.5% of | P|
Upper limit of removable requests (¢) 25% of | P|
First Shaw parameter (77;) 0.5
Second Shaw parameter (/1) 0.2
Third Shaw parameter (/75) 0.1
Fourth Shaw parameter (71,) 0.2
Noise parameter (u) 0.1
Number of feasible insertions (y) 30

It is noted that a driving cost of the PD vehicles is assumed to be 0.5 €per minute. It seems reasonable considering all operational costs,
such as fuel consumption, driver wage, insurance, and tax. The cost of each demand unit of package request shipped on a fixed line is set to
1 €, which includes handling, storage and transportation costs. The parameters used in the ALNS algorithm are grouped into two cate-

gories below:

® Group I contains the parameters related to the selection procedure of the operators. The values of o, 6> and o3 do not satisfy
01> 03 > 03. In our implementation and similar to Demir et al. [8,10], we have chosen (based on parameter tuning) a parameter setting
which rewards more acceptance of a worse solutions than discovering of better ones. It turns out to be an effective way for diversifying

the search.

® Group Il parameters are used to fine-tune the SA master search and the operators.

Tables 6 and 7 indicate the number of times each operator was used within the ALNS. In addition, these tables show in the parenthesis
the total time spent to run each operator. We note that the results are obtained using only one instance of each different size in terms of
the number of requests.

The results shown in Table 6 show that operators RR, SR, PR and HR are used almost equally often. In many cases, the most widely used

operators are LAR, TR and WR.

As seen in Table 7, most used insertion operators are the ones that have ordered L. Since least flexible requests are inserted first, these
operators have higher chances to insert all requests within the existing routes. More specifically, oGI, oSI and their variants with noise
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Table 6
Number of iterations and the computational times needed by each removal operator.

Instance RR ROR LAR WDR SR PR DR TR HR WR
R.251.8 986(0.0) 800(0.0) 1358(0.1) 766(0.0) 979(0.0) 938(0.0) 900(0.0) 1121(0.0) 904(0.0) 1248(0.0)
R_50_1_14 946(0.0) 947(0.0) 900(0.0) 951(0.0) 1051(0.0) 963(0.0) 826(0.0) 1241(0.0) 946(0.0) 1229(0.0)
R_75_1_20 995(0.0) 893(0.0) 1104(0.0) 943(0.1) 958(0.1) 933(0.1) 769(0.0) 1196(0.1) 936(0.1) 1273(0.0)
R_100_1_24 1024(0.0) 640(0.0) 1323(0.1) 1294(0.1) 907(0.1) 926(0.1) 743(0.1) 1205(0.1) 1096(0.1) 842(0.1)

Table 7
Number of iterations and the computational times needed by each insertion operator.

Instance Gl SI GIN SIN A Fl oGl oSI oGIN oSIN o4 Fl

R_25_1_8 860(0.2) 855(0.2) 537(0.1) 510(0.2) 451(0.0) 1843(0.9) 1945(1.2) 1024(0.6) 1045(0.6) 930(0.3)
R 50_1_14 655(0.7) 631(0.5) 312(0.1) 414(0.4) 453(0.1) 2359(11.2) 2332(10.8) 971(4.5) 941(4.5) 932(1.1)
R_75_1_20 636(1.4) 532(0.9) 404(0.6) 263(0.5) 286(0.0) 2697(44.9) 2643(42.5) 1040(13.5) 832(13.0) 667(1.5)
R_100_1_24 531(4.2) 485(2.1) 212(1.3) 252(1.1) 273(0.2) 3315(285.0) 3095(263.8) 875(56.7) 510(42.5) 452(4.7)

functions are widely selected. It is noted that randomly ordered insertion operators do not perform well, as many times the algorithm
cannot insert all unassigned requests back to the solution due to their order of insertion.

Tables 8 and 9 indicate the number of times an operator has found the best and a better solution compared to the current one,
respectively. It is noted that the number in parenthesis indicates the number of times a current solution is improved, but not to become a
best known.

Table 8
Number of global best solutions found and number of improving solutions achieved by the removal operators.

Instance RR ROR LAR WDR SR PR DR TR HR WR

R 2518 1(61) 0(47) 1(29) 0(4) 0(77) 0(43) 2(48) 4(97) 1(60) 2(152)

R_50_1_14 24(179) 2(111) 6(205) 3(68) 4(188) 5(137) 1(72) 5(257) 1(56) 1(154)

R_75_1_20 14(195) 6(94) 3(208) 1(154) 7(235) 6(178) 4(42) 6(290) 9(189) 4(168)

R_100_1_24 17(226) 9(73) 9(292) 4(107) 7(228) 7(196) 2(32) 4(306) 8(163) 7(256)
Table 9

Number of global best solutions found and number of improving solutions achieved by the insertion operators.

Instance Gl SI GIN SIN A H oGl oSI oGIN oSIN o1 FI
R 25.1_8 1(7) 1(7) 0(3) 0(2) 0(0) 3(253) 4(210) 2(73) 0(63) 0(0)
R_50_1_14 18(36) 0(10) 0(3) 0(1) 0(0) 19(755) 15(575) 0(25) 0(22) 0(0)
R_75_1_20 8(21) 0o(5) 0(0) 0(2) 0(0) 28(1069) 23(628) 1(15) 0(13) 0(0)
R_100_1_24 12(27) 0(6) 0(1) 0(0) 0(0) 32(1211) 30(630) 0(2) 0(2) 0(0)

The results indicate that all removal operators, to some extent, contribute to achieving improved solutions. On the other hand, some
insertion operators (i.e., AFl and oAFI) do not improve a current solution at any time. However, as it will be shown below, these operators
are needed to diversify the search and achieve better overall performance of the algorithm. Furthermore, as expected, greedy operators
(i.e., best and second-best) help obtaining improved solutions.

In order to identify the usefulness of the new insertion operators proposed in this paper, we tested four configurations of the ALNS.
These are shown in Table 10, along with the average objective function values over 10 runs of the algorithm. We used the same instances
as in Table 4.

Table 10
A tuning of insertion operators.

Configuration Average value €
Without SI and SIN 949.61
Without AFI and o0AFI 952.15
Without SI, SIN, 2FI and oAFI 956.13

With all operators 948.25
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According to the obtained results, using SI, SIN and AFI operators leads to the best performance of the algorithm. These operators are
mainly destined to diversify the search. As seen in Table 10, it seems imperative to use such operators along with the unconventional
scoring setting.

4.3. Results of the proposed algorithm on the PDPTWs

In this section, we provide in Tables 11-13 computational results on the PDPTW benchmark instances (i.e., [19]), which come in three
sets: R, C and RC classified with respect to the positioning of the customers (i.e., random, clustered and randomly clustered). The reason for
choosing these instances is that Repke and Cordeau [27] and Baldacci et al. [2] provided their results by using the minimization of
operating costs as our algorithm does. Tables 11-13 compare published results to the ones obtained by our ALNS heuristic algorithm. The
values of the best known (or even optimal) solutions obtained from [27,2,28] are given in under column “Best known value”. Note that the
values in bold emphasize that the proposed algorithm found the best known solution. The symbol “:” indicates that the values are not
necessary optimal and are obtained by Repke and Pisinger [28]. Moreover, we note that all figures presented in these tables use a single

Table 11
Results of the proposed algorithm on benchmark PDPTW-C instances.

Li and # of Best CPU ALNS ALNS GAP % CPU
Lim [19] requests known seconds best average seconds
instances value found value
LC1_2_1 106 2704.6 3 2704.6 2704.6 0.00 47
LC1_2_2 105 2764.6 22 2764.6 2764.8 0.01 51
LC1_2_3 103 27722 115 2772.2 27793 0.26 121
LC1_2_4 105 2661.4* 209 2661.4 2684.0 0.84 123
LC1_2_5 107 2702.0 5 2702.0 2702.0 0.00 40
LC1_2_6 107 2701.0 7 2701.0 2701.0 0.00 42
LC1_2_7 107 2701.0 8 2701.0 2701.0 0.00 38
LC1_2_8 105 2689.8 16 2689.8 2689.9 0.00 43
LC1_2.9 105 2724.2 55 2724.2 2758.1 123 63
LC1_2_10 104 2741.6 137 27439 2763.8 0.80 67
Average 58 0.31 66
Table 12

Results of the ALNS heuristic on benchmark PDPTW-RC instances.

Li and Lim [19] instances

# of requests

Best known value

CPU seconds

ALNS best found

CPU seconds

ALNS average value GAP %

LRC1_2_1 106 3606.1 3 3606.1 3608.9 0.08 45
LRC1_2_2 103 32924 322 32924 3304.3 0.36 67
LRC1_2_3 105 3079.5* 183 3108.5 3121.2 134 107
LRC1_2_4 106 2525.8* 284 25521 2583.2 2.22 190
LRC1_2_5 107 3715.8 42 3766.2 3788.3 191 55
LRC1_2_6 105 3360.9 7 33824 3401.0 118 39
LRC1_2_7 106 3317.7 408 33443 33771 1.76 52
LRC1_2_8 104 3086.5 1563 3129.5 3143.7 1.82 63
LRC1_2_9 104 3053.8 1757 3093.6 31415 2.79 54
LRC1_2_10 105 2837.5* 156 2857.2 28813 1.52 51
Average 473 149 72

Table 13

Results of the ALNS heuristic on benchmark PDPTW-R instances.
Li and # of Best CPU ALNS ALNS GAP % CPU
Lim [19] requests known seconds best average seconds
instances value found value
LR1_2_1 105 4819.1 2 4819.1 4819.1 0.00 42
LR1_2_2 105 4093.1 21 4093.1 41014 0.20 96
LR1_2_3 104 3486.8 3691 3486.8 3503.6 0.48 162
LR1_2_4 105 2830.7* 228 2839.1 28731 148 201
LR1_2_5 106 4221.6 3 4221.6 4239.2 0.42 42
LR1_2_6 107 3763.0 181 3763.0 3769.9 0.18 70
LR1_2_7 103 3112.9* 173 31129 31249 0.38 107
LR1_2_8 103 2645 .4* 226 26524 2664.7 0.72 159
LR1_2_9 105 39535 15 3953.5 3961.0 0.19 52
LR1_2_10 104 3386.3 1377 3390.4 3411.2 0.73 62
Average 592 0.48 29
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decimal digit. For the ALNS algorithm, we then present the best solution value obtained in column “ALNS best found”. In addition, we
indicate “ALNS average value” after 10 runs with the corresponding average GAP (%) (i.e., let v(ALNS) be the value of the solution found by
the proposed ALNS, then, the GAP (%)=100 (v(ALNS)—v(Best))/v(ALNS), where v(Best) is the value of the best solution known). Finally, we
show the average CPU time required to solve the instances using the algorithm.

As shown in Tables 11-13, the ALNS heuristic proved good performance on the PDPTW instances. For 18 out of 30 instances, our
heuristic algorithm obtained the best known solutions in at least one out of the 10 runs. For the remaining 12 instances, the GAPs are
found to be not greater than 2.79%. The average CPU time needed to solve the instances is found to be 78 s.

4.4, Results of the generated instances

In this section, we provide the results on the four generated sets of PDPTW-SL instances. These sets are generated from the three main
datasets described in Section 4.1, by considering subsets of request, transfer node and PD vehicle sets. For the first group (with up to 12
requests and one SL), each instance was solved 10 times with the proposed heuristic and once with the PDPTW-SL MIP model by using
CPLEX 12.3 (IBM ILOG [17]) with its default settings and the valid inequalities proposed by Ghilas et al. [14]. A time-limit of ten hours was
imposed to CPLEX. The following three groups were solved 10 times using the proposed ALNS in the context of PDPTW-SL and PDPTW.
The detailed results of these experiments are presented in Tables 14-17.

Table 14
Computational results for the instances with up to 12 requests.

Instance CPLEX ALNS
Upper Lower GAP % CPU Value GAP % CPU
bound bound seconds seconds
C_6_1_4 369.36 369.36 0.00 5267 369.36 0.00 1
C_7_14 390.31 390.31 0.00 3762 390.31 0.00 1
C8.1.4 446.35 384.93 13.76 36,000 446.35 - 2
C9.1.4 493.66 32743 33.67 36,000 472.68 - 2
C_10_1_4 - 335.89 - 36,000 510.01 - 2
C.11_1.4 - 347.68 - 36,000 522.84 - 2
C_12_1_4 - 366.81 - 36,000 541.60 - 2
RC_6_1_4 572.76 572.76 0.00 185 572.76 0.00 1
RC_7_1_4 575.95 575.95 0.00 368 575.95 0.00 1
RC_8_1_4 585.32 585.32 0.00 961 585.32 0.00 1
RC9_1_4 593.70 593.70 0.00 32,204 593.70 0.00 2
RC_10_1_4 599.95 599.95 0.00 24,925 599.95 0.00 2
RC_11_1_4 624.48 624.48 0.00 18,128 624.48 0.00 2
RC_12_1_6 - 608.89 - 36,000 662.03 - 2
R_6_1_4 416.16 416.16 0.00 2 416.16 0.00 1
R.7_1_4 473.06 473.06 0.00 5 473.06 0.00 1
R 8_1_4 558.17 558.17 0.00 16 558.17 0.00 1
R9_1_4 632.42 632.42 0.00 8782 632.42 0.00 1
R_10_1_4 636.05 636.05 0.00 3421 636.05 0.00 2
R_11_1_4 748.29 748.29 0.00 17,493 748.29 0.00 2
R_12_1_6 - 771.01 - 36,000 934.73 - 2
Table 15

Results of C instances.

Instance Best known Average value Average GAP % Costsavings % Best driving time Driving time sav- CPU seconds # of vehicles Units on SLs
value ings % used

C25_0_8 1076.70 1083.40 0.62 2153.40 1 6

C25_1_8 879.94 882.63 0.30 18.27 1737.88 19.30 7 5 1

C25_2_8 878.86 881.26 0.27 18.37 1723.72 19.95 8 7 17

C25_3_8 753.03 754.33 017 30.06 1468.06 31.83 14 5 19

C_50_0_12 1529.37 1541.56 0.79 3058.73 4 8

C_50_1_12 1415.60 1425.67 0.71 7.44 2793.19 8.68 124 10 14

C_50_2_12 134223 1356.01 1.02 12.24 2634.47 13.87 121 10 50

C_50_.3_12 1214.16 1229.30 1.23 20.61 2354.31 23.03 144 10 74

C_75_0_16 2040.54 2069.10 1.38 4081.09 12 10

C_75_1_.16 1807.33 1829.14 119 1143 3558.66 12.80 411 12 56

C_75_2_16 1686.85 1702.30 0.91 17.33 3283.70 19.54 528 12 90

C_75_3_16 162118 1641.60 1.24 20.55 3112.36 23.74 650 13 130

C_100_0_20 2349.46 2378.79 1.23 4698.91 34 12

C_100_1_20 2112.73 2126.42 0.64 10.08 4167.47 11.31 2378 13 58

C_100_2_20 2040.36 2069.71 142 13.16 3964.72 15.62 2224 14 116

C_100_3_20 1915.40 1939.87 1.26 18.47 3662.80 22.05 2357 14 168
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Table 16
Results of RC instances.

Instance Best known Average value Average GAP % Cost savings Bestdriving time Driving time sav-  CPU seconds # of vehicles Units on
value % ings % used SLs
RC_25_0_8 1572.08 1572.08 0.00 3144.16 1 7
RC_25_1_8 1530.43 153043 0.00 2.65 3048.86 3.03 3 8 6
RC_25_2_8 1413.06 1414.44 0.10 10.12 2808.12 10.69 4 7 9
RC_25_3_8 1377.54 1382.58 0.36 12.37 2727.08 13.27 6 7 14
RC50_0_14  2270.83 2270.83 0.00 4541.66 3 10
RC50_1_14  2213.06 2213.54 0.02 2.54 4416.12 2.76 1 10 5
RC50_2_14  2213.06 2213.85 0.04 2.54 4416.12 2.76 12 10 5
RC50_3_14  2211.89 221413 0.10 2.60 4409.78 2.90 15 10 7
RC_75_0_16  2863.05 2868.34 0.18 5726.11 9 12
RC_75_1_16 2814.39 2825.63 0.40 1.70 5616.78 191 143 12 12
RC_75_2_16 2814.39 2836.39 0.78 1.70 5616.78 1.91 155 12 12
RC_75_3_16 2814.39 2839.05 0.87 1.70 5616.78 1.91 181 12 12
RC_100_0_18 3,114.35 3,119.10 0.15 6228.70 25 12
RC_100_1_18 3088.07 3093.66 0.18 0.84 6164.13 1.04 794 12 12
RC_100_2_18 3088.07 3100.22 0.39 0.84 6164.13 1.04 677 12 12
RC_100_3_18 3088.07 3134.30 148 0.84 6164.13 1.04 985 12 12
Table 17

Results of R instances.

Instance Best known Average value Average GAP % Cost savings % Best driving time Driving time sav- CPU seconds # of vehicles Units on SLs
value ings % used

R_25_0_8 1717.39 1724.71 0.42 3449.42 1 8

R 25.1_8 1636.12 1637.72 0.10 4,73 3266.24 5.31 2 8 3

R 2528 1597.75 1601.97 0.26 6.97 3185.50 7.65 2 8 5

R_25_3_8 1540.96 1545.94 0.32 10.27 3069.92 11.00 3 8 6

R_50_0_14 2620.88 2649.70 1.09 5241.76 2 13

R_50_1_14 2595.14 2604.2 0.35 0.98 5186.28 1.06 8 12 2

R 50_2_14 2412.89 2420.67 0.32 7.94 4803.78 8.36 20 12 1

R_50_3_14 2392.81 2403.52 0.45 8.70 4759.62 9.20 21 12 13

R_75_0_20 3337.85 3337.85 0.00 6675.70 7 14

R_75.1.20 3337.85 3355.41 0.52 0.00 6675.70 0.00 69 14 0

R_75.2.20 332114 3361.77 121 0.50 6630.28 0.68 98 15 12

R_75_3.20 332114 3349.07 0.83 0.50 6630.28 0.68 110 15 12

R_100_0_24 3643.07 3646.89 0.10 7286.14 26 15

R_100_1_24 3643.07 3665.31 0.61 0.00 7286.14 0.00 538 15 0

R_100_2_24 3628.87 3646.65 0.49 0.39 7245.74 0.55 690 16 12

R_100_3_24 3628.87 3637.37 0.23 0.39 7245.74 0.55 725 16 12

Table 14 indicates that in most of the cases, the ALNS algorithm generated the same solutions as CPLEX, but in a significantly shorter
CPU times. For the instances solved to optimality, the average CPU time required by CPLEX is approximately 8251 s whereas ALNS needed
approximately 2 s. In some cases where CPLEX could not find any solution or could obtain a sub-optimal one, the proposed ALNS was able
to find solutions that have a tighter GAP relative to the best lower bound found within the imposed time limit.

Tables 15-17 provide the results obtained for larger instances. The column Instance indicates the instance identification. The Best known
cost column indicates the best objective value found after 10 runs of the algorithm. In addition, columns Average cost and Average GAP
show the average objective values over 10 runs and respectively the average GAP from the best solution found. The Cost savings column
indicates the cost savings of the best PDPTW-SL solution compared to the best corresponding PDPTW solution. The Best driving time
column shows the total driving time of the best solution found and the Driving time savings indicate the savings with regard to the total
driving time. CPU indicates the average computational time for solving the instances. Vehicles used and Units on SLs provide the number of
PD vehicles used and the number of shipments (demand units) on the available SLs in the best solution found.

The proposed algorithm is relatively fast. For example, instances of up to 100 requests are solved in less than 40 min. As it can be
noticed from Tables 15-17, the ALNS algorithm for the PDPTW-SL is substantially slower than the same algorithm in case of the PDPTW.
The main reason is the extra complexity that is induced by having the flexibility of using available scheduled lines, thus making multiple
PD-vehicle routes depend on each other. In particular synchronization constraints (i.e., time windows and capacity) require extra com-
putation time (e.g., 20-30% of the CPU time).

It is noted that the efficiency of the proposed system may be highly dependent on both the spatial pattern of the requests and the
configuration of the scheduled lines. Unless the design of the scheduled line services (routes and schedules) is integrated with vehicle
routing, it is likely that the gains from an integrated system operation would be very small. Hence, designing such a system involves
tactical decisions related to the pattern of the scheduled lines (positioning of the transfer nodes relative to the demand nodes clusters), the
storage areas at the transfer nodes, and the re-design of the SL vehicles (e.g., freight compartment), that are not taken into consideration in
this paper as the focus was on operational costs of the proposed system.
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Overall, the results indicate the potential operating costs due to available scheduled lines. In particular, the savings range from 0 to 30%
with regard to operating costs and from 0 to 31% in terms of driving time. Note that in this study the amount of CO,e emissions is directly
proportional to total driving time as we disregard the extra emissions produced by the SLs due to extra carried weight (i.e., packages).

The most of the savings can be achieved by shipping requests on the available SLs. However, the number of PD vehicles used slightly
increases in PDPTW-SL compared to the solutions for PDPTW, especially in C instances. It is explained by the fact that the number of
vehicles used depends on the time windows, capacities, and demands. Moreover, we note that savings decrease along with the increase in
the number of requests for R and RC instances. This can be explained by the increasing density of the requests over the considered area
(200 x 200 time units). Hence, driving time from one demand node to another becomes shorter. For C instances the savings remain
significant for larger instances as well. Hence, we can conclude that the more demand points are clustered around transfer nodes, the
better performance of the system is. An obvious point that is supported by the results is that the more SLs are available, more savings can
be achieved compared to the classical PDPTW.

4.5. The effect of heterogeneous routing costs on the algorithm performance

In this section, we present computational experiments on the instances with heterogeneous vehicle routing costs that are based on the
vehicle capacity. The minimum-capacity vehicle is assumed to cost 0.5 €per operating time unit. Larger vehicles are assigned a cost that
increases linearly along with the carrying capacity. Each instance is run 10 times and the results are given in Table 18. The columns are
self-explanatory, similar to previously presented tables.

Table 18
An analysis of heterogeneous vehicle routing costs.

Instance Best known value Average value Average GAP % Cost savings % CPU seconds # of vehicles used Units on SLs
25.C 0.8 1676.53 1693.02 0.97 2 6

25.C_1.8 1333.99 1354.51 1.51 20.43 6 6 13
25_RC_0_8 2513.39 2540.65 1.07 1 7

25_RC_1_8 2403.87 2421.96 0.75 4.36 4 8 6
25_R_0_8 214541 2171.02 118 2 8

25_R_1_8 2019.78 2035.34 0.76 5.86 2 8 1
50_C_0_12 1623.09 1635.45 0.76 3 8

50_C_1_12 1459.64 1489.81 2.03 10.07 37 9 17
50_RC_0_14 3751.17 3784.39 0.88 5 10

50_RC_1_14 3570.35 361117 113 4.82 12 10 5
50_R_0_14 3271.88 3281.55 0.29 4 12

50_R_1_14 3231.22 3258.57 0.84 1.24 7 13 6
75_C_0_16 2278.57 2309.17 1.33 8 1

75_C_1_16 1955.53 1972.39 0.85 14.18 698 11 25
75_RC_0_16 3164.14 3183.45 0.61 7 12

75_RC_1_16 3144.66 3155.30 0.34 0.62 122 12 6
75_R_0_20 3583.39 3603.99 0.57 5 14

75_R_1_20 3572.31 3586.76 0.40 0.31 138 15 2
100_C_0_20 3985.45 4017.42 0.80 22 12

100_C_1_20 3557.39 3576.59 0.54 10.74 2178 13 36
100_RC_0_18 3420.74 3461.23 117 9 13

100_RC_1_18 3344.28 3362.95 0.56 224 644 12 6
100_R_0_24 3758.27 3792.44 0.90 13 15

100_R_1_24 3758.27 3825.33 175 0.00 668 15 0

According to the obtained results, the proposed ALNS seems to perform stable when considering heterogeneous costs, leading to
solutions with an average GAP of 0.91% compared to the best known solutions. In addition, the results indicate that objective function
values tend to increase due to larger routing costs (heterogeneous costs) for the considered vehicles, compared to homogeneous case (i.e.,
0.5 €for all vehicles). In this context, making use of available SLs leads to average cost savings of 6.24% compared to the corresponding
best-known PDPTW solutions.

4.6. An application study

In this section we investigate the performance of the PDPTW-SL environment on a realistic scheduled lined system. In particular, we
solve one instance of 100 randomly generated requests on a 60 x 60 time-units area, three depots and 20 PD vehicles. The scheduled lines
graph is shown in Fig. 5 and it is inspired from the current metro system in Amsterdam (see Fig. 1). The distances are considered Euclidean
and time windows are randomly generated.

The results shown in Table 19 are obtained after five runs of the algorithm and indicate the best solutions found for both PDPTW-SL
and PDPTW. In particular, the PDPTW-SL integrated transportation system led to 5% savings in terms of operating costs and 9% in shorter
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Fig. 5. An illustrative representation of Amsterdam's metro system.

Table 19
Results on a realistic real-life scheduled line system.

Instance PDPTW-SL PDPTW
Driving time Units on SLs Cost € CPU seconds # of vehicles Driving time Cost € CPU seconds # of vehicles
Amsterdam 100 requests 1767.22 36 919.61 1258.52 10 1945.69 972.85 34.62 7

total driving time. Even though PDPTW-SL system can lead to operating costs and CO,e emissions benefits, the number of vehicles used is
increased as compared to PDPTW.

5. Conclusions

We proposed a metaheuristic algorithm to solve the PDPTW-SL. To investigate the performance of the algorithm, we have generated
several sets of PDPTW-SL instances. Compared to the existing solutions on a set of PDPTW instances, the proposed algorithm performed
well in terms of both, solution quality (with a maximum GAP of 2.79%) and CPU time (78 s on average). Furthermore, we have also shown
that small PDPTW-SL instances can be solved optimally by the proposed formulation. The solutions obtained from solving larger instances,
up to 100 requests, were compared to their corresponding PDPTW solutions and it is concluded that the flexibility of using scheduled line
services leads to significant cost savings and fewer CO,e emissions. However, note that the performance of the PDPTW-SL system may be
highly dependent on the relative positioning of the scheduled lines to the request nodes. In addition, investment costs needed for
implementing such system may affect its outcome.

The reliability of such a system may decrease due to extra causes of delays and cargo damages (i.e., transfers to/from SLs, delays in SL
schedules). Therefore, shippers may not be willing to use PDPTW-SL system. In order to tackle such issues, more advanced planning tools
are needed, which consider stochastic aspects of the problem. The current research state of the considered problem is yet young and
further industry collaborations are to be done in order to learn more about practical issues that may or may not prevent the imple-
mentation and the execution of such a system.

Overall the numerical experiments indicate that the proposed algorithm leads to high-quality routing solutions for relatively large
instances in a reasonable amount of time. Regarding extensions of the investigated problem, additional aspects may be considered such as
driver-related constraints, stochastic aspects (demands, travel times) or passenger requests, and the other related constraints (e.g.,
maximum ride-time). Investigation of exact decomposition algorithms (e.g., Branch and Price) could also be an interesting research
direction. In addition, since the results show that the number of PD vehicles used may increase when SLs are introduced, it would be
interesting to introduce fixed costs for the PD vehicles as well to make more clear the trade-off between using fewer PD vehicles or using
SLs with more PD vehicles.
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